Sample records for n-acetylmuramoyl l-alanine amidase

  1. Purification, crystallization and preliminary X-ray analysis of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    PubMed

    Deva, Taru; Pryor, KellyAnn D; Leiting, Barbara; Baker, Edward N; Smith, Clyde A

    2003-08-01

    UDP-N-acetylmuramoyl:L-alanine ligase (MurC) is involved in the pathway leading from UDP-N-glucosamine to the UDP-N-acetylmuramoyl:pentapeptide unit, which is the building block for the peptidoglycan layer found in all bacterial cell walls. The pathways leading to the biosynthesis of the peptidoglycan layer are important targets for the development of novel antibiotics, since animal cells do not contain these pathways. MurC is the first of four similar ATP-dependent amide-bond ligases which share primary and tertiary structural similarities. The crystal structures of three of these have been determined by X-ray crystallography, giving insights into the binding of the carbohydrate substrate and the ATP. Diffraction-quality crystals of the enzyme MurC have been obtained in both native and selenomethionine forms and X-ray diffraction data have been collected at the Se edge at a synchrotron source. The crystals are orthorhombic, with unit-cell parameters a = 73.9, b = 93.6, c = 176.8 A, and diffraction has been observed to 2.6 A resolution.

  2. Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    PubMed

    Deva, Taru; Baker, Edward N; Squire, Christopher J; Smith, Clyde A

    2006-12-01

    The bacterial cell wall provides essential protection from the external environment and confers strength and rigidity to counteract internal osmotic pressure. Without this layer the cell would be easily ruptured and it is for this reason that biosynthetic pathways leading to the formation of peptidoglycan have for many years been a prime target for effective antibiotics. Central to this pathway are four similar ligase enzymes which add peptide groups to glycan moieties. As part of a program to better understand the structure-function relationships in these four enzymes, the crystal structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC) has been determined to 2.6 A resolution. The structure was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and refined to a crystallographic R factor of 0.212 (R(free) = 0.259). The enzyme has a modular multi-domain structure very similar to those of other members of the mur family of ATP-dependent amide-bond ligases. Detailed comparison of these four enzymes shows that considerable conformational changes are possible. These changes, together with the recruitment of two different N-terminal domains, allow this family of enzymes to bind a substrate which is identical at one end and at the other has the growing peptide tail which will ultimately become part of the rigid bacterial cell wall. Comparison of the E. coli and Haemophilus influenzae structures and analysis of the sequences of known MurC enzymes indicate the presence of a ;dimerization' motif in almost 50% of the MurC enzymes and points to a highly conserved loop in domain 3 that may play a key role in amino-acid ligand specificity.

  3. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; ...

    2014-11-20

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  4. Structure-guided functional characterization of DUF1460 reveals a highly specific NlpC/P60 amidase family.

    PubMed

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; Grant, Joanna C; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W; Godzik, Adam; Lesley, Scott A; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2014-12-02

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predicted in silico based on structural and bioinformatics data, and subsequently were characterized experimentally. Further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines another amidase family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  6. Enabling cell-cell communication via nanopore formation: structure, function and localization of the unique cell wall amidase AmiC2 of Nostoc punctiforme.

    PubMed

    Büttner, Felix M; Faulhaber, Katharina; Forchhammer, Karl; Maldener, Iris; Stehle, Thilo

    2016-04-01

    To orchestrate a complex life style in changing environments, the filamentous cyanobacterium Nostoc punctiforme facilitates communication between neighboring cells through septal junction complexes. This is achieved by nanopores that perforate the peptidoglycan (PGN) layer and traverse the cell septa. The N-acetylmuramoyl-l-alanine amidase AmiC2 (Npun_F1846; EC 3.5.1.28) in N. punctiforme generates arrays of such nanopores in the septal PGN, in contrast to homologous amidases that mediate daughter cell separation after cell division in unicellular bacteria. Nanopore formation is therefore a novel property of AmiC homologs. Immunofluorescence shows that native AmiC2 localizes to the maturing septum. The high-resolution crystal structure (1.12 Å) of its catalytic domain (AmiC2-cat) differs significantly from known structures of cell splitting and PGN recycling amidases. A wide and shallow binding cavity allows easy access of the substrate to the active site, which harbors an essential zinc ion. AmiC2-cat exhibits strong hydrolytic activity in vitro. A single point mutation of a conserved glutamate near the zinc ion results in total loss of activity, whereas zinc removal leads to instability of AmiC2-cat. An inhibitory α-helix, as found in the Escherichia coli AmiC(E. coli) structure, is absent. Taken together, our data provide insight into the cell-biological, biochemical and structural properties of an unusual cell wall lytic enzyme that generates nanopores for cell-cell communication in multicellular cyanobacteria. The novel structural features of the catalytic domain and the unique biological function of AmiC2 hint at mechanisms of action and regulation that are distinct from other amidases. The AmiC2-cat structure has been deposited in the Protein Data Bank under accession number 5EMI. © 2016 Federation of European Biochemical Societies.

  7. Characterization of a Thermostable d-Stereospecific Alanine Amidase from Brevibacillus borstelensis BCS-1

    PubMed Central

    Baek, Dae Heoun; Kwon, Seok-Joon; Hong, Seung-Pyo; Kwak, Mi-Sun; Lee, Mi-Hwa; Song, Jae Jun; Lee, Seung-Goo; Yoon, Ki-Hong; Sung, Moon-Hee

    2003-01-01

    A gene encoding a new thermostable d-stereospecific alanine amidase from the thermophile Brevibacillus borstelensis BCS-1 was cloned and sequenced. The molecular mass of the purified enzyme was estimated to be 199 kDa after gel filtration chromatography and about 30 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the enzyme could be composed of a hexamer with identical subunits. The purified enzyme exhibited strong amidase activity towards d-amino acid-containing aromatic, aliphatic, and branched amino acid amides yet exhibited no enzyme activity towards l-amino acid amides, d-amino acid-containing peptides, and NH2-terminally protected amino acid amides. The optimum temperature and pH for the enzyme activity were 85°C and 9.0, respectively. The enzyme remained stable within a broad pH range from 7.0 to 10.0. The enzyme was inhibited by dithiothreitol, 2-mercaptoethanol, and EDTA yet was strongly activated by Co2+ and Mn2+. The kcat/Km for d-alaninamide was measured as 544.4 ± 5.5 mM−1 min−1 at 50°C with 1 mM Co2+. PMID:12571020

  8. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae.

    PubMed

    Mol, Clifford D; Brooun, Alexei; Dougan, Douglas R; Hilgers, Mark T; Tari, Leslie W; Wijnands, Robert A; Knuth, Mark W; McRee, Duncan E; Swanson, Ronald V

    2003-07-01

    UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.

  9. Crystal Structures of Active Fully Assembled Substrate- and Product-Bound Complexes of UDP-N-Acetylmuramic Acid:l-Alanine Ligase (MurC) from Haemophilus influenzae

    PubMed Central

    Mol, Clifford D.; Brooun, Alexei; Dougan, Douglas R.; Hilgers, Mark T.; Tari, Leslie W.; Wijnands, Robert A.; Knuth, Mark W.; McRee, Duncan E.; Swanson, Ronald V.

    2003-01-01

    UDP-N-acetylmuramic acid:l-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg2+ and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-l-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn2+ have been determined to 1.85- and 1.7-Å resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the γ-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates. PMID:12837790

  10. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic streptococci.

    PubMed

    Moscoso, Miriam; Esteban-Torres, María; Menéndez, Margarita; García, Ernesto

    2014-01-01

    Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models.

  11. LytN, a Murein Hydrolase in the Cross-wall Compartment of Staphylococcus aureus, Is Involved in Proper Bacterial Growth and Envelope Assembly*

    PubMed Central

    Frankel, Matthew B.; Hendrickx, Antoni P. A.; Missiakas, Dominique M.; Schneewind, Olaf

    2011-01-01

    Cell cycle progression for the spherical microbe Staphylococcus aureus requires the coordinated synthesis and remodeling of peptidoglycan. The majority of these rearrangements takes place at the mid-cell, in a compartment designated the cross-wall. Secreted polypeptides endowed with a YSIRK-G/S signal peptide are directly delivered to the cross-wall compartment. One such YSIRK-containing protein is the murein hydrolase LytN. lytN mutations precipitate structural damage to the cross-wall and interfere with staphylococcal growth. Overexpression of lytN also affects growth and triggers rupture of the cross-wall. The lytN phenotype can be reversed by the controlled expression of lytN but not by adding purified LytN to staphylococcal cultures. LytN harbors LysM and CHAP domains, the latter of which functions as both an N-acetylmuramoyl-l-alanine amidase and d-alanyl-glycine endopeptidase. Thus, LytN secretion into the cross-wall promotes peptidoglycan separation and completion of the staphylococcal cell cycle. PMID:21784864

  12. Recombinant Expression of a Genome-encoded N-acetylmuramoyl-L-alanine Amidase that Synergistically Lyses Listeria monocytogenes Biofilms with a Protease

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes plays a significant role in human food-borne disease caused by eating food contaminated with the bacterium and although incidence is low it is a leading cause of life-threatening, bacterial food-borne disease in humans. L. monocytogenes serotypes 1/2a and 4b can form mixed-cu...

  13. Characterization of Foodborne Strains of Staphylococcus aureus by Shotgun Proteomics: Functional Networks, Virulence Factors and Species-Specific Peptide Biomarkers

    PubMed Central

    Carrera, Mónica; Böhme, Karola; Gallardo, José M.; Barros-Velázquez, Jorge; Cañas, Benito; Calo-Mata, Pilar

    2017-01-01

    In the present work, we applied a shotgun proteomics approach for the fast and easy characterization of 20 different foodborne strains of Staphylococcus aureus (S. aureus), one of the most recognized foodborne pathogenic bacteria. A total of 644 non-redundant proteins were identified and analyzed via an easy and rapid protein sample preparation procedure. The results allowed the differentiation of several proteome datasets from the different strains (common, accessory, and unique datasets), which were used to determine relevant functional pathways and differentiate the strains into different Euclidean hierarchical clusters. Moreover, a predicted protein-protein interaction network of the foodborne S. aureus strains was created. The whole confidence network contains 77 nodes and 769 interactions. Most of the identified proteins were surface-associated proteins that were related to pathways and networks of energy, lipid metabolism and virulence. Twenty-seven virulence factors were identified, and most of them corresponded to autolysins, N-acetylmuramoyl-L-alanine amidases, phenol-soluble modulins, extracellular fibrinogen-binding proteins and virulence factor EsxA. Potential species-specific peptide biomarkers were screened. Twenty-one species-specific peptide biomarkers, belonging to eight different proteins (nickel-ABC transporter, N-acetylmuramoyl-L-alanine amidase, autolysin, clumping factor A, gram-positive signal peptide YSIRK, cysteine protease/staphopain, transcriptional regulator MarR, and transcriptional regulator Sar-A), were proposed to identify S. aureus. These results constitute the first major dataset of peptides and proteins of foodborne S. aureus strains. This repository may be useful for further studies, for the development of new therapeutic treatments for S. aureus food intoxications and for microbial source-tracking in foodstuffs. PMID:29312172

  14. Structure-Function Analysis of Staphylococcus aureus Amidase Reveals the Determinants of Peptidoglycan Recognition and Cleavage*

    PubMed Central

    Büttner, Felix Michael; Zoll, Sebastian; Nega, Mulugeta; Götz, Friedrich; Stehle, Thilo

    2014-01-01

    The bifunctional major autolysin AtlA of Staphylococcus aureus cleaves the bacterium's peptidoglycan network (PGN) at two distinct sites during cell division. Deletion of the enzyme results in large cell clusters with disordered division patterns, indicating that AtlA could be a promising target for the development of new antibiotics. One of the two functions of AtlA is performed by the N-acetylmuramyl-l-alanine amidase AmiA, which cleaves the bond between the carbohydrate and the peptide moieties of PGN. To establish the structural requirements of PGN recognition and the enzymatic mechanism of cleavage, we solved the crystal structure of the catalytic domain of AmiA (AmiA-cat) in complex with a peptidoglycan-derived ligand at 1.55 Å resolution. The peptide stem is clearly visible in the structure, forming extensive contacts with protein residues by docking into an elongated groove. Less well defined electron density and the analysis of surface features indicate likely positions of the carbohydrate backbone and the pentaglycine bridge. Substrate specificity analysis supports the importance of the pentaglycine bridge for fitting into the binding cleft of AmiA-cat. PGN of S. aureus with l-lysine tethered with d-alanine via a pentaglycine bridge is completely hydrolyzed, whereas PGN of Bacillus subtilis with meso-diaminopimelic acid directly tethered with d-alanine is not hydrolyzed. An active site mutant, H370A, of AmiA-cat was completely inactive, providing further support for the proposed catalytic mechanism of AmiA. The structure reported here is not only the first of any bacterial amidase in which both the PGN component and the water molecule that carries out the nucleophilic attack on the carbonyl carbon of the scissile bond are present; it is also the first peptidoglycan amidase complex structure of an important human pathogen. PMID:24599952

  15. Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage.

    PubMed

    Büttner, Felix Michael; Zoll, Sebastian; Nega, Mulugeta; Götz, Friedrich; Stehle, Thilo

    2014-04-18

    The bifunctional major autolysin AtlA of Staphylococcus aureus cleaves the bacterium's peptidoglycan network (PGN) at two distinct sites during cell division. Deletion of the enzyme results in large cell clusters with disordered division patterns, indicating that AtlA could be a promising target for the development of new antibiotics. One of the two functions of AtlA is performed by the N-acetylmuramyl-l-alanine amidase AmiA, which cleaves the bond between the carbohydrate and the peptide moieties of PGN. To establish the structural requirements of PGN recognition and the enzymatic mechanism of cleavage, we solved the crystal structure of the catalytic domain of AmiA (AmiA-cat) in complex with a peptidoglycan-derived ligand at 1.55 Å resolution. The peptide stem is clearly visible in the structure, forming extensive contacts with protein residues by docking into an elongated groove. Less well defined electron density and the analysis of surface features indicate likely positions of the carbohydrate backbone and the pentaglycine bridge. Substrate specificity analysis supports the importance of the pentaglycine bridge for fitting into the binding cleft of AmiA-cat. PGN of S. aureus with l-lysine tethered with d-alanine via a pentaglycine bridge is completely hydrolyzed, whereas PGN of Bacillus subtilis with meso-diaminopimelic acid directly tethered with d-alanine is not hydrolyzed. An active site mutant, H370A, of AmiA-cat was completely inactive, providing further support for the proposed catalytic mechanism of AmiA. The structure reported here is not only the first of any bacterial amidase in which both the PGN component and the water molecule that carries out the nucleophilic attack on the carbonyl carbon of the scissile bond are present; it is also the first peptidoglycan amidase complex structure of an important human pathogen.

  16. Elucidating the pH-Dependent Structural Transition of T7 Bacteriophage Endolysin.

    PubMed

    Sharma, Meenakshi; Kumar, Dinesh; Poluri, Krishna Mohan

    2016-08-23

    Bacteriophages are the most abundant and diverse biological entities on earth. Bacteriophage endolysins are unique peptidoglycan hydrolases and have huge potential as effective enzybiotics in various infectious models. T7 bacteriophage endolysin (T7L), also known as N-acetylmuramoyl-l-alanine amidase or T7 lysozyme, is a 17 kDa protein that lyses a range of Gram-negative bacteria by hydrolyzing the amide bond between N-acetylmuramoyl residues and the l-alanine of the peptidoglycan layer. Although the activity profiles of several of the T7 family members have been known for many years, the molecular basis for their pH-dependent differential activity is not clear. In this study, we explored the pH-induced structural, stability, and activity characteristics of T7L by applying a variety of biophysical techniques and protein nuclear magnetic resonance (NMR) spectroscopy. Our studies established a reversible structural transition of T7L below pH 6 and the formation of a partially denatured conformation at pH 3. This low-pH conformation is thermally stable and exposed its hydrophobic pockets. Further, NMR relaxation measurements and structural analysis unraveled that T7L is highly dynamic in its native state and a network of His residues are responsible for the observed pH-dependent conformational dynamics and transitions. As bacteriophage chimeric and engineered endolysins are being developed as novel therapeutics against multiple drug resistance pathogens, we believe that our results are of great help in designing these entities as broadband antimicrobial and/or antibacterial agents.

  17. Design and synthesis of novel N-benzylidenesulfonohydrazide inhibitors of MurC and MurD as potential antibacterial agents.

    PubMed

    Frlan, Rok; Kovac, Andreja; Blanot, Didier; Gobec, Stanislav; Pecar, Slavko; Obreza, Ales

    2008-01-11

    A series of novel N-benzylidenesulfonohydrazide compounds were designed and synthesized as inhibitors of UDP-N-acetylmuramic acid: L-alanine ligase (MurC) and UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase (MurD) from E. coli, involved in the biosynthesis of bacterial cell-walls. Some compounds possessed inhibitory activity against both enzymes with IC(50) values as low as 30 microM. In addition, a new, one-pot synthesis of amidobenzaldehydes is reported.

  18. Purification, characterization, gene cloning and nucleotide sequencing of D: -stereospecific amino acid amidase from soil bacterium: Delftia acidovorans.

    PubMed

    Hongpattarakere, Tipparat; Komeda, Hidenobu; Asano, Yasuhisa

    2005-12-01

    The D-amino acid amidase-producing bacterium was isolated from soil samples using an enrichment culture technique in medium broth containing D-phenylalanine amide as a sole source of nitrogen. The strain exhibiting the strongest activity was identified as Delftia acidovorans strain 16. This strain produced intracellular D-amino acid amidase constitutively. The enzyme was purified about 380-fold to homogeneity and its molecular mass was estimated to be about 50 kDa, on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was active preferentially toward D-amino acid amides rather than their L-counterparts. It exhibited strong amino acid amidase activity toward aromatic amino acid amides including D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide, yet it was not specifically active toward low-molecular-weight D-amino acid amides such as D-alanine amide, L-alanine amide and L-serine amide. Moreover, it was not specifically active toward oligopeptides. The enzyme showed maximum activity at 40 degrees C and pH 8.5 and appeared to be very stable, with 92.5% remaining activity after the reaction was performed at 45 degrees C for 30 min. However, it was mostly inactivated in the presence of phenylmethanesulfonyl fluoride or Cd2+, Ag+, Zn2+, Hg2+ and As3+ . The NH2 terminal and internal amino acid sequences of the enzyme were determined; and the gene was cloned and sequenced. The enzyme gene damA encodes a 466-amino-acid protein (molecular mass 49,860.46 Da); and the deduced amino acid sequence exhibits homology to the D-amino acid amidase from Variovorax paradoxus (67.9% identity), the amidotransferase A subunit from Burkholderia fungorum (50% identity) and other enantioselective amidases.

  19. Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient L-Aspartic Acid Producing Escherichia coli.

    PubMed

    Xu, Youqiang; Ma, Yuyue; Yao, Su; Jiang, Zengyan; Pei, Jiangsen; Cheng, Chi

    2016-03-01

    Escherichia phage CICC 80001 was isolated from the bacteriophage contaminated medium of an Escherichia coli strain HY-05C (CICC 11022S) which could produce L-aspartic acid. The phage had a head diameter of 45-50 nm and a tail of about 10 nm. The one-step growth curve showed a latent period of 10 min and a rise period of about 20 min. The average burst size was about 198 phage particles per infected cell. Tests were conducted on the plaques, multiplicity of infection, and host range. The genome of CICC 80001 was sequenced with a length of 38,810 bp, and annotated. The key proteins leading to host-cell lysis were phylogenetically analyzed. One protein belonged to class II holin, and the other two belonged to the endopeptidase family and N-acetylmuramoyl-L-alanine amidase family, respectively. The genome showed the sequence identity of 82.7% with that of Enterobacteria phage T7, and carried ten unique open reading frames. The bacteriophage resistant E. coli strain designated CICC 11021S was breeding and its L-aspartase activity was 84.4% of that of CICC 11022S.

  20. Study of the overproduced uridine-diphosphate-N-acetylmuramate:L-alanine ligase from Escherichia coli.

    PubMed

    Liger, D; Masson, A; Blanot, D; van Heijenoort, J; Parquet, C

    1996-01-01

    The UDP-N-acetylmuramate:L-alanine ligase of Escherichia coli is responsible for the addition of the first amino acid of the peptide moiety in the assembly of the monomer unit of peptidoglycan. It catalyzes the formation of the amide bond between UDP-N-acetylmuramic acid (UDP-MurNAc) and L-alanine. The UDP-MurNAc-L-alanine ligase was overproduced 2000-fold in a strain harboring a recombinant plasmid (pAM1005) with the murC gene under the control of the inducible promoter trc. The murC gene product appears as a 50-kDa protein accounting for ca. 50% of total cell proteins. A two-step purification led to 1 g of a homogeneous protein from an 8-liter culture. The N-terminal sequence of the purified protein correlated with the nucleotide sequence of the gene. The stability of the enzymatic activity is strictly dependent on the presence of 2-mercaptoethanol. The K(m) values for substrates UDP-N-acetylmuramic acid, L-alanine, and ATP were estimated; 100, 20, and 450 microM, respectively. The specificity of the enzyme for its substrates was investigated with various analogues. Preliminary experiments attempting to elucidate the enzymatic mechanism were consistent with the formation of an acylphosphate intermediate.

  1. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    PubMed Central

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine. PMID:11073931

  2. Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to delta15N and microbial peptidoglycan studies.

    PubMed

    Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko

    2009-01-01

    We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.

  3. Effect of various alanine analogues on the L-alanine-adding enzyme from Escherichia coli.

    PubMed

    Liger, D; Blanot, D; van Heijenoort, J

    1991-05-01

    An extract from Escherichia coli containing the L-alanine-adding enzyme with a high specific activity was prepared. Several compounds structurally related to L-alanine were tested as inhibitors of this activity. Intact amino and carboxyl groups were necessary for an interaction with the enzyme. Certain halogenated (haloalanines) or unsaturated (L-vinylglycine, L-propargylglycine, 3-cyano-L-alanine) amino acids were good inhibitors. Radioactive glycine, serine and 1-aminoethylphosphonic acid were tested as substrates. Whereas glycine or L-serine gave rise to the formation of the corresponding nucleotide product, no synthesis of UDP-N-acetylmuramyl-L-1-aminoethylphosphonic acid could be detected.

  4. Kinetic and crystallographic studies of Escherichia coli UDP-N-acetylmuramate:L-alanine ligase.

    PubMed Central

    Emanuele, J. J.; Jin, H.; Jacobson, B. L.; Chang, C. Y.; Einspahr, H. M.; Villafranca, J. J.

    1996-01-01

    Uridine diphosphate-N-acetylmuramate:L-alanine ligase (EC 6.3.2.8, UNAM:L-Ala ligase or MurC gene product) catalyzes the ATP-dependent ligation of the first amino acid to the sugar moiety of the peptidoglycan precursor. This is an essential step in cell wall biosynthesis for both gram-positive and gram-negative bacteria. Optimal assay conditions for initial velocity studies have been established. Steady-state assays were carried out to determine the effect of various parameters on enzyme activity. Factors studies included: cation specificity, ionic strength, buffer composition and pH. At 37 degrees C and pH 8.0, kcat was equal to 980 +/- 40 min-1, while K(m) values for ATP, UNAM, and L-alanine were, 130 +/- 10, 44 +/- 3, and 48 +/- 6 microM, respectively. Of the metals tested only Mn, Mg, and Co were able to support activity. Sodium chloride, potassium chloride, ammonium chloride, and ammonium sulfate had no effect on activity up to 75 mM levels. The enzyme, in appropriate buffer, was stable enough to be assayed over the pH range of 5.6 to 10.1. pH profiles of Vmax/K(m) for the three substrates and of Vmax were obtained. Crystallization experiments with the enzyme produced two crystal forms. One of these has been characterized by X-ray diffraction as monoclinic, space group C2, with cell dimensions a = 189.6, b = 92.1, c = 75.2 A, beta = 105 degrees, and two 54 kDa molecules per asymmetric unit. It was discovered that the enzyme will hydrolyze ATP in the absence of L-alanine. This L-alanine independent activity is dependent upon the concentrations of both ATP and UNAM; kcat for this activity is less than 4% of the biosynthetic activity measured in the presence of saturating levels of L-alanine. Numerous L-alanine analogs tested were shown to stimulate ATP hydrolysis. A number of these L-alanine analogs produced novel products as accessed by HPLC and mass spectral analysis. All of the L-alanine analogs tested as inhibitors were competitive versus L-alanine. PMID

  5. Amidase Activity of AmiC Controls Cell Separation and Stem Peptide Release and Is Enhanced by NlpD in Neisseria gonorrhoeae.

    PubMed

    Lenz, Jonathan D; Stohl, Elizabeth A; Robertson, Rosanna M; Hackett, Kathleen T; Fisher, Kathryn; Xiong, Kalia; Lee, Mijoon; Hesek, Dusan; Mobashery, Shahriar; Seifert, H Steven; Davies, Christopher; Dillard, Joseph P

    2016-05-13

    The human-restricted pathogen Neisseria gonorrhoeae encodes a single N-acetylmuramyl-l-alanine amidase involved in cell separation (AmiC), as compared with three largely redundant cell separation amidases found in Escherichia coli (AmiA, AmiB, and AmiC). Deletion of amiC from N. gonorrhoeae results in severely impaired cell separation and altered peptidoglycan (PG) fragment release, but little else is known about how AmiC functions in gonococci. Here, we demonstrated that gonococcal AmiC can act on macromolecular PG to liberate cross-linked and non-cross-linked peptides indicative of amidase activity, and we provided the first evidence that a cell separation amidase can utilize a small synthetic PG fragment as substrate (GlcNAc-MurNAc(pentapeptide)-GlcNAc-MurNAc(pentapeptide)). An investigation of two residues in the active site of AmiC revealed that Glu-229 is critical for both normal cell separation and the release of PG fragments by gonococci during growth. In contrast, Gln-316 has an autoinhibitory role, and its mutation to lysine resulted in an AmiC with increased enzymatic activity on macromolecular PG and on the synthetic PG derivative. Curiously, the same Q316K mutation that increased AmiC activity also resulted in cell separation and PG fragment release defects, indicating that activation state is not the only factor determining normal AmiC activity. In addition to displaying high basal activity on PG, gonococcal AmiC can utilize metal ions other than the zinc cofactor typically used by cell separation amidases, potentially protecting its ability to function in zinc-limiting environments. Thus gonococcal AmiC has distinct differences from related enzymes, and these studies revealed parameters for how AmiC functions in cell separation and PG fragment release. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. d-Alanine Oxidase from Escherichia coli: Localization and Induction by l-Alanine

    PubMed Central

    Raunio, R. P.; Jenkins, W. T.

    1973-01-01

    Dialyzed membranes of Escherichia coli prepared by an ethylenediaminetetraacetic acid-lysozyme method catalyze the oxidation of both l-alanine and d-alanine. The specific activities for the oxidations of both d-alanine and l-alanine are increased fivefold when the cells are grown in the presence of either l-alanine or dl-alanine, but are increased only slightly when grown in the presence of d-alanine. In the dl-alanine-induced system, the specific activities for the oxidations of some other d-amino acids are also raised. dl-alanine also induces two other alanine catabolizing enzymes, alanine dehydrogenase and alanine-glutamate aminotransferase which are found in the “soluble” fraction of lysozyme-treated cells. The oxidations of both l-alanine and d-alanine were associated with the membranes of induced cells. After the membranes were disintegrated by sonic treatment, both l-alanine and d-alanine oxidation catalysts sedimented in a sucrose density gradient together with d-lactate and l-lactate dehydrogenases, apparently as a single multienzyme complex. PMID:4146872

  7. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a substantial role in non-foodborne human, animal and avian diseases as well as human foodborne disease. Previously discovered C. perfringens bacteriophage lytic enzyme amino acid sequences were utilized to iden...

  8. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Bornikoel, Jan; Carrión, Alejandro; Fan, Qing; Flores, Enrique; Forchhammer, Karl; Mariscal, Vicente; Mullineaux, Conrad W.; Perez, Rebeca; Silber, Nadine; Wolk, C. Peter; Maldener, Iris

    2017-01-01

    Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N2-fixing heterocysts and CO2-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N-acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell–cell communication in Nostoc punctiforme. This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2, were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme, because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell–cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD. PMID:28929086

  9. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Bornikoel, Jan; Carrión, Alejandro; Fan, Qing; Flores, Enrique; Forchhammer, Karl; Mariscal, Vicente; Mullineaux, Conrad W; Perez, Rebeca; Silber, Nadine; Wolk, C Peter; Maldener, Iris

    2017-01-01

    Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N 2 -fixing heterocysts and CO 2 -fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N -acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell-cell communication in Nostoc punctiforme . This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2 , were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme , because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell-cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD.

  10. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice.

    PubMed

    Ge, Jingping; Sun, Yanyang; Xin, Xing; Wang, Ying; Ping, Wenxiang

    2016-01-14

    Bacteriocins have antimicrobial activities against food-spoiling bacteria and food-borne pathogens. Paracin 1.7, a bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice, was studied. Following partial purification with ammonium sulfate precipitation, CM Sepharose Fast Flow, and Sephadex G-10 chromatography, the molecular weight of Paracin 1.7 was about 10 kDa based on Tricine-SDS-PAGE results. A 2.87 fold purified bacteriocin was produced, reaching a final yield of 39.93% and the specific activity of 1.56 × 10(3) AU/mg. The N-terminal amino acid sequence of Paracin 1.7 was VSNTFFA, and the LC/LTQ results revealed that the N-terminal amino acid sequence was similar to that of ABC-type oligopeptide transport system protein and N-acetylmuramoyl-L-alanine amidase. Paracin 1.7 was sensitive to protease K, had antimicrobial activities at a broad pH range (3.0-8.0), and was heat resistant (121 °C for 20 min). Paracin 1.7 from Lactobacillus paracasei HD1-7 is a novel bacteriocin that has potential applications in food preservation.

  11. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice

    PubMed Central

    Ge, Jingping; Sun, Yanyang; Xin, Xing; Wang, Ying; Ping, Wenxiang

    2016-01-01

    Bacteriocins have antimicrobial activities against food-spoiling bacteria and food-borne pathogens. Paracin 1.7, a bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice, was studied. Following partial purification with ammonium sulfate precipitation, CM Sepharose Fast Flow, and Sephadex G-10 chromatography, the molecular weight of Paracin 1.7 was about 10 kDa based on Tricine-SDS-PAGE results. A 2.87 fold purified bacteriocin was produced, reaching a final yield of 39.93% and the specific activity of 1.56 × 103 AU/mg. The N-terminal amino acid sequence of Paracin 1.7 was VSNTFFA, and the LC/LTQ results revealed that the N-terminal amino acid sequence was similar to that of ABC-type oligopeptide transport system protein and N-acetylmuramoyl-L-alanine amidase. Paracin 1.7 was sensitive to protease K, had antimicrobial activities at a broad pH range (3.0–8.0), and was heat resistant (121 °C for 20 min). Paracin 1.7 from Lactobacillus paracasei HD1-7 is a novel bacteriocin that has potential applications in food preservation. PMID:26763314

  12. Mechanism of d-Cycloserine Action: Transport Systems for d-Alanine, d-Cycloserine, l-Alanine, and Glycine1

    PubMed Central

    Wargel, Robert J.; Shadur, Craig A.; Neuhaus, Francis C.

    1970-01-01

    The accumulation of d-alanine, l-alanine, glycine, and d-cycloserine in Escherichia coli was found to be mediated by at least two transport systems. The systems for d-alanine and glycine are related, and are separate from that involved in the accumulation of l-alanine. d-Cycloserine appears to be primarily transported by the d-alanine-glycine system. The accumulation of d-alanine, glycine, and d-cycloserine was characterized by two line segments in the Lineweaver-Burk analysis, whereas the accumulation of l-alanine was characterized by a single line segment. d-Cycloserine was an effective inhibitor of glycine and d-alanine accumulation, and l-cycloserine was an effective inhibitor of l-alanine transport. The systems were further differentiated by effects of azide, enhancement under various growth conditions, and additional inhibitor studies. Since the primary access of d-cycloserine in E. coli is via the d-alanine-glycine system, glycine might be expected to be a better antagonist of d-cycloserine inhibition than l-alanine. Glycine and d-alanine at 10−5m antagonized the effect of d-cycloserine in E. coli, whereas this concentration of l-alanine had no effect. PMID:4919992

  13. Saliva Microbiota Carry Caries-Specific Functional Gene Signatures

    PubMed Central

    Chang, Xingzhi; Yuan, Xiao; Tu, Qichao; Yuan, Tong; Deng, Ye; Hemme, Christopher L.; Van Nostrand, Joy; Cui, Xinping; He, Zhili; Chen, Zhenggang; Guo, Dawei; Yu, Jiangbo; Zhang, Yue; Zhou, Jizhong; Xu, Jian

    2014-01-01

    Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. PMID:24533043

  14. Saliva microbiota carry caries-specific functional gene signatures.

    PubMed

    Yang, Fang; Ning, Kang; Chang, Xingzhi; Yuan, Xiao; Tu, Qichao; Yuan, Tong; Deng, Ye; Hemme, Christopher L; Van Nostrand, Joy; Cui, Xinping; He, Zhili; Chen, Zhenggang; Guo, Dawei; Yu, Jiangbo; Zhang, Yue; Zhou, Jizhong; Xu, Jian

    2014-01-01

    Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis.

  15. Key role of amino acid residues in the dimerization and catalytic activation of the autolysin LytA, an important virulence factor in Streptococcus pneumoniae.

    PubMed

    Romero, Patricia; López, Rubens; García, Ernesto

    2007-06-15

    LytA, the main autolysin of Streptococcus pneumoniae, was the first member of the bacterial N-acetylmuramoyl-l-alanine amidase (NAM-amidase) family of proteins to be well characterized. This autolysin degrades the peptidoglycan bonds of pneumococcal cell walls after anchoring to the choline residues of the cell wall teichoic acids via its choline-binding module (ChBM). The latter is composed of seven repeats (ChBRs) of approximately 20 amino acid residues. The translation product of the lytA gene is the low-activity E-form of LytA (a monomer), which can be "converted" (activated) in vitro by choline into the fully active C-form at low temperature. The C-form is a homodimer with a boomerang-like shape. To study the structural requirements for the monomer-to-dimer modification and to clarify whether "conversion" is synonymous with dimerization, the biochemical consequences of replacing four key amino acid residues of ChBR6 and ChBR7 (the repeats involved in dimer formation) were determined. The results obtained with a collection of 21 mutated NAM-amidases indicate that Ile-315 is a key amino acid residue in both LytA activity and folding. Amino acids with a marginal position in the solenoid structure of the ChBM were of minor influence in dimer stability; neither the size, polarity, nor aromatic nature of the replacement amino acids affected LytA activity. In contrast, truncated proteins were drastically impaired in their activity and conversion capacity. The results indicate that dimerization and conversion are different processes, but they do not answer the questions of whether conversion can only be achieved after a dimer formation step.

  16. Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramate:L-alanine ligase from Escherichia coli.

    PubMed

    Liger, D; Masson, A; Blanot, D; van Heijenoort, J; Parquet, C

    1995-05-15

    The UDP-N-acetylmuramate:L-alanine ligase of Escherichia coli was over-produced in strains harbouring recombinant plasmids bearing the murC gene under the control of the lac or trc promoter. Plasmid pAM1005, in which the promoter and ribosome-binding site region of murC were removed and in which the gene was directly under the control of promoter trc, led to a 2000-fold amplification of the L-alanine-adding activity after induction by isopropyl-thio-beta-D-galactopyranoside. The murC gene product was visualized as a 50-kDa protein accounting for approximately 50% of the cell protein. A two-step purification led to 1 g of a homogeneous protein from an 18-1 culture. The N-terminal sequence of the purified protein correlated with the nucleotide sequence of the murC gene. The presence of 2-mercaptoethanol and glycerol was essential for the stability of the enzyme. The Km values for UDP-N-acetylmuramic acid, L-alanine and ATP/Mg2+ were estimated at 100, 20 and 450 microM, respectively. Under the optimal in vitro conditions a turnover number of 928 min-1 was calculated and a copy number/cell of 600 could be roughly estimated. The specificity of the enzyme for its substrates was investigated with various analogues. The enzyme also catalysed the reverse reaction.

  17. New Poly(amide-imide)/Nanocomposites Reinforced Silicate Nanoparticles Based on N-pyromellitimido-L-phenyl Alanine Containing Ether Moieties

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Shabanian, Meisam; Dadfar, Ehsan

    2012-02-01

    A series of Poly(amide-imide)/montmorillonite nanocomposites containing N-pyromellitimido-L-phenyl alanine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-pyromellitimido-L-phenyl alanine 3 with 4,4'-diamino diphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PAI matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.

  18. [Cloning and analysis of a new aliphatic amidase gene from Rhodococcus erythropolis TA37].

    PubMed

    Lavrov, K V; Karpova, I Yu; Epremyan, A S; Yanenko, A S

    2014-10-01

    A new aliphatic amidase gene (ami), having a level of similarity with the nearest homologs of no more than 77%, was identified in the Rhodococcus erythropolis TA37 strain, which is able to hydrolyze a wide range of amides. The amidase gene was cloned within a 3.7 kb chromosomal locus, which also contains putative acetyl-CoA ligase and ABC-type transportergenes. The structure of this locus in the R. erythropolis TA37 strain differs from the structure of loci in other Rhodococcus strains. The amidase gene is expressed in Escherichia coli cells. It was demonstrated that amidase (generated in the recombinant strain) efficiently hydrolyzes acetamide (aliphatic anmide) and does not use 4'-nitroacetanilide (N-substituted amide) as a substrate. Insertional inactivation of the amidase gene in the R. erythropolis TA37 strain results in a considerable decrease (by at least 6-7 times) in basal amidase activity, indicating functional amidase activity in the R. erythropolis TA37 strain.

  19. 1H NMR determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental and biological samples.

    PubMed

    Moura, Sidnei; Ultramari, Mariah de Almeida; de Paula, Daniela Mendes Louzada; Yonamine, Mauricio; Pinto, Ernani

    2009-04-01

    A nuclear magnetic resonance (1H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by 1H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 microg/mL. Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples.

  20. Impact of charged amino acid substitution in the transmembrane domain of L-alanine exporter, AlaE, of Escherichia coli on the L-alanine export.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-01-01

    The Escherichia coli alaE gene encodes the L-alanine exporter, AlaE, that catalyzes active export of L-alanine using proton electrochemical potential. The transporter comprises only 149 amino acid residues and four predicted transmembrane domains (TMs), which contain three charged amino acid residues. The AlaE-deficient L-alanine non-metabolizing cells (ΔalaE cells) appeared hypersusceptible to L-alanyl-L-alanine showing a minimum inhibitory concentration (MIC) of 2.5 µg/ml for the dipeptide due to a toxic accumulation of L-alanine. To elucidate the mechanism by which AlaE exports L-alanine, we replaced charged amino acid residues in the TMs, glutamic acid-30 (TM-I), arginine-45 (TM-II), and aspartic acid-84 (TM-III) with their respective charge-conserved amino acid or a net neutral cysteine. The ΔalaE cells producing R45K or R45C appeared hypersusceptible to the dipeptide, indicating that arginine-45 is essential for AlaE activity. MIC of the dipeptide in the ΔalaE cells expressing E30D and E30C was 156 µg/ml and >10,000 µg/ml, respectively, thereby suggesting that a negative charge at this position is not essential. The ΔalaE cells expressing D84E or D84C showed an MIC >10,000 and 78 µg/ml, respectively, implying that a negative charge is required at this position. These results were generally consistent with that of the L-alanine accumulation experiments in intact cells. We therefore concluded that charged amino acid residues (R45 and D84) in the AlaE transmembrane domain play a pivotal role in L-alanine export. Replacement of three cysteine residues at C22, C28 (both in TM-I), and C135 (C-terminal region) with alanine showed only a marginal effect on L-alanine export.

  1. Synthesis and characterization of poly(L-alanine)-block-poly(ethylene glycol) monomethyl ether as amphiphilic biodegradable co-polymers.

    PubMed

    Zhang, Guolin; Ma, Jianbiao; Li, Yanhong; Wang, Yinong

    2003-01-01

    Di-block co-polymers of poly(L-alanine) with poly(ethylene glycol) monomethyl ether (MPEG) were synthesized as amphiphilic biodegradable co-polymers. The ring-opening polymerization of N-carboxy-L-alanine anhydride (NCA) in dichloromethane was initiated by amino-terminated poly(ethylene glycol) monomethyl ether (MPEG-NH2, M(n) = 2000) to afford poly(L-alanine)-block-MPEG. The weight ratio of two blocks in the co-polymers could be altered by adjusting the feeding ratio of NCA to MPEG-NH2. Their chemical structures were characterized on the basis of infrared spectrometry and nuclear magnetic resonance. According to circular dichroism measurement, the poly(L-alanine) chain on the co-polymers in an aqueous medium had a alpha-helix conformation. Two melting points from MPEG block and poly(L-alanine), respectively, could be observed in differential scanning calorimetry curves of the co-polymers, suggesting that a micro-domain phase separation appeared in their bulky states. The co-polymers could take up some water and the capacity was dependent on the ratio of poly(L-alanine) block to MPEG. Such co-polymers might be useful in drug-delivery systems and other biomedical applications.

  2. Enzymatic determination of carbon-14 labeled L-alanine in biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra, F.; Palou, A.; Pons, A.

    A method for determination of L-alanine-specific radioactivity in biological samples is presented. This method is based on the specific enzymatic transformation of L-alanine to pyruvic acid hydrazone catalyzed by the enzyme L-alanine dehydrogenase, formation of the pyruvic acid 2,4-dinitrophenylhydrazone derivative, and quantitative trapping in Amberlite XAD-7 columns, followed by radioactivity counting of the lipophilic eluate. No interferences from other UC-labeled materials such as D-glucose, glycerol, L-lactate, L-serine, L-glutamate, L-phenylalanine, glycine, L-leucine, and L-arginine were observed. This inexpensive and high-speed method is applicable to the simultaneous determination of L-alanine-specific radioactivity for a large number of samples.

  3. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE PAGES

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; ...

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  4. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  5. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  6. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136(T).

    PubMed

    Naqvi, Kubra F; Patin, Delphine; Wheatley, Matthew S; Savka, Michael A; Dobson, Renwick C J; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/C Vs ) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44-46°C. Its apparent K m values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum.

  7. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    PubMed Central

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  8. Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid.

    PubMed

    Cox, Paul Alan; Banack, Sandra Anne; Murch, Susan J; Rasmussen, Ulla; Tien, Georgia; Bidigare, Robert Richard; Metcalf, James S; Morrison, Louise F; Codd, Geoffrey A; Bergman, Birgitta

    2005-04-05

    Cyanobacteria can generate molecules hazardous to human health, but production of the known cyanotoxins is taxonomically sporadic. For example, members of a few genera produce hepatotoxic microcystins, whereas production of hepatotoxic nodularins appears to be limited to a single genus. Production of known neurotoxins has also been considered phylogenetically unpredictable. We report here that a single neurotoxin, beta-N-methylamino-L-alanine, may be produced by all known groups of cyanobacteria, including cyanobacterial symbionts and free-living cyanobacteria. The ubiquity of cyanobacteria in terrestrial, as well as freshwater, brackish, and marine environments, suggests a potential for wide-spread human exposure.

  9. Diverse taxa of cyanobacteria produce β-N-methylamino-l-alanine, a neurotoxic amino acid

    PubMed Central

    Cox, Paul Alan; Banack, Sandra Anne; Murch, Susan J.; Rasmussen, Ulla; Tien, Georgia; Bidigare, Robert Richard; Metcalf, James S.; Morrison, Louise F.; Codd, Geoffrey A.; Bergman, Birgitta

    2005-01-01

    Cyanobacteria can generate molecules hazardous to human health, but production of the known cyanotoxins is taxonomically sporadic. For example, members of a few genera produce hepatotoxic microcystins, whereas production of hepatotoxic nodularins appears to be limited to a single genus. Production of known neurotoxins has also been considered phylogenetically unpredictable. We report here that a single neurotoxin, β-N-methylamino-l-alanine, may be produced by all known groups of cyanobacteria, including cyanobacterial symbionts and free-living cyanobacteria. The ubiquity of cyanobacteria in terrestrial, as well as freshwater, brackish, and marine environments, suggests a potential for wide-spread human exposure. PMID:15809446

  10. The quaternary structure of the amidase from Geobacillus pallidus RAPc8 is revealed by its crystal packing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarkar, Vinod B.; Kimani, Serah W.; Cowan, Donald A.

    2006-12-01

    The amidase from G. pallidus RAPc8, a moderate thermophile, converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned, expressed and purified, and then crystallized using the hanging-drop vapour-diffusion method. The amidase from Geobacillus pallidus RAPc8, a moderate thermophile, is a member of the nitrilase enzyme superfamily. It converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned and functionally expressed in Escherichia coli and has been purified by heat treatment and a number of chromatographic steps. The enzyme wasmore » crystallized using the hanging-drop vapour-diffusion method. Crystals produced in the presence of 1.2 M sodium citrate, 400 mM NaCl, 100 mM sodium acetate pH 5.6 were selected for X-ray diffraction studies. A data set having acceptable statistics to 1.96 Å resolution was collected under cryoconditions using an in-house X-ray source. The space group was determined to be primitive cubic P4{sub 2}32, with unit-cell parameter a = 130.49 (±0.05) Å. The structure was solved by molecular replacement using the backbone of the hypothetical protein PH0642 from Pyrococcus horikoshii (PDB code 1j31) with all non-identical side chains substituted with alanine as a probe. There is one subunit per asymmetric unit. The subunits are packed as trimers of dimers with D3 point-group symmetry around the threefold axis in such a way that the dimer interface seen in the homologues is preserved.« less

  11. Staphylococcus aureus MurC participates in L-alanine recognition via histidine 343, a conserved motif in the shallow hydrophobic pocket.

    PubMed

    Kurokawa, Kenji; Nishida, Satoshi; Ishibashi, Mihoko; Mizumura, Hikaru; Ueno, Kohji; Yutsudo, Takashi; Maki, Hideki; Murakami, Kazuhisa; Sekimizu, Kazuhisa

    2008-03-01

    UDP-N-acetylmuramic acid:L-alanine ligase that is encoded by the murC gene, is indispensable for bacterial peptidoglycan biosynthesis and an important target for the development of antibacterial agents. Structure of MurC ligase with substrates has been described, however, little validation via studying the effects of mutations on the structure of MurC has been performed. In this study, we carried out a functional in vitro and in vivo characterization of Staphylococcus aureus MurCH343Y protein that has a temperature-sensitive mutation of a conserved residue in the predicted shallow hydrophobic pocket that holds a short L-alanine side chain. Purified H343Y and wild-type MurC had K(m) values for L-alanine of 3.2 and 0.44 mM, respectively, whereas there was no significant difference in their K(m) values for ATP and UDP-N-acetylmuramic acid, suggesting the specific alteration of L-alanine recognition in MurCH343Y protein. In a synthetic medium that excluded L-alanine, S. aureus murCH343Y mutant cells showed an allele-specific slow growth phenotype that was suppressed by addition of L-alanine. These results suggest that His343 of S. aureus MurC is essential for high-affinity binding to L-alanine both in vitro and in vivo and provide experimental evidence supporting the structural information of MurC ligase.

  12. A Thermophilic Phage Endolysin Fusion to a Clostridium perfringens-Specific Cell Wall Binding Domain Creates an Anti-Clostridium Antimicrobial with Improved Thermostability.

    PubMed

    Swift, Steven M; Seal, Bruce S; Garrish, Johnna K; Oakley, Brian B; Hiett, Kelli; Yeh, Hung-Yueh; Woolsey, Rebekah; Schegg, Kathleen M; Line, John Eric; Donovan, David M

    2015-06-12

    Clostridium perfringens is the third leading cause of human foodborne bacterial disease and is the presumptive etiologic agent of necrotic enteritis among chickens. Treatment of poultry with antibiotics is becoming less acceptable. Endolysin enzymes are potential replacements for antibiotics. Many enzymes are added to animal feed during production and are subjected to high-heat stress during feed processing. To produce a thermostabile endolysin for treating poultry, an E. coli codon-optimized gene was synthesized that fused the N-acetylmuramoyl-L-alanine amidase domain from the endolysin of the thermophilic bacteriophage ɸGVE2 to the cell-wall binding domain (CWB) from the endolysin of the C. perfringens-specific bacteriophage ɸCP26F. The resulting protein, PlyGVE2CpCWB, lysed C. perfringens in liquid and solid cultures. PlyGVE2CpCWB was most active at pH 8, had peak activity at 10 mM NaCl, 40% activity at 150 mM NaCl and was still 16% active at 600 mM NaCl. The protein was able to withstand temperatures up to 50° C and still lyse C. perfringens. Herein, we report the construction and characterization of a thermostable chimeric endolysin that could potentially be utilized as a feed additive to control the bacterium during poultry production.

  13. Molecular cloning and characterization of a short peptidoglycan recognition protein from silkworm Bombyx mori.

    PubMed

    Yang, P-J; Zhan, M-Y; Ye, C; Yu, X-Q; Rao, X-J

    2017-12-01

    Peptidoglycan is the major bacterial component recognized by the insect immune system. Peptidoglycan recognition proteins (PGRPs) are a family of pattern-recognition receptors that recognize peptidoglycans and modulate innate immune responses. Some PGRPs retain N-acetylmuramoyl-L-alanine amidase (Enzyme Commission number: 3.5.1.28) activity to hydrolyse bacterial peptidoglycans. Others have lost the enzymatic activity and work only as immune receptors. They are all important modulators for innate immunity. Here, we report the cloning and functional analysis of PGRP-S4, a short-form PGRP from the domesticated silkworm, Bombyx mori. The PGRP-S4 gene encodes a protein of 199 amino acids with a signal peptide and a PGRP domain. PGRP-S4 was expressed in the fat body, haemocytes and midgut. Its expression level was significantly induced by bacterial challenges in the midgut. The recombinant PGRP-S4 bound bacteria and different peptidoglycans. In addition, it inhibited bacterial growth and hydrolysed an Escherichia coli peptidoglycan in the presence of Zn 2+ . Scanning electron microscopy showed that PGRP-S4 disrupted the bacterial cell surface. PGRP-S4 further increased prophenoloxidase activation caused by peptidoglycans. Taken together, our data suggest that B. mori PGRP-S4 has multiple functions in immunity. © 2017 The Royal Entomological Society.

  14. Stereoselective aminoacylation of a dinucleoside monophosphate by the imidazolides of DL-alanine and N-(tert-butoxycarbonyl)-DL-alanine

    NASA Technical Reports Server (NTRS)

    Profy, A. T.; Usher, D. A.

    1984-01-01

    The aminoacylation of diinosine monophosphate was studied experimentally. When the acylating agent was the imidazolide of N-(tert-butoxycarbonyl)-DL-alanine, a 40 percent enantiomeric excess of the isomer was incorporated at the 2' site and the positions of equilibrium for the reversible 2'-3' migration reaction differed for the D and L enantiomers. The reactivity of the nucleoside hydroxyl groups was found to decrease on the order 2'(3') less than internal 2' and less than 5', and the extent of the reaction was affected by the concentration of the imidazole buffer. Reaction of IpI with imidazolide of unprotected DL-alanine, by contrast, led to an excess of the D isomer at the internal 2' site. Finally, reaction with the N-carboxy anhydride of DL-alanine occurred without stereoselection. These results are found to be relevant to the study of the evolution of optical chemical activity and the origin of genetically directed protein synthesis.

  15. N-Acetylanthranilate Amidase from Arthrobacter nitroguajacolicus Rü61a, an α/β-Hydrolase-Fold Protein Active towards Aryl-Acylamides and -Esters, and Properties of Its Cysteine-Deficient Variant▿ †

    PubMed Central

    Kolkenbrock, Stephan; Parschat, Katja; Beermann, Bernd; Hinz, Hans-Jürgen; Fetzner, Susanne

    2006-01-01

    N-acetylanthranilate amidase (Amq), a 32.8-kDa monomeric amide hydrolase, is involved in quinaldine degradation by Arthrobacter nitroguajacolicus Rü61a. Sequence analysis and secondary structure predictions indicated that Amq is related to carboxylesterases and belongs to the α/β-hydrolase-fold superfamily of enzymes; inactivation of (His6-tagged) Amq by phenylmethanesulfonyl fluoride and diethyl pyrocarbonate and replacement of conserved residues suggested a catalytic triad consisting of S155, E235, and H266. Amq is most active towards aryl-acetylamides and aryl-acetylesters. Remarkably, its preference for ring-substituted analogues was different for amides and esters. Among the esters tested, phenylacetate was hydrolyzed with highest catalytic efficiency (kcat/Km = 208 mM−1 s−1), while among the aryl-acetylamides, o-carboxy- or o-nitro-substituted analogues were preferred over p-substituted or unsubstituted compounds. Hydrolysis by His6Amq of primary amides, lactams, N-acetylated amino acids, azocoll, tributyrin, and the acylanilide and urethane pesticides propachlor, propham, carbaryl, and isocarb was not observed; propanil was hydrolyzed with 1% N-acetylanthranilate amidase activity. The catalytic properties of the cysteine-deficient variant His6AmqC22A/C63A markedly differed from those of His6Amq. The replacements effected some changes in Kms of the enzyme and increased kcats for most aryl-acetylesters and some aryl-acetylamides by factors of about three to eight while decreasing kcat for the formyl analogue N-formylanthranilate by several orders of magnitude. Circular dichroism studies indicated that the cysteine-to-alanine replacements resulted in significant change of the overall fold, especially an increase in α-helicity of the cysteine-deficient protein. The conformational changes may also affect the active site and may account for the observed changes in kinetic properties. PMID:17041061

  16. Role of L-alanine for redox self-sufficient amination of alcohols.

    PubMed

    Klatte, Stephanie; Wendisch, Volker F

    2015-01-23

    In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578-5585, 2014), and the role of L-alanine for efficient amine functionalization of 1,10-decanediol to 1,10-diaminodecane were analyzed. The enzymes of the cascade for amine functionalization of alcohols were characterized in vitro to find optimal conditions for an efficient process. Transaminase from Chromobacterium violaceum, TaCv, showed three-fold higher catalytic efficiency than transaminase from Vibrio fluvialis, TaVf, and improved production at 37°C. At 42°C, TaCv was more active, which matched thermostable alcohol dehydrogenase and alanine dehydrogenase and improved the 1,10-diaminodecane production rate four-fold. To study the role of L-alanine in the whole cell biotransformation, the L-alanine concentration was varied and 1,10.diaminodecane formation tested with constant 10 mM 1,10- decanediol and 100 mM NH4Cl. Only 5.6% diamine product were observed without added L-alanine. L-alanine concentrations equimolar to that of the alcohol enabled for 94% product formation but higher L-alanine concentrations allowed for 100% product formation. L-alanine was consumed by the E. coli biocatalyst, presumably due to pyruvate catabolism since up to 16 mM acetate accumulated. Biotransformation employing E. coli strain YYC202/pTrc99a-ald-adh-ta Cv, which is unable to catabolize pyruvate, resulted in conversion with a selectivity of 42 mol-%. Biotransformation with E. coli strains only lacking pyruvate oxidase PoxB showed similar reduced amination of 1,10-decanediol indicating that oxidative decarboxylation of pyruvate to acetate by PoxB is primarily

  17. A Critical Review of the Postulated Role of the Cyanobacterial Metabolite, Beta-N-Methylamino-L-Alanine (BMAA) in Neurodegenerative Disease in Humans

    EPA Science Inventory

    The compound BMAA (β-N-methylamino-L-alanine) has been hypothesized to play a significant role in four serious neurological diseases in humans: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, parkinsonism, and dementia that occur...

  18. L-β-N-methylamino-l-alanine (BMAA) nitrosation generates a cytotoxic DNA damaging alkylating agent: An unexplored mechanism for neurodegenerative disease.

    PubMed

    Potjewyd, G; Day, P J; Shangula, S; Margison, G P; Povey, A C

    2017-03-01

    L-β-N-methylamino-l-alanine (BMAA) is a non-proteinic amino acid, that is neurotoxic in vitro and in animals, and is implicated in the causation of amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS-PDC) on Guam. Given that natural amino acids can be N-nitrosated to form toxic alkylating agents and the structural similarity of BMAA to other amino acids, our hypothesis was that N-nitrosation of BMAA might result in a toxic alkylating agent, providing a novel mechanistic hypothesis for BMAA action. We have chemically nitrosated BMAA with sodium nitrite to produce nitrosated BMAA (N-BMAA) which was shown to react with the alkyl-trapping agent, 4-(p-nitrobenzyl)pyridine, cause DNA strand breaks in vitro and was toxic to the human neuroblastoma cell line SH-SY5Y under conditions in which BMAA itself was minimally toxic. Our results indicate that N-BMAA is an alkylating agent and toxin suggesting a plausible and previously unrecognised mechanism for the neurotoxic effects of BMAA. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cyanobacterial Neurotoxin β-N-Methylamino-L-alanine (BMAA) in Shark Fins

    PubMed Central

    Mondo, Kiyo; Hammerschlag, Neil; Basile, Margaret; Pablo, John; Banack, Sandra A.; Mash, Deborah C.

    2012-01-01

    Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA. PMID:22412816

  20. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans

    EPA Science Inventory

    The compound BMAA (β-N-methylamino-L-alanine) has been hypothesized to play a significant role in four serious neurological diseases in humans: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, parkinsonism, and dementia that occur glob...

  1. Prolonged continuous intravenous infusion of the dipeptide L-alanine- L-glutamine significantly increases plasma glutamine and alanine without elevating brain glutamate in patients with severe traumatic brain injury

    PubMed Central

    2014-01-01

    Introduction Low plasma glutamine levels are associated with worse clinical outcome. Intravenous glutamine infusion dose- dependently increases plasma glutamine levels, thereby correcting hypoglutaminemia. Glutamine may be transformed to glutamate which might limit its application at a higher dose in patients with severe traumatic brain injury (TBI). To date, the optimal glutamine dose required to normalize plasma glutamine levels without increasing plasma and cerebral glutamate has not yet been defined. Methods Changes in plasma and cerebral glutamine, alanine, and glutamate as well as indirect signs of metabolic impairment reflected by increased intracranial pressure (ICP), lactate, lactate-to-pyruvate ratio, electroencephalogram (EEG) activity were determined before, during, and after continuous intravenous infusion of 0.75 g L-alanine-L-glutamine which was given either for 24 hours (group 1, n = 6) or 5 days (group 2, n = 6) in addition to regular enteral nutrition. Lab values including nitrogen balance, urea and ammonia were determined daily. Results Continuous L-alanine-L-glutamine infusion significantly increased plasma and cerebral glutamine as well as alanine levels, being mostly sustained during the 5 day infusion phase (plasma glutamine: from 295 ± 62 to 500 ± 145 μmol/ l; brain glutamine: from 183 ± 188 to 549 ± 120 μmol/ l; plasma alanine: from 327 ± 91 to 622 ± 182 μmol/ l; brain alanine: from 48 ± 55 to 89 ± 129 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Plasma glutamate remained unchanged and cerebral glutamate was decreased without any signs of cerebral impairment. Urea and ammonia were significantly increased within normal limits without signs of organ dysfunction (urea: from 2.7 ± 1.6 to 5.5 ± 1.5 mmol/ l; ammonia: from 12 ± 6.3 to 26 ± 8.3 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Conclusions High dose L-alanine-L-glutamine infusion (0

  2. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a).

    PubMed

    Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko

    2013-01-01

    The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.

  3. l-Alanine Auxotrophy of Lactobacillus johnsonii as Demonstrated by Physiological, Genomic, and Gene Complementation Approaches

    PubMed Central

    van der Kaaij, Hengameh; Desiere, Frank; Mollet, Beat; Germond, Jacques-Edouard

    2004-01-01

    Using a chemically defined medium without l-alanine, Lactobacillus johnsonii was demonstrated to be strictly auxotrophic for that amino acid. A comparative genetic analysis showed that all known genes involved in l-alanine biosynthesis are absent from the genome of L. johnsonii. This auxotrophy was complemented by heterologous expression of the Bacillus subtilis l-alanine dehydrogenase. PMID:15006820

  4. A novel S-enantioselective amidase acting on 3,3,3-trifluoro-2-hydroxy-2-methylpropanamide from Arthrobacter sp. S-2.

    PubMed

    Fuhshuku, Ken-ichi; Watanabe, Shunsuke; Nishii, Tetsuro; Ishii, Akihiro; Asano, Yasuhisa

    2015-01-01

    A novel S-enantioselective amidase acting on 3,3,3-trifluoro-2-hydroxy-2-methylpropanamide was purified from Arthrobacter sp. S-2. The enzyme acted S-enantioselectively on 3,3,3-trifluoro-2-hydroxy-2-methylpropanamide to yield (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropanoic acid. Based on the N-terminal amino acid sequence of this amidase, the gene coding S-amidase was cloned from the genomic DNA of Arthrobacter sp. S-2 and expressed in an Escherichia coli host. The recombinant S-amidase was purified and characterized. Furthermore, the purified recombinant S-amidase with the C-His6-tag, which was expressed in E. coli as the C-His6-tag fusion protein, was used in the kinetic resolution of (±)-3,3,3-trifluoro-2-hydroxy-2-methylpropanamide to obtain (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropanoic acid and (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropanamide.

  5. Functional Characterization of Corynebacterium glutamicum Mycothiol S-Conjugate Amidase

    PubMed Central

    Si, Meiru; Long, Mingxiu; Chaudhry, Muhammad Tausif; Xu, Yixiang; Zhang, Pan; Zhang, Lei; Shen, Xihui

    2014-01-01

    The present study focuses on the genetic and biochemical characterization of mycothiol S-conjugate amidase (Mca) of Corynebacterium glutamicum. Recombinant C. glutamicum Mca was heterologously expressed in Escherichia coli and purified to apparent homogeneity. The molecular weight of native Mca protein determined by gel filtration chromatography was 35 kDa, indicating that Mca exists as monomers in the purification condition. Mca showed amidase activity with mycothiol S-conjugate of monobromobimane (MSmB) in vivo while mca mutant lost the ability to cleave MSmB. In addition, Mca showed limited deacetylase activity with N-acetyl-D-glucosamine (GlcNAc) as substrate. Optimum pH for amidase activity was between 7.5 and 8.5, while the highest activity in the presence of Zn2+ confirmed Mca as a zinc metalloprotein. Amino acid residues conserved among Mca family members were located in C. glutamicum Mca and site-directed mutagenesis of these residues indicated that Asp14, Tyr137, His139 and Asp141 were important for activity. The mca deletion mutant showed decreased resistance to antibiotics, alkylating agents, oxidants and heavy metals, and these sensitive phenotypes were recovered in the complementary strain to a great extent. The physiological roles of Mca in resistance to various toxins were further supported by the induced expression of Mca in C. glutamicum under various stress conditions, directly under the control of the stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH. PMID:25514023

  6. Isolation of an inducible amidase from Pseudomonas acidovorans AE1.

    PubMed

    Alt, J; Krisch, K

    1975-04-01

    A bacterial strain, AEI, which hydrolysed acetanilide, was isolated from soil and identified as Pseudomonas acidovorans. Numerous amides, esters and enzyme inhibitors were tested as amidase inducers. Phenacetin was chosen as inducer for the large scale cultivation of these organisms because it was less toxic to the bacteria than acetanilide. The induction increased the enzymic activity 250-fold. In comparison, the type culture strain of P. acidovorans, ATTCCI5668, had no amidase activity which could be induced by phenacetin. Optimal growth conditions were established with respect to the concentration of carbon source and inducer so that about 10% of the extractable bacterial protein consisted of the amidase. The organisms were lysed with lysozyme in the presence of EDTA and the enzyme was isolated mainly by column chromatography procedures. A preparation form 60 g (wet wt) bacteria yielded about 100 mg highly purified amidase with a specific activity of 137 mugmol substrate hydrolysed/min/mg protien. In addition to acetanilide, the purified enzyme hydrolysed several other amides and esters. As standard substrate, p-nitroacetanilide was chosen.

  7. A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides.

    PubMed

    Lavrov, K V; Zalunin, I A; Kotlova, E K; Yanenko, A S

    2010-08-01

    A new acylamidase was isolated from Rhodococcus erythropolis TA37 and characterized. N-Substituted acrylamides (isopropyl acrylamide, N,N-dimethyl-aminopropyl acrylamide, and methylene-bis-acrylamide), acid para-nitroanilides (4'-nitroacetanilide, Gly-pNA, Ala-pNA, Leu-pNA), and N-acetyl derivatives of glycine, alanine, and leucine are good substrates for this enzyme. Aliphatic amides (acetamide, acrylamide, isobutyramide, n-butyramide, and valeramide) are also used as substrates but with less efficiency. The enzyme subunit mass by SDS-PAGE is 55 kDa. Maximal activity is exhibited at pH 7-8 and 55°C. The enzyme is stable for 15 h at 22°C and for 0.5 h at 45°C. The Michaelis constant (K(m)) is 0.25 mM with Gly-pNA and 0.55 mM with Ala-pNA. The acylamidase activity is suppressed by inhibitors of serine proteases (phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate) but is not suppressed by inhibitors of aliphatic amidases (acetaldehyde and nitrophenyl disulfides). The N-terminal amino acid sequence of the acylamidase is highly homologous to those of two putative amidases detected from sequenced R. erythropolis genomes. It is suggested that the acylamidase together with the detected homologs forms a new class within the amidase signature family.

  8. Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans

    PubMed Central

    Arnich, Nathalie; Maignien, Thomas; Biré, Ronel

    2018-01-01

    The neurotoxin β-N-methylamino-l-alanine (BMAA), a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC). The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB), β-amino-N-methyl-alanine (BAMA) and N-(2-aminoethyl) glycine (AEG). This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations. PMID:29443939

  9. Oxygenated N-Acyl Alanine Methyl Esters (NAMEs) from the Marine Bacterium Roseovarius tolerans EL-164.

    PubMed

    Bruns, Hilke; Herrmann, Jennifer; Müller, Rolf; Wang, Hui; Wagner Döbler, Irene; Schulz, Stefan

    2018-01-26

    The marine bacterium Roseovarius tolerans EL-164 (Rhodobacteraceae) can produce unique N-acylalanine methyl esters (NAMEs) besides strucutrally related N-acylhomoserine lactones (AHLs), bacterial signaling compounds widespread in the Rhodobacteraceae. The structures of two unprecedented NAMEs carrying a rare terminally oxidized acyl chain are reported here. The compounds (Z)-N-16-hydroxyhexadec-9-enoyl-l-alanine methyl ester (Z9-16-OH-C16:1-NAME, 3) and (Z)-N-15-carboxypentadec-9-enoyl-l-alanine methyl ester (16COOH-C16:1-NAME, 4) were isolated, and the structures were determined by NMR and MS experiments. Both compounds were synthesized to prove assignments and to test their biological activity. Finally, non-natural, structurally related Z9-3-OH-C16:1-NAME (18) was synthesized to investigate the mass spectroscopy of structurally related NAMEs. Compound 3 showed moderate antibacterial activity against microorganisms such as Bacillus, Streptococcus, Micrococcus, or Mucor strains. In contrast to AHLs, quorum-sensing or quorum-quenching activity was not observed.

  10. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    PubMed Central

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmol/min/mg, respectively. The enzyme is almost specific to alanine, but l-serine and l-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of l-alanine, respectively. S. pombe uses d-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for l-alanine coupled with racemization plays a major role in the catabolism of d-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses l-alanine but not d-alanine as a sole nitrogen source. Moreover, d-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1+ gene enabled S. cerevisiae to grow efficiently on d-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of d-alanine. PMID:11244061

  11. Interaction of L-alanyl-L-valine and L-valyl-L-alanine with organic vapors: thermal stability of clathrates, sorption capacity and the change in the morphology of dipeptide films.

    PubMed

    Ziganshin, Marat A; Gubina, Nadezhda S; Gerasimov, Alexander V; Gorbatchuk, Valery V; Ziganshina, Sufia A; Chuklanov, Anton P; Bukharaev, Anastas A

    2015-08-21

    The strong effect of the amino acid sequence in L-alanyl-L-valine and L-valyl-L-alanine on their sorption properties toward organic compounds and water, and the thermal stability of the inclusion compounds of these dipeptides have been found. Generally, L-valyl-L-alanine has a greater sorption capacity for the studied compounds, but the thermal stability of the L-alanyl-L-valine clathrates is higher. Unusual selectivity of L-valyl-L-alanine for vapors of few chloroalkanes was observed. The correlation between the change in the surface morphology of thin film of dipeptides and stoichiometry of their clathrates with organic compounds was found. This discovery may be used to predict the influence of vapors on the morphology of films of short-chain oligopeptides.

  12. Biochemical characterization of an inhibitor of Escherichia coli UDP-N-acetylmuramyl-l-alanine ligase.

    PubMed

    Ehmann, David E; Demeritt, Julie E; Hull, Kenneth G; Fisher, Stewart L

    2004-05-06

    UDP-N-acetylmuramyl-l-alanine ligase (MurC) is an essential bacterial enzyme involved in peptidoglycan biosynthesis and a target for the discovery of novel antibacterial agents. As a result of a high-throughput screen (HTS) against a chemical library for inhibitors of MurC, a series of benzofuran acyl-sulfonamides was identified as potential leads. One of these compounds, Compound A, inhibited Escherichia coli MurC with an IC(50) of 2.3 microM. Compound A exhibited time-dependent, partially reversible inhibition of E. coli MurC. Kinetic studies revealed a mode of inhibition consistent with the compound acting competitively with the MurC substrates ATP and UDP-N-acetyl-muramic acid (UNAM) with a K(i) of 4.5 microM against ATP and 6.3 microM against UNAM. Fluorescence binding experiments yielded a K(d) of 3.1 microM for the compound binding to MurC. Compound A also exhibited high-affinity binding to bovine serum albumin (BSA) as evidenced by a severe reduction in MurC inhibition upon addition of BSA. This finding is consistent with the high lipophilicity of the compound. Advancement of this compound series for further drug development will require reduction of albumin binding.

  13. Expression, purification, and characterization of a bifunctional 99-kDa peptidoglycan hydrolase from Pediococcus acidilactici ATCC 8042.

    PubMed

    García-Cano, Israel; Campos-Gómez, Manuel; Contreras-Cruz, Mariana; Serrano-Maldonado, Carlos Eduardo; González-Canto, Augusto; Peña-Montes, Carolina; Rodríguez-Sanoja, Romina; Sánchez, Sergio; Farrés, Amelia

    2015-10-01

    Pediococcus acidilactici ATCC 8042 is a lactic acid bacteria that inhibits pathogenic microorganisms such as Staphylococcus aureus through the production of two proteins with lytic activity, one of 110 kDa and the other of 99 kDa. The 99-kDa one has high homology to a putative peptidoglycan hydrolase (PGH) enzyme reported in the genome of P. acidilactici 7_4, where two different lytic domains have been identified but not characterized. The aim of this work was the biochemical characterization of the recombinant enzyme of 99 kDa. The enzyme was cloned and expressed successfully and retains its activity against Micrococcus lysodeikticus. It has a higher N-acetylglucosaminidase activity, but the N-acetylmuramoyl-L-alanine amidase can also be detected spectrophotometrically. The protein was then purified using gel filtration chromatography. Antibacterial activity showed an optimal pH of 6.0 and was stable between 5.0 and 7.0. The optimal temperature for activity was 60 °C, and all activity was lost after 1 h of incubation at 70 °C. The number of strains susceptible to the recombinant 99-kDa enzyme was lower than that susceptible to the mixture of the 110- and 99-kDa PGHs of P. acidilactici, a result that suggests synergy between these two enzymes. This is the first PGH from LAB that has been shown to possess two lytic sites. The results of this study will aid in the design of new antibacterial agents from natural origin that can combat foodborne disease and improve hygienic practices in the industrial sector.

  14. Expression of the alaE gene is positively regulated by the global regulator Lrp in response to intracellular accumulation of l-alanine in Escherichia coli.

    PubMed

    Ihara, Kohei; Sato, Kazuki; Hori, Hatsuhiro; Makino, Yumiko; Shigenobu, Shuji; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-04-01

    The alaE gene in Escherichia coli encodes an l-alanine exporter that catalyzes the active export of l-alanine using proton electrochemical potential. In our previous study, alaE expression was shown to increase in the presence of l-alanyl-l-alanine (Ala-Ala). In this study, the global regulator leucine-responsive regulatory protein (Lrp) was identified as an activator of the alaE gene. A promoter less β-galactosidase gene was fused to an alaE upstream region (240 nucleotides). Cells that were lacZ-deficient and harbored this reporter plasmid showed significant induction of β-galactosidase activity (approximately 17-fold) in the presence of 6 mM l-alanine, l-leucine, and Ala-Ala. However, a reporter plasmid possessing a smaller alaE upstream region (180 nucleotides) yielded transformants with strikingly low enzyme activity under the same conditions. In contrast, lrp-deficient cells showed almost no β-galactosidase induction, indicating that Lrp positively regulates alaE expression. We next performed an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay using purified hexahistidine-tagged Lrp (Lrp-His). Consequently, we found that Lrp-His binds to the alaE upstream region spanning nucleotide -161 to -83 with a physiologically relevant affinity (apparent K D , 288.7 ± 83.8 nM). Furthermore, the binding affinity of Lrp-His toward its cis-element was increased by l-alanine and l-leucine, but not by Ala-Ala and d-alanine. Based on these results, we concluded that the gene expression of the alaE is regulated by Lrp in response to intracellular levels of l-alanine, which eventually leads to intracellular homeostasis of l-alanine concentrations. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Protein association of β-N-methylamino-L-alanine in Triticum aestivum via irrigation.

    PubMed

    Contardo-Jara, Valeska; Schwanemann, Torsten; Esterhuizen-Londt, Maranda; Pflugmacher, Stephan

    2018-04-01

    Bioaccumulation of several cyanotoxins has been observed in numerous food webs. More recently, the neurotoxic, non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) was shown to biomagnify in marine food webs. It was thus necessary to assess whether a human exposure risk via a terrestrial food source could exist. As shown for other cyanotoxins, spray irrigation of crop plants with cyanobacterial bloom-contaminated surface water poses the risk of toxin transfer into edible plant parts. Therefore, in the present study, we evaluated a possible transfer of BMAA via spray irrigation into the seeds of one of the world's most widely cultivated crop plants, Triticum aestivum. Wheat plants were irrigated with water containing 10 µg L -1 BMAA until they reached maturity and seed-bearing stage (205 days). Several morphological characteristics, such as germination rate, number of roots per seedling, length of primary root and cotyledon, and diameter of the stems were evaluated to assess the effects of chronic exposure. After 205 days, BMAA bioaccumulation was quantified in roots, shoots, and mature seeds of T. aestivum. No adverse morphology effects were observed and no free intracellular BMAA was detected in any of the exposed plants. However, in mature seeds, protein-associated BMAA was detected at 217 ± 150 ng g FW -1 ; significantly more than in roots and shoots. This result demonstrates the unexpected bioaccumulation of a hydrophilic compound and highlights the demand to specify in addition to limit values for drinking water, tolerable daily intake rates for the cyanobacterial-neurotoxin BMAA.

  16. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    PubMed

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-05-01

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  17. Environmental modulation of microcystin and β-N-methylamino-L-alanine as a function of nitrogen availability.

    PubMed

    Scott, L L; Downing, S; Phelan, R R; Downing, T G

    2014-09-01

    The most significant modulators of the cyanotoxins microcystin and β-N-methylamino-L-alanine in laboratory cyanobacterial cultures are the concentration of growth-medium combined nitrogen and nitrogen uptake rate. The lack of field studies that support these observations led us to investigate the cellular content of these cyanotoxins in cyanobacterial bloom material isolated from a freshwater impoundment and to compare these to the combined nitrogen availability. We established that these toxins typically occur in an inverse relationship in nature and that their presence is mainly dependent on the environmental combined nitrogen concentration, with cellular microcystin present at exogenous combined nitrogen concentrations of 29 μM and higher and cellular BMAA correlating negatively with exogenous nitrogen at concentrations below 40 μM. Furthermore, opposing nutrient and light gradients that form in dense cyanobacterial blooms may result in both microcystin and BMAA being present at a single sampling site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The environmental neurotoxin β-N-methylamino-l-alanine (l-BMAA) is deposited into birds' eggs.

    PubMed

    Andersson, Marie; Karlsson, Oskar; Brandt, Ingvar

    2018-01-01

    The neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disorders. BMAA is also a known developmental neurotoxin and research indicates that the sources of human and wildlife exposure may be more diverse than previously anticipated. The aim of the present study was therefore to examine whether BMAA can be transferred into birds' eggs. Egg laying quail were dosed with 14 C-labeled BMAA. The distribution of radioactivity in the birds and their laid eggs was then examined at different time points by autoradiography and phosphoimaging analysis. To evaluate the metabolic stability of the BMAA molecule, the distribution of 14 C-methyl- and 14 C-carboxyl-labeled BMAA were compared. The results revealed a pronounced incorporation of radioactivity in the eggs, predominantly in the yolk but also in the albumen. Imaging analysis showed that the concentrations of radioactivity in the liver decreased about seven times between the 24h and the 72h time points, while the concentrations in egg yolk remained largely unchanged. At 72h the egg yolk contained about five times the concentration of radioactivity in the liver. Both BMAA preparations gave rise to similar distribution pattern in the bird tissues and in the eggs, indicating metabolic stability of the labeled groups. The demonstrated deposition into eggs warrants studies of BMAAs effects on bird development. Moreover, birds' eggs may be a source of human BMAA exposure, provided that the laying birds are exposed to BMAA via their diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA) in the Marine Benthic Ecosystem.

    PubMed

    Li, Aifeng; Song, Jialiang; Hu, Yang; Deng, Longji; Ding, Ling; Li, Meihui

    2016-11-04

    The neurotoxin β- N -methylamino-l-alanine (BMAA) has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Alzheimer's disease (AD). We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB) and N -2(aminoethyl)glycine (AEG) in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer) method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma , Solen strictus , and Mytilus coruscus . The top three concentrations of free-form BMAA (0.99~3.97 μg·g -1 wet weight) were detected in N. didyma . DAB was universally detected in most of the mollusk samples (53/68) with no species-specific or regional differences (0.051~2.65 μg·g -1 wet weight). No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.

  20. The First Paenibacillus larvae Bacteriophage Endolysin (PlyPl23) with High Potential to Control American Foulbrood.

    PubMed

    Oliveira, Ana; Leite, Marta; Kluskens, Leon D; Santos, Sílvio B; Melo, Luís D R; Azeredo, Joana

    2015-01-01

    Endolysins, which are peptidoglycan-degrading enzymes expressed during the terminal stage of the reproduction cycle of bacteriophages, have great potential to control Gram-positive pathogens. This work describes the characterization of a novel endolysin (PlyPl23) encoded on the genome of Paenibacillus larvae phage phiIBB_Pl23 with high potential to control American foulbrood. This bacterial disease, caused by P. larvae, is widespread in North America and Europe and causes important economic losses in apiculture. The restriction to antibiotic residues in honey imposed by the EU legislation hinders its therapeutic use to combat American foulbrood and enforces the development of alternative antimicrobial methods. The new endolysin described herein has an N-acetylmuramoyl-L-alanine amidase catalytic domain and exhibits a broad-spectrum activity against common P. larvae genotypes. Moreover, the enzyme displays high antimicrobial activity in a range of pH that matches environmental conditions (pH between 5.0 and 7.0), showing its feasible application in the field. At pH 7.0, a concentration of 0.2 μM of enzyme was enough to lyse 104 CFU.mL-1 of P. larvae in no more than 2 h. The presence of sucrose and of the substances present in the larvae gut content did not affect the enzyme activity. Interestingly, an increase of activity was observed when PlyPl23 was previously incubated in royal jelly. Furthermore, in vivo safety evaluation assays demonstrated that this enzyme is not toxic to the bee larvae. The present work describes for the first time an endolysin encoded in a P. larvae phage that presents high potential to integrate a commercial product to control the problematic American foulbrood.

  1. Experimental and computational thermochemical study of α-alanine (DL) and β-alanine.

    PubMed

    da Silva, Manuel A V Ribeiro; da Silva, Maria das Dores M C Ribeiro; Santos, Ana Filipa L O M; Roux, Maria Victoria; Foces-Foces, Concepción; Notario, Rafael; Guzmán-Mejía, Ramón; Juaristi, Eusebio

    2010-12-16

    This paper reports an experimental and theoretical study of the gas phase standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of α-alanine (DL) and β-alanine. The standard (p° = 0.1 MPa) molar enthalpies of formation of crystalline α-alanine (DL) and β-alanine were calculated from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and H2O(l), measured by static-bomb combustion calorimetry at T = 298.15 K. The vapor pressures of both amino acids were measured as function of temperature by the Knudsen effusion mass-loss technique. The standard molar enthalpies of sublimation at T = 298.15 K was derived from the Clausius−Clapeyron equation. The experimental values were used to calculate the standard (p° = 0.1 MPa) enthalpy of formation of α-alanine (DL) and β-alanine in the gaseous phase, Δ(f)H(m)°(g), as −426.3 ± 2.9 and −421.2 ± 1.9 kJ·mol(−1), respectively. Standard ab initio molecular orbital calculations at the G3 level were performed. Enthalpies of formation, using atomization reactions, were calculated and compared with experimental data. Detailed inspections of the molecular and electronic structures of the compounds studied were carried out.

  2. Nitrogen starvation of cyanobacteria results in the production of β-N-methylamino-L-alanine.

    PubMed

    Downing, S; Banack, S A; Metcalf, J S; Cox, P A; Downing, T G

    2011-08-01

    β-N-Methylamino-L-alanine, an unusual amino acid implicated in neurodegenerative disease, has been detected in cultures of nearly all genera of environmentally ubiquitous cyanobacteria tested. The compound is present within cyanobacterial cells in free and protein-associated forms, with large variations occurring in the concentration of these pools between species as well as within single strains. With a lack of knowledge and supporting data on the regulation of BMAA production and the role of this compound in cyanobacteria, the association between BMAA and cyanobacteria is still subject to debate. In this study we investigated the biosynthesis of BMAA in axenic non-diazotrophic cyanobacterial cultures using the stable isotope ¹⁵N. Nitrogen starvation of nutritionally replete cells resulted in an increase in free cellular ¹⁵N BMAA suggesting that BMAA may be the result of catabolism to provide nitrogen or that BMAA is synthesised to serve a functional role in the cell in response to nitrogen deprivation. The addition of NO₃⁻ and NH₄⁺ to the culture medium following starvation resulted in a decrease of free cellular BMAA without a corresponding increase in the protein-associated fraction. The use of ammonia as a nitrogen source resulted in a more rapid reduction of BMAA when compared to nitrate. This study provides the first data regarding the regulation of intracellular BMAA concentrations in cyanobacteria with results conclusively showing the production of ¹⁵N BMAA by an axenic cyanobacterial culture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A novel type of peptidoglycan-binding domain highly specific for amidated D-Asp cross-bridge, identified in Lactobacillus casei bacteriophage endolysins.

    PubMed

    Regulski, Krzysztof; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre

    2013-07-12

    Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-L-alanine amidase, whereas Lc-Lys-2 is a γ-D-glutamyl-L-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with D-Ala(4)→D-Asx-L-Lys(3) in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting D-Ala(4)→L-Ala-(L-Ala/L-Ser)-L-Lys(3); moreover, they do not lyse the L. lactis mutant containing only the nonamidated D-Asp cross-bridge, i.e. D-Ala(4)→D-Asp-L-Lys(3). In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 L-Lys(3)-D-Asn-L-Lys(3) bridges replacing the wild-type 4→3 D-Ala(4)-D-Asn-L-Lys(3) bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly D-Asn but not PG with only the nonamidated D-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the D-Asn interpeptide bridge of PG.

  4. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise.

    PubMed

    Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.

  5. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise.

    PubMed

    Leite, Jaqueline Santos Moreira; Raizel, Raquel; Hypólito, Thaís Menezes; Rosa, Thiago Dos Santos; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p < 0.05). The results presented herein demonstrate that l-glutamine supplemented with l-alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.

  6. EPR study of gamma-irradiated N-methyl-L-alanine, DL-2-methyl glutamic acid hemihydrate and Di-leucine hydrochloride in solid state

    NASA Astrophysics Data System (ADS)

    Sütçü, Kerem; Osmanoğlu, Y. Emre

    2017-12-01

    In this study, it was aimed to investigate ɣ-irradiated powders of N-methyl-L-alanine (NMLA), DL-2-methyl glutamic acid hemihydrate (DL2MGAH), and Di-leucine hydrochloride (DLHCl) at room temperature by electron paramagnetic resonance spectroscopy. After the γ-irradiation the samples indicated the existence of the CH3ĊNHCH3COOH, HOOCCH3NH2CĊHCH2COOH·1/2H2O and (CH3)2ĊCH2CH NHCOOHCOCH (NH2HCl) CH2CH (CH3)2 radicals, respectively. The spectral parameters of the radicals were determined. The results were compared with the earlier studies and discussed accordingly.

  7. The catalytic effect of L- and D-histidine on alanine and lysine peptide formation.

    PubMed

    Fitz, Daniel; Jakschitz, Thomas; Rode, Bernd M

    2008-12-01

    A starting phase of chemical evolution on our ancient Earth around 4 billion years ago was the formation of amino acids and their combination to peptides and proteins. The salt-induced peptide formation (SIPF) reaction has been shown to be appropriate for this condensation reaction under moderate and plausible primitive Earth conditions, forming short peptides from amino acids in aqueous solution containing sodium chloride and Cu(II) ions. In this paper we report results about the formation of dialanine and dilysine from their monomers in this reaction. The catalytic influence of l- and d-histidine dramatically increases dialanine yields when starting from lower alanine concentrations, but also dilysine formation is markedly boosted by these catalysts. Attention is paid to measurable preferences for one enantiomeric form of alanine and lysine in the SIPF reaction. Alanine, especially, shows stereospecific behaviour, mostly in favour of the l-form.

  8. Self-Assembly, Supramolecular Organization, and Phase Behavior of L-Alanine Alkyl Esters (n = 9-18) and Characterization of Equimolar L-Alanine Lauryl Ester/Lauryl Sulfate Catanionic Complex.

    PubMed

    Sivaramakrishna, D; Swamy, Musti J

    2015-09-08

    A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms

  9. Genetic Mapping of a Mutant Defective in d, l-Alanine Racemase in Bacillus subtilis 168

    PubMed Central

    Dul, Michael J.; Young, Frank E.

    1973-01-01

    Genetic analysis of a d-alanine requiring mutant (dal) of Bacillus subtilis reveals that the gene that codes for d,l-alanine racemase is linked to purB. The order of genes in this region of the chromosome is purB, pig, tsi, dal. Thus there are at least two clusters of genes that regulate cell wall biosynthesis in B. subtilis. PMID:4199510

  10. Experimental determination of the carboxylate oxygen electric-field-gradient and chemical shielding tensors in L-alanine and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Asanuma, Miwako; Honda, Hisashi; Nemoto, Takahiro; Yamazaki, Toshio; Hirota, Hiroshi

    2007-10-01

    We report a solid-state 17O NMR study of the 17O electric-field-gradient (EFG) and chemical shielding (CS) tensors for each carboxylate group in polycrystalline L-alanine and L-phenylalanine. The magic angle spinning (MAS) and stationary 17O NMR spectra of these compounds were obtained at 9.4, 14.1, and 16.4 T. Analyzes of these 17O NMR spectra yielded reliable experimental NMR parameters including 17O CS tensor components, 17O quadrupole coupling parameters, and the relative orientations between the 17O CS and EFG tensors. The extensive quantum chemical calculations at both the restricted Hartree-Fock and density-functional theories were carried out with various basis sets to evaluate the quality of quantum chemical calculations for the 17O NMR tensors in L-alanine. For 17O CS tensors, the calculations at the B3LYP/D95 ∗∗ level could reasonably reproduce 17O CS tensors, but they still showed some discrepancies in the δ11 components by approximately 36 ppm. For 17O EFG calculations, it was advantageous to use calibrated Q value to give acceptable CQ values. The calculated results also demonstrated that not only complete intermolecular hydrogen-bonding networks to target oxygen in L-alanine, but also intermolecular interactions around the NH3+ group were significant to reproduce the 17O NMR tensors.

  11. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells.

    USDA-ARS?s Scientific Manuscript database

    LysK is a staphylococcal bacteriophage endolysin composed of three domains, an N-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) endopeptidase domain (cleaves between D-alanine of the stem peptide and glycine of the cross-bridge peptide) a mid-protein amidase 2 domain (N-ace...

  12. Alanine increases blood pressure during hypotension

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Maher, T. J.; Wurtman, R. J.

    1990-01-01

    The effect of L-alanine administration on blood pressure (BP) during haemorrhagic shock was investigated using anesthetized rats whose left carotid arteries were cannulated for BP measurement, blood removal, and drug administration. It was found that L-alanine, in doses of 10, 25, 50, 100, and 200 mg/kg, increased the systolic BP of hypotensive rats by 38 to 80 percent (while 100 mg/kg pyruvate increased BP by only 9.4 mmhg, not significantly different from saline). The results suggest that L-alanine might influence cardiovascular function.

  13. Ruthenium-Nitrosyl Complexes with Glycine, l-Alanine, l-Valine, l-Proline, d-Proline, l-Serine, l-Threonine, and l-Tyrosine: Synthesis, X-ray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity

    PubMed Central

    2014-01-01

    The reactions of [Ru(NO)Cl5]2– with glycine (Gly), l-alanine (l-Ala), l-valine (l-Val), l-proline (l-Pro), d-proline (d-Pro), l-serine (l-Ser), l-threonine (l-Thr), and l-tyrosine (l-Tyr) in n-butanol or n-propanol afforded eight new complexes (1–8) of the general formula [RuCl3(AA–H)(NO)]−, where AA = Gly, l-Ala, l-Val, l-Pro, d-Pro, l-Ser, l-Thr, and l-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), 1H NMR, UV–visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA–H)(NO)], as was also recently reported for osmium analogues with Gly, l-Pro, and d-Pro (see Z. Anorg. Allg. Chem.2013, 639, 1590–1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  14. Comparative genomics of 9 novel Paenibacillus larvae bacteriophages

    PubMed Central

    Stamereilers, Casey; LeBlanc, Lucy; Yost, Diane; Amy, Penny S.; Tsourkas, Philippos K.

    2016-01-01

    ABSTRACT American Foulbrood Disease, caused by the bacterium Paenibacillus larvae, is one of the most destructive diseases of the honeybee, Apis mellifera. Our group recently published the sequences of 9 new phages with the ability to infect and lyse P. larvae. Here, we characterize the genomes of these P. larvae phages, compare them to each other and to other sequenced P. larvae phages, and putatively identify protein function. The phage genomes are 38–45 kb in size and contain 68–86 genes, most of which appear to be unique to P. larvae phages. We classify P. larvae phages into 2 main clusters and one singleton based on nucleotide sequence identity. Three of the new phages show sequence similarity to other sequenced P. larvae phages, while the remaining 6 do not. We identified functions for roughly half of the P. larvae phage proteins, including structural, assembly, host lysis, DNA replication/metabolism, regulatory, and host-related functions. Structural and assembly proteins are highly conserved among our phages and are located at the start of the genome. DNA replication/metabolism, regulatory, and host-related proteins are located in the middle and end of the genome, and are not conserved, with many of these genes found in some of our phages but not others. All nine phages code for a conserved N-acetylmuramoyl-L-alanine amidase. Comparative analysis showed the phages use the “cohesive ends with 3′ overhang” DNA packaging strategy. This work is the first in-depth study of P. larvae phage genomics, and serves as a marker for future work in this area. PMID:27738559

  15. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    PubMed Central

    2011-01-01

    Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase) and a holin (PF04531). Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1) strongly significant host-specific sequence variation within the endolysin, and 2) a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products. PMID:21631945

  16. Ultra-Rapid Crystallization of L-alanine Using Monomode Microwaves, Indium Tin Oxide and Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Lansiquot, Carisse; Boone-Kukoyi, Zainab; Shortt, Raquel; Thompson, Nishone; Ajifa, Hillary; Kioko, Bridgit; Constance, Edward Ned; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2017-01-01

    The use of indium tin oxide (ITO) and focused monomode microwave heating for the ultra-rapid crystallization of L-alanine (a model amino acid) is reported. Commercially available ITO dots (< 5 mm) attached to blank poly(methyl)methacrylate (PMMA, 5 cm in diameter with 21-well silicon isolators: referred to as the iCrystal plates) were found to withstand prolonged microwave heating during crystallization experiments. Crystallization of L-alanine was performed at room temperature (a control experiment), with the use of two microwave sources: a 2.45 GHz conventional microwave (900 W, power level 1, a control experiment) and 8 GHz (20 W) solid state, monomode microwave source with an applicator tip that focuses the microwave field to a 5-mm cavity. Initial appearance of L-alanine crystals and on iCrystal plates with ITO dots took 47 ± 2.9 min, 12 ± 7.6 min and 1.5 ± 0.5 min at room temperature, using a conventional microwave and focused monomode microwave heating, respectively. Complete evaporation of the solvent using the focused microwaves was achieved in 3.2 ± 0.5 min, which is ~52-fold and ~172-fold faster than that observed at room temperature and using conventional microwave heating, respectively. The size and number of L-alanine crystals was dependent on the type of the 21-well iCrystal plates and the microwave heating method: 33 crystals of 585 ± 137 μm in size at room temperature > 37 crystals of 542 ± 100 μm in size with conventional microwave heating > 331 crystals of 311 ± 190 μm in size with focused monomode microwave. FTIR, optical microscopy and powder X-ray diffraction analysis showed that the chemical composition and crystallinity of the L-alanine crystals did not change when exposed to microwave heating and ITO surfaces. In addition, theoretical simulations for the binding of L-alanine molecules to ITO and other metals showed the predicted nature of hydrogen bonds formed between L-alanine and these surfaces.

  17. Ultra-Rapid Crystallization of L-alanine Using Monomode Microwaves, Indium Tin Oxide and Metal-Assisted and Microwave-Accelerated Evaporative Crystallization

    PubMed Central

    Lansiquot, Carisse; Boone-Kukoyi, Zainab; Shortt, Raquel; Thompson, Nishone; Ajifa, Hillary; Kioko, Bridgit; Constance, Edward Ned; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2018-01-01

    The use of indium tin oxide (ITO) and focused monomode microwave heating for the ultra-rapid crystallization of L-alanine (a model amino acid) is reported. Commercially available ITO dots (< 5 mm) attached to blank poly(methyl)methacrylate (PMMA, 5 cm in diameter with 21-well silicon isolators: referred to as the iCrystal plates) were found to withstand prolonged microwave heating during crystallization experiments. Crystallization of L-alanine was performed at room temperature (a control experiment), with the use of two microwave sources: a 2.45 GHz conventional microwave (900 W, power level 1, a control experiment) and 8 GHz (20 W) solid state, monomode microwave source with an applicator tip that focuses the microwave field to a 5-mm cavity. Initial appearance of L-alanine crystals and on iCrystal plates with ITO dots took 47 ± 2.9 min, 12 ± 7.6 min and 1.5 ± 0.5 min at room temperature, using a conventional microwave and focused monomode microwave heating, respectively. Complete evaporation of the solvent using the focused microwaves was achieved in 3.2 ± 0.5 min, which is ~52-fold and ~172-fold faster than that observed at room temperature and using conventional microwave heating, respectively. The size and number of L-alanine crystals was dependent on the type of the 21-well iCrystal plates and the microwave heating method: 33 crystals of 585 ± 137 μm in size at room temperature > 37 crystals of 542 ± 100 μm in size with conventional microwave heating > 331 crystals of 311 ± 190 μm in size with focused monomode microwave. FTIR, optical microscopy and powder X-ray diffraction analysis showed that the chemical composition and crystallinity of the L-alanine crystals did not change when exposed to microwave heating and ITO surfaces. In addition, theoretical simulations for the binding of L-alanine molecules to ITO and other metals showed the predicted nature of hydrogen bonds formed between L-alanine and these surfaces. PMID:29657884

  18. Kinetic properties of wild-type and altered recombinant amidases by the use of ion-selective electrode assay method.

    PubMed

    Martins, S; Karmali, A; Serralheiro, M L

    2006-08-15

    A novel assay method was investigated for wild-type and recombinant mutant amidases (EC 3.5.1.4) from Pseudomonas aeruginosa by ammonium ion-selective electrode (ISE). The initial velocity is proportional to the enzyme concentration by using the wild-type enzyme. The specific activities of the purified amidase were found to be 88.2 and 104.2 U mg protein(-1) for the linked assay and ISE methods, respectively. The kinetic constants--Vmax, Km, and Kcat--determined by Michaelis-Menten plot were 101.13 U mg protein(-1), 1.12x10(-2) M, and 64.04 s(-1), respectively, for acrylamide as the substrate. On the other hand, the lower limit of detection and range of linearity of enzyme concentration were found to be 10.8 and 10.8 to 500 ng, respectively, for the linked assay method and 15.0 and 15.0 to 15,000 ng, respectively, for the ISE method. Hydroxylamine was found to act as an uncompetitive activator of hydrolysis reaction catalyzed by amidase given that there is an increase in Vmax and Km when acetamide was used as the substrate. However, the effect of hydroxylamine on the hydrolysis reaction was dependent on the type of amidase and substrate involved in the reaction mixture. The degrees of activation (epsilon(a)) of the wild-type and mutant (T103I and C91A) enzymes were found to be 2.54, 12.63, and 4.33, respectively, for acetamide as the substrate. However, hydroxylamine did not activate the reaction catalyzed by wild-type and altered (C91A and W138G) amidases by using acrylamide and acetamide, respectively, as the substrate. The activating effect of hydroxylamine on the hydrolysis of acetamide, acrylamide, and p-nitrophenylacetamide can be explained by the fact that additional formation of ammonium ions occurred due to the transferase activity of amidases. However, the activating effect of hydroxylamine on the hydrolysis of p-nitroacetanilide may be due to a change in conformation of enzyme molecule. Therefore, the use of ISE permitted the study of the kinetic

  19. MurD ligase from E. coli: Tetrahedral intermediate formation study by hybrid quantum mechanical/molecular mechanical replica path method.

    PubMed

    Perdih, Andrej; Hodoscek, Milan; Solmajer, Tom

    2009-02-15

    MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs. (c) 2008 Wiley-Liss, Inc.

  20. Cloning and sequencing of Staphylococcus aureus murC, a gene essential for cell wall biosynthesis.

    PubMed

    Lowe, A M; Deresiewicz, R L

    1999-01-01

    Staphylococcus aureus is a major human pathogen that is increasingly resistant to clinically useful antimicrobial agents. While screening for S. aureus genes expressed during mammalian infection, we isolated murC. This gene encodes UDP-N-acetylmuramoyl-L-alanine synthetase, an enzyme essential for cell wall biosynthesis in a number of bacteria. S. aureus MurC has a predicted mass 49,182 Da and complements the temperature-sensitive murC mutation of E. coli ST222. Sequence data on the DNA flanking staphylococcal murC suggests that the local gene organization there parallels that found in B. subtilis, but differs from that found in gram-negative bacterial pathogens. MurC proteins represent promising targets for broad spectrum antimicrobial drug development.

  1. Assessing HTS Performance Using BioAssay Ontology: Screening and Analysis of a Bacterial Phospho-N-Acetylmuramoyl-Pentapeptide Translocase Campaign

    PubMed Central

    Moberg, Andreas; Hansson, Eva; Boyd, Helen

    2014-01-01

    Abstract With the public availability of biochemical assays and screening data constantly increasing, new applications for data mining and method analysis are evolving in parallel. One example is BioAssay Ontology (BAO) for systematic classification of assays based on screening setup and metadata annotations. In this article we report a high-throughput screening (HTS) against phospho-N-acetylmuramoyl-pentapeptide translocase (MraY), an attractive antibacterial drug target involved in peptidoglycan synthesis. The screen resulted in novel chemistry identification using a fluorescence resonance energy transfer assay. To address a subset of the false positive hits, a frequent hitter analysis was performed using an approach in which MraY hits were compared with hits from similar assays, previously used for HTS. The MraY assay was annotated according to BAO and three internal reference assays, using a similar assay design and detection technology, were identified. Analyzing the assays retrospectively, it was clear that both MraY and the three reference assays all showed a high false positive rate in the primary HTS assays. In the case of MraY, false positives were efficiently identified by applying a method to correct for compound interference at the hit-confirmation stage. Frequent hitter analysis based on the three reference assays with similar assay method identified additional false actives in the primary MraY assay as frequent hitters. This article demonstrates how assays annotated using BAO terms can be used to identify closely related reference assays, and that analysis based on these assays clearly can provide useful data to influence assay design, technology, and screening strategy. PMID:25415593

  2. Mechanical stability analysis of the protein L immunoglobulin-binding domain by full alanine screening using molecular dynamics simulations.

    PubMed

    Glyakina, Anna V; Likhachev, Ilya V; Balabaev, Nikolay K; Galzitskaya, Oxana V

    2015-03-01

    This article is the first to study the mechanical properties of the immunoglobulin-binding domain of protein L (referred to as protein L) and its mutants at the atomic level. In the structure of protein L, each amino acid residue (except for alanines and glycines) was replaced sequentially by alanine. Thus, 49 mutants of protein L were obtained. The proteins were stretched at their termini at constant velocity using molecular dynamics simulations in water, i.e. by forced unfolding. 19 out of 49 mutations resulted in a large decrease of mechanical protein stability. These amino acids were affecting either the secondary structure (11 mutations) or loop structures (8 mutations) of protein L. Analysis of mechanical unfolding of the generated protein that has the same topology as protein L but consists of only alanines and glycines allows us to suggest that the mechanical stability of proteins, and specifically protein L, is determined by interactions between certain amino acid residues, although the unfolding pathway depends on the protein topology. This insight can now be used to modulate the mechanical properties of proteins and their unfolding pathways in the desired direction for using them in various biochips, biosensors and biomaterials for medicine, industry, and household purposes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 21 CFR 172.540 - DL-Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Agents and Related Substances § 172.540 DL-Alanine. DL-Alanine (a racemic mixture of D- and L-alanine; CAS Reg. No. 302-72-7) may be safely used as a flavor enhancer for sweeteners in pickling mixtures at a level not to exceed 1 percent of the pickling spice that is added to the pickling brine. [56 FR...

  4. Substitutions of Thr-103-Ile and Trp-138-Gly in amidase from Pseudomonas aeruginosa are responsible for altered kinetic properties and enzyme instability.

    PubMed

    Karmali, A; Pacheco, R; Tata, R; Brown, P

    2001-03-01

    Pseudomonas aeruginosa Ph1 is a mutant strain derived from strain AI3. The strain AI3 is able to use acetanilide as a carbon source through a mutation (T103I) in the amiE gene that encodes an aliphatic amidase (EC 3.5.1.4). The mutations in the amiE gene have been identified (Thr103Ile and Trp138Gly) by direct sequencing of PCR-amplified mutant gene from strain Ph1 and confirmed by sequencing the cloned PCR-amplified gene. Site-directed mutagenesis was used to alter the wild-type amidase gene at position 138 for Gly. The wild-type and mutant amidase genes (W138G, T103I-W138G, and T103I) were cloned into an expression vector and these enzymes were purified by affinity chromatography on epoxy-activated Sepharose 6B-acetamide/phenylacetamide followed by gel filtration chromatography. Altered amidases revealed several differences in kinetic properties, namely, in substrate specificity, sensitivity to urea, optimum pH, and enzyme stability, compared with the wild-type enzyme. The W138G enzyme acted on acetamide, acrylamide, phenylacetamide, and p-nitrophenylacetamide, whereas the double mutant (W138G and T103I) amidase acted only on p-nitrophenylacetamide and phenylacetamide. On the other hand, the T103I enzyme acted on p-nitroacetanilide and acetamide. The heat stability of altered enzymes revealed that they were less thermostable than the wild-type enzyme, as the mutant (W138G and W138G-T103I) enzymes exhibited t1/2 values of 7.0 and 1.5 min at 55 degrees C, respectively. The double substitution T103I and W138G on the amidase molecule was responsible for increased instability due to a conformational change in the enzyme molecule as detected by monoclonal antibodies. This conformational change in altered amidase did not alter its M(r) value and monoclonal antibodies reacted differently with the active and inactive T103I-W138G amidase.

  5. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.

  6. New Enzymatic Method of Chiral Amino Acid Synthesis by Dynamic Kinetic Resolution of Amino Acid Amides: Use of Stereoselective Amino Acid Amidases in the Presence of α-Amino-ɛ-Caprolactam Racemase▿

    PubMed Central

    Yamaguchi, Shigenori; Komeda, Hidenobu; Asano, Yasuhisa

    2007-01-01

    d- and l-amino acids were produced from l- and d-amino acid amides by d-aminopeptidase from Ochrobactrum anthropi C1-38 and l-amino acid amidase from Pseudomonas azotoformans IAM 1603, respectively, in the presence of α-amino-ɛ-caprolactam racemase from Achromobacter obae as the catalyst by dynamic kinetic resolution of amino acid amides. PMID:17586677

  7. Potential for dietary exposure to β-N-methylamino-L-alanine and microcystin from a freshwater system.

    PubMed

    Scott, Laura L; Downing, Simoné; Downing, Tim

    2018-06-18

    The suggested link between β-N-methylamino-L-alanine (BMAA) and the onset of neurodegenerative diseases and the detection of this cyanotoxin in aquatic organisms has prompted research into the potential human exposure risk associated with sourcing food items from eutrophied water bodies worldwide. The Hartbeespoort Dam reservoir in the North West province of South Africa has persistent cyanobacterial blooms and is used extensively by anglers, many of whom consume their catch. The commercial sale of fish species harvested from this reservoir as part of a recent biomanipulative remediation strategy may pose an additional hazard. BMAA and Microcystins (MC) were detected in fish sourced from this reservoir. BMAA levels of up to 1630 ng g -1 dry weight and MC concentrations of up to 29.44 ng g -1 dry weight were detected in fish sourced during an extensive bloom episode, with a clear correlation between the total amount of BMAA detected in the fish muscle tissue and their relative position in the Hartbeespoort Dam reservoir food web. Interestingly, fish sourced from this reservoir in winter when dense cyanobacterial blooms were lacking contained BMAA levels of up to 3055 ng g -1 dry weight. We also comment on the observed seasonal variations of BMAA levels in phytoplankton and fish sourced from this water body as well as the potential exposure risks associated with harvesting food items from this reservoir. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis.

    PubMed

    Banack, Sandra Anne; Caller, Tracie; Henegan, Patricia; Haney, James; Murby, Amanda; Metcalf, James S; Powell, James; Cox, Paul Alan; Stommel, Elijah

    2015-01-29

    A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association.

  9. Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (l-Ala-P)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Au, Kinfai; Ren, Jingshan; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN

    2008-05-01

    Structures of BA0252, an alanine racemase from B. anthracis, in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) and determined by X-ray crystallography to resolutions of 2.1 and 1.47 Å, respectively, are described. Bacillus anthracis, the causative agent of anthrax, has been targeted by the Oxford Protein Production Facility to validate high-throughput protocols within the Structural Proteomics in Europe project. As part of this work, the structures of an alanine racemase (BA0252) in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) have determined by X-ray crystallo@@graphy to resolutions of 2.1 and 1.47 Å, respectively. Difficulties inmore » crystallizing this protein were overcome by the use of reductive methylation. Alanine racemase has attracted much interest as a possible target for anti-anthrax drugs: not only is d-alanine a vital component of the bacterial cell wall, but recent studies also indicate that alanine racemase, which is accessible in the exosporium, plays a key role in inhibition of germination in B. anthracis. These structures confirm the binding mode of l-Ala-P but suggest an unexpected mechanism of inhibition of alanine racemase by this compound and could provide a basis for the design of improved alanine racemase inhibitors with potential as anti-anthrax therapies.« less

  10. Increasing plant growth by modulating omega-amidase expression in plants

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2015-06-30

    The present disclosure relates to compositions and methods for increasing the leaf-to-root ratio of the signal metabolite 2-oxoglutaramate and related proline molecules in plants by modulating levels of .omega.-amidase to increase nitrogen use efficiency, resulting in enhanced growth, faster growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, increased tolerance to high salt conditions, and increased biomass yields.

  11. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faraci, W.S.; Walsh, C.T.

    1988-05-03

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L ..-->.. D and D..-->.. L directions for all three enzymes to assess the degree to which abstraction of the ..cap alpha..-proton or protonation of substratemore » PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of ..cap alpha..-/sup 3/H from substrate to product and solvent exchange/substrate conversion experiments in /sup 3/H/sub 2/O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis.« less

  12. Effect of mass transfer in a recirculation batch reactor system for immobilized penicillin amidase.

    PubMed

    Park, J M; Choi, C Y; Seong, B L; Han, M H

    1982-10-01

    The effect of external mass transfer resistance on the overall reaction rate of the immobilized whole cell penicillin amidase of E. coli in a recirculation batch reactor was investigated. The internal diffusional resistance was found negligible as indicated by the value of effectiveness factor, 0.95. The local environmental change in a column due to the pH drop was successfully overcome by employing buffer solution. The reaction rate was measured by pH-stat method and was found to follow the simple Michaelis-Menten law at the initial stage of the reaction. The values of the net reaction rate experimentally determined were used to calculate the substrate concentration at the external surface of the catalyst pellet and then to calculate the mass transfer coefficient, k(L), at various flow rates and substrate concentrations. The correlation proposed by Chilton and Colburn represented adequately the experimental data. The linear change of log j(D) at low log N(Re) with negative slope was ascribed to the fact that the external mass transfer approached the state of pure diffusion in the limit of zero superficial velocity.

  13. Piezoelectric and pyroelectric properties of DL-alanine and L-lysine amino-acid polymer nanofibres

    NASA Astrophysics Data System (ADS)

    de Matos Gomes, Etelvina; Viseu, Teresa; Belsley, Michael; Almeida, Bernardo; Costa, Maria Margarida R.; Rodrigues, Vitor H.; Isakov, Dmitry

    2018-04-01

    The piezoelectric and pyroelectric properties of electrospun polyethylene oxide nanofibres embedded with polar amino acids DL-alanine and L-lysine hemihydrate are reported. A high pyroelectric coefficient of 150 μC m‑2 K‑1 was measured for L-lysine hemihydrate and piezoelectric current densities up to 7 μA m‑2 were obtained for the nanofibres. The study reveals a potential for polymer amino-acid nanofibres to be used as biocompatible energy harvesters for autonomous circuit applications like in implantable electronics.

  14. UPLC-ESI-MS/MS method for the quantitative measurement of aliphatic diamines, trimethylamine N-oxide, and β-methylamino-l-alanine in human urine.

    PubMed

    Bhandari, Deepak; Bowman, Brett A; Patel, Anish B; Chambers, David M; De Jesús, Víctor R; Blount, Benjamin C

    2018-04-15

    This work describes a quantitative high-throughput analytical method for the simultaneous measurement of small aliphatic nitrogenous biomarkers, i.e., 1,6-hexamethylenediamine (HDA), isophoronediamine (IPDA), β-methylamino-l-alanine (BMAA), and trimethylamine N-oxide (TMAO), in human urine. Urinary aliphatic diamines, HDA and IPDA, are potential biomarkers of environmental exposure to their corresponding diisocyanates. Urinary BMAA forms as a result of human exposure to blue-green algae contaminated food. And, TMAO is excreted in urine due to the consumption of carnitine- and choline-rich diets. These urinary biomarkers represent classes of small aliphatic nitrogen-containing compounds (N-compounds) that have a high aqueous solubility, low logP, and/or high basic pK a . Because of the highly polar characteristics, analysis of these compounds in complex sample matrices is often challenging. We report on the development of ion-pairing chemistry based ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method for the simultaneous measurement of these biomarkers in human urine. Chromatographic separation was optimized using heptafluorobutyric acid-(HFBA-) based mobile phase and a reversed-phase C18 column. All four analytes were baseline separated within 2.6 min with an overall run time of 5 min per sample injection. Sample preparation involved 4 h of acid hydrolysis followed by automated solid phase extraction (SPE) performed using strong cation exchange sorbent bed with 7 N ammonia solution in methanol as eluent. Limits of detection ranged from 0.05 ng/mL to 1.60 ng/mL. The inter-day and intra-day accuracy were within 10%, and reproducibility within 15%. The method is accurate, fast, and well-suited for biomonitoring studies within targeted groups, as well as larger population-based studies such as the U. S. National Health and Nutrition Examination Survey (NHANES). Published by Elsevier B.V.

  15. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    NASA Astrophysics Data System (ADS)

    Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.

    2008-01-01

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.

  16. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okle, Oliver, E-mail: oliver.okle@uni-konstanz.de; Rath, Lisa; Galizia, C. Giovanni

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically availablemore » to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.« less

  17. Alanine infusion during hypoglycaemia partly supports cognitive performance in healthy human subjects.

    PubMed

    Evans, M L; Hopkins, D; Macdonald, I A; Amiel, S A

    2004-05-01

    To investigate the potential for the non-glucose metabolic substrate alanine to support brain function during glucose deprivation in man. Seven healthy men were studied on two occasions using a hyperinsulinaemic glucose clamp to lower arterialized plasma glucose to 2.5 mmol/l, in the presence of either 2 mmol/kg/h alanine infusion or saline, measuring counter-regulatory hormonal responses, symptoms generated and cognitive function with a mini-battery of tests sensitive to hypoglycaemia. Alanine infusion elevated plasma alanine (peak value 1481 +/- 1260 vs. 138 +/- 32 micro mol/l, P = 0.02 alanine vs. saline) and lactate (peak value 3.09 +/- 0.14 vs. 2.05 +/- 0.12 mmol/l, P = 0.02). Cognitive function assessed by the Stroop word and colour subtests deteriorated less with alanine than saline (P < 0.01 for both). Other cognitive function tests deteriorated equally and counter-regulatory hormones rose equally during hypoglycaemia in both studies (P > 0.34) except for increased glucagon with alanine (peak 260 +/- 53 vs. 91 + 8 ng/l, P = 0.03). There was no significant effect of alanine on either autonomic or neuroglycopenic symptom scores. Some, but not all, aspects of cognitive performance may be supported by an alanine infusion during hypoglycaemia. It is not clear whether alanine supports brain function directly or via increased availability of lactate. These data contribute to the growing evidence that regional metabolic differences exist in the brain's ability to use non-glucose fuels during hypoglycaemia.

  18. The electron transport mechanism in ester and its influence on bioactivity in the anticancer drug N-(6-ferrocenyl-2-naphthoyl)-L-alanine-glycine ethyl ester(FNLAGEE)

    NASA Astrophysics Data System (ADS)

    Sudhi, Geethu; Rajina, S. R.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Binoy, J.

    2018-05-01

    The reactivity of ester group plays key role in inducing bioactivity of many ferrocenyl biconjugated compounds. The ester reactivity can be explained, based on electron transport mechanism using vibrational spectroscopy, aided by DFT simulation. The FT IR and FT Raman spectral measurements have been carried out for N-(6-ferrocenyl-2-naphthoyl)-L-alanine-glycine ethyl ester (FNLAGEE) and the optimized geometry and vibrational spectra have been computed using DFT method, at B3LYP/LANL2DZ level of theory. The cis conformation of ester and electron transport mechanism, thus analyzed, has been correlated to the geometry and the spectral characteristics of ester. To investigate the bioactivity and binding interactions of the molecule, molecular docking simulations and UV-Vis absorption studies of FNLAGEE with BSA and DNA has been performed.

  19. Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from Pseudomonas sp. strain ADP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balotra, Sahil; Newman, Janet; French, Nigel G.

    2014-02-19

    The amidase domain of the allophanate hydrolase AtzF from Pseudomonas sp. strain ADP has been crystallized and preliminary X-ray diffraction data have been collected. The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Å resolution and adopted space group P2{sub 1}, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, β = 106.6°.

  20. Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum: III. Alanine Is the Product of Anaerobic Ammonium Assimilation.

    PubMed

    Vanlerberghe, G C; Joy, K W; Turpin, D H

    1991-02-01

    We have determined the flow of (15)N into free amino acids of the N-limited green alga Selenastrum minutum (Naeg.) Collins after addition of (15)NH(4) (+) to aerobic or anaerobic cells. Under aerobic conditions, only a small proportion of the N assimilated was retained in the free amino acid pool. However, under anaerobic conditions almost all assimilated NH(4) (+) accumulates in alanine. This is a unique feature of anaerobic NH(4) (+) assimilation. The pathway of carbon flow to alanine results in the production of ATP and reductant which matches exactly the requirements of NH(4) (+) assimilation. Alanine synthesis is therefore an excellent strategy to maintain energy and redox balance during anaerobic NH(4) (+) assimilation.

  1. Amidase encapsulated O-carboxymethyl chitosan nanoparticles for vaccine delivery.

    PubMed

    Smitha, K T; Sreelakshmi, M; Nisha, N; Jayakumar, R; Biswas, Raja

    2014-02-01

    This work reports the development of amidase encapsulated O-carboxymethyl chitosan nanoparticles (Ami-O-CMC NPs) of 300±50 nm size by ionic cross-linking method. The prepared Ami-O-CMC NPs had an encapsulation efficiency of 55.39%. Haemolysis assay and cytotoxicity studies proved the hemocompatibility and cytocompatibility of the prepared NPs. The sustained release of Ami from the NPs is expected to prolong its immunogenicity and in turn lead to development of better protective immunity against Staphylococcus aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    PubMed Central

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  3. Synthesis, biological evaluation, and 3D QSAR study of 2-methyl-4-oxo-3-oxetanylcarbamic acid esters as N-acylethanolamine acid amidase (NAAA) inhibitors.

    PubMed

    Ponzano, Stefano; Berteotti, Anna; Petracca, Rita; Vitale, Romina; Mengatto, Luisa; Bandiera, Tiziano; Cavalli, Andrea; Piomelli, Daniele; Bertozzi, Fabio; Bottegoni, Giovanni

    2014-12-11

    N-(2-Oxo-3-oxetanyl)carbamic acid esters have recently been reported to be noncompetitive inhibitors of the N-acylethanolamine acid amidase (NAAA) potentially useful for the treatment of pain and inflammation. In the present study, we further explored the structure-activity relationships of the carbamic acid ester side chain of 2-methyl-4-oxo-3-oxetanylcarbamic acid ester derivatives. Additional favorable features in the design of potent NAAA inhibitors have been found together with the identification of a single digit nanomolar inhibitor. In addition, we devised a 3D QSAR using the atomic property field method. The model turned out to be able to account for the structural variability and was prospectively validated by designing, synthesizing, and testing novel inhibitors. The fairly good agreement between predictions and experimental potency values points to this 3D QSAR model as the first example of quantitative structure-activity relationships in the field of NAAA inhibitors.

  4. The effect of β-N-methylamino-L-alanine (BMAA) on oxidative stress response enzymes of the macrophyte Ceratophyllum demersum.

    PubMed

    Esterhuizen-Londt, M; Pflugmacher, S; Downing, T G

    2011-04-01

    Cyanobacteria are known to produce bioactive secondary metabolites such as hepatotoxins, cytotoxins and neurotoxins. The newly recognized neurotoxin β-N-methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid found in the majority of cyanobacterial genera tested. Evidence that exists for implication of BMAA in neurodegenerative disorders relies on bioaccumulation and biomagnification from symbiotic cyanobacteria. Uptake and accumulation of free BMAA by various non-symbiotic organisms, including aquatic macrophytes, has been documented but to date limited evidence of ecotoxicology exists. We therefore investigated the effect of BMAA on the oxidative stress responses of the macrophyte, Ceratophyllum demersum. Markers for oxidative stress in this study are the antioxidative enzymes superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase and glutathione reductase. We found that BMAA had an inhibitory effect on all the oxidative stress response enzymes tested in plants exposed to BMAA. However enzymes not related to oxidative stress response were not affected by BMAA in in vitro experiments. Binding studies in the presence of BMAA showed reduced enzyme specific activity over time compared to the control. This study shows that BMAA causes oxidative stress indirectly as it inhibits antioxidant enzymes required to combat reactive oxygen species that cause damage to cells. Further investigations are required to fully understand the inhibitory effect of BMAA on these enzymes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Anaerobic metabolism in the N-limited green alga Selenastrum minutum. 3. Alanine is the product of anaerobic ammonium assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanlerberghe, G.C.; Turpin, D.H.; Joy, K.W.

    The authors have determined the flow of {sup 15}N into free amino acids of the N-limited green alga Selenastrum minutum (Naeg.) Collins after addition of {sup 15}NH{sub 4}{sup +} to aerobic or anaerobic cells. Under aerobic conditions, only a small proportion of the N assimilated was retained in the free amino acid pool. However, under anaerobic conditions almost all assimilated NH{sub 4}{sup +} accumulates in alanine. This is a unique feature of anaerobic NH{sub 4}{sup +} assimilation. The pathway of carbon flow to alanine results in the production of ATP and reductant which matches exactly the requirements of NH{sub 4}{supmore » +} assimilation. Alanine synthesis is therefore an excellent strategy to maintain energy and redox balance during anaerobic NH{sub 4}{sup +} assimilation.« less

  6. Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry

    PubMed Central

    2014-01-01

    Over the last decade the amino acid beta-N-methylamino-L-alanine (BMAA) has come under intense scrutiny. International laboratory and epidemiological research continues to support the hypothesis that environmental exposure to BMAA (e.g., through dietary practices, water supply) can promote the risk of various neurodegenerative diseases. A wide variety of cyanobacteria spp. have previously been reported to produce BMAA, with production levels dependent upon species, strain and environmental conditions. Since spirulina (Arthrospira spp.) is a member of the cyanobacteria phylum frequently consumed via dietary supplements, the presence of BMAA in such products may have public health implications. In the current work, we have analyzed ten spirulina-containing samples for the presence of BMAA; six pure spirulina samples from two separate raw materials suppliers, and four commercially-available multi-ingredient products containing 1.45 g of spirulina per 8.5 g serving. Because of controversy surrounding the measurement of BMAA, we have used two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods: one based on reversed phase LC (RPLC) with derivatization and the other based on hydrophilic interaction LC (HILIC). Potential matrix effects were corrected for by internal standardization using a stable isotope labeled BMAA standard. BMAA was not detected at low limits of detection (80 ng/g dry weight) in any of these product samples. Although these results are reassuring, BMAA analyses should be conducted on a wider sample selection and, perhaps, as part of ongoing spirulina production quality control testing and specifications. PMID:25120905

  7. Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry.

    PubMed

    McCarron, Pearse; Logan, Alan C; Giddings, Sabrina D; Quilliam, Michael A

    2014-01-01

    Over the last decade the amino acid beta-N-methylamino-L-alanine (BMAA) has come under intense scrutiny. International laboratory and epidemiological research continues to support the hypothesis that environmental exposure to BMAA (e.g., through dietary practices, water supply) can promote the risk of various neurodegenerative diseases. A wide variety of cyanobacteria spp. have previously been reported to produce BMAA, with production levels dependent upon species, strain and environmental conditions. Since spirulina (Arthrospira spp.) is a member of the cyanobacteria phylum frequently consumed via dietary supplements, the presence of BMAA in such products may have public health implications. In the current work, we have analyzed ten spirulina-containing samples for the presence of BMAA; six pure spirulina samples from two separate raw materials suppliers, and four commercially-available multi-ingredient products containing 1.45 g of spirulina per 8.5 g serving. Because of controversy surrounding the measurement of BMAA, we have used two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods: one based on reversed phase LC (RPLC) with derivatization and the other based on hydrophilic interaction LC (HILIC). Potential matrix effects were corrected for by internal standardization using a stable isotope labeled BMAA standard. BMAA was not detected at low limits of detection (80 ng/g dry weight) in any of these product samples. Although these results are reassuring, BMAA analyses should be conducted on a wider sample selection and, perhaps, as part of ongoing spirulina production quality control testing and specifications.

  8. Co-occurrence of beta-N-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990-2004.

    PubMed

    Metcalf, James S; Banack, Sandra Anne; Lindsay, Jaime; Morrison, Louise F; Cox, Paul Alan; Codd, Geoffrey A

    2008-03-01

    The neurotoxic amino acid, beta-N-methylamino-L-alanine, was found to be present in all of 12 analysed samples of cyanobacterial blooms, scums and mats, which had been collected in seven years between 1990 and 2004 inclusive and stored at -20 degrees C. BMAA identification was by high performance liquid chromatography with fluorescence detection and by triple quadrapole mass spectrometry after derivatization. The samples originated from 11 freshwater lakes and 1 brackish waterbody, used either for drinking water, recreation, or both. BMAA was present at between 8 and 287 microg g(-1) cyanobacterial dry weight and was present as both the free amino acid and associated with precipitated proteins. Ten of the samples contained additional cyanotoxins (including microcystins, anatoxin-a, nodularin and saxitoxin) at the time of sample collection. Five of the samples were associated with animal deaths, attributable at the time of sample collection, to microcystins, nodularin or anatoxin-a. The data demonstrate the presence of BMAA by high performance liquid chromatography and mass spectrometry in a diverse range of cyanobacterial bloom samples from high resource waterbodies. Furthermore, samples collected over several years shows that BMAA can co-occur with other known cyanotoxins in such waterbodies. Health risk assessment of cyanobacterial BMAA in waterbodies is suggested.

  9. Influence of the composition of aqueous dimethylsulfoxide solvent on thermodynamics of complexing between 18-crown-6-ether and D,L-alanine

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Kuzmina, I. A.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.

    2012-07-01

    Standard thermodynamic parameters (log K o, Δr H o, TΔr S o) of complexing 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-dimethysulfoxide (H2O-DMSO) solvents are calculated on the basis of calorimetric titration results. A rise in the DMSO concentration in mixed solvent is found to increase stability and increase the exothermicity of the formation of [Ala-18C6] molecular complex. Changes in the reaction energetic are shown to be determined by changes in the solvation state of 18C6 that is the characteristic of the reactions of molecular complex formation between 18C6 and D,L-alanine or glycine in water-organic solvents.

  10. Photochemical redox reactions of copper(II)-alanine complexes in aqueous solutions.

    PubMed

    Lin, Chen-Jui; Hsu, Chao-Sheng; Wang, Po-Yen; Lin, Yi-Liang; Lo, Yu-Shiu; Wu, Chien-Hou

    2014-05-19

    The photochemical redox reactions of Cu(II)/alanine complexes have been studied in deaerated solutions over an extensive range of pH, Cu(II) concentration, and alanine concentration. Under irradiation, the ligand-to-metal charge transfer results in the reduction of Cu(II) to Cu(I) and the concomitant oxidation of alanine, which produces ammonia and acetaldehyde. Molar absorptivities and quantum yields of photoproducts for Cu(II)/alanine complexes at 313 nm are characterized mainly with the equilibrium Cu(II) speciation where the presence of simultaneously existing Cu(II) species is taken into account. By applying regression analysis, individual Cu(I) quantum yields are determined to be 0.094 ± 0.014 for the 1:1 complex (CuL) and 0.064 ± 0.012 for the 1:2 complex (CuL2). Individual quantum yields of ammonia are 0.055 ± 0.007 for CuL and 0.036 ± 0.005 for CuL2. Individual quantum yields of acetaldehyde are 0.030 ± 0.007 for CuL and 0.024 ± 0.007 for CuL2. CuL always has larger quantum yields than CuL2, which can be attributed to the Cu(II) stabilizing effect of the second ligand. For both CuL and CuL2, the individual quantum yields of Cu(I), ammonia, and acetaldehyde are in the ratio of 1.8:1:0.7. A reaction mechanism for the formation of the observed photoproducts is proposed.

  11. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei

    PubMed Central

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2015-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species. PMID:26843981

  12. Transition state analogue imprinted polymers as artificial amidases for amino acid p-nitroanilides: morphological effects of polymer network on catalytic efficiency.

    PubMed

    Mathew, Divya; Thomas, Benny; Devaky, K S

    2017-11-13

    The morphology of the polymer network - porous/less porous - plays predominant role in the amidase activities of the polymer catalysts in the hydrolytic reactions of amino acid p-nitroanilides. Polymers with the imprints of stable phosphonate analogue of the intermediate of hydrolytic reactions were synthesized as enzyme mimics. Molecular imprinting was carried out in thermodynamically stable porogen dimethyl sulphoxide and unstable porogen chloroform, to investigate the morphological effects of polymers on catalytic amidolysis. It was found that the medium of polymerization has vital influence in the amidase activities of the enzyme mimics. The morphological studies of the polymer catalysts were carried out by scanning electron microscopy and Bruner-Emmett-Teller analysis. The morphology of the polymer catalysts and their amidase activities are found to be dependent on the composition of reaction medium. The polymer catalyst prepared in dimethyl sulphoxide is observed to be efficient in 1:9 acetonitrile (ACN)-Tris HCl buffer and that prepared in chloroform is noticed to be stereo specifically and shape-selectively effective in 9:1 ACN-Tris HCl buffer. The solvent memory effect in catalytic amidolysis was investigated using the polymer prepared in acetonitrile.

  13. Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin

    2015-11-13

    The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad,more » is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr{sup 136} and Thr{sup 330}) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys{sup 84} as the catalytic base to polarize the Ser{sup 187} nucleophile in the catalytic triad. - Highlights: • We determined the first structure of a bacterial aryl acylamidase (EC 3.5.1.13). • Structure revealed spatially distinct architecture of the substrate-binding pocket. • Hydrogen-bonding with Tyr{sup 136} and Thr{sup 330} mediates ligand-binding and substrate.« less

  14. Ability of L-canavanine to support nitrogen metabolism in the jack bean, Canavalia ensiformis (L. ) DC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, G.A.; Berge, M.A.; Ozinskas, A.J.

    The ability of L-canavanine, a nonprotein amino acid of certain leguminous plants, to support the nitrogen metabolism of jack bean, Canavalia ensiformis (Leguminosae), was assessed by administration of L-(guanidino-N{sup 3}-{sup 15}N)arginine, L-(guanidinooxy-N{sup 3}-{sup 15}N)canavanine, or L-(guanidinooxy-N{sup 1}-{sup 15}N)canavanine into the cotyledons of 9-day-old plants. A strikingly similar pattern of {sup 15}N assimilation into de novo synthesized amino and imino acids resulted from feeding L-(guanidino-N{sup 3}-{sup 15}N)arginine and L-(guanidinooxy-N{sup 3}-{sup 15}N)canavanine. Glutamic acid plus glutamine and alanine were the most heavily labeled of the detected compounds. Some transfer of {sup 15}N from L-(gluanidino-N{sup 3}-{sup 15}N)arginine to canavanine was noted. This maymore » occur by a transamidination reaction between L-canaline and L-arginine. L-(guanidinooxy-N{sup 1}-{sup 15}N)Canavanine also supported amino and imino acid biosynthesis in this plant, but much more alanine and less glutamic acid and glutamine were labeled. These experiments provide substantive experimental evidence for the long-reputed hypothesis that canavanine functions as a nitrogen-storing metabolite.« less

  15. Phosphorylation of the Streptococcus pneumoniae cell wall biosynthesis enzyme MurC by a eukaryotic-like Ser/Thr kinase.

    PubMed

    Falk, Shaun P; Weisblum, Bernard

    2013-03-01

    Streptococcus pneumoniae contains a single Ser/Thr kinase-phosphatase pair known as StkP-PhpP. Here, we report the interaction of StkP-PhpP with S. pneumoniae UDP-N-acetylmuramoyl:L-alanine ligase, MurC, an enzyme that synthesizes an essential intermediate of the cell wall peptidoglycan pathway. Combinatorial phage display using StkP as target selected the peptide sequence YEVCGSDTVGC as an interacting partner and subsequently confirmed by ELISA. The phage peptide sequence YEVCGSDTVGC aligns closely with the MurC motif spanning S. pneumoniae amino acid coordinates 31-37. We show that MurC is phosphorylated by StkP and that phosphoMurC is dephosphorylated by PhpP. These data suggest a link between StkP-PhpP with the coordinated regulation of cell wall biosynthesis via MurC. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Ab initio conformational analysis of N-formyl ?-alanine amide including electron correlation

    NASA Astrophysics Data System (ADS)

    Yu, Ching-Hsing; Norman, Mya A.; Schäfer, Lothar; Ramek, Michael; Peeters, Anik; van Alsenoy, Christian

    2001-06-01

    The conformational properties of N-formyl L-alanine amide (ALA) were investigated using RMP2/6-311G∗∗ ab initio gradient geometry optimization. One hundred forty four structures of ALA were optimized at 30° grid points in its φ(N-C(α)), ψ(C(α)-C‧) conformational space. Using cubic spline functions, the grid structures were then used to construct analytical representations of complete surfaces, in φ,ψ-space, of bond lengths, bond angles, torsional sensitivity and electrostatic atomic charges. Analyses show that, in agreement with previous studies, the right-handed helical conformation, αR, is not a local energy minimum of the potential energy surface of ALA. Comparisons with protein crystallographic data show that the characteristic differences between geometrical trends in dipeptides and proteins, previously found for ab initio dipeptide structures obtained without electron correlation, are also found in the electron-correlated geometries. In contrast to generally accepted features of force fields used in empirical molecular modeling, partial atomic charges obtained by the CHELPG method are found to be not constant, but to vary significantly throughout the φ,ψ-space. By comparing RHF and MP2 structures, the effects of dispersion forces on ALA were studied, revealing molecular contractions for those conformations, in which small adjustments of torsional angles entail large changes in non-bonded distances.

  17. A breakthrough in enzyme technology to fight penicillin resistance-industrial application of penicillin amidase.

    PubMed

    Buchholz, Klaus

    2016-05-01

    Enzymatic penicillin hydrolysis by penicillin amidase (also penicillin acylase, PA) represents a Landmark: the first industrially and economically highly important process using an immobilized biocatalyst. Resistance of infective bacteria to antibiotics had become a major topic of research and industrial activities. Solutions to this problem, the antibiotics resistance of infective microorganisms, required the search for new antibiotics, but also the development of derivatives, notably penicillin derivatives, that overcame resistance. An obvious route was to hydrolyse penicillin to 6-aminopenicillanic acid (6-APA), as a first step, for the introduction via chemical synthesis of various different side chains. Hydrolysis via chemical reaction sequences was tedious requiring large amounts of toxic chemicals, and they were cost intensive. Enzymatic hydrolysis using penicillin amidase represented a much more elegant route. The basis for such a solution was the development of techniques for enzyme immobilization, a highly difficult task with respect to industrial application. Two pioneer groups started to develop solutions to this problem in the late 1960s and 1970s: that of Günter Schmidt-Kastner at Bayer AG (Germany) and that of Malcolm Lilly of Imperial College London. Here, one example of this development, that at Bayer, will be presented in more detail since it illustrates well the achievement of a solution to the problems of industrial application of enzymatic processes, notably development of an immobilization method for penicillin amidase suitable for scale up to application in industrial reactors under economic conditions. A range of bottlenecks and technical problems of large-scale application had to be overcome. Data giving an inside view of this pioneer achievement in the early phase of the new field of biocatalysis are presented. The development finally resulted in a highly innovative and commercially important enzymatic process to produce 6-APA that

  18. [Establishing biological reference intervals of alanine transaminase for clinical laboratory stored database].

    PubMed

    Guo, Wei; Song, Binbin; Shen, Junfei; Wu, Jiong; Zhang, Chunyan; Wang, Beili; Pan, Baishen

    2015-08-25

    To establish an indirect reference interval based on the test results of alanine aminotransferase stored in a laboratory information system. All alanine aminotransferase results were included for outpatients and physical examinations that were stored in the laboratory information system of Zhongshan Hospital during 2014. The original data were transformed using a Box-Cox transformation to obtain an approximate normal distribution. Outliers were identified and omitted using the Chauvenet and Tukey methods. The indirect reference intervals were obtained by simultaneously applying nonparametric and Hoffmann methods. The reference change value was selected to determine the statistical significance of the observed differences between the calculated and published reference intervals. The indirect reference intervals for alanine aminotransferase of all groups were 12 to 41 U/L (male, outpatient), 12 to 48 U/L (male, physical examination), 9 to 32 U/L (female, outpatient), and 8 to 35 U/L (female, physical examination), respectively. The absolute differences when compared with the direct results were all smaller than the reference change value of alanine aminotransferase. The Box-Cox transformation combined with the Hoffmann and Tukey methods is a simple and reliable technique that should be promoted and used by clinical laboratories.

  19. Precision and sensitivity of the measurement of 15N enrichment in D-alanine from bacterial cell walls using positive/negative ion mass spectrometry

    NASA Technical Reports Server (NTRS)

    Tunlid, A.; Odham, G.; Findlay, R. H.; White, D. C.

    1985-01-01

    Sensitive detection of cellular components from specific groups of microbes can be utilized as 'signatures' in the examination of microbial consortia from soils, sediments or biofilms. Utilizing capillary gas chromatography/mass spectrometry and stereospecific derivatizing agents, D-alanine, a component localized in the prokaryotic (bacterial) cell wall, can be detected reproducibly. Enrichments of D-[15N]alanine determined in E. coli grown with [15N]ammonia can be determined with precision at 1.0 atom%. Chemical ionization with methane gas and the detection of negative ions (M - HF)- and (M - F or M + H - HF)- formed from the heptafluorobutyryl D-2 butanol ester of D-alanine allowed as little as 8 pg (90 fmol) to be detected reproducibly. This method can be utilized to define the metabolic activity in terms of 15N incorporation at the level of 10(3)-10(4) cells, as a function of the 15N-14N ratio.

  20. Ultraviolet radiation induces stress in etiolated Landoltia punctata, as evidenced by the presence of alanine, a universal stress signal: a ¹⁵N NMR study.

    PubMed

    Monselise, E B-I; Levkovitz, A; Kost, D

    2015-01-01

    Analysis with (15) N NMR revealed that alanine, a universal cellular stress signal, accumulates in etiolated duckweed plants exposed to 15-min pulsed UV light, but not in the absence of UV irradiation. The addition of 10 mm vitamin C, a radical scavenger, reduced alanine levels to zero, indicating the involvement of free radicals. Free D-alanine was detected in (15) N NMR analysis of the chiral amino acid content, using D-tartaric acid as solvent. The accumulation of D-alanine under stress conditions presents a new perspective on the biochemical processes taking place in prokaryote and eukaryote cells. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Excess of L-Alanine in Amino Acids Synthesized in a Plasma Torch Generated by a Hypervelocity Meteorite Impact Reproduced in the Laboratory

    NASA Technical Reports Server (NTRS)

    Managadze, George G.; Engle, Michael H.; Getty, Stephanie A.; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly; Sholin, Gennady; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S

    2016-01-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  2. Cell wall amidase AmiC1 is required for cellular communication and heterocyst development in the cyanobacterium Anabaena PCC 7120 but not for filament integrity.

    PubMed

    Berendt, Susanne; Lehner, Josef; Zhang, Yao Vincent; Rasse, Tobias M; Forchhammer, Karl; Maldener, Iris

    2012-10-01

    Filamentous cyanobacteria of the order Nostocales display typical properties of multicellular organisms. In response to nitrogen starvation, some vegetative cells differentiate into heterocysts, where fixation of N(2) takes place. Heterocysts provide a micro-oxic compartment to protect nitrogenase from the oxygen produced by the vegetative cells. Differentiation involves fundamental remodeling of the gram-negative cell wall by deposition of a thick envelope and by formation of a neck-like structure at the contact site to the vegetative cells. Cell wall-hydrolyzing enzymes, like cell wall amidases, are involved in peptidoglycan maturation and turnover in unicellular bacteria. Recently, we showed that mutation of the amidase homologue amiC2 gene in Nostoc punctiforme ATCC 29133 distorts filament morphology and function. Here, we present the functional characterization of two amiC paralogues from Anabaena sp. strain PCC 7120. The amiC1 (alr0092) mutant was not able to differentiate heterocysts or to grow diazotrophically, whereas the amiC2 (alr0093) mutant did not show an altered phenotype under standard growth conditions. In agreement, fluorescence recovery after photobleaching (FRAP) studies showed a lack of cell-cell communication only in the AmiC1 mutant. Green fluorescent protein (GFP)-tagged AmiC1 was able to complement the mutant phenotype to wild-type properties. The protein localized in the septal regions of newly dividing cells and at the neck region of differentiating heterocysts. Upon nitrogen step-down, no mature heterocysts were developed in spite of ongoing heterocyst-specific gene expression. These results show the dependence of heterocyst development on amidase function and highlight a pivotal but so far underestimated cellular process, the remodeling of peptidoglycan, for the biology of filamentous cyanobacteria.

  3. Cloning and characterization of a novel amidase from Paracoccus sp. M-1, showing aryl acylamidase and acyl transferase activities.

    PubMed

    Shen, Weiliang; Chen, Honghong; Jia, Kaizhi; Ni, Jun; Yan, Xin; Li, Shunpeng

    2012-05-01

    A novel amidase gene, designated pamh, was cloned from Paracoccus sp. M-1. Site-directed mutagenesis and bioinformatic analysis showed that the PamH protein belonged to the amidase signature enzyme family. PamH was expressed in Escherichia coli, purified, and characterized. The molecular mass of PamH was determined to be 52 kDa with an isoelectric point of 5.13. PamH displayed its highest enzymatic activity at 45°C and at pH 8.0 and was stable within a pH range of 5.0-10.0. The PamH enzyme exhibited amidase activity, aryl acylamidase activity, and acyl transferase activity, allowing it to function across a very broad substrate spectrum. PamH was highly active on aromatic and short-chain aliphatic amides (benzamide and propionamide), moderately active on amino acid amides, and possessed weak urease activity. Of the anilides examined, only propanil was a good substrate for PamH. For propanil, the k (cat) and K (m) were 2.8 s(-1) and 158 μM, respectively, and the catalytic efficiency value (k (cat)/K (m)) was 0.018 μM(-1) s(-1). In addition, PamH was able to catalyze the acyl transfer reaction to hydroxylamine for both amide and anilide substrates, including acetamide, propanil, and 4-nitroacetanilide; the highest reaction rate was shown with isobutyramide. These characteristics make PamH an excellent candidate for environmental remediation and an important enzyme for the biosynthesis of novel amides.

  4. Liquid chromatographic determination of the cyanobacterial toxin beta-n-methylamino-L-alanine in algae food supplements, freshwater fish, and bottled water.

    PubMed

    Scott, Peter M; Niedzwiadek, Barbara; Rawn, Dorothea F K; Lau, Ben P-Y

    2009-08-01

    Beta-N-Methylamino-L-alanine (BMAA) is a neurotoxin originally found in cycad seeds and now known to be produced by many species of freshwater and marine cyanobacteria. We developed a method for its determination in blue-green algae (BGA) food supplements, freshwater fish, and bottled water by using a strong cation-exchange, solid-phase extraction column for cleanup after 0.3 M trichloroacetic acid extraction of BGA supplements and fish. Bottled water was applied directly onto the solid-phase extraction column. For analysis of carbonated water, sonication and pH adjustment to 1.5 were needed. To determine protein-bound BMAA, the protein pellet left after extraction of the BGA supplement and fish was hydrolyzed by boiling with 6 M hydrochloric acid; BMAA was cleaned up on a C18 column and a strong cation-exchange, solid-phase extraction column. Determination of BMAA was by liquid chromatography of the fluorescent derivative formed with 9-fluorenylmethyl chloroformate. The method was validated by recovery experiments using spiking levels of 1.0 to 10 microg/g for BGA supplements, 0.5 to 5.0 microg/g for fish, and 0.002 microg/g for bottled water; mean recoveries were in the range of 67 to 89% for BGA supplements and fish, and 59 to 92% for bottled water. Recoveries of BMAA from spiked extracts of hydrolyzed protein from BGA supplements and fish ranged from 66 to 83%. The cleanup developed provides a useful method for surveying foods and supplements for BMAA and protein-bound BMAA.

  5. Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut.

    PubMed

    Lee, Jun Beom; Byeon, Jin Hee; Jang, Ho Am; Kim, Jiyeun Kate; Yoo, Jin Wook; Kikuchi, Yoshitomo; Lee, Bok Luel

    2015-09-14

    We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Presence of the neurotoxic amino acids beta-N-methylamino-L-alanine (BMAA) and 2,4-diamino-butyric acid (DAB) in shallow springs from the Gobi Desert.

    PubMed

    Craighead, Derek; Metcalf, James S; Banack, Sandra A; Amgalan, Luvsanjamba; Reynolds, Harry V; Batmunkh, Mijiddorj

    2009-01-01

    The Gobi Desert in Mongolia, home to the critically endangered Gobi bear (Ursus arctos isabellinus), has few water resources for the animals that inhabit this environment. The majority of these water resources are shallow, small bodies of water, from approximately 30 cm to 3 m in diameter. Due to the harsh nature of the Gobi Desert environment, such pools of water are crucial resources for wildlife inhabiting the area and little information is currently available on the presence of organisms, including cyanobacteria, and the toxins they produce within these waters. Drinking water sources and small pools within the Gobi Desert were sampled on two separate occasions in October 2008 and April-May 2009. Samples were assessed for the presence of cyanobacteria; subsamples were taken for the analysis of beta-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB). According to LC-MS/MS analyses, both of these neurotoxic amino acids were present in both years and BMAA was present when cyanobacteria were major components of the pools. The results indicate that assessment of cyanotoxins to organisms that live in desert environments is warranted.

  7. Retention of the cyanobacterial neurotoxin beta-N-methylamino-l-alanine in melanin and neuromelanin-containing cells--a possible link between Parkinson-dementia complex and pigmentary retinopathy.

    PubMed

    Karlsson, Oskar; Berg, Cecilia; Brittebo, Eva B; Lindquist, Nils Gunnar

    2009-02-01

    beta-N-methylamino-l-alanine (BMAA), a neurotoxic amino acid produced by cyanobacteria, has been suggested to be involved in the etiology of a neurodegenerative disease complex which includes Parkinson-dementia complex (PDC). In PDC, neuromelanin-containing neurons in substantia nigra are degenerated. Many PDC patients also have an uncommon pigmentary retinopathy. The aim of this study was to investigate the distribution of (3)H-BMAA in mice and frogs, with emphasis on pigment-containing tissues. Using autoradiography, a distinct retention of (3)H-BMAA was observed in melanin-containing tissues such as the eye and neuromelanin-containing neurons in frog brain. Analysis of the binding of (3)H-BMAA to Sepia melanin in vitro demonstrated two apparent binding sites. In vitro-studies with synthetic melanin revealed a stronger interaction of (3)H-BMAA with melanin during synthesis than the binding to preformed melanin. Long-term exposure to BMAA may lead to bioaccumulation in melanin- and neuromelanin-containing cells causing high intracellular levels, and potentially changed melanin characteristics via incorporation of BMAA into the melanin polymer. Interaction of BMAA with melanin may be a possible link between PDC and pigmentary retinopathy.

  8. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity.

    PubMed Central

    Gojković, Z; Sandrini, M P; Piskur, J

    2001-01-01

    beta-Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamyl-beta-alanine as the sole nitrogen source and exhibits diminished beta-alanine synthase activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has no pyrimidine catabolic pathway, it enabled growth on N-carbamyl-beta-alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta-alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial N-carbamyl amidohydrolases. All three beta-alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta-alanine, but not by uracil. This work establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta-alanine production in eukaryotes. PMID:11454750

  9. L-alanine-glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate beta-lyase activity: a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes?

    PubMed Central

    Cooper, Arthur J L; Krasnikov, Boris F; Okuno, Etsuo; Jeitner, Thomas M

    2003-01-01

    Several halogenated alkenes are metabolized in part to cysteine S-conjugates, which are mitochondrial toxicants of kidney and, to a lesser extent, other organs. Toxicity is due to cysteine S-conjugate beta-lyases, which convert the cysteine S-conjugate into pyruvate, ammonia and a reactive sulphur-containing fragment. A section of the human population is exposed to halogenated alkenes. To understand the health effects of such exposure, it is important to identify cysteine S-conjugate beta-lyases that contribute to mitochondrial damage. Mitochondrial aspartate aminotransferase [Cooper, Bruschi, Iriarte and Martinez-Carrion (2002) Biochem. J. 368, 253-261] and mitochondrial branched-chain aminotransferase [Cooper, Bruschi, Conway and Hutson (2003) Biochem. Pharmacol. 65, 181-192] exhibit beta-lyase activity toward S -(1,2-dichlorovinyl)-L-cysteine (the cysteine S-conjugate of trichloroethylene) and S -(1,1,2,2-tetrafluoroethyl)-L-cysteine (the cysteine S-conjugate of tetrafluoroethylene). Turnover leads to eventual inactivation of these enzymes. Here we report that mitochondrial L-alanine-glyoxylate aminotransferase II, which, in the rat, is most active in kidney, catalyses cysteine S-conjugate beta-lyase reactions with S -(1,1,2,2-tetrafluoroethyl)-L-cysteine, S -(1,2-dichlorovinyl)-L-cysteine and S -(benzothiazolyl-L-cysteine); turnover leads to inactivation. Previous workers showed that the reactive-sulphur-containing fragment released from S -(1,1,2,2-tetrafluoroethyl)-L-cysteine and S -(1,2-dichlorovinyl)-L-cysteine is toxic by acting as a thioacylating agent - particularly of lysine residues in nearby proteins. Toxicity, however, may also involve 'self-inactivation' of key enzymes. The present findings suggest that alanine-glyoxylate aminotransferase II may be an important factor in the well-established targeting of rat kidney mitochondria by toxic halogenated cysteine S-conjugates. Previous reports suggest that alanine-glyoxylate aminotransferase II is absent

  10. How similar is the electronic structures of β-lactam and alanine?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhojyoti; Ahmed, Marawan; Wang, Feng

    2016-02-01

    The C1s spectra of β-lactam i.e. 2-azetidinone (C3H5NO), a drug and L-alanine (C3H7NO2), an amino acid, exhibit striking similarities, which may be responsible for the competition between 2-azetidinone and the alanyl-alanine moiety in biochemistry. The present study is to reveal the degree of similarities and differences between their electronic structures of the two model molecular pairs. It is found that the similarities in C1s and inner valence binding energy spectra are due to their bonding connections but other properties such as ring structure (in 2-azetidinone) and chiral carbon (alanine) can be very different. Further, the inner valence region of ionization potential greater than 18 eV for 2-azetidinone and alanine is also significantly similar. Finally the strained lactam ring exhibits more chemical reactivity measured at all non-hydrogen atoms by Fukui functions with respect to alanine.

  11. Rotational isomers of N-(β-phenylpropionyl)alanine ethyl dithioester: a Raman spectroscopic and MO study

    NASA Astrophysics Data System (ADS)

    Fausto, R.; Teixeira-Dias, J. J. C.; Tonge, P. J.; Carey, P. R.

    1994-07-01

    Raman spectra of N-(β-phenylpropionyl)alanine ethyl dithioester (C 6H 5CH 2CH 2C(O)NHCH(CH 3)C(S)SC 2H 5) in CCl 4 and CH 3CN solutions were measured as a function of temperature and the enthalpy differences (Δ H) between rotational isomers differing by internal rotation around the NHCH(CH 3) and CH(CH 3)C(S) bonds (forms A, B and C 5) were evaluated from relative band intensities. The spectroscopic results are consistent with a greater thermodynamical stability of the B-type conformer, where the N and S (thiol) atoms are in close contact. In addition, a comparison of the measured Δ H(A-B) for the present molecules with previously reported values for a series of similar glycine-based ethyl dithioesters shows that the presence of the extra CH 3 group at the α-carbon atom leads to a stabilization of the B-type conformer relative to the A-type form in the alanine-based dithioester. Semiempirical AM1 molecular orbital calculations were also performed on the title molecule and on its glycine analogue, N(β-phenylpropionyl)glycine ethyl dithioester. In general terms, the results of these calculations agree with the experimental findings, thus providing good theoretical support for the experimental data.

  12. [Effects of ß-alanine supplementation on wingate tests in university female footballers].

    PubMed

    Rodríguez Rodríguez, Fernando; Delgado Ormeño, Alex; Rivera Lobos, Patricio; Tapia Aranda, Víctor; Cristi-Montero, Carlos

    2014-11-01

    Football is a sport that develops actions intermittent high-intensity exercise using the anaerobic pathway, for that reason, the muscle fatigue would produce primarily by increasing acidosis. Carnosine, which is formed from L-histidine, ß-alanine, has proven to produce an effect "buffer" of acidosis. To determine the effect of ß-alanine supplementation, on three successive Wingate tests and compare the average power, maximum power and lactate blood in selected female college soccer. We evaluated 10 football players who were three Wingate, 5 min rest between each sprint, determining the average power, maximum and lactate at the end of each test, then consumed 2,4 gr/day of ß-alanine for 30 days and repeated the tests. The control group (n=8) performed the same tests, but without consuming the supplement. Monark cycle ergometer was used (Ergomedic 874E) and to measure lactate the Lactate Pro 2. The group with supplementation significantly improved mean power difference from the control group. The maximum power improved only in the first sprint unlike the control group and Lactate did not differ. The evidence shows that the ß-alanine improves performance on tests of more than 30 second long, but in our study improves average power and peak power even when performing consecutive sprint, being able to emulate the reality of the football game. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains.

    PubMed

    Rychli, Kathrin; Grunert, Tom; Ciolacu, Luminita; Zaiser, Andreas; Razzazi-Fazeli, Ebrahim; Schmitz-Esser, Stephan; Ehling-Schulz, Monika; Wagner, Martin

    2016-02-02

    surface virulence associated protein SvpA. Furthermore proteins involved in cell wall modification, such as the lipoteichonic acid primase LtaP and the N-acetylmuramoyl-l-alanine amidase (Lmo2591) are more abundant in EGDe than in the persistent strains and could indirectly contribute to virulence. In conclusion this study provides information about a set of proteins that could potentially support survival of L. monocytogenes in abiotic niches in food processing environments. Based on these data, a more detailed analysis of the role of the identified proteins under stresses mimicking conditions in food producing environment is essential for further elucidate the mechanism of the phenomenon of persistence of L. monocytogenes. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. [Effects of ß-alanine supplementation on athletic performance].

    PubMed

    Domínguez, Raúl; Hernández Lougedo, Juan; Maté-Muñoz, José Luis; Garnacho-Castaño, Manuel Vicente

    2014-10-06

    Carnosine, dipeptide formed by amino acids ß-alanine and L-histidine, has important physiological functions among which its antioxidant and related memory and learning. However, in connection with the exercise, the most important functions would be associated with muscle contractility, improving calcium sensitivity in muscle fibers, and the regulatory function of pH. Thus, it is proposed that carnosine is the major intracellular buffer, but could contribute to 7-10% in buffer or buffer capacity. Since carnosine synthesis seems to be limited by the availability of ß-alanine supplementation with this compound has been gaining increasing popularity among the athlete population. Therefore, the objective of this study literature review was to examine all those research works have shown the effect of ß-alanine supplementation on athletic performance. Moreover, it also has attempted to establish a specific dosage that maximizing the potential benefits, minimize paresthesia, the main side effect presented in response to supplementation. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  15. β-alanine Supplementation Fails to Increase Peak Aerobic Power or Ventilatory Threshold in Aerobically Trained Males.

    PubMed

    Greer, Beau Kjerulf; Katalinas, Matthew E; Shaholli, Danielle M; Gallo, Paul M

    2016-01-01

    The purpose of the present study was to determine the effect of 30 days of β-alanine supplementation on peak aerobic power and ventilatory threshold (VT) in aerobically fit males. Fourteen males (28.8 ± 9.8 yrs) were assigned to either a β-alanine (SUPP) or placebo (PLAC) group; groups were matched for VT as it was the primary outcome measure. β-alanine supplementation consisted of 3 g/day for 7 days, and 6 g/day for the remaining 23 days. Before and after the supplementation period, subjects performed a continuous, graded cycle ergometry test to determine VO2 peak and VT. Metabolic data were analyzed using a 2 × 2 ANOVA with repeated measures. Thirty days of β-alanine supplementation (SUPP) did not increase VO2 peak (4.05 ± 0.6 vs. 4.14 ± 0.6 L/min) as compared to the placebo (PLAC) group (3.88 ± 0.2 vs. 3.97 ± 0.2 L/min) (p > .05). VT did not significantly improve in either the SUPP (3.21 ± 0.5 vs. 3.33 ± 0.5 L/min) or PLAC (3.19 ± 0.1 vs. 3.20 ± 0.1 L/min) group (p > .05). In conclusion, 30 days of β-alanine supplementation had no effect on VO2 peak or VT in aerobically trained athletes.

  16. Discriminatory value of alanine aminotransferase for diabetes prediction: the Insulin Resistance Atherosclerosis Study.

    PubMed

    Lorenzo, C; Hanley, A J; Rewers, M J; Haffner, S M

    2016-03-01

    To examine the incremental usefulness of adding alanine aminotransferase to established risk factors for predicting future diabetes. The study population of the Insulin Resistance Atherosclerosis Study included 724 people aged 40-69 years. We excluded people who had excessive alcohol intake or were treated with lipid-lowering agents. Incident diabetes was assessed after a mean follow-up period of 5.2 years. Alanine aminotransferase had a non-linear relationship with incident diabetes (Wald chi-squared test, P < 0.001; P for linearity = 0.005) independent of demographic variables, family history of diabetes, BMI and fasting glucose; therefore, we used Youden's J statistic to dichotomize alanine aminotransferase [threshold ≥ 0.43 μkat/L ( ≥ 26 IU/l)]. Dichotomized alanine aminotransferase increased the area under the receiver-operating characteristic curve (0.805 vs. 0.823; P = 0.007) of a model that included demographic variables, family history of diabetes, BMI and fasting glucose as independent variables. The net reclassification improvement was 9.6% (95% CI 1.8-17.4; P = 0.016), and the integrated discrimination improvement was 0.031 (95% CI 0.011-0.050; P = 0.002). Dichotomized alanine aminotransferase reclassified a net of 9.6% of individuals more appropriately. Alanine aminotransferase may be useful for classifying individuals who are at risk of future diabetes after accounting for the effect of other risk factors, including family history, adiposity and plasma glucose. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  17. In Quest of the Alanine R3 Radical: Multivariate EPR Spectral Analyses of X-Irradiated Alanine in the Solid State.

    PubMed

    Jåstad, Eirik O; Torheim, Turid; Villeneuve, Kathleen M; Kvaal, Knut; Hole, Eli O; Sagstuen, Einar; Malinen, Eirik; Futsaether, Cecilia M

    2017-09-28

    The amino acid l-α-alanine is the most commonly used material for solid-state electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron-nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.

  18. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174.

    PubMed

    Arias, C A; Weisner, J; Blackburn, J M; Reynolds, P E

    2000-07-01

    Vancomycin resistance in Enterococcus gallinarum results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of Escherichia coli TKL-10 that requires D-Ala for growth at 42 degrees C was used as host for transformation experiments using plasmids containing the full-length vanT from Ent. gallinarum or the alanine racemase gene (alr) of Bacillus stearothermophilus: both plasmids were able to complement E. coli TKL-10 at 42 degrees C. No alanine or serine racemase activities were detected in the host strain E. coli TKL-10 grown at 30, 34 or 37 degrees C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of E. coli TKL-10/pCA4(vanT): the alanine racemase activity of VanT was 14% of the serine racemase activity in both E. coli TKL-10/pCA4(vanT) and E. coli XL-1 Blue/pCA4(vanT). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of E. coli TKL-10/pJW40(alr), with a trace (1.6%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in E. coli M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from E. coli was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.

  19. Pore Diameter Dependence and Segmental Dynamics of Poly-Z-L-lysine and Poly-L-alanine Confined in 1D Nanocylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Tuncel, Eylul; Suzuki, Yasuhito; Iossifidis, Agathaggelos; Steinhart, Martin; Butt, Hans-Jurgen; Floudas, George; Duran, Hatice

    Structure formation, thermodynamic stability, phase and dynamic behaviors of polypeptides are strongly affected by confinement. Since understanding the changes in these behaviors will allow their rational design as functional devices with tunable properties, herein we investigated Poly-Z-L-lysine (PZLL) and Poly-L-alanine (PAla) homopolypeptides confined in nanoporous alumina containing aligned cylindrical nanopores as a function of pore size by differential scanning calorimetry (DSC), Fourier Transform Infrared Spectroscopy, Solid-state NMR, X-ray diffraction, Dielectric spectroscopy(DS). Bulk PZLL exhibits a glass transition temperature (Tg) at about 301K while PZLL nanorods showed slightly lower Tg (294K). The dynamic investigation by DS also revealed a decrease (4K) in Tg between bulk and PZLL nanorods. DS is a very sensitive probe of the local and global secondary structure relaxation through the large dipole to study effect of confinement. The results revealed that the local segmental dynamics, associated with broken hydrogen bonds, and segmental dynamics speed-up on confinement.

  20. Role of beta-alanine supplementation on muscle carnosine and exercise performance.

    PubMed

    Artioli, Guilherme Giannini; Gualano, Bruno; Smith, Abbie; Stout, Jeffrey; Lancha, Antonio Herbert

    2010-06-01

    In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids l-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or VO2max, some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.

  1. Assessing Environmental Exposure to β-N-Methylamino-L-Alanine (BMAA) in Complex Sample Matrices: a Comparison of the Three Most Popular LC-MS/MS Methods.

    PubMed

    Baker, Teesha C; Tymm, Fiona J M; Murch, Susan J

    2018-01-01

    β-N-Methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid produced by cyanobacteria, accumulated through natural food webs, found in mammalian brain tissues. Recent evidence indicates an association between BMAA and neurological disease. The accurate detection and quantification of BMAA in food and environmental samples are critical to understanding BMAA metabolism and limiting human exposure. To date, there have been more than 78 reports on BMAA in cyanobacteria and human samples, but different methods give conflicting data and divergent interpretations in the literature. The current work was designed to determine whether orthogonal chromatography and mass spectrometry methods give consistent data interpretation from a single sample matrix using the three most common analytical methods. The methods were recreated as precisely as possible from the literature with optimization of the mass spectrometry parameters specific to the instrument. Four sample matrices, cyanobacteria, human brain, blue crab, and Spirulina, were analyzed as 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives, propyl chloroformate (PCF) derivatives separated by reverse phase chromatography, or underivatized extracts separated by HILIC chromatography. The three methods agreed on positive detection of BMAA in cyanobacteria and no detected BMAA in the sample of human brain matrix. Interpretation was less clear for a sample of blue crab which was strongly positive for BMAA by AQC and PCF but negative by HILIC and for four spirulina raw materials that were negative by PCF but positive by AQC and HILIC. Together, these data demonstrate that the methods gave different results and that the choices in interpretation of the methods determined whether BMAA was detected. Failure to detect BMAA cannot be considered proof of absence.

  2. Characterization of Lactobacillus salivarius alanine racemase: short-chain carboxylate-activation and the role of A131.

    PubMed

    Kobayashi, Jyumpei; Yukimoto, Jotaro; Shimizu, Yasuhiro; Ohmori, Taketo; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa

    2015-01-01

    Many strains of lactic acid bacteria produce high concentrations of d-amino acids. Among them, Lactobacillus salivarius UCC 118 produces d-alanine at a relative concentration much greater than 50 % of the total d, l-alanine (100d/d, l-alanine). We characterized the L. salivarius alanine racemase (ALR) likely responsible for this d-alanine production and found that the enzyme was activated by carboxylates, which is an unique characteristic among ALRs. In addition, alignment of the amino acid sequences of several ALRs revealed that A131 of L. salivarius ALR is likely involved in the activation. To confirm that finding, an L. salivarius ALR variant with an A131K (ALR(A131K)) substitution was prepared, and its properties were compared with those of ALR. The activity of ALR(A131K) was about three times greater than that of ALR. In addition, whereas L. salivarius ALR was strongly activated by low concentrations (e.g., 1 mM) of short chain carboxylates, and was inhibited at higher concentrations (e.g., 10 mM), ALR(A131K) was clearly inhibited at all carboxylate concentrations tested (1-40 mM). Acetate also increased the stability of ALR such that maximum activity was observed at 35 °C and pH 8.0 without acetate, but at 50 °C in the presence of 1 mM acetate. On the other hand, maximum ALR(A131K) activity was observed at 45 °C and around pH 9.0 with or without acetate. It thus appears that A131 mediates the activation and stabilization of L. salivarius ALR by short chain carboxylates.

  3. Asymmetric synthesis of [2,3-(13)C(2),(15)N]-4-benzyloxy-5,6-diphenyl-2,3,5,6-tetrahydro-4H-oxazine-2-one via lipase TL-mediated kinetic resolution of benzoin: general procedure for the synthesis of [2,3-(13)C(2),(15)N]-L-alanine.

    PubMed

    Aoyagi, Y; Iijima, A; Williams, R M

    2001-11-30

    Lipase TL-mediated kinetic resolution of benzoin proceeded to give the corresponding optically pure (R)-benzoin (R)-1. On the other hand, (S)-benzoin O-acetate (S)-7 could be hydrolyzed without epimerization to give (S)-benzoin (S)-1 under alkaline conditions. Furthermore, both enantiomers of benzoin (1) were converted to [(15)N]-(1R,2S)- and (1S,2R)- 2-amino-1,2-diphenylethanol (3a and 3b), respectively, according to the procedure reported previously. [2,3-(13)C(2),(15)N]-(5S,6R)-4-benzyloxy-5,6-diphenyl-2,3,5,6-tetrahydro-4H-oxazine-2-one (10) was synthesized from ethyl [1,2-(13)C(2)]bromoacetate and (1R,2S)-2-amino-1,2-diphenylethanol (3b) in three steps. Finally, [2,3-(13)C(2),(15)N]-L-alanine (12) was prepared via alkylation of the lactone 10 and hydrogenation of the alkylated product 11.

  4. Energetics of the molecular interactions of L-alanine and L-serine with xylitol, D-sorbitol, and D-mannitol in aqueous solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.

    2013-04-01

    Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ○) and the transfer (Δtr H ○) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.

  5. D-alanine carboxypeptidase activity of Micrococcus lysodeikticus released into the protoplasting medium.

    PubMed

    Linder, R; Salton, M R

    1975-06-16

    Conversion of whole cells of Micrococcus lysodeikticus to protoplasts allowed the release of a soluble form of a D-alanine carboxypeptidase into the protoplasting medium. The enzyme cleaves the terminal D-alanine from the radioactively labelled UDP-N-acetylmuramyl-pentapeptide containing L-lysine as the diamino acid. However, the enzyme is only minimally active in this fraction so that it had to be enriched and partially purified before its properties could be studied. Chromatography on carboxymethyl-Sephadex removed the lysozyme used in the protoplasting of the cells. The material which was unadsorbed to the column was applied to an affinity chromatography column of Ampicillin-Sepharose. Most of the contaminating protein was washed from the column while the D-alanine carboxypeptidase adhered to the resin and could be eluted with 0.5 M Tris-HCl buffer pH 8.6. Some of the properties of the enzymic activity were studied using this preparation. The enzyme was activated by Mg2+ ions with a broad optimum from 15--35 mM. It was maximally active when NaCl at a concentrations of 0.06--0.08 M was added to the assay, and the pH curve was biphasic with an alkaline optimum. The Km for substrate was found to be 0.118 mM. Enzymic activity was completely inhibited by low concentrations of Ampicillin and penicillin G.

  6. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications.

    PubMed

    Woronoff, Gabrielle; El Harrak, Abdeslam; Mayot, Estelle; Schicke, Olivier; Miller, Oliver J; Soumillion, Patrice; Griffiths, Andrew D; Ryckelynck, Michael

    2011-04-15

    Droplet-based microfluidics is a powerful tool for biology and chemistry as it allows the production and the manipulation of picoliter-size droplets acting as individual reactors. In this format, high-sensitivity assays are typically based on fluorescence, so fluorophore exchange between droplets must be avoided. Fluorogenic substrates based on the coumarin leaving group are widely used to measure a variety of enzymatic activities, but their application in droplet-based microfluidic systems is severely impaired by the fast transport of the fluorescent product between compartments. Here we report the synthesis of new amidase fluorogenic substrates based on 7-aminocoumarin-4-methanesulfonic acid (ACMS), a highly water-soluble dye, and their suitability for droplet-based microfluidics applications. Both substrate and product had the required spectral characteristics and remained confined in droplets from hours to days. As a model experiment, a phenylacetylated ACMS was synthesized and used as a fluorogenic substrate of Escherichia coli penicillin G acylase. Kinetic parameters (k(cat) and K(M)) measured in bulk and in droplets on-chip were very similar, demonstrating the suitability of this synthesis strategy to produce a variety of ACMS-based substrates for assaying amidase activities both in microtiter plate and droplet-based microfluidic formats. © 2011 American Chemical Society

  7. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans

    USGS Publications Warehouse

    Chernoff, Neil; Hill, D. J.; Diggs, D. L.; Faison, B. D.; Francis, B. M.; Lang, J. R.; Larue, M. M.; Le, T.-T.; Loftin, Keith A.; Lugo, J. N.; Schmid, J. E.; Winnik, W. W.

    2017-01-01

    The compound BMAA (β-N-methylamino-L-alanine) has been postulated to play a significant role in four serious neurological human diseases: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, Parkinsonism, and dementia that occur globally. ALS/PDC with symptoms of all three diseases first came to the attention of the scientific community during and after World War II. It was initially associated with cycad flour used for food because BMAA is a product of symbiotic cycad root-dwelling cyanobacteria. Human consumption of flying foxes that fed on cycad seeds was later suggested as a source of BMAA on Guam and a cause of ALS/PDC. Subsequently, the hypothesis was expanded to include a causative role for BMAA in other neurodegenerative diseases including Alzheimer’s disease (AD) through exposures attributed to proximity to freshwaters and/or consumption of seafood due to its purported production by most species of cyanobacteria. The hypothesis that BMAA is the critical factor in the genesis of these neurodegenerative diseases received considerable attention in the medical, scientific, and public arenas. This review examines the history of ALS/PDC and the BMAA-human disease hypotheses; similarities and differences between ALS/PDC and the other diseases with similar symptomologies; the relationship of ALS/PDC to other similar diseases, studies of BMAA-mediated effects in lab animals, inconsistencies and data gaps in the hypothesis; and other compounds and agents that were suggested as the cause of ALS/PDC on Guam. The review concludes that the hypothesis of a causal BMAA neurodegenerative disease relationship is not supported by existing data.

  8. Reversed-phase high-performance liquid chromatographic method for the determination of peptidoglycan monomers and structurally related peptides and adamantyltripeptides.

    PubMed

    Krstanović, Marina; Frkanec, Ruza; Vranesić, Branka; Ljevaković, Durdica; Sporec, Vesna; Tomasić, Jelka

    2002-06-25

    The reversed-phase HPLC method using UV detection was developed for the determination of (a) immunostimulating peptidoglycan monomers represented by the basic structure GlcNAc-MurNAc-L-Ala-D-isoGln-meso-DAP(omegaNH(2))-D-Ala-D-Ala (PGM) and two more lipophilic derivatives, Boc-Tyr-PGM and (Ada-1-yl)-CH(2)-CO-PGM, (b) two diastereomeric immunostimulating adamantyltripeptides L- and D-(adamant-2-yl)-Gly-L-Ala-D-isoGln and (c) peptides obtained by the enzyme hydrolyses of peptidoglycans and related peptides. The enzymes used, N-acetylmuramyl-L-alanine amidase and an L,D-aminopeptidase are present in mammalian sera and are involved in the metabolism of peptidoglycans and related peptides. Appropriate solvent systems were chosen with regard to structure and lipophilicity of each compound. As well, different gradient systems within the same solvent system had to be applied in order to achieve satisfactory separation and retention time. HPLC separation was developed with the aim to use this method for the study of the stability of the tested compounds, the purity during preparation and isolation and for following the enzyme hydrolyses.

  9. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans.

    PubMed

    Wei, Yuan; Qiu, Wei; Zhou, Xue-Dong; Zheng, Xin; Zhang, Ke-Ke; Wang, Shi-Da; Li, Yu-Qing; Cheng, Lei; Li, Ji-Yao; Xu, Xin; Li, Ming-Yun

    2016-12-16

    D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 μg·mL -1 ) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.

  10. d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans.

    PubMed

    Qiu, W; Zheng, X; Wei, Y; Zhou, X; Zhang, K; Wang, S; Cheng, L; Li, Y; Ren, B; Xu, X; Li, Y; Li, M

    2016-10-01

    Part of the d-alanine (d-Ala) metabolic pathway in bacteria involves the conversion of l-alanine to d-Ala by alanine racemase and the formation of d-alanyl-d-alanine by d-alanine-d-alanine ligase, the product of which is involved in cell wall peptidoglycan synthesis. At present, drugs that target the metabolic pathway of d-Ala are already in clinical use - e.g. d-cycloserine (DCS) is used as an antibiotic against Mycobacterium tuberculosis. Streptococcus mutans is the main cariogenic bacterium in the oral cavity. Its d-Ala metabolism-associated enzymes alanine racemase and d-alanine-d-alanine ligase are encoded by the genes smu.1834 and smu.599, respectively, which may be potential targets for inhibitors. In this study, the addition of DCS blocked the d-Ala metabolic pathway in S. mutans, leading to bacterial cell wall defects, significant inhibition of bacterial growth and biofilm formation, and reductions in extracellular polysaccharide production and bacterial adhesion. However, the exogenous addition of d-Ala could reverse the inhibitory effect of DCS. Through the means of drug regulation, our study demonstrated, for the first time, the importance of d-Ala metabolism in the survival and biofilm formation of S. mutans. If the growth of S. mutans can be specifically inhibited by designing drugs that target d-Ala metabolism, then this may serve as a potential new treatment for dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  12. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE PAGES

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.; ...

    2018-01-01

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  13. Absolute linearity measurements on a gold-black-coated deuterated L-alanine-doped triglycine sulfate pyroelectric detector.

    PubMed

    Theocharous, E

    2008-07-20

    The nonlinearity characteristics of a commercially available deuterated L-alanine-doped triglycine sulfate (DLATGS) pyroelectric detector were experimentally investigated at high levels of illumination using the National Physical Laboratory detector linearity characterization facility. The detector was shown to exhibit a superlinear response at high levels of illumination. Moreover, the linearity factor was shown to depend on the area of the spot on the detector active area being illuminated, i.e., the incident irradiance. Possible reasons for the observed behavior are proposed and discussed. The temperature coefficient of the response of the DLATGS pyroelectric detector was measured and found to be higher than +2.5% degrees C(-1). This large and positive temperature coefficient of response is the most likely cause of the superlinear behavior of the DLATGS pyroelectric detector.

  14. Structural requirements of choline derivatives for 'conversion' of pneumococcal amidase. A new single-step procedure for purification of this autolysin.

    PubMed

    Sanz, J M; Lopez, R; Garcia, J L

    1988-05-23

    Tertiary amines appear to be the minimal structure needed to convert in vitro the inactive form (E-form) of pneumococcal amidase to the catalytic active form (C-form). Diethylethanolamine was one of the compounds that converted the E-form, a finding that has been used successfully to develop an affinity chromatography system in DEAE-cellulose for the rapid and efficient purification of lytic enzymes of pneumococcus and its bacteriophages.

  15. beta-Alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine.

    PubMed

    Ericson, Mia; Clarke, Rhona B C; Chau, PeiPei; Adermark, Louise; Söderpalm, Bo

    2010-04-01

    Glycine receptors (GlyRs) in the nucleus accumbens (nAc) have recently been suggested to be involved in the reinforcing and dopamine-elevating properties of ethanol via a neuronal circuitry involving the VTA. Apart from ethanol, both glycine and taurine have the ability to modulate dopamine output via GlyRs in the same brain region. In the present study, we wanted to explore whether yet another endogenous ligand for the GlyR, beta-alanine, had similar effects. To this end, we monitored dopamine in the nAc by means of in vivo microdialysis and found that local perfusion of beta-alanine increased dopamine output. In line with previous observations investigating ethanol, glycine and taurine, the competitive GlyR antagonist strychnine completely blocked the dopamine elevation. The present results suggest that beta-alanine has the ability to modulate dopamine levels in the nAc via strychnine-sensitive GlyRs, and are consistent with previous studies suggesting the importance of this receptor for modulating dopamine output.

  16. A peptidoglycan recognition protein from Sciaenops ocellatus is a zinc amidase and a bactericide with a substrate range limited to Gram-positive bacteria.

    PubMed

    Li, Mo-Fei; Zhang, Min; Wang, Chun-Lin; Sun, Li

    2012-02-01

    Peptidoglycan recognition proteins (PGRPs) are a family of innate immune molecules that recognize bacterial peptidoglycan. PGRPs are highly conserved in invertebrates and vertebrates including fish. However, the biological function of teleost PGRP remains largely uninvestigated. In this study, we identified a PGRP homologue, SoPGLYRP-2, from red drum (Sciaenops ocellatus) and analyzed its activity and potential function. The deduced amino acid sequence of SoPGLYRP-2 is composed of 482 residues and shares 46-94% overall identities with known fish PGRPs. SoPGLYRP-2 contains at the C-terminus a single zinc amidase domain with conserved residues that form the catalytic site. Quantitative RT-PCR analysis detected SoPGLYRP-2 expression in multiple tissues, with the highest expression occurring in liver and the lowest expression occurring in brain. Experimental bacterial infection upregulated SoPGLYRP-2 expression in kidney, spleen, and liver in time-dependent manners. To examine the biological activity of SoPGLYRP-2, purified recombinant proteins representing the intact SoPGLYRP-2 (rSoPGLYRP-2) and the amidase domain (rSoPGLYRP-AD) were prepared from Escherichia coli. Subsequent analysis showed that rSoPGLYRP-2 and rSoPGLYRP-AD (i) exhibited comparable Zn(2+)-dependent peptidoglycan-lytic activity and were able to recognize and bind to live bacterial cells, (ii) possessed bactericidal effect against Gram-positive bacteria and slight bacteriostatic effect against Gram-negative bacteria, (iii) were able to block bacterial infection into host cells. These results indicate that SoPGLYRP-2 is a zinc-dependent amidase and a bactericide that targets preferentially at Gram-positive bacteria, and that SoPGLYRP-2 is likely to play a role in host innate immune defense during bacterial infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Novel cocrystal of N-phthaloyl-β-alanine with 2,2-bipyridyl: Synthesis, computational and free radical scavenging activity studies

    NASA Astrophysics Data System (ADS)

    Chahkandi, Mohammad; Bhatti, Moazzam H.; Yunus, Uzma; Rehman, Naima; Nadeem, Muhammad; Tahir, Muhammad Nawaz; Zakria, Muhammad

    2018-01-01

    In the present work a novel cocrystal adduct of N-phthaloyl-β-alanine and 2,2-bipyridyl as compound 1 with molecular formula C16H13N3O4 was synthesized by slow evaporation process of the ethanoic solution containing these two moieties. In followings, the crystal structure and photophysical properties of 1 was characterized by single X-ray crystal analysis, FTIR, and UV-Vis spectra. The thermal behavior was analyzed by the Thermogravimetric/Differential Thermal Analyzer (TG-DTA). The cocrystal belong to monoclinic crystallographic system with space group P21/n, Z = 4. DPPH radical scavenging activity of the title cocrystal is slightly higher than coformer with lower IC50 value. Finally, using DFT calculations executed at hybrid B3LYP/6-311+G (d, p) level of theory the geometric and electronic structures of the crystalline network of C16H13N3O4 (1), studied. Inter-molecular conventional Osbnd H⋯N as well as the non-conventional Csbnd H⋯O hydrogen bonds (HBs) and Csbnd H···π and Csbnd O···π stacking interactions gathered the monomeric structures of 1 (1-mon) to create the 3D architecture of the network (1-net). The dispersion corrected density functional theory (DFT-D) calculations indicate that Osbnd H⋯N and Csbnd H⋯O HBs, govern the 1-net formation. The calculated UV-Vis spectrum in vacuo has agreement with the experimental one that shows five major bands in the range of 170-271 nm that could assigned to transitions between 2,2-bipyridyl and N-phthaloyl-β-alanine parts of 1 with n → π∗ and π → π* ligand-ligand-charge transfer (LLCT) character. The calculated electronic spectra in solvents (water, acetonitrile, methanol, and n-heptane) comparing with the vacuo one show broad bands with blue shifts.

  18. Pseudomonas aeruginosa mutants resistant to urea inhibition of growth on acetanilide.

    PubMed

    Gregoriou, M; Brown, P R; Tata, R

    1977-11-01

    Pseudomonas aeruginosa AI 3 was able to grow in medium containing acetanilide (N-phenylacetamide) as a carbon source when NH4+ was the nitrogen source but not when urea was the nitrogen source. AIU mutants isolated from strain AI 3 grew on either medium. Urease levels in bacteria grown in the presence of urea were 10-fold lower when NH4+ or acetanilide was also in the medium, but there were no apparent differences in urease or its synthesis between strain AI 3 and mutant AIU 1N. The first metabolic step in the acetanilide utlization is catalyzed by an amidase. Amidases in several AIU strains showed altered physiochemical properties. Urea inhibited amidase in a time-dependent reaction, but the rates of the inhibitory reaction with amidases from the AIU mutants were slower than with AI 3 amidase. The purified amidase from AIU 1N showed a marked difference in its pH/activity profile from that obtained with purified AI 3 amidase. These observations indicate that the ability of strain AIU 1N and the other mutants to grow on acetanilide/urea medium is associated with a mutation in the amidase structural gene; this was confirmed for strain AIU 1N by transduction.

  19. Pseudomonas aeruginosa mutants resistant to urea inhibition of growth on acetanilide.

    PubMed Central

    Gregoriou, M; Brown, P R; Tata, R

    1977-01-01

    Pseudomonas aeruginosa AI 3 was able to grow in medium containing acetanilide (N-phenylacetamide) as a carbon source when NH4+ was the nitrogen source but not when urea was the nitrogen source. AIU mutants isolated from strain AI 3 grew on either medium. Urease levels in bacteria grown in the presence of urea were 10-fold lower when NH4+ or acetanilide was also in the medium, but there were no apparent differences in urease or its synthesis between strain AI 3 and mutant AIU 1N. The first metabolic step in the acetanilide utlization is catalyzed by an amidase. Amidases in several AIU strains showed altered physiochemical properties. Urea inhibited amidase in a time-dependent reaction, but the rates of the inhibitory reaction with amidases from the AIU mutants were slower than with AI 3 amidase. The purified amidase from AIU 1N showed a marked difference in its pH/activity profile from that obtained with purified AI 3 amidase. These observations indicate that the ability of strain AIU 1N and the other mutants to grow on acetanilide/urea medium is associated with a mutation in the amidase structural gene; this was confirmed for strain AIU 1N by transduction. PMID:410788

  20. SU-E-T-608: Perturbation Corrections for Alanine Dosimeters in Different Phantom Materials in High-Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigts-Rhetz, P von; Czarnecki, D; Anton, M

    Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from {sup 60}Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k{sub env} for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted withmore » BEAMnrc to a {sup 60}Co unit and an Elekta (E{sub nom}=6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n{sub e}/n{sub e,w}) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k{sub env}=0.9991+0.0049 *((n{sub e}/n{sub e,w})−0.7659){sup 3} Conclusion: A perturbation correction factor k{sub env} accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n{sub e}/n{sub e,w}) between 1 and

  1. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10more » cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and

  2. Topology of AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, determined by site-directed fluorescence labeling.

    PubMed

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C; Abe, Keietsu

    2007-10-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity.

  3. Computation of energy interaction parameters as well as electric dipole intensity parameters for the absorption spectral study of the interaction of Pr(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents

    NASA Astrophysics Data System (ADS)

    Moaienla, T.; Singh, Th. David; Singh, N. Rajmuhon; Devi, M. Indira

    2009-10-01

    Studying the absorption difference and comparative absorption spectra of the interaction of Pr(III) and Nd(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents, various energy interaction parameters like Slater-Condon ( FK), Racah ( Ek), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding ( b1/2), percentage-covalency ( δ) have been evaluated applying partial and multiple regression analysis. The values of oscillator strength ( P) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been computed. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( P) and Tλ values reveal the mode of binding with different ligands.

  4. R76 in transmembrane domain 3 of the aspartate:alanine transporter AspT is involved in substrate transport.

    PubMed

    Suzuki, Satomi; Nanatani, Kei; Abe, Keietsu

    2016-01-01

    The L-aspartate:L-alanine antiporter of Tetragenococcus halophilus (AspT) possesses an arginine residue (R76) within the GxxxG motif in the central part of transmembrane domain 3 (TM3)-a residue that has been estimated to transport function. In this study, we carried out amino acid substitutions of R76 and used proteoliposome reconstitution for analyzing the transport function of each substitution. Both l-aspartate and l-alanine transport assays showed that R76K has higher activity than the AspT-WT (R76), whereas R76D and R76E have lower activity than the AspT-WT. These results suggest that R76 is involved in AspT substrate transport.

  5. β-Alanine supplementation and military performance.

    PubMed

    Hoffman, Jay R; Stout, Jeffrey R; Harris, Roger C; Moran, Daniel S

    2015-12-01

    During sustained high-intensity military training or simulated combat exercises, significant decreases in physical performance measures are often seen. The use of dietary supplements is becoming increasingly popular among military personnel, with more than half of the US soldiers deployed or garrisoned reported to using dietary supplements. β-Alanine is a popular supplement used primarily by strength and power athletes to enhance performance, as well as training aimed at improving muscle growth, strength and power. However, there is limited research examining the efficacy of β-alanine in soldiers conducting operationally relevant tasks. The gains brought about by β-alanine use by selected competitive athletes appears to be relevant also for certain physiological demands common to military personnel during part of their training program. Medical and health personnel within the military are expected to extrapolate and implement relevant knowledge and doctrine from research performed on other population groups. The evidence supporting the use of β-alanine in competitive and recreational athletic populations suggests that similar benefits would also be observed among tactical athletes. However, recent studies in military personnel have provided direct evidence supporting the use of β-alanine supplementation for enhancing combat-specific performance. This appears to be most relevant for high-intensity activities lasting 60-300 s. Further, limited evidence has recently been presented suggesting that β-alanine supplementation may enhance cognitive function and promote resiliency during highly stressful situations.

  6. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function

    PubMed Central

    Lee, Shirley Y.; Pullen, Lester; Virgil, Daniel J.; Castañeda, Carlos A.; Abeykoon, Dulith; Bolon, Daniel N. A.; Fushman, David

    2014-01-01

    Mutations at solvent inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. The two null mutants (I30A and L43A) were both less stable to temperature-induced unfolding in vitro than wild-type, but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to wild-type. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high molecular weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high molecular weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation. PMID:24361330

  7. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous proteinmore » was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.« less

  8. β-methylamino-L-alanine (BMAA) is not found in the brains of patients with confirmed Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Meneely, Julie P.; Chevallier, Olivier P.; Graham, Stewart; Greer, Brett; Green, Brian D.; Elliott, Christopher T.

    2016-11-01

    Controversy surrounds the proposed hypothesis that exposure to β-methylamino-L-alanine (BMAA) could play a role in various neurodegenerative conditions including Alzheimer’s disease (AD). Here we present the results of the most comprehensive scientific study on BMAA detection ever undertaken on brain samples from patients pathologically confirmed to have suffered from AD, and those from healthy volunteers. Following the full validation of a highly accurate and sensitive mass spectrometric method, no trace of BMAA was detected in the diseased brain or in the control specimens. This contradicts the findings of other reports and calls into question the significance of this compound in neurodegenerative disease. We have attempted to explain the potential causes of misidentification of BMAA in these studies.

  9. Effect of chronic hypo and hypervitaminosis C on the brush border enzymes and the intestinal uptake of glucose and alanine.

    PubMed

    Mahmood, A; Chauhan, V P; Lyall, V; Sarkar, A K

    1979-08-15

    Brush border sucrase and alkaline phosphatase activities are considerably enhanced in the intestine of ascorbic acid deficient guinea-pigs. Similar increase in the uptake of D-glucose and L-alanine also occurs in chronic vitamin C deficiency. However the permeability of D-glucose and L-alanine in the intestine of animals fed with large doses of vitamin C is severely depressed, with a reduction in the levels of sucrase and alkaline phosphatase activities.

  10. Muscle Carnosine Concentration with the Co-Ingestion of Carbohydrate with β-alanine in Male Rats.

    PubMed

    Naderi, Alireza; Sadeghi, Mehdi; Sarshin, Amir; Imanipour, Vahid; Nazeri, Seyed Ali; Farkhayi, Fatemeh; Willems, Mark E T

    2017-07-04

    Muscle carnosine is an intracellular buffer. The intake of β-alanine, combined with carbohydrate and protein, enhanced carnosine loading in human muscle. The aim of the present study was to examine if muscle carnosine loading was enhanced by β-alanine intake and co-ingestion of glucose in male rats. Thirty-six male rats were divided into three groups and supplemented for four weeks: β-alanine (βA group, 1.8% β-alanine in drinking water), β-alanine and glucose (βAGL group, 1.8% β-alanine and 5% glucose in drinking water), and control (C group, drinking water). During the supplementation period, rats were exercised (20 m·min -1 , 10 min·day -1 , 4 days·week -1 for 4 weeks). Muscle carnosine concentration was quantified in soleus (n = 12) and rectus femoris (n = 6) muscles using high-performance liquid chromatography. In soleus muscle, carnosine concentration was 2.24 ± 1.10, 6.12 ± 1.08, and 6.93 ± 2.56 mmol/kg dw for control, βA, and βAGL, respectively. In rectus femoris, carnosine concentration was 2.26 ± 1.31, 7.90 ± 1.66, and 8.59 ± 2.33 mmol/kg dw for control, βA, and βAGL respectively. In each muscle, βA and βAGL resulted in similar carnosine increases compared to the control. In conclusion, β-alanine intake for four weeks, either alone or with glucose co-ingestion, equally increased muscle carnosine content. It appears that the potential insulin response to fluid glucose intake does not affect muscle carnosine loading in male rats.

  11. Characterization and complete genome sequence analysis of a novel virulent Siphoviridae phage against Staphylococcus aureus isolated from bovine mastitis in Xinjiang, China.

    PubMed

    Zhang, Qian; Xing, Shaozhen; Sun, Qiang; Pei, Guangqian; Cheng, Shi; Liu, Yannan; An, Xiaoping; Zhang, Xianglilan; Qu, Yonggang; Tong, Yigang

    2017-06-01

    creation of a new lineage, thus adding to the knowledge on the diversity of Staphylococcus phages. An N-acetylmuramoyl-L-alanine amidase gene and several conserved genes were predicted, while no virulence or antibiotic resistance genes were identified. This study isolated and characterized a novel S. aureus phage vB_SauS_IMEP5, and our findings suggest that this phage may be potentially utilized as a therapeutic or prophylactic candidate against S.aureus infections.

  12. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli.

    PubMed

    Bouhss, A; Mengin-Lecreulx, D; Blanot, D; van Heijenoort, J; Parquet, C

    1997-09-30

    The comparison of the amino acid sequences of 20 cytoplasmic peptidoglycan synthetases (MurC, MurD, MurE, MurF, and Mpl) from various bacterial organisms has allowed us to detect common invariants: seven amino acids and the ATP-binding consensus sequence GXXGKT/S all at the same position in the alignment. The Mur synthetases thus appeared as a well-defined class of closely functionally related proteins. The conservation of a constant backbone length between certain invariants suggested common structural motifs. Among the other enzymes catalyzing a peptide bond formation driven by ATP hydrolysis to ADP and Pi, only folylpoly-gamma-l-glutamate synthetases presented the same common conserved amino acid residues, except for the most N-terminal invariant D50. Site-directed mutageneses were carried out to replace the K130, E174, H199, N293, N296, R327, and D351 residues by alanine in the MurC protein from Escherichia coli taken as model. For this purpose, plasmid pAM1005 was used as template, MurC being highly overproduced in this genetic setting. Analysis of the Vmax values of the mutated proteins suggested that residues K130, E174, and D351 are essential for the catalytic process whereas residues H199, N293, N296, and R327 were not. Mutations K130A, H199A, N293A, N296A, and R327A led to important variations of the Km values for one or more substrates, thereby indicating that these residues are involved in the structure of the active site and suggesting that the binding order of the substrates could be ATP, UDP-MurNAc, and alanine. The various mutated murC plasmids were tested for their effects on the growth, cell morphology, and peptidoglycan cell content of a murC thermosensitive strain at 42 degrees C. The observed effects (complementation, altered morphology, and reduced peptidoglycan content) paralleled more or less the decreased values of the MurC activity of each mutant.

  13. Topology of AspT, the Aspartate:Alanine Antiporter of Tetragenococcus halophilus, Determined by Site-Directed Fluorescence Labeling▿ †

    PubMed Central

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C.; Abe, Keietsu

    2007-01-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of l-aspartate (Asp) with release of l-alanine (Ala) and CO2. The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an l-aspartate-β-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity. PMID:17660287

  14. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    PubMed Central

    Pey, Angel L.; Albert, Armando; Salido, Eduardo

    2013-01-01

    Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis. PMID:23956997

  15. The orphan germinant receptor protein GerXAO (but not GerX3b) is essential for L-alanine induced germination in Clostridium botulinum Group II.

    PubMed

    Brunt, Jason; Carter, Andrew T; Pye, Hannah V; Peck, Michael W

    2018-05-04

    Clostridium botulinum is an anaerobic spore forming bacterium that produces the potent botulinum neurotoxin that causes a severe and fatal neuro-paralytic disease of humans and animals (botulism). C. botulinum Group II is a psychrotrophic saccharolytic bacterium that forms spores of moderate heat resistance and is a particular hazard in minimally heated chilled foods. Spore germination is a fundamental process that allows the spore to transition to a vegetative cell and typically involves a germinant receptor (GR) that responds to environmental signals. Analysis of C. botulinum Group II genomes shows they contain a single GR cluster (gerX3b), and an additional single gerA subunit (gerXAO). Spores of C. botulinum Group II strain Eklund 17B germinated in response to the addition of L-alanine, but did not germinate following the addition of exogenous Ca 2+ -DPA. Insertional inactivation experiments in this strain unexpectedly revealed that the orphan GR GerXAO is essential for L-alanine stimulated germination. GerX3bA and GerX3bC affected the germination rate but were unable to induce germination in the absence of GerXAO. No role could be identified for GerX3bB. This is the first study to identify the functional germination receptor of C. botulinum Group II.

  16. Efficient Enzymatic Preparation of (13) N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems.

    PubMed

    da Silva, Eunice S; Gómez-Vallejo, Vanessa; Baz, Zuriñe; Llop, Jordi; López-Gallego, Fernando

    2016-09-12

    Nitrogen-13 can be efficiently produced in biomedical cyclotrons in different chemical forms, and its stable isotopes are present in the majority of biologically active molecules. Hence, it may constitute a convenient alternative to Fluorine-18 and Carbon-11 for the preparation of positron-emitter-labelled radiotracers; however, its short half-life demands for the development of simple, fast, and efficient synthetic processes. Herein, we report the one-pot, enzymatic and non-carrier-added synthesis of the (13) N-labelled amino acids l-[(13) N]alanine, [(13) N]glycine, and l-[(13) N]serine by using l-alanine dehydrogenase from Bacillus subtilis, an enzyme that catalyses the reductive amination of α-keto acids by using nicotinamide adenine dinucleotide (NADH) as the redox cofactor and ammonia as the amine source. The integration of both l-alanine dehydrogenase and formate dehydrogenase from Candida boidinii in the same reaction vessel to facilitate the in situ regeneration of NADH during the radiochemical synthesis of the amino acids allowed a 50-fold decrease in the concentration of the cofactor without compromising reaction yields. After optimization of the experimental conditions, radiochemical yields were sufficient to carry out in vivo imaging studies in small rodents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Antimicrobial susceptibility testing of a clinical isolate of vancomycin-dependent enterococcus using D-alanine-D-alanine as a growth supplement.

    PubMed

    Sng, L H; Cornish, N; Knapp, C C; Ludwig, M D; Hall, G S; Washington, J A

    1998-04-01

    Bacteremia due to a vancomycin-dependent enterococcus (VDE) occurred during long-term vancomycin therapy in a renal transplant recipient with underlying pancreatitis and a vancomycin-resistant enterococcal (VRE) wound infection and bacteremia. The VDE was isolated from blood during vancomycin therapy and grew only in the presence of vancomycin and D-alanine-D-alanine (DADA), a substance required for cell-wall synthesis. Colonies beyond the periphery of growth of the VDE around a vancomycin disk contained vancomycin-independent revertant mutants after 48 hours of incubation. Pulsed-field gel electrophoresis of the VDE, revertant mutant, the initial blood culture isolate of VRE, and an autopsy isolate showed that the four strains were identical. Antimicrobial susceptibility testing was performed using standard macrobroth and microbroth dilution methods. DADA was used as a growth supplement for macrobroth dilution susceptibility testing of the VDE isolate. Minimum inhibitory concentrations (MICs) were similar for the VRE isolate and the VDE revertant, which were both resistant to ampicillin, high-level gentamicin, ciprofloxacin, imipenem, vancomycin, and daptomycin, and were susceptible to fusidic acid, high-level streptomycin, rifampin, and a quinupristin-dalfopristin combination. The MICs of teicoplanin were 2 microg/mL or less and 16 microg/mL for the clinical VRE isolate and the VDE revertant, respectively. The autopsy isolate was resistant to all antimicrobials tested and showed a fourfold increase in MICs for quinupristin-dalfopristin compared with that of the original blood isolate. The VDE was susceptible to all drugs tested except vancomycin.

  18. On the output factor measurements of the CyberKnife iris collimator small fields: Experimental determination of the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for microchamber and diode detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantelis, E.; Moutsatsos, A.; Zourari, K.

    Purpose: To measure the output factors (OFs) of the small fields formed by the variable aperture collimator system (iris) of a CyberKnife (CK) robotic radiosurgery system, and determine the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for a microchamber and four diode detectors. Methods: OF measurements were performed using a PTW PinPoint 31014 microchamber, four diode detectors (PTW-60017, -60012, -60008, and the SunNuclear EDGE detector), TLD-100 microcubes, alanine dosimeters, EBT films, and polymer gels for the 5 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm irismore » collimators at 650 mm, 800 mm, and 1000 mm source to detector distance (SDD). The alanine OF measurements were corrected for volume averaging effects using the 3D dose distributions registered in polymer gel dosimeters. k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for the PinPoint microchamber and the diode dosimeters were calculated through comparison against corresponding polymer gel, EBT, alanine, and TLD results. Results: Experimental OF results are presented for the array of dosimetric systems used. The PinPoint microchamber was found to underestimate small field OFs, and a k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factor ranging from 1.127 {+-} 0.022 (for the 5 mm iris collimator) to 1.004 {+-} 0.010 (for the 15 mm iris collimator) was determined at the reference SDD of 800 mm. The PinPoint k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factor was also found to increase with decreasing SDD; k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} values equal to 1.220 {+-} 0.028 and 1

  19. Lack of Effect of Sodium Benzoate at Reported Clinical Therapeutic Concentration on d-Alanine Metabolism in Dogs.

    PubMed

    Popiolek, Michael; Tierney, Brendan; Steyn, Stefanus J; DeVivo, Michael

    2018-06-19

    Cognitive decline and psychosis have been hypothesized to be mediated by N-methyl-d-aspartate receptor (NMDAR) hypofunction. Consistent with this hypothesis, chronic treatment with d-alanine, a coagonist at the glycine site of the NMDAR, leads to an improvement of positive and cognitive symptoms in schizophrenic patients. d-alanine is oxidized by d-amino acid oxidase (DAAO); thus, an inhibitor of DAAO would be expected to enhance d-alanine levels and likewise lead to desirable clinical outcomes. Sodium benzoate, on the basis of d-amino acid inhibition, was observed to display beneficial clinical effects in schizophrenic and Alzheimer's patients. However, in the clinical pilot studies using sodium benzoate, d-amino acids were not quantified to verify that sodium benzoate's efficacy was mediated through DAAO inhibition. In this study, d-alanine content was monitored in cerebral spinal fluid (CSF) of dogs treated with daily injections of d-alanine (30 mg/kg) alone and in combination with sodium benzoate (30 mg/kg) for seven consecutive days. We reasoned that the cerebral spinal fluid d-alanine quantity is reflective of the brain d-alanine levels and it would increase as a consequence of DAAO inhibition with sodium benzoate. We found that d-alanine treatment lead to maximal concentration of 7.51 μM CSF d-alanine level; however, coadministration of sodium benzoate and d-alanine did not change CSF d-alanine level beyond that of d-alanine treatment alone. As a consequence, we conclude that clinical efficacy associated with chronic administration of sodium benzoate in schizophrenic and Alzheimer's patients is likely not mediated through inhibition of DAAO.

  20. Promoter scanning of the Human COX-2 gene with 8-ring polyamides: unexpected weakening of polyamide-DNA binding and selectivity by replacing an internal N-Me-pyrrole with β-alanine

    PubMed Central

    Aston, Karl; Ramos, Joseph P.; Koeller, Kevin J.; Nanjunda, Rupesh; He, Gaofei

    2012-01-01

    Rules for polyamide DNA recognition have proved invaluable for the design of sequence-selective DNA-binding agents in cell-free systems. However, these rules are not fully transferrable to predicting activity in cells, tissues or animals, and additional refinements to our understanding of DNA recognition would help biomedical studies. Similar complexities are encountered when using internal β-alanines as polyamide building blocks in place of N-methyl pyrrole; β-alanines were introduced in polyamide designs to maintain good hydrogen bonding registry with the target DNA, especially for long polyamides or those with several GC bp (P.B. Dervan, A.R. Urbach, Essays Contemp. Chem. (2001) 327–339). Thus, to clarify important subtleties of molecular recognition, we studied the effects of replacing a single pyrrole with β-alanine in 8-ring polyamides designed against the Ets-1 transcription factor. Replacement of a single internal N-methylpyrrole with β-alanine to generate a β/Im pairing in two 8-ring polyamides causes a decrease in DNA binding affinity by two orders of magnitude and decreases DNA binding selectivity, contrary to expectations based on the literature. Measurements were made by fluorescence spectroscopy, quantitative DNA footprinting and surface plasmon resonance, with these vastly different techniques showing excellent agreement. Furthermore, results were validated for a range of DNA substrates from small hairpins to long dsDNA sequences. Docking studies helped show that β-alanine does not make efficient hydrophobic contacts with the rest of the polyamide or nearby DNA, in contrast to pyrrole. These results help refine design principles and expectations for polyamide-DNA recognition. PMID:23023196

  1. Novel alanines bearing a heteroaromatic side chain: synthesis and studies on fluorescent chemosensing of metal cations with biological relevance.

    PubMed

    Ferreira, Rosa Cristina M; Raposo, Maria Manuela M; Costa, Susana P G

    2018-06-01

    A family of novel thienylbenzoxazol-5-yl-L-alanines, consisting of an alanine core bearing a benzoxazole at the side chain with a thiophene ring at position 2, substituted with different (hetero)aryl substituents, was synthesised to study the tuning of the photophysical and chemosensory properties of the resulting compounds. These novel heterocyclic alanines 3a-f and a series of structurally related bis-thienylbenzoxazolyl-alanines 3g-j were evaluated for the first time in the recognition of selected metal cations with environmental, medicinal and analytical interest such as Co 2+ , Cu 2+ , Zn 2+ and Ni 2+ , in acetonitrile solution, with the heterocycles at the side chain acting simultaneously as the coordinating and reporting units, via fluorescence changes. This behaviour can be explained by the involvement of the electron donor heteroatoms in the recognition event, through complexation of the metal cations. The spectrofluorimetric titrations showed that thienylbenzoxazolyl-alanines 3a-j and 4a,b were non-selective fluorimetric chemosensors for the above-mentioned cations, with the best results being obtained for the interaction of Cu 2+ with bis-alanine 3j and deprotected alanines 4a,b. The encouraging photophysical and metal ion sensing properties of these thienylbenzoxazolyl-alanines suggest that they can be used to obtain bioinspired fluorescent reporters for metal ion such as peptides/proteins with chemosensory/probing ability.

  2. Purification and characterization of l,(l/d)-aminopeptidase from Guinea pig serum.

    PubMed

    Krstanović, Marina; Brgles, Marija; Halassy, Beata; Frkanec, Ruza; Vrdoljak, Anto; Branović, Karmen; Tomasić, Jelka; Benedetti, Fabio

    2006-01-01

    Mammalian sera contain enzymes that catalyze the hydrolytic degradation of peptidoglycans and molecules of related structure and are relevant for the metabolism of peptidoglycans. We now report on a novel L,(L/D)-aminopeptidase found in human and mammalian sera. The enzyme hydrolyses the pentapeptide L-Ala-D-iso-Gln-meso-DAP(omegaNH(2))-D-Ala-D-Ala yielding the free L-alanine and the respective tetrapeptide (K(M) 18 mM). L,(L/D)-aminopeptidase from guinea pig serum was highly purified in four chromatographic steps, up to 700-fold. Molecular weight of the enzyme was estimated by HPLC to be approximately 175,000. The configuration of alanine obtained by hydrolysis of the pentapeptide was determined by oxidation with L-amino acid oxidase. The amino acids sequence in the respective tetrapeptide was deduced from the results of mass spectrometry. The novel L,(L/D)-aminopeptidase also hydrolyzed alanine-4-nitroanilide (K(M)=0.6 mM) and several peptides comprising L-amino acids. Peptides containing D-amino acid at the amino end and L-Asp-L-Asp were not the substrates for this enzyme. The purified enzyme also exhibited enkephalin degrading activity, hydrolyzing enkephalins comprising L,L- and L,D-peptide bonds. The enzyme was inhibited strongly by metal chelating agents, bestatin and amastatin.

  3. Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial.

    PubMed

    Smith, Abbie E; Walter, Ashley A; Graef, Jennifer L; Kendall, Kristina L; Moon, Jordan R; Lockwood, Christopher M; Fukuda, David H; Beck, Travis W; Cramer, Joel T; Stout, Jeffrey R

    2009-02-11

    Intermittent bouts of high-intensity exercise result in diminished stores of energy substrates, followed by an accumulation of metabolites, promoting chronic physiological adaptations. In addition, beta-alanine has been accepted has an effective physiological hydrogen ion (H+) buffer. Concurrent high-intensity interval training (HIIT) and beta-alanine supplementation may result in greater adaptations than HIIT alone. The purpose of the current study was to evaluate the effects of combining beta-alanine supplementation with high-intensity interval training (HIIT) on endurance performance and aerobic metabolism in recreationally active college-aged men. Forty-six men (Age: 22.2 +/- 2.7 yrs; Ht: 178.1 +/- 7.4 cm; Wt: 78.7 +/- 11.9; VO2peak: 3.3 +/- 0.59 l.min-1) were assessed for peak O2 utilization (VO2peak), time to fatigue (VO2TTE), ventilatory threshold (VT), and total work done at 110% of pre-training VO2peak (TWD). In a double-blind fashion, all subjects were randomly assigned into one either a placebo (PL - 16.5 g dextrose powder per packet; n = 18) or beta-alanine (BA - 1.5 g beta-alanine plus 15 g dextrose powder per packet; n = 18) group. All subjects supplemented four times per day (total of 6 g/day) for the first 21-days, followed by two times per day (3 g/day) for the subsequent 21 days, and engaged in a total of six weeks of HIIT training consisting of 5-6 bouts of a 2:1 minute cycling work to rest ratio. Significant improvements in VO2peak, VO2TTE, and TWD after three weeks of training were displayed (p < 0.05). Increases in VO2peak, VO2TTE, TWD and lean body mass were only significant for the BA group after the second three weeks of training. The use of HIIT to induce significant aerobic improvements is effective and efficient. Chronic BA supplementation may further enhance HIIT, improving endurance performance and lean body mass.

  4. N-Carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens C58: a promiscuous enzyme for the production of amino acids.

    PubMed

    Martínez-Gómez, A I; Andújar-Sánchez, M; Clemente-Jiménez, J M; Neira, J L; Rodríguez-Vico, F; Martínez-Rodríguez, S; Las Heras-Vázquez, F J

    2011-11-01

    The availability of enzymes with a high promiscuity/specificity relationship permits the hydrolysis of several substrates with a view to obtaining a certain product or using one enzyme for several productive lines. N-Carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens (Atβcar) has shown high versatility to hydrolyze different N-carbamoyl-, N-acetyl- and N-formyl-amino acids to produce different α, β, γ and δ amino acids. We have calculated the promiscuity index for the enzyme, obtaining a value of 0.54, which indicates that it is a modestly promiscuous enzyme. Atβcar presented the highest probability of hydrolysis for N-carbamoyl-amino acids, being the enzyme more efficient for the production of α-amino acids. We have also demonstrated by mutagenesis, modelling, kinetic and binding experiments that W218 and A359 indirectly influence the plasticity of the enzyme due to interaction with the environment of R291, the key residue for catalytic activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A novel archaeal alanine dehydrogenase homologous to ornithine cyclodeaminase and mu-crystallin.

    PubMed

    Schröder, Imke; Vadas, Alexander; Johnson, Eric; Lim, Sierin; Monbouquette, Harold G

    2004-11-01

    A novel alanine dehydrogenase (AlaDH) showing no significant amino acid sequence homology with previously known bacterial AlaDHs was purified to homogeneity from the soluble fraction of the hyperthermophilic archaeon Archaeoglobus fulgidus. AlaDH catalyzed the reversible, NAD+-dependent deamination of L-alanine to pyruvate and NH4+. NADP(H) did not serve as a coenzyme. The enzyme is a homodimer of 35 kDa per subunit. The Km values for L-alanine, NAD+, pyruvate, NADH, and NH4+ were estimated at 0.71, 0.60, 0.16, 0.02, and 17.3 mM, respectively. The A. fulgidus enzyme exhibited its highest activity at about 82 degrees C (203 U/mg for reductive amination of pyruvate) yet still retained 30% of its maximum activity at 25 degrees C. The thermostability of A. fulgidus AlaDH was increased by more than 10-fold by 1.5 M KCl to a half-life of 55 h at 90 degrees C. At 25 degrees C in the presence of this salt solution, the enzyme was approximately 100% stable for more than 3 months. Closely related A. fulgidus AlaDH homologues were found in other archaea. On the basis of its amino acid sequence, A. fulgidus AlaDH is a member of the ornithine cyclodeaminase-mu-crystallin family of enzymes. Similar to the mu-crystallins, A. fulgidus AlaDH did not exhibit any ornithine cyclodeaminase activity. The recombinant human mu-crystallin was assayed for AlaDH activity, but no activity was detected. The novel A. fulgidus gene encoding AlaDH, AF1665, is designated ala.

  6. Difference in the structures of alanine tri- and tetra-peptides with antiparallel β-sheet assessed by X-ray diffraction, solid-state NMR and chemical shift calculations by GIPAW.

    PubMed

    Asakura, Tetsuo; Yazawa, Koji; Horiguchi, Kumiko; Suzuki, Furitsu; Nishiyama, Yusuke; Nishimura, Katsuyuki; Kaji, Hironori

    2014-01-01

    Alanine oligomers provide a key structure for silk fibers from spider and wild silkworms.We report on structural analysis of L-alanyl-L-alanyl-L-alanyl-L-alanine (Ala)4 with anti-parallel (AP) β-structures using X-ray and solid-state NMR. All of the Ala residues in the (Ala)4 are in equivalent positions, whereas for alanine trimer (Ala)3 there are two alternative locations in a unit cell as reported previously (Fawcett and Camerman, Acta Cryst., 1975, 31, 658-665). (Ala)4 with AP β-structure is more stable than AP-(Ala)3 due to formation of the stronger hydrogen bonds. The intermolecular structure of (Ala)4 is also different from polyalanine fiber structure, indicating that the interchain arrangement of AP β-structure changes with increasing alanine sequencelength. Furthermore the precise (1)H positions, which are usually inaccesible by X-ray diffraction method, are determined by high resolution (1)H solid state NMR combined with the chemical shift calculations by the gauge-including projector augmented wave method. Copyright © 2013 Wiley Periodicals, Inc.

  7. Potential transfer of neurotoxic amino acid β-N-methylamino-alanine (BMAA) from mother to infant during breast-feeding: Predictions from human cell lines.

    PubMed

    Andersson, Marie; Ersson, Lisa; Brandt, Ingvar; Bergström, Ulrika

    2017-04-01

    β-N-methylamino-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria, diatoms and dinoflagellates. BMAA has potential to biomagnify in a terrestrial food chain, and to bioaccumulate in fish and shellfish. We have reported that administration of [ 14 C]l-BMAA to lactating mice and rats results in a mother to off-spring transfer via the milk. A preferential enantiomer-specific uptake of [ 14 C]l-BMAA has also been demonstrated in differentiated murine mammary epithelium HC11 cells. These findings, together with neurotoxic effects of BMAA demonstrated both in vitro and in vivo, highlight the need to determine whether such transfer could also occur in humans. Here, we used four cell lines of human origin to examine and compare the transport of the two BMAA enantiomers in vitro. The uptake patterns of [ 14 C]l- and [ 14 C]d-BMAA in the human mammary MCF7 cell line were in agreement with the results in murine HC11 cells, suggesting a potential secretion of BMAA into human breast milk. The permeability coefficients for both [ 14 C]l- and [ 14 C]d-BMAA over monolayers of human intestinal Caco2 cells supported an efficient absorption from the human intestine. As a final step, transport experiments confirmed that [ 14 C]l-and [ 14 C]d-BMAA can be taken up by human SHSY5Y neuroblastoma cells and even more efficiently by human U343 glioblastoma cells. In competition experiments with various amino acids, the ASCT2 specific inhibitor benzylserine was the most effective inhibitor of [ 14 C]l-BMAA uptake tested here. Altogether, our results suggest that BMAA can be transferred from an exposed mother, via the milk, to the brain of the nursed infant. Copyright © 2017. Published by Elsevier Inc.

  8. Performance effects of acute β-alanine induced paresthesia in competitive cyclists.

    PubMed

    Bellinger, Phillip M; Minahan, Clare L

    2016-01-01

    β-alanine is a common ingredient in supplements consumed by athletes. Indeed, athletes may believe that the β-alanine induced paresthesia, experienced shortly after ingestion, is associated with its ergogenic effect despite no scientific mechanism supporting this notion. The present study examined changes in cycling performance under conditions of β-alanine induced paresthesia. Eight competitive cyclists (VO2max = 61.8 ± 4.2 mL·kg·min(-1)) performed three practices, one baseline and four experimental trials. The experimental trials comprised a 1-km cycling time trial under four conditions with varying information (i.e., athlete informed β-alanine or placebo) and supplement content (athlete received β-alanine or placebo) delivered to the cyclist: informed β-alanine/received β-alanine, informed placebo/received β-alanine, informed β-alanine/received placebo and informed placebo/received placebo. Questionnaires were undertaken exploring the cyclists' experience of the effects of the experimental conditions. A possibly likely increase in mean power was associated with conditions in which β-alanine was administered (±95% CL: 2.2% ± 4.0%), but these results were inconclusive for performance enhancement (p = 0.32, effect size = 0.18, smallest worthwhile change = 56% beneficial). A possibly harmful effect was observed when cyclists were correctly informed that they had ingested a placebo (-1.0% ± 1.9%). Questionnaire data suggested that β-alanine ingestion resulted in evident sensory side effects and six cyclists reported placebo effects. Acute ingestion of β-alanine is not associated with improved 1-km TT performance in competitive cyclists. These findings are in contrast to the athlete's "belief" as cyclists reported improved energy and the ability to sustain a higher power output under conditions of β-alanine induced paresthesia.

  9. Synthesis and characterization of new nanocomposites films using alanine-Cu-functionalized graphene oxide as nanofiller and PVA as polymeric matrix for improving of their properties

    NASA Astrophysics Data System (ADS)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Karshenas, Azam

    2017-09-01

    In the synthesis of polymer-graphene nanocomposites, for improving properties of nanocomposites, two factors dispersion and strong interfacial interactions between graphene and the polymer, are essential. In the present work, poly(vinyl alcohol) PVA/GO-Cu-alanine nanocomposite films were manufactured using concentrations 0, 1, 3 and 5 wt% of GO-Cu-alanine in water solution. For this purpose, L-alanine amino acid was located on the surface and edges of GO through copper(II) ion as a coordinating function. Then, flexible PVA/GO-Cu-alanine nanocomposite films were fabricated using GO-Cu-alanine as filler and PVA as matrix. Due to the existence of affective interaction between GO-Cu-alanine and PVA matrix, the acquired PVA/GO-Cu-alanine nanocomposites demonstrated great thermal and mechanical properties. Properties of manufactured materials were characterized by Fourier transform infrared, X-ray photoelectron spectroscopies (XPS), X-ray diffraction (XRD), Thermal gravimetric analysis, elemental analysis, field emission scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX).

  10. EPR/alanine dosimetry for two therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.

  11. Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph

    PubMed Central

    2012-01-01

    Background Our previous studies suggest silkworms can be used as model animals instead of mammals in pharmacologic studies to develop novel therapeutic medicines. We examined the usefulness of the silkworm larvae Bombyx mori as an animal model for evaluating tissue injury induced by various cytotoxic drugs. Drugs that induce hepatotoxic effects in mammals were injected into the silkworm hemocoel, and alanine aminotransferase (ALT) activity was measured in the hemolymph 1 day later. Results Injection of CCl4 into the hemocoel led to an increase in ALT activity. The increase in ALT activity was attenuated by pretreatment with N-acetyl-L-cysteine. Injection of benzoic acid derivatives, ferric sulfate, sodium valproate, tetracycline, amiodarone hydrochloride, methyldopa, ketoconazole, pemoline (Betanamin), N-nitroso-fenfluramine, and D-galactosamine also increased ALT activity. Conclusions These findings indicate that silkworms are useful for evaluating the effects of chemicals that induce tissue injury in mammals. PMID:23137391

  12. A periplasmic D-alanyl-D-alanine dipeptidase in the gram-negative bacterium Salmonella enterica.

    PubMed

    Hilbert, F; García-del Portillo, F; Groisman, E A

    1999-04-01

    The VanX protein is a D-alanyl-D-alanine (D-Ala-D-Ala) dipeptidase essential for resistance to the glycopeptide antibiotic vancomycin. While this enzymatic activity has been typically associated with vancomycin- and teicoplainin-resistant enterococci, we now report the identification of a D-Ala-D-Ala dipeptidase in the gram-negative species Salmonella enterica. The Salmonella enzyme is only 36% identical to VanX but exhibits a similar substrate specificity: it hydrolyzes D-Ala-D-Ala, DL-Ala-DL-Phe, and D-Ala-Gly but not the tripeptides D-Ala-D-Ala-D-Ala and DL-Ala-DL-Lys-Gly or the dipeptides L-Ala-L-Ala, N-acetyl-D-Ala-D-Ala, and L-Leu-Pro. The Salmonella dipeptidase gene, designated pcgL, appears to have been acquired by horizontal gene transfer because pcgL-hybridizing sequences were not detected in related bacterial species and the G+C content of the pcgL-containing region (41%) is much lower than the overall G+C content of the Salmonella chromosome (52%). In contrast to wild-type Salmonella, a pcgL mutant was unable to use D-Ala-D-Ala as a sole carbon source. The pcgL gene conferred D-Ala-D-Ala dipeptidase activity upon Escherichia coli K-12 but did not allow growth on D-Ala-D-Ala. The PcgL protein localizes to the periplasmic space of Salmonella, suggesting that this dipeptidase participates in peptidoglycan metabolism.

  13. Improved penicillin amidase production using a genetically engineered mutant of escherichia coli ATCC 11105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robas, N.; Zouheiry, H.; Branlant, G.

    Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, the authors constructed various recombinant E. coli HB 101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic acid (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selectedmore » based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the HindIII fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene.« less

  14. Involvement of tyrosine residues, N-terminal amino acids, and beta-alanine in insect cuticular sclerotization.

    PubMed

    Andersen, Svend Olav

    2007-09-01

    During sclerotization of insect cuticle the acyldopamines, N-acetyldopamine (NADA) and N-beta-alanyldopamine (NBAD), are oxidatively incorporated into the cuticular matrix, thereby hardening and stabilizing the material by forming crosslinks between the proteins in the cuticular matrix and by forming polymers filling the intermolecular spaces in the cuticle. Sclerotized cuticle from the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor, was hydrolyzed in dilute hydrochloric acid, and from the hydrolysates some components presumably degradation products of cuticular crosslinks were isolated. In two of the components, the sidechain of 3,4-dihydroxyacetophenone was linked to the amino groups of glycine and beta-alanine, respectively, and in the third component to the phenolic group of tyrosine. These three compounds, glycino-dihydroxyacetophenone, beta-alanino-dihydroxyacetophenone, and O-tyrosino-dihydroxyacetophenone, as well as the previously reported compound, lysino-dihydroxyacetophenone [Andersen, S.O., Roepstorff, P., 2007. Aspects of cuticular sclerotization in the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor. Insect Biochem. Mol. Biol. 37, 223-234], are suggested to be degradation products of cuticular crosslinks, in which amino acid residues formed linkages to both the alpha- and beta-positions of the sidechain of acyldopamines.

  15. Factors associated with elevated serum alanine aminotransferase in patients with type 1 diabetes mellitus.

    PubMed

    Hatanaka, S A; Silva, N O; Colombo, B S; Correa, C G; Alcaire, B P; Coral, M H; Schiavon, L L; Narciso-Schiavon, J L

    2015-09-01

    Metabolic syndrome and type 2 diabetes are associated with insulin resistance and hepatic steatosis, which are common causes of alanine aminotransferase (ALT) elevation. This study aims to identify variables associated with altered ALT in type 1 diabetic (DM1) subjects. A cross-sectional study conducted in the outpatient endocrinology clinic of a university hospital. Patients with DM1 were seen between December 2012 and September 2013; clinical variables were collected from medical records. Fifty-six patients were included aged 27 ± 10.1 years; 60.7% were men. The study subjects exhibited an average ALT of 36.7 ± 10.3 U/L (median = 35 U/L) and their average Body Mass Index (BMI) was 23.8 ± 3.8 kg/m2. When comparing individuals with elevated ALT > 35 U/L (N. = 27) with those ALT ≤ 35 U/L (N. = 29), we found that individuals with ALT values > 35 U/L showed a higher proportion of men (77.8% vs. 44.8%, P = 0.012) and a higher mean age (30.2 ± 12.3 vs. 24.6 ± 6.9 years, P = 0.046). When new ALT reference values were applied (19 U/L for women and 30 U/L for men), five individuals had normal ALT values. Individuals with elevated ALT had higher BMI (24.3 vs. 20.9; P = 0.036), fasting glucose (194.8 ± 101.2 vs. 123.6 ± 42.0 mg/dL; P = 0.013) and higher HbA1c (9.9 ± 2.8 vs. 7.8 ± 0.7%; P < 0.001) levels. In Pearson correlation analysis, ALT values ​correlated with HbA1c (r = 0.285; P = 0.033). In patients with DM1, elevated ALT values ​​are associated with BMI, fasting glucose and HbA1c.

  16. Low alanine aminotransferase levels and higher number of cardiovascular events in people with Type 2 diabetes: analysis of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study.

    PubMed

    Williams, K H; Sullivan, D R; Veillard, A S; O'Brien, R; George, J; Jenkins, A J; Young, S; Ehnholm, C; Duffield, A; Twigg, S M; Keech, A C

    2016-03-01

    To determine whether alanine aminotransferase or gamma-glutamyltransferase levels, as markers of liver health and non-alcoholic fatty liver disease, might predict cardiovascular events in people with Type 2 diabetes. Data from the Fenofibrate Intervention and Event Lowering in Diabetes study were analysed to examine the relationship between liver enzymes and incident cardiovascular events (non-fatal myocardial infarction, stroke, coronary and other cardiovascular death, coronary or carotid revascularization) over 5 years. Alanine aminotransferase measure had a linear inverse relationship with the first cardiovascular event occurring in participants during the study period. After adjustment, for every 1 sd higher baseline alanine aminotransferase measure (13.2 U/l), the risk of a cardiovascular event was 7% lower (95% CI 4-13; P = 0.02). Participants with alanine aminotransferase levels below and above the reference range 8-41 U/l for women and 9-59 U/l for men, had hazard ratios for a cardiovascular event of 1.86 (95% CI 1.12-3.09) and 0.65 (95% CI 0.49-0.87), respectively (P = 0.001). No relationship was found for gamma-glutamyltransferase. The data may indicate that in people with Type 2 diabetes, which is associated with higher alanine aminotransferase levels because of prevalent non-alcoholic fatty liver disease, a low alanine aminotransferase level is a marker of hepatic or systemic frailty rather than health. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  17. Structure of the Mycobacterium tuberculosis D-Alanine:D-Alanine Ligase, a Target of the Antituberculosis Drug D-Cycloserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruning, John B.; Murillo, Ana C.; Chacon, Ofelia

    D-Alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 {angstrom}. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoinedmore » by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC{sub 50}) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.« less

  18. Gas-phase reactions of glycine, alanine, valine and their N-methyl derivatives with the nitrosonium ion, NO+.

    PubMed

    Freitas, M A; O'Hair, R A; Schmidt, J A; Tichy, S E; Plashko, B E; Williams, T D

    1996-10-01

    The gas-phase reactions of the nitrosonium ion, NO+ with the amino acids glycine, alanine and valine and their N-methyl derivatives were investigated under chemical ionization mass spectrometric (CIMS) conditions. Two products were observed in all cases: the formation of the iminium ion and the formation of an [M-H]+ ion. The latter product is consistent with a reaction channel involving hydride abstraction by NO+, and was confirmed by (i) examining the Ar+CI mass spectra of the same amino acids under similar source conditions and (ii) examining the unimolecular fragmentation reactions of the [M + H]+ ions of the N-nitroso-N-methyl derivatives of each of the amino acids in a tandem mass spectrometer. Further insights into the reaction of glycine with NO+ were obtained by performing ab initio calculations (at the MP2/6-31G* parallel HF/6-31G* level). These results indicate that four reactions are thermodynamically viable for glycine: (i) hydride abstraction; (ii) iminium ion formation (with concomitant loss of HONO and CO); (iii) diazonium ion formation; and (iv) diazonium ion formation followed by loss of N2. Possible reasons why reactions (iii) and (iv) are not observed are discussed, and comparisons with solution reactivity and the gas-phase reactivity of NO+ are also made.

  19. Dose response of alanine detectors irradiated with carbon ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Rochus; Jaekel, Oliver; Palmans, Hugo

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type when irradiated with ion beams. The purpose of this study is to investigate the response behavior of the alanine detector in clinical carbon ion beams and compare the results to model predictions. Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track structure based alanine response model developed by Hansen andmore » Olsen has been implemented in the Monte Carlo code FLUKA and calculations were compared to experimental results. Results: Calculations of the relative effectiveness deviate less than 5% from the measured values for monoenergetic beams. Measured depth-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasimonoenergetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties of the detector geometry implemented in the Monte Carlo simulations.« less

  20. Azobenzene Pd(II) complexes with N^N- and N^O-type ligands

    NASA Astrophysics Data System (ADS)

    Nikolaeva, M. V.; Puzyk, An. M.; Puzyk, M. V.

    2017-05-01

    Methods of synthesis of cyclometalated azobenzene palladium(II) complexes of [Pd(N^N)Azb]ClO4 and [Pd(N^O)Azb]ClO4 types (where Azb- is the deprotonated form of azobenzene; N^N is 2NH3, ethylenediamine, or 2,2'-bipyridine; and (N^O)- is the deprotonated form of amino acid (glycine, α-alanine, β-alanine, tyrosine, or tryptophan)) are developed. The electronic absorption and the electrochemical properties of these complexes are studied.

  1. Role of Intramolecular Aromatic π-π Interactions in the Self-Assembly of Di-l-Phenylalanine Dipeptide Driven by Intermolecular Interactions: Effect of Alanine Substitution.

    PubMed

    Reddy, Samala Murali Mohan; Shanmugam, Ganesh

    2016-09-19

    Although the role of intermolecular aromatic π-π interactions in the self-assembly of di-l-phenylalanine (l-Phe-l-Phe, FF), a peptide that is known for hierarchical structure, is well established, the influence of intramolecular π-π interactions on the morphology of the self-assembled structure of FF has not been studied. Herein, the role of intramolecular aromatic π-π interactions is investigated for FF and analogous alanine (Ala)-containing dipeptides, namely, l-Phe-l-Ala (FA) and l-Ala-l-Phe (AF). The results reveal that these dipeptides not only form self-assemblies, but also exhibit remarkable differences in structural morphology. The morphological differences between FF and the analogues indicate the importance of intramolecular π-π interactions, and the structural difference between FA and AF demonstrates the crucial role of the nature of intramolecular side-chain interactions (aromatic-aliphatic or aliphatic-aromatic), in addition to intermolecular interactions, in deciding the final morphology of the self-assembled structure. The current results emphasise that intramolecular aromatic π-π interaction may not be essential to induce self-assembly in smaller peptides, and π (aromatic)-alkyl or alkyl-π (aromatic) interactions may be sufficient. This work also illustrates the versatility of aromatic and a combination of aromatic and aliphatic residues in dipeptides in the formation of structurally diverse self-assembled structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice.

    PubMed

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K; Garvey, Sean M; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice.

  3. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy.

    PubMed

    Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia

    2017-01-01

    Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, Sc Alt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1 , alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display Lk Alt1 and Kl Alt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that Kl Alt1 and Lk Alt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that Sc Alt2 conserves 64% identity with

  4. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy

    PubMed Central

    Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia

    2017-01-01

    Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64% identity with LkAlt1

  5. Effects of Plyometric Training and Beta-Alanine Supplementation on Maximal-Intensity Exercise and Endurance in Female Soccer Players.

    PubMed

    Rosas, Fabián; Ramírez-Campillo, Rodrigo; Martínez, Cristian; Caniuqueo, Alexis; Cañas-Jamet, Rodrigo; McCrudden, Emma; Meylan, Cesar; Moran, Jason; Nakamura, Fábio Y; Pereira, Lucas A; Loturco, Irineu; Diaz, Daniela; Izquierdo, Mikel

    2017-09-01

    Plyometric training and beta-alanine supplementation are common among soccer players, although its combined use had never been tested. Therefore, a randomized, double-blind, placebo-controlled trial was conducted to compare the effects of a plyometric training program, with or without beta-alanine supplementation, on maximal-intensity and endurance performance in female soccer players during an in-season training period. Athletes (23.7 ± 2.4 years) were assigned to either a plyometric training group receiving a placebo (PLACEBO, n = 8), a plyometric training group receiving beta-alanine supplementation (BA, n = 8), or a control group receiving placebo without following a plyometric training program (CONTROL, n = 9). Athletes were evaluated for single and repeated jumps and sprints, endurance, and change-of-direction speed performance before and after the intervention. Both plyometric training groups improved in explosive jumping (ES = 0.27 to 1.0), sprinting (ES = 0.31 to 0.78), repeated sprinting (ES = 0.39 to 0.91), 60 s repeated jumping (ES = 0.32 to 0.45), endurance (ES = 0.35 to 0.37), and change-of-direction speed performance (ES = 0.36 to 0.58), whereas no significant changes were observed for the CONTROL group. Nevertheless, compared to the CONTROL group, only the BA group showed greater improvements in endurance, repeated sprinting and repeated jumping performances. It was concluded that beta-alanine supplementation during plyometric training may add further adaptive changes related to endurance, repeated sprinting and jumping ability.

  6. Effects of Plyometric Training and Beta-Alanine Supplementation on Maximal-Intensity Exercise and Endurance in Female Soccer Players

    PubMed Central

    Rosas, Fabián; Ramírez-Campillo, Rodrigo; Martínez, Cristian; Cañas-Jamet, Rodrigo; McCrudden, Emma; Meylan, Cesar; Moran, Jason; Nakamura, Fábio Y.; Pereira, Lucas A.; Loturco, Irineu; Diaz, Daniela; Izquierdo, Mikel

    2017-01-01

    Abstract Plyometric training and beta-alanine supplementation are common among soccer players, although its combined use had never been tested. Therefore, a randomized, double-blind, placebo-controlled trial was conducted to compare the effects of a plyometric training program, with or without beta-alanine supplementation, on maximal-intensity and endurance performance in female soccer players during an in-season training period. Athletes (23.7 ± 2.4 years) were assigned to either a plyometric training group receiving a placebo (PLACEBO, n = 8), a plyometric training group receiving beta-alanine supplementation (BA, n = 8), or a control group receiving placebo without following a plyometric training program (CONTROL, n = 9). Athletes were evaluated for single and repeated jumps and sprints, endurance, and change-of-direction speed performance before and after the intervention. Both plyometric training groups improved in explosive jumping (ES = 0.27 to 1.0), sprinting (ES = 0.31 to 0.78), repeated sprinting (ES = 0.39 to 0.91), 60 s repeated jumping (ES = 0.32 to 0.45), endurance (ES = 0.35 to 0.37), and change-of-direction speed performance (ES = 0.36 to 0.58), whereas no significant changes were observed for the CONTROL group. Nevertheless, compared to the CONTROL group, only the BA group showed greater improvements in endurance, repeated sprinting and repeated jumping performances. It was concluded that beta-alanine supplementation during plyometric training may add further adaptive changes related to endurance, repeated sprinting and jumping ability. PMID:28828081

  7. Simultaneous analysis of D-alanine, D-aspartic acid, and D-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues.

    PubMed

    Karakawa, Sachise; Shimbo, Kazutaka; Yamada, Naoyuki; Mizukoshi, Toshimi; Miyano, Hiroshi; Mita, Masashi; Lindner, Wolfgang; Hamase, Kenji

    2015-11-10

    A highly sensitive and selective chiral LC-MS/MS method for D-alanine, D-aspartic acid and D-serine has been developed using the precolumn derivatization reagents, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Tag) or p-N,N,N-trimethylammonioanilyl N'-hydroxysuccinimidyl carbamate iodide (TAHS). The thus N-tagged enantiomers of the derivatized amino acids were nicely separated within 20min using the cinchona alkaloid-based zwittterionic ion-exchange type enantioselective column, Chiralpak ZWIX(+). The selected reaction monitoring was applied for detecting the target d-amino acids in biological matrices. By using the present chiral LC-MS/MS method, the three d-amino acids and their l-forms could be simultaneously determined in the range of 0.1-500nmol/mL. Finally, the technique was successfully applied to rat plasma and tissue samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Potential transfer of neurotoxic amino acid β-N-methylamino-alanine (BMAA) from mother to infant during breast-feeding: Predictions from human cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Marie

    β-N-methylamino-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria, diatoms and dinoflagellates. BMAA has potential to biomagnify in a terrestrial food chain, and to bioaccumulate in fish and shellfish. We have reported that administration of [{sup 14}C]L-BMAA to lactating mice and rats results in a mother to off-spring transfer via the milk. A preferential enantiomer-specific uptake of [{sup 14}C]L-BMAA has also been demonstrated in differentiated murine mammary epithelium HC11 cells. These findings, together with neurotoxic effects of BMAA demonstrated both in vitro and in vivo, highlight the need to determine whether such transfer could also occur in humans. Here,more » we used four cell lines of human origin to examine and compare the transport of the two BMAA enantiomers in vitro. The uptake patterns of [{sup 14}C]L- and [{sup 14}C]D-BMAA in the human mammary MCF7 cell line were in agreement with the results in murine HC11 cells, suggesting a potential secretion of BMAA into human breast milk. The permeability coefficients for both [{sup 14}C]L- and [{sup 14}C]D-BMAA over monolayers of human intestinal Caco2 cells supported an efficient absorption from the human intestine. As a final step, transport experiments confirmed that [{sup 14}C]L-and [{sup 14}C]D-BMAA can be taken up by human SHSY5Y neuroblastoma cells and even more efficiently by human U343 glioblastoma cells. In competition experiments with various amino acids, the ASCT2 specific inhibitor benzylserine was the most effective inhibitor of [{sup 14}C]L-BMAA uptake tested here. Altogether, our results suggest that BMAA can be transferred from an exposed mother, via the milk, to the brain of the nursed infant. - Highlights: • Transport of BMAA in human intestinal, mammary and CNS cell lines was examined. • The transport of L-BMAA over intestinal cell monolayers was unidirectional. • Enantiomer-selective uptake of L-BMAA in breast, neuron and glia cells was evident.

  9. Nepenthes insignis uses a C2-portion of the carbon skeleton of L-alanine acquired via its carnivorous organs, to build up the allelochemical plumbagin.

    PubMed

    Rischer, Heiko; Hamm, Andreas; Bringmann, Gerhard

    2002-03-01

    Tropical pitcher plants (Nepenthes) catch animals in their specialized cup-shaped leaves, digest the prey by secreting enzymes, and actively take up the resulting compounds. The benefit of this behaviour is the ability to grow and compete in nutrient-poor habitats. Our present in vitro study shows that not only the nitrogen of alanine fed to the carnivorous organs is used by the plant but that in addition intact C2-units derived from C-2 and C-3 of stable isotope labelled L-alanine serve as building blocks, here exemplarily for the synthesis of the secondary metabolite plumbagin, a potent allelochemical. This result adds a new facet to the benefit of carnivory for plants. The availability of plumbagin by a de novo synthesis probably enhances the plants' fitness in their defence against phytophagous and pathogenic organisms. A missing specific uptake or CoA activation mechanism might be the reason that acetate fed to the pitchers was not incorporated into the naphthoquinone plumbagin. The dihydronaphthoquinone glucosides rossoliside and plumbaside A, here isolated for the first time from Nepenthes, by contrast, showed no incorporation after feeding of any of the two precursors, suggesting these compounds to be storage forms with probably very low turnover rates.

  10. Obtaining molecular and structural information from 13C-14N systems with 13C FIREMAT experiments.

    PubMed

    Strohmeier, Mark; Alderman, D W; Grant, David M

    2002-04-01

    The effect of dipolar coupling to 14N on 13C FIREMAT (five pi replicated magic angle turning) experiments is investigated. A method is developed for fitting the 13C FIREMAT FID employing the full theory to extract the 13C-14N dipolar and 13C chemical shift tensor information. The analysis requires prior knowledge of the electric field gradient (EFG) tensor at the 14N nucleus. In order to validate the method the analysis is done for the amino acids alpha-glycine, gamma-glycine, l-alanine, l-asparagine, and l-histidine on FIREMAT FIDs recorded at 13C frequencies of 50 and 100 MHz. The dipolar and chemical shift data obtained with this analysis are in very good agreement with the previous single-crystal 13C NMR results and neutron diffraction data on alpha-glycine, l-alanine, and l-asparagine. The values for gamma-glycine and l-histidine obtained with this new method are reported for the first time. The uncertainties in the EFG tensor on the resultant 13C chemical shift and dipolar tensor values are assessed. (c) 2002 Elsevier Science (USA).

  11. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice

    PubMed Central

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K.; Garvey, Sean M.; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice. PMID

  12. Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12.

    PubMed

    Zhang, Xiao; El-Hajj, Ziad W; Newman, Elaine

    2010-10-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes L-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S L-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of L-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C(1) units and interferes with cell wall synthesis. We suggest that at high concentrations, L-serine decreases synthesis of UDP-N-acetylmuramate-L-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high L-serine is overcome in several ways: by a large concentration of L-alanine, by overproducing MurC together with a low concentration of L-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.

  13. Synthesis and characterization of new polyamides derived from alanine and valine derivatives

    PubMed Central

    2012-01-01

    Background Many efforts have been recently devoted to design, investigate and synthesize biocompatible, biodegradable polymers for applications in medicine for either the fabrication of biodegradable devices or as drug delivery systems. Many of them consist of condensation of polymers having incorporated peptide linkages susceptible to enzymatic cleavage. Polyamides (PAs) containing α-amino acid residues such as L-leucine, L-alanine and L-phenylalanine have been reported as biodegradable materials. Furthermore, polyamides (PAs) derived from C10 and C14 dicarboxylic acids and amide-diamines derived from 1,6-hexanediamine or 1,12-dodecanediamine and L-phenylalanine, L-valyl-L-phenylalanine or L-phenylalanyl-L-valine residues have been reported as biocompatible polymers. We have previously described the synthesis and thermal properties of a new type of polyamides-containing amino acids based on eight new symmetric meta-oriented protected diamines derived from coupling of amino acids namely; Fomc-glycine, Fmoc-alanine, Fomc-valine and Fomc-leucine with m-phenylene diamine or 2,6-diaminopyridine. Results revealed that incorporation of pyridine onto the polymeric backbone of all series decreases the thermal stability. Here we describe another family of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of the polymers. Results We report here the preparation of a new type of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of polymers. The thermal properties of the polymers were evaluated by different techniques. Results revealed that structure-thermal property correlation based on

  14. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals.

    PubMed

    Rose, A S J Lucia; Selvarajan, P; Perumal, S

    2011-10-15

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm×12 mm×8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Kinetic enantioselectivity of a protonated bis(diamido)-bridged basket resorcin[4]arene towards alanine peptides.

    PubMed

    Fraschetti, C; Montagna, M; Crestoni, M E; Calcaterra, A; Aiello, F; Santi, L; Filippi, A

    2017-02-01

    Efficient enantiodiscrimination of some alanine-containing di- and tri-peptides by using chiral protonated bis(diamido)-bridged basket resorcin[4]arenes depends on several factors, including the basicity of the amino acid residues at the C- and N-termini of the peptide.

  16. Deficiency in l-Serine Deaminase Interferes with One-Carbon Metabolism and Cell Wall Synthesis in Escherichia coli K-12▿

    PubMed Central

    Zhang, Xiao; El-Hajj, Ziad W.; Newman, Elaine

    2010-01-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes l-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S l-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of l-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C1 units and interferes with cell wall synthesis. We suggest that at high concentrations, l-serine decreases synthesis of UDP-N-acetylmuramate-l-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high l-serine is overcome in several ways: by a large concentration of l-alanine, by overproducing MurC together with a low concentration of l-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide. PMID:20729359

  17. The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites

    PubMed Central

    Hariharan, Vivek A.; Denton, Travis T.; Paraszcszak, Sarah; McEvoy, Kyle; Jeitner, Thomas M.; Krasnikov, Boris F.; Cooper, Arthur J. L.

    2017-01-01

    Many enzymes make “mistakes”. Consequently, repair enzymes have evolved to correct these mistakes. For example, lactate dehydrogenase (LDH) and mitochondrial malate dehydrogenase (mMDH) slowly catalyze the reduction of 2-oxoglutarate (2-OG) to the oncometabolite l-2-hydroxyglutarate (l-2-HG). l-2-HG dehydrogenase corrects this error by converting l-2-HG to 2-OG. LDH also catalyzes the reduction of the oxo group of 2-oxoglutaramate (2-OGM; transamination product of l-glutamine). We show here that human glutamine synthetase (GS) catalyzes the amidation of the terminal carboxyl of both the l- and d- isomers of 2-HG. The reaction of 2-OGM with LDH and the reaction of l-2-HG with GS generate l-2-hydroxyglutaramate (l-2-HGM). We also show that l-2-HGM is a substrate of human ω-amidase. The product (l-2-HG) can then be converted to 2-OG by l-2-HG dehydrogenase. Previous work showed that 2-oxosuccinamate (2-OSM; transamination product of l-asparagine) is an excellent substrate of LDH. Finally, we also show that human ω-amidase converts the product of this reaction (i.e., l-2-hydroxysuccinamate; l-2-HSM) to l-malate. Thus, ω-amidase may act together with hydroxyglutarate dehydrogenases to repair certain “mistakes” of GS and LDH. The present findings suggest that non-productive pathways for nitrogen metabolism occur in mammalian tissues in vivo. Perturbations of these pathways may contribute to symptoms associated with hydroxyglutaric acidurias and to tumor progression. Finally, methods for the synthesis of l-2-HGM and l-2-HSM are described that should be useful in determining the roles of ω-amidase/4- and 5-C compounds in photorespiration in plants. PMID:28358347

  18. The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites.

    PubMed

    Hariharan, Vivek A; Denton, Travis T; Paraszcszak, Sarah; McEvoy, Kyle; Jeitner, Thomas M; Krasnikov, Boris F; Cooper, Arthur J L

    2017-03-30

    Many enzymes make "mistakes". Consequently, repair enzymes have evolved to correct these mistakes. For example, lactate dehydrogenase (LDH) and mitochondrial malate dehydrogenase (mMDH) slowly catalyze the reduction of 2-oxoglutarate (2-OG) to the oncometabolite l-2-hydroxyglutarate (l-2-HG). l-2-HG dehydrogenase corrects this error by converting l-2-HG to 2-OG. LDH also catalyzes the reduction of the oxo group of 2-oxoglutaramate (2-OGM; transamination product of l-glutamine). We show here that human glutamine synthetase (GS) catalyzes the amidation of the terminal carboxyl of both the l- and d- isomers of 2-HG. The reaction of 2-OGM with LDH and the reaction of l-2-HG with GS generate l-2-hydroxyglutaramate (l-2-HGM). We also show that l-2-HGM is a substrate of human ω-amidase. The product (l-2-HG) can then be converted to 2-OG by l-2-HG dehydrogenase. Previous work showed that 2-oxosuccinamate (2-OSM; transamination product of l-asparagine) is an excellent substrate of LDH. Finally, we also show that human ω-amidase converts the product of this reaction (i.e., l-2-hydroxysuccinamate; l-2-HSM) to l-malate. Thus, ω-amidase may act together with hydroxyglutarate dehydrogenases to repair certain "mistakes" of GS and LDH. The present findings suggest that non-productive pathways for nitrogen metabolism occur in mammalian tissues in vivo. Perturbations of these pathways may contribute to symptoms associated with hydroxyglutaric acidurias and to tumor progression. Finally, methods for the synthesis of l-2-HGM and l-2-HSM are described that should be useful in determining the roles of ω-amidase/4- and 5-C compounds in photorespiration in plants.

  19. Effects of Monovalent Cations on the Sodium-Alanine Interaction in Rabbit Ileum

    PubMed Central

    Frizzell, Raymond A.; Schultz, Stanley G.

    1970-01-01

    H, K, Rb, and Li inhibit Na-dependent alanine influx across the brush border of rabbit ileum. Kinetic analysis indicates that H and K behave as competitive inhibitors of influx so that increasing the concentration of H or K in the mucosal solution is kinetically indistinguishable from decreasing the Na concentration. In addition the coupling between alanine and Na influxes is markedly reduced at pH 2.5. With the exception of H and Li, none of these monovalent cations significantly affects carrier-mediated alanine influx in the absence of Na indicating that their inhibitory effects are largely restricted to the Na-dependent fraction of influx. Increasing H concentration from 0.03 to 3 mM does not affect influx in the absence of Na but markedly inhibits influx in the presence of Na. Li significantly enhances alanine influx in the absence of Na. Ag, UO2, and La also inhibit the Na-dependent fraction of alanine influx. These findings suggest that anionic groups having a pKa of approximately 4 are involved in the interaction between Na and the alanine-carrier complex; present evidence implicates carboxylate groups however, phosphoryl residues cannot be ruled out. The previously proposed kinetic model for the Na-alanine interaction has been extended to accommodate these effects of H and other monovalent cations. The mechanistic and physiological implications of these findings are discussed. PMID:5507092

  20. EPR parameters of L-α-alanine radicals in aqueous solution: a first-principles study

    NASA Astrophysics Data System (ADS)

    Janbazi, Mehdi; T. Azar, Yavar; Ziaie, Farhood

    2018-07-01

    EPR (electron paramagnetic resonance) response for a wide range of possible alanine radicals has been analysed employing quantum chemical methods. The strong correlation between geometry and EPR parameter structure of these radicals has been shown in this research work. Significant solvent effect on EPR parameters has been shown employing both explicit and implicit solvent models. In a relatively good agreement with the experiment, stable conformation of these radicals in acidic and basic conditions was determined, and a new conformation was suggested based on possible proton transfer in the intermediate pH range. The employed methodology along with experimental results may be used for the characterisation of different radiation-induced amino acid radicals.

  1. Ergogenic Effects of β-Alanine and Carnosine: Proposed Future Research to Quantify Their Efficacy

    PubMed Central

    Caruso, John; Charles, Jessica; Unruh, Kayla; Giebel, Rachel; Learmonth, Lexis; Potter, William

    2012-01-01

    β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former’s merits as a buffer. Carnosine normally makes a small contribution to a cell’s total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that in turn improve a muscle’s ability to buffer protons. Numerous studies assessed the impact of oral β-alanine intake on muscle carnosine levels and exercise performance. β-alanine may best act as an ergogenic aid when metabolic acidosis is the primary factor for compromised exercise performance. Blood lactate kinetics, whereby the concentration of the metabolite is measured as it enters and leaves the vasculature over time, affords the best opportunity to assess the merits of β-alanine supplementation’s ergogenic effect. Optimal β-alanine dosages have not been determined for persons of different ages, genders and nutritional/health conditions. Doses as high as 6.4 g day−1, for ten weeks have been administered to healthy subjects. Paraesthesia is to date the only side effect from oral β-alanine ingestion. The severity and duration of paraesthesia episodes are dose-dependent. It may be unwise for persons with a history of paraesthesia to ingest β-alanine. As for any supplement, caution should be exercised with β-alanine supplementation. PMID:22852051

  2. Deduced catalytic mechanism of d-amino acid amidase from Ochrobactrum anthropi SV3

    PubMed Central

    Okazaki, Seiji; Suzuki, Atsuo; Komeda, Hidenobu; Asano, Yasuhisa; Yamane, Takashi

    2008-01-01

    d-Amino acid amidase (DAA) from Ochrobactrum anthropi SV3 catalyzes d-stereospecific hydrolysis of amino acid amides. DAA has attracted attention as a catalyst for the stereospecific production of d-amino acids, although the mechanism that drives the reaction has not been clear. Previously, the structure of DAA was classified into two types, a substrate-bound state with an ordered Ω loop, and a ground state with a disordered Ω loop. Because the binding of the substrate facilitates ordering, this transition was regarded to be induced fit motion. The angles and distances of hydrogen bonds at Tyr149 Oη, Ser60 Oγ and Lys63 Nζ revealed that Tyr149 Oη donates an H atom to a water molecule in the substrate-bound state, and that Tyr149 Oη donates an H atom to Ser60 Oγ or Lys63 Nζ in the ground state. Taking into consideration the locations of the H atoms of Tyr149 Oη, Ser60 Oγ and Lys63 Nζ, a catalytic mechanism of DAA activity is presented, wherein a shift of an H atom at Tyr149 Oη in the substrate-bound versus the ground state plays a significant role in the reaction. This mechanism explains well why acylation proceeds and deacylation does not proceed in the substrate-bound state. PMID:18421151

  3. Enhanced poly(3-hydroxypropionate) production via β-alanine pathway in recombinant Escherichia coli

    PubMed Central

    Lacmata, Stephen Tamekou; Kuiate, Jules-Roger; Ding, Yamei; Xian, Mo; Liu, Huizhou; Boudjeko, Thaddée; Feng, Xinjun; Zhao, Guang

    2017-01-01

    Poly(3-hydroxypropionate) (P3HP) is a thermoplastic with great compostability and biocompatibility, and can be produced through several biosynthetic pathways, in which the glycerol pathway achieved the highest P3HP production. However, exogenous supply of vitamin B12 was required to maintain the activity of glycerol dehydratase, resulting in high production cost. To avoid the addition of VB12, we have previously constructed a P3HP biosynthetic route with β-alanine as intermediate, and the present study aimed to improve the P3HP production of this pathway. L-aspartate decarboxylase PanD was found to be the rate-limiting enzyme in the β-alanine pathway firstly. To improve the pathway efficiency, PanD was screened from four different sources (Escherichia coli, Bacillus subtilis, Pseudomonas fluorescens, and Corynebacterium glutamicum). And PanD from C. glutamicum was found to have the highest activity, the P3HP production was improved in flask cultivation with this enzyme. To further improve the production, the host strain was screened and the culture condition was optimized. Under optimal conditions, production and content of P3HP reached to 10.2 g/L and 39.1% (wt/wt [cell dry weight]) in an aerobic fed-batch fermentation. To date, this is the highest P3HP production without VB12. PMID:28253372

  4. Changes in alanine turnover rate due to nutritional and genetic obesity in the rat.

    PubMed

    Yebras, M; Salvadó, J; Arola, L; Remesar, X; Segués, T

    1994-08-01

    The changes in alanine turnover were determined in Zucker rats, which were either genetically obese (fa/fa) or rendered obese by dietary treatment (cafeteria fed). The whole body rate of alanine turnover was higher in genetically obese rats than in rats in which obesity was induced by diet (cafeteria). This is possibly due to variations in the rate of the amino acid incorporation into proteins, since the rate of whole body alanine degradation is the same for both groups. Thus, the different pattern followed by alanine turnover rate in these types of obese animals reflects the differences in the nitrogen economy of these animals, pointing to a higher alanine utilization in the genetically obese animals and a conservative management of alanine in the cafeteria-fed animals.

  5. Specific immune response genes of the guinea pig. II. Relationship between the poly-L-lysine gene and the genes controlling immune responsiveness to copolymers of L-glutamic acid and L-alanine and L-glutamic acid and L-tyrosine in random-bred Hartley guinea pigs.

    PubMed

    Bluestein, H G; Green, I; Benacerraf, B

    1971-08-01

    The ability of guinea pigs to make immune responses to GA, a linear random copolymer of L-glutamic acid and L-alanine, GT, a random linear copolymer of L-glutamic acid and L-tyrosine, and PLL, a linear homopolymer of L-lysine, is controlled by different autosomal dominant genes specific for each of those polymers. We have investigated the relationship between the PLL gene and the GA and GT immune response genes by simultaneously immunizing random-bred Hartley strain guinea pigs with GA and PLL, GT and PLL, or GA and GT. In most Hartley guinea pigs the ability to respond immunologically to GA and to PLL is inherited together; that is, most animals responding to GA respond to PLL and vice versa. However, a few animals respond to either GA or to PLL but not both, demonstrating that the GA and PLL immune response genes are not identical but linked in most Hartley animals. Conversely, when simultaneously immunized with GT and PLL, most Hartley guinea pigs respond to either PLL or GT but not both, indicating that GT and PLL responsiveness tends to segregate away from each other. Thus, the GT and PLL immune response genes also are not inherited independently but, rather, behave as alleles or pseudoalleles. Similar results are observed when Hartley guinea pigs are simultaneously immunized with GA and GT. The ability to respond to GA segregates away from the ability to respond to GT. Our studies demonstrated that the specific immune response genes thus far identified in guinea pigs controlling the ability to respond to GA, GT, and PLL, respectively, are found on the same chromosome. In most Hartley animals, the GA and PLL immune response genes are often linked, i.e. occur on the same chromosome strand, and tend to behave as alleles or pseudoalleles to the GT immune response gene.

  6. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  7. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  8. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  9. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  10. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  11. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine.

    PubMed

    Borodina, Irina; Kildegaard, Kanchana R; Jensen, Niels B; Blicher, Thomas H; Maury, Jérôme; Sherstyk, Svetlana; Schneider, Konstantin; Lamosa, Pedro; Herrgård, Markus J; Rosenstand, Inger; Öberg, Fredrik; Forster, Jochen; Nielsen, Jens

    2015-01-01

    Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics. With the objective of developing Saccharomyces cerevisiae as an efficient cell factory for high-level production of 3HP, we identified the β-alanine biosynthetic route as the most economically attractive according to the metabolic modeling. We engineered and optimized a synthetic pathway for de novo biosynthesis of β-alanine and its subsequent conversion into 3HP using a novel β-alanine-pyruvate aminotransferase discovered in Bacillus cereus. The final strain produced 3HP at a titer of 13.7±0.3gL(-1) with a 0.14±0.0C-molC-mol(-1) yield on glucose in 80h in controlled fed-batch fermentation in mineral medium at pH 5, and this work therefore lays the basis for developing a process for biological 3HP production. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Abdominal obesity validates the association between elevated alanine aminotransferase and newly diagnosed diabetes mellitus.

    PubMed

    Yueh, Chen-Yu; Yang, Yao-Hsu; Sung, Yi-Ting; Lee, Li-Wen

    2014-01-01

    To examine how elevated alanine aminotransferase (ALT) could be associated with newly diagnosed diabetes mellitus. We conducted a cross-sectional analysis on a mass health examination. The odds ratios (ORs) for diabetes mellitus and newly diagnosed diabetes mellitus were compared between people with and without abdominal obesity, together with and without elevated ALT levels. 5499 people were included in this study. Two hundred fifty two (4.6%) fulfilled the diagnosis of diabetes mellitus with 178 (3.2%) undiagnosed before. Metabolic syndrome was vigorously associated with diabetes mellitus and newly diagnosed diabetes mellitus (12.4% vs. 1.4% and 9.0% vs. 0.9%), but elevated ALT alone was not. However, coexisting with obesity, elevated ALTs were robustly associated with diabetes mellitus and newly diagnosed diabetes mellitus. For the incidence of newly diagnosed diabetes mellitus, in comparison to non-obese people with normal ALT (1.7%, OR = 1), obese people especially with elevated ALT levels had significantly higher ORs (obese with ALT ≤ 40 U/L: 4.7%, OR 1.73, 95% CI 1.08-2.77, P 0.023; ALT 41-80 U/L: 6.8%, OR 2.06, 95% CI 1.20-3.55, P 0.009; ALT 81-120 U/L: 8.8%, OR 3.07, 95% CI 1.38-6.84, P 0.006; ALT > 120 U/L: 18.2%, OR 7.44, 95% CI 3.04-18.18, P < 0.001). Abdominal obesity validates the association between elevated alanine aminotransferase and diabetes mellitus and newly diagnosed diabetes mellitus. People with abdominal obesity, especially with coexisting elevated ALT levels should be screened for undiagnosed diabetes mellitus.

  13. Including thermal disorder of hydrogen bonding to describe the vibrational circular dichroism spectrum of zwitterionic L-alanine in water.

    PubMed

    Orestes, Ednilsom; Bistafa, Carlos; Rivelino, Roberto; Canuto, Sylvio

    2015-05-28

    The vibrational circular dichroism (VCD) spectrum of l-alanine amino acid in aqueous solution in ambient conditions has been studied. The emphasis has been placed on the inclusion of the thermal disorder of the solute-solvent hydrogen bonds that characterize the aqueous solution condition. A combined and sequential use of molecular mechanics and quantum mechanics was adopted. To calculate the average VCD spectrum, the DFT B3LYP/6-311++G(d,p) level of calculation was employed, over one-hundred configurations composed of the solute plus all water molecules making hydrogen bonds with the solute. Simplified considerations including only four explicit solvent molecules and the polarizable continuum model were also made for comparison. Considering the large number of vibration frequencies with only limited experimental results a direct comparison is presented, when possible, and in addition a statistical analysis of the calculated values was performed. The results are found to be in line with the experiment, leading to the conclusion that including thermal disorder may improve the agreement of the vibrational frequencies with experimental results, but the thermal effects may be of greater value in the calculations of the rotational strengths.

  14. Alanine transaminase level in a healthy population in Morocco.

    PubMed

    Laouina, A; Abouyoub, A; Soulaymani, A; Alami, R

    2012-03-01

    A little is known about the prevalence of elevated alanine transaminase in a Moroccan healthy population. Our aim was to search for the upper limit of normal alanine transaminase in the blood donors and then to apply the upper limit of normal alanine found in the population so as to assess the prevalence of subjects with abnormal transaminase level. We then, investigated for factors associated with increased level of transaminase in our population. This study was carried out on 14071 blood donors, (74.1% of men and 25.9% female) aged between 18 to 60 years, randomly chosen. Serum transaminase activity was measured using on IEMS Reader, Labsystems. Hepatitis B and C were performed by ELISA. The upper limit of normal transaminase found were 64 for men and 52 for women. Consequently, 2.08% blood donors had an abnormal level of transaminase. Follow up results revealed that drug was the first cause of elevated transaminase in our cohort followed by diet and alcohol consumption. One seroconversion for hepatitis C was identified. In conclusion, this study showed that even though there is an evident lack of efficiency in using alanine aminotransferase testing qualifying blood donors in our country, preventing viral potential transmission through transfusions was possible.

  15. N-terminal aliphatic residues dictate the structure, stability, assembly, and small molecule binding of the coiled-coil region of cartilage oligomeric matrix protein.

    PubMed

    Gunasekar, Susheel K; Asnani, Mukta; Limbad, Chandani; Haghpanah, Jennifer S; Hom, Wendy; Barra, Hanna; Nanda, Soumya; Lu, Min; Montclare, Jin Kim

    2009-09-15

    The coiled-coil domain of cartilage oligomeric matrix protein (COMPcc) assembles into a homopentamer that naturally recognizes the small molecule 1,25-dihydroxyvitamin D(3) (vit D). To identify the residues critical for the structure, stability, oligomerization, and binding to vit D as well as two other small molecules, all-trans-retinol (ATR) and curcumin (CCM), here we perform an alanine scanning mutagenesis study. Ten residues lining the hydrophobic pocket of COMPcc were mutated into alanine; of the mutated residues, the N-terminal aliphatic residues L37, L44, V47, and L51 are responsible for maintaining the structure and function. Furthermore, two polar residues, T40 and Q54, within the N-terminal region when converted into alanine improve the alpha-helical structure, stability, and self-assembly behavior. Helical stability, oligomerization, and binding appear to be linked in a manner in which mutations that abolish helical structure and assembly bind poorly to vit D, ATR, and CCM. These results provide not only insight into COMPcc and its functional role but also useful guidelines for the design of stable, pentameric coiled-coils capable of selectively storing and delivering various small molecules.

  16. Acquisition and Assimilation of Nitrogen as Peptide-Bound and D-Enantiomers of Amino Acids by Wheat

    PubMed Central

    Hill, Paul W.; Quilliam, Richard S.; DeLuca, Thomas H.; Farrar, John; Farrell, Mark; Roberts, Paula; Newsham, Kevin K.; Hopkins, David W.; Bardgett, Richard D.; Jones, David L.

    2011-01-01

    Nitrogen is a key regulator of primary productivity in many terrestrial ecosystems. Historically, only inorganic N (NH4 + and NO3 -) and L-amino acids have been considered to be important to the N nutrition of terrestrial plants. However, amino acids are also present in soil as small peptides and in D-enantiomeric form. We compared the uptake and assimilation of N as free amino acid and short homopeptide in both L- and D-enantiomeric forms. Sterile roots of wheat (Triticum aestivum L.) plants were exposed to solutions containing either 14C-labelled L-alanine, D-alanine, L-trialanine or D-trialanine at a concentration likely to be found in soil solution (10 µM). Over 5 h, plants took up L-alanine, D-alanine and L-trialanine at rates of 0.9±0.3, 0.3±0.06 and 0.3±0.04 µmol g−1 root DW h−1, respectively. The rate of N uptake as L-trialanine was the same as that as L-alanine. Plants lost ca.60% of amino acid C taken up in respiration, regardless of the enantiomeric form, but more (ca.80%) of the L-trialanine C than amino acid C was respired. When supplied in solutions of mixed N form, N uptake as D-alanine was ca.5-fold faster than as NO3 -, but slower than as L-alanine, L-trialanine and NH4 +. Plants showed a limited capacity to take up D-trialanine (0.04±0.03 µmol g−1 root DW h−1), but did not appear to be able to metabolise it. We conclude that wheat is able to utilise L-peptide and D-amino acid N at rates comparable to those of N forms of acknowledged importance, namely L-amino acids and inorganic N. This is true even when solutes are supplied at realistic soil concentrations and when other forms of N are available. We suggest that it may be necessary to reconsider which forms of soil N are important in the terrestrial N cycle. PMID:21541281

  17. ESR/Alanine gamma-dosimetry in the 10-30 Gy range.

    PubMed

    Fainstein, C; Winkler, E; Saravi, M

    2000-05-01

    We report Alanine Dosimeter preparation, procedures for using the ESR/Dosimetry method, and the resulting calibration curve for gamma-irradiation in the range from 10-30 Gy. We use calibration curve to measure the irradiation dose in gamma-irradiation of human blood, as required in Blood Transfusion Therapy. The ESR/Alanine results are compared against those obtained using the thermoluminescent dosimetry (TLD) method.

  18. Electrochemical and spectroelectrochemical studies on UO(2)(saloph)L (saloph = N,N'-disalicylidene-o-phenylenediaminate, L=dimethyl sulfoxide or N,N-dimethylformamide).

    PubMed

    Mizuoka, Koichiro; Kim, Seong-Yun; Hasegawa, Miki; Hoshi, Toshihiko; Uchiyama, Gunzo; Ikeda, Yasuhisa

    2003-02-24

    To examine properties of pentavalent uranium, U(V), we have carried out electrochemical and spectroelectrochemical studies on UO(2)(saloph)L [saloph = N,N'-disalicylidene-o-phenylenediaminate, L = dimethyl sulfoxide (DMSO) or N,N-dimethylformamide (DMF)]. The electrochemical reactions of UO(2)(saloph)L complexes in L were found to occur quasireversibly. The reduction processes of UO(2)(saloph)L complexes were followed spectroelectrochemically by using an optical transparent thin layer electrode cell. It was found that the absorption spectra measured at the applied potentials from 0 to -1.650 V versus ferrocene/ferrocenium ion redox couple (Fc/Fc(+)) for UO(2)(saloph)DMSO in DMSO have clear isosbestic points and that the evaluated electron stoichiometry equals 1.08. These results indicate that the reduction product of UO(2)(saloph)DMSO is [U(V)O(2)(saloph)DMSO](-), which is considerably stable in DMSO. Furthermore, it was clarified that the absorption spectrum of the [U(V)O(2)(saloph)DMSO](-) complex has a very small molar absorptivity in the visible region and characteristic absorption bands due to the 5f(1) orbital at around 750 and 900 nm. For UO(2)(saloph)DMF in DMF, the clear isosbestic points were not observed in the similar spectral changes. It is proposed that the UO(2)(saloph)DMF complex is reduced to [U(V)O(2)(saloph)DMF](-) accompanied by the dissociation of DMF as a successive reaction. The formal redox potentials of UO(2)(saloph)L in L (E(0), vs Fc/Fc(+)) for U(VI)/U(V) couple were determined to be -1.550 V for L = DMSO and -1.626 V for L = DMF.

  19. Enzyme immobilization techniques on poly(glycidyl methacrylate-co-ethylene dimethacrylate) carrier with penicillin amidase as model.

    PubMed

    Drobník, J; Saudek, V; Svec, F; Kálal, J; Vojtísek, V; Bárta, M

    1979-08-01

    Two types of bead-form macroporous carriers based on glycidyl methacrylate with ethylene dimethacrylate copolymers were used for the immobilization of penicillin amidase either directly or after chemical modification. Direct binding through oxirane groups, which is equally efficient at pH 4.2 and 7, is relatively slow and brings about an activity loss at low enzyme concentrations. The most efficient immobilization was achieved on glutaraldehyde-activated amino carrier, irrespective of whether the amino groups were formed by ammonia or 1,6-diaminohexane treatment of the original oxirane carrier. Hydrazine treatment gave lower immobilization yields. The same is true of the azide method independent of the length of the spacer. Most enzyme activity was preserved by coupling the carbodiimide-activated enzyme to the carrier with alkyl or arylamino groups at the end of a longer substituent. Immobilization on diazo-modified carrier gave average results. Rapid immobilization by a lysine-modified phosgene-treated carrier resulted in an activity loss. It is suggested that multipoint and very tight attachment of the enzyme molecule to the matrix decreased the activity. The immobilized activity is quite stable in solution and very stable upon lyophilization with sucrose.

  20. Eating a healthy lunch improves serum alanine aminotransferase activity.

    PubMed

    Iwamoto, Masako; Yagi, Kaori; Yazumi, Kayoko; Komine, Airi; Shirouchi, Bungo; Sato, Masao

    2013-09-14

    Nutritional guidance and diet control play important roles in the treatment of obesity and non-alcoholic fatty liver. However, in Japan, nutritional guidance is difficult to provide in practice. Therefore, we evaluated the effects of providing the 'once-a-day' intervention of a healthy lunch on various metabolic parameters. For a 1-month preparatory period, 10 subjects generally consumed the lunches that were provided by the worksite cafeteria. This was followed by a 1-week washout period, after which, the subjects consumed healthy, low-calorie, well-balanced lunches for a 1-month test period. After the preparatory and test periods, blood samples were obtained from all subjects. The serum levels of indices relevant to metabolic syndrome and fatty liver were measured. Serum alanine aminotransferase activity significantly decreased by 20.3% after the healthy intervention. However, the indices of metabolic syndrome did not significantly change. Analysis of the relationship between serum alanine aminotransferase activity and nutrient content indicated that the improvement of serum alanine aminotransferase status was due to the higher vegetable content and lower animal-source protein of the meals provided. In summary, the 'once-a-day' intervention of providing a healthy lunch improved serum alanine aminotransferase status. A diet high in vegetables and low in animal-based protein is important in maintaining a healthy condition.

  1. Molecular characterization of a novel bacterial aryl acylamidase belonging to the amidase signature enzyme family.

    PubMed

    Ko, Hyeok-Jin; Lee, Eun Woo; Bang, Won-Gi; Lee, Cheol-Koo; Kim, Kyoung Heon; Choi, In-Geol

    2010-05-01

    In seeking aryl acylamidase (EC 3.5.1.13) acting on an amide bond in p-acetaminophenol (Tylenol), we identified a novel gene encoding 496 residues of a protein. The gene revealed a conserved amidase signature region with a canonical catalytic triad. The gene was expressed in E. coli and characterized for its biochemical properties. The optimum pH and temperature for the activity on p-acetaminophenol were 10 and 37 degrees C, respectively. The half-life of enzyme activity at 37 degrees C was 192 h and 90% of its activity remained after 3 h incubation at 40 degrees C. Divalent metals was found to inhibit the activity of enzyme. The K (m) values for various aryl acylamides such as 4-nitroacetanilide, p-acetaminophenol, phenacetin, 4-chloroacetanilide and acetanilide were 0.10, 0.32, 0.83, 1.9 and 19 mM, respectively. The reverse reaction activity (amide synthesis) was also examined using various chain lengths (C(1) approximately C(4) and C(10)) of carboxylic donors and aniline as substrates. These kinetic parameters and substrate specificity in forward and reverse reaction indicated that the aryl acylamidase in this study has a preference for aryl substrate having polar functional groups and hydrophobic carboxylic donors.

  2. Utility of the FIB-4 Index for hepatocarcinogenesis in hepatitis C virus carriers with normal alanine aminotransferase levels.

    PubMed

    Ito, T; Kumada, T; Toyoda, H; Tada, T; Kiriyama, S; Tanikawa, M; Hisanaga, Y; Kanamori, A; Kitabatake, S

    2015-10-01

    The FIB-4 index is a simple formula using age, aspartate aminotransferase, alanine aminotransferase (ALT) and platelet count to evaluate liver fibrosis. We investigated the ability of the FIB-4 index for hepatocarcinogenesis in hepatitis C virus (HCV) carriers with normal ALT levels. A total of 516 patients with ALT levels persistently at or below 40 IU/L during an observation period of over 3 years were included. Factors associated with the development of HCC were determined. Hepatocellular carcinoma (HCC) developed in 60 of 516 patients (11.6%). The incidence rate of HCC at 5 and 10 years was 2.6% and 17.6%, respectively. When patients were categorized according to the FIB-4 index as ≤ 2.0 (n = 226), >2.0 and ≤ 4.0 (n = 169), and > 4.0 (n = 121), the cumulative incidence of HCC at 5 years was 0.5%, 1.3% and 8.0%, respectively, and 2.8%, 25.6% and 37.1% at 10 years, respectively. Patients with FIB-4 index >4.0 were at the highest risk (P < 0.001). Factors that were significantly associated with HCC in the multivariate analysis were FIB-4 index >2.0 (hazard ratio (HR), 7.690), FIB-4 index >4.0 (HR, 8.991), α-fetoprotein (AFP) >5 ng/mL (HR, 2.742), AFP >10 ng/mL (HR, 4.915) and total bilirubin >1.2 mg/dL (HR, 2.142). A scoring system for hepatocarcinogenesis that combines the FIB-4 index and AFP predicted patient outcomes with excellent discriminative ability. The FIB-4 index is strongly associated with the risk of HCC in HCV carriers with normal ALT levels. © 2015 John Wiley & Sons Ltd.

  3. In Vivo d-Serine Hetero-Exchange through Alanine-Serine-Cysteine (ASC) Transporters Detected by Microelectrode Biosensors

    PubMed Central

    2013-01-01

    d-Serine, a co-agonist of N-methyl d-aspartate (NMDA) receptors, has been implicated in neurological and psychiatric disorders such as cerebral ischemia, lateral amyotrophic sclerosis, or schizophrenia. d-Serine signaling represents an important pharmacological target for treating these diseases; however, the biochemical mechanisms controlling extracellular d-serine levels in vivo are still unclear. d-Serine heteroexchange through small neutral amino acid transporters has been shown in cell cultures and brain slices and could provide a biochemical mechanism for the control of d-serine extracellular concentration in vivo. Alternatively, exocytotic d-serine release has also been proposed. In this study, the dynamics of d-serine release and clearance were explored in vivo on a second-by-second time scale using microelectrode biosensors. The rate of d-serine clearance in the rat frontal cortex after a microionophoretic injection revealed a transporter-mediated uptake mechanism. d-Serine uptake was blocked by small neutral l-amino acids, implicating alanine-serine-cysteine (ASC) transporters, in particular high affinity Asc-1 and low affinity ASCT2 transporters. Interestingly, changes in alanine, serine, or threonine levels resulted in d-serine release through ASC transporters. Asc-1, but not ASCT2, appeared to release d-serine in response to changes in amino acid concentrations. Finally, neuronal silencing by tetrodotoxin increased d-serine extracellular concentration by an ASC-transporter-dependent mechanism. Together, these results indicate that d-serine heteroexchange through ASC transporters is present in vivo and may constitute a key component in the regulation of d-serine extracellular concentration. PMID:23581544

  4. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production.

    PubMed

    Chen, Cheng; Li, Yanyan; Hu, Jinyu; Dong, Xunyan; Wang, Xiaoyuan

    2015-05-01

    In this study, an L-valine-producing strain was developed from Corynebacterium glutamicum ATCC13869 through deletion of the three genes aceE, alaT and ilvA combined with the overexpression of six genes ilvB, ilvN, ilvC, lrp1, brnF and brnE. Overexpression of lrp1 alone increased L-valine production by 16-fold. Deletion of the aceE, alaT and ilvA increased L-valine production by 44-fold. Overexpression of the six genes ilvB, ilvN, ilvC, lrp1, brnE and brnF in the triple deletion mutant WCC003 further increased L-valine production. The strain WCC003/pJYW-4-ilvBNC1-lrp1-brnFE produced 243mM L-valine in flask cultivation and 437mM (51g/L) L-valine in fed-batch fermentation and lacked detectable amino-acid byproduct such as l-alanine and l-isoleucine that are usually found in the fermentation of L-valine-producing C. glutamicum. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Structure and Function of the First Full-Length Murein Peptide Ligase (Mpl) Cell Wall Recycling Protein

    PubMed Central

    Das, Debanu; Hervé, Mireille; Feuerhelm, Julie; Farr, Carol L.; Chiu, Hsiu-Ju; Elsliger, Marc-André; Knuth, Mark W.; Klock, Heath E.; Miller, Mitchell D.; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.; Mengin-Lecreulx, Dominique; Wilson, Ian A.

    2011-01-01

    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships. PMID:21445265

  6. Structure and function of the first full-length murein peptide ligase (Mpl) cell wall recycling protein.

    PubMed

    Das, Debanu; Hervé, Mireille; Feuerhelm, Julie; Farr, Carol L; Chiu, Hsiu-Ju; Elsliger, Marc-André; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Mengin-Lecreulx, Dominique; Wilson, Ian A

    2011-03-18

    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  7. Activation of the manganese(I) tricarbonyl core by selective variation of bidentate ligands (L,L'-Bid = N,N' and N,O donor atom sets) in fac-[Mn(CO)3(L,L'-Bid)(CH3OH)](n) complexes.

    PubMed

    Twala, T N; Schutte-Smith, M; Roodt, A; Visser, H G

    2015-02-21

    A range of fac-[Mn(CO)3(L,L'-Bid)(H2O)](n) (L,L'-Bid = neutral or monoanionic bidentate ligands with varied L,L' donor atoms, N,N' and N,O, 1,10-phenanthroline, 2,2'-bipyridine, 2-picolinate, 2,4-quinolinate; n = 0, +1) has been synthesized and the methanol substitution has been investigated for the first time. The complexes were characterized by UV/vis, IR and NMR spectroscopy and X-ray crystallographic studies of the compounds fac-[Mn(CO)3(Bipy)(H2O)][CF3SO3] () and fac-[Mn(CO)3(Phen)(H2O)][CF3SO3] () are reported. A two order-of-magnitude of activation for the methanol substitution is induced as manifested by the second order rate constants with (N,N'-Bid) < (N,O-Bid). Forward and reverse rate and stability constants from slow and stopped-flow UV/vis measurements (k1, M(-1) s(-1); k-1, s(-1); K1, M(-1)) for pyridine as entering nucleophile are as follows: fac-[Mn(CO)3(Phen)(CH3OH)](+) (2.39 ± 5) × 10(-3), (1.5 ± 0.3) × 10(-5), 159 ± 32; fac-[Mn(CO)3(2,4-QuinH)(CH3OH)] (4.5 ± 0.2), (4 ± 1) × 10(-2), 113 ± 29. Activation parameters (ΔH, kJ mol(-1); ΔS, J K(-1) mol(-1)) from Eyring plots for entering nucleophiles as indicated are as follows: fac-[Mn(CO)3(Phen)(CH3OH)](+) (bromide ions) 66.7 ± 0.6, -27 ± 2; (pyridine) 80 ± 3, -25 ± 11; fac-[Mn(CO)3(Pico)(CH3OH)] (bromide ions) 68 ± 2, -24 ± 5. A dissociative interchange mechanism is proposed.

  8. Radiolysis of alanine adsorbed in a clay mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role againstmore » external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.« less

  9. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae

    PubMed Central

    De Benedetti, Stefania; Bühl, Henrike; Gaballah, Ahmed; Klöckner, Anna; Otten, Christian; Schneider, Tanja; Sahl, Hans-Georg; Henrichfreise, Beate

    2014-01-01

    For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin. PMID:24616885

  10. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae.

    PubMed

    De Benedetti, Stefania; Bühl, Henrike; Gaballah, Ahmed; Klöckner, Anna; Otten, Christian; Schneider, Tanja; Sahl, Hans-Georg; Henrichfreise, Beate

    2014-01-01

    For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.

  11. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han,Q.; Robinson, H.; Gao, Y.

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from themore » mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.« less

  12. The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester

    PubMed Central

    Wharton, Christopher W.

    1974-01-01

    1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N2-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500±1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500±1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400±1400. 7. The N-terminal amino acid composition is 0.64±0.04mol of valine and 0.36±0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis. PMID:4462742

  13. End-to-end tests using alanine dosimetry in scanned proton beams

    NASA Astrophysics Data System (ADS)

    Carlino, A.; Gouldstone, C.; Kragl, G.; Traneus, E.; Marrale, M.; Vatnitsky, S.; Stock, M.; Palmans, H.

    2018-03-01

    This paper describes end-to-end test procedures as the last fundamental step of medical commissioning before starting clinical operation of the MedAustron synchrotron-based pencil beam scanning (PBS) therapy facility with protons. One in-house homogeneous phantom and two anthropomorphic heterogeneous (head and pelvis) phantoms were used for end-to-end tests at MedAustron. The phantoms were equipped with alanine detectors, radiochromic films and ionization chambers. The correction for the ‘quenching’ effect of alanine pellets was implemented in the Monte Carlo platform of the evaluation version of RayStation TPS. During the end-to-end tests, the phantoms were transferred through the workflow like real patients to simulate the entire clinical workflow: immobilization, imaging, treatment planning and dose delivery. Different clinical scenarios of increasing complexity were simulated: delivery of a single beam, two oblique beams without and with range shifter. In addition to the dose comparison in the plastic phantoms the dose obtained from alanine pellet readings was compared with the dose determined with the Farmer ionization chamber in water. A consistent systematic deviation of about 2% was found between alanine dosimetry and the ionization chamber dosimetry in water and plastic materials. Acceptable agreement of planned and delivered doses was observed together with consistent and reproducible results of the end-to-end testing performed with different dosimetric techniques (alanine detectors, ionization chambers and EBT3 radiochromic films). The results confirmed the adequate implementation and integration of the new PBS technology at MedAustron. This work demonstrates that alanine pellets are suitable detectors for end-to-end tests in proton beam therapy and the developed procedures with customized anthropomorphic phantoms can be used to support implementation of PBS technology in clinical practice.

  14. Partial alanine scan of mast cell degranulating peptide (MCD): importance of the histidine- and arginine residues.

    PubMed

    Buku, Angeliki; Mendlowitz, Milton; Condie, Barry A; Price, Joseph A

    2004-06-01

    The influence of the two histidine and two arginine residues of mast cell degranulating peptide (MCD) in activity and binding was studied by replacing these amino acids in the MCD sequence with L-alanine. Their histamine releasing activity was determined on rat peritoneal mast cells. Their binding affinity to the FcepsilonRIalpha binding subunit of the human mast cell receptor protein, was carried out using fluorescence polarization. The histamine assay showed that replacement of His13 by Ala o ccurred without loss of activity compared with the activity of MCD. Alanine substitutions for Arg7 and His8 resulted in an approximately 40 fold increase, and for Arg16 in a 14-fold increase in histamine-releasing activity of MCD. The binding affinities of the analogs were tested by competitive displacement of bound fluorescent MCD peptide from the FcepsilonRIalpha binding protein of the mast cell receptor by the Ala analogs using fluorescence polarization. The analogs Ala8 (for His) and Ala16 (for Arg) showed the same binding affinities as MCD, whereas analog Ala7 (for Arg) and analog Ala13 (for His) showed slightly better binding affinity than the parent compound. This study showed that the introduction of alanine residues in these positions resulted in MCD agonists of diverse potency. These findings will be useful in further MCD structure-activity studies.

  15. Generation of quinoneimine intermediates in the bioactivation of 3-(N-phenylamino)alanine (PAA) by human liver microsomes: a potential link between eosinophilia-myalgia syndrome and toxic oil syndrome.

    PubMed

    Martínez-Cabot, Anna; Messeguer, Angel

    2007-10-01

    Eosinophilia-myalgia syndrome (EMS) was an intoxication episode that occurred in the US in 1989 and affected 1,500 people. EMS was associated with the ingestion of manufactured L-tryptophan, and 3-(N-phenylamino)alanine (PAA) was identified as one of the contaminants present in the L-tryptophan batches responsible for intoxication. In previous studies (Martínez-Cabot et al., Chem Res. Toxicol., in press), we have shown that the incubation of 3-(N-phenylamino)propane-1,2-diol (PAP), a toxic biomarker of the oil batches that caused Toxic Oil Syndrome in Spain, with human liver microsomes generates a reactive quinoneimine intermediate. The structural similarity between PAA and PAP led Mayeno and co-workers (Mayeno et al. (1995) Chem. Res. Toxicol. 8, 911-916) to hypothesize that both xenobiotics could be linked to a common etiologic agent. We thus set about to study the bioactivation of PAA by human liver microsomes. Under these conditions, PAA is converted to its 4'-hydroxy derivative, an unstable intermediate that is rapidly transformed into the final metabolites 4-aminophenol and formylglycine, which were identified in the incubations by GC/MS using the H2(18)O-labeled medium. We also provide evidence that 4-aminophenol and formylglycine are formed from a quinoneimine intermediate via a pathway similar to that demonstrated for PAP bioactivation. This quinoneimine, in the absence of nucleophiles in the incubation medium, could isomerize to give the corresponding imine, which could undergo hydrolysis to yield the aforementioned final products. These findings establish that EMS and TOS are linked by a common toxic metabolite (4-aminophenol) and that they may be further linked by the concomitant release of potentially hazardous carbonyl species.

  16. A novel C-S lyase from the latex-producing plant Taraxacum brevicorniculatum displays alanine aminotransferase and l-cystine lyase activity.

    PubMed

    Munt, Oliver; Prüfer, Dirk; Schulze Gronover, Christian

    2013-01-01

    We isolated a novel pyridoxal-5-phosphate-dependent l-cystine lyase from the dandelion Taraxacum brevicorniculatum. Real time qPCR analysis showed that C-S lyase from Taraxacum brevicorniculatum (TbCSL) mRNA is expressed in all plant tissues, although at relatively low levels in the latex and pedicel. The 1251 bp TbCSL cDNA encodes a protein with a calculated molecular mass of 46,127 kDa. It is homologous to tyrosine and alanine aminotransferases (AlaATs) as well as to an Arabidopsis thaliana carbon-sulfur lyase (C-S lyase) (SUR1), which has a role in glucosinolate metabolism. TbCSL displayed in vitrol-cystine lyase and AlaAT activities of 4 and 19nkatmg(-1) protein, respectively. However, we detected no in vitro tyrosine aminotransferase (TyrAT) activity and RNAi knockdown of the enzyme had no effect on phenotype, showing that TbCSL substrates might be channeled into redundant pathways. TbCSL is in vivo localized in the cytosol and functions as a C-S lyase or an aminotransferase in planta, but the purified enzyme converts at least two substrates specifically, and can thus be utilized for further in vitro applications. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins

    PubMed Central

    Perez, Romel B.; Tischer, Alexander; Auton, Matthew; Whitten, Steven T.

    2014-01-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins, mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline and alanine to glycine substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (Rh) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the glycine substitutions decreased polyproline II (PPII) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in Rh were not associated with folding. The experiments showed that changes in local PPII structure cause changes in Rh that are variable and that depend on the intrinsic chain propensities of proline and alanine residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed proline and alanine effects on the structures of intrinsically disordered proteins. PMID:25244701

  18. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  19. Tuning the reactivity in classic low-spin d6 rhenium(I) tricarbonyl radiopharmaceutical synthon by selective bidentate ligand variation (L,L'-Bid; L,L'= N,N', N,O, and O,O' donor atom sets) in fac-[Re(CO)3(L,L'-Bid)(MeOH)]n complexes.

    PubMed

    Schutte, Marietjie; Kemp, Gerdus; Visser, Hendrik G; Roodt, Andreas

    2011-12-19

    A range of fac-[Re(CO)(3)(L,L'-Bid)(H(2)O)](n) (L,L'-Bid = neutral or monoanionic bidentate ligands with varied L,L' donor atoms, N,N', N,O, or O,O': 1,10-phenanthroline, 2,2'-bipydine, 2-picolinate, 2-quinolinate, 2,4-dipicolinate, 2,4-diquinolinate, tribromotropolonate, and hydroxyflavonate; n = 0, +1) has been synthesized and the aqua/methanol substitution has been investigated. The complexes were characterized by UV-vis, IR and NMR spectroscopy and X-ray crystallographic studies of the compounds fac-[Re(CO)(3)(Phen)(H(2)O)]NO(3)·0.5Phen, fac-[Re(CO)(3)(2,4-dQuinH)(H(2)O)]·H(2)O, fac-[Re(CO)(3)(2,4-dQuinH)Py]Py, and fac-[Re(CO)(3)(Flav)(CH(3)OH)]·CH(3)OH are reported. A four order-of-magnitude of activation for the methanol substitution is induced as manifested by the second order rate constants with (N,N'-Bid) < (N,O-Bid) < (O,O'-Bid). Forward and reverse rate and stability constants from slow and stopped-flow UV/vis measurements (k(1), M(-1) s(-1); k(-1), s(-1); K(1), M(-1)) for bromide anions as entering nucleophile are as follows: fac-[Re(CO)(3)(Phen)(MeOH)](+) (50 ± 3) × 10(-3), (5.9 ± 0.3) × 10(-4), 84 ± 7; fac-[Re(CO)(3)(2,4-dPicoH)(MeOH)] (15.7 ± 0.2) × 10(-3), (6.3 ± 0.8) × 10(-4), 25 ± 3; fac-[Re(CO)(3)(TropBr(3))(MeOH)] (7.06 ± 0.04) × 10(-2), (4 ± 1) × 10(-3), 18 ± 4; fac-[Re(CO)(3)(Flav)(MeOH)] 7.2 ± 0.3, 3.17 ± 0.09, 2.5 ± 2. Activation parameters (ΔH(k1)(++), kJmol(-1); ΔS(k1)(), J K(-1) mol(-1)) from Eyring plots for entering nucleophiles as indicated are as follows: fac-[Re(CO)(3)(Phen)(MeOH)](+) iodide 70 ± 1, -35 ± 3; fac-[Re(CO)(3)(2,4-dPico)(MeOH)] bromide 80.8 ± 6, -8 ± 2; fac-[Re(CO)(3)(Flav)(MeOH)] bromide 52 ± 5, -52 ± 15. A dissociative interchange mechanism is proposed. © 2011 American Chemical Society

  20. Interactive effects of C, organic N, and inorganic N on SOM mineralization

    NASA Astrophysics Data System (ADS)

    Mason-Jones, Kyle; Schmücker, Niklas; Kuzyakov, Yakov

    2017-04-01

    The processes governing soil organic matter (SOM) mineralization are not yet fully understood, despite considerable interest in the topic. Mechanistic theories of microbial activity often point to interactions between carbon (C) pools and other nutrients, notably nitrogen (N). The N-mining hypothesis is a well-known example, which claims that N-limited microorganisms mineralize SOM to access the N contained within. This could elegantly explain why an increase in available carbon often accelerates mineralization of SOM, i.e. the priming effect. The hypothesis predicts a robust positive relationship between priming and C:N ratio of the added organic substances, and we therefore tested this expectation. Soil samples from an agricultural Luvisol were incubated in a three-week, full factorial experiment, amended with organic carbon sources (glucose, alanine and no addition), at three levels of C addition (none, 25% and 50% of extractable MBC), and three levels of inorganic N to match the organic N provided by alanine. Isotopic labelling (14C and 15N) was used to trace added C and N in the evolved CO2, soil solution and microbial biomass. Both glucose and alanine induced accelerated SOM mineralization. Alanine's low C:N ratio did not prevent it from causing priming, and inorganic N forms had little effect on SOM mineralization. Our results were therefore inconsistent with the predictions of the N-mining hypothesis. Instead, the dynamics of the observed priming indicated that other mechanisms were more important, closely related to the mineralization of the added substances. Co-metabolism of SOM and apparent priming by pool substitution were more consistent the observed priming effects. These new experimental results are supported by an analysis of literature. We demonstrate that the simple C:N stoichiometric theory of N mining is insufficient to explain the role of N in SOM mineralization. Other mechanisms must be included in explanations of SOM priming.

  1. Four Weeks of β-alanine Supplementation Improves High-Intensity Game Activities in Water Polo.

    PubMed

    Brisola, Gabriel Motta Pinheiro; de Souza Malta, Elvis; Santiago, Paulo Roberto Pereira; Vieira, Luiz Henrique Palucci; Zagatto, Alessandro Moura

    2018-04-13

    The present study aimed to investigate whether four weeks of β-alanine supplementation improves total distance covered, distance covered and time spent in different speed zones, and sprint numbers during a simulated water polo game. The study design was double-blind, parallel and placebo controlled. Eleven male water polo players participated in the study, divided randomly into two homogeneous groups (placebo and β-alanine groups). The participants performed a simulated water polo game before and after the supplementation period (4 weeks). Participants received 4.8g∙day -1 of dextrose or β-alanine on the first ten days and 6.4g∙day -1 on the final 18 days. Only the β-alanine group presented a significant improvement in total sprint numbers compared to the pre-supplementation moment (PRE=7.8±5.2a.u.; POST=20.2±7.8a.u.; p=.002). Furthermore, β-alanine supplementation presented a likely beneficial effect on improving total distance covered (83%) and total time spent (81%) in zone 4 of speed (i.e., speed≥1.8m∙s -1 ). There was no significant interaction effect (group×time) for any variable. To conclude, four weeks of β-alanine supplementation can slightly improve sprint numbers and had a likely beneficial effect on improving distance covered and time spent in zone 4 of speed in a water polo simulated game.

  2. Implementation of alanine/EPR as transfer dosimetry system in a radiotherapy audit programme in Belgium.

    PubMed

    Schaeken, B; Cuypers, R; Lelie, S; Schroeyers, W; Schreurs, S; Janssens, H; Verellen, D

    2011-04-01

    A measurement procedure based on alanine/electron paramagnetic resonance (EPR) dosimetry was implemented successfully providing simple, stable, and accurate dose-to-water (D(w)) measurements. The correspondence between alanine and ionization chamber measurements in reference conditions was excellent. Alanine/EMR dosimetry might be a valuable alternative to thermoluminescent (TLD) and ionization chamber based measuring procedures in radiotherapy audits. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ling; Xiong, Yi; Gao, Hongyun

    Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less

  4. Different β-alanine dimeric forms in trifluoromethanesulfonic acid salts. XRD and vibrational studies.

    PubMed

    Wołoszyn, Łukasz; Ilczyszyn, Maria M

    2018-03-15

    Two new crystalline salts: β-alaninium trifluoromethanesulfonate (β-AlaOTf) and bis(β-alanine) trifluoromethanesulfonate (β-2AlaOTf) were obtained. The former one contains diprotonated β-alanine dimer, the latter one monoprotonated β-alanine dimer. Both compounds were studied by single crystal XRD, vibrational (IR and Raman) spectroscopy and calorimetric method. The quantum-mechanical calculations (DFT/B3LYP/6-311++G(2d,2p)) for the diprotonated dimer were carried out. The β-AlaOTf salt crystallizes in the P1¯ space group of triclinic system (Z=2), the β-2AlaOTf in the P2 1 /m space group of monoclinic system (Z=2). The vibrational data for the studied compounds are discussed in relation to their crystal structure, and provide insight into the character of hydrogen bonds and β-alanine protonation. The studied crystals do not exhibit phase transitions in the solid state. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions

    DOE PAGES

    Liu, Ling; Xiong, Yi; Gao, Hongyun; ...

    2018-04-02

    Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less

  6. Combined use of l-alanine tert butyl ester lactate and trimethyl-β-cyclodextrin for the enantiomeric separations of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs.

    PubMed

    Mavroudi, Maria C; Kapnissi-Christodoulou, Constantina P

    2015-10-01

    In this study, a new CE method, employing a binary system of trimethyl-β-CD (TM-β-CD) and a chiral amino acid ester-based ionic liquid (AAIL), was developed for the chiral separation of seven 2-arylpropionic acid nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the enantioseparation of ibuprofen, ketoprofen, carprofen, indoprofen, flurbiprofen, naproxen, and fenoprofen was improved significantly by supporting the BGE with the chiral AAIL l-alanine tert butyl ester lactate (l-AlaC4 Lac). Parameters, such as concentrations of TM-β-CD and l-AlaC4 Lac, and buffer pH, were systematically examined in order to optimize the chiral separation of each NSAID. It was observed that the addition of the AAIL into the BGE improved both resolution and efficiency significantly. After optimization of separation conditions, baseline separation (Rs >1.5) of five of the analytes was achieved in less than 11 min, while the resolution of ibuprofen and flurbiprofen was approximately 1.2. The optimized enantioseparation conditions for all analytes involve a BGE of 5 mM sodium acetate/acetic acid (pH 5.0), an applied voltage of 30 kV, and a temperature of 20°C. In addition, the results obtained by computing the %-RSD values of the EOF and the two enantiomer peaks, demonstrated excellent run-to-run, batch-to-batch, and day-to-day reproducibilities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Eradication of methicillin resistant S. aureus biofilm by the combined use of fosfomycin and β-chloro-L-alanine.

    PubMed

    Akbari-Ayezloy, Elham; Hosseini-Jazani, Nima; Yousefi, Saber; Habibi, Nazanin

    2017-02-01

    Biofilm formation is an important virulence factor for methicillin-resistant Staphylococcus aureus (MRSA). Fosfomycin is a borad-spectrum antibiotic with inhibitory effects on biofilm production and β-Chloro-L-alanine (β-CLA) is an amino acid analog. The aim of this study was to determine effect of the combination of fosfomycin and β-CLA on biofilm production by MRSA isolates. Also, the clonal relatedness of the isolates was evaluated. To determine the ability of biofilm production by 42 MRSA isolates, microtiter plate method was used. Antibacterial activities of fosfomycin and β-CLA were investigated by determining MICs and MBCs. Antibiofilm activities were measured in the presence of sub-MIC concentrations of fosfomycin, β-CLA or a combination of both. RAPD-PCR was used for investigating the clonal relationship between isolates by the two specific primers. 21.4% of isolates were strong and 5% were moderate biofilm producers. The effect of fosfomycin plus β-CLA treatment on biofilm production was significantly different from non-treated, fosfomycin and β-CLA groups (p=0.00, 0.004 and 0.000 respectively). RAPD-PCR analysis revealed that the RAPD1 primer had more discriminatory power. The Sizes of RAPD-PCR bands ranged from 150 bp to 1500 bp and the number of bands varied from 1 to 13. Clonal relatedness of isolates showed that the majority of biofilm producing isolates had identical pattern and only three isolates showed more than 80% similarity. The combination of fosfomycin and β-CLA could be introduced as an excellent mixture for eradication of MRSA biofilms in vitro.

  8. Enzymatic biosensor based on entrapment of d-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol-gel network: Analytical applications for d-alanine in human serum.

    PubMed

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2017-05-01

    Sensing and determination of d-alanine is studied by using an enzymatic biosensor which was constructed on the basis of d-amino acid oxidase (DAAO) immobilization by sol-gel film onto glassy carbon electrode surface modified with nanocomposite of gold nanofilm (Au-NF) and multiwalled carbon nanotubes (MWCNTs). The Au-NF/MWCNT nanocomposite was prepared by applying the potentiostatic technique for electrodeposition of Au-NF on the MWCNT immobilized on glassy carbon electrode surface. The modified electrode is investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), linear sweep voltammetry (LSV) and cyclic voltammetry(CV) techniques. The linear sweep voltammetry was used for determination of d-alanine and the results showed an excellent linear relationship between biosensor response and d-alanine concentration ranging from 0.25μM to 4.5μM with correction coefficient of 0.999 (n=20). Detection limit for the fabricated sensor was calculated about 20nM (for S/N=3) and sensitivity was about 56.1μAμM -1 cm -2 . The developed biosensor exhibited rapid and accurate response to d-alanine, a good stability (4 weeks) and an average recovery of 98.9% in human serum samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues.

    PubMed

    McClean, Stephen; Beggs, Louise B; Welch, Robert W

    2014-03-01

    This study evaluated four food-derived peptides with known antihypertensive activities for antimicrobial activity against pathogenic microorganisms, and assessed structure-function relationships using alanine analogues. The peptides (EVSLNSGYY, barley; PGTAVFK, soybean; TTMPLW, α-casein; VHLPP, α-zein) and the six alanine substitution peptides of PGTAVFK were synthesised, characterised and evaluated for antimicrobial activity using the bacteria, Escherichia coli, Staphylococcus aureus, and Micrococcus luteus and the yeast, Candida albicans. The peptides TTMPLW and PGTAVFK inhibited growth of all four microorganisms tested, with activities of a similar order of magnitude to ampicillin and ethanol controls. EVSLNSGYY inhibited the growth of the bacteria, but VHLPP showed no antimicrobial activity. The alanine analogue, PGAAVFK showed the highest overall antimicrobial activity and PGTAVFA showed no activity; overall, the activities of the analogues were consistent with their structures. Some peptides with antihypertensive activity also show antimicrobial activity, suggesting that food-derived peptides may exert beneficial effects via a number of mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria.

    PubMed

    Peng, Bo; Su, Yu-Bin; Li, Hui; Han, Yi; Guo, Chang; Tian, Yao-Mei; Peng, Xuan-Xian

    2015-02-03

    Multidrug-resistant bacteria are an increasingly serious threat to human and animal health. However, novel drugs that can manage infections by multidrug-resistant bacteria have proved elusive. Here we show that glucose and alanine abundances are greatly suppressed in kanamycin-resistant Edwardsiella tarda by GC-MS-based metabolomics. Exogenous alanine or glucose restores susceptibility of multidrug-resistant E. tarda to killing by kanamycin, demonstrating an approach to killing multidrug-resistant bacteria. The mechanism underlying this approach is that exogenous glucose or alanine promotes the TCA cycle by substrate activation, which in turn increases production of NADH and proton motive force and stimulates uptake of antibiotic. Similar results are obtained with other Gram-negative bacteria (Vibrio parahaemolyticus, Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacterium (Staphylococcus aureus), and the results are also reproduced in a mouse model for urinary tract infection. This study establishes a functional metabolomics-based strategy to manage infection by antibiotic-resistant bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Identification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440.

    PubMed

    Duque, Estrella; Daddaoua, Abdelali; Cordero, Baldo F; De la Torre, Jesús; Antonia Molina-Henares, Maria; Ramos, Juan-Luis

    2017-10-01

    The genome of Pseudomonas putida KT2440 contains two open reading frames (ORFs), PP_3722 and PP_5269, that encode proteins with a Pyridoxal phosphate binding motif and a high similarity to alanine racemases. Alanine racemases play a key role in the biosynthesis of D-alanine, a crucial amino acid in the peptidoglycan layer. For these ORFs, we generated single and double mutants and found that inactivation of PP_5269 resulted in D-alanine auxotrophy, while inactivation of PP_3722 did not. Furthermore, as expected, the PP_3722/PP_5269 double mutant was a strict auxotroph for D-alanine. These results indicate that PP_5269 is an alr allele and that it is the essential alanine racemase in P. putida. We observed that the PP_5269 mutant grew very slowly, while the double PP_5269/PP_3722 mutant did not grow at all. This suggests that PP_3722 may replace PP_5269 in vivo. In fact, when the ORF encoding PP_3772 was cloned into a wide host range expression vector, ORF PP_3722 successfully complemented P. putida PP_5269 mutants. We purified both proteins to homogeneity and while they exhibit similar K M values, the V max of PP_5269 is fourfold higher than that of PP_3722. Here, we propose that PP_5269 and PP_3722 encode functional alanine racemases and that these genes be named alr-1 and alr-2 respectively. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Cardiorespiratory Fitness, Waist Circumference and Alanine Aminotransferase in Youth

    PubMed Central

    Trilk, Jennifer L.; Ortaglia, Andrew; Blair, Steven N.; Bottai, Matteo; Church, Timothy S.; Pate, Russell R.

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) is considered the liver component of the metabolic syndrome and is strongly associated with cardiometabolic diseases. In adults, cardiorespiratory fitness (CRF) is inversely associated with alanine aminotransferase (ALT), a blood biomarker for NAFLD. However, information regarding these associations is scarce for youth. Purpose To examine associations between CRF, waist circumference (WC) and ALT in youth. Methods Data were obtained from youth (n=2844, 12-19 years) in the National Health and Nutrition Examination Survey (NHANES) 2001-2004. CRF was dichotomized into youth FITNESSGRAM® categories of “low” and “adequate” CRF. Logistic and quantile regression were used for a comprehensive analysis of associations, and variables with previously-reported associations with ALT were a priori included in the models. Results Results from logistic regression suggested that youth with low CRF had 1.5 times the odds of having an ALT>30 than youth with adequate CRF, although the association was not statistically significant (P=0.09). However, quantile regression demonstrated that youth with low CRF had statistically significantly higher ALT (+1.04, +1.05, and +2.57 U/L) at the upper end of the ALT distribution (80th, 85th, and 90th percentiles, respectively) than youth with adequate CRF. For every 1-cm increase in WC, the odds of having an ALT>30 increased by 1.06 (P<0.001), and the strength of this association increased across the ALT distribution. Conclusions Future studies should examine whether interventions to improve CRF can decrease hepatic fat and liver enzyme concentrations in youth with ALT ≥80th percentile or in youth diagnosed with NAFLD. PMID:23190589

  13. Design and Synthesis of New Peptidomimetics as Potential Inhibitors of MurE.

    PubMed

    Zivec, Matej; Turk, Samo; Blanot, Didier; Gobec, Stanislav

    2011-03-01

    With the continuing emergence and spread of multidrug-resistant bacteria, there is an urgent need for the development of new antimicrobial agents. One possible source of new antibacterial targets is the biosynthesis of the bacterial cell-wall peptidoglycan. The assembly of the peptide stem is carried out by four essential enzymes, known as the Mur ligases (MurC, D, E and F). We have designed and synthesised a focused library of compounds as potential inhibitors of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:L-lysine ligase (MurE) from Staphylococcus aureus. This was achieved using two approaches: (i) synthesis of transition-state analogues based on the methyleneamino core; and (ii) synthesis of MurE reaction product analogues. Two methyleneamino-based compounds are identified as initial hits for inhibitors of MurE.

  14. Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages.

    PubMed

    Zhang, Lei; Xue, Hong; Gao, Changlu; Carr, Louisa; Wang, Jinnan; Chu, Baocheng; Jiang, Shaoyi

    2010-09-01

    Multifunctional magnetic nanoparticles (MNPs) modified by a zwitterionic polymer (pCBMA-DOPA(2)) containing one poly(carboxybetaine methacrylate) (pCBMA) chain and two 3,4-dihydroxyphenyl-L-alanine (DOPA) residue groups were developed. Results showed that MNPs modified by pCBMA were not only stable in complex media, but also provided abundant functional groups for ligand immobilization. The pCBMA-DOPA(2) MNPs had a hydrodynamic particle size of about 130 nm, a strong saturation magnetization of 110.2 emu/g Fe and a high transverse relaxivity of 428 mM(-1)s(-1). Long-term stability in phosphate-buffered saline (PBS) and 10% NaCl solution was achieved for over six months. Compared to MNPs coated with dextran, pCBMA-DOPA(2) MNPs presented better stability in 100% human blood serum at 37 degrees C. Macrophage cell uptake studies revealed that the uptake ratio of pCBMA-DOPA(2) MNPs was much lower than that of dextran MNPs. Furthermore, quantitative analysis results showed that after pCBMA-DOPA(2) MNPs were conjugated with a targeting RGD peptide, uptake by human umbilical vein endothelial cell (HUVEC) was notably increased, which was further visualized by magnetic resonance imaging (MRI). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Microsolvation of the acetanilide cation (AA(+)) in a nonpolar solvent: IR spectra of AA(+)-L(n) clusters (L = He, Ar, N2; n ≤ 10).

    PubMed

    Schmies, Matthias; Patzer, Alexander; Schütz, Markus; Miyazaki, Mitsuhiko; Fujii, Masaaki; Dopfer, Otto

    2014-05-07

    Infrared photodissociation (IRPD) spectra of mass-selected cluster ions of acetanilide (N-phenylacetamide), AA(+)-Ln, with the ligands L = He (n = 1-2), Ar (n = 1-7), and N2 (n = 1-10) are recorded in the hydride stretch (amide A, νNH, νCH) and fingerprint (amide I-III) ranges of AA(+) in its (2)A'' ground electronic state. Cold AA(+)-Ln clusters are generated in an electron impact ion source, which predominantly produces the most stable isomer of a given cluster ion. Systematic vibrational frequency shifts of the N-H stretch fundamentals (νNH) provide detailed information about the sequential microsolvation process of AA(+) in a nonpolar (L = He and Ar) and quadrupolar (L = N2) solvent. In the most stable AA(+)-Ln clusters, the first ligand forms a hydrogen bond (H-bond) with the N-H proton of trans-AA(+) (t-AA(+)), whereas further ligands bind weakly to the aromatic ring (π-stacking). There is no experimental evidence for complexes with the less stable cis-AA(+) isomer. Quantum chemical calculations at the M06-2X/aug-cc-pVTZ level confirm the cluster growth sequence derived from the IR spectra. The calculated binding energies of De(H) = 720 and 1227 cm(-1) for H-bonded and De(π) = 585 and 715 cm(-1) for π-bonded Ar and N2 ligands in t-AA(+)-L are consistent with the observed photofragmentation branching ratios of AA(+)-Ln. Comparison between charged and neutral AA((+))-L dimers indicates that ionization switches the preferred ion-ligand binding motif from π-stacking to H-bonding. Electron removal from the HOMO of AA(+) delocalized over both the aromatic ring and the amide group significantly strengthens the C[double bond, length as m-dash]O bond and weakens the N-H bond of the amide group.

  16. ΔN-Bcl-xL, a therapeutic target for neuroprotection

    PubMed Central

    Park, Han-A; Jonas, Elizabeth A.

    2017-01-01

    The B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial anti-apoptotic protein that plays a role in neuroprotection. However, during excitotoxic stimulation, Bcl-xL undergoes caspase-dependent cleavage and produces a fragmented form, ΔN-Bcl-xL. Accumulation of ΔN-Bcl-xL is associated with mitochondrial dysfunction and neuronal death. Therefore, strategies to inhibit the activity or formation of ΔN-Bcl-xL protect the brain against excitotoxic injuries. Our team found that the pharmacological inhibitor ABT-737 exerts dose dependent effects in primary neurons. When primary hippocampal neurons were treated with 1 μM ABT-737, glutamate-mediated mitochondrial damage and neuronal death were exacerbated, whereas 10 nM ABT-737, a 100-fold lower concentration, protected mitochondrial function and enhanced neuronal viability against glutamate toxicity. In addition, we suggested acute vs. prolonged formation of ΔN-Bcl-xL may have different effects on mitochondrial or neuronal functions. Unlike acute production of ΔN-Bcl-xL by glutamate, overexpression of ΔN-Bcl-xL did not cause drastic changes in neuronal viability. We predicted that neurons undergo adaptation and may activate altered metabolism to compensate for ΔN-Bcl-xL-mediated mitochondrial dysfunction. Although the detailed mechanism of ABT-mediated neurotoxicity neuroprotection is still unclear, our study shows that the mitochondrial membrane protein ΔN-Bcl-xL is a central target for interventions. PMID:29239317

  17. Staphylococcus aureus Peptidoglycan Stem Packing by Rotational-Echo Double Resonance NMR Spectroscopy

    PubMed Central

    Kim, Sung Joon; Singh, Manmilan; Preobrazhenskaya, Maria; Schaefer, Jacob

    2013-01-01

    Staphylococcus aureus grown in the presence of an alanine-racemase inhibitor was labeled with D-[1-13C]alanine and L-[15N]alanine to characterize some details of the peptidoglycan tertiary structure. Rotational-echo double-resonance NMR of intact whole cells was used to measure internuclear distances between 13C and 15N of labeled amino acids incorporated in the peptidoglycan, and from those labels to 19F of a glycopeptide drug specifically bound to the peptidoglycan. The observed 13C-15N average distance of 4.1 to 4.4 Å between D- and L-alanines in nearest-neighbor peptide stems is consistent with a local, tightly packed, parallel-stem architecture for a repeating structural motif within the peptidoglycan of S. aureus. PMID:23617832

  18. N-(L-2-aminopentanoyl)-L-phenylalanine dihydrate, a hydrophobic dipeptide with a nonproteinogenic residue.

    PubMed

    Görbitz, Carl Henrik; Yadav, Vitthal N

    2013-09-01

    The title dipeptide, better known as L-norvalyl-L-phenylalanine {systematic name: (S)-2-[(S)-2-aminopentanamido]-3-phenylpropanoic acid dihydrate}, C14H20N2O3·2H2O, has a nonproteinogenic N-terminal residue. In the solid state, it takes on a molecular conformation typical for one of the three classes of nanoporous dipeptides, but like two related compounds with a hydrophobic N-terminal residue and a C-terminal L-phenylalanine, it fails to form channels or pores. Instead, the crystal structure is divided into distinct hydrophobic and hydrophilic layers, the latter encompassing cocrystallized water molecules connecting the charged N- and C-terminal groups.

  19. Functional and Biochemical Analysis of Chlamydia trachomatis MurC, an Enzyme Displaying UDP-N-Acetylmuramate:Amino Acid Ligase Activity

    PubMed Central

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-01-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):l-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:l-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (l-alanine, l-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide. PMID:14594822

  20. Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate:amino acid ligase activity.

    PubMed

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-11-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):L-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:L-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (L-alanine, L-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide.

  1. The Association of Alanine Aminotransferase in Early Pregnancy with Gestational Diabetes.

    PubMed

    Yarrington, Christina D; Cantonwine, David E; Seely, Ellen W; McElrath, Thomas F; Zera, Chloe A

    2016-06-01

    Elevated alanine amino transferase, attributed to nonalcoholic fatty liver, is associated with later development of type 2 diabetes mellitus. We sought to determine whether maternal ALT values are associated with subsequent development of gestational diabetes. We performed a nested case-control study utilizing prospectively banked serum samples collected in early gestation. We excluded women with known diabetes, liver disease, or alcohol use. We included 83 cases of gestational diabetes mellitus (GDM) and 247 controls matched for prepregnancy body-mass index (BMI) and compared ALT values. We then performed a conditional logistic regression to model the adjusted odds of GDM in women with ALT ≥19 U/L, stratified by prepregnancy BMI. The median (interquartile range) ALT in cases was 15 (12, 19) IU/L compared to 13 (11, 18) IU/L in controls (P = 0.07). Among women with a prepregnancy BMI <30 kg/m(2), ALT ≥19 U/L was associated with a fourfold increased odds of GDM (adjusted odds ratio [aOR] 4.56 [1.45, 14.27]), while there was no such association among obese women (aOR 0.36 [0.11, 1.20]). Similarly, each unit increase in log-transformed ALT was associated with a threefold increased odds of GDM in nonobese (aOR 3.15 [1.04,9.54]), but not obese (aOR 3.15 [0.30,3.15]) women. The association of high normal ALT and later GDM in nonobese women may reflect the role of hepatic insulin resistance and visceral obesity.

  2. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    PubMed

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  3. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes.

    PubMed

    Anantharaman, Vivek; Aravind, L

    2003-01-01

    Peptidoglycan is hydrolyzed by a diverse set of enzymes during bacterial growth, development and cell division. The N1pC/P60 proteins define a family of cell-wall peptidases that are widely represented in various bacterial lineages. Currently characterized members are known to hydrolyze D-gamma-glutamyl-meso-diaminopimelate or N-acetylmuramate-L-alanine linkages. Detailed analysis of the N1pC/P60 peptidases showed that these proteins define a large superfamily encompassing several diverse groups of proteins. In addition to the well characterized P60-like proteins, this superfamily includes the AcmB/LytN and YaeF/YiiX families of bacterial proteins, the amidase domain of bacterial and kinetoplastid glutathionylspermidine synthases (GSPSs), and several proteins from eukaryotes, phages, poxviruses, positive-strand RNA viruses, and certain archaea. The eukaryotic members include lecithin retinol acyltransferase (LRAT), nematode developmental regulator Egl-26, and candidate tumor suppressor H-rev107. These eukaryotic proteins, along with the bacterial YaeF/poxviral G6R family, show a circular permutation of the catalytic domain. We identified three conserved residues, namely a cysteine, a histidine and a polar residue, that are involved in the catalytic activities of this superfamily. Evolutionary analysis of this superfamily shows that it comprises four major families, with diverse domain architectures in each of them. Several related, but distinct, catalytic activities, such as murein degradation, acyl transfer and amide hydrolysis, have emerged in the N1pC/P60 superfamily. The three conserved catalytic residues of this superfamily are shown to be equivalent to the catalytic triad of the papain-like thiol peptidases. The predicted structural features indicate that the N1pC/P60 enzymes contain a fold similar to the papain-like peptidases, transglutaminases and arylamine acetyltransferases.

  4. Discovery and Biochemical Characterization of PlyP56, PlyN74, and PlyTB40—Bacillus Specific Endolysins

    PubMed Central

    Etobayeva, Irina; Linden, Sara B.; Alem, Farhang; Rizkalla, Lucas; Temple, Louise; Hakami, Ramin M.

    2018-01-01

    Three Bacillus bacteriophage-derived endolysins, designated PlyP56, PlyN74, and PlyTB40, were identified, cloned, purified, and characterized for their antimicrobial properties. Sequence alignment reveals these endolysins have an N-terminal enzymatically active domain (EAD) linked to a C-terminal cell wall binding domain (CBD). PlyP56 has a Peptidase_M15_4/VanY superfamily EAD with a conserved metal binding motif and displays biological dependence on divalent ions for activity. In contrast, PlyN74 and PlyTB40 have T7 lysozyme-type Amidase_2 and carboxypeptidase T-type Amidase_3 EADs, respectively, which are members of the MurNAc-LAA superfamily, but are not homologs and thus do not have a shared protein fold. All three endolysins contain similar SH3-family CBDs. Although minor host range differences were noted, all three endolysins show relatively broad antimicrobial activity against members of the Bacillus cereus sensu lato group with the highest lytic activity against B. cereus ATCC 4342. Characterization studies determined the optimal lytic activity for these enzymes was at physiological pH (pH 7.0–8.0), over a broad temperature range (4–55 °C), and at low concentrations of NaCl (<50 mM). Direct comparison of lytic activity shows the PlyP56 enzyme to be twice as effective at lysing the cell wall peptidoglycan as PlyN74 or PlyTB40, suggesting PlyP56 is a good candidate for further antimicrobial development as well as bioengineering studies. PMID:29883383

  5. Superconductivity at 33-37 K in A L n2Fe4As4O2 (A =Kand Cs;L n =lanthanides)

    NASA Astrophysics Data System (ADS)

    Wu, Si-Qi; Wang, Zhi-Cheng; He, Chao-Yang; Tang, Zhang-Tu; Liu, Yi; Cao, Guang-Han

    2017-09-01

    We have synthesized ten iron oxyarsenides, K L n2Fe4As4O2 (L n =Gd,Tb,Dy, and Ho) and Cs L n2Fe4As4O2 (L n =Nd,Sm,Gd,Tb,Dy, and Ho) , with the aid of the lattice-match approach. The resultant compounds possess hole-doped conducting double FeAs layers [AFe4As4] 2 - that are separated by the insulating [Ln2O2] 2 + slabs. Measurements of electrical resistivity and dc magnetic susceptibility demonstrate bulk superconductivity at Tc=33 -37 K. We find that Tc correlates with the axial ratio c /a for all 12442-type superconductors discovered. Also, Tc tends to increase with the lattice mismatch, implying that lattice instability plays a role in the enhancement of superconductivity.

  6. Amino Acid Isotopic Trophic Enrichment in Mesozooplankton: Is Alanine a Better Predictor of Protistan Grazer Steps?

    NASA Astrophysics Data System (ADS)

    Decima, M.; Landry, M. R.; Bradley, C. J.; Fogel, M. L.

    2016-02-01

    Food-web studies within marine environments are increasingly reliant upon results from compound-specific isotope analysis of amino acids (CSIA-AA). The approach is advantageous because it allows consumer trophic positions to be estimated without sampling the dynamic primary producers. The baseline signal in the source AA phenylalanine is preserved, and a constant enrichment in glutamic acid at each trophic step is assumed, regardless of consumer type or diet. However, a number of recent studies challenge the assumption of universal and invariant isotopic fractionation of glutamic acid for all trophic levels, as well as its specific applicability to the main grazers in the ocean: the protistan microzooplankton. We present results from both laboratory and field studies that further explore this issue. Experiments include six 2-stage chemostats, using two different microzooplankton-phytoplankton pairs and one copepod-phytoplankton pair, and one 3-stage experiment using a copepod-microzooplankton-phytoplankton chain. We confirm previous observations of negligible fractionation of glutamic acid in protistan consumers when nutrients are limiting. In contrast, a consistent trophic enrichment effect was observed for alanine, with increasing δ15N values by trophic level for both metazoan and protistan consumers. A re-analysis of published CSIA-AA data of zooplankton species show that an index using alanine and phenylalanine gives trophic level estimates closer to expected given current understanding of the linkages within microbial food webs. Our results examine the details of isotopic fractionation of alanine within defined food chains and generally support its potential use as a trophic level indicator that includes the protistan contribution to mesozooplankton diet.

  7. Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate

    NASA Astrophysics Data System (ADS)

    Barb, A. W.; Hekmatyar, S. K.; Glushka, J. N.; Prestegard, J. H.

    2013-03-01

    Hyperpolarized metabolites offer a tremendous sensitivity advantage (>104 fold) when measuring flux and enzyme activity in living tissues by magnetic resonance methods. These sensitivity gains can also be applied to mechanistic studies that impose time and metabolite concentration limitations. Here we explore the use of hyperpolarization by dissolution dynamic nuclear polarization (DNP) in mechanistic studies of alanine transaminase (ALT), a well-established biomarker of liver disease and cancer that converts pyruvate to alanine using glutamate as a nitrogen donor. A specific deuterated, 13C-enriched analog of pyruvic acid, 13C3D3-pyruvic acid, is demonstrated to have advantages in terms of detection by both direct 13C observation and indirect observation through methyl protons introduced by ALT-catalyzed H-D exchange. Exchange on injecting hyperpolarized 13C3D3-pyruvate into ALT dissolved in buffered 1H2O, combined with an experimental approach to measure proton incorporation, provided information on mechanistic details of transaminase action on a 1.5 s timescale. ALT introduced, on average, 0.8 new protons into the methyl group of the alanine produced, indicating the presence of an off-pathway enamine intermediate. The opportunities for exploiting mechanism-dependent molecular signatures as well as indirect detection of hyperpolarized 13C3-pyruvate and products in imaging applications are discussed.

  8. A Novel Method for Relative Quantitation of N-Glycans by Isotopic Labeling Using 18O-Water

    PubMed Central

    Tao, Shujuan; Orlando, Ron

    2014-01-01

    Quantitation is an essential aspect of comprehensive glycomics study. Here, a novel isotopic-labeling method is described for N-glycan quantitation using 18O-water. The incorporation of the 18O-labeling into the reducing end of N-glycans is simply and efficiently achieved during peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase F release. This process provides a 2-Da mass difference compared with the N-glycans released in 16O-water. A mathematical calculation method was also developed to determine the 18O/16O ratios from isotopic peaks. Application of this method to several standard glycoprotein mixtures and human serum demonstrated that this method can facilitate the relative quantitation of N-glycans over a linear dynamic range of two orders, with high accuracy and reproducibility. PMID:25365792

  9. Unusual Nonterrestrial L-proteinogenic Amino Acid excesses in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Hilts, Robert W.; Herd, D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography with fluorescence detection and time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approximately 43-59%) of the alpha-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha hydrogen protein amino acid, was found to be nearly racemic (D much approximately L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and 1)- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the L-excesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals. Amplification of a small initial L-enantiomer excess during aqueous alteration on the meteorite parent body could have led to the large L-enrichments observed for aspartic acid and other conglomerate amino acids in Tagish Lake. The detection of non terrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite provides support for the hypothesis that significant enantiomeric enrichments for some amino acids could form by abiotic processes prior to the emergence of life.

  10. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN P...

  11. (2R,1'S,2'R)- and (2S,1'S,2'R)-3-[2-Mono(di,tri)fluoromethylcyclopropyl]alanines and their incorporation into hormaomycin analogues

    PubMed Central

    Kozhushkov, Sergei I; Yufit, Dmitrii S; Grosse, Christian; Kaiser, Marcel

    2014-01-01

    Summary Efficient and scalable syntheses of enantiomerically pure (2R,1'S,2'R)- and (2S,1'S,2'R)-3-[2-mono(di,tri)fluoromethylcyclopropyl]alanines 9a–c, as well as allo-D-threonine (4) and (2S,3R)-β-methylphenylalanine (3), using the Belokon' approach with (S)- and (R)-2-[(N-benzylprolyl)amino]benzophenone [(S)- and (R)-10] as reusable chiral auxiliaries have been developed. Three new fluoromethyl analogues of the naturally occurring octadepsipeptide hormaomycin (1) with (fluoromethylcyclopropyl)alanine moieties have been synthesized and subjected to preliminary tests of their antibiotic activity. PMID:25550751

  12. The crystal structure of the D-alanine-D-alanine ligase from Acinetobacter baumannii suggests a flexible conformational change in the central domain before nucleotide binding.

    PubMed

    Huynh, Kim-Hung; Hong, Myoung-ki; Lee, Clarice; Tran, Huyen-Thi; Lee, Sang Hee; Ahn, Yeh-Jin; Cha, Sun-Shin; Kang, Lin-Woo

    2015-11-01

    Acinetobacter baumannii, which is emerging as a multidrug-resistant nosocomial pathogen, causes a number of diseases, including pneumonia, bacteremia, meningitis, and skin infections. With ATP hydrolysis, the D-alanine-D-alanine ligase (DDL) catalyzes the synthesis of D-alanyl-D-alanine, which is an essential component of bacterial peptidoglycan. In this study, we determined the crystal structure of DDL from A. baumannii (AbDDL) at a resolution of 2.2 Å. The asymmetric unit contained six protomers of AbDDL. Five protomers had a closed conformation in the central domain, while one protomer had an open conformation in the central domain. The central domain with an open conformation did not interact with crystallographic symmetry-related protomers and the conformational change of the central domain was not due to crystal packing. The central domain of AbDDL can have an ensemble of the open and closed conformations before the binding of substrate ATP. The conformational change of the central domain is important for the catalytic activity and the detail information will be useful for the development of inhibitors against AbDDL and putative antibacterial agents against A. baumannii. The AbDDL structure was compared with that of other DDLs that were in complex with potent inhibitors and the catalytic activity of AbDDL was confirmed using enzyme kinetics assays.

  13. Enhancing the supply of oxaloacetate for L-glutamate production by pyc overexpression in different Corynebacterium glutamicum.

    PubMed

    Guo, Xuan; Wang, Jing; Xie, Xixian; Xu, Qingyang; Zhang, Chenglin; Chen, Ning

    2013-06-01

    During L-glutamate production, phosphoenolpyruvate carboxylase and pyruvate carboxylase (PCx) play important roles in supplying oxaloacetate to the tricarboxylic acid cycle. To explore the significance of PCx for L-glutamate overproduction, the pyc gene encoding PCx was amplified in Corynebacterium glutamicum GDK-9 triggered by biotin limitation and CN1021 triggered by a temperature shock, respectively. In the fed-batch cultures, GDK-9pXMJ19pyc exhibited 7.4 % lower L-alanine excretion and no improved L-glutamate production. In contrast, CN1021pXMJ19pyc finally exhibited 13 % lower L-alanine excretion and identical L-glutamate production, however, 8.5 % higher L-glutamate production was detected during a short period of the fermentation. It was indicated that pyc overexpression in L-glutamate producer strains, especially CN1021, increased the supply of oxaloacetate for L-glutamate synthesis and decreased byproduct excretion at the pyruvate node.

  14. A chimeric LysK-lysostaphin fusion enzyme lysing Staphylococcus aureus cells: a study of both kinetics of inactivation and specifics of interaction with anionic polymers

    USDA-ARS?s Scientific Manuscript database

    A staphylolytic fusion protein (K-L) was created, harboring three unique lytic activities comprised of the LysK CHAP endopeptidase, and amidase domains, and the lysostaphin glycyl-glycine endopeptidase domain. To assess the potential of possible therapeutic applications, the kinetic behavior of K-L...

  15. GMXPBSA 2.1: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2015-01-01

    GMXPBSA 2.1 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes [R.T. Bradshaw et al., Protein Eng. Des. Sel. 24 (2011) 197-207]. GMXPBSA 2.1 is flexible and can easily be customized to specific needs and it is an improvement of the previous GMXPBSA 2.0 [C. Paissoni et al., Comput. Phys. Commun. (2014), 185, 2920-2929]. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.1 performs different comparative analyses, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complex trajectories, allowing the study of the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS [S. Pronk et al., Bioinformatics 29 (2013) 845-854] and the Poisson-Boltzmann equation solver APBS [N.A. Baker et al., Proc. Natl. Acad. Sci. U.S.A 98 (2001) 10037-10041]. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the

  16. Quantitative Analysis of Solid-State Homonuclear Correlation Spectra of Antiparallel β-Sheet Alanine Tetramers.

    PubMed

    Naito, Akira; Okushita, Keiko; Nishimura, Katsuyuki; Boutis, Gregory S; Aoki, Akihiro; Asakura, Tetsuo

    2018-03-15

    Poly-l-alanine (PLA) sequences are a key element in the structure of the crystalline domains of spider dragline silks, wild silkworm silks, antifreeze proteins, and amyloids. To date, no atomic-level structures of antiparallel (AP)-PLA longer than Ala 4 have been reported using the single-crystal X-ray diffraction analysis. In this work, dipolar-assisted rotational resonance solid-state NMR spectra were observed to determine the effective internuclear distances of 13 C uniformly labeled alanine tetramer with antiparallel (AP) β-sheet structure whose atomic coordinates are determined from the X-ray crystallographic analysis. Initial build-up rates, R j, k , were obtained from the build-up curves of the cross peaks by considering the internuclear distances arising in the master equation. Subsequently, experimentally obtained effective internuclear distances, r eff j, k (obs), were compared with the calculated r eff j, k (calc) values obtained from the X-ray crystallographic data. Fairly good correlation between r eff j, k (obs) and r eff j, k (calc) was obtained in the range of 1.0-6.0 Å, with the standard deviation of 0.244 Å, without considering the zero-quantum line-shape functions. It was further noted that the internuclear distances of intermolecular contributions provide details relating to the molecular packing in solid-state samples. Thus, the present data agree well with AP-β-sheet packing but do not agree with P-β-sheet packing.

  17. Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase

    PubMed Central

    Usha, Veeraraghavan; Lloyd, Adrian J.; Roper, David I.; Dowson, Christopher G.; Kozlov, Guennadi; Gehring, Kalle; Chauhan, Smita; Imam, Hasan T.; Blindauer, Claudia A.; Besra, Gurdyal S.

    2016-01-01

    With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate. M. tuberculosis DapE (MtDapE) was cloned, over-expressed and purified as an N-terminal hexahistidine ((His)6) tagged fusion containing one zinc ion per DapE monomer. We redesigned the DAP synthetic pathway to generate L,L-NSDAP and other L,L-NSDAP derivatives and have characterised MtDapE with these substrates. In contrast to its other Gram negative homologues, the MtDapE was insensitive to inhibition by L-captopril which we show is consistent with novel mycobacterial alterations in the binding site of this drug. PMID:26976706

  18. Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase.

    PubMed

    Usha, Veeraraghavan; Lloyd, Adrian J; Roper, David I; Dowson, Christopher G; Kozlov, Guennadi; Gehring, Kalle; Chauhan, Smita; Imam, Hasan T; Blindauer, Claudia A; Besra, Gurdyal S

    2016-03-15

    With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate. M. tuberculosis DapE (MtDapE) was cloned, over-expressed and purified as an N-terminal hexahistidine ((His)6) tagged fusion containing one zinc ion per DapE monomer. We redesigned the DAP synthetic pathway to generate L,L-NSDAP and other L,L-NSDAP derivatives and have characterised MtDapE with these substrates. In contrast to its other Gram negative homologues, the MtDapE was insensitive to inhibition by L-captopril which we show is consistent with novel mycobacterial alterations in the binding site of this drug.

  19. Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview.

    PubMed

    Oppici, Elisa; Montioli, Riccardo; Cellini, Barbara

    2015-09-01

    Liver peroxisomal alanine:glyoxylate aminotransferase (AGT) (EC 2.6.1.44) catalyses the conversion of l-alanine and glyoxylate to pyruvate and glycine, a reaction that allows glyoxylate detoxification. Inherited mutations on the AGXT gene encoding AGT lead to Primary Hyperoxaluria Type I (PH1), a rare disorder characterized by the deposition of calcium oxalate crystals primarily in the urinary tract. Here we describe the results obtained on the biochemical features of AGT as well as on the molecular and cellular effects of polymorphic and pathogenic mutations. A complex scenario on the molecular pathogenesis of PH1 emerges in which the co-inheritance of polymorphic changes and the condition of homozygosis or compound heterozygosis are two important factors that determine the enzymatic phenotype of PH1 patients. All the reported data represent relevant steps toward the understanding of genotype/phenotype correlations, the prediction of the response of the patients to the available therapies, and the development of new therapeutic approaches. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Beta-Alanine Supplementation Improves Throwing Velocities in Repeated Sprint Ability and 200-m Swimming Performance in Young Water Polo Players.

    PubMed

    Claus, Gabriel Machado; Redkva, Paulo Eduardo; Brisola, Gabriel Mota Pinheiro; Malta, Elvis Sousa; de Araujo Bonetti de Poli, Rodrigo; Miyagi, Willian Eiji; Zagatto, Alessandro Moura

    2017-05-01

    The purpose of this study was to investigate the effects of beta-alanine supplementation on specific tests for water polo. Fifteen young water polo players (16 ± 2 years) underwent a 200-m swimming performance, repeated-sprint ability test (RSA) with free throw (shooting), and 30-s maximal tethered eggbeater kicks. Participants were randomly allocated into two groups (placebo × beta-alanine) and supplemented with 6.4g∙day -1 of beta-alanine or a placebo for six weeks. The mean and total RSA times, the magnitude based inference analysis showed a likely beneficial effect for beta-alanine supplementation (both). The ball velocity measured in the throwing performance after each sprint in the RSA presented a very like beneficial inference in the beta-alanine group for mean (96.4%) and percentage decrement of ball velocity (92.5%, likely beneficial). Furthermore, the percentage change for mean ball velocity was different between groups (beta-alanine=+2.5% and placebo=-3.5%; p = .034). In the 30-s maximal tethered eggbeater kicks the placebo group presented decreased peak force, mean force, and fatigue index, while the beta-alanine group maintained performance in mean force (44.1%, possibly beneficial), only presenting decreases in peak force. The 200-m swimming performance showed a possibly beneficial effect (68.7%). Six weeks of beta-alanine supplementation was effective for improving ball velocity shooting in the RSA, maintaining performance in the 30-s test, and providing possibly beneficial effects in the 200-m swimming performance.

  1. Attenuation of intestinal ischemia-reperfusion-injury by β-alanine: a potentially glycine-receptor mediated effect.

    PubMed

    Brencher, Lisa; Verhaegh, Rabea; Kirsch, Michael

    2017-05-01

    Acute mesenteric ischemia is often caused by embolization of the mesenteric arterial circulation. Coherent intestinal injury due to ischemia and following reperfusion get visible on macroscopic and histologic level. In previous studies, application of glycine caused an ameliorated intestinal damage after ischemia-reperfusion in rats. Because we speculated that glycine acted here as a signal molecule, we investigated whether the glycine-receptor agonist β-alanine evokes the same beneficial effect in intestinal ischemia-reperfusion. β-alanine (10, 30, and 100 mg/kg) was administered intravenously. Ischemia/reperfusion of the small intestine was initiated by occluding and reopening the superior mesenteric artery in rats. After 90 min of ischemia and 120 min of reperfusion, the intestine was analyzed with regard to macroscopic and histologic tissue damage, the activity of the saccharase, and accumulation of macrophages. In addition, systemic parameters and metabolic ones (e.g., acid-base balance, electrolytes, and blood glucose) were measured at certain points in time. All three dosages of β-alanine did not change systemic parameters but prevent from hyponatremia during the period of reperfusion. Most importantly, application of 100-mg β-alanine clearly diminished intestinal tissue damage, getting visible on macroscopic and histologic level. In addition, I/R-mediated decrease of saccharase activity and accumulation of macrophages in the small intestine were ameliorated. The present study demonstrated that β-alanine was a potent agent to ameliorate I/R-induced injury of the small intestine. Due to its diminishing effect on the accumulation of macrophages, β-alanine is strongly expected to mediate its beneficial effect via glycine receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The structural basis of the difference in sensitivity for PNGase F in the de-N-glycosylation of the native bovine pancreatic ribonucleases B and BS.

    PubMed

    Blanchard, Véronique; Frank, Martin; Leeflang, Bas R; Boelens, Rolf; Kamerling, Johannis P

    2008-03-18

    In glycoanalysis protocols, N-glycans from glycoproteins are most frequently released with peptide- N (4)-( N-acetyl-beta-glucosaminyl)asparagine amidase F (PNGase F). As the enzyme is an amidase, it cleaves the NH-CO linkage between the Asn side chain and the Asn-bound GlcNAc residue. Usually, the enzyme has a low activity, or is not active at all, on native glycoproteins. A typical example is native bovine pancreatic ribonuclease B (RNase B) with oligomannose-type N-glycans at Asn-34. However, native RNase BS, generated by subtilisin digestion of native RNase B, which comprises amino acid residues 21-124 of RNase B, is sensitive to PNGase F digestion. The same holds for carboxymethylated RNase B (RNase B (cm)). In this study, NMR spectroscopy and molecular modeling have been used to explain the differences in PNGase F activity for native RNase B, native RNase BS, and RNase B (cm). NMR analysis combined with literature data clearly indicated that the N-glycan at Asn-34 is more mobile in RNase BS than in RNase B. MD simulations showed that the region around Asn-34 in RNase B is not very flexible, whereby the alpha-helix of the amino acid residues 1-20 has a stabilizing effect. In RNase BS, the alpha-helix formed by amino acid residues 23-32 is significantly more flexible. Using these data, the possibilities for complex formation of both RNase B and RNase BS with PNGase F were studied, and a model for the RNase BS-PNGase F complex is proposed.

  3. Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum1

    PubMed Central

    Vanlerberghe, Greg C.; Joy, Kenneth W.; Turpin, David H.

    1991-01-01

    We have determined the flow of 15N into free amino acids of the N-limited green alga Selenastrum minutum (Naeg.) Collins after addition of 15NH4+ to aerobic or anaerobic cells. Under aerobic conditions, only a small proportion of the N assimilated was retained in the free amino acid pool. However, under anaerobic conditions almost all assimilated NH4+ accumulates in alanine. This is a unique feature of anaerobic NH4+ assimilation. The pathway of carbon flow to alanine results in the production of ATP and reductant which matches exactly the requirements of NH4+ assimilation. Alanine synthesis is therefore an excellent strategy to maintain energy and redox balance during anaerobic NH4+ assimilation. PMID:16668034

  4. Blood-brain barrier (BBB) toxicity and permeability assessment after L-(4-¹⁰Boronophenyl)alanine, a conventional B-containing drug for boron neutron capture therapy, using an in vitro BBB model.

    PubMed

    Roda, E; Nion, S; Bernocchi, G; Coccini, T

    2014-10-02

    Since brain tumours are the primary candidates for treatment by Boron Neutron Capture Therapy, one major challenge in the selective drug delivery to CNS is the crossing of the blood-brain barrier (BBB). The present pilot study investigated (i) the transport of a conventional B-containing product (i.e., L-(4-(10)Boronophenyl)alanine, L-(10)BPA), already used in medicine but still not fully characterized regarding its CNS interactions, as well as (ii) the effects of the L-(10)BPA on the BBB integrity using an in vitro model, consisting of brain capillary endothelial cells co-cultured with glial cells, closely mimicking the in vivo conditions. The multi-step experimental strategy (i.e. Integrity test, Filter study, Transport assay) checked L-(10)BPA toxicity at 80 µg Boron equivalent/ml, and its ability to cross the BBB, additionally by characterizing the cytoskeletal and TJ's proteins by immunocytochemistry and immunoblotting. In conclusion, a lack of toxic effects of L-(10)BPA was demonstrated, nevertheless accompanied by cellular stress phenomena (e.g. vimentin expression modification), paralleled by a low permeability coefficient (0.39 ± 0.01 × 10(-3)cm min(-1)), corroborating the scarce probability that L-(10)BPA would reach therapeutically effective cerebral concentration. These findings emphasized the need for novel strategies aimed at optimizing boron delivery to brain tumours, trying to ameliorate the compound uptake or developing new targeted products suitable to safely and effectively treat head cancer. Thus, the use of in vitro BBB model for screening studies may provide a useful early safety assessment for new effective compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Enrichment of Non-Terrestrial L-Proteinogenic Amino Acids by Aqueous Alteration on the Tagish Lake Meteorite Parent Body

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Herd, Christopher D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography fluorescence detection time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approx. 43 to 59%) of the a-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha-hydrogen protein amino acid, was found to be nearly racemic (D approx. L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and D- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the Lexcesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals.

  6. (L)-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum.

    PubMed

    Hou, Xiaohu; Chen, Xinde; Zhang, Yue; Qian, He; Zhang, Weiguo

    2012-12-01

    Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for L-valine production by over-expressing ilvEBN ( r ) C genes at 31 °C in 72 h fermentation. Different strategies were carried out to reduce the by-products' accumulation in L-valine fermentation and also to increase the availability of precursor for L-valine biosynthesis. The native promoter of ilvA of C. glutamicum was replaced with a weak promoter MPilvA (P-ilvAM1CG) to reduce the biosynthetic rate of L-isoleucine. Effect of different relative dissolved oxygen on L-valine production and by-products' formation was recorded, indicating that 15 % saturation may be the most appropriate relative dissolved oxygen for L-valine fermentation with almost no L-lactic acid and L-glutamate formed. To minimize L-alanine accumulation, alaT and/or avtA was inactivated in C. glutamicum and B. flavum, respectively. Compared to high concentration of L-alanine accumulated by alaT inactivated strains harboring ilvEBN ( r ) C genes, L-alanine concentration was reduced to 0.18 g/L by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, and 0.22 g/L by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. Meanwhile, L-valine production and conversion efficiency were enhanced to 31.15 g/L and 0.173 g/g by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, 38.82 g/L and 0.252 g/g by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. This study provides combined strategies to improve L-valine yield by minimization of by-products' production.

  7. Racemic resolution of some DL-amino acids using Aspergillus fumigatus L-amino acid oxidase.

    PubMed

    Singh, Susmita; Gogoi, Binod K; Bezbaruah, Rajib L

    2011-07-01

    The ability of Aspergillus fumigatus L-amino acid oxidase (L-aao) to cause the resolution of racemic mixtures of DL-amino acids was investigated with DL-alanine, DL-phenylalanine, DL-tyrosine, and DL-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three DL-amino acids resulting in the production of optically pure D-alanine (100% resolution), D-phenylalanine (80.2%), and D-tyrosine (84.1%), respectively. The optically pure D-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus L: -amino acid oxidase for racemic resolution of DL-amino acids.

  8. Polarization effects in the N-bar+N{yields}{pi}+l{sup +}+l{sup -} reaction: General analysis and numerical estimations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gakh, G. I.; Rekalo, A. P.; Tomasi-Gustafsson, E.

    2011-02-15

    A general formalism is developed to calculate the cross section and the polarization observables for the reaction N-bar+N{yields}{pi}+l{sup +}+l{sup -}. The matrix element and the observables are expressed in terms of six scalar amplitudes (complex functions of three kinematical variables) that determine the reaction dynamics. The numerical predictions are given in the frame of a particular model in the kinematical range accessible in the antiproton annihilation at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR).

  9. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, T., E-mail: schmito@uni-mainz.de; Bassler, N.; Blaickner, M.

    Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particlemore » spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields

  10. Brain oxygen utilization is unchanged by hypoglycemia in normal humans: lactate, alanine, and leucine uptake are not sufficient to offset energy deficit.

    PubMed

    Lubow, Jeffrey M; Piñón, Ivan G; Avogaro, Angelo; Cobelli, Claudio; Treeson, David M; Mandeville, Katherine A; Toffolo, Gianna; Boyle, Patrick J

    2006-01-01

    During hypoglycemia, substrates other than glucose have been suggested to serve as alternate neural fuels. We evaluated brain uptake of endogenously produced lactate, alanine, and leucine at euglycemia and during insulin-induced hypoglycemia in 17 normal subjects. Cross-brain arteriovenous differences for plasma glucose, lactate, alanine, leucine, and oxygen content were quantitated. Cerebral blood flow (CBF) was measured by Fick methodology using N(2)O as the dilution indicator gas. Substrate uptake was measured as the product of CBF and the arteriovenous concentration difference. As arterial glucose concentration fell, cerebral oxygen utilization and CBF remained unchanged. Brain glucose uptake (BGU) decreased from 36.3+/-2.6 to 26.6+/-2.1 micromol.100 g of brain(-1).min(-1) (P<0.001), equivalent to a drop in ATP of 291 micromol.100 g(-1).min(-1). Arterial lactate rose (P<0.001), whereas arterial alanine and leucine fell (P<0.009 and P<0.001, respectively). Brain lactate uptake (BLU) increased from a net release of -1.8+/- 0.6 to a net uptake of 2.5+/-1.2 micromol.100 g(-1).min(-1) (P<0.001), equivalent to an increase in ATP of 74 micromol.100 g(-1).min(-1). Brain leucine uptake decreased from 7.1+/-1.2 to 2.5 +/- 0.5 micromol.100 g(-1).min(-1) (P<0.001), and brain alanine uptake trended downward (P<0.08). We conclude that the ATP generated from the physiological increase in BLU during hypoglycemia accounts for no more than 25% of the brain glucose energy deficit.

  11. β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis.

    PubMed

    Saunders, Bryan; Elliott-Sale, Kirsty; Artioli, Guilherme G; Swinton, Paul A; Dolan, Eimear; Roschel, Hamilton; Sale, Craig; Gualano, Bruno

    2017-04-01

    To conduct a systematic review and meta-analysis of the evidence on the effects of β-alanine supplementation on exercise capacity and performance. This study was designed in accordance with PRISMA guidelines. A 3-level mixed effects model was employed to model effect sizes and account for dependencies within data. 3 databases (PubMed, Google Scholar, Web of Science) were searched using a number of terms ('β-alanine' and 'Beta-alanine' combined with 'supplementation', 'exercise', 'training', 'athlete', 'performance' and 'carnosine'). Inclusion/exclusion criteria limited articles to double-blinded, placebo-controlled studies investigating the effects of β-alanine supplementation on an exercise measure. All healthy participant populations were considered, while supplementation protocols were restricted to chronic ingestion. Cross-over designs were excluded due to the long washout period for skeletal muscle carnosine following supplementation. A single outcome measure was extracted for each exercise protocol and converted to effect sizes for meta-analyses. 40 individual studies employing 65 different exercise protocols and totalling 70 exercise measures in 1461 participants were included in the analyses. A significant overall effect size of 0.18 (95% CI 0.08 to 0.28) was shown. Meta-regression demonstrated that exercise duration significantly (p=0.004) moderated effect sizes. Subgroup analyses also identified the type of exercise as a significant (p=0.013) moderator of effect sizes within an exercise time frame of 0.5-10 min with greater effect sizes for exercise capacity (0.4998 (95% CI 0.246 to 0.753)) versus performance (0.1078 (95% CI -0.201 to 0.416)). There was no moderating effect of training status (p=0.559), intermittent or continuous exercise (p=0.436) or total amount of β-alanine ingested (p=0.438). Co-supplementation with sodium bicarbonate resulted in the largest effect size when compared with placebo (0.43 (95% CI 0.22 to 0.64)). β-alanine had a

  12. Disease progression in Chinese chronic hepatitis C patients with persistently normal alanine aminotransaminase levels.

    PubMed

    Hui, C-K; Zhang, H-Y; Shek, T; Yao, H; Yueng, Y-H; Leung, K-W; Lai, S-T; Lai, J-Y; Leung, N; Lau, G K

    2007-06-01

    Although chronic hepatitis C virus-infected patients with persistently normal alanine aminotransaminase levels usually have mild liver disease, disease progression can still occur. However, it is uncertain which group of patients is at risk of disease progression. To examine the severity of liver disease on liver biopsy in Chinese patients with persistently normal alanine aminotransaminase levels, and their disease progression over time. Eighty-two patients with persistently normal alanine aminotransaminase levels were followed up longitudinally. The median time of follow-up was 8.1 years. Forty-seven of the 82 patients (57.3%) had a second liver biopsy. At the time of analysis, six of the 82 patients (7.3%) developed decompensated liver cirrhosis. Patients with an initial fibrosis stage F2 or F3 [6/23 (26.1%) vs. 0/59 (0%), P < 0.0001] or inflammatory grade A2 or A3 [5/40 (12.5%) vs. 1/42 (2.4%), P = 0.04] were more likely to develop decompensated liver cirrhosis. On multivariate analysis, initial fibrosis stage F2 or F3 was independently associated with progression to decompensated liver cirrhosis (relative risk 2.3, 95% confidence interval 0.03-2.5, P = 0.02). Chinese chronic hepatitis C virus patients with persistently normal alanine aminotransaminase levels with moderate to severe fibrosis at initial evaluation are more likely to develop decompensated liver cirrhosis.

  13. l-Valine Production with Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum▿

    PubMed Central

    Blombach, Bastian; Schreiner, Mark E.; Holátko, Jiří; Bartek, Tobias; Oldiges, Marco; Eikmanns, Bernhard J.

    2007-01-01

    Corynebacterium glutamicum was engineered for the production of l-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the l-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum ΔaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, l-alanine, and l-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum ΔaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and l-alanine towards l-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum ΔaceE(pJC4ilvBNCE) produced up to 210 mM l-valine with a volumetric productivity of 10.0 mM h−1 (1.17 g l−1 h−1) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose. PMID:17293513

  14. Pleiotropic Effects of Cell Wall Amidase LytA on Streptococcus pneumoniae Sensitivity to the Host Immune Response

    PubMed Central

    Ramos-Sevillano, Elisa; Urzainqui, Ana; Campuzano, Susana; Moscoso, Miriam; González-Camacho, Fernando; Domenech, Mirian; Rodríguez de Córdoba, Santiago; Sánchez-Madrid, Francisco; Brown, Jeremy S.; García, Ernesto

    2014-01-01

    The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia. PMID:25404032

  15. Influence of l-pyroglutamic acid on the color formation process of non-enzymatic browning reactions.

    PubMed

    Wegener, Steffen; Kaufmann, Martin; Kroh, Lothar W

    2017-10-01

    Heating aqueous d-glucose model reactions with l-glutamine and l-alanine yielded similar colored solutions. However, size-exclusion chromatography (SEC) revealed that both non-enzymatic browning reactions proceeded differently. Due to a fast occurring cyclization of l-glutamine to pyroglutamic acid, the typical amino-carbonyl reaction was slowed down. However, l-glutamine and l-alanine model reactions showed the same browning index. Closer investigations could prove that l-pyroglutamic acid was able to influence non-enzymatic browning reactions. SEC analyses of d-glucose model reactions with and without l-pyroglutamic acid revealed an increase of low molecular colored compounds in the presence of l-pyroglutamic acid. Polarimetric measurements showed a doubling of d-glucose mutarotation velocity and HPLC analyses of d-fructose formation during thermal treatment indicated a tripling of aldose-ketose transformation in the presence of l-pyroglutamic acid, which are signs of a faster proceeding non-enzymatic browning process. 2-Pyrrolidone showed no such behavior, thus the additional carboxylic group should be responsible for the observed effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dipeptide transport and hydrolysis in isolated loops of rat small intestine: effects of stereospecificity.

    PubMed Central

    Lister, N; Sykes, A P; Bailey, P D; Boyd, C A; Bronk, J R

    1995-01-01

    1. Isolated jejunal loops of rat small intestine were perfused by a single pass of bicarbonate Krebs-Ringer solution containing either D- or L-phenylalanine or one of eight dipeptides formed from D- or L-alanine plus D- or L-phenylalanine. 2. At 0.5 mM L-phenylalanyl-L-alanine increased serosal phenylalanine appearance to forty times the control rate giving a value similar to that found with 0.5 mM free L-phenylalanine. No serosal dipeptide could be detected. 3. Perfusions with the two mixed dipeptides with N-terminal D-amino acids (D-alanyl-L-phenylalanine and D-phenylalanyl-L-alanine) gave rise to the appearance of intact dipeptides in the serosal secretions although there were substantial differences in their rates of absorption and subsequent hydrolysis. 4. L-Alanyl-D-phenylalanine was absorbed from the lumen three to five times as fast as L-phenylalanyl-D-alanine. At 1 mM L-alanyl-D-phenylalanine transferred D-phenylalanine across the epithelial layer at more than seven times the rate found with the same concentration of the free D-amino acid. 5. Perfusions with D-alanyl-D-phenylalanine or D-phenylalanyl-D-alanine showed that these two dipeptides are poor substrates for both transport and hydrolysis by the rat small intestine. 6. Analysis of mucosal tissue extracts after perfusion with the two mixed dipeptides with N-terminal D-amino acids revealed that both dipeptides were accumulated within the mucosa and suggested that exit across the basolateral membrane was rate limiting for transepithelial dipeptide transport. Images Figure 5 PMID:7602518

  17. Varying the Lewis base coordination of the Y2N2 core in the reduced dinitrogen complexes {[(Me3Si)2N]2(L)Y}2(μ-η2:η2-N2) (L = benzonitrile, pyridines, triphenylphosphine oxide, and trimethylamine N-oxide).

    PubMed

    Corbey, Jordan F; Farnaby, Joy H; Bates, Jefferson E; Ziller, Joseph W; Furche, Filipp; Evans, William J

    2012-07-16

    The effect of the neutral donor ligand, L, on the Ln(2)N(2) core in the (N═N)(2-) complexes, [A(2)(L)Ln](2)(μ-η(2):η(2)-N(2)) (Ln = Sc, Y, lanthanide; A = monoanion; L = neutral ligand), is unknown since all of the crystallographically characterized examples were obtained with L = tetrahydrofuran (THF). To explore variation in L, displacement reactions between {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)), 1, and benzonitrile, pyridine (py), 4-dimethylaminopyridine (DMAP), triphenylphosphine oxide, and trimethylamine N-oxide were investigated. THF is displaced by all of these ligands to form {[(Me(3)Si)(2)N](2)(L)Y}(2)(μ-η(2):η(2)-N(2)) complexes (L = PhCN, 2; py, 3; DMAP, 4; Ph(3)PO, 5; Me(3)NO, 6) that were fully characterized by analytical, spectroscopic, density functional theory, and X-ray crystallographic methods. The crystal structures of the Y(2)N(2) cores in 2-5 are similar to that in 1 with N-N bond distances between 1.255(3) Å and 1.274(3) Å, but X-ray analysis of the N-N distance in 6 shows it to be shorter: 1.198(3) Å.

  18. The effects of beta alanine plus creatine administration on performance during repeated bouts of supramaximal exercise in sedentary men.

    PubMed

    Okudan, N; Belviranli, M; Pepe, H; Gökbel, H

    2015-11-01

    The aim of this study was to investigate the effects of beta alanine and/or creatine supplementation on performance during repeated bouts of supramaximal exercise in sedentary men. Forty-four untrained healthy men (aged 20-22 years, weight: 68-72 kg, height: 174-178 cm) participated in the present study. After performing the Wingate Test (WAnT) for three times in the baseline exercise session, the subjects were assigned to one of four treatment groups randomly: 1) placebo (P; 10 g maltodextrose); 2) creatine (Cr; 5 g creatine plus 5 g maltodextrose); 3) beta-alanine (β-ALA; 1,6 g beta alanine plus 8,4 g maltodextrose); and 4) beta-alanine plus creatine (β-ALA+Cr; 1,6 g beta alanine plus 5 g creatine plus 3,4 g maltodextrose). Participants were given the supplements orally twice a day for 22 consecutive days, then four times a day for the following 6 days. After 28 days, the second exercise session was applied during which peak power (PP) and mean power (MP) were measured and fatigue index (FI) was calculated. PP and MP decreased and FI increased in all groups during exercise before and after the treatment. During the postsupplementation session PP2 and PP3 increased in creatine supplemented group (from 642.7±148.6 to 825.1±205.2 in PP2 and from 522.9±117.5 to 683.0±148.0 in PP3, respectively). However, MP increased in β-ALA+Cr during the postsupplementation compared to presupplementation in all exercise sessions (from 586.2±55.4 to 620.6±49.6 in MP1, from 418.1±37.2 to 478.3±30.3 in MP2 and from 362.0±41.3 to 399.1±3 in MP3, respectively). FI did not change with beta alanine and beta alanine plus creatine supplementation during the postsupplementation exercise session. Beta-alanine and beta alanine plus creatine supplementations have strong performance enhancing effect by increasing mean power and delaying fatigue Index during the repeated WAnT.

  19. Changes in N-acetylglutamate are involved in regulating urea synthesis in rats given a low gluten diet supplemented with L-lysine, L-methinone and L-threonine.

    PubMed

    Tujioka, Kazuyo; Tuchiya, Tamami; Shi, Xianglan; Ohsumi, Miho; Hayase, Kazutoshi; Yokogoshi, Hidehiko

    2009-01-01

    We have shown that urinary urea excretion decreased in rats fed a low gluten diet supplemented with dietary limiting amino acids. The purpose of present study was to determine whether the addition of dietary limiting amino acids to a low gluten diet affected the synthesis and degradation of N-acetylglutamate and regulated urea synthesis. Experiments were done on two groups of rats, given diets containing 10% gluten or 10% gluten+0.5% L-lysine, 0.2% L-threonine and 0.2% L-methionine for 10 d. The urinary excretion of urea, and the liver concentration of N-acetylglutamate, and the liver activity of N-acetylglutamate synthetase decreased with the addition of dietary L-lysine, L-threonine and L-methionine. N-Acetylglutamate concentration in the liver was closely correlated with the N-acetylglutamate synthetase activity in the liver and excretion of urea. The greater degradation of N-acetylglutamate was observed in the group fed the 10% gluten+L-lysine, L-threonine and L-methionine. The hepatic concentration of glutamate and plasma concentration of arginine were not related to the N-acetylglutamate concentration in the liver. These results suggest that the addition of limiting amino acids to the low gluten diet controls the synthesis and degradation of N-acetylglutamate in the liver and lowers urea synthesis.

  20. Fluorenone based fluorescent probe for selective "turn-on" detection of pyrophosphate and alanine

    NASA Astrophysics Data System (ADS)

    Daniel Thangadurai, T.; Nithya, I.; Manjubaashini, N.; Bhuvanesh, N.; Bharathi, G.; Nandhakumar, R.; Nataraj, D.

    2018-06-01

    To sense biologically important entities with different size and dimensions, a fluorenone based fluorescent receptor was designed and synthesized. Probe 1 displayed a distinct fluorescence enhancement emission at 565 nm for pyrophosphate and 530 nm for alanine in polar solvent. The fluorescence titration experiments confirm 1:1 stoichiometric ratio with high-binding constant and very low limit of detection (LoD) values. Receptor 1 showed a highly selective and sensitive recognition to HP2O73 - and to alanine over other competitive anions and amino acids. In addition, the fluorescence lifetime measurement and reversible binding study results support the practical importance of 1.

  1. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity.

    PubMed

    Hänchen, Anne; Rausch, Saskia; Landmann, Benjamin; Toti, Luigi; Nusser, Antje; Süssmuth, Roderich D

    2013-03-18

    The antibiotic feglymycin is a linear 13-mer peptide synthesized by the bacterium Streptomyces sp. DSM 11171. It mainly consists of the nonproteinogenic amino acids 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine. An alanine scan of feglymycin was performed by solution-phase peptide synthesis in order to assess the significance of individual amino acid side chains for biological activity. Hence, 13 peptides were synthesized from di- and tripeptide building blocks, and subsequently tested for antibacterial activity against Staphylococcus aureus strains. Furthermore we tested the inhibition of peptidoglycan biosynthesis enzymes MurA and MurC, which are inhibited by feglymycin. Whereas the antibacterial activity is significantly based on the three amino acids D-Hpg1, L-Hpg5, and L-Phe12, the inhibitory activity against MurA and MurC depends mainly on L-Asp13. The difference in the position dependence for antibacterial activity and enzyme inhibition suggests multiple molecular targets in the modes of action of feglymycin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermal Condensation of Glycine and Alanine on Metal Ferrite Surface: Primitive Peptide Bond Formation Scenario.

    PubMed

    Iqubal, Md Asif; Sharma, Rachana; Jheeta, Sohan; Kamaluddin

    2017-03-27

    The amino acid condensation reaction on a heterogeneous mineral surface has been regarded as one of the important pathways for peptide bond formation. Keeping this in view, we have studied the oligomerization of the simple amino acids, glycine and alanine, on nickel ferrite (NiFe₂O₄), cobalt ferrite (CoFe₂O₄), copper ferrite (CuFe₂O₄), zinc ferrite (ZnFe₂O₄), and manganese ferrite (MnFe₂O₄) nanoparticles surfaces, in the temperature range from 50-120 °C for 1-35 days, without applying any wetting/drying cycles. Among the metal ferrites tested for their catalytic activity, NiFe₂O₄ produced the highest yield of products by oligomerizing glycine to the trimer level and alanine to the dimer level, whereas MnFe₂O₄ was the least efficient catalyst, producing the lowest yield of products, as well as shorter oligomers of amino acids under the same set of experimental conditions. It produced primarily diketopiperazine (Ala) with a trace amount of alanine dimer from alanine condensation, while glycine was oligomerized to the dimer level. The trend in product formation is in accordance with the surface area of the minerals used. A temperature as low as 50 °C can even favor peptide bond formation in the present study, which is important in the sense that the condensation process is highly feasible without any sort of localized heat that may originate from volcanoes or hydrothermal vents. However, at a high temperature of 120 °C, anhydrides of glycine and alanine formation are favored, while the optimum temperature for the highest yield of product formation was found to be 90 °C.

  3. Molecular and chiral analyses of some protein amino acid derivatives in the Murchison and Murray meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Cooper, George W.

    2001-07-01

    The varied organic suite extracted from the Murchison meteorite contains several amino acids that are common to the biosphere. Some of these have been found to be non-racemic, but the indigenous nature of their L-enantiomeric excesses has been subject to debate in view of possible terrestrial contamination. We have investigated two amino acids of common terrestrial and meteoritic occurrence, alanine and glutamic acid, and assessed their indigenous enantiomeric ratios in the Murchison and Murray meteorites through the ratios of some of their derivatives. Analyzed were: N-acetyl alanine, ??imino propioacetic acid, N-acetyl glutamic acid and pyroglutamic acid. Both alanine derivatives were found to be racemic, while those of glutamic acid showed L-enantiomeric excesses varying from 16% to 47.2% for pyroglutamic acid, and from 8.6% to 41% for N-acetyl glutamic acid. The ?13C was determined for the two enantiomers of Murchison pyroglutamic acid both before and after acid hydrolysis of the lactam to glutamic acid. The values of +27.7 (D-pyro), +10.0 (L-pyro), +32.2 (D-glu) and +14.6 (L-glu) were obtained. The racemic nature of alanine derivatives strongly suggests that alanine itself, as indigenous to the meteorite, is racemic. The explanation of the L-enantiomeric excesses found for glutamic acid derivatives is less direct; however, the variability of the enantiomeric ratios for these compounds and the distinctly lower ?13C values determined for pyroglutamic L-enantiomer point to a terrestrial contamination, possibly dating to the time of fall.

  4. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  5. Ammonia assimilation and synthesis of alanine, aspartate, and glutamate in Methanosarcina barkeri and Methanobacterium thermoautotrophicum.

    PubMed Central

    Kenealy, W R; Thompson, T E; Schubert, K R; Zeikus, J G

    1982-01-01

    The mechanism of ammonia assimilation in Methanosarcina barkeri and Methanobacterium thermoautotrophicum was documented by analysis of enzyme activities, 13NH3 incorporation studies, and comparison of growth and enzyme activity levels in continuous culture. Glutamate accounted for 65 and 52% of the total amino acids in the soluble pools of M. barkeri and M. thermoautotrophicum. Both organisms contained significant activities of glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase, and glutamate pyruvate transaminase. Hydrogen-reduced deazaflavin-factor 420 or flavin mononucleotide but not NAD, NADP, or ferredoxin was used as the electron donor for glutamate synthase in M. barkeri. Glutamate dehydrogenase activity was not detected in either organism, but alanine dehydrogenase activity was present in M. thermoautotrophicum. The in vivo activity of the glutamine synthetase was verified in M. thermoautotrophicum by analysis of 13NH3 incorporation into glutamine, glutamate, and alanine. Alanine dehydrogenase and glutamine synthetase activity varied in response to [NH4+] when M. thermoautotrophicum was cultured in a chemostat with cysteine as the sulfur source. Alanine dehydrogenase activity and growth yield (grams of cells/mole of methane) were highest when the organism was cultured with excess ammonia, whereas growth yield was lower and glutamine synthetase was maximal when ammonia was limiting. PMID:6122678

  6. The Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  7. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase.

    PubMed

    Santana, A; Salido, E; Torres, A; Shapiro, L J

    2003-06-10

    Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 --> Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 --> Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation.

  8. Neutron inelastic scattering by amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaper, C.L.; Sinha, S.K.; Dasannacharya, B.A.

    Inelastic neutron scattering experiments on normal, N-deuterated glycine, normal and N-deuterated alanine, L-valine, L-tyrosine and, L-phenylalanine at 100 K, are reported. Coupling of the external modes to different hydrogens is discussed.

  9. Conformational Changes of the Alanine Dipeptide in Water-Ethanol Binary Mixtures.

    PubMed

    Almeida, Glauco G; Cordeiro, João M M; Martín, M Elena; Aguilar, Manuel A

    2016-04-12

    Experimental work developed in the last years has evidenced the capacity of alcohols and polyalcohols to modify the energy landscape of peptides and proteins. However, the mechanism underlying this effect is not clear. Taking as a model system the alanine dipeptide (AD) we perform a QM/MM study in water, ethanol, and a 40-60% in volume water-ethanol mixture. The AD molecule was described at the MP2/aug-cc-pVDZ level. In polar solution, only αR and PPII conformers contribute in an appreciable way to the conformational equilibrium. The final in solution αR-PPII free energy difference is determined from the interplay between the internal energy of the dipeptide and the solute-solvent interaction free energy. Internal energy favors the formation of PPII, whereas, on the contrary, solute-solvent interaction is favorable to αR, so any factor that decreases the solute-solvent interaction free energy will increase the PPII population. The addition of ethanol increases the stability of the PPII conformer. Our results point to the presence of preferential solvation in this system, the composition of the first solvation shell in the binary mixture being dominated by water molecules. Remarkably, this fact does not affect the differential conformational stability that is controlled by long-range interactions. From the analysis of solvent density maps it is concluded that, in the water-ethanol mixture, ethanol molecules are more likely found around the alanine side chain and the carbonyl group, but while in PPII ethanol molecules interact mainly with the carbonyl group of the N-terminal end, in C5 the interaction is with the carbonyl group of the C-terminal end. In αR, ethanol interacts with both carbonyl groups.

  10. β-alanine supplementation improves tactical performance but not cognitive function in combat soldiers

    PubMed Central

    2014-01-01

    Background There are no known studies that have examined β-alanine supplementation in military personnel. Considering the physiological and potential neurological effects that have been reported during sustained military operations, it appears that β-alanine supplementation may have a potential benefit in maintaining physical and cognitive performance during high-intensity military activity under stressful conditions. The purpose of this study was to examine the effect of 28 days of β-alanine ingestion in military personnel while fatigued on physical and cognitive performance. Methods Twenty soldiers (20.1 ± 0.9 years) from an elite combat unit were randomly assigned to either a β-alanine (BA) or placebo (PL) group. Soldiers were involved in advanced military training, including combat skill development, navigational training, self-defense/hand-to-hand combat and conditioning. All participants performed a 4-km run, 5-countermovement jumps using a linear position transducer, 120-m sprint, a 10-shot shooting protocol with assault rifle, including overcoming a misfire, and a 2-min serial subtraction test to assess cognitive function before (Pre) and after (Post) 28 days of supplementation. Results The training routine resulted in significant increases in 4-km run time for both groups, but no between group differences were seen (p = 0.597). Peak jump power at Post was greater for BA than PL (p = 0.034), while mean jump power for BA at Post was 10.2% greater (p = 0.139) than PL. BA had a significantly greater (p = 0.012) number of shots on target at Post (8.2 ± 1.0) than PL (6.5 ± 2.1), and their target engagement speed at Post was also significantly faster (p = 0.039). No difference in serial subtraction performance was seen between the groups (p = 0.844). Conclusion Results of this study indicate that 4-weeks of β-alanine ingestion in young, healthy soldiers did not impact cognitive performance, but did enhance power

  11. Mutual orientation of three magnetic tensors in a polycrystalline dipeptide by dipole-modulated 15N chemical shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Hartzell, C. J.; Pratum, T. K.; Drobny, G.

    1987-10-01

    This study demonstrates the mutual orientation of three tensor interactions in a single NMR experiment. The orientation of the 15N chemical shift tensor relative to the molecular frame has thus been determined in polycrystalline L-[1-13C] alanyl-L-[15N] alanine. The 13C-15N and 15N-1H dipole interactions are determined using the 1H dipole-modulated, 13C dipole-coupled 15N spectrum obtained as a transform of the data in t2. From simulations of the experimental spectra, two sets of polar angles have been determined relating the 13C-15N and 15N-1H dipoles to the 15N chemical shift tensor. The values determined are βCN =106°, αCN =5° and βNH =-19°, αNH =12°. The experiment verifies, without reference to single crystal data, that σ33 lies in the peptide plane and σ22 is nearly perpendicular to the plane.

  12. Thermal Condensation of Glycine and Alanine on Metal Ferrite Surface: Primitive Peptide Bond Formation Scenario

    PubMed Central

    Iqubal, Md. Asif; Sharma, Rachana; Jheeta, Sohan; Kamaluddin

    2017-01-01

    The amino acid condensation reaction on a heterogeneous mineral surface has been regarded as one of the important pathways for peptide bond formation. Keeping this in view, we have studied the oligomerization of the simple amino acids, glycine and alanine, on nickel ferrite (NiFe2O4), cobalt ferrite (CoFe2O4), copper ferrite (CuFe2O4), zinc ferrite (ZnFe2O4), and manganese ferrite (MnFe2O4) nanoparticles surfaces, in the temperature range from 50–120 °C for 1–35 days, without applying any wetting/drying cycles. Among the metal ferrites tested for their catalytic activity, NiFe2O4 produced the highest yield of products by oligomerizing glycine to the trimer level and alanine to the dimer level, whereas MnFe2O4 was the least efficient catalyst, producing the lowest yield of products, as well as shorter oligomers of amino acids under the same set of experimental conditions. It produced primarily diketopiperazine (Ala) with a trace amount of alanine dimer from alanine condensation, while glycine was oligomerized to the dimer level. The trend in product formation is in accordance with the surface area of the minerals used. A temperature as low as 50 °C can even favor peptide bond formation in the present study, which is important in the sense that the condensation process is highly feasible without any sort of localized heat that may originate from volcanoes or hydrothermal vents. However, at a high temperature of 120 °C, anhydrides of glycine and alanine formation are favored, while the optimum temperature for the highest yield of product formation was found to be 90 °C. PMID:28346388

  13. Proline derivatives in fruits of bergamot (Citrus bergamia Risso et Poit): presence of N-methyl-L-proline and 4-hydroxy-L-prolinebetaine.

    PubMed

    Servillo, Luigi; Giovane, Alfonso; Balestrieri, Maria Luisa; Cautela, Domenico; Castaldo, Domenico

    2011-01-12

    The content of proline and various compounds deriving from its metabolism (4-hydroxy-L-proline, N-methyl-L-proline, N,N-dimethylproline, and 4-hydroxy-L-prolinebetaine) was determined in fruits and seeds of Bergamot (Citrus bergamia Risso et Poit), growing in the Calabria region (South Italy). A HPLC-ESI-tandem mass spectrometry method, which allowed rapid determination of L-proline, 4-hydroxy-L-proline, N-methyl-L-proline, N,N-dimethylproline, and 4-hydroxy-L-prolinebetaine in juice and extracts of bergamot fruit with minimum sample preparation and short analysis time (about 10 min), is presented. Proline and 4-hydroxy-L-proline levels in the samples were also determined by HPLC analysis with fluorescence detection and the results compared to those obtained with HPLC-ESI-tandem mass spectrometry. For the first time, the presence of N-methyl-L-proline and 4-hydroxy-L-prolinebetaine in the fruits of a plant of the Citrus genus is reported.

  14. Widespread Microbial Adaptation to l-Glutamate-N,N-diacetate (L-GLDA) Following Its Market Introduction in a Consumer Cleaning Product.

    PubMed

    Itrich, Nina R; McDonough, Kathleen M; van Ginkel, Cornelis G; Bisinger, Ed C; LePage, Jim N; Schaefer, Edward C; Menzies, Jennifer Z; Casteel, Kenneth D; Federle, Thomas W

    2015-11-17

    l-Glutamate-N,N-diacetate (L-GLDA) was recently introduced in the United States (U.S.) market as a phosphate replacement in automatic dishwashing detergents (ADW). Prior to introduction, L-GLDA exhibited poor biodegradation in OECD 301B Ready Biodegradation Tests inoculated with sludge from U.S. wastewater treatment plants (WWTPs). However, OECD 303A Activated Sludge WWTP Simulation studies showed that with a lag period to allow for growth (40-50 days) and a solids retention time (SRT) that allows establishment of L-GLDA degraders (>15 days), significant biodegradation (>80% dissolved organic carbon removal) would occur. Corresponding to the ADW market launch, a study was undertaken to monitor changes in the ready biodegradability of L-GLDA using activated sludge samples from various U.S. WWTPs. Initially all sludge inocula showed limited biodegradation ability, but as market introduction progressed, both the rate and extent of degradation increased significantly. Within 22 months, L-GLDA was ready biodegradable using inocula from 12 WWTPs. In an OECD 303A study repeated 18 months post launch, significant and sustained carbon removal (>94%) was observed after a 29-day acclimation period. This study systematically documented field adaptation of a new consumer product chemical across a large geographic region and confirmed the ability of laboratory simulation studies to predict field adaptation.

  15. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  16. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  17. Alanine scanning of the rabies virus glycoprotein antigenic site III using recombinant rabies virus: implication for post-exposure treatment.

    PubMed

    Papaneri, Amy B; Wirblich, Christoph; Marissen, Wilfred E; Schnell, Matthias J

    2013-12-02

    The safety and availability of the human polyclonal sera that is currently utilized for post-exposure treatment (PET) of rabies virus (RABV) infection remain a concern. Recombinant monoclonal antibodies have been postulated as suitable alternatives by WHO. To this extent, CL184, the RABV human antibody combination comprising monoclonal antibodies (mAbs) CR57 and CR4098, has been developed and has delivered promising clinical data to support its use for RABV PET. For this fully human IgG1 cocktail, mAbs CR57 and CR4098 are produced in the PER.C6 human cell line and combined in equal amounts in the final product. During preclinical evaluation, CR57 was shown to bind to antigenic site I whereas CR4098 neutralization was influenced by a mutation of position 336 (N336) located within antigenic site III. Here, alanine scanning was used to analyze the influence of mutations within the potential binding site for CR4098, antigenic site III, in order to evaluate the possibility of mutated rabies viruses escaping neutralization. For this approach, twenty flanking amino acids (10 upstream and 10 downstream) of the RABV glycoprotein (G) asparagine (N336) were exchanged to alanine (or serine, if already alanine) by site-directed mutagenesis. Analysis of G expression revealed four of the twenty mutant Gs to be non-functional, as shown by their lack of cell surface expression, which is a requirement for the production of infectious RABV. Therefore, these mutants were excluded from further study. The remaining sixteen mutants were introduced in an infectious clone of RABV, and recombinant RABVs (rRABVs) were recovered and utilized for in vitro neutralization assays. All of the viruses were effectively neutralized by CR4098 as well as by CR57, indicating that single amino acid exchanges in this region does not affect the broad neutralizing capability of the CL184 mAb combination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of Beta-Alanine Supplementation on Brain Homocarnosine/Carnosine Signal and Cognitive Function: An Exploratory Study

    PubMed Central

    Hobson, Ruth M; Artioli, Guilherme G.; Otaduy, Maria C.; Roschel, Hamilton; Robertson, Jacques; Martin, Daniel; S. Painelli, Vitor; Harris, Roger C.; Gualano, Bruno

    2015-01-01

    Objectives Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P<0.05), although there was no effect (P>0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists. PMID:25875297

  19. Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study.

    PubMed

    Solis, Marina Yazigi; Cooper, Simon; Hobson, Ruth M; Artioli, Guilherme G; Otaduy, Maria C; Roschel, Hamilton; Robertson, Jacques; Martin, Daniel; S Painelli, Vitor; Harris, Roger C; Gualano, Bruno; Sale, Craig

    2015-01-01

    Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d(-1) on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P < 0.05), although there was no effect (P>0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. 28 d of beta-alanine supplementation at 6.4 g d(-1) appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists.

  20. Mechanism of allosteric inhibition of N-acetyl-L-glutamate synthase by L-arginine.

    PubMed

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2009-02-20

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of l-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by approximately 10 A and decreases its height by approximately 20A(.) AAK dimers move 5A outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by approximately 4 degrees . The NAT domains rotate approximately 109 degrees relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the l-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.

  1. Naturally Inspired Peptide Leads: Alanine Scanning Reveals an Actin‐Targeting Thiazole Analogue of Bisebromoamide

    PubMed Central

    Johnston, Heather J.; Boys, Sarah K.; Makda, Ashraff; Carragher, Neil O.

    2016-01-01

    Abstract Systematic alanine scanning of the linear peptide bisebromoamide (BBA), isolated from a marine cyanobacterium, was enabled by solid‐phase peptide synthesis of thiazole analogues. The analogues have comparable cytotoxicity (nanomolar) to that of BBA, and cellular morphology assays indicated that they target the actin cytoskeleton. Pathway inhibition in human colon tumour (HCT116) cells was explored by reverse phase protein array (RPPA) analysis, which showed a dose‐dependent response in IRS‐1 expression. Alanine scanning reveals a structural dependence to the cytotoxicity, actin targeting and pathway inhibition, and allows a new readily synthesised lead to be proposed. PMID:27304907

  2. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes.

    PubMed

    Uchiyama, Taku; Miyazaki, Kentaro

    2010-11-01

    A reporter assay-based screening method for enzymes, which we named product-induced gene expression (PIGEX), was developed and used to screen a metagenomic library for amidases. A benzoate-responsive transcriptional activator, BenR, was placed upstream of the gene encoding green fluorescent protein and used as a sensor. Escherichia coli sensor cells carrying the benR-gfp gene cassette fluoresced in response to benzoate concentrations as low as 10 μM but were completely unresponsive to the substrate benzamide. An E. coli metagenomic library consisting of 96,000 clones was grown in 96-well format in LB medium containing benzamide. The library cells were then cocultivated with sensor cells. Eleven amidase genes were recovered from 143 fluorescent wells; eight of these genes were homologous to known bacterial amidase genes while three were novel genes. In addition to their activity toward benzamide, the enzymes were active toward various substrates, including d- and l-amino acid amides, and displayed enantioselectivity. Thus, we demonstrated that PIGEX is an effective approach for screening novel enzymes based on product detection.

  3. Straightforward synthesis of non-natural L-chalcogen and L-diselenide N-Boc-protected-γ-amino acid derivatives.

    PubMed

    Kawasoko, Cristiane Y; Foletto, Patricia; Rodrigues, Oscar E D; Dornelles, Luciano; Schwab, Ricardo S; Braga, Antonio L

    2013-08-21

    The synthesis of new chiral seleno-, telluro-, and thio-N-Boc-γ-amino acids is described herein. These new compounds were prepared through a simple and short synthetic route, from the inexpensive and commercially-available amino acid L-glutamic acid. The products, with a highly modular character, were obtained in good to excellent yields, via hydrolysis of chalcogen pyroglutamic derivatives with overall retention of the L-glutamic acid stereochemistry. Also, an L-diselenide-N-Boc-γ-amino acid was prepared in good yield. This new synthetic route represents an efficient method for preparing new L-chalcogen- and L-diselenide-γ-amino acids with biological potential.

  4. Ligand electronic parameters as a measure of the polarization of the C≡O bond in [M(CO)(x)L(y)]n complexes and of the relative stabilization of [M(CO)(x)L(y)](n/n+1) species.

    PubMed

    Zobi, Fabio

    2010-11-15

    The electronic description of octahedral (fac-[M(CO)(3)L(3)](n), with M = Re, Ru, and Mn, and [Cr(CO)(5)L](n)), square-planar (cis-[Pt(CO)(2)L(2)](n)), and tetrahedral ([Ni(CO)(3)L](n)) carbonyl complexes (where L = monodentate ligand) was obtained via density functional theory and natural population analyses in order to understand what effects are probed in these species by vibrational spectroscopy and electrochemistry as a function of the ligand electronic parameter of the associated L. The analysis indicates that while ligand electronic parameters may be considered as a measure of the net donor power of the ligand, the net transfer of the electron density (or charge) does not occur from the ligand to the metal ion. In [M(CO)(x)L(y)](n) carbonyl species, the charge transfer occurs from the ligand L to the oxygen atom of the bound carbon monoxides. This charge transfer translates into changes of the polarization (or permanent dipole) and the covalency of the C≡O bonds, and it is this effect that is probed in IR spectroscopy. As the analysis shifts from IR radiations to electrochemical potentials, the parameters best describe the relative thermodynamic stability of the oxidized and reduced [M(CO)(x)L(y)](n/n+1) species. No relationship is found between the metal natural charge of the [M(CO)(x)L(y)](n) fragments analyzed and the parameters. Brief considerations are given on the possible design of CO-releasing molecules.

  5. Primary hyperoxaluria type 1 in the Canary Islands: A conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase

    PubMed Central

    Santana, A.; Salido, E.; Torres, A.; Shapiro, L. J.

    2003-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 → Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 → Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation. PMID:12777626

  6. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1985-01-01

    The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.

  7. Mass Spectrometric Analysis of l-Cysteine Metabolism: Physiological Role and Fate of l-Cysteine in the Enteric Protozoan Parasite Entamoeba histolytica

    PubMed Central

    Jeelani, Ghulam; Sato, Dan; Soga, Tomoyoshi; Watanabe, Haruo

    2014-01-01

    ABSTRACT l-Cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, l-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as Entamoeba histolytica, l-cysteine has been implicated in growth, attachment, survival, and protection from oxidative stress. However, a specific role of this amino acid or related metabolic intermediates is not well understood. In this study, using stable-isotope-labeled l-cysteine and capillary electrophoresis-time of flight mass spectrometry, we investigated the metabolism of l-cysteine in E. histolytica. [U-13C3, 15N]l-cysteine was rapidly metabolized into three unknown metabolites, besides l-cystine and l-alanine. These metabolites were identified as thiazolidine-4-carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid (MT4C), and 2-ethyl-thiazolidine-4-carboxylic acid (ET4C), the condensation products of l-cysteine with aldehydes. We demonstrated that these 2-(R)-thiazolidine-4-carboxylic acids serve for storage of l-cysteine. Liberation of l-cysteine occurred when T4C was incubated with amebic lysates, suggesting enzymatic degradation of these l-cysteine derivatives. Furthermore, T4C and MT4C significantly enhanced trophozoite growth and reduced intracellular reactive oxygen species (ROS) levels when it was added to cultures, suggesting that 2-(R)-thiazolidine-4-carboxylic acids are involved in the defense against oxidative stress. PMID:25370494

  8. Effects of 4 Weeks of β-Alanine Supplementation on Swim-Performance Parameters in Water Polo Players.

    PubMed

    Brisola, Gabriel Motta Pinheiro; Milioni, Fabio; Papoti, Marcelo; Zagatto, Alessandro Moura

    2017-08-01

    In water polo, several high-intensity efforts are performed, leading to the fatigue process due to accumulation of hydrogen ions, and thus β-alanine supplementation could be an efficient strategy to increase the intramuscular acid buffer. Purpose To investigate whether 4 wk of β-alanine supplementation enhances parameters related to water polo performance. Methods Twenty-two highly trained male water polo players of national level were randomly assigned to receive 28 d of either β-alanine or a placebo (4.8 g/d of the supplement in the first 10 d and 6.4 g/d in the final 18 d). The participants performed 30-s maximal tethered swimming (30TS), 200-m swimming (P200m), and 30-s crossbar jumps (30CJ) before and after the supplementation period. Results The β-alanine group presented significant increases in 30TS for mean force (P = .04; Δ = 30.5% ± 40.4%) and integral of force (P = .05; Δ = 28.0% ± 38.0%), as well as P200m (P = .05; Δ = -2.2% ± 2.6%), while the placebo group did not significantly differ for mean force (P = .13; Δ = 24.1% ± 33.7%), integral of force (P = .12; Δ = 24.3% ± 35.1%), or P200m (P = .10; Δ = -1.6% ± 3.8%). However, there was no significant group effect for any variable, and the magnitude-based-inference analysis showed unclear outcomes between groups (Cohen d ± 95%CL mean force = 0.16 ± 0.83, integral of force = 0.12 ± 0.84, and P200m = 0.05 ± 0.30). For 30CJ the results were similar, with improvements in both groups (placebo, Δ = 14.9% ± 14.1%; β-alanine, Δ = 16.9% ± 18.5%) but with no significant interaction effect between groups and an unclear effect (0.14 ± 0.75). Conclusion Four weeks of β-alanine supplementation does not substantially improve performance of 30TS, P200m, or 30CJ in highly trained water polo athletes compared with a control group.

  9. HIIT Augments Muscle Carnosine in the Absence of Dietary Beta-Alanine Intake.

    PubMed

    Salles Painelli, Vitor de; Nemezio, Kleiner Márcio; Jéssica, Ana; Franchi, Mariana; Andrade, Isabel; Riani, Luiz Augusto; Saunders, Bryan; Sale, Craig; Harris, Roger Charles; Gualano, Bruno; Artioli, Guilherme Giannini

    2018-06-21

    Cross-sectional studies suggest that training can increase muscle carnosine (MCarn), although longitudinal studies have failed to confirm this. A lack of control for dietary β-alanine intake or muscle fibre type shifting may have hampered their conclusions. The purpose of the present study was to investigate the effects of high-intensity interval training (HIIT) on MCarn. Twenty vegetarian men were randomly assigned to a control (CON; n=10) or HIIT (n=10) group. HIIT was carried out on a cycle ergometer for 12 weeks, with progressive volume (6-12 series) and intensity (140-170% lactate threshold [LT]). MCarn was quantified in whole-muscle and individual fibres; expression of selected genes (CARNS, CNDP2, ABAT, TauT and PAT1) and muscle buffering capacity in vitro (βmin vitro) were also determined. Exercise tests were performed to evaluate total work done (TWD), VO2max, ventilatory thresholds (VT) and LT. TWD, VT, LT, VO2max and βmin vitro were improved in the HIIT group (all P<0.05), but not in CON (p>0.05). MCarn (in mmol·kg dry muscle) increased in the HIIT (15.8±5.7 to 20.6±5.3; p=0.012) but not the CON group (14.3±5.3 to 15.0±4.9; p=0.99). In type I fibres, MCarn increased in the HIIT (from 14.4±5.9 to 16.8±7.6; p=0.047) but not the CON group (from 14.0±5.5 to 14.9±5.4; p=0.99). In type IIa fibres, MCarn increased in the HIIT group (from 18.8±6.1 to 20.5±6.4; p=0.067) but not the CON group (from 19.7±4.5 to 18.8±4.4; p=0.37). No changes in gene expression were shown. In the absence of any dietary intake of β-alanine, HIIT increased MCarn content. The contribution of increased MCarn to the total increase in βmin vitro appears to be small.

  10. Mass spectrometry characterization for N-glycosylation of immunoglobulin Y from hen egg yolk.

    PubMed

    Sheng, Long; He, Zhenjiao; Liu, Yaping; Ma, Meihu; Cai, Zhaoxia

    2018-03-01

    Immunoglobulin Y (IgY) is a new therapeutic antibody that exists in hen egg yolk. It is a glycoprotein, not much is known about its N-glycan structures, site occupancy and site-specific N-glycosylation. In this study, purified protein from hen egg yolk was identified as IgY based on SDS-PAGE and MALDI-TOF/TOF MS. N-glycan was released from IgY using peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase treatment, and the molecular weight of IgY was calculated using the difference between the molecular weight of IgY and deglycosylated IgY. Two potential N-Glycosylation sites (ASN 308 and ASN 409 ) were detected on IgY by nanoLC-ESI MS. Sugar chains were separated using normal phase liquid chromatography after fluorescence labeling, and 17 N-glycan structures were confirmed using ESI-MS. The sugar chain pattern contained high-mannose oligosaccharide, hybrid oligosaccharide and complex oligosaccharide. These results could lead to other important information regarding IgY glycosylation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [Alanine aminotransferase (ALAT, GPT): a reevaluation of exclusion limits for blood donors].

    PubMed

    Grunenberg, R; Banik, N; Krüger, J

    1995-06-01

    The screening policy of alanine aminotransferase (ALT) testing in blood donors was reassessed. The cutoff value for ALT levels according to German guidelines has always been controversial. In this study the activity and distribution of ALT in a blood donor population were reevaluated and new exclusion levels were defined. 5,706 blood donors were tested for ALT activities with the Reflotron system at 37 degrees C. Donors with ALT levels > 51 IU/l were deferred, a detailed physical examination and additional serologic and biochemical testing were done. ALT values of blood donors were transformed in logarithmic values in order to get a Gaussian distribution. The mean transformed value +/- SD was calculated with 1.24 +/- 0.14 for females and with 1.35 +/- 0.16 for males, corresponding to mean values of ALT activity of 17.6 and 22.5 IU/l, respectively. Exclusion levels of > 33.4 IU/l for female and > 46.7 IU/l for male blood donors (geometric mean +2.0 SD) predict a loss of donations of 2.8 and 2.7%, respectively, cutoff values of > 39.1 or > 56.1 IU/l (geometric mean +2.5 SD) a loss of 1.8 and 1.4%, respectively. The most likely causes of elevated ALT levels in 166 of our donors included daily alcohol use (82), infections with/without antibiotic medication (29), therapy with hepatotoxic drugs (8), strenuous exercises (5), bodybuilding complemented by anabolic steroids (2), acute infections with HCV (1), HBV (1) and CMV (1), alcohol/drug abuse and detection of HCV antibodies (1). ALT screening is still considered a useful indicator of risk donors despite its nonspecificity and limited predictive value. The selection of the appropriate cutoff value has always been disputed. The present exclusion level of > 45 IU/l (25 degrees C), analogous to > 81.8 IU/l (37 degrees C), does not even take into account such a variable as sex. The cutoff value above 4.5 SD of the geometric mean for females and above 3.5 SD for males seems to be of limited medical and practical value.

  12. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2014-11-01

    GMXPBSA 2.0 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes. GMXPBSA 2.0 is flexible and can easily be customized to specific needs. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.0 performs different comparative analysis, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complexes trajectories, allowing the study the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS and the Poisson-Boltzmann equation solver APBS. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. The program is freely available under the GPL license.

  13. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica

    2010-01-07

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in L-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by L-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with L-arginine bound and in the active R-state complexed with CoA and L-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of L-arginine to the AAKmore » domain induces a global conformational change that increases the diameter of the hexamer by {approx}10 {angstrom} and decreases its height by {approx}20{angstrom}. AAK dimers move 5{angstrom} outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by {approx}4{sup o}. The NAT domains rotate {approx}109{sup o} relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the L-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.« less

  14. Association between alanine aminotransferase and intracerebral hemorrhage in East Asian populations.

    PubMed

    Kim, Hyeon Chang; Oh, Sun Min; Pan, Wen-Harn; Ueshima, Hirotsugu; Gu, Dongfeng; Chuang, Shao-Yuan; Fujiyoshi, Akira; Li, Ying; Zhao, Liancheng; Suh, Il

    2013-01-01

    Intracerebral hemorrhage (ICH) and chronic liver disease are relatively common in East Asian countries. However, the relationship between the two diseases is unclear. Thus, we investigated the association between serum alanine aminotransferase (ALT) levels and ICH risk in East Asian populations. The East Asian Network for Stroke Prevention enrolled 279,982 participants with ALT measurements from four cohort studies in Korea, Taiwan, Japan and mainland China. Among them, 1,324 ICH events and 493 ICH deaths were observed. Cox's proportional hazard regression analysis was performed in each cohort to estimate the hazard ratio (HR) after adjusting for age, blood pressure, diabetes, total cholesterol, smoking and alcohol intake. Combined HRs were then estimated using pooled analyses with fixed-effects models. The multivariate-adjusted pooled HRs (with 95% confidence interval, CI) for ICH incidence per 10 IU/l increments of ALT were 1.04 (1.03-1.04) in men and 1.01 (0.98-1.04) in women. Corresponding HRs for ICH mortality were 1.04 (1.02-1.05) in men and 1.04 (1.00-1.08) in women. The pooled HRs for ICH incidence in participants with ALT levels greater than or equal to 50 IU/l compared to those with levels less than 20 IU/l were 1.74 (1.41-2.16) in men and 1.60 (1.06-2.40) in women. The corresponding HRs for ICH mortality were 1.72 (1.21-2.44) in men and 1.63 (0.79-3.36) in women. An elevated ALT level was independently and significantly associated with an increased risk of ICH in East Asian men, but the association was less prominent in women. © 2013 S. Karger AG, Basel.

  15. Identification of key residues for the binding of glucagon to the N-terminal domain of its receptor: an alanine scan and modeling study.

    PubMed

    Prévost, M; Vertongen, P; Waelbroeck, M

    2012-10-01

    Glucagon plays an essential role in the glycemia maintenance during fasting, but also aggravates hyperglycemia in diabetic patients. A series of analogues of glucagon were synthesized replacing each amino acid of the C-terminal region (residues 15-29) with alanine. The residues affecting the binding to the glucagon receptor are found to be located on one face of the glucagon helix. Several 3-dimensional models of the N-terminal domain of the glucagon receptor in complex with its ligand peptide were built and used to analyze the peptide-receptor interface in terms of the nature of the peptide residues and the interactions they form with the receptor. The models suggest that glucagon keeps its native helical structure upon binding, and that a large part of the interface formed with the receptor is hydrophobic. We find that in the C-terminal region, F22, V23, M27, and D15 are the most important residues for peptide binding. They bury a large portion of their solvent accessible surface area and make numerous interactions with the receptor mainly of the hydrophobic type. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Therapeutic effects of N-acetyl-L-cysteine on liver damage induced by long-term CCl4 administration.

    PubMed

    Otrubová, Oľga; Turecký, Ladislav; Uličná, Oľga; Janega, Pavol; Luha, Ján; Muchová, Jana

    2018-01-01

    N-acetyl-L-cysteine (NAC) is a drug routinely used in several health problems, e.g. liver damage. There is some information emerged on its negative effects in certain situations. The aim of our study was to examine its ability to influence liver damage induced by long-term burden. We induced liver damage by CCl4 (10 weeks) and monitored the impact of parallel NAC administration (daily 150 mg/kg of b.w.) on liver morphology and some biochemical parameters (triacylglycerols, cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, bile acids, proteins, albumins and cholinesterase). NAC significantly decreased levels of bile acids and bilirubin in plasma and triacylglycerols in liver, all of them elevated by impairment with CCl4. Reduction of cholesterol induced by CCl4 was completely recovered in the presence of NAC as indicated by its elevation to control levels. NAC administration did not improve the histological parameters. Together with protective effects of NAC, we found also its deleterious properties: parallel administration of CCl4 and NAC increased triacylglycerols, ALT and AST activity and significantly increased plasma cholinesterase activity. We have observed nonsignificantly increased percentage of liver tissue fibrosis. Our results have shown that NAC administered simultaneously with liver damaging agent CCl4, exhibits not only protective, but also deleterious effects as indicated by several biochemical parameters.

  17. Assessing microbial utilization of free versus sorbed Alanine by using position-specific 13C labeling and 13C-PLFA analysis

    NASA Astrophysics Data System (ADS)

    Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela

    2016-04-01

    Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the

  18. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  19. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  20. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  1. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  2. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  3. Formation of [b3 - 1 + cat]+ ions from metal-cationized tetrapeptides containing beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid residues.

    PubMed

    Osburn, Sandra M; Ochola, Sila O; Talaty, Erach R; Van Stipdonk, Michael J

    2008-11-01

    The presence and position of a single beta-alanine (betaA), gamma-aminobutyric acid (gammaABu) or epsilon-aminocaproic acid (Cap) residue has been shown to have a significant influence on the formation of b(n)+ and y(n)+ product ions from a series of model, protonated peptides. In this study, we examined the effect of the same residues on the formation of analogous [b3 - 1 + cat]+ products from metal (Li+, Na+ and Ag+)-cationized peptides. The larger amino acids suppress formation of b3+ from protonated peptides with general sequence AAXG (where X = beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid), presumably because of the prohibitive effect of larger cyclic intermediates in the 'oxazolone' pathway. However, abundant [b3 - 1 + cat]+ products are generated from metal-cationized versions of AAXG. Using a group of deuterium-labeled and exchanged peptides, we found that formation of [b3 - 1 + cat]+ involves transfer of either amide or alpha-carbon position H atoms, and the tendency to transfer the atom from the alpha-carbon position increases with the size of the amino acid in position X. To account for the transfer of the H atom, a mechanism involving formation of a ketene product as [b3 - 1 + cat]+ is proposed.

  4. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.

    PubMed

    Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T

    2014-12-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs. © 2014 Wiley Periodicals, Inc.

  5. A new comprehensive technique of catheterisation, blood sampling, sample preparation and sample analysis by means of high-pressure liquid chromatography for pharmacokinetic studies with estradiol-linked nitrosoureas and their metabolites.

    PubMed

    Betsch, B; Berger, M R; Spiegelhalder, B

    1990-09-01

    Estradiol-linked nitrosoureas are offering new perspectives in the antineoplastic chemotherapy of estradiol-receptor positive mammary carcinomas. In such a molecule estradiol has the function of a carrier which brings about a specific accumulation of the anticancer drug in estradiol-receptor containing tumor cells. However, there is only little knowledge about the pharmacokinetic behavior of this new group of anticancer agents. For that reason a new comprehensive technique of catheterisation, blood sampling, sample preparation and sample analysis with high-pressure liquid chromatography (HPLC) for preclinical pharmacokinetic studies with estradiol-linked nitrosoureas and their metabolites has been developed. N-(2-Chloroethyl)-N-nitroso-carbamoyl-L-alanine-estradiol-17-ester (CNC-alanine-estradiol-17-ester) and N-(2-chloroethyl)-N-nitroso-carbamoyl-L-alanine (CNC-alanine) were used as test compounds. The drugs were tested in female Sprague-Dawley rats with chemically induced mammary carcinomas. The laboratory animals were supplied with two catheters prior to the pharmacokinetic experiments. The blood samples were drawn from the vena cava catheter after the drug had been applied through a vena jugularis catheter. The compounds were extracted from plasma with C18 silicagel reversed phase cartridges. The clean-up technique delivered clear samples only slightly contaminated with the biological matrix. The recovery from plasma was 75 +/- 5% for the hormone-linked CNC-alanine-estradiol-17-ester and 70 +/- 5% for the unlinked CNC-alanine. The analysis was carried out by means of HPLC.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Enzymatic production of L-alanyl-L-glutamine by recombinant E. coli expressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis.

    PubMed

    Hirao, Yoshinori; Mihara, Yasuhiro; Kira, Ikuo; Abe, Isao; Yokozeki, Kenzo

    2013-01-01

    An enzymatic production method for synthesizing L-alanyl-L-glutamine (Ala-Gln) from L-alanine methyl ester hydrochloride (AlaOMe) and L-glutamine (Gln) was developed in this study. The cultivation conditions for an Escherichia coli strain overexpressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis AJ 2458 (SAET) and reaction conditions for Ala-Gln production were optimized. A high cell density culture broth prepared by fed-batch cultivation showed 440 units/mL of Ala-Gln-producing activity. In addition, an Ala-Gln-producing reaction using intact E. coli cells overexpressing SAET under optimum conditions was conducted. A total Ala-Gln yield of 69.7 g/L was produced in 40 min. The molar yield was 67% against both AlaOMe and Gln.

  7. The effect of N-acetyl-l-cysteine (NAC) on liver toxicity and clinical outcome after hematopoietic stem cell transplantation.

    PubMed

    El-Serafi, Ibrahim; Remberger, Mats; El-Serafi, Ahmed; Benkessou, Fadwa; Zheng, Wenyi; Martell, Eva; Ljungman, Per; Mattsson, Jonas; Hassan, Moustapha

    2018-05-29

    Busulphan (Bu) is a myeloablative drug used for conditioning prior to hematopoietic stem cell transplantation. Bu is predominantly metabolized through glutathione conjugation, a reaction that consumes the hepatic glutathione. N-acetyl-l-cysteine (NAC) is a glutathione precursor used in the treatment of acetaminophen hepatotoxicity. NAC does not interfere with the busulphan myeloablative effect. We investigated the effect of NAC concomitant treatment during busulphan conditioning on the liver enzymes as well as the clinical outcome. Prophylactic NAC treatment was given to 54 patients upon the start of busulphan conditioning. These patients were compared with 54 historical matched controls who did not receive NAC treatment. In patients treated with NAC, aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were significantly (P < 0.05) decreased after conditioning compared to their start values. Within the NAC-group, liver enzymes were normalized in those patients (30%) who had significantly high start values. No significant decrease in enzyme levels was observed in the control group. Furthermore, NAC affected neither Bu kinetics nor clinical outcome (sinusoidal obstruction syndrome incidence, graft-versus-host disease and/or graft failure). NAC is a potential prophylactic treatment for hepatotoxicity during busulphan conditioning. NAC therapy did not alter busulphan kinetics or affect clinical outcome.

  8. The effect of a high protein diet on leucine and alanine turnover in acid maltase deficiency.

    PubMed Central

    Umpleby, A M; Trend, P S; Chubb, D; Conaglen, J V; Williams, C D; Hesp, R; Scobie, I N; Wiles, C M; Spencer, G; Sönksen, P H

    1989-01-01

    Leucine and alanine production rate was measured in 5 patients with acid maltase deficiency in the postabsorptive state, following 6 months on a normal diet with placebo and 6 months on an isocaloric high protein diet (16-22% protein). Whole body leucine production rate, a measure of protein degradation, expressed in terms of lean body mass was significantly greater than in five control subjects. Following the high protein diet, leucine production rate was decreased in four of the five patients but this was not statistically significant. Alanine production rate expressed in terms of lean body mass was significantly greater than in control subjects. After the high protein diet, alanine production rate and concentration were significantly decreased (p less than 0.05). There were no significant improvements in any of the clinically relevant variables measured in these patients. It is possible that a larger increase in protein intake over a longer time period may have a clinical effect. PMID:2507747

  9. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers.

    PubMed

    Tia, Maurice; Cunha de Miranda, Barbara; Daly, Steven; Gaie-Levrel, François; Garcia, Gustavo A; Nahon, Laurent; Powis, Ivan

    2014-04-17

    The valence shell photoionization of the simplest proteinaceous chiral amino acid, alanine, is investigated over the vacuum ultraviolet region from its ionization threshold up to 18 eV. Tunable and variable polarization synchrotron radiation was coupled to a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer to produce mass-selected threshold photoelectron spectra and derive the state-selected fragmentation channels. The photoelectron circular dichroism (PECD), an orbital-sensitive, conformer-dependent chiroptical effect, was also recorded at various photon energies and compared to continuum multiple scattering calculations. Two complementary vaporization methods-aerosol thermodesorption and a resistively heated sample oven coupled to an adiabatic expansion-were applied to promote pure enantiomers of alanine into the gas phase, yielding neutral alanine with different internal energy distributions. A comparison of the photoelectron spectroscopy, fragmentation, and dichroism measured for each of the vaporization methods was rationalized in terms of internal energy and conformer populations and supported by theoretical calculations. The analytical potential of the so-called PECD-PICO detection technique-where the electron spectroscopy and circular dichroism can be obtained as a function of mass and ion translational energy-is underlined and applied to characterize the origin of the various species found in the experimental mass spectra. Finally, the PECD findings are discussed within an astrochemical context, and possible implications regarding the origin of biomolecular asymmetry are identified.

  10. Thermodynamics of DL-alanine solvation in water-dimethylsulfoxide mixtures at 298.15 K

    NASA Astrophysics Data System (ADS)

    Roy, S.; Mahali, K.; Mondal, S.; Dolui, B. K.

    2015-04-01

    In this study we mainly discuss the transfer Gibbs free energy Δ G {/t 0}( i) and Δ S {/t 0}( i)entropy of DL-alanine at 298.15 K and consequently the involved chemical transfer free energy (Δ G {/t,ch 0}( i)) and entropy ( TΔ S {/t,ch 0}( i)) in aqueous mixtures of dimethylsulfoxide are discussed to clarify the solvation chemistry of DL-alanine. For the evaluation of these energy terms, solubility of this amino acid has been measured by formol titrimetry at five equidistant temperatures i.e., from 288.15 to 308.15 K in different composition of this mixed solvent system. The various solvent parameters as well as thermodynamic parameters like molar volume, density, dipole moment and solvent diameter of this solvent system have also been reported here. The chemical effects of the transfer Gibbs energies (Δ G {/t,ch 0}( i)) and entropies of transfer ( TΔ S {/t,ch 0}( i)) have been obtained after elimination of cavity effect and dipole-dipole interaction effects from the total transfer energies. Here the chemical contribution of transfer energetics of DL-alanine is mainly guided by the composite effects of increased dispersion interaction, basicity effect and decreased acidity, hydrogen bonding effects, hydrophilic hydration and hydrophobic hydration of aqueous DMSO mixtures as compared to that of reference solvent, water.

  11. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    PubMed

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-09-05

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  12. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    PubMed

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  13. A highly stable l-alanine-based mono(aquated) Mn(ii) complex as a T1-weighted MRI contrast agent.

    PubMed

    Khannam, Mahmuda; Weyhermüller, Thomas; Goswami, Upashi; Mukherjee, Chandan

    2017-08-08

    The synthesized lithium (S)-6,6'-(1-carboxyethylazanediyl)bis(methylene)dipicolinate (Li 3 cbda) is a new chiral, alanine-based ligand bearing two picolinate functionalities. The trianionic form of the ligand [(cbda) 3- ] constitutes a seven-coordinate, water-soluble, pentagonal bipyramidal Mn(ii) complex (1). The structural analysis reveals the presence of a water coordinating site in the complex. The complex is thermodynamically very stable, and the stability is not affected by the presence of physiological anions (HCO 3 - , PO 4 3- , and F - ). The pH of the medium exerts a small effect on the stability of the complex. The r 1 relaxivity of 3.02 mM -1 s -1 is exhibited by the complex at 1.41 T, pH ∼7.4, and 25 °C. Phantom images obtained via a clinical MRI BRIVO MR355 system established concentration-dependent signal enhancement by the complex. The cytotoxicity test confirmed complex 1 as a biocompatible potential T 1 -weighted MRI contrast agent.

  14. Analysis of alanine aminotransferase in various organs of soybean (Glycine max) and in dependence of different nitrogen fertilisers during hypoxic stress.

    PubMed

    Rocha, Marcio; Sodek, Ladaslav; Licausi, Francesco; Hameed, Muhammad Waqar; Dornelas, Marcelo Carnier; van Dongen, Joost T

    2010-10-01

    Alanine aminotransferase (AlaAT) catalyses the reversible conversion of pyruvate and glutamate into alanine and oxoglutarate. In soybean, two subclasses were identified, each represented by two highly similar members. To investigate the role of AlaAT during hypoxic stress in soybean, changes in transcript level of both subclasses were analysed together with the enzyme activity and alanine content of the tissue. Moreover, the dependency of AlaAT activity and gene expression was investigated in relation to the source of nitrogen supplied to the plants. Using semi-quantitative PCR, GmAlaAT genes were determined to be highest expressed in roots and nodules. Under normal growth conditions, enzyme activity of AlaAT was detected in all organs tested, with lowest activity in the roots. Upon waterlogging-induced hypoxia, AlaAT activity increased strongly. Concomitantly, alanine accumulated. During re-oxygenation, AlaAT activity remained high, but the transcript level and the alanine content decreased. Our results show a role for AlaAT in the catabolism of alanine during the initial period of re-oxygenation following hypoxia. GmAlaAT also responded to nitrogen availability in the solution during waterlogging. Ammonium as nitrogen source induced both gene expression and enzyme activity of AlaAT more than when nitrate was supplied in the nutrient solution. The work presented here indicates that AlaAT might not only be important during hypoxia, but also during the recovery phase after waterlogging, when oxygen is available to the tissue again.

  15. 40 CFR 721.3820 - L-Glutamic acid, N-(1-oxododecyl)-, disodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Specific Chemical Substances § 721.3820 L-Glutamic acid, N-(1-oxododecyl)-, disodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic...

  16. Erythrocytes L-arginine y+ transporter inhibition by N-ethylmaleimide in ice-bath.

    PubMed

    Pinheiro da Costa, Bartira Ercília; de Almeida, Priscilla Barcellos; Conceição, Ioná Rosine; Antonello, Ivan Carlos Ferreira; d'Avila, Domingos O; Poli-de-Figueiredo, Carlos Eduardo

    2010-11-01

    Erythrocytes L: -arginine uptake is conveyed by y+ and y+L membrane transport systems. Pre-incubation with N-ethylmaleimide for 10 min at 37°C inhibits the y+ system. The aim of this study was to determine the ideal pre-incubation temperature in evaluating y+ and y+L systems. Cells were pre-incubated with or without N-ethylmaleimide for 10 min at 4°C and 37°C. L: -Arginine uptake was quantified by radioisotope and standard erythrocytes membrane flux methodology. Results demonstrate that erythrocytes L: -arginine content is depleted by pre-incubation at 37°C for 10 min, thus changing the V (max) measurement. The inhibitory effect of N-ethylmaleimide pre-incubation was temperature independent and already complete after 1 min of incubation. No significant difference in kinetic parameters was detected between cells pre-incubated at 37°C or 4°C, under zero-trans conditions. In conclusion, we suggest that measurement of erythrocytes L: -arginine uptake by y+ and y+L systems could be carried out without N-ethylmaleimide pre-incubation at 37°C.

  17. Modifiable clinical and lifestyle factors are associated with elevated alanine aminotransferase levels in newly diagnosed type 2 diabetes patients: results from the nationwide DD2 study.

    PubMed

    Mor, Anil; Svensson, Elisabeth; Rungby, Jørgen; Ulrichsen, Sinna Pilgaard; Berencsi, Klara; Nielsen, Jens Steen; Stidsen, Jacob Volmer; Friborg, Søren; Brandslund, Ivan; Christiansen, Jens Sandahl; Beck-Nielsen, Henning; Sørensen, Henrik Toft; Thomsen, Reimar Wernich

    2014-11-01

    Current literature lacks data on markers of non-alcoholic fatty liver disease (NAFLD) in newly diagnosed type 2 diabetes mellitus (T2DM) patients. We therefore, conducted a cross-sectional study to examine modifiable clinical and lifestyle factors associated with elevated alanine aminotransferase (ALT) levels as a marker of NAFLD in new T2DM patients. Alanine aminotransferase levels were measured in 1026 incident T2DM patients enrolled in the nationwide Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort. We examined prevalence of elevated ALT (>38 IU/L for women and >50 IU/L for men) and calculated prevalence ratios associated with clinical and lifestyle factors using Poisson regression. We examined the association with other biomarkers by linear regression. The median value of ALT was 24 IU/L (interquartile range: 18-32 IU/L) in women and 30 IU/L (interquartile range: 22-41 IU/L) in men. Elevated ALT was found in 16% of incident T2DM patients. The risk of elevated ALT was increased in patients who were <40 years old at diabetes debut [adjusted prevalence ratio (aPR): 1.96, 95% confidence interval (CI): 1.15-3.33], in those with alcohol overuse (>14/>21 drinks per week for women/men) (aPR: 1.60, 95% CI: 1.03-2.50), and in those with no regular physical activity (aPR: 1.42, 95% CI: 1.04-1.93). Obesity and metabolic syndrome per se showed no association with elevated ALT when adjusted for other markers, whereas we found positive associations of ALT with increased C-peptide (β = 0.14, 95% CI: 0.06-0.21) and fasting blood glucose (β = 0.07, 95% CI: 0.03-0.11). Among newly diagnosed T2DM patients, several modifiable clinical and lifestyle factors are independent markers of elevated ALT levels. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Development and validation of a rapid, selective, and sensitive LC-MS/MS method for simultaneous determination of D- and L-amino acids in human serum: application to the study of hepatocellular carcinoma.

    PubMed

    Han, Minlu; Xie, Mengyu; Han, Jun; Yuan, Daoyi; Yang, Tian; Xie, Ying

    2018-04-01

    A validated liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of D- and L-amino acids in human serum. Under the optimum conditions, except for DL-proline, L-glutamine, and D-lysine, the enantioseparation of the other 19 enantiomeric pairs of proteinogenic amino acids and nonchiral glycine was achieved with a CROWNPAK CR-I(+) chiral column within 13 min. The lower limits of quantitation for L-amino acids (including glycine) and D-amino acids were 5-56.25 μM and 0.625-500 nM, respectively, in human serum. The intraday precision and interday precision for all the analytes were less than 15%, and the accuracy ranged from -12.84% to 12.37% at three quality control levels. The proposed method, exhibiting high rapidity, enantioresolution, and sensitivity, was successfully applied to the quantification of D- and L-amino acid levels in serum from hepatocellular carcinoma patients and healthy individuals. The serum concentrations of L-arginine, L-isoleucine, L-aspartate, L-tryptophan, L-alanine, L-methionine, L-serine, glycine, L-valine, L-leucine, L-phenylalanine, L-threonine, D-isoleucine, D-alanine, D-glutamate, D-glutamine, D-methionine, and D-threonine were significantly reduced in the hepatocellular carcinoma patients compared with the healthy individuals (P < 0.01). D-Glutamate and D-glutamine were identified as the most downregulated serum markers (fold change greater than 1.5), which deserves further attention in hepatocellular carcinoma research. Graphical abstract Simultaneous determination of D- and L-amino acids in human serum from hepatocellular carcinoma patients and healthy individuals. AA amino acid, HCC hepatocellular carcinoma, LC liquid chromatography, MS/MS tandem mass spectrometry, NC normal control, TIC total ion chromatogram.

  19. Oral supplementations with L-glutamine or L-alanyl-L-glutamine do not change metabolic alterations induced by long-term high-fat diet in the B6.129F2/J mouse model of insulin resistance.

    PubMed

    Bock, Patricia Martins; Krause, Mauricio; Schroeder, Helena Trevisan; Hahn, Gabriela Fernandes; Takahashi, Hilton Kenji; Schöler, Cinthia Maria; Nicoletti, Graziella; Neto, Luiz Domingos Zavarize; Rodrigues, Maria Inês Lavina; Bruxel, Maciel Alencar; Homem de Bittencourt, Paulo Ivo

    2016-01-01

    In this work, we aimed to investigate the effects of long-term supplementations with L-glutamine or L-alanyl-L-glutamine in the high-fat diet (HFD)-fed B6.129SF2/J mouse model over insulin sensitivity response and signaling, oxidative stress markers, metabolism and HSP70 expression. Mice were fed in a standard low-fat diet (STA) or a HFD for 20 weeks. In the 21th week, mice from the HFD group were allocated in five groups and supplemented for additional 8 weeks with different amino acids: HFD control group (HFD-Con), HFD + dipeptide L-alanyl-L-glutamine group (HFD-Dip), HFD + L-alanine group (HFD-Ala), HFD + L-glutamine group (HFD-Gln), or the HFD + L-alanine + L-glutamine (in their free forms) group (HFD-Ala + Gln). HFD induced higher body weight, fat pad, fasted glucose, and total cholesterol in comparison with STA group. Amino acid supplementations did not induce any modifications in these parameters. Although insulin tolerance tests indicated insulin resistance in all HFD groups, amino acid supplementations did not improve insulin sensitivity in the present model. There were also no significant differences in the immunocontents of insulin receptor, Akt, and Toll-like receptor-4. Notably, total 70 kDa heat shock protein (HSP72 + HSP73) contents in the liver was markedly increased in HFD-Con group as compared to STA group, which might suggest that insulin resistance is only in the beginning. Apparently, B6.129SF2/J mice are more resistant to the harmful effects of HFD through a mechanism that may include gut adaptation, reducing the absorption of nutrients, including amino acids, which may explain the lack of improvements in our intervention.

  20. Calibration of helical tomotherapy machine using EPR/alanine dosimetry.

    PubMed

    Perichon, Nicolas; Garcia, Tristan; François, Pascal; Lourenço, Valérie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-01

    Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10 x 10 cm2 square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40 x 5 cm2 defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) 60Co-gamma-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference 60Co-gamma-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS calculations and alanine measured dose values was then

  1. A gargantuan acetaminophen level in an acidemic patient treated solely with intravenous N-acetylcysteine.

    PubMed

    Zell-Kanter, Michele; Coleman, Patrick; Whiteley, Patrick M; Leikin, Jerrold B

    2013-01-01

    The objective of this report is to describe an acidemic patient with one of the largest recorded acetaminophen ingestions in a patient with acidemia who was treated with supportive care and intravenous (IV) N-acetylcysteine. A 59-year-old female with a history of depression was found comatose. In the Emergency Department, she was obtunded with agonal respirations and immediately intubated. Activated charcoal was given through a nasogastric tube. An initial acetaminophen serum level was 1141 mg/L. The patient was started on IV N-acetylcysteine. The acetaminophen level peaked 2 hours later at 1193 mg/L. She was continued on the IV N-acetylcysteine protocol. The next day her aspartate aminotransferase was 3150 U/L, alanine aminotransferase was 2780 U/L, and creatinine phosphokinase was 16,197 U/L. There was no elevation in bilirubin or international normalized ratio (INR). Transaminase levels decreased on day 3 and normalized by day 4 when she was transferred to a psychiatric unit. Few cases have been reported of strikingly elevated acetaminophen levels in poisoned patients who did not receive hemodialysis. These patients did have increased lactate levels, and some had normal liver function tests. All of these patients received N-acetylcysteine and survived the poisoning without sequelae. This patient in this report was unique in that she had the highest reported serum acetaminophen level with acidosis and was treated successfully with only IV N-acetylcysteine and supportive care.

  2. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice.

    PubMed

    Horvath, Deanna M; Murphy, Robyn M; Mollica, Janelle P; Hayes, Alan; Goodman, Craig A

    2016-11-01

    This study investigated the effect of taurine and β-alanine supplementation on muscle function and muscle taurine transporter (TauT) protein expression in mdx mice. Wild-type (WT) and mdx mice (5 months) were supplemented with taurine or β-alanine for 4 weeks, after which in vitro contractile properties, fatigue resistance and force recovery, and the expression of the TauT protein and proteins involved in excitation-contraction (E-C) coupling were examined in fast-twitch muscle. There was no difference in basal TauT protein expression or basal taurine content between mdx than WT muscle. Supplementation with taurine and β-alanine increased and reduced taurine content, respectively, in muscle from WT and mdx mice but had no effect of TauT protein. Taurine supplementation reduced body and muscle mass, and enhanced fatigue resistance and force recovery in mdx muscle. β-Alanine supplementation enhanced fatigue resistance in WT and mdx muscle. There was no difference in the basal expression of key E-C coupling proteins [ryanodine receptor 1 (RyR1), dihydropyridine receptor (DHPR), sarco(endo)plasmic reticulum Ca 2+ -ATPase 1 (SERCA1) or calsequestrin 1 (CSQ1)] between WT and mdx mice, and the expression of these proteins was not altered by taurine or β-alanine supplementation. These findings suggest that TauT protein expression is relatively insensitive to changes in muscle taurine content in WT and mdx mice, and that taurine and β-alanine supplementation may be viable therapeutic strategies to improve fatigue resistance of dystrophic skeletal muscle.

  3. Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players.

    PubMed

    Hoffman, Jay R; Ratamess, Nicholas A; Faigenbaum, Avery D; Ross, Ryan; Kang, Jie; Stout, Jeffrey R; Wise, John A

    2008-01-01

    The purpose of this study was to examine the effect of 30 days of beta-alanine supplementation in collegiate football players on anaerobic performance measures. Subjects were randomly divided into a supplement (beta-alanine group [BA], 4.5 g x d(-1) of beta-alanine) or placebo (placebo group [P], 4.5 g x d(-1) of maltodextrin) group. Supplementation began 3 weeks before preseason football training camp and continued for an additional 9 days during camp. Performance measures included a 60-second Wingate anaerobic power test and 3 line drills (200-yd shuttle runs with a 2-minute rest between sprints) assessed on day 1 of training camp. Training logs recorded resistance training volumes, and subjects completed questionnaires on subjective feelings of soreness, fatigue, and practice intensity. No difference was seen in fatigue rate in the line drill, but a trend (P = .07) was observed for a lower fatigue rate for BA compared with P during the Wingate anaerobic power test. A significantly higher training volume was seen for BA in the bench press exercise, and a trend (P = .09) for a greater training volume was seen for all resistance exercise sessions. In addition, subjective feelings of fatigue were significantly lower for BA than P. In conclusion, despite a trend toward lower fatigue rates during 60 seconds of maximal exercise, 3 weeks of beta-alanine supplementation did not result in significant improvements in fatigue rates during high-intensity anaerobic exercise. However, higher training volumes and lower subjective feelings of fatigue in BA indicated that as duration of supplementation continued, the efficacy of beta-alanine supplementation in highly trained athletes became apparent.

  4. Responses of single facial taste fibers in the channel catfish, Ictalurus punctatus, to amino acids.

    PubMed

    Kohbara, J; Michel, W; Caprio, J

    1992-10-01

    1. Amino acids and nucleotides stimulate taste receptors of teleosts. In this report, responses to these compounds of 105 facial taste fibers (79 fully characterized) that innervate maxillary barbel taste buds of the channel catfish (Ictalurus punctatus) were analyzed. 2. The fully characterized facial taste fibers that responded to amino acids (n = 68) were generally poorly responsive to nucleotides and related substances (NRS), whereas the fibers responsive to NRS (n = 11) were poorly responsive to amino acids. Spike discharge of the amino acid-responsive fibers to the most potent amino acid stimulus tested per fiber increased 44-fold from a mean spontaneous activity of 2.1 +/- 3.5 to 92.1 +/- 42.4 (SD) spikes/3 s. Spike activity of the NRS-responsive fibers to NRS increased 11.5-fold from a mean spontaneous activity of 3.4 +/- 5.9 to 39.1 +/- 27.4 spikes/3 s. There was no significant difference between the spontaneous rates, but stimulus evoked spike rates for the amino acid-responsive fibers were significantly greater (P < 0.05; Mann-Whitney test) than those for the NRS-responsive fibers. 3. Hierarchical cluster analysis based on the 3-s response time identified three major groups of neurons. The identified clusters comprised neurons that were highly responsive to either L-alanine (i.e., Ala cluster; n = 39), L-arginine (i.e., Arg cluster; n = 29), or NRS (NRS cluster; n = 11). Fibers comprising the Arg cluster were more narrowly tuned than those within the Ala cluster. This report further characterizes the responses to amino acids of the individual facial taste fibers comprising the Ala and Arg clusters. 4. Subclusters were evident within both of the amino acid-responsive clusters. The Arg cluster was divisible into two subclusters dependent on the response to 1 mM L-proline. Twelve neurons that were significantly (P < 0.05; Mann-Whitney test) more responsive to L-proline than the remaining 17 neurons within the Arg cluster formed the Arg/Pro subcluster; these

  5. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  6. The impact of N-glycosylation on conformation and stability of immunoglobulin Y from egg yolk.

    PubMed

    Sheng, Long; He, Zhenjiao; Chen, Jiahui; Liu, Yaofa; Ma, Meihu; Cai, Zhaoxia

    2017-03-01

    Immunoglobulin Y (IgY) is a new therapeutic antibody, and its applications in industry are very broad. To provide insight into the effects of N-glycosylation on IgY, its conformation and stability were studied. In this research, IgY was extracted from egg yolk and then digested by peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase. SDS-PAGE and infrared absorption spectrum showed that carbohydrates were distinctly reduced after enzymolysis. The circular dichroism spectrum indicated that the IgY molecule became more flexible and disordered after removal of N-glycan. The fluorescence intensity revealed that Trp residues were buried in a more hydrophobic environment after disposal of N-glycan. Storage stability decreased with the removal of oligosaccharide chains based on size-exclusion chromatography analysis. Deglycosylated IgY exhibited less resistance to guanidine hydrochloride-induced unfolding. After deglycosylation, IgY was more sensitive to pepsin. Therefore, N-glycosylation played an important role in the maintenance of the structure and stability of IgY. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Isolation and structures of glycoprotein-derived free oligosaccharides from the unfertilized eggs of Scyliorhinus caniculus. Characterization of the sequences galactose(alpha 1-4)galactose(beta 1-3)-N-acetylglucosamine and N-acetylneuraminic acid(alpha 2-6)galactose(beta 1-3)-N-acetylglucosamine.

    PubMed

    Plancke, Y; Delplace, F; Wieruszeski, J M; Maes, E; Strecker, G

    1996-01-15

    As previously reported [Ishii, K., Iwasaki, M., Inoue, S., Kenny, P. T. M., Komura, H. & Inoue, Y. (1989) J. Biol. Chem. 264, 1623-1630; Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K. & Inoue, Y. (1989) J. Biol. Chem. 264, 18520-185261, the unfertilized eggs of two different species of fresh-water fish, Plecoglossus altivelis and Tribodolon hakonensis, contain relatively large amounts of free sialooligosaccharides. These oligosaccharides were found to derive from glycophosphoproteins, owing to the activity of a peptide - N4-(N-acetyl-beta-D-glucosaminyl)asparagine amidase [Iwasaki, M., Seko, A., Kitajima, K., Inoue, Y. & Inoue, S. (1992) J. Biol. Chem. 267, 24287-24296; Seko, A., Kitajima, K., Inoue, Y. & Inoue, S. (1991) J. Biol. Chem. 266, 22110-22114]. Here we describe a new type of free oligosaccharides, isolated from unfertilized eggs of Scyliorhinus caniculus. From the structural analysis, based upon 1H-NMR spectroscopy, the following glycan units are proposed.[Formula: see text

  8. Intramolecular interactions of L-phenylalanine revealed by inner shell chemical shift

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Wang, Feng

    2009-07-01

    Intramolecular interactions of the functional groups, carboxylic acid, amino, and phenyl in L-phenylalanine have been revealed through inner shell chemical shift. The chemical shift and electronic structures are studied using its derivatives, 2-phenethylamine (PEA) and 3-phenylpropionic acid (PPA), through substitutions of the functional groups on the chiral carbon Cα, i.e., carboxylic acid (-COOH) and amino (-NH2) groups. Inner shell ionization spectra of L-phenylalanine are simulated using density functional theory based B3LYP/TZVP and LB94/et-pVQZ models, which achieve excellent agreement with the most recently available synchrotron sourced x-ray photoemission spectroscopy of L-phenylalanine (Elettra, Italy). The present study reveals insight into behavior of the peptide bond (CO-NH) through chemical shift of the C1-Cα-Cβ(-Cγ) chain and intramolecular interactions with phenyl. It is found that the chemical shift of the carbonyl C1(=O) site exhibits an apparently redshift (smaller energy) when interacting with the phenyl aromatic group. Removal of the amino group (-NH2) from L-phenylalanine (which forms PPA) brings this energy on C1 close to that in L-alanine (δ <0.01 eV). Chemical environment of Cα and Cβ exhibits more significant differences in L-alanine than in the aromatic species, indicating that the phenyl group indeed affects the peptide bond in the amino acid fragment. No direct evidences are found that the carbonyl acid and amino group interact with the phenyl ring through conventional hydrogen bonds.

  9. Consequences of missense mutations for dimerization and turnover of alanine:glyoxylate aminotransferase: study of a spectrum of mutations.

    PubMed

    Coulter-Mackie, M B; Lian, Q

    2006-12-01

    Alanine:glyoxylate aminotransferase (AGT) is a liver peroxisomal enzyme, deficiency of which results in primary hyperoxaluria type 1 (PH1). More than 65 PH1-related mutations are now documented in the AGT gene (AGXT), of which about 50% are missense. We have generated a spectrum of 15 missense changes including the most common PH1 mutation, G170R, and expressed them on the appropriate background of the major or minor allele, in an Escherichia coli overexpression system and in a rabbit reticulocyte transcription/translation system. We have investigated their effects on enzyme activity, dimerization, aggregation, and turnover. The effect of pyridoxal phosphate (PLP) on dimerization and stability was also investigated. Although all 15 mutant AGTs were expressed as intact proteins in E. coli, only three: G41R and G41V on the major allele, and the common mutation G170R, resulted in significant amounts of enzymatic activity. Dimerization failure was a frequent observation (13/15) except for G41V and D183N. Dimerization was poor with S187F but was substantially improved with PLP. Proteasome-mediated protein degradation was observed for all the mutations except G41R on the major allele, G41V, D183N, G170R, and S218L. Increases in the stability of the mutant enzymes in the presence of PLP were small; however, G41R on the minor allele showed a direct relationship between its half life and the concentration of PLP. The minor allele AGT product and many of the mutants were subject to a limited non-proteasomal proteolytic cleavage when ATP was depleted.

  10. Adsorption differences between low coverage enantiomers of alanine on the chiral Cu{421}R surface.

    PubMed

    Gladys, Michael J; Han, Jeong Woo; Pedersen, Therese S; Tadich, Anton; O'Donnell, Kane M; Thomsen, Lars

    2017-05-31

    Chiral separation using heterogeneous methods has long been sought after. Chiral metal surfaces have the potential to make it possible to model these systems using small amino acids, the building blocks for proteins. A comparison of submonolayer concentrations of alanine enantiomers adsorbed onto Cu{421} R has revealed a large geometrical differences between the two molecules as compared to the saturated coverage. Large differences were observed in HR-XPS and NEXAFS and complemented by theoretical DFT calculations. At approximately one third of a monolayer a comparison of the C1s XPS signal showed a shift in the methyl group of more than 300 meV indicating that the two enantiomers are in different chemical environments. NEXAFS spectroscopy confirmed the XPS variations and showed large differences in the orientation of the adsorbed molecules. Our DFT results show that the l-enantiomer is energetically the most stable in the {311} microfacet configuration. In contrast to the full monolayer coverage, these lower coverages showed enhanced selectivity.

  11. Synthesis and the crystal and molecular structures of (H{sub 3}L . Cl)[CoCl{sub 4}] and H{sub 2}L[CuBr{sub 4}] (L is 2,4,6-Tri(N,N-dimethylamino)methylphenol)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalchukova, O. V., E-mail: okovalchukova@mail.ru; Stash, A. I.; Strashnova, S. B.

    2010-05-15

    The complex compounds (H{sub 3}L . Cl)[CoCl{sub 4}] (I) and H{sub 2}L[CuBr{sub 4}] (II), where L is 2,4,6-tri(N,N-dimethylamino)methylphenol, were isolated in the crystalline state and studied by X-ray diffraction. The organic cations were found to be outer-sphere ligands. All three nitrogen atoms of the tertiary amino groups are protonated. In compound I, the H{sub 3}L{sup 3+} cation exists as the cis tautomer. In compound II, the H{sub 2}L{sup 2+} dication exists as the trans isomer. In the crystal structure, the dications are arranged in layers via hydrogen bonds.

  12. Enzymatic properties of the glycine D-alanine [corrected] aminopeptidase of Aspergillus oryzae and its activity profiles in liquid-cultured mycelia and solid-state rice culture (rice koji).

    PubMed

    Marui, Junichiro; Matsushita-Morita, Mayumi; Tada, Sawaki; Hattori, Ryota; Suzuki, Satoshi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei; Takeuchi, Michio; Kusumoto, Ken-Ichi

    2012-01-01

    The gdaA gene encoding S12 family glycine-D-alanine aminopeptidase (GdaA) was found in the industrial fungus Aspergillus oryzae. GdaA shares 43% amino acid sequence identity with the D-aminopeptidase of the Gram-negative bacterium Ochrobactrum anthropi. GdaA purified from an A. oryzae gdaA-overexpressing strain exhibited high D-stereospecificity and efficiently released N-terminal glycine and D-alanine of substrates in a highly specific manner. The optimum pH and temperature were 8 to 9 and 40°C, respectively. This enzyme was stable under alkaline conditions at pH 8 to 11 and relatively resistant to acidic conditions until pH 5.0. The chelating reagent EDTA, serine protease inhibitors such as AEBSF, benzamidine, TPCK, and TLCK, and the thiol enzyme inhibitor PCMB inhibited the enzyme. The aminopeptidase inhibitor bestatin did not affect the activity. GdaA was largely responsible for intracellular glycine and D-alanine aminopeptidase activities in A. oryzae during stationary-phase growth in liquid media. In addition, the activity increased in response to the depletion of nitrogen or carbon sources in the growth media, although the GdaA-independent glycine aminopeptidase activity highly increased simultaneously. Aminopeptidases of A. oryzae attract attention because the enzymatic release of a variety of amino acids and peptides is important for the enhancement of the palatability of fermented foods. GdaA activity was found in extracts of a solid-state rice culture of A. oryzae (rice koji), which is widely used as a starter culture for Japanese traditional fermented foods, and was largely responsible for the glycine and D-alanine aminopeptidase activity detected at a pH range of 6 to 9.

  13. N-Acetyl-l-Cysteine treatment efficiently prevented pre-diabetes and inflamed-dysmetabolic liver development in hypothalamic obese rats.

    PubMed

    Villagarcía, Hernán Gonzalo; Castro, María Cecilia; Arbelaez, Luisa González; Schinella, Guillermo; Massa, María Laura; Spinedi, Eduardo; Francini, Flavio

    2018-04-15

    Hypothalamic obese rats are characterized by pre-diabetes, dyslipidemia, hyperadiposity, inflammation and, liver dysmetabolism with oxidative stress (OS), among others. We studied endocrine-metabolic dysfunctions and, liver OS and inflammation in both monosodium l-glutamate (MSG)-neonatally damaged and control litter-mate (C) adult male rats, either chronically treated with N-Acetyl-l-Cysteine since weaned (C-NAC and MSG-NAC) or not. We evaluated circulating TBARS, glucose, insulin, triglycerides, uric acid (UA) and, aspartate and alanine amino-transferase; insulin sensitivity markers (HOMA indexes, Liver Index of Insulin Sensitivity -LISI-) were calculated and liver steps of the insulin-signaling pathway were investigated. Additionally, we monitored liver OS (protein carbonyl groups, GSH and iNOS level) and inflammation-related markers (COX-2 and TNFα protein content; gene expression level of Il1b, Tnfα and Pai-1); and carbohydrate and lipid metabolic functions (glucokinase/fructokinase activities and, mRNA levels of Srebp1c, Fas and Gpat). Chronic NAC treatment in MSG rats efficiently decreased the high circulating levels of triglycerides, UA, transaminases and TBARS, as well as peripheral (high insulinemia and HOMA indexes) and liver (LISI and the P-AKT:AKT and P-eNOS:eNOS protein ratio values) insulin-resistance. Moreover, NAC therapy in MSG rats prevented liver dysmetabolism by decreasing local levels of OS and inflammation markers. Finally, NAC-treated MSG rats retained normal liver glucokinase and fructokinase activities, and Srebp1c, Fas and Gpat (lipogenic genes) expression levels. Our study strongly supports that chronic oral antioxidant therapy (NAC administration) prevented the development of pre-diabetes, dyslipidemia, and inflamed-dysmetabolic liver in hypothalamic obese rats by efficiently decreasing high endogenous OS. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Dietary L-lysine prevents arterial calcification in adenine-induced uremic rats.

    PubMed

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-09-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. Copyright © 2014 by the American Society of Nephrology.

  15. Dietary l-Lysine Prevents Arterial Calcification in Adenine-Induced Uremic Rats

    PubMed Central

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Rakugi, Hiromi

    2014-01-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. PMID:24652795

  16. Protective effect of L-arginine against necrosis and apoptosis induced by experimental ischemic and reperfusion in rat liver.

    PubMed

    Chattopadhyay, Pronobesh; Shukla, Gunjan; Wahi, Arun Kumar

    2009-01-01

    To study the effect of L-arginine on apoptosis and necrosis induced by 1-h ischemia followed by 3-h reperfusion. Adult Wistar rats underwent 60 min of partial liver ischemia followed by 3-h reperfusion. Eighteen Wistar rats were divided into sham-operated control group (I) (n = 6), ischemia and reperfusion (I/R) group (0.9 % saline (5 mL/kg, orally) for 7 days) (II) (n = 6), and L-arginine-treated group (10 mg/kg body weight daily orally for 7 days before inducing ischemia-reperfusion maneuver) (III) (n = 6). Apoptotic and necrotic hepatocytes, nitric oxide levels in hepatocytes, Bcl-2 mRNA, and Bcl-2 protein were measured. Liver injury was assessed by plasma alanine transaminases (ALT), aspartate transaminases (AST), liver histopathology, and electron microscopy. An ischemic and reperfusion hepatocellular injury occurred as was indicated by increased serum ALT, AST, histopathology, and electron microscopy. Apoptosis and necrosis associated marker gene Bcl-2 mRNA and protein expression were decreased in I/R group. Pretreatment with L-arginine significantly decreased serum ALT and AST level and apoptotic and necrotic cells after 1 h ischemia followed by 3 h of reperfusion. Nitric oxide production in hepatocytes was increased twofold by L-arginine treatment when compared with I/R group. Histopathology and transmission electron microscopy (TEM) studies showed markedly diminished hepatocellular injury in L-arginine-pretreated rats during the hepatic I/R. Thus, it may be concluded that L-arginine afforded significant protection from necrosis and apoptosis in I/R injury by upregulated Bcl-2 gene and nitric oxide production.

  17. Spectroscopic analyses on interaction of o-Vanillin- D-Phenylalanine, o-Vanillin- L-Tyrosine and o-Vanillin- L-Levodopa Schiff Bases with bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin- D-Phenylalanine (o-VDP), o-Vanillin- L-Tyrosine (o-VLT) and o-Vanillin- L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant ( Kq), apparent quenching constant ( Ksv), effective binding constant ( KA) and corresponding dissociation constant ( KD) as well as binding site number ( n) were obtained. In addition, the binding distance ( r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA > o-VLT-BSA > o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues.

  18. Aspergillus niger PA2: a novel strain for extracellular biotransformation of L-tyrosine into L-DOPA.

    PubMed

    Agarwal, Pragati; Pareek, Nidhi; Dubey, Swati; Singh, Jyoti; Singh, R P

    2016-05-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine), an amino acid derivative is the most widely used drug of choice for the treatment of Parkinson's disease and other neurologic injuries. The present study deals with the elevated biochemical transformation of L-tyrosine to L-DOPA by Aspergillus niger PA2, a potent tyrosinase producer, isolated from decomposed food wastes. This appears to be the first report on A. niger as a notable extracellular tyrosinase producer. The extracellular tyrosinase activity produced remarkably higher levels of L-DOPA, i.e. 2.44 mg mL(-1) when the media was supplemented with 5 mg mL(-1) L-tyrosine. The optimum pH for tyrosinase production was 6.0, with the maximal L-DOPA production at the same pH. The product thus produced was analyzed by thin-layer chromatography, UV spectroscopy, high-performance liquid chromatography and Fourier transform infrared spectroscopy, that had denoted this to be L-DOPA. Kinetic parameters viz. Y p/s, Q s and Q p had further indicated the notable levels of production. Thus, Aspergillus niger PA2 could be a promising resource and may be further exploited for large-scale production of L-DOPA.

  19. Detection and quantification of α-keto-δ-(N(G),N(G)-dimethylguanidino)valeric acid: a metabolite of asymmetric dimethylarginine.

    PubMed

    Martens-Lobenhoffer, Jens; Rodionov, Roman N; Drust, Andreas; Bode-Böger, Stefanie M

    2011-12-15

    Nitric oxide is an ubiquitary cell signaling substance. Its enzymatic production rate by nitric oxide synthase is regulated by the concentrations of the substrate L-arginine and the competitive inhibitor asymmetric dimethylarginine (ADMA). A newly recognized elimination pathway for ADMA is the transamination to α-keto-δ-(N(G),N(G)-dimethylguanidino)valeric acid (DMGV) by the enzyme alanine-glyoxylate aminotransferase 2 (AGXT2). This pathway has been proven to be relevant for nitric oxide regulation, but up to now no method exists for the determination of DMGV in biological fluids. We have developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of DMGV. D(6)-DMGV was used as internal standard. Samples were purified online by column switching, and separation was achieved on a porous graphitic carbon column. The calibration was linear over ranges of 10 to 200 nmol/L for plasma and 0.1 to 20 μmol/L for urine. The intra- and interday accuracies and precisions in plasma and urine were better than 10%. In plasma samples, DMGV was present in concentrations between 19.1 and 77.5 nmol/L. In urine samples, concentrations between 0.0114 and 1.03 μmol/mmol creatinine were found. This method can be used as a tool for the scientific investigation of the ADMA conversion to DMGV via the enzyme AGXT2. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. A highly active and negatively charged Streptococcus pyogenes lysin with a rare D-alanyl-L-alanine endopeptidase activity protects mice against streptococcal bacteremia.

    PubMed

    Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W; Fischetti, Vincent A

    2014-06-01

    Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. A Highly Active and Negatively Charged Streptococcus pyogenes Lysin with a Rare d-Alanyl-l-Alanine Endopeptidase Activity Protects Mice against Streptococcal Bacteremia

    PubMed Central

    Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W.

    2014-01-01

    Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. PMID:24637688

  2. Conformational analysis of α-helical polypeptide included L-proline residue by high-resolution solid-state NMR measurement and quantum chemical calculation

    NASA Astrophysics Data System (ADS)

    Souma, Hiroyuki; Shoji, Akira; Kurosu, Hiromichi

    2008-10-01

    We challenged the problem about the stabilization mechanism of an α-helix formation for polypeptides containing L-proline (Pro) residue. We computed the optimized structure of α-helical poly( L-alanine) molecules including a Pro residue, H-(Ala) 8-Pro-(Ala) 9-OH, based on the molecular orbital calculation with density functional theory, B3LYP/6-31G(d) and the 13C and 15N chemical shift values based on the GIAO-CHF method with B3LYP/6-311G(d,p), respectively. It was found that two kinds of optimized structures, 'Bent structure' and 'Included α-helix structure', were preferred structures in H-(Ala) 8-Pro-(Ala) 9-OH. In addition, based on the precise 13C and 15N chemical shift data of the simple model, we successfully analyzed the secondary structure of well-defined synthetic polypeptide H-(Phe-Leu-Ala) 3-Phe C-Pro-Ala N-(Phe-Leu-Ala) 2-OH (FLA-11P), the secondary structure of which was proven to the 'Included α-helix structure'.

  3. Novel type of murein transglycosylase in Escherichia coli.

    PubMed Central

    Höltje, J V; Mirelman, D; Sharon, N; Schwarz, U

    1975-01-01

    The purification and properties of a novel type of murein transglycosylase from Escherichia coli are described. The purified enzyme appears as a single band on sodium dodecyl sulfate-polyacrylamide gels and has an apparent molecular weight of approximately 65,000 as estimated by gel filtration and gel electrophoresis. It degrades pure murein sacculi from E. coli almost completely into low-molecular-weight products. The two prominent muropeptide fragments in the digest are the disaccharide-tripeptide N-acetylglucosamine-N-acetylmuramic acid-L-alanine-D-iso-glutamic acid-meso-diaminopimelic acid and the corresponding disaccharide-tetrapeptide N-acetylglucosamine-N-acetylmuramic acid-L-alanine-D-iso-glutamic acid-meso-diaminopimelic acid-D-alanine. The unique feature of these compounds is that the disaccharide has no reducing end group and that the muramic acid residue possesses an internal 1 leads to 6 anhydro linkage. The new lytic enzyme is designated as a murein: murein transglycosylase. Its possible role in the rearrangement of murein during cell growth and division is discussed. PMID:357

  4. Studies of Azetidin-2-one as a Reactive Enolate Synthon of β-Alanine for Condensations with Aldehydes and Ketones.

    PubMed

    Williams, David R; Donnell, Andrew F; Kammler, David C; Ward, Sarah A; Taylor, Levin

    2016-11-04

    Studies describe formation of the lithium enolate of N-(4-methoxybenzyloxy)azetidin-2-one (1) and characterization of representative aldol reactions with aldehydes and ketones. Diastereoselectivity features the production of anti-aldol adducts from α,β-unsaturated ketones and α-branched aliphatic aldehydes. The stereoselectivity is rationalized via closed, six-membered transition-state arrangements leading to the formation of Felkin-Anh and anti-Felkin products. Examples illustrate the direct incorporation of monocyclic β-lactams into a variety of molecular architectures. The utility of 1 as an enolate synthon of homoglycine (β-alanine) is illustrated by the efficient synthesis of novel β-amino acid derivatives, including complex 4-hydroxy-2-pyridinones.

  5. The neuropharmacology of L-theanine(N-ethyl-L-glutamine): a possible neuroprotective and cognitive enhancing agent.

    PubMed

    Nathan, Pradeep J; Lu, Kristy; Gray, M; Oliver, C

    2006-01-01

    L-theanine (N-ethyl-L-glutamine) or theanine is a major amino acid uniquely found in green tea. L-theanine has been historically reported as a relaxing agent, prompting scientific research on its pharmacology. Animal neurochemistry studies suggest that L-theanine increases brain serotonin, dopamine, GABA levels and has micromolar affinities for AMPA, Kainate and NMDA receptors. In addition has been shown to exert neuroprotective effects in animal models possibly through its antagonistic effects on group 1 metabotrophic glutamate receptors. Behavioural studies in animals suggest improvement in learning and memory. Overall, L-theanine displays a neuropharmacology suggestive of a possible neuroprotective and cognitive enhancing agent and warrants further investigation in animals and humans.

  6. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance.

    PubMed

    Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander

    2017-09-19

    systems with alanine and asparagine-in those cases the of oxygenation reaction is right shifted to a relatively lower extent. The experimental results indicate that the "active" complex, able to take up dioxygen, is a heteroligand CoL 2 L'complex, where L = amac (an amino acid with a non-protonated amine group) while L' = Himid, with the N1 nitrogen protonated within the entire pH range under study. Moreover, the corresponding log  [Formula: see text] value at various initial total Co(II), amino acid and imidazole concentrations was found to be constant within the limits of error, which confirms those results. The highest log [Formula: see text] value, 14.9, occurs for the histidine system; in comparison, asparagine is 7.8 and alanine is 9.7. This high value is most likely due to the participation of the additional effective N3 donor of the imidazole side group of histidine. The Co(II)-amac-Himid systems formed by using a [Co(imid) 2 ] n polymer as starting material demonstrate that the reversible uptake of molecular oxygen occurs by forming dimeric μ-peroxy adducts. The essential impact on the electron structure of the dioxygen bridge, and therefore, on the reversibility of O 2 uptake, is due to the imidazole group at axial position (trans towards O 2 ). However, the results of reversibility measurements of O 2 uptake, unequivocally indicate a much higher effectiveness of dioxygenation than in systems in which the oxygen adducts are formed in equilibrium mixtures during titration of solutions containing Co(II) ions, the amino acid and imidazole, separately.

  7. In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1-13 C]Alanine.

    PubMed

    Park, Jae Mo; Khemtong, Chalermchai; Liu, Shie-Chau; Hurd, Ralph E; Spielman, Daniel M

    2017-05-01

    The intracellular lactate to pyruvate concentration ratio is a commonly used tissue assay biomarker of redox, being proportional to free cytosolic [NADH]/[NAD + ]. In this study, we assessed the use of hyperpolarized [1- 13 C]alanine and the subsequent detection of the intracellular products of [1- 13 C]pyruvate and [1- 13 C]lactate as a useful substrate for assessing redox levels in the liver in vivo. Animal experiments were conducted to measure in vivo metabolism at baseline and after ethanol infusion. A solution of 80-mM hyperpolarized [1- 13 C]alanine was injected intravenously at baseline (n = 8) and 45 min after ethanol infusion (n = 4), immediately followed by the dynamic acquisition of 13 C MRS spectra. In vivo rat liver spectra showed peaks from [1- 13 C] alanine and the products of [1- 13 C]lactate, [1- 13 C]pyruvate, and 13 C-bicarbonate. A significantly increased 13 C-lactate/ 13 C-pyruvate ratio was observed after ethanol infusion (8.46 ± 0.58 at baseline versus 13.58 ± 0.69 after ethanol infusion; P < 0.001) consistent with the increased NADH produced by liver metabolism of ethanol to acetaldehyde and then acetate. A decrease in 13 C-bicarbonate production was also noted, potentially reflecting ethanol-induced mitochondrial redox changes. A method to measure in vivo tissue redox using hyperpolarized [1- 13 C]alanine is presented, with the validity of the proposed 13 C-pyruvate/ 13 C-lactate metric tested using an ethanol challenge to alter liver redox state. Magn Reson Med 77:1741-1748, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase.

    PubMed

    Peña, Pamela A; Quach, Truyen; Sato, Shirley; Ge, Zhengxiang; Nersesian, Natalya; Dweikat, Ismail M; Soundararajan, Madhavan; Clemente, Tom

    2017-12-01

    The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.

  9. β-Alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro

    PubMed Central

    Mori, Masahiro; Gähwiler, Beat H; Gerber, Urs

    2002-01-01

    Electrophysiological and pharmacological properties of glycine receptors were characterized in hippocampal organotypic slice cultures. In the presence of ionotropic glutamate and GABAB receptor antagonists, pressure-application of glycine onto CA3 pyramidal cells induced a current associated with increased chloride conductance, which was inhibited by strychnine. Similar chloride currents could also be induced with β-alanine or taurine. Whole-cell glycine responses were significantly greater in CA3 pyramidal cells than in CA1 pyramidal cells and dentate granule cells, while responses to GABA were similar among these three cell types. Although these results demonstrate the presence of functional glycine receptors in the hippocampus, no evidence for their activation during synaptic stimulation was found. Gabazine, a selective GABAA receptor antagonist, totally blocked evoked IPSCs in CA3 pyramidal cells. Glycine receptor activation is not dependent on transporter-controlled levels of extracellular glycine, as no chloride current was observed in response to sarcosine, an inhibitor of glycine transporters. In contrast, application of guanidinoethanesulfonic acid, an uptake inhibitor of β-alanine and taurine, induced strychnine-sensitive chloride current in the presence of gabazine. These data indicate that modulation of transporters for the endogenous amino acids, β-alanine and taurine, can regulate tonic activation of glycine receptors, which may function in maintenance of inhibitory tone in the hippocampus. PMID:11850512

  10. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    PubMed Central

    Oh, Seung-Il; Park, Jin-Kook; Park, Sang-Kyu

    2015-01-01

    OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV), was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors. PMID:26039957

  11. Large-scale population analysis reveals an extremely low threshold for "non-healthy" alanine aminotransferase that predicts diabetes mellitus.

    PubMed

    Shlomai, Amir; Kariv, Revital; Leshno, Moshe; Beth-or, Anat; Sheinberg, Bracha; Halpern, Zamir

    2010-10-01

    Serum alanine aminotransferase (ALT) is commonly used to detect liver damage. Recent studies indicate that ALT levels at the upper range of normal limits are predictors of adverse outcomes, especially diabetes mellitus (DM) and the metabolic syndrome. The aim of our study was to define the ALT threshold for both men and women that may predict the onset of DM. We analyzed a large Health Maintenance Organization cohort of 157 308 healthy subjects with no evidence of liver disease and with baseline ALT levels ≤ 120 U/L, and identified those who developed DM within 6 years. Overall, an elevated baseline serum ALT value was significantly associated with the development of DM, with an odds ratio of 3.3 when comparing the higher and the lower quartiles of the whole study population. A subgroup analysis revealed that baseline ALT values higher than 10 U/L among women and 22 U/L among men were already significantly associated with an increased risk for DM for any increment in ALT level. Notably, ALT values higher than ∼55 U/L were associated with increased risk for DM that was relatively constant for any increment in ALT. Higher baseline ALT levels were stronger predictors for DM as compared with age, triglycerides and cholesterol levels. Our study implies that ALT values higher than 10 U/L and 22 U/L for women and men, respectively, may predict DM. We suggest redefining ALT values as either 'normal' or 'healthy', with the later reflecting much lower values, above which an individual is at increased risk for DM. © 2010 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  12. Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping.

    PubMed

    Guo, Cunlan; Yu, Xi; Refaely-Abramson, Sivan; Sepunaru, Lior; Bendikov, Tatyana; Pecht, Israel; Kronik, Leeor; Vilan, Ayelet; Sheves, Mordechai; Cahen, David

    2016-09-27

    Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a self-assembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailor-made "building block" peptides.

  13. Six weeks of β-alanine supplementation did not enhance repeated-sprint ability or technical performances in young elite basketball players.

    PubMed

    Milioni, Fabio; Redkva, Paulo E; Barbieri, Fabio A; Zagatto, Alessandro M

    2017-06-01

    Supplementation with β-alanine plays an important role as a precursor of carnosine, the most effective intramuscular buffer, and has been seen as a potential ergogenic aid, especially for high-intensity modalities such as basketball. Thus, the aim of the present study was to investigate the effects of 6 weeks of β-alanine supplementation on repeated sprint ability (RSA) and technical performances in young elite Brazilian basketball players. In total, 27 young basketball players (17±1 years) were randomized into a β-alanine group (Gβ - 6.4 g day -1 of β-alanine) and a placebo group (GP - 6.4 g day -1 of dextrose). Before and after the supplementation period the athletes performed a RSA test composed of ten 30 m sprints with two 180° changes of direction interspaced by 30 s of recovery. During the recovery period (i.e., after the sprints) the athletes performed a countermovement jump (CMJ) and a set of three free throws. After 48 h they performed a Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1). Both groups increased the distance covered in the Yo-Yo IR1 after the supplementation period ( p = 0.001). On the other hand, both groups presented impairment in RSA time-performance (total time, best time, and mean time, p ≤ 0.04), while no significant changes were observed for technical task performances (i.e., CMJ and free throws) ( p ≥ 0.07). No between-group interactions were observed for any variable measured ( p ≥ 0.31). Thus, 6 weeks of β-alanine supplementation did not improve RSA or technical performances in young elite basketball players.

  14. Four of the Most Common Mutations in Primary Hyperoxaluria Type 1 Unmask the Cryptic Mitochondrial Targeting Sequence of Alanine:glyoxylate Aminotransferase Encoded by the Polymorphic Minor Allele*

    PubMed Central

    Fargue, Sonia; Lewin, Jackie; Rumsby, Gill; Danpure, Christopher J.

    2013-01-01

    The gene encoding the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT, EC. 2.6.1.44) exists as two common polymorphic variants termed the “major” and “minor” alleles. The P11L amino acid replacement encoded by the minor allele creates a hidden N-terminal mitochondrial targeting sequence, the unmasking of which occurs in the hereditary calcium oxalate kidney stone disease primary hyperoxaluria type 1 (PH1). This unmasking is due to the additional presence of a common disease-specific G170R mutation, which is encoded by about one third of PH1 alleles. The P11L and G170R replacements interact synergistically to reroute AGT to the mitochondria where it cannot fulfill its metabolic role (i.e. glyoxylate detoxification) effectively. In the present study, we have reinvestigated the consequences of the interaction between P11L and G170R in stably transformed CHO cells and have studied for the first time whether a similar synergism exists between P11L and three other mutations that segregate with the minor allele (i.e. I244T, F152I, and G41R). Our investigations show that the latter three mutants are all able to unmask the cryptic P11L-generated mitochondrial targeting sequence and, as a result, all are mistargeted to the mitochondria. However, whereas the G170R, I244T, and F152I mutants are able to form dimers and are catalytically active, the G41R mutant aggregates and is inactive. These studies open up the possibility that all PH1 mutations, which segregate with the minor allele, might also lead to the peroxisome-to-mitochondrion mistargeting of AGT, a suggestion that has important implications for the development of treatment strategies for PH1. PMID:23229545

  15. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.

    PubMed

    Hasegawa, Satoshi; Suda, Masako; Uematsu, Kimio; Natsuma, Yumi; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki

    2013-02-01

    We previously demonstrated efficient L-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the L-valine yield. Eliminating these by-products therefore was deemed key to improving theL-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and L-valine production dropped considerably due to the severely elevated intracellular NADH/NAD(+) ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher L-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM L-valine at a yield of 88% mol mol of glucose(-1) after 24 h under oxygen deprivation, a vastly improved yield over our previous best.

  16. Engineering of Corynebacterium glutamicum for High-Yield l-Valine Production under Oxygen Deprivation Conditions

    PubMed Central

    Hasegawa, Satoshi; Suda, Masako; Uematsu, Kimio; Natsuma, Yumi; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki

    2013-01-01

    We previously demonstrated efficient l-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the l-valine yield. Eliminating these by-products therefore was deemed key to improving the l-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and l-valine production dropped considerably due to the severely elevated intracellular NADH/NAD+ ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher l-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM l-valine at a yield of 88% mol mol of glucose−1 after 24 h under oxygen deprivation, a vastly improved yield over our previous best. PMID:23241971

  17. SU-E-T-799: Verification of a Simultaneous Treatment of Multiple Brain Metastases Using VMAT Technique by a Composite Alanine-Gel Dosimeter Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavoni, J; Silveira, M; Filho, O Baffa

    Purpose: This work presents an end-to-end test using a Gel-Alanine phantom to validate the three-dimensional (3D) dose distribution (DD) delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. Methods: Three cylindrical phantons containing MAGIC-f gel dosimeter were used to measure the 3D DD of a VMAT treatment, the first two were filled with the gel dosimeter (Gel 1 and 2) and the third one was filled with gel and 12 alanine dosimeters distributed along it (Gel 3). Gels 1 and 3 were irradiated and gel 2 was used to map the magnetic resonance imagemore » (MRI) scanner field inomogeneities. A CT scan of gel 3 was used for the VMAT treatment planning and 5 alanine pellets were chosen as lesions, around them a PTV was grown and different dose prescriptions were assigned for each one, varying from 5 to 9Gy. Before treatment, the plan was approved in a QA based on an ionization chamber absolute dose measurement, a radiochromic film planar dose measurement and a portal dosimetry per field verification; and also the phantons positioning were verified by ExacTrac 6D correction and OBI kV Cone Beam CT. The gels were irradiated, the MRIs were acquired 24 hours after irradiation and finally, the alanine dosimeters were analysed in a X-band Electron Spin Resonance spectrometer. Results: The association of the two detectors enabled the 3D dose evaluation by gel and punctually inside target volumes by alanine. In the gamma analyses (3%/3mm) comparing the 5 PTVs’ central images DD with TPS expected DD more than 95% of the points were approved. The alanine absolute dose measurements were in agreement with TPS by less than 5%. Conclusion: The gel-alanine phantom enabled the dosimetric validation of multiple brain metastases treatment using VMAT, being an almost ideal tool for this application. This work is partially supported by FAPESP.« less

  18. Crystallization and preliminary X-ray data analysis of β-alanine synthase from Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundgren, Stina; Andersen, Birgit; Piškur, Jure

    2007-10-01

    β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine. Crystals of the recombinant enzyme from D. melanogaster belong to space group C2. Diffraction data to 3.3 Å resolution were collected and analyzed. β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine, which represents the main clearance route for the widely used anticancer drug 5-fluorouracil. Crystals of the recombinant enzyme from Drosophila melanogaster, which is closely related to the human enzyme, were obtained by the hanging-drop vapour-diffusion method. They diffracted to 3.3 Å at a synchrotron-radiation source, belong tomore » space group C2 (unit-cell parameters a = 278.9, b = 95.0, c = 199.3 Å, β = 125.8°) and contain 8–10 molecules per asymmetric unit.« less

  19. Echinococcus granulosus: specificity of amino acid transport systems in protoscoleces.

    PubMed

    Jeffs, S A; Arme, C

    1987-08-01

    Protoscoleces of Echinococcus granulosus absorb the L-amino acids proline, methionine, leucine, alanine, serine, phenylalanine, lysine and glutamic acid by a combination of mediated transport and diffusion. All eight amino acids were accumulated against a concentration gradient. Comparison of Kt and Vmax values suggests that a low affinity for a particular compound is compensated for by a relatively larger number of transport sites for that compound. Four systems serve for the transport of the eight substrates studied: 2 for neutral (EgN1, EgN2) and 1 each for acidic (EgA) and basic (EgB) amino acids. All eight amino acids are incorporated into protein to varying degrees and substantial portions of absorbed L-alanine and L-methionine are metabolized into other compounds.

  20. Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects

    PubMed Central

    Yu, Yang; Park, Ji-Won; Kwon, Hyun-Mi; Hwang, Hyun-Ok; Jang, In-Hwan; Masuda, Akiko; Kurokawa, Kenji; Nakayama, Hiroshi; Lee, Won-Jae; Dohmae, Naoshi; Zhang, Jinghai; Lee, Bok Luel

    2010-01-01

    In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism of a Toll signaling pathway biochemically using a large beetle, Tenebrio molitor. However, DAP-type peptidoglycan recognition mechanism and its signaling pathway are still unclear in the fly and beetle. Here, we show that polymeric DAP-type peptidoglycan, but not its monomeric form, formed a complex with Tenebrio peptidoglycan recognition protein-SA, and this complex activated the three-step proteolytic cascade to produce processed Spätzle, a Toll receptor ligand, and induced Drosophila defensin-like antimicrobial peptide in Tenebrio larvae similarly to polymeric lysine-type peptidoglycan. Monomeric DAP-type peptidoglycan induced Drosophila diptericin-like antimicrobial peptide in Tenebrio hemocytes. In addition, both polymeric and monomeric DAP-type peptidoglycans induced expression of Tenebrio peptidoglycan recognition protein-SC2, which is DAP-type peptidoglycan-selective N-acetylmuramyl-l-alanine amidase that functions as a DAP-type peptidoglycan scavenger, appearing to function as a negative regulator of the DAP-type peptidoglycan signaling by cleaving DAP-type peptidoglycan in Tenebrio larvae. Taken together, these results demonstrate that molecular recognition mechanism for polymeric DAP-type peptidoglycan is different between Tenebrio larvae and Drosophila adults, providing biochemical evidences of biological diversity of innate immune responses in insects. PMID:20702416

  1. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip

    The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising,more » as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.« less

  2. Crystal and molecular structure of N-(4-nitrophenyl)-β-alanine—Its vibrational spectra and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Drozd, M.; Janczak, J.

    2011-08-01

    The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.

  3. Transferability of ASTM/NIST alanine-polyethylene recipe at ISS. American Society for Testing and Materials/National Institute for Standards and Technology. Istituto Superiore de Sanita

    PubMed

    De Angelis C; Fattibene; Onori; Petetti; Bartolotta; Sansone Santamaria A

    2000-05-01

    Alanine-polyethylene solid state dosimeters were prepared at Istituto Superiore di Sanita (ISS) following the recipe proposed by National Institute of Standards and Technology (NIST) with the goal of testing its transferability. Dosimeters were prepared using 95% alanine and 5% polyethylene, by weight. They are rugged and of increased sensitivity, repeatability and reproducibility as respect to the ISS alanine-paraffin pellets. Reproducibility of about 1% was obtained at 10 Gy and at 3 Gy if one single pellet or a stack of five dosimeters were used, respectively.

  4. Alanyl-glutamine and glutamine plus alanine supplements improve skeletal redox status in trained rats: involvement of heat shock protein pathways.

    PubMed

    Petry, Eder Ricardo; Cruzat, Vinicius Fernandes; Heck, Thiago Gomes; Leite, Jaqueline Santos Moreira; Homem de Bittencourt, Paulo Ivo; Tirapegui, Julio

    2014-01-17

    We hypothesized that oral l-glutamine supplementations could attenuate muscle damage and oxidative stress, mediated by glutathione (GSH) in high-intensity aerobic exercise by increasing the 70-kDa heat shock proteins (HSP70) and heat shock factor 1 (HSF1). Adult male Wistar rats were 8-week trained (60-min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were supplemented with either l-alanyl-l-glutamine dipeptide (1.5 g/kg, DIP) or a solution containing the amino acids l-glutamine (1g/kg) and l-alanine (0.67 g/kg) in their free form (GLN+ALA) or water (controls). Plasma from both DIP- and GLN+ALA-treated animals showed higher l-glutamine concentrations and reduced ammonium, malondialdehyde, myoglobin and creatine kinase activity. In the soleus and gastrocnemius muscle of both supplemented groups, l-glutamine and GSH contents were increased and GSH disulfide (GSSG) to GSH ratio was attenuated (p<0.001). In the soleus muscle, cytosolic and nuclear HSP70 and HSF1 were increased by DIP supplementation. GLN+ALA group exhibited higher HSP70 (only in the nucleus) and HSF1 (cytosol and nucleus). In the gastrocnemius muscle, both supplementations were able to increase cytosolic HSP70 and cytosolic and nuclear HSF1. In trained rats, oral supplementation with DIP or GLN+ALA solution increased the expression of muscle HSP70, favored muscle l-glutamine/GSH status and improved redox defenses, which attenuate markers of muscle damage, thus improving the beneficial effects of high-intensity exercise training. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Characterization of lipoteichoic acid structures from three probiotic Bacillus strains: involvement of D-alanine in their biological activity.

    PubMed

    Villéger, Romain; Saad, Naima; Grenier, Karine; Falourd, Xavier; Foucat, Loïc; Urdaci, Maria C; Bressollier, Philippe; Ouk, Tan-Sothea

    2014-10-01

    Probiotics represent a potential strategy to influence the host's immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with D-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure-activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove D-alanine. The molecular structure of native and modified LTAs was determined by (1)H NMR and GC-MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their D-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on D-alanine substitutions. D-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use.

  6. Gamma-glutamyltransferase, alanine transaminase and aspartate transaminase levels and the diagnosis of gestational diabetes mellitus.

    PubMed

    Tan, Peng Chiong; Aziz, Ainul Zahaniah; Ismail, Ikram Shah; Omar, Siti Zawiah

    2012-10-01

    To evaluate gamma-glutamyltransferase (GGT), alanine transaminases (ALT) and aspartate transaminases (AST) levels and prevalent gestational diabetes mellitus (GDM). Random plasma glucose, GGT, ALT and AST and the 50-g glucose challenge test were done on antenatal women followed by diagnostic 3-point 75-g oral glucose tolerance test within two weeks. GDM was diagnosed by ADA (2011) criteria. The GDM rate was 12.2% (319/2610). Mean GGT level was higher in GDM women, 18 ± 12 vs. 16 ± 11 IU/L; P=0.03. The risk for GDM was higher for women in the highest GGT quartile band compared to the lowest: RR 1.35 95%CI 1.0-1.8; P=0.04. However, after adjustment for confounders, GGT was no longer associated with GDM. There was no correlation between ALT and AST levels and GDM. Liver transaminases do not predict GDM in contrast to type 2 diabetes. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. Selection of tRNA(Asp) amber suppressor mutants having alanine, arginine, glutamine, and lysine identity.

    PubMed Central

    Martin, F; Reinbolt, J; Dirheimer, G; Gangloff, J; Eriani, G

    1996-01-01

    Elements that confer identity to a tRNA in the cellular environment, where all aminoacyl-tRNA synthetases are competing for substrates, may be delineated by in vivo experiments using suppressor tRNAs. Here we describe the selection of active Escherichia coli tRNAAsp amber mutants and analyze their identity. Starting from a library containing randomly mutated tRNA(CUA)Asp genes, we isolated four amber suppressors presenting either lysine, alanine, or glutamine activity. Two of them, presenting mainly alanine or lysine activity, were further submitted to a second round of mutagenesis selection in order to improve their efficiency of suppression. Eleven suppressors were isolated, each containing two or three mutations. Ten presented identities of the two parental mutants, whereas one had switched from lysine to arginine identity. Analysis of the different mutants revealed (or confirmed for some nucleotides) their role as positive and/or negative determinants in AlaRS, LysRS, and ArgRS recognition. More generally, it appears that tRNAAsp presents identity characteristics closely related to those of tRNALys, as well as a structural basis for acquiring alanine or arginine identity upon moderate mutational changes; these consist of addition or suppression of the corresponding positive or negative determinants, as well as tertiary interactions. Failure to isolate aspartic acid-inserting suppressors is probably due to elimination of the important G34 identity element and its replacement by an antideterminant when changing the anticodon of the tRNAAsp to the CUA triplet. PMID:8809018

  8. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra

    1998-10-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  9. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  10. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John J. Kilbane III

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will bemore » to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage

  11. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false N-Acetyl-L-methionine. 172.372 Section 172.372 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional...

  12. [Cloning of new acylamidase gene from Rhodococcus erythropolis and its expression in Escherichia coli].

    PubMed

    Lavrov, K V; Ianenko, A S

    2013-10-01

    The gene for new Rhodococcus erythropolis TA37 acylamidase, which possesses unique substrate specificity, has been cloned and expressed in E. coli. Substrates for this enzyme are not only simple amides, such as acetamide and propionamide, but also N-substituted amides, such as 4'-nitroacetanilide. The 1431-bp gene was expressed in E. coli BL21 (DE3) cells on pET16b plasmid under the control of a promoter of the φ 10 gene from the T7 phage. The molecular mass of recombinant acylamidase in E. coli was 55 kDa, which corresponded to that of native acylamidase from Rhodococcus erythropolis TA37. Recombinant acylamidase was able to hydrolize N-substituted amides. A search of a nucleotide database and multiple alignment revealed that acylamidase belonged to the Amidase protein family PF01425, but its nucleotide and amino acid sequences differed significantly from those of the described amidases.

  13. The role of metal ions in chemical evolution - Polymerization of alanine and glycine in a cation-exchanged clay environment

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Levi, N.

    1979-01-01

    The effect of the exchangeable cation on the condensation of glycine and alanine was investigated using a series of homoionic bentonites. A cycling procedure of drying, warming and wetting was employed. Peptide bond formation was observed, and the effectiveness of metal ions to catalyze the condensation was Cu(2+) greater than Ni(2) approximately equals Zn(2+) greater than Na(+). Glycine showed 6% of the monomer incorporated into oligomers with the largest detected being the pentamer. Alanine showed less peptide bond formation (a maximum of 2%) and only the dimer was observed.

  14. Acrylamide biodegradation ability and plant growth-promoting properties of Variovorax boronicumulans CGMCC 4969.

    PubMed

    Liu, Zhong-Hua; Cao, Yu-Min; Zhou, Qian-Wen; Guo, Kun; Ge, Feng; Hou, Jun-Yi; Hu, Si-Yi; Yuan, Sheng; Dai, Yi-Jun

    2013-11-01

    Species of the genus Variovorax are often isolated from nitrile or amide-containing organic compound-contaminated soil. However, there have been few biological characterizations of Variovorax and their contaminant-degrading enzymes. Previously, we reported a new soil isolate, Variovorax boronicumulans CGMCC 4969, and its nitrile hydratase that transforms the neonicotinoid insecticide thiacloprid into an amide metabolite. In this study, we showed that CGMCC 4969 is able to degrade acrylamide, a neurotoxicant and carcinogen in animals, during cell growth in a mineral salt medium as well as in its resting state. Resting cells rapidly hydrolyzed 600 mg/L acrylamide to acrylic acid with a half-life of 2.5 min. In in vitro tests, CGMCC 4969 showed plant growth-promoting properties; it produced a siderophore, ammonia, hydrogen cyanide, and the phytohormone salicylic acid. Interestingly, in soil inoculated with this strain, 200 mg/L acrylamide was completely degraded in 4 days. Gene cloning and overexpression in the Escherichia coli strain Rosetta (DE3) pLysS resulted in the production of an aliphatic amidase of 345 amino acids that hydrolyzed acrylamide into acrylic acid. The amidase contained a conserved catalytic triad, Glu59, Lys 134, and Cys166, and an "MRHGDISSS" amino acid sequence at the N-terminal region. Variovorax boronicumulans CGMCC 4969, which is able to use acrylamide for cell growth and rapidly degrade acrylamide in soil, shows promising plant growth-promoting properties. As such, it has the potential to be developed into an effective Bioaugmentation strategy to promote growth of field crops in acrylamide-contaminated soil.

  15. Determination of the D and L isomers of some protein amino acids present in soils

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Cheng, C.-N.; Cronin, S. E.

    1977-01-01

    The D and L isomers of some protein amino acids present in soils were measured by using a gas chromatographic technique. The results of two processing procedures were compared to determine the better method. Results of the comparison indicated that the determination of D and L percentages requires amino acid purification if one is to obtain accurate data. It was found that very significant amounts of D-alanine, D-aspartic acid, and D-glutamic acid were present in the contemporary soils studied. Valine, isoleucine, leucine, proline, and phenylalanine generally contained only a trace to very small amounts of the D isomer. It is probable that the D-amino acids from the alanine, aspartic, and glutamic acids are contributed to the soil primarily via microorganisms. The finding of very significant quantities of some D-amino acids (about 5-16%) in present-day soils may alert some investigators of geological sediments to a possible problem in using amino acid racemization as an age-dating technique.

  16. Correlation between liver cell necrosis and circulating alanine aminotransferase after ischaemia/reperfusion injuries in the rat liver.

    PubMed

    Knudsen, Anders R; Andersen, Kasper J; Hamilton-Dutoit, Stephen; Nyengaard, Jens R; Mortensen, Frank V

    2016-04-01

    Circulating liver enzymes such as alanine transaminase are often used as markers of hepatocellular damage. Ischaemia/reperfusion (I/R) injury is an inevitable consequence of prolonged liver ischaemia. The aim of this study was to examine the correlation between liver enzymes and volume of liver cell necrosis after ischaemia/reperfusion injuries, using design-unbiased stereological methods. Forty-seven male Wistar rats were subjected to 1 h of partial liver ischaemia, followed by either 4 or 24 h of reperfusion. Within each group, one-third of animals were subjected to ischaemic preconditioning and one-third to ischaemic postconditioning. At the end of reperfusion, blood and liver samples were collected for analysis. The volume of necrotic liver tissue was subsequently correlated to circulating markers of I/R injury. Correlation between histological findings and circulating markers was performed using Pearson's correlation coefficient. Alanine transferase peaked after 4 h of reperfusion; however, at this time-point, only mild necrosis was observed, with a Pearson's correlation coefficient of 0.663 (P = 0.001). After 24 h of reperfusion, alanine aminotransferase was found to be highly correlated to the degree of hepatocellular necrosis R = 0.836 (P = 0.000). Furthermore, alkaline phosphatase (R = 0.806) and α-2-macroglobulin (R = 0.655) levels were also correlated with the degree of necrosis. We show for the first time that there is a close correlation between the volume of hepatocellular necrosis and alanine aminotransferase levels in a model of I/R injury. This is especially apparent after 24 h of reperfusion. Similarly, increased levels of alkaline phosphatase and α-2-macroglobulin are correlated to the volume of liver necrosis. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  17. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney.

    PubMed

    Dennis, V W; Brazy, P C

    1978-08-01

    Interactions among the transport systems involved with sodium, bicarbonate, glucose, phosphate, and alanine absorption in isolated segments of the rabbit proximal convoluted tubule were examined with radioisotopic techniques to measure glucose, phosphate, and fluid absorption rates. The composition of the perfusate and bath varied from normal, physiological fluids to fluids deficient in a single solute. The deletion of glucose from the perfusate increased the lumen-to-bath flux of phosphate from 5.51 +/- 1.15 to 8.32 +/- 1.34 pmol/mm-min (P less than 0.01). Similar changes occurred when glucose transport was inhibited by phlorizin 10 micron in the perfusate, The deletion of alanine from the perfusate increased the lumen-to-bath flux of phosphate from 6.55 +/- 1.08 to 9.00 +/- 1.30 pmol/mm-min (P less than 0.01) but did not affect glucose transport significantly, 80.1 +/- 10.1 vs. 72.5 +/- 5.4 pmol/mm-min. Replacement of intraluminal sodium with choline, elimination of potassium from the bath, and removal of bicarbonate from the lumen and bath each reduced glucose, phosphate, and fluid absorption. These data indicate that the proximal absorptive processes for glucose and for phosphate include elements that are dependent upon some function of sodium transport. Additionally, the effects on phosphate transport of deleting glucose or alanine occur independent of any changes in net sodium transport and are opposite the effects of deleting bicarbonate. These differences may relate to the observations that the transport of glucose and alanine is electrogenic while that of bicarbonate is not. Regardless of possible mechanisms, the data demonstrate that important changes in the absorption rates of different solutes handled significantly by the proximal convoluted tubule may occur in response to changes in specific components of proximal sodium transport.

  18. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney.

    PubMed Central

    Dennis, V W; Brazy, P C

    1978-01-01

    Interactions among the transport systems involved with sodium, bicarbonate, glucose, phosphate, and alanine absorption in isolated segments of the rabbit proximal convoluted tubule were examined with radioisotopic techniques to measure glucose, phosphate, and fluid absorption rates. The composition of the perfusate and bath varied from normal, physiological fluids to fluids deficient in a single solute. The deletion of glucose from the perfusate increased the lumen-to-bath flux of phosphate from 5.51 +/- 1.15 to 8.32 +/- 1.34 pmol/mm-min (P less than 0.01). Similar changes occurred when glucose transport was inhibited by phlorizin 10 micron in the perfusate, The deletion of alanine from the perfusate increased the lumen-to-bath flux of phosphate from 6.55 +/- 1.08 to 9.00 +/- 1.30 pmol/mm-min (P less than 0.01) but did not affect glucose transport significantly, 80.1 +/- 10.1 vs. 72.5 +/- 5.4 pmol/mm-min. Replacement of intraluminal sodium with choline, elimination of potassium from the bath, and removal of bicarbonate from the lumen and bath each reduced glucose, phosphate, and fluid absorption. These data indicate that the proximal absorptive processes for glucose and for phosphate include elements that are dependent upon some function of sodium transport. Additionally, the effects on phosphate transport of deleting glucose or alanine occur independent of any changes in net sodium transport and are opposite the effects of deleting bicarbonate. These differences may relate to the observations that the transport of glucose and alanine is electrogenic while that of bicarbonate is not. Regardless of possible mechanisms, the data demonstrate that important changes in the absorption rates of different solutes handled significantly by the proximal convoluted tubule may occur in response to changes in specific components of proximal sodium transport. PMID:670399

  19. Characterization of 316L(N)-IG SS joint produced by hot isostatic pressing technique

    NASA Astrophysics Data System (ADS)

    Nakano, J.; Miwa, Y.; Tsukada, T.; Kikuchi, M.; Kita, S.; Nemoto, Y.; Tsuji, H.; Jitsukawa, S.

    2002-12-01

    Type 316L(N) stainless steel of the international thermonuclear experimental reactor grade (316L(N)-IG SS) is being considered for the first wall/blanket module. Hot isostatic pressing (HIP) technique is expected for the fabrication of the module. To evaluate the integrity and susceptibility to stress corrosion cracking (SCC) of HIPed 316L(N)-IG SS, tensile tests in vacuum and slow strain rate tests in high temperature water were performed. Specimen with the HIPed joint had similar tensile properties to specimens of 316L(N)-IG SS, and did not show susceptibility to SCC in oxygenated water at 423 K. Thermally sensitized specimen was low susceptible to SCC even in the creviced condition. It is concluded that the tensile properties of HIPed SS are as high as those of the base alloy and the HIP process caused no deleterious effects.

  20. Complete Reconstitution of the Vancomycin-Intermediate Staphylococcus aureus Phenotype of Strain Mu50 in Vancomycin-Susceptible S. aureus

    PubMed Central

    Sekine, Miwa; Hishinuma, Tomomi; Aiba, Yoshifumi; Hiramatsu, Keiichi

    2016-01-01

    Complete reconstitution of the vancomycin-intermediate Staphylococcus aureus (VISA) phenotype of strain Mu50 was achieved by sequentially introducing mutations into six genes of vancomycin-susceptible S. aureus (VSSA) strain N315ΔIP. The six mutated genes were detected in VISA strain Mu50 but not in N315ΔIP. Introduction of the mutation Ser329Leu into vraS, encoding the sensor histidine kinase of the vraSR two-component regulatory (TCR) system, and another mutation, Glu146Lys, into msrR, belonging to the LytR-CpsA-Psr (LCP) family, increased the level of vancomycin resistance to that detected in heterogeneous vancomycin-intermediate S. aureus (hVISA) strain Mu3. Introduction of two more mutations, Asn197Ser into graR of the graSR TCR system and His481Tyr into rpoB, encoding the β subunit of RNA polymerase, converted the hVISA strain into a VISA strain with the same level of vancomycin resistance as Mu50. Surprisingly, however, the constructed quadruple mutant strain ΔIP4 did not have a thickened cell wall, a cardinal feature of the VISA phenotype. Subsequent study showed that cell wall thickening was an inducible phenotype in the mutant strain, whereas it was a constitutive one in Mu50. Finally, introduction of the Ala297Val mutation into fdh2, which encodes a putative formate dehydrogenase, or a 67-amino-acid sequence deletion into sle1 [sle1(Δ67aa)], encoding the hydrolase of N-acetylmuramyl-l-alanine amidase in the peptidoglycan, converted inducible cell wall thickening into constitutive cell wall thickening. sle1(Δ67aa) was found to cause a drastic decrease in autolysis activity. Thus, all six mutated genes required for acquisition of the VISA phenotype were directly or indirectly involved in the regulation of cell physiology. The VISA phenotype seemed to be achieved through multiple genetic events accompanying drastic changes in cell physiology. PMID:27067329

  1. Construction of Escherichia coli strains producing L-serine from glucose.

    PubMed

    Li, Yu; Chen, Gu-Kui; Tong, Xin-Wei; Zhang, Hui-Tu; Liu, Xiao-Guang; Liu, Yi-Han; Lu, Fu-Ping

    2012-08-01

    L-Serine is usually produced from glycine. We have genetically engineered Escherichia coli to produce L-serine from glucose intracellularly. D-3-Phosphoglycerate dehydrogenase (PGDH, EC 1.1.1.95) in E. coli catalyzes the first committed step in L-serine formation but is inhibited by L-serine. To overcome this feedback inhibition, both the His(344) and Asn(346) residues of PGDH were converted to alanine and the mutated PGDH (PGDH(dr)) became insensitive to L-serine. However, overexpression of PGDH(dr) gave no significant increase of L-serine accumulation but, when L-serine deaminase genes (sdaA, sdaB and tdcG) were deleted, serine accumulated: (1) deletion of sdaA gave up to 0.03 mmol L-serine/g; (2) deletion of both sdaA and sdaB accumulated L-serine up to 0.09 mmol/g; and (3) deletion of sdaA, sdaB and tdcG gave up to 0.13 mmol L-serine/g cell dry wt.

  2. Evaluation of alanine as a reference dosimeter for therapy level dose comparisons in megavoltage electron beams

    NASA Astrophysics Data System (ADS)

    McEwen, Malcolm; Sharpe, Peter; Vörös, Sándor

    2015-04-01

    When comparing absorbed dose standards from different laboratories (e.g. National Measurement Institutes, NMIs, for Key or Supplementary comparisons) it is rarely possible to carry out a direct comparison of primary standard instruments, and therefore some form of transfer detector is required. Historically, air-filled, unsealed ionization chambers have been used because of the long history of using these instruments, very good stability over many years, and ease of transport. However, the use of ion chambers for therapy-level comparisons is not without its problems. Findings from recent investigations suggest that ion chambers are prone to non-random variations, they are not completely robust to standard courier practices, and failure at any step in a comparison can render all measurements potentially useless. An alternative approach is to identify a transfer system that is insensitive to some of these concerns—effectively a dosimeter that is inexpensive, simple to use, robust, but with sufficient precision and of a size relevant to the disseminated quantity in question. The alanine dosimetry system has been successfully used in a number of situations as an audit dosimeter and therefore the purpose of this investigation was to determine whether alanine could also be used as the transfer detector for dosimetric comparisons, which require a lower value for the measurement uncertainty. A measurement protocol was developed for comparing primary standards of absorbed dose to water in high-energy electron beams using alanine pellets irradiated in a water-equivalent plastic phantom. A trial comparison has been carried out between three NMIs and has indicated that alanine is a suitable alternative to ion chambers, with the system used achieving a precision of 0.1%. Although the focus of the evaluation was on the performance of the dosimeter, the comparison results are encouraging, showing agreement at the level of the combined uncertainties (~0.6%). Based on this

  3. Transplastomic expression of bacterial L-aspartate-alpha-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress.

    PubMed

    Fouad, W M; Altpeter, F

    2009-10-01

    Metabolic engineering for beta-alanine over-production in plants is expected to enhance environmental stress tolerance. The Escherichia coli L-aspartate-alpha-decarboxylase (AspDC) encoded by the panD gene, catalyzes the decarboxylation of L-aspartate to generate beta-alanine and carbon dioxide. The constitutive E. coli panD expression cassette was co-introduced with the constitutive, selectable aadA expression cassette into the chloroplast genome of tobacco via biolistic gene transfer and homologous recombination. Site specific integration of the E. coli panD expression cassette into the chloroplast genome and generation of homotransplastomic plants were confirmed by PCR and Southern blot analysis, respectively, following plant regeneration and germination of seedlings on selective media. PanD expression was verified by assays based on transcript detection and in vitro enzyme activity. The AspDC activities in transplastomic plants expressing panD were drastically increased by high-temperature stress. beta-Alanine accumulated in transplastomic plants at levels four times higher than in wildtype plants. Analysis of chlorophyll fluorescence on plants subjected to severe heat stress at 45 degrees C under light verified that photosystem II (PSII) in transgenic plants had higher thermotolerance than in wildtype plants. The CO(2) assimilation of transplastomic plants expressing panD was more tolerant to high temperature stress than that of wildtype plants, resulting in the production of 30-40% more above ground biomass than wildtype control. The results presented indicate that chloroplast engineering of the beta-alanine pathway by over-expression of the E. coli panD enhances thermotolerance of photosynthesis and biomass production following high temperature stress.

  4. Spectroscopic analyses on interaction of o-Vanillin-D-Phenylalanine, o-Vanillin-L-Tyrosine and o-Vanillin-L-Levodopa Schiff Bases with bovine serum albumin (BSA).

    PubMed

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin-D-Phenylalanine (o-VDP), o-Vanillin-L-Tyrosine (o-VLT) and o-Vanillin-L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant (K(q)), apparent quenching constant (K(sv)), effective binding constant (K(A)) and corresponding dissociation constant (K(D)) as well as binding site number (n) were obtained. In addition, the binding distance (r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA>o-VLT-BSA>o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. N-acetyl-l-methionine is a superior protectant of human serum albumin against photo-oxidation and reactive oxygen species compared to N-acetyl-L-tryptophan.

    PubMed

    Kouno, Yousuke; Anraku, Makoto; Yamasaki, Keishi; Okayama, Yoshiro; Iohara, Daisuke; Ishima, Yu; Maruyama, Toru; Kragh-Hansen, Ulrich; Hirayama, Fumitoshi; Otagiri, Masaki

    2014-09-01

    Sodium octanoate (Oct) and N-acetyl-l-tryptophan (N-AcTrp) are widely used as stabilizers during pasteurization and storage of albumin products. However, exposure to light photo-degrades N-AcTrp with the formation of potentially toxic compounds. Therefore, we have examined the usefulness of N-acetyl-l-methionine (N-AcMet) in comparison with N-AcTrp for long-term stability, including photo stability, of albumin products. Recombinant human serum albumin (rHSA) with and without additives was photo-irradiated for 4weeks. The capability of the different stabilizers to scavenge reactive oxygen species (ROS) was examined by ESR spectrometry. Carbonyl contents were assessed by a spectrophotometric method using fluoresceinamine and Western blotting, whereas the structure of rHSA was examined by SDS-PAGE, far-UV circular dichroism and differential scanning calorimetry. Binding was determined by ultrafiltration. N-AcMet was found to be a superior ROS scavenger both before and after photo-irradiation. The number of carbonyl groups formed was lowest in the presence of N-AcMet. According to SDS-PAGE, N-AcMet stabilizes the monomeric form of rHSA, whereas N-AcTrp induces degradation of rHSA during photo-irradiation. The decrease in α-helical content of rHSA was the smallest in the presence of Oct, without or with N-AcMet. Photo-irradiation did not affect the denaturation temperature or calorimetric enthalpy of rHSA, when N-AcMet was present. The weakly bound N-AcMet is a superior protectant of albumin, because it is a better ROS-protector and structural stabilizer than N-AcTrp, and it is probable and also useful for other protein preparations. N-AcMet is an effective stabilizer of albumin during photo-irradiation, while N-Ac-Trp promotes photo-oxidative damage to albumin. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Vaccinia Virus Virulence Factor N1L is a Novel Promising Target for Antiviral Therapeutic Intervention

    PubMed Central

    Cheltsov, Anton V.; Aoyagi, Mika; Aleshin, Alexander; Chi-Wang, Yu Eric; Gilliland, Taylor; Zhai, Dayong; Bobkov, Andrey A.; Reed, John C.; Liddington, Robert C.; Abagyan, Ruben

    2010-01-01

    The 14 kDa homodimeric N1L protein is a potent vaccinia and variola (smallpox) virulence factor. It is not essential for viral replication, but it causes a strong attenuation of viral production in culture when deleted. The N1L protein is predicted to contain the BH3-like binding domain characteristic of Bcl-2 family proteins, and it is able to bind the BH3 peptides. Its overexpression has been reported to prevent infected cells from committing apoptosis. Therefore, interfering with the N1L apoptotic blockade may be a legitimate therapeutic strategy affecting the viral growth. By using in silico ligand docking and an array of in vitro assays, we have identified sub-micromolar (600 nM) N1L antagonists, belonging to the family of polyphenols. Their affinity is comparable to that of the BH3 peptides (70 nM ÷ 1000 nM). We have also identified the natural polyphenol resveratrol as a moderate N1L inhibitor. Finally, we show that our ligands efficiently inhibit growth of vaccinia virus. PMID:20441222

  7. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    PubMed

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-04

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those

  8. The pH dependence of the allosteric response of human liver pyruvate kinase to fructose-1,6-bisphosphate, ATP, and alanine

    PubMed Central

    Fenton, Aron W.; Hutchinson, Myra

    2009-01-01

    The allosteric regulation of human liver pyruvate kinase (hL-PYK) by fructose-1,6-bisphosphate (Fru-1,6-BP; activator), ATP (inhibitor) and alanine (Ala; inhibitor) was monitored over a pH range from 6.5 to 8.0 at 37°C. As a function of increasing pH, hL-PYK's affinity for the substrate phosphoenolpyruvate (PEP), and for Fru-1,6-BP decreases, while affinities for ATP and Ala slightly increases. At pH 6.5, Fru-1,6-BP and ATP elicit only small allosteric impacts on PEP affinity. As pH increases, Fru-1,6-BP and ATP elicit greater allosteric responses, but the response to Ala is relatively constant. Since the magnitudes of the allosteric coupling for ATP and for Ala inhibition are different and the pH dependences of these magnitudes are not similar, these inhibitors likely elicit their responses using different molecular mechanisms. In addition, our results fail to support a general correlation between pH dependent changes in effector affinity and pH dependent changes in the corresponding allosteric response. PMID:19467627

  9. Cloning, over-expression and purification of Pseudomonas aeruginosa murC encoding uridine diphosphate N-acetylmuramate: L-alanine ligase.

    PubMed

    El Zoeiby, A; Sanschagrin, F; Lamoureux, J; Darveau, A; Levesque, R C

    2000-02-15

    We cloned and sequenced the murC gene from Pseudomonas aeruginosa encoding a protein of 53 kDa. Multiple alignments with 20 MurC peptide sequences from different bacteria confirmed the presence of highly conserved regions having sequence identities ranging from 22-97% including conserved motifs for ATP-binding and the active site of the enzyme. Genetic complementation was done in Escherichia coli (murCts) suppressing the lethal phenotype. The murC gene was subcloned into the expression vector pET30a and overexpressed in E. coli BL21(lambdaDE3). Three PCR cloning strategies were used to obtain the three recombinant plasmids for expression of the native MurC, MurC His-tagged at N-terminal and at C-terminal, respectively. MurC His-tagged at C-terminal was chosen for large scale production and protein purification in the soluble form. The purification was done in a single chromatographic step on an affinity nickel column and obtained in mg quantities at 95% homogeneity. MurC protein was used to produce monoclonal antibodies for epitope mapping and for assay development in high throughput screenings. Detailed studies of MurC and other genes of the bacterial cell cycle will provide the reagents and strain constructs for high throughput screening and for design of novel antibacterials.

  10. A structural insight into the P1S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata

    N0 -substituted 1,2-diaminoethylphosphonic acids and 1,2-diaminoethylphosphinic dipeptides were explored to unveil the structural context of the unexpected selectivity of these inhibitors of M1 alanine aminopeptidases (APNs) versus M17 leucine aminopeptidase (LAP). The diaminophosphonic acids were obtained via aziridines in an improved synthetic procedure that was further expanded for the phosphinic pseudodipeptide system. The inhibitory activity, measured for three M1 and one M17 metalloaminopeptidases of different sources (bacterial, human and porcine), revealed several potent compounds (e.g., Ki ¼ 65 nM of 1u for HsAPN). Two structures of an M1 representative (APN from Neisseria meningitidis) in complex with N-benzyl-1,2-diaminoethylphosphonic acid and N-cyclohexyl-1,2-more » diaminoethylphosphonic acid were determined by the X-ray crystallography. The analysis of these structures and the models of the phosphonic acid complexes of the human ortholog provided an insight into the role of the additional amino group and the hydrophobic substituents of the ligands within the S1 active site region.« less

  11. Structure and stability of clusters of β-alanine in the gas phase: importance of the nature of intermolecular interactions.

    PubMed

    Piekarski, Dariusz Grzegorz; Díaz-Tendero, Sergio

    2017-02-15

    We present a theoretical study of neutral clusters of β-alanine molecules in the gas phase, (β-ala) n n ≤ 5. Classical molecular dynamics simulations carried out with different internal excitation energies provide information on the clusters formation and their thermal decomposition limits. We also present an assessment study performed with different families of density functionals using the dimer, (β-ala) 2 , as a benchmark system. The M06-2X functional provides the best agreement in geometries and relative energies in comparison with the reference values computed with the MP2 and CCSD(T) methods. The structure, stability, dissociation energies and vertical ionization potentials of the studied clusters have been investigated using this functional in combination with the 6-311++G(d,p) basis set. An exhaustive analysis of intermolecular interactions is also presented. These results provide new insights into the stability, interaction nature and formation mechanisms of clusters of amino acids in the gas phase.

  12. An O({radical}nL) primal-dual affine scaling algorithm for linear programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Siming

    1994-12-31

    We present a new primal-dual affine scaling algorithm for linear programming. The search direction of the algorithm is a combination of classical affine scaling direction of Dikin and a recent new affine scaling direction of Jansen, Roos and Terlaky. The algorithm has an iteration complexity of O({radical}nL), comparing to O(nL) complexity of Jansen, Roos and Terlaky.

  13. Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC.

    PubMed

    Marmor, S; Petersen, C P; Reck, F; Yang, W; Gao, N; Fisher, S L

    2001-10-09

    The bacterial UDP-N-acetylmuramyl-L-alanine ligase (MurC) from Escherichia coli, an essential, cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent ligation of L-alanine (Ala) and UDP-N-acetylmuramic acid (UNAM) to form UDP-N-acetylmuramyl-L-alanine (UNAM-Ala). The phosphinate inhibitor 1 was designed and prepared as a multisubstrate/transition state analogue. The compound exhibits mixed-type inhibition with respect to all three enzyme substrates (ATP, UNAM, Ala), suggesting that this compound forms dead-end complexes with multiple enzyme states. Results from isothermal titration calorimetry (ITC) studies supported these findings as exothermic binding was observed under conditions with free enzyme (K(d) = 1.80-2.79 microM, 95% CI), enzyme saturated with ATP (K(d) = 0.097-0.108 microM, 95% CI), and enzyme saturated with the reaction product ADP (K(d) = 0.371-0.751 microM, 95% CI). Titrations run under conditions of saturating UNAM or the product UNAM-Ala did not show heat effects consistent with competitive compound binding to the active site. The potent binding affinity observed in the presence of ATP is consistent with the inhibitor design and the proposed Ordered Ter-Ter mechanism for this enzyme; however, the additional binding pathways suggest that the inhibitor can also serve as a product analogue.

  14. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases

    PubMed Central

    Meziane-Cherif, Djalal; Stogios, Peter J.; Evdokimova, Elena; Egorova, Olga

    2015-01-01

    ABSTRACT Vancomycin resistance in Gram-positive bacteria results from the replacement of the d-alanyl–d-alanine target of peptidoglycan precursors with d-alanyl–d-lactate or d-alanyl–d-serine (d-Ala-d-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of d-Ala-d-Ser-terminating precursors by converting l-Ser to d-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in l-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5′-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the l-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against l-Ser versus l-Ala implied that this enzyme relies on its membrane-bound domain for l-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. PMID:26265719

  15. Structural and functional adaptation of vancomycin resistance VanT serine racemases

    DOE PAGES

    Meziane-Cherif, Djalal; Stogios, Peter J.; Evdokimova, Elena; ...

    2015-08-11

    Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl–D-alanine target of peptidoglycan precursors with D-alanyl–D-lactate or D-alanyl–D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanT G from VanG-type resistant Enterococcus faecalis BM4518more » was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanT G and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn 696 which are responsible for theL-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanT G against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of D-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria.« less

  16. Novel histone deacetylase 8-selective inhibitor 1,3,4-oxadiazole-alanine hybrid induces apoptosis in breast cancer cells.

    PubMed

    Pidugu, Vijaya Rao; Yarla, Nagendra Sastry; Bishayee, Anupam; Kalle, Arunasree M; Satya, Alapati Krishna

    2017-11-01

    Identification of isoform-specific histone deacetylase inhibitors (HDACi) is a significant advantage to overcome the adverse side effects of pan-HDACi for the treatment of various diseases, including cancer. We have designed, and synthesized novel 1,3,4 oxadiazole with glycine/alanine hybrids as HDAC8-specific inhibitors and preliminary evaluation has indicated that 1,3,4 oxadiazole with alanine hybrid [(R)-2-amino-N-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)propanamide (10b)] to be a potent HDAC8 inhibitor. In the present study, the in vitro efficacy of the molecule in inhibiting the cancer cell proliferation and the underlying molecular mechanism was studied. 10b inhibited the growth of MDA-MB-231 and MCF7 breast cancer cells, with a lower IC 50 of 230 and 1000 nM, respectively, compared to K562, COLO-205 and HepG2 cells and was not cytotoxic to normal breast epithelial cells, MCF10A. 10b was specific to HDAC8 and did not affect the expression of other class I HDACs. Further, a dose-dependent increase in H3K9 acetylation levels demonstrated the HDAC-inhibitory activity of 10b in MDA-MB-231 cells. Flow cytometric analysis indicated a dose-dependent increase and decrease in the percent apoptotic cells and mitochondrial membrane potential, respectively, when treated with 10b. Immunoblot analysis showed a modulation of Bax/Bcl2 ratio with a decrease in Bcl2 expression and no change in Bax expression. 10b treatment resulted in induction of p21 and inhibition of CDK1 proteins along with cytochrome c release from mitochondria, activation of caspases-3 and -9 and cleavage of poly ADP-ribose polymerase leading to apoptotic death of MDA-MB-231 and MCF7 cells. In conclusion, our results clearly demonstrated the efficacy of 10b as an anticancer agent against breast cancer.

  17. Precise structural analysis of α-helical polypeptide by quantum-chemical calculation related to reciprocal side-chain combination of two L-phenylalanine residues

    NASA Astrophysics Data System (ADS)

    Niimura, Subaru; Kurosu, Hiromichi; Shoji, Akira

    2010-04-01

    To clarify the positive role of side-chain conformation in the stability of protein secondary structure (main-chain conformation), we successfully calculated the optimization structure of a series of well-defined α-helical octadecapeptides composed of two L-phenylalanine (Phe) and 16 L-alanine (Ala) residues, based on the molecular orbital calculation with density functional theory (DFT/B3LYP/6-31G(d)). From the total energy calculation and the precise secondary structural analysis, we found that the conformational stability of the α-helix is closely related to the reciprocal side-chain combinations (such as positional relation and side-chain conformation) of two Phe residues in this system. Furthermore, we demonstrated that the 1H, 13C, 15N and 17O isotropic chemical shifts of each Phe residue depend on the respective side-chain conformations of the Phe residue.

  18. Overview on the biotechnological production of L-DOPA.

    PubMed

    Min, Kyoungseon; Park, Kyungmoon; Park, Don-Hee; Yoo, Young Je

    2015-01-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine) has been widely used as a drug for Parkinson's disease caused by deficiency of the neurotransmitter dopamine. Since Monsanto developed the commercial process for L-DOPA synthesis for the first time, most of currently supplied L-DOPA has been produced by the asymmetric method, especially asymmetric hydrogenation. However, the asymmetric synthesis shows critical limitations such as a poor conversion rate and a low enantioselectivity. Accordingly, alternative biotechnological approaches have been researched for overcoming the shortcomings: microbial fermentation using microorganisms with tyrosinase, tyrosine phenol-lyase, or p-hydroxyphenylacetate 3-hydroxylase activity and enzymatic conversion by immobilized tyrosinase. Actually, Ajinomoto Co. Ltd commercialized Erwinia herbicola fermentation to produce L-DOPA from catechol. In addition, the electroenzymatic conversion system was recently introduced as a newly emerging scheme. In this review, we aim to not only overview the biotechnological L-DOPA production methods, but also to briefly compare and analyze their advantages and drawbacks. Furthermore, we suggest the future potential of biotechnological L-DOPA production as an industrial process.

  19. Evaluation of the inhibitory effect of N-acetyl-L-cysteine on Babesia and Theileria parasites.

    PubMed

    Rizk, Mohamed Abdo; El-Sayed, Shimaa Abd El-Salam; AbouLaila, Mahmoud; Yokoyama, Naoaki; Igarashi, Ikuo

    2017-08-01

    N-acetyl-L-cysteine is known to have antibacterial, antiviral, antimalarial, and antioxidant activities. Therefore, the in vitro inhibitory effect of this hit was evaluated in the present study on the growth of Babesia and Theileria parasites. The in vitro growth of Babesia bovis, Babesia bigemina, Babesia divergens, Theileria equi, and Babesia caballi that were tested was significantly inhibited (P < 0.05) by micromolar concentrations of N-acetyl-L-cysteine. The inhibitory effect of N-acetyl-L-cysteine was synergistically potentiated when used in combination with diminazene aceturate on B. bovis and B. caballi cultures. These results indicate that N-acetyl-L-cysteine might be used as a drug for the treatment of babesiosis, especially when used in combination with diminazene aceturate. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Thermophilic archaeal enzymes and applications in biocatalysis.

    PubMed

    Littlechild, Jennifer A

    2011-01-01

    Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.

  1. Elevated alanine aminotransferase (ALT) in the deceased donor: impact on early post-transplant liver allograft function.

    PubMed

    Mangus, Richard S; Fridell, Jonathan A; Kubal, Chandrashekhar A; Davis, Jason P; Tector, A Joseph

    2015-02-01

    Serum alanine aminotransferase (ALT) levels are frequently elevated with liver injury and such elevations are common in deceased organ donors. The impact of this injury on early liver allograft function has not been well described. This study analyses the immediate function and 1-year graft and patient survival for liver allografts stratified by peak serum ALT levels in the deceased donor. The on-site organ procurement records for 1348 consecutive deceased liver donors were reviewed (2001–2011). Serum ALT was categorized into three study groups: normal/mild elevation, 0–499 μ/L; moderate elevation, 500–999 μ/L (>10× upper limit of normal) and severe elevation, ≥1000 μ/L (>20× upper limit of normal). Outcomes included early graft function and graft loss, and 1-year graft and patient survival. Distribution of subjects included: normal/mild, 1259 (93%); moderate, 34 (3%) and severe, 55 (4%). Risk of 30-day graft loss for the three study groups was: 72 (6%), 3 (9%) and 3 (6%) (P = 0.74). Graft and patient survival at 1 year for the three groups was: normal/mild, 1031 (87%), 1048 (88%); moderate, 31 (91%), 31 (91%) and severe, 43 (88%), 44 (90%) (P = 0.71, 0.79). Cox proportional hazards modelling of survival while controlling for donor age and recipient model for end-stage liver disease score (MELD) demonstrates no statistically significant difference among the three study groups. This study demonstrates clinical equivalence in early graft function and 1-year graft and patient survival for donor livers with varying peak levels of serum ALT. These donor allografts may, therefore, be utilized successfully.

  2. Pharmacokinetics and N-acetylation metabolism of S-methyl-l-cysteine and trans-S-1-propenyl-l-cysteine in rats and dogs.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-11-01

    1. Pharmacokinetics and N-acetylation metabolism of S-methyl-L-cysteine (SMC) and trans-S-1-propenyl-L-cysteine (S1PC) were examined in rats and dogs. SMC and S1PC (2-5 mg/kg) were well absorbed in both species with high bioavailability (88-100%). 2. SMC and S1PC were excreted only to a small extent in the urine of rats and dogs. The small renal clearance values (<0.03 l/h/kg) indicated the extensive renal reabsorption of SMC and S1PC, which potentially contributed to their long elimination half-lives (>5 h) in dogs. 3. S1PC, but not SMC, underwent N-acetylation extensively in vivo, which can be explained by the relative activities of N-acetylation of S1PC/SMC and deacetylation of their N-acetylated forms, N-acetyl-S1PC/N-acetyl-SMC, in the liver and kidney in vitro. The activities for S1PC N-acetylation were similar to or higher than those for N-acetyl-S1PC deacetylation in liver S9 fractions of rat and dog, whereas liver and kidney S9 fractions of rat and dog had little activity for SMC N-acetylation or considerably higher activities for N-acetyl-SMC deacetylation. 4. Our study demonstrated that the pharmacokinetics of SMC and S1PC in rats and dogs was characterized by high bioavailability and extensive renal reabsorption; however, the extent of undergoing the N-acetylation metabolism was extremely different between SMC and S1PC.

  3. Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques

    PubMed Central

    Huang, Xing-Jiu; Choi, Yang-Kyu; Im, Hyung-Soon; Yarimaga, Oktay; Yoon, Euisik; Kim, Hak-Sung

    2006-01-01

    The levels of aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) in serum can help people diagnose body tissues especially the heart and the liver are injured or not. This article provides a comprehensive review of research activities that concentrate on AST/GOT and ALT/GPT detection techniques due to their clinical importance. The detection techniques include colorimetric, spectrophotometric, chemiluminescence, chromatography, fluorescence and UV absorbance, radiochemical, and electrochemical techniques. We devote the most attention on experimental principle. In some methods a few representative devices and important conclusions are presented.

  4. L-Cysteine enhances nutrient absorption via a cystathionine-β-synthase-derived H2 S pathway in rodent jejunum.

    PubMed

    Xiao, Ailin; Li, Jing; Liu, Tianjian; Liu, Zhuxi; Wei, Chuanfei; Xu, Xiaomeng; Li, Qin; Li, Jingxin

    2016-05-01

    Hydrogen sulphide (H2 S) is generated endogenously from L-cysteine (L-Cys) by the enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). In addition, L-Cys is commonly used as a precursor in the food and pharmaceutical industries. The aim of the present study is to determine whether L-Cys regulates intestinal nutrient transport. To that end, the presence of CBS and CSE in the jejunum epithelium was assessed by immunohistochemistry, Western blotting and the methylene blue assay. In addition, in vivo L-Cys (100 mg/kg, administered immediately after the glucose load) significantly increased blood glucose levels 30 min after the oral administration of glucose to mice. This effect of L-Cys was completely blocked by amino-oxyacetic acid (AOA; 50 mg/kg; administered at the same time as L-Cys) an inhibitor of CBS. Measurements of the short-circuit current (Isc) in the rat jejunum epithelium revealed that L-Cys (1 mmol/L; 6 min before the administration of L-alanine) enhances Na(+)-coupled L-alanine or glucose transport, and that this effect is inhibited by AOA (1 mmol/L;10 min before the administration of L-Cys), but not D,L-propargylglycine (PAG;1 mmol/L; 10 min before the administration of L-Cys), a CSE inhibitor. Notably, L-Cys-evoked enhancement of nutrient transport was alleviated by glibenclamide (Gli;0.1 mmol/L; 10 min before the administration of L-Cys), a K(+) channel blocker. Together, the data indicate that L-Cys enhances jejunal nutrient transport, suggesting a new approach to future treatment of nutrition-related maladies, including a range of serious health consequences linked to undernutrition. © 2016 John Wiley & Sons Australia, Ltd.

  5. Antisnake Venom Activity of Hibiscus aethiopicus L. against Echis ocellatus and Naja n. nigricollis.

    PubMed

    Hasson, S S; Al-Jabri, A A; Sallam, T A; Al-Balushi, M S; Mothana, R A A

    2010-01-01

    The objective of the study is to investigate whether the Hibiscus aethiopicus L. plant has neutralization activity against venoms of two clinically important snakes. The H. aethiopicus was dried and extracted with water. Different assays were performed to evaluate the plant's acute toxicity and its anti-snake venom activities. The results showed that H. aethiopicus extract alone had no effect on the viability of C(2)C(12) muscle cells, but significantly (P < .05) protected muscle cells against the toxic effects of E. ocellatus venom at 55, 150, and 300 mug/mL. The maximum protective effect of the extract was exhibited at 75 mug/mL. The extract significantly (P < .001) inhibited the cytotoxic effects of E. ocellatus venom at 300 mug/mL. All rabbits (n = 10) and guinea pigs (n = 10) were alive after the two weeks of given the lethal dosage 16 g/Kg of the H. aethiopicus extract herbal solution. No abnormal behaviour was observed of both groups of animals. All guinea pigs (n = 3) treated with venoms alone (5 mg/kg) died. However, all guinea pigs (n = 21) treated with venom (5 mg/kg) and the extract (400 to 1000 mg/kg) survived. Guinea pigs (n = 3) treated with Naja n. nigricollis venom alone (2.5 mg/kg) and guinea pigs (n = 21) venom with the extract (400 to 1000 mg/kg) died. The H. aethiopicus completely (100%) blocked the haemorrhagic activity of E. ocellatus in the egg embryo at 3.3 mg/mL of extract. These findings suggest that H. aethiopicus may contain an endogenous inhibitor of venom-induced haemorrhage.

  6. Influence of amino acid residues near the active site of cytochrome P450 from Bacillus megaterium on the selectivity of n-octane oxidation to octanol regioisomers

    NASA Astrophysics Data System (ADS)

    Miyaji, Akimitsu; Baba, Toshihide

    2017-09-01

    A mutant of cytochrome P450 from Bacillus megaterium (CYP450BM-3) was prepared by replacing two alanine residues around active site of the enzyme, alanine 328 and alanine 82, with leucine and tryptophan, respectively. The CYP450BM-3 mutant produced 2-octanol selectively from n-octane under atmospheric temperature and pressure; its selectivity was 74%. Furthermore, the mutant produced 1-octanol, which is not produced by wild-type enzyme.

  7. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168.

    PubMed

    Cooper, Gareth R; Moir, Anne

    2011-05-01

    The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore.

  8. Folding and Function of a T4 Lysozyme Containing 10 Consecutive Alanines Illustrate the Redundancy of Information in an Amino Acid Sequence

    NASA Astrophysics Data System (ADS)

    Heinz, Dirk W.; Baase, Walt A.; Matthews, Brian W.

    1992-05-01

    Single and multiple Xaa -> Ala substitutions were constructed in the α-helix comprising residues 39-50 in bacteriophage T4 lysozyme. The variant with alanines at 10 consecutive positions (A40-49) folds normally and has activity essentially the same as wild type, although it is less stable. The crystal structure of this polyalanine mutant displays no significant change in the main-chain atoms of the helix when compared with the wild-type structure. The individual substitutions of the solvent-exposed residues Asn-40, Ser-44, and Glu-45 with alanine tend to increase the thermostability of the protein, whereas replacements of the buried or partially buried residues Lys-43 and Leu-46 are destabilizing. The melting temperature of the lysozyme in which Lys-43 and Leu-46 are retained and positions 40, 44, 45, 47, and 48 are substituted with alanine (i.e., A40-42/44-45/47-49) is increased by 3.1^circC relative to wild type at pH 3.0, but reduced by 1.6^circC at pH 6.7. In the case of the charged amino acids Glu-45 and Lys-48, the changes in melting temperature indicate that the putative salt bridge between these two residues contributes essentially nothing to the stability of the protein. The results clearly demonstrate that there is considerable redundancy in the sequence information in the polypeptide chain; not every amino acid is essential for folding. Also, further evidence is provided that the replacement of fully solvent-exposed residues within α-helices with alanines may be a general way to increase protein stability. The general approach may permit a simplification of the protein folding problem by retaining only amino acids proven to be essential for folding and replacing the remainder with alanine.

  9. Radiolabelling of isopeptide N epsilon-(gamma-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[18F]fluorobenzoate.

    PubMed

    Wüst, F; Hultsch, C; Bergmann, R; Johannsen, B; Henle, T

    2003-07-01

    The isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine 4 was labelled with 18F via N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). A modified approach for the convenient synthesis of [18F]SFB was used, and [18F]SFB could be obtained in decay-corrected radiochemical yields of 44-53% (n = 20) and radiochemical purity >95% within 40 min after EOB. For labelling N(epsilon)-(gamma-glutamyl)-L-lysine with [18F]SFB the effects of isopeptide concentration, temperature, and pH were studied to determine the optimum reaction conditions. The coupling reaction was shown to be temperature and pH independent while being strongly affected by the isopeptide concentration. Using the optimized labelling conditions, in a typical experiment 1.3GBq of [18F]SFB could be converted into 447MBq (46%, decay-corrected) of [18F]fluorobenzoylated isopeptide within 45 min, including HPLC purification.

  10. Protection of rats against 3-butene-1,2-diol-induced hepatotoxicity and hypoglycemia by N-acetyl-L-cysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprague, Christopher L.; Elfarra, Adnan A.

    2005-09-15

    3-Butene-1,2-diol (BDD), an allylic alcohol and major metabolite of 1,3-butadiene, has previously been shown to cause hepatotoxicity and hypoglycemia in male Sprague-Dawley rats, but the mechanisms of toxicity were unclear. In this study, rats were administered BDD (250 mg/kg) or saline, ip, and serum insulin levels, hepatic lactate levels, and hepatic cellular and mitochondrial GSH, GSSG, ATP, and ADP levels were measured 1 or 4 h after treatment. The results show that serum insulin levels were not causing the hypoglycemia and that the hypoglycemia was not caused by an enhancement of the metabolism of pyruvate to lactate because hepatic lactatemore » levels were either similar (1 h) or lower (4 h) than controls. However, both hepatic cellular and mitochondrial GSH and GSSG levels were severely depleted 1 and 4 h after treatment and the mitochondrial ATP/ADP ratio was also lowered 4 h after treatment relative to controls. Because these results suggested a role for hepatic cellular and mitochondrial GSH in BDD toxicity, additional rats were administered N-acetyl-L-cysteine (NAC; 200 mg/kg) 15 min after BDD administration. NAC treatment partially prevented depletion of hepatic cellular and mitochondrial GSH and preserved the mitochondrial ATP/ADP ratio. NAC also prevented the severe depletion of serum glucose concentration and the elevation of serum alanine aminotransferase activity after BDD treatment without affecting the plasma concentration of BDD. Thus, depletion of hepatic cellular and mitochondrial GSH followed by the decrease in the mitochondrial ATP/ADP ratio was likely contributing to the mechanisms of hepatotoxicity and hypoglycemia in the rat.« less

  11. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Lei, E-mail: anleim@yahoo.com.cn; Pang, Yun-Wei, E-mail: yunweipang@126.com; Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlledmore » experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.« less

  12. Crystal Structure of a Novel N-Substituted L-Amino Acid Dioxygenase from Burkholderia ambifaria AMMD

    PubMed Central

    Qin, Hui-Min; Miyakawa, Takuya; Jia, Min Ze; Nakamura, Akira; Ohtsuka, Jun; Xue, You-Lin; Kawashima, Takashi; Kasahara, Takuya; Hibi, Makoto; Ogawa, Jun; Tanokura, Masaru

    2013-01-01

    A novel dioxygenase from Burkholderia ambifaria AMMD (SadA) stereoselectively catalyzes the C3-hydroxylation of N-substituted branched-chain or aromatic L-amino acids, especially N-succinyl-L-leucine, coupled with the conversion of α-ketoglutarate to succinate and CO2. To elucidate the structural basis of the substrate specificity and stereoselective hydroxylation, we determined the crystal structures of the SadA.Zn(II) and SadA.Zn(II).α-KG complexes at 1.77 Å and 1.98 Å resolutions, respectively. SadA adopted a double-stranded β-helix fold at the core of the structure. In addition, an HXD/EXnH motif in the active site coordinated a Zn(II) as a substitute for Fe(II). The α-KG molecule also coordinated Zn(II) in a bidentate manner via its 1-carboxylate and 2-oxo groups. Based on the SadA.Zn(II).α-KG structure and mutation analyses, we constructed substrate-binding models with N-succinyl-L-leucine and N-succinyl-L-phenylalanine, which provided new insight into the substrate specificity. The results will be useful for the rational design of SadA variants aimed at the recognition of various N-succinyl L-amino acids. PMID:23724013

  13. Drug Resistance Mechanism of L10F, L10F/N88S and L90M mutations in CRF01_AE HIV-1 protease: Molecular dynamics simulations and binding free energy calculations.

    PubMed

    Vasavi, C S; Tamizhselvi, Ramasamy; Munusami, Punnagai

    2017-08-01

    HIV-1 protease plays a crucial role in viral replication and maturation, which makes it one of the most attractive targets for anti-retroviral therapy. The majority of HIV infections in developing countries are due to non-B subtype. Subtype AE is spreading rapidly and infecting huge population worldwide. The mutations in the active site of subtype AE directly impair the interactions with the inhibitor. The non-active site mutations influence the binding of the inhibitor indirectly and their resistance mechanism is not well understood. It is important to design new effective inhibitors that combat drug resistance in subtype AE protease. In this work, we examined the effect of non active site mutations L10F, L10F/N88S and L90M with nelfinavir using molecular dynamics simulation and binding free energy calculations. The simulations suggested that the L10F and L10F/N88S mutants decrease the binding affinity of nelfinavir, whereas the L90M mutant increases the binding affinity. The formation of hydrogen bonds between nelfinavir and Asp30 is crucial for effective binding. The benzamide moiety of nelfinavir shows large positional deviation in L10F and L10F/N88S complexes and the L10F/N88S mutation changes the hydrogen bond between the side chain atoms of 30th residue and the 88th residue. Consequently the hydrogen bond interaction between Asp30 and nelfinavir are destroyed leading to drug resistance. Our present study shed light on the resistance mechanism of the strongly linked mutation L10F/N88S observed experimentally in AE subtype. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effects of Subchronic Exposure to N,N-Diethyl-m-toluamide on Selected Biomarkers in Common Carp (Cyprinus carpio L.)

    PubMed Central

    Slaninova, Andrea; Modra, Helena; Hostovsky, Martin; Sisperova, Eliska; Blahova, Jana; Matejova, Iveta; Vicenova, Monika; Faldyna, Martin; Zelnickova, Lenka; Tichy, Frantisek; Svobodova, Zdenka

    2014-01-01

    DEET (N,N-diethyl-m-toluamide) is the most common active ingredient in the insect repellents commonly detected in European groundwater. The aim of this study was to investigate the effect of subchronic DEET exposure on biochemical and haematological parameters, antioxidant enzymes, including catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, and the amount of thiobarbituric acid reactive substances (TBARS) in common carp (Cyprinus carpio L.). Two specific proinflammatory and anti-inflammatory cytokine genes were selected to assess an immunological status of the fish. Fish were exposed for 28 days to three concentrations of DEET (1.0 µg/L, 0.1 mg/L, and 1.0 mg/L) where 1 µg/L is corresponding to the concentration found in the environment. DEET had a significant (P < 0.05) effect on increased RBC, decreased mean corpuscular volume (MCV), and mean corpuscular haemoglobin value (MCH) compared to control groups in the concentration of 1 mg/L. A significant decline (P < 0.05) in triacylglycerols (TAG) in plasma was found in the concentration of 1 mg/L compared to the control groups. The parameters of oxidative stress in tissues of common carp were weekly affected and immunological parameters were not affected. PMID:24795897

  15. Structures and ice-binding faces of the alanine-rich type I antifreeze proteins.

    PubMed

    Patel, Shruti N; Graether, Steffen P

    2010-04-01

    Antifreeze proteins (AFPs) protect cold-blooded organisms from the damage caused by freezing through their ability to inhibit ice growth. The type I AFP family, found in several fish species, contains proteins that have a high alanine content (>60% of the sequence) and structures that are almost all alpha-helical. We examine the structure of the type I AFP isoforms HPLC6 from winter flounder, shorthorn sculpin 3, and the winter flounder hyperactive type I AFP. The HPLC6 isoform structure consists of a single alpha-helix that is 37 residues long, whereas the shorthorn sculpin 3 isoform consists of two helical regions separated by a kink. The high-resolution structure of the hyperactive type I AFP has yet to be determined, but circular dichroism data and analytical ultracentrifugation suggest that the 195 residue protein is a side-by-side dimer of two alpha-helices. The alanine-rich ice-binding faces of HPLC6 and hyperactive type I AFP are discussed, and we propose that the ice-binding face of the shorthorn sculpin 3 AFP contains Ala14, Ala19, and Ala25. We also propose that the denaturation of hyperactive type I AFP at room temperature is explained by the stabilization of the dimerization interface through hydrogen bonds.

  16. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiupei, E-mail: xiupeiyang@163.com; College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000; Lin, Jia

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination.more » The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.« less

  17. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    PubMed

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  18. Crystal structure and confirmation of the alanine:glyoxylate aminotransferase activity of the YFL030w yeast protein.

    PubMed

    Meyer, Philippe; Liger, Dominique; Leulliot, Nicolas; Quevillon-Cheruel, Sophie; Zhou, Cong-Zhao; Borel, Franck; Ferrer, Jean-Luc; Poupon, Anne; Janin, Joël; van Tilbeurgh, Herman

    2005-12-01

    We have determined the three-dimensional crystal structure of the protein encoded by the open reading frame YFL030w from Saccharomyces cerevisiae to a resolution of 2.6 A using single wavelength anomalous diffraction. YFL030w is a 385 amino-acid protein with sequence similarity to the aminotransferase family. The structure of the protein reveals a homodimer adopting the fold-type I of pyridoxal 5'-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure. The protein shows close structural resemblance with the human alanine:glyoxylate aminotransferase (EC 2.6.1.44), an enzyme involved in the hereditary kidney stone disease primary hyperoxaluria type 1. In this paper we show that YFL030w codes for an alanine:glyoxylate aminotransferase, highly specific for its amino donor and acceptor substrates.

  19. Orally administered L-arginine and glycine are highly effective against acid reflux esophagitis in rats

    PubMed Central

    Nagahama, Kenji; Nishio, Hikaru; Yamato, Masanori; Takeuchi, Koji

    2012-01-01

    Summary Background Reflux esophagitis is caused mainly by excessive exposure of the mucosa to gastric contents. In the present study, we examined the effect of several amino acids on acid reflux esophagitis in rats. Material/Methods After 18 h of fasting, acid reflux esophagitis was induced by ligating both the pylorus and the transitional region between the forestomach and the corpus under ether anesthesia, and the animals were killed 4 h later. The severity of esophagitis was reduced by the oral administration of omeprazole, a proton pump inhibitor, or pepstatin, a specific pepsin inhibitor. Results The development of esophageal lesions was dose-dependently prevented by L-arginine and glycine, given intragastrically (i.g.) after the ligation, with complete inhibition obtained at 250 mg/kg and 750 mg/kg, respectively, and these effects were not influenced by the prior s.c. administration of indomethacin or L-NAME. By contrast, both L-alanine and L-glutamine given i.g. after the ligation aggravated these lesions in a dose-dependent manner. These amino acids had no effect on acid secretion but increased the pH of the gastric contents to 1.8~2.3 due to their buffering action. Conclusions The results confirmed an essential role for acid and pepsin in the pathogenesis of acid reflux esophagitis in the rat model and further suggested that various amino acids affect the severity of esophagitis in different ways, due to yet unidentified mechanisms; L-alanine and L-glutamine exert a deleterious effect on the esophagitis, while L-arginine and glycine are highly protective, independent of endogenous prostaglandins and nitric oxide. PMID:22207112

  20. Beta-alanine supplementation improves isometric, but not isotonic or isokinetic strength endurance in recreationally strength-trained young men.

    PubMed

    Bassinello, Diogo; de Salles Painelli, Vitor; Dolan, Eimear; Lixandrão, Manoel; Cajueiro, Monique; de Capitani, Mariana; Saunders, Bryan; Sale, Craig; Artioli, Guilherme G; Gualano, Bruno; Roschel, Hamilton

    2018-06-15

    β-Alanine (BA) supplementation may be ergogenic during high-intensity exercise, primarily due to the buffering of hydrogen cations, although the effects of beta-alanine supplementation on strength endurance are equivocal. The aim of the study was to determine the effects of 4 weeks of beta-alanine supplementation on skeletal muscle endurance using a battery of performance tests. This study employed a parallel group, repeated measures, randomised, double-blinded and placebo-controlled design. Twenty recreationally strength-trained healthy males completed tests of isotonic strength endurance (repeated bench and leg press), along with tests of isometric and isokinetic endurance conducted using an isokinetic dynamometer. Tests were performed before and after a 4 week intervention, comprising an intake of 6.4 g day -1 of BA (n = 9) or placebo (maltodextrin, n = 11). Time-to-exhaustion during the isometric endurance test improved by ~ 17% in the BA group (p < 0.01), while PL remained unchanged. No significant within-group differences (p > 0.1) were shown for any of the performance variables in the isokinetic test (peak torque, fatigue index, total work) nor for the total number of repetitions performed in the isotonic endurance tests (leg or bench press). Four weeks of BA supplementation (6.4 g day -1 ) improved isometric, but not isokinetic or isotonic endurance performance.