Khedri, Zahra; Xiao, An; Yu, Hai; Landig, Corinna Susanne; Li, Wanqing; Diaz, Sandra; Wasik, Brian R; Parrish, Colin R; Wang, Lee-Ping; Varki, Ajit; Chen, Xi
2017-01-20
9-O-Acetylation is a common natural modification on sialic acids (Sias) that terminate many vertebrate glycan chains. This ester group has striking effects on many biological phenomena, including microbe-host interactions, complement action, regulation of immune responses, sialidase action, cellular apoptosis, and tumor immunology. Despite such findings, 9-O-acetyl sialoglycoconjugates have remained largely understudied, primarily because of marked lability of the 9-O-acetyl group to even small pH variations and/or the action of mammalian or microbial esterases. Our current studies involving 9-O-acetylated sialoglycans on glycan microarrays revealed that even the most careful precautions cannot ensure complete stability of the 9-O-acetyl group. We now demonstrate a simple chemical biology solution to many of these problems by substituting the oxygen atom in the ester with a nitrogen atom, resulting in sialic acids with a chemically and biologically stable 9-N-acetyl group. We present an efficient one-pot multienzyme method to synthesize a sialoglycan containing 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc) and compare it to the one with naturally occurring 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac 2 ). Conformational resemblance of the two molecules was confirmed by computational molecular dynamics simulations. Microarray studies showed that the Neu5Ac9NAc-sialoglycan is a ligand for viruses naturally recognizing Neu5,9Ac 2 , with a similar affinity but with much improved stability in handling and study. Feeding of Neu5Ac9NAc or Neu5,9Ac 2 to mammalian cells resulted in comparable incorporation and surface expression as well as binding to 9-O-acetyl-Sia-specific viruses. However, cells fed with Neu5Ac9NAc remained resistant to viral esterases and showed a slower turnover. This simple approach opens numerous research opportunities that have heretofore proved intractable.
Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Ideris, Aini; Abdullah, Maizaton Atmadini
2015-10-24
Serum sialic acid levels are positively correlated with coronary artery disease and inflammation. Although sialic acid is a non-specific marker, it is considered sensitive likely due to its influence in sialylation of glycoprotein structures all over the body. We hypothesized that dietary supplementation with N-acetylneuraminic acid (Neu5Ac), a type of sialic acid, will have profound effects on high fat diet- (HFD-) induced inflammation and oxidative stress in view of the widespread incorporation of sialic acid into glycoprotein structures in the body. HFD-fed rats with or without simvastatin or Neu5Ac (50 and 400 mg/kg/day) were followed up for 12 weeks. Lipid profiles, and markers of inflammation (C-reactive protein, interleukin-6, and tumor necrosis factor alpha), insulin resistance (serum insulin and adiponectin, oral glucose tolerance test and homeostatic model of insulin resistance) and oxidative stress (total antioxidant status and thiobarbituric acid reactive species) in the serum and liver were determined, while mRNA levels of hepatic antioxidant and inflammation genes were also quantified. Serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, urea, creatinine and uric acid were also assessed. HFD feeding caused hyperlipidemia and insulin resistance, and worsened liver and kidney functions. HFD feeding also potentiated inflammation and oxidative stress, partly through modulation of hepatic gene expression, while Neu5Ac especially at higher doses and simvastatin attenuated HFD-induced changes, although Neu5Ac showed better outcomes. Based on the present results, we surmised that Neu5Ac can prevent HFD-induced inflammation and oxidative stress, and may in fact be useful in the prevention of hyperlipidemia-associated inflammation and oxidative stress. However, the translational implications of these findings can only be determined after long-term effects are established. Hence, the use of Neu5Ac on obesity-related diseases requires additional attention.
Discovery and characterization of de novo sialic acid biosynthesis in the phylum Fusobacterium
Lewis, Amanda L; Robinson, Lloyd S; Agarwal, Kavita; Lewis, Warren G
2016-01-01
Sialic acids are nine-carbon backbone carbohydrates found in prominent outermost positions of glycosylated molecules in mammals. Mimicry of sialic acid (N-acetylneuraminic acid, Neu5Ac) enables some pathogenic bacteria to evade host defenses. Fusobacterium nucleatum is a ubiquitous oral bacterium also linked with invasive infections throughout the body. We employed multidisciplinary approaches to test predictions that F. nucleatum engages in de novo synthesis of sialic acids. Here we show that F. nucleatum sbsp. polymorphum ATCC10953 NeuB (putative Neu5Ac synthase) restores Neu5Ac synthesis to an Escherichia coli neuB mutant. Moreover, purified F. nucleatum NeuB participated in synthesis of Neu5Ac from N-acetylmannosamine and phosphoenolpyruvate in vitro. Further studies support the interpretation that F. nucleatum ATCC10953 NeuA encodes a functional CMP-sialic acid synthetase and suggest that it may also contain a C-terminal sialic acid O-acetylesterase. We also performed BLAST queries of F. nucleatum genomes, revealing that only 4/31 strains encode a complete pathway for de novo Neu5Ac synthesis. Biochemical studies including mass spectrometry were consistent with the bioinformatic predictions, showing that F. nucleatum ATCC10953 synthesizes high levels of Neu5Ac, whereas ATCC23726 and ATCC25586 do not express detectable levels above background. While there are a number of examples of sialic acid mimicry in other phyla, these experiments provide the first biochemical and genetic evidence that a member of the phylum Fusobacterium can engage in de novo Neu5Ac synthesis. PMID:27613803
Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi
Deng, Lingquan; Song, Jeongmin; Gao, Xiang; Wang, Jiawei; Yu, Hai; Chen, Xi; Varki, Nissi; Naito-Matsui, Yuko; Galán, Jorge E.; Varki, Ajit
2014-01-01
Salmonella Typhi is an exclusive human pathogen that causes typhoid fever. Typhoid toxin is a S. Typhi virulence factor that can reproduce most of the typhoid fever symptoms in experimental animals. Toxicity depends on toxin binding to terminally sialylated glycans on surface glycoproteins. Human glycans are unusual because of the lack of CMAH, which in other mammals converts N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc). Here we report that typhoid toxin binds to and is toxic towards cells expressing glycans terminated in Neu5Ac (expressed by humans) over glycans terminated in Neu5Gc (expressed by other mammals). Mice constitutively expressing CMAH thus displaying Neu5Gc in all tissues are resistant to typhoid toxin. The atomic structure of typhoid toxin bound to Neu5Ac reveals the structural bases for its binding specificity. These findings provide insight into the molecular bases for Salmonella Typhi’s host specificity and may help the development of therapies for typhoid fever. PMID:25480294
Low incidence of N-glycolylneuraminic acid in birds and reptiles and its absence in the platypus.
Schauer, Roland; Srinivasan, G Vinayaga; Coddeville, Bernadette; Zanetta, Jean-Pierre; Guérardel, Yann
2009-08-17
The sialic acids of the platypus, birds, and reptiles were investigated with regard to the occurrence of N-glycolylneuraminic (Neu5Gc) acid. They were released from tissues, eggs, or salivary mucin samples by acid hydrolysis, and purified and analyzed by thin-layer chromatography, high-performance liquid chromatography, and mass spectrometry. In muscle and liver of the platypus only N-acetylneuraminic (Neu5Ac) acid was found. The nine bird species studied also did not express N-glycolylneuraminic acid with the exception of an egg, but not tissues, from the budgerigar and traces in poultry. Among nine reptiles, including one turtle, N-glycolylneuraminic acid was only found in the egg and an adult basilisk, but not in a freshly hatched animal. BLAST analysis of the genomes of the platypus, the chicken, and zebra finch against the CMP-N-acetylneuraminic acid hydroxylase did not reveal the existence of a similar protein structure. Apparently monotremes (platypus) and sauropsids (birds and reptiles) cannot synthesize Neu5Gc. The few animals where Neu5Gc was found, especially in eggs, may have acquired this from the diet or by an alternative pathway. Since Neu5Gc is antigenic to man, the observation that this monosaccharide does not or at least only rarely occur in birds and reptiles, may be of nutritional and clinical significance.
Naito-Matsui, Yuko; Davies, Leela R. L.; Takematsu, Hiromu; Chou, Hsun-Hua; Tangvoranuntakul, Pam; Carlin, Aaron F.; Verhagen, Andrea; Heyser, Charles J.; Yoo, Seung-Wan; Choudhury, Biswa; Paton, James C.; Paton, Adrienne W.; Varki, Nissi M.; Schnaar, Ronald L.; Varki, Ajit
2017-01-01
All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens. PMID:28049733
Influence of sialic acids on the galactose-recognizing receptor of rat peritoneal macrophages.
Lee, H Y; Kelm, S; Michalski, J C; Schauer, R
1990-04-01
The interaction of the galactose-recognizing receptor from rat peritoneal macrophages with ligands containing terminal galactose residues, such as asialoorosomucoid, desialylated erythrocytes or lymphocytes, can be inhibited by free N-acetylneuraminic acid (Neu5Ac) and oligosaccharides or glycoproteins containing this sugar in terminal position. This effect of Neu5Ac on the receptor is specific. The other naturally occurring or most of synthetic neuraminic acid derivatives tested do not exhibit an equivalent inhibitory potency as Neu5Ac. Although free Neu5Ac inhibits 5-fold stronger (K50 = 0.2mM) than free galactose, clustering of Neu5Ac in oligosaccharides and glycoproteins does not lead to stronger inhibition, which is in contrast to galactose-containing ligands. A more branched (triantennary) sialooligosaccharide inhibits less than biantennary and unbranched sialooligosaccharides. This may be the reason, why complex sialic acid-containing ligands like native orosomucoid or blood cells are not bound and internalized by the macrophages. The dissociation of asialoorosomucoid from the receptor is slow under the influence of Neu5Ac and requires relatively high concentrations of this sugar, whereas the dissociation mediated by galactose is rapid and requires lower concentrations. An allosteric influence of Neu5Ac on the binding of galactose by the receptor is discussed.
Davies, Leela R L; Pearce, Oliver M T; Tessier, Matthew B; Assar, Siavash; Smutova, Victoria; Pajunen, Maria; Sumida, Mizuki; Sato, Chihiro; Kitajima, Ken; Finne, Jukka; Gagneux, Pascal; Pshezhetsky, Alexey; Woods, Robert; Varki, Ajit
2012-08-17
The sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) and its hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc) differ by one oxygen atom. CMP-Neu5Gc is synthesized from CMP-Neu5Ac, with Neu5Gc representing a highly variable fraction of total Sias in various tissues and among different species. The exception may be the brain, where Neu5Ac is abundant and Neu5Gc is reported to be rare. Here, we confirm this unusual pattern and its evolutionary conservation in additional samples from various species, concluding that brain Neu5Gc expression has been maintained at extremely low levels over hundreds of millions of years of vertebrate evolution. Most explanations for this pattern do not require maintaining neural Neu5Gc at such low levels. We hypothesized that resistance of α2-8-linked Neu5Gc to vertebrate sialidases is the detrimental effect requiring the relative absence of Neu5Gc from brain. This linkage is prominent in polysialic acid (polySia), a molecule with critical roles in vertebrate neural development. We show that Neu5Gc is incorporated into neural polySia and does not cause in vitro toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed that mammalian and bacterial sialidases are much less able to hydrolyze α2-8-linked Neu5Gc at the nonreducing terminus. Notably, this difference was not seen with acid-catalyzed hydrolysis of polySias. Molecular dynamics modeling indicates that differences in the three-dimensional conformation of terminal saccharides may partly explain reduced enzymatic activity. In keeping with this, polymers of N-propionylneuraminic acid are sensitive to sialidases. Resistance of Neu5Gc-containing polySia to sialidases provides a potential explanation for the rarity of Neu5Gc in the vertebrate brain.
Chuanxiang, Wu; Lian, Xia; Lijie, Liu; Fengli, Qu; Zhiwei, Sun; Xianen, Zhao; Jinmao, You
2016-02-01
A sensitive and efficient method of high performance liquid chromatography using 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) as pre-column derivatization reagent coupled with UV detection (HPLC-UV) and online mass spectrometry identification was established for determination of the most common N-Acetylhexosamines (N-acetyl-d-glucosamine (GlcNAc) and N-acetyl-d-galactosamine (GalNAc)) and N-acetylneuraminic acid (Neu5Ac). In order to obtain the highest liberation level of the three monosaccharides without destruction of Neu5Ac or conversion of GlcNAc/GalNAc to GlcN/GalN in the hydrolysis procedure, the pivotal parameters affecting the liberation of N-acetylhexosamines/Neu5Ac from sample were investigated with response surface methodology (RSM). Under the optimized condition, maximum yield was obtained. The effects of key parameters on derivatization, separation and detection were also investigated. At optimized conditions, three monosaccharides were labeled fast and entirely, and all derivatives exhibited a good baseline resolution and high detection sensitivity. The developed method was linear over the calibration range 0.25-12μM, with R(2)>0.9991. The detection limits of the method were between 0.48 and 2.01pmol. Intra- and inter-day precisions for the three monosaccharides (GlcNAc, GalNAc and Neu5Ac) were found to be in the range of 3.07-4.02% and 3.69-4.67%, respectively. Individual monosaccharide recovery from spiked milk was in the range of 81%-97%. The sensitivity of the method, the facility of the derivatization procedure and the reliability of the hydrolysis conditions suggest the proposed method has a high potential for utilization in routine trace N-acetylhexosamines and Neu5Ac analysis in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Löfling, Jonas; Michael Lyi, Sangbom; Parrish, Colin R.
Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likelymore » plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells. - Highlights: ► Feline and canine parvoviruses recognize Neu5Gc but not Neu5Ac, which differ by one oxygen atom. ► The underlying linkage of these sialic acids does not affect recognition. ► Induced Neu5Gc expression on target cells that normally express Neu5Ac did not enhance infection. ► Thus, the conserved binding preference plays an important yet unknown role in in vivo infections. ► Population and breed variations in Neu5Gc expression occur, likely by regulating the gene CMAH.« less
Risley, Jessica May; Chen, David Da Yong
2017-06-01
Post-column chemical environment modification can affect detection sensitivity and signal appearance when capillary electrophoresis is coupled through electrospray ionization to mass spectrometry (CE-ESI-MS). In this study, changes in the signal intensity and peak shape of N-Acetylneuraminic acid (Neu5Ac) were examined when the modifier solution used in a flow-through microvial interface for CE-ESI-MS was prepared using an acidic or basic background electrolyte (BGE) composition. The use of a basic modifier resulted in improved detection compared to the results obtained when an acidic modifier was used in negative ion mode. Increased sensitivity and more symmetrical peak shape were obtained. Using an acidic modifier, the LOD of Neu5Ac was 47.7 nM, whereas for a basic modifier, the LOD of Neu5Ac was 5.20 nM. The calculated asymmetry factor at 100 nM of Neu5Ac ranged from 0.71 to 1.5 when an acidic modifier was used, while the factor ranged from 1.0 to 1.1 when a basic modifier was used. Properly chosen post-column chemical modification can have a significant effect on the performance of the CE-MS system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discovery and characterization of sialic acid O-acetylation in group B Streptococcus.
Lewis, Amanda L; Nizet, Victor; Varki, Ajit
2004-07-27
Group B Streptococcus (GBS) is the leading cause of human neonatal sepsis and meningitis. The GBS capsular polysaccharide is a major virulence factor and the active principle of vaccines in phase II trials. All GBS capsules have a terminal alpha 2-3-linked sialic acid [N-acetylneuraminic acid (Neu5Ac)], which interferes with complement-mediated killing. We show here that some of the Neu5Ac residues of the GBS type III capsule are O-acetylated at carbon position 7, 8, or 9, a major modification evidently missed in previous studies. Data are consistent with initial O-acetylation at position 7, and subsequent migration of the O-acetyl ester at positions 8 and 9. O-acetylation was also present on several other GBS serotypes (Ia, Ib, II, V, and VI). Deletion of the CMP-Neu5Ac synthase gene neuA by precise, in-frame allelic replacement gave intracellular accumulation of O-acetylated Neu5Ac, whereas overexpression markedly decreased O-acetylation. Given the known GBS Neu5Ac biosynthesis pathway, these data indicate that O-acetylation occurs on free Neu5Ac, competing with the CMP-Neu5Ac synthase. O-acetylation often generates immunogenic epitopes on bacterial capsular polysaccharides and can modulate human alternate pathway complement activation. Thus, our discovery has important implications for GBS pathogenicity, immunogenicity, and vaccine design.
Inoue, Sadako; Sato, Chihiro; Kitajima, Ken
2010-06-01
N-Glycolylneuraminic acid (Neu5Gc) is the second most populous sialic acid (Sia). The only known biosynthetic pathway of Neu5Gc is the hydroxylation of cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac), catalyzed by CMP-Neu5Ac hydroxylase (CMAH). Neu5Gc is abundantly found in mammals except for human, in which CMAH is inactivated due to mutation in the CMAH gene. Evidence has accumulated to show occurrence of Neu5Gc-containing glycoconjugates in sera of cancer patients, human cancerous tissues and cultured human cell lines. Recently, occurrence of natural antibodies against Neu5Gc was shown in healthy humans and is a serious problem for clinical xenotransplantation and stem cell therapies. Studying human occurrence of Neu5Gc is of importance and interest in a broad area of medical sciences. In this study, using a fluorometric high performance liquid chromatography method, we performed quantitative analyses of Sias both inside and in the external environment of the cell and found that (i) incorporation of Neu5Gc was most prominent in soluble glycoproteins found both in the extracellular space and inside the cell as the major Sia compounds. (ii) Of the total Neu5Gc in the Sia compounds that the cells synthesized, 90% was found in the secreted sialoglycoproteins, whereas for Neu5Ac, 70% was found in the secreted sialoglycoproteins. (iii) The Neu5Gc ratio was higher in the secreted sialoglycoproteins (as high as 40% of total Sias) than in intracellular sialoglycoproteins. (iv) The majority of the secreted sialoglycoproteins was anchored on the culture dishes and solubilized by brief trypsin treatment. Based on these findings, a new idea on the mechanism of accumulation of Neu5Gc in cancer cells was proposed.
On the minor gangliosides of erythrocyte membranes of Japanese cats.
Ando, N; Yamakawa, T
1982-03-01
Seven ganglioside species were isolated and purified from erythrocyte membranes of Japanese cats by DEAE-Sephadex and Iatrobeads column chromatographies. The structures of these gangliosides were determined as Gmi(NeuGc), Gm3(NeuAc), GM3(NeuGc), GD3(NeuGc), GD3(NeuGc comes from NeuAc), GT3(NeuGc), and another GM3 containing a sialic acid of unidentified nature. The occurrence of GT3 suggested the probable presence of a biosynthetic pathway of GM3 leads to GD3 leads to GT3 in erythropoietic cells of Japanese cats. The presence of GD3 having one penultimate N-glycolylneuraminic acid and one terminal N-acetylneuraminic acid, GD3(NeuGc comes from NeuAc) would indicate that this GD3 acts as an intermediate in a possible pathway from GM3(NeuGc) to GD3(NeuGc). Thin layer chromatographic patterns of total erythrocyte membrane gangliosides were compared among Japanese cats (n = 3), lions (n = 3), a serval and a racoon dog. The three species of felid showed similar patterns to each other and contained N-glycolylneuraminic acid as the major sialic acid. On the other hand, erythrocytes of racoon dog, a member of canidae, contained neither GD3 nor GT3, but only GM3.
Functional analysis of glyco-molecules that bind with influenza virus.
Takahashi, Tadanobu
2016-01-01
Influenza A virus (IAV) recognizes terminal sialic acid of sialoglyco-conjugates on host cells through the viral envelope glycoprotein hemagglutinin (HA), followed by initiation of entry into the cells. Molecular species of sialic acid are largely divided into two moieties: N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). A receptor for IAV infection generally means Neu5Ac. Almost all equine IAVs and some human, swine, and duck IAVs bind not only to Neu5Ac but also to Neu5Gc. In nonhuman animals, Neu5Gc has been detected in swine and equine tracheas and the duck colon, which are the main replication sites of mammalian and avian IAVs. Therefore, Neu5Gc in these sites has been suggested to be a functional receptor for IAV infection. Humans cannot synthesize Neu5Gc due to a genetic defect of the Neu5Gc-synthesizing enzyme. We evaluated the receptor function of Neu5Gc in IAV infection in human cells. Our results indicated that Neu5Gc expression on the surface of human cells is not a functional receptor for IAV infection and that it has a negative effect on infectivity of IAV possessing Neu5Gc binding ability. IAV also binds to non-sialo 3-O-sulfated galactosylceramide (sulfatide). Sulfatide has been suggested to be a functional receptor for IAV infection. However, we have shown that sulfatide is not a functional receptor for IAV infection and that the binding of HA with sulfatide enhances progeny virus production. It is expected that functions of these glyco-molecules can be used in prevention and development of new drugs against IAV.
Spinola, Stanley M; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Zwickl, Beth; Katz, Barry P; Munson, Robert S
2012-02-01
Sialylated glycoconjugates on the surfaces of mammalian cells play important roles in intercellular communication and self-recognition. The sialic acid preferentially expressed in human tissues is N-acetylneuraminic acid (Neu5Ac). In a process called molecular mimicry, many bacterial pathogens decorate their cell surface glycolipids with Neu5Ac. Incorporation of Neu5Ac into bacterial glycolipids promotes bacterial interactions with host cell receptors called Siglecs. These interactions affect bacterial adherence, resistance to serum killing and phagocytosis, and innate immune responses. Haemophilus ducreyi, the etiologic agent of chancroid, expresses lipooligosaccharides (LOS) that are highly sialylated. However, an H. ducreyi sialyltransferase (lst) mutant, whose LOS contain reduced levels of Neu5Ac, is fully virulent in human volunteers. Recently, a second sialyltransferase gene (Hd0053) was discovered in H. ducreyi, raising the possibility that Hd0053 compensated for the loss of lst during human infection. CMP-Neu5Ac is the obligate nucleotide sugar donor for all bacterial sialyltransferases; LOS derived from an H. ducreyi CMP-Neu5Ac synthetase (neuA) mutant has no detectable Neu5Ac. Here, we compared an H. ducreyi neuA mutant to its wild-type parent in several models of pathogenesis. In human inoculation experiments, the neuA mutant formed papules and pustules at rates that were no different than those of its parent. When grown in media with and without Neu5Ac supplementation, the neuA mutant and its parent had similar phenotypes in bactericidal, macrophage uptake, and dendritic cell activation assays. Although we cannot preclude a contribution of LOS sialylation to ulcerative disease, these data strongly suggest that sialylation of LOS is dispensable for H. ducreyi pathogenesis in humans.
Lewis, Amanda L; Cao, Hongzhi; Patel, Silpa K; Diaz, Sandra; Ryan, Wesley; Carlin, Aaron F; Thon, Vireak; Lewis, Warren G; Varki, Ajit; Chen, Xi; Nizet, Victor
2007-09-21
Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.
Nawar, Hesham F.; Berenson, Charles S.; Hajishengallis, George; Takematsu, Hiromu; Mandell, Lorrie; Clare, Ragina L.; Connell, Terry D.
2010-01-01
By use of a mouse mucosal immunization model, LT-IIb(T13I), a nontoxic mutant type II heat-labile enterotoxin, was shown to have potent mucosal and systemic adjuvant properties. In contrast to LT-IIb, which binds strongly to ganglioside receptors decorated with either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc), LT-IIb(T13I) binds NeuAc gangliosides much less well. Rather, LT-IIb(T13I) binds preferentially to NeuGc gangliosides. To determine if the adjuvant properties of LT-IIb(T13I) are altered in the absence of NeuGc ganglioside receptors, experiments were conducted using a Cmah-null mouse line which is deficient in the synthesis of NeuGc gangliosides. Several immunomodulatory properties of LT-IIb(T13I) were shown to be dependent on NeuGc gangliosides. LT-IIb(T13I) had reduced binding activity for NeuGc-deficient B cells and macrophages; binding to NeuGc-deficient T cells and dendritic cells (DC) was essentially undetectable. Treatment of Cmah-null macrophages with LT-IIb(T13I), however, upregulated the transcription of interleukin-4 (IL-4), IL-6, IL-17, and gamma interferon (IFN-γ), four cytokines important for promoting immune responses. The production of mucosal IgA and serum IgG against an immunizing antigen was augmented in NeuGc-deficient mice administered LT-IIb(T13I) as a mucosal adjuvant. Notably, NeuGc gangliosides are not expressed in humans. Still, treatment of human monocytes with LT-IIb(T13I) induced the secretion of IL-6, an inflammatory cytokine that mediates differential control of leukocyte activation. These results suggested that NeuAc gangliosides are sufficient to mediate the immunomodulatory properties of LT-IIb(T13I) in mice and in human cells. The nontoxic mutant enterotoxin LT-IIb(T13I), therefore, is potentially a new and safe human mucosal adjuvant. PMID:20392887
Fong, Bertram Y; Ma, Lin; Khor, Geok Lin; van der Does, Yvonne; Rowan, Angela; McJarrow, Paul; MacGibbon, Alastair K H
2016-08-17
Gangliosides (GA) are found in animal tissues and fluids, such as blood and milk. These sialo-glycosphingolipids have bioactivities in neural development, the gastrointestinal tract, and the immune system. In this study, a high-performance liquid chromatography-mass spectrometry (HPLC-MS) method was validated to characterize and quantitate the GA in beef, chicken, pork, and fish species (turbot, snapper, king salmon, and island mackerel). For the first time, we report the concentration of GM3, the dominant GA in these foods, as ranging from 0.35 to 1.1 mg/100 g and 0.70 to 5.86 mg/100 g of meat and fish, respectively. The minor GAs measured were GD3, GD1a, GD1b, and GT1b. Molecular species distribution revealed that the GA contained long- to very-long-chain acyl fatty acids attached to the ceramide moiety. Fish GA contained only N-acetylneuraminic acid (NeuAc) sialic acid, while beef, chicken, and pork contained GD1a/b species that incorporated both NeuAc and N-glycolylneuraminic acid (NeuGc) and hydroxylated fatty acids.
Involvement of a Non-Human Sialic Acid in Human Cancer
Samraj, Annie N.; Läubli, Heinz; Varki, Nissi; Varki, Ajit
2014-01-01
Sialic acids are common monosaccharides that are widely expressed as outer terminal units on all vertebrate cell surfaces, and play fundamental roles in cell–cell and cell–microenvironment interactions. The predominant sialic acids on most mammalian cells are N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac). Neu5Gc is notable for its deficiency in humans due to a species-specific and species-universal inactivating deletion in the CMAH gene encoding the hydroxylase that converts CMP-Neu5Ac to CMP-Neu5Gc. However, Neu5Gc is metabolically incorporated into human tissues from dietary sources (particularly red meat), and detected at even higher levels in some human cancers. Early life exposure to Neu5Gc-containing foods in the presence of certain commensal bacteria that incorporate dietary Neu5Gc into lipooligosaccharides can lead to generation of antibodies that are also cross-reactive against Neu5Gc-containing glycans in human tissues (“xeno-autoantigens”). Such anti-Neu5Gc “xeno-autoantibodies” are found in all humans, although ranging widely in levels among individuals, and displaying diverse and variable specificities for the underlying glycan. Experimental evidence in a human-like Neu5Gc-deficient Cmah−/−mouse model shows that inflammation due to “xenosialitis” caused by this antigen–antibody interaction can promote tumor progression, suggesting a likely mechanism for the well-known epidemiological link between red meat consumption and carcinoma risk. In this review, we discuss the history of this field, mechanisms of Neu5Gc incorporation into tissues, the origin and specificities of human anti-Neu5Gc antibodies, their use as possible cancer biomarkers, implications of xenosialitis in cancer initiation and progression, and current and future approaches toward immunotherapy that could take advantage of this unusual human-specific phenomenon. PMID:24600589
Giri, Janhavi; Tang, John M.; Wirth, Christophe; Peneff, Caroline M.
2012-01-01
NanC is an Escherichia coli outer membrane protein involved in sialic acid (Neu5Ac, i.e., N-acetylneuraminic acid) uptake. Expression of the NanC gene is induced and controlled by Neu5Ac. The transport mechanism of Neu5Ac is not known. The structure of NanC was recently solved (PDB code: 2WJQ) and includes a unique arrangement of positively charged (basic) side chains consistent with a role in acidic sugar transport. However, initial functional measurements of NanC failed to find its role in the transport of sialic acids, perhaps because of the ionic conditions used in the experiments. We show here that the ionic conditions generally preferred for measuring the function of outer-membrane porins are not appropriate for NanC. Single channels of NanC at pH 7.0 have: (1) conductance 100 pS to 800 pS in 100 mM KCl to 3 M KCl), (2) anion over cation selectivity (Vreversal = +16 mV in 250 mM KCl || 1 M KCl), and (3) two forms of voltage-dependent gating (channel closures above ±200 mV). Single-channel conductance decreases by 50% when HEPES concentration is increased from 100 μM to 100 mM in 250 mM KCl at pH 7.4, consistent with the two HEPES binding sites observed in the crystal structure. Studying alternative buffers, we find that phosphate interferes with the channel conductance. Single-channel conductance decreases by 19% when phosphate concentration is increased from 0 mM to 5 mM in 250 mM KCl at pH 8.0. Surprisingly, TRIS in the baths reacts with Ag|AgCl electrodes, producing artifacts even when the electrodes are on the far side of agar–KCl bridges. A suitable baseline solution for NanC is 250 mM KCl adjusted to pH 7.0 without buffer. PMID:22246445
Li, Jihong; Evans, Daniel R; Freedman, John C; McClane, Bruce A
2017-09-01
Clostridium perfringens can produce up to three different sialidases, including NanI, its major exosialidase. The current study first showed that human intestinal strains of C. perfringens can grow by utilizing either glucose or sialic acids, such as N -acetylneuraminic acid (Neu5Ac), which are the end products of sialidase activity. For the human enteropathogenic strain F4969, it was then determined that culture supernatant sialidase activity and expression of exosialidase genes, particularly nanI , are influenced by the presence of Neu5Ac or glucose. Low Neu5Ac concentrations increased culture supernatant sialidase activity, largely by stimulating nanI transcription. In contrast, low glucose concentrations did not affect exosialidase activity or nanI transcription. However, either high Neu5Ac or high glucose concentrations repressed F4969 culture supernatant sialidase activity and nanI transcription levels. Furthermore, high glucose levels repressed F4969 culture sialidase activity and nanI expression even in the presence of low Neu5AC concentrations. To begin to evaluate the mechanistic basis for nanI expression, a nanR null mutant was used to demonstrate that NanR, a member of the RpiR family of regulatory proteins, decreases exosialidase activity and nanI transcription in the absence of sialic acid. The ability of C. perfringens to regulate its exosialidase activity, largely by controlling nanI expression, may affect intestinal pathogenesis by affecting the production of NanI, which may affect C. perfringens growth, adhesion, and toxin binding in vivo . Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prieto, M C; Whittal, R M; Baldwin, M A
2005-04-03
The Clostridial neurotoxins, botulinum and tetanus, gain entry into neuronal cells by protein recognition involving cell specific binding sites. The sialic or N-acetylneuraminic acid (NeuAc) residues of gangliosides attached to the surface of motor neurons are the suspected recognition and interaction points with Clostridial neurotoxins, although not necessarily the only ones. We have used electrospray ionization mass spectrometry (ESIMS) to examine formation of complexes between the tetanus toxin C fragment, or targeting domain, and carbohydrates containing NeuAc groups to determine how NeuAc residues contribute to ganglioside binding. ESI-MS was used to rapidly and efficiently measure dissociation constants for a numbermore » of related NeuAc-containing carbohydrates and NeuAc oligomers, information that has helped identify the structural features of gangliosides that determine their binding to tetanus toxin. The strength of the interactions between the C fragment and (NeuAc){sub n}, are consistent with the topography of the targeting domain of tetanus toxin and the nature of its carbohydrate binding sites. The results suggest that the targeting domain of tetanus toxin contains two binding sites that can accommodate NeuAc (or a dimer). This study also shows that NeuAc must play an important role in ganglioside binding and molecular recognition, a process critical for normal cell function and one frequently exploited by toxins, bacteria and viruses to facilitate their entrance into cells.« less
Macauley, Matthew S.; Kawasaki, Norihito; Peng, Wenjie; Wang, Shui-Hua; He, Yuan; Arlian, Britni M.; McBride, Ryan; Kannagi, Reiji; Khoo, Kay-Hooi; Paulson, James C.
2015-01-01
CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2–6Galβ1–4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells. PMID:26507663
Macauley, Matthew S; Kawasaki, Norihito; Peng, Wenjie; Wang, Shui-Hua; He, Yuan; Arlian, Britni M; McBride, Ryan; Kannagi, Reiji; Khoo, Kay-Hooi; Paulson, James C
2015-12-11
CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2-6Galβ1-4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Tappert, Mary M.; Porterfield, J. Zachary; Mehta-D'Souza, Padmaja; Gulati, Shelly
2013-01-01
The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN′s two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146–12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high. PMID:23740997
Fujita, Akiko; Sato, Chihiro; Münster-Kühnel, Anja-K; Gerardy-Schahn, Rita; Kitajima, Ken
2005-02-01
A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay, relative activities toward Sia derivatives have been obtained. The preference of mouse CSS toward Neu5Ac and the ability of the rainbow trout enzyme to activate both KDN and Neu5Ac were confirmed. Thus, this simple and time-saving method is suitable for a systematic comparison of enzyme activity of structurally mutated enzymes based on the relative specific activity.
Tappert, Mary M.; Smith, David F.; Air, Gillian M.
2011-01-01
The hemagglutinin-neuraminidase (HN) protein of human parainfluenza viruses (hPIVs) both binds (H) and cleaves (N) oligosaccharides that contain N-acetylneuraminic acid (Neu5Ac). H is thought to correspond to receptor binding and N to receptor-destroying activity. At present, N′s role in infection remains unclear: does it destroy only receptors, or are there other targets? We previously demonstrated that hPIV1 and 3 HNs bind to oligosaccharides containing the motif Neu5Acα2-3Galβ1-4GlcNAc (M. Amonsen, D. F. Smith, R. D. Cummings, and G. M. Air, J. Virol. 81:8341–8345, 2007). In the present study, we tested the binding specificity of hPIV2 on the Consortium for Functional Glycomics' glycan array and found that hPIV2 binds to oligosaccharides containing the same motif. We determined the specificities of N on red blood cells, soluble small-molecule and glycoprotein substrates, and the glycan array and compared them to the specificities of H. hPIV2 and -3, but not hPIV1, cleaved their ligands on red blood cells. hPIV1, -2, and -3 cleaved their NeuAcα2-3 ligands on the glycan array; hPIV2 and -3 also cleaved NeuAcα2-6 ligands bound by influenza A virus. While all three HNs exhibited similar affinities for all cleavable soluble substrates, their activities were 5- to 10-fold higher on small molecules than on glycoproteins. In addition, some soluble glycoproteins were not cleaved, despite containing oligosaccharides that were cleaved on the glycan array. We conclude that the susceptibility of an oligosaccharide substrate to N increases when the substrate is fixed to a surface. These findings suggest that HN may undergo a conformational change that activates N upon receptor binding at a cell surface. PMID:21917945
Banda, Kalyan; Gregg, Christopher J; Chow, Renee; Varki, Nissi M; Varki, Ajit
2012-08-17
Although N-acetyl groups are common in nature, N-glycolyl groups are rare. Mammals express two major sialic acids, N-acetylneuraminic acid and N-glycolylneuraminic acid (Neu5Gc). Although humans cannot produce Neu5Gc, it is detected in the epithelial lining of hollow organs, endothelial lining of the vasculature, fetal tissues, and carcinomas. This unexpected expression is hypothesized to result via metabolic incorporation of Neu5Gc from mammalian foods. This accumulation has relevance for diseases associated with such nutrients, via interaction with Neu5Gc-specific antibodies. Little is known about how ingested sialic acids in general and Neu5Gc in particular are metabolized in the gastrointestinal tract. We studied the gastrointestinal and systemic fate of Neu5Gc-containing glycoproteins (Neu5Gc-glycoproteins) or free Neu5Gc in the Neu5Gc-free Cmah(-/-) mouse model. Ingested free Neu5Gc showed rapid absorption into the circulation and urinary excretion. In contrast, ingestion of Neu5Gc-glycoproteins led to Neu5Gc incorporation into the small intestinal wall, appearance in circulation at a steady-state level for several hours, and metabolic incorporation into multiple peripheral tissue glycoproteins and glycolipids, thus conclusively proving that Neu5Gc can be metabolically incorporated from food. Feeding Neu5Gc-glycoproteins but not free Neu5Gc mimics the human condition, causing tissue incorporation into human-like sites in Cmah(-/-) fetal and adult tissues, as well as developing tumors. Thus, glycoproteins containing glycosidically linked Neu5Gc are the likely dietary source for human tissue accumulation, and not the free monosaccharide. This human-like model can be used to elucidate specific mechanisms of Neu5Gc delivery from the gut to tissues, as well as general mechanisms of metabolism of ingested sialic acids.
Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.
Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie
2015-09-15
N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.
Colloquium paper: uniquely human evolution of sialic acid genetics and biology.
Varki, Ajit
2010-05-11
Darwinian evolution of humans from our common ancestors with nonhuman primates involved many gene-environment interactions at the population level, and the resulting human-specific genetic changes must contribute to the "Human Condition." Recent data indicate that the biology of sialic acids (which directly involves less than 60 genes) shows more than 10 uniquely human genetic changes in comparison with our closest evolutionary relatives. Known outcomes are tissue-specific changes in abundant cell-surface glycans, changes in specificity and/or expression of multiple proteins that recognize these glycans, and novel pathogen regimes. Specific events include Alu-mediated inactivation of the CMAH gene, resulting in loss of synthesis of the Sia N-glycolylneuraminic acid (Neu5Gc) and increase in expression of the precursor N-acetylneuraminic acid (Neu5Ac); increased expression of alpha2-6-linked Sias (likely because of changed expression of ST6GALI); and multiple changes in SIGLEC genes encoding Sia-recognizing Ig-like lectins (Siglecs). The last includes binding specificity changes (in Siglecs -5, -7, -9, -11, and -12); expression pattern changes (in Siglecs -1, -5, -6, and -11); gene conversion (SIGLEC11); and deletion or pseudogenization (SIGLEC13, SIGLEC14, and SIGLEC16). A nongenetic outcome of the CMAH mutation is human metabolic incorporation of foreign dietary Neu5Gc, in the face of circulating anti-Neu5Gc antibodies, generating a novel "xeno-auto-antigen" situation. Taken together, these data suggest that both the genes associated with Sia biology and the related impacts of the environment comprise a relative "hot spot" of genetic and physiological changes in human evolution, with implications for uniquely human features both in health and disease.
Galili, Uri
2016-11-01
Humans produce multiple natural antibodies against carbohydrate antigens on gastrointestinal bacteria. Two such antibodies appeared in primates in recent geological times. Anti-Gal, abundant in humans, apes and Old-World monkeys, appeared 20-30 million years ago (mya) following inactivation of the α1,3GT gene (GGTA1). This gene encodes in other mammals the enzyme α1,3galactosyltransferase (α1,3GT) that synthesizes α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) which bind anti-Gal. Anti-Neu5Gc, found only in humans, appeared in hominins <6 mya, following elimination of N-glycolylneuraminic-acid (Neu5Gc) because of inactivation of CMAH, the gene encoding hydroxylase that converts N-acetylneuraminic-acid (Neu5Ac) into Neu5Gc. These antibodies, were initially produced in few individuals that acquired random mutations inactivating the corresponding genes and eliminating α-gal epitopes or Neu5Gc, which became nonself antigens. It is suggested that these evolutionary selection events were induced by epidemics of enveloped viruses, lethal to ancestral Old World primates or hominins. Such viruses presented α-gal epitopes or Neu5Gc, synthesized in primates that conserved active GGTA1 or CMAH, respectively, and were lethal to their hosts. The natural anti-Gal or anti-Neu5Gc antibodies, produced in offspring lacking the corresponding carbohydrate antigens, neutralized and destroyed viruses presenting α-gal epitopes or Neu5Gc. These antibodies further induced rapid, effective immune responses against virus antigens, thus preventing infections from reaching lethal stages. These epidemics ultimately resulted in extinction of primate populations synthesizing these carbohydrate antigens and their replacement with offspring populations lacking the antigens and producing protective antibodies against them. Similar events could mediate the elimination of various carbohydrate antigens, thus preventing the complete extinction of other vertebrate species. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Martin, Paul T; Camboni, Marybeth; Xu, Rui; Golden, Bethannie; Chandrasekharan, Kumaran; Wang, Chiou-Miin; Varki, Ajit; Janssen, Paul M L
2013-01-01
Roughly 3 million years ago, an inactivating deletion occurred in CMAH, the human gene encoding CMP-Neu5Ac (cytidine-5′-monophospho-N-acetylneuraminic acid) hydroxylase (Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL, Warren ST, Varki A. 1998. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci USA. 95:11751–11756). This inactivating deletion is now homozygous in all humans, causing the loss of N-glycolylneuraminic acid (Neu5Gc) biosynthesis in all human cells and tissues. The CMAH enzyme is active in other mammals, including mice, where Neu5Gc is an abundant form of sialic acid on cellular membranes, including those in cardiac and skeletal muscle. We recently demonstrated that the deletion of mouse Cmah worsened the severity of pathophysiology measures related to muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy (Chandrasekharan K, Yoon JH, Xu Y, deVries S, Camboni M, Janssen PM, Varki A, Martin PT. 2010. A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med. 2:42–54). Here, we demonstrate similar changes in cardiac and skeletal muscle pathology and physiology resulting from Cmah deletion in α-sarcoglycan-deficient (Sgca−/−) mice, a model for limb girdle muscular dystrophy 2D. These experiments demonstrate that loss of mouse Cmah can worsen disease severity in more than one form of muscular dystrophy and suggest that Cmah may be a general genetic modifier of muscle disease. PMID:23514716
Springer, Stevan A; Diaz, Sandra L; Gagneux, Pascal
2014-11-01
Human sialic acid biology is unusual and thought to be unique among mammals. Humans lack a functional cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) protein and cannot synthesize the sugar Neu5Gc, an innate mammalian signal of self. Losing this sugar changed how humans interact with some of our deadliest pathogens: malaria, influenza, and streptococcus among others. We show that the New World monkeys, comprising the third of all primate species, have human-like sialic acid biology. They have lost Neu5Gc because of an independent CMAH inactivation ~30 million years ago (mya) (compared to ~3 mya in hominids). This parallel loss of Neu5Gc opens sialic acid biology to comparative phylogenetic analysis and reveals an unexpected conservation priority. New World monkeys risk infection by human pathogens that can recognize cells in the absence of Neu5Gc. This striking molecular convergence provides a mechanism that could explain the long-standing observation that New World monkeys are susceptible to some human diseases that cannot be transmitted to other primates.
Park, In Ho; Lin, Jisheng; Choi, Ji Eun; Shin, Jeon-Soo
2014-06-01
The capsular polysaccharide (PS) of Neisseria meningitidis serogroup B (NMGB) is α(2-8)-linked N-acetylneuraminic acid (Neu5Ac), which is almost identical to the O-acetylated colominic acid (CA) of Escherichia coli K1 Although E. coli K1 has long been known to elicit cross-protective antibodies against NMGB, limited information on these highly cross-reactive antibodies is available. In the present study, six new monoclonal antibodies (mAbs) specific to both E. coli K1 CA and NMGB PS were produced by immunizing Balb/c mice with E. coli K1, and their serological and molecular properties were characterized, together with 12 previously reported hybridoma mAbs. Among the bactericidal mAbs against NMGB, both HmenB5 and HmenB18, which are genetically identical though of different mouse origins, were able to kill serogroup C and Y meningococci. Based on SPR sensograms, the binding affinity of HmenB18 for PS was suggested to be associated with at least two different binding forces: the polyanionicity of Neu5Ac and an interaction with the O-acetyl groups of Neu5Ac. Molecular analysis showed that similar to most mAbs presenting a few restricted V region germline genes, the V region genes of HmenB18 were 979% and 986% identical to the closest IGHV1-1401 and IGLV15-10301 germline gene alleles, respectively, and V-D-J editing in this mAb generated an unusually long VH-CDR3 sequence (17 amino acid residues), containing one basic arginine, two hydrophobic isoleucine residues and a 'YAMDY' motif. Models of the mAb combining sites demonstrate that most of the mAbs exhibited a wide, shallow groove with a high overall positive charge, as seen in mAb735, which is specific for a polyanionic helical epitope. In contrast, the combining site of HmenB18 was shown to be wide but to present a relatively weak positive charge, consistent with the extensive recognition by HmenB18 of the various structural epitopes formed with the Neu5Ac residue and its O-acetylation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk
Gil, Geun-Cheol; Velander, William H; Van Cott, Kevin E
2008-01-01
Glycosylation of recombinant proteins is of particular importance because it can play significant roles in the clinical properties of the glycoprotein. In this work, the N-glycan structures of recombinant human Factor IX (tg-FIX) produced in the transgenic pig mammary gland were determined. The majority of the N-glycans of transgenic pig-derived Factor IX (tg-FIX) are complex, bi-antennary with one or two terminal N-acetylneuraminic acid (Neu5Ac) moieties. We also found that the N-glycan structures of tg-FIX produced in the porcine mammary epithelial cells differed with respect to N-glycans from glycoproteins produced in other porcine tissues. tg-FIX contains no detectable Neu5Gc, the sialic acid commonly found in porcine glycoproteins produced in other tissues. Additionally, we were unable to detect glycans in tg-FIX that have a terminal Galα(1,3)Gal disaccharide sequence, which is strongly antigenic in humans. The N-glycan structures of tg-FIX are also compared to the published N-glycan structures of recombinant human glycoproteins produced in other transgenic animal species. While tg-FIX contains only complex structures, antithrombin III (goat), C1 inhibitor (rabbit), and lactoferrin (cow) have both high mannose and complex structures. Collectively, these data represent a beginning point for the future investigation of species-specific and tissue/cell-specific differences in N-glycan structures among animals used for transgenic animal bioreactors. PMID:18456721
Urashima, Tadasu; Inamori, Hiroaki; Fukuda, Kenji; Saito, Tadao; Messer, Michael; Oftedal, Olav T
2015-06-01
Monotremes (echidnas and platypus) retain an ancestral form of reproduction: egg-laying followed by secretion of milk onto skin and hair in a mammary patch, in the absence of nipples. Offspring are highly immature at hatching and depend on oligosaccharide-rich milk for many months. The primary saccharide in long-beaked echidna milk is an acidic trisaccharide Neu4,5Ac2(α2-3)Gal(β1-4)Glc (4-O-acetyl 3'-sialyllactose), but acidic oligosaccharides have not been characterized in platypus milk. In this study, acidic oligosaccharides purified from the carbohydrate fraction of platypus milk were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and (1)H-nuclear magnetic resonance spectroscopy. All identified structures, except Neu5Ac(α2-3)Gal(β1-4)Glc (3'-sialyllactose) contained Neu4,5Ac2 (4-O-acetyl-sialic acid). These include the trisaccharide 4-O-acetyl 3'-sialyllactose, the pentasaccharide Neu4,5Ac2(α2-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc (4-O-acetyl-3'-sialyllacto-N-tetraose d) and the hexasaccharide Neu4,5Ac2(α2-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc (4-O-acetyl-3'-sialyllacto-N-fucopentaose III). At least seven different octa- to deca-oligosaccharides each contained a lacto-N-neohexaose core (LNnH) and one or two Neu4,5Ac2 and one to three fucose residues. We conclude that platypus milk contains a diverse (≥ 20) array of neutral and acidic oligosaccharides based primarily on lactose, lacto-N-neotetraose (LNnT) and LNnH structural cores and shares with echidna milk the unique feature that all identified acidic oligosaccharides (other than 3'-sialyllactose) contain the 4-O-acetyl-sialic acid moiety. We propose that 4-O-acetylation of sialic acid moieties protects acidic milk oligosaccharides secreted onto integumental surfaces from bacterial hydrolysis via steric interference with bacterial sialidases. This may be of evolutionary significance since taxa ancestral to monotremes and other mammals are thought to have secreted milk, or a milk-like fluid containing oligosaccharides, onto skin surfaces. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Structural studies of sialylated oligosaccharides of human midcycle cervical mucin.
Yurewicz, E C; Matsuura, F; Moghissi, K S
1987-04-05
It was previously shown that reductive alkali treatment of purified human cervical mucin releases a heterogeneous population of reduced neutral, sialylated, and sulfated oligosaccharides (Yurewicz, E. C., and Moghissi, K. S. (1981) J. Biol. Chem. 256, 11895-11904). Four major sialylated oligosaccharide fractions were isolated with approximate compositions of Fuc:GlcNac:Gal:NeuAc:N-acetylgalactosaminitol (GalNAcol) = 0:0:0:1:1 (B1a), 0:0:1:1:1 (B2b), 0:1:2:1:1 (B3a), and 1:1:2:1:1 (B4a), where Fuc is fucose. They comprised roughly 3, 11, 7, and 6% of recovered oligosaccharide chains, respectively. On the basis of periodate oxidations, methylation analyses, and sequential degradations with glycosidases, the following structures were determined. (Formula: see text) Oligosaccharides 1 and 2 are characterized by the presence of N-acetylneuraminic acid in alpha 2,6-linkage to N-acetylgalactosaminitol. The remaining oligosaccharides contain N-acetylneuraminic acid in alpha 2,3-linkage to galactose residues. Oligosaccharides 3 and 4 and oligosaccharides 5 and 6 were isolated as unresolved isomeric mixtures in fractions B3a and B4a, respectively. Oligosaccharides 3 and 4 were distinguished on the basis of susceptibility to digestion with Aspergillus niger beta-galactosidase whereas oligosaccharides 5 and 6 were distinguished on the basis of differential rates of digestion with beef kidney alpha-fucosidase. The structural data indicate the presence of at least two sialyltransferases in human cervical epithelium and further suggest a potential physiologically significant competition between sialyltransferase and beta-N-acetylglucosaminyltransferase for C-6 of the N-acetylgalactosamine residue O-glycosidically linked to serine/threonine of the polypeptide core.
Bose, S K; Smith, G B; Paul, R G
1983-01-01
Using highly purified elementary bodies of Chlamydia trachomatis UW-31 (serotype K), we found that HeLa 229 monolayer cultures bound more 32P-labeled chlamydiae after pretreatment with the lectin wheat germ agglutinin. The lectin, on the other hand, inhibited competitively when chlamydial association was assayed in the presence of polycations. The two effects of wheat germ agglutinin were abolished when N-acetylneuraminic acid (NeuNAc)- or N-acetylglucosamine (GlcNAc)-preincubated wheat germ agglutinin was used. Brief exposure of HeLa cells to neuraminidase abolished the ability to bind the elementary bodies, whether or not polycations were present. Furthermore, at 5 degrees C but not at 37 degrees C, NeuNAc, GlcNAc and N-acetylgalactosamine inhibited chlamydial association only in the absence of the polycation DEAE-dextran. The results suggest that NeuNAc residues on the plasma membrane are the principal, but not the only, receptors for this strain of C. trachomatis. PMID:6687878
Chemical characterization of milk oligosaccharides of the common wombat (Vombatus ursinus).
Hirayama, Kentaro; Taufik, Epi; Kikuchi, Megumi; Nakamura, Tadashi; Fukuda, Kenji; Saito, Tadao; Newgrain, Keith; Green, Brian; Messer, Michael; Urashima, Tadasu
2016-09-01
Previous structural characterizations of marsupial milk oligosaccharides have been performed in the tammar wallaby, red kangaroo, koala, common brushtail possum and the eastern quoll. To clarify the homology and heterogeneity of milk oligosaccharides among marsupial species, which could provide information on their evolution, the oligosaccharides of wombat milk carbohydrate were characterized in this study. Neutral and acidic oligosaccharides were isolated from the carbohydrate fractions of two samples of milk of the common wombat and characterized by (1) H-nuclear magnetic resonance spectroscopy. The structures of six neutral saccharides were found to be Gal(β1-4)Glc (lactose), Gal(β1-3)Gal(β1-4)Glc (3'-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3',3"-digalactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl lacto-N-novopentaose I) and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novooctaose), while those of six acidic saccharides were Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Glc. (sialyl 3'-galactosyllactose), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (sialyl 3',3"-digalactosyllactose), Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)[Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose c), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc,, Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc and Gal(β1-3)Gal(β1-3)[Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc. In addition, small amounts of sulfated oligosaccharides but no oligosaccharides containing Neu5Gc or α(2-6) linked Neu5Ac were detected. © 2015 Japanese Society of Animal Science.
Blessy, J Jino; Sharmila, D Jeya Sundara
2015-02-01
Molecular modeling of synthetic methyl-α-Neu5Ac analogues modified in C-9 position was investigated by molecular docking and molecular dynamics (MD) simulation methods. Methyl-α-Neu5Ac analogues were docked against cholera toxin (CT) B subunit protein and MD simulations were carried out for three Methyl-α-Neu5Ac analogue-CT complexes (30, 10 and 10 ns) to estimate the binding activity of cholera toxin-Methyl-α-Neu5Ac analogues using OPLS_2005 force field. In this study, direct and water mediated hydrogen bonds play a vital role that exist between the methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ)-cholera toxin active site residues. The Energy plot, RMSD and RMSF explain that the simulation was stable throughout the simulation run. Transition of phi, psi and omega angle for the complex was calculated. Molecular docking studies could be able to identify the binding mode of methyl-α-Neu5Ac analogues in the binding site of cholera toxin B subunit protein. MD simulation for Methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ), Methyl-α-9-N-acetyl-9-deoxy-9-amino-Neu5Ac and Methyl-α-9-N-biphenyl-4-acetyl-deoxy-amino-Neu5Ac complex with CT B subunit protein was carried out, which explains the stable nature of interaction. These methyl-α-Neu5Ac analogues that have computationally acceptable pharmacological properties may be used as novel candidates for drug design for cholera disease.
Recognition of microbial glycans by human intelectin-1
Wesener, Darryl A.; Wangkanont, Kittikhun; McBride, Ryan; ...
2015-07-06
The glycans displayed on mammalian cells can differ markedly from those on microbes. Such differences could, in principle, be 'read' by carbohydrate-binding proteins, or lectins. In this paper, we used glycan microarrays to show that human intelectin-1 (hIntL-1) does not bind known human glycan epitopes but does interact with multiple glycan epitopes found exclusively on microbes: β-linked D-galactofuranose (β-Galf), D-phosphoglycerol–modified glycans, heptoses, D-glycero-D-talo-oct-2-ulosonic acid (KO) and 3-deoxy-D-manno-oct-2-ulosonic acid (KDO). The 1.6-Å-resolution crystal structure of hIntL-1 complexed with β-Galf revealed that hIntL-1 uses a bound calcium ion to coordinate terminal exocyclic 1,2-diols. N-acetylneuraminic acid (Neu5Ac), a sialic acid widespread in humanmore » glycans, has an exocyclic 1,2-diol but does not bind hIntL-1, probably owing to unfavorable steric and electronic effects. hIntL-1 marks only Streptococcus pneumoniae serotypes that display surface glycans with terminal 1,2-diol groups. Finally, this ligand selectivity suggests that hIntL-1 functions in microbial surveillance.« less
Sialidases from gut bacteria: a mini-review.
Juge, Nathalie; Tailford, Louise; Owen, C David
2016-02-01
Sialidases are a large group of enzymes, the majority of which catalyses the cleavage of terminal sialic acids from complex carbohydrates on glycoproteins or glycolipids. In the gastrointestinal (GI) tract, sialic acid residues are mostly found in terminal location of mucins via α2-3/6 glycosidic linkages. Many enteric commensal and pathogenic bacteria can utilize sialic acids as a nutrient source, but not all express the sialidases that are required to release free sialic acid. Sialidases encoded by gut bacteria vary in terms of their substrate specificity and their enzymatic reaction. Most are hydrolytic sialidases, which release free sialic acid from sialylated substrates. However, there are also examples with transglycosylation activities. Recently, a third class of sialidases, intramolecular trans-sialidase (IT-sialidase), has been discovered in gut microbiota, releasing (2,7-anhydro-Neu5Ac) 2,7-anydro-N-acetylneuraminic acid instead of sialic acid. Reaction specificity varies, with hydrolytic sialidases demonstrating broad activity against α2,3-, α2,6- and α2,8-linked substrates, whereas IT-sialidases tend to be specific for α2,3-linked substrates. In this mini-review, we summarize the current knowledge on the structural and biochemical properties of sialidases involved in the interaction between gut bacteria and epithelial surfaces. © 2016 Authors.
García-García, María Inmaculada; Gil-Ortiz, Fernando; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro
2014-01-01
N-acetyl neuraminate lyases (NALs) catalyze the reversible aldol cleavage of N-acetyl neuraminic acid (Neu5Ac) to pyruvate and N-acetyl-D-mannosamine (ManNAc). Previous phylogenetic studies divided NALs into four different groups. Groups 1 and 2 have been well characterized at both kinetic and molecular levels, but no NAL from group 3 has been studied to date. In this work, a functional characterization of two group 3 members was performed using the recombinant NALs from Lactobacillus antri and Lactobacillus sakei 23K, revealing an optimal pH of between 6.0 and 7.0, low stability at basic pHs (>8.0), low optimal temperatures and, especially, low catalytic efficiency compared with their counterparts in group 1 and 2. The mutational analysis carried out showed that a plausible molecular reason for the low activity shown by Lactobacillus antri and Lactobacillus sakei 23k NALs compared with group 1 and 2 NALs could be the relatively small sugar-binding pocket they contain. A functional divergence analysis concluding that group 3 is more closely related to group 2 than to group 1. PMID:24817128
Chandrasekaran, E.V.; Xue, Jun; Xia, Jie; Locke, Robert D.; Matta, Khushi L.; Neelamegham, Sriram
2008-01-01
Sialyltransferases transfer sialic acid from CMP-NeuAc to an acceptor molecule. Trans-sialidases of parasites transfer α2,3 linked sialic acid from one molecule to another without the involvement of CMP-NeuAc. Here, we report another type of sialylation termed reverse sialylation catalyzed by mammalian sialyltransferase ST3Gal-II. This enzyme synthesizes CMP-NeuAc by transferring NeuAc from the NeuAcα2,3Galβ1,3GalNAcα-unit of O-glycans, 3-sialyl globo unit of glycolipids and sialylated macromolecules to 5′-CMP. CMP-NeuAc produced in situ is utilized by the same enzyme to sialylate other O-glycans and by other sialyltransferases such as ST6Gal-I and ST6GalNAc-I forming α2,6 sialylated compounds. ST3Gal-II also catalyzed the conversion of 5′-UMP to UMP-NeuAc, which was found to be an inactive sialyl donor. Reverse sialylation proceeded without the need for free sialic acid, divalent metal ions or energy. The direct sialylation using CMP-NeuAc as well as the formation of CMP-NeuAc from 5′-CMP had a wide optimum range (pH 5.2–7.2 and 4.8–6.4 respectively) whereas the entire reaction comprising in situ production of CMP-NeuAc and sialylation of acceptor had a sharp optimum at pH 5.6 (the activity level 50% at pH 5.2 & 6.8 and 25% at pH 4.8 & 7.2). Several properties distinguish forward/conventional vs. reverse sialylation: i. Sodium citrate inhibited forward sialylation but not reverse sialylation. ii. 5′-CDP, a potent forward sialyltransferase inhibitor, did not inhibit the conversion of 5′-CMP to CMP-NeuAc. iii. The mucin core 2 compound 3-O-sulfoα2,3Galβ1,4GlcNAcβ1,6(Galβ1,3)GalNAcα-O-Bn, an efficient acceptor for ST3Gal-II, inhibited the conversion of 5′-CMP to CMP-NeuAc. A significant level of reverse sialylation activity is noted in human prostate cancer cell lines LNCaP and PC3. Overall, the study demonstrates that the sialyltransferase reaction is readily reversible in the case of ST3Gal-II and can be exploited for the enzymatic synthesis of diverse sialyl products. PMID:18067323
Existence of NEU1 sialidase on mouse thymocytes whose natural substrate is CD5.
Kijimoto-Ochiai, Shigeko; Matsumoto-Mizuno, Tokuko; Kamimura, Daisuke; Murakami, Masaaki; Kobayashi, Miwako; Matsuoka, Ichiro; Ochiai, Hiroshi; Ishida, Hideharu; Kiso, Makoto; Kamimura, Keiko; Koda, Toshiaki
2018-05-01
Membrane-bound sialidases in the mouse thymus are unique and mysterious because their activity at pH 6.5 is equal to or higher than that in the acidic region. The pH curve like this has never been reported in membrane-bound form. To clarify this enzyme, we studied the sialidase activities of crude membrane fractions from immature-T, mature-T and non-T cells from C57BL/6 mice and from SM/J mice, a strain with a defect in NEU1 activity. Non-T cells from C57BL/6 mice had high activity at pH 6.5, but those from SM/J mice did not. Neu1 and Neu3 mRNA was shown by real-time PCR to be expressed in T cells and also in non-T cells, whereas Neu2 was expressed mainly in non-T cells and Neu4 was scarcely expressed. However, the in situ hybridization study on the localization of four sialidases in the thymus showed that Neu4 was clearly expressed. We then focused on a sialidase on the thymocyte surface because the possibility of the existence of a sialidase on thymocytes was suggested by peanut agglutinin (PNA) staining after incubation of the cells alone in PBS. This activity was inhibited by NEU1-selective sialidase inhibitor C9-butyl-amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid. The natural substrate for the cell surface sialidase was identified as clustered differentiation 5 (CD5) by PNA-blot analysis of anti-CD5 immunoprecipitate. We conclude that NEU1 exists on the cell surface of mouse thymocytes and CD5 is a natural substrate for it. Although this is not the main reaction of the membrane-bound thymus-sialidases, it must be important for the thymus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon
Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. Inmore » this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.« less
Helicobacter pylori and Complex Gangliosides
Roche, Niamh; Ångström, Jonas; Hurtig, Marina; Larsson, Thomas; Borén, Thomas; Teneberg, Susann
2004-01-01
Recognition of sialic acid-containing glycoconjugates by the human gastric pathogen Helicobacter pylori has been repeatedly demonstrated. To investigate the structural requirements for H. pylori binding to complex gangliosides, a large number of gangliosides were isolated and characterized by mass spectrometry and proton nuclear magnetic resonance. Ganglioside binding of sialic acid-recognizing H. pylori strains (strains J99 and CCUG 17874) and knockout mutant strains with the sialic acid binding adhesin SabA or the NeuAcα3Galβ4GlcNAcβ3Galβ4GlcNAcβ-binding neutrophil-activating protein HPNAP deleted was investigated using the thin-layer chromatogram binding assay. The wild-type bacteria bound to N-acetyllactosamine-based gangliosides with terminal α3-linked NeuAc, while gangliosides with terminal NeuGcα3, NeuAcα6, or NeuAcα8NeuAcα3 were not recognized. The factors affecting binding affinity were identified as (i) the length of the N-acetyllactosamine carbohydrate chain, (ii) the branches of the carbohydrate chain, and (iii) fucose substitution of the N-acetyllactosamine core chain. While the J99/NAP− mutant strain displayed a ganglioside binding pattern identical to that of the parent J99 wild-type strain, no ganglioside binding was obtained with the J99/SabA− mutant strain, demonstrating that the SabA adhesin is the sole factor responsible for the binding of H. pylori bacterial cells to gangliosides. PMID:14977958
Uemura, K; Roelcke, D; Nagai, Y; Feizi, T
1984-01-01
The thin layer chromatogram binding assay was used to study the reaction of several natural-monoclonal autoantibodies which recognize sialic acid-dependent antigens of human erythrocytes. Immunostaining of gangliosides derived from human and bovine erythrocytes was achieved with four autoantibodies designated anti-Pr2, anti-Gd, Sa and Fl, each of which has a different haemagglutination pattern with untreated and proteinase-treated erythrocytes and with cells of I and i antigen types. From the chromatogram binding patterns of anti-Pr2 with gangliosides of the neolacto and the ganglio series, it is deduced that this antibody reacts best with N-acetylneuraminic acid when it is alpha 2-3- or alpha 2-6-linked to a terminal Gal(beta 1-4)Glc/GlcNAc GlcNAc sequence and to a lesser extent when it is alpha 2-3-linked to a terminal Gal(beta 1-3)GalNAc sequence or to an internal galactose and when it is alpha 2-8-linked to another, internal N-acetylneuraminic acid residue. The other three antibodies differ from anti-Pr2 in their lack of reaction with glycolipids of the ganglio series. They react with the NeuAc(alpha 2-3)Gal(beta 1-4)Glc/GlcNAc sequence as found in GM3 and in glycolipids of the neolacto series, but show a preference for the latter, longer sequences. Thus all four antibodies react with sialylated oligosaccharides containing i type (linear) and I type (branched) neolacto backbones. Fl antibody differs from the other three in its stronger reaction with branched neolacto sequences in accordance with its stronger agglutination of erythrocytes of I rather than i type. The four antibodies show a specificity for N-acetyl- rather than N-glycolyl-neuraminic acid. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:6204642
Locatelli, D; Delmonte Corrado, M U; Politi, H; Bottiroli, G
1998-01-01
Fluorescence resonance energy transfer (FRET) is a photophysical phenomenon occurring between the molecules of two fluorochromes with suitable spectral characteristics (donor-acceptor dye pair), and consisting in an excitation energy migration through a non-radiative process. Since the efficiency of the process is strictly dependent on the distance and reciprocal orientation of the donor and acceptor molecules, FRET-based techniques can be successfully applied to the study of biomolecules and cell component organisation and distribution. These techniques have been employed in studying Paramecium primaurelia surface membrane for the reciprocal distribution of N-acetylneuraminic acid (NeuAc) and N-acetylglucosamine (GlcNAc) glycosidic residues, which were found to be involved in mating cell pairing. NeuAc and GlcNAc were detected by their specific binding lectins, Limulus polyphemus agglutinin (LPA) and wheat germ agglutinin (WGA), respectively. Microspectrofluorometric analysis afforded the choice of fluorescein isothiocyanate and Texas red conjugated with LPA and WGA, respectively, as a suitable donor-acceptor couple efficiently activating FRET processes. Studies performed both in solution and in cells allowed to define the experimental conditions favourable for a FRET analysis. The comparative study carried out both on the conjugating-region and the non conjugating region of the surface membrane, indicates that FRET distribution appears quite homogeneous in mating-competent mating type (mt) I, whereas, in mating-competent mt II cells, FRET distribution seems to be preferentially localised on the conjugating-region functionally involved in mating cell pairing. This difference in the distribution of lectin-binding sites is suggested to be related to mating-competence acquisition.
Sakai, R; Esaki, Y; Hasuwa, H; Ikawa, M; Lo, P; Matsuura, R; Nakahata, K; Zenitani, M; Asada, M; Maeda, A; Eguchi, H; Okuyama, H; Miyagawa, S
2016-05-01
We attempted to knock out the expression of Hanganutziu-Deicher (H-D) antigens through the use of a CRISPR (clustered regulatory interspaced short palindromic repeat)/Cas9 system for pig cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH). Plasmids expressing hCas9 and sgRNA for pCMAH were prepared by ligating oligos into the BbsI site of pX330. The N-terminal and C-terminal EGFP coding regions overlapping 482 bp were PCR-amplified and placed under a ubiquitous CAG promoter. The approximately 400-bp genomic fragments containing the sgRNA target sequence of pCMAH were placed into the multi-cloning sites flanked by the EGFP fragments. The pCAG-EGxxFP-target was mixed with pX330 with/without the sgRNA sequences and then introduced into HEK293T cells. Four oligos and primers, gSO1, gSO3, gSO4, and gSO8, were nominated from 8 candidates. Among them, gSO1 showed the best efficiency. Pig endothelial cells (PECs) from an α-Gal knockout pig were then used to examine the changes in the expression of the H-D antigen by the knockout of the CMAH genome by the pX330-gS01. Changes in the expression of the H-D antigen in the PECs with the CRISPR (gS01) were clear in comparison with those in the parental cells, on the basis of FACS analysis data. The expression of the H-D antigen can be knocked out by use of the CRISPR system for pCMAH, thus confirming that this system is a very convenient system for producing knockout pigs. Copyright © 2016 Elsevier Inc. All rights reserved.
Niethamer, Terren K.; Yardeni, Tal; Leoyklang, Petcharat; Ciccone, Carla; Astiz-Martinez, Adrian; Jacobs, Katherine; Dorward, Heidi M.; Zerfas, Patricia M.; Gahl, William A.; Huizing, Marjan
2012-01-01
GNE myopathy, previously termed hereditary inclusion body myopathy (HIBM), is an adult-onset neuromuscular disorder characterized by progressive muscle weakness. The disorder results from biallelic mutations in GNE, encoding UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, the key enzyme of sialic acid synthesis. GNE myopathy, associated with impaired glycan sialylation, has no approved therapy. Here we test potential sialylation-increasing monosaccharides for their effectiveness in prophylaxis (at the embryonic and neonatal stages) and therapy (after the onset of symptoms) by evaluating renal and muscle hyposialylation in a knock-in mouse model (Gne p.M712T) of GNE myopathy. We demonstrate that oral mannosamine (ManN), but not sialic acid (Neu5Ac), mannose (Man), galactose (Gal), or glucosamine (GlcN), administered to pregnant female mice has a similar prophylactic effect on renal hyposialylation, pathology and neonatal survival of mutant offspring, as previously shown for N-acetylmannosamine (ManNAc) therapy. ManN may be converted to ManNAc by a direct, yet unknown, pathway, or may act through another mode of action. The other sugars (Man, Gal, GlcN) may either not cross the placental barrier (Neu5Ac) and/or may be able to directly increase sialylation. Because GNE myopathy patients will likely require treatment in adulthood after onset of symptoms, we also administered ManNAc (1 or 2 g/kg/day for 12 weeks), Neu5Ac (2g/kg/day for 12 weeks), or ManN (2g/kg/day for 6 weeks) in drinking water to 6 month old mutant Gne p.M712T mice. All three therapies markedly improved the muscle and renal hyposialylation, as evidenced by lectin histochemistry for overall sialylation status and immunoblotting of specific sialoproteins. These preclinical data strongly support further evaluation of oral ManNAc, Neu5Ac and ManN as therapy for GNE myopathy and conceivably for certain glomerular diseases with hyposialylation. PMID:23122659
Sialyldisaccharide conformations: a molecular dynamics perspective
NASA Astrophysics Data System (ADS)
Selvin, Jeyasigamani F. A.; Priyadarzini, Thanu R. K.; Veluraja, Kasinadar
2012-04-01
Sialyldisaccharides are significant terminal components of glycoconjugates and their negative charge and conformation are extensively utilized in molecular recognition processes. The conformation and flexibility of four biologically important sialyldisaccharides [Neu5Acα(2-3)Gal, Neu5Acα(2-6)Gal, Neu5Acα(2-8)Neu5Ac and Neu5Acα(2-9)Neu5Ac] are studied using Molecular Dynamics simulations of 20 ns duration to deduce the conformational preferences of the sialyldisaccharides and the interactions which stabilize the conformations. This study clearly describes the possible conformational models of sialyldisaccharides deduced from 20 ns Molecular Dynamics simulations and our results confirm the role of water in the structural stabilization of sialyldisaccharides. An extensive analysis on the sialyldisaccharide structures available in PDB also confirms the conformational regions found by experiments are detected in MD simulations of 20 ns duration. The three dimensional structural coordinates for all the MD derived sialyldisaccharide conformations are deposited in the 3DSDSCAR database and these conformational models will be useful for glycobiologists and biotechnologists to understand the biological functions of sialic acid containing glycoconjugates.
Saile, Nadja; Schwarz, Lisa; Eißenberger, Kristina; Klumpp, Jochen; Fricke, Florian W; Schmidt, Herbert
2018-06-01
Enterohemorrhagic E. coli (EHEC) are serious bacterial pathogens which are able to cause a hemorrhagic colitis or the life-threatening hemolytic-uremic syndrome (HUS) in humans. EHEC strains can carry different numbers of phage-borne nanS-p alleles that are responsible for acetic acid release from mucin from bovine submaxillary gland and 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac 2 ), a carbohydrate present in mucin. Thus, Neu5,9Ac 2 can be transformed to 5-N-acetyl neuraminic acid, an energy source used by E. coli strains. We hypothesize that these NanS-p proteins are involved in competitive growth of EHEC in the gastrointestinal tract of humans and animals. The aim of the current study was to demonstrate and characterize the nanS-p alleles of the 2011 E. coli O104:H4 outbreak strain LB226692 and analyze whether the presence of multiple nanS-p alleles in the LB226692 genome causes a competitive growth advantage over a commensal E. coli strain. We detected and characterized five heterogeneous phage-borne nanS-p alleles in the genome of E. coli O104:H4 outbreak strain LB226692 by in silico analysis of its genome. Furthermore, successive deletion of all nanS-p alleles, subsequent complementation with recombinant NanS-p13-His, and in vitro co-culturing experiments with the commensal E. coli strain AMC 198 were conducted. We could show that nanS-p genes of E. coli O104:H4 are responsible for growth inhibition of strain AMC 198, when Neu5,9Ac 2 was used as sole carbon source in co-culture. The results of this study let us suggest that multiple nanS-p alleles may confer a growth advantage by outcompeting other E. coli strains in Neu5,9Ac 2 rich environments, such as mucus in animal and human gut. Copyright © 2018 Elsevier GmbH. All rights reserved.
Kadirvelraj, Renuka; Grant, Oliver C; Goldstein, Irwin J; Winter, Harry C; Tateno, Hiroaki; Fadda, Elisa; Woods, Robert J
2011-01-01
Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 Å) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding. PMID:21436237
NASA Astrophysics Data System (ADS)
Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng
2015-10-01
Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2-6Galβ, human-origin viruses could bind glycans with Neu5Acα2-8Neu5Acα2-8Neu5Ac and Neu5Gcα2-6Galβ1-4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2-3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms.
Kwon, Deug-Nam; Chang, Byung-Soo; Kim, Jin-Hoi
2014-01-01
Background N-glycolylneuraminic acid (Neu5Gc) is generated by hydroxylation of CMP-Neu5Ac to CMP-Neu5Gc, catalyzed by CMP-Neu5Ac hydroxylase (CMAH). However, humans lack this common mammalian cell surface molecule, Neu5Gc, due to inactivation of the CMAH gene during evolution. CMAH is one of several human-specific genes whose function has been lost by disruption or deletion of the coding frame. It has been suggested that CMAH inactivation has resulted in biochemical or physiological characteristics that have resulted in human-specific diseases. Methodology/Principal Findings To identify differential gene expression profiles associated with the loss of Neu5Gc expression, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip, using the main tissues (lung, kidney, and heart) from control mice and CMP-Neu5Ac hydroxylase (Cmah) gene knock-out mice, respectively. Out of a total of 25,697 genes, 204, 162, and 147 genes were found to be significantly modulated in the lung, kidney, and heart tissues of the Cmah null mouse, respectively. In this study, we examined the gene expression profiles, using three commercial pathway analysis software packages: Ingenuity Pathways Analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and Pathway Studio. The gene ontology analysis revealed that the top 6 biological processes of these genes included protein metabolism and modification, signal transduction, lipid, fatty acid, and steroid metabolism, nucleoside, nucleotide and nucleic acid metabolism, immunity and defense, and carbohydrate metabolism. Gene interaction network analysis showed a common network that was common to the different tissues of the Cmah null mouse. However, the expression of most sialytransferase mRNAs of Hanganutziu-Deicher antigen, sialy-Tn antigen, Forssman antigen, and Tn antigen was significantly down-regulated in the liver tissue of Cmah null mice. Conclusions/Significance Mice bearing a human-like deletion of the Cmah gene serve as an important model for the study of abnormal pathogenesis and/or metabolism caused by the evolutionary loss of Neu5Gc synthesis in humans. PMID:25229777
Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.
Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi
2018-02-06
Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ribeiro, João P; Ali Abol Hassan, Mohamed; Rouf, Razina; Tiralongo, Evelin; May, Tom W; Day, Christopher J; Imberty, Anne; Tiralongo, Joe; Varrot, Annabelle
2017-05-01
A lectin with strong cytotoxic effect on human colon cancer HT29 and monkey kidney VERO cells was recently identified from the Australian indigenous mushroom Psathyrella asperospora and named PAL. We herein present its biochemical and structural analysis using a multidisciplinary approach. Glycan arrays revealed binding preference towards N-acetylglucosamine (GlcNAc) and, to a lesser extent, towards sialic acid (Neu5Ac). Submicromolar and millimolar affinity was measured by surface plasmon resonance for GlcNAc and NeuAc, respectively. The structure of PAL was resolved by X-ray crystallography, elucidating both the protein's amino acid sequence as well as the molecular basis rationalizing its binding specificity. Proteins 2017; 85:969-975. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Saile, Nadja; Voigt, Anja; Kessler, Sarah; Stressler, Timo; Fischer, Lutz
2016-01-01
ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain EDL933 harbors multiple prophage-associated open reading frames (ORFs) in its genome which are highly homologous to the chromosomal nanS gene. The latter is part of the nanCMS operon, which is present in most E. coli strains and encodes an esterase which is responsible for the monodeacetylation of 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac2). Whereas one prophage-borne ORF (z1466) has been characterized in previous studies, the functions of the other nanS-homologous ORFs are unknown. In the current study, the nanS-homologous ORFs of EDL933 were initially studied in silico. Due to their homology to the chromosomal nanS gene and their location in prophage genomes, we designated them nanS-p and numbered the different nanS-p alleles consecutively from 1 to 10. The two alleles nanS-p2 and nanS-p4 were selected for production of recombinant proteins, their enzymatic activities were investigated, and differences in their temperature optima were found. Furthermore, a function of these enzymes in substrate utilization could be demonstrated using an E. coli C600ΔnanS mutant in a growth medium with Neu5,9Ac2 as the carbon source and supplementation with the different recombinant NanS-p proteins. Moreover, generation of sequential deletions of all nanS-p alleles in strain EDL933 and subsequent growth experiments demonstrated a gene dose effect on the utilization of Neu5,9Ac2. Since Neu5,9Ac2 is an important component of human and animal gut mucus and since the nutrient availability in the large intestine is limited, we hypothesize that the presence of multiple Neu5,9Ac2 esterases provides them a nutrient supply under certain conditions in the large intestine, even if particular prophages are lost. IMPORTANCE In this study, a group of homologous prophage-borne nanS-p alleles and two of the corresponding enzymes of enterohemorrhagic E. coli (EHEC) O157:H7 strain EDL933 that may be important to provide alternative genes for substrate utilization were characterized. PMID:27474715
Howard, Michael D; Willis, Lisa; Wakarchuk, Warren; St Michael, Frank; Cox, Andrew; Horne, William T; Hontecillas, Raquel; Bassaganya-Riera, Josep; Lorenz, Eva; Inzana, Thomas J
2011-11-21
Histophilus somni is an etiologic agent of bovine respiratory and systemic diseases. Most pathogenic strains of H. somni that have been tested (36 of 42) are able to utilize N-acetyl-5-neuraminic acid (Neu5Ac) to sialylate their lipooligosaccharide (LOS). Homologs of all the genes required for transport, metabolism, and regulation of Neu5Ac in Haemophilus influenzae were identified in the sequenced genomes of H. somni. Three open reading frames (ORFs) in H. somni strain 2336 were identified that contained homology to genes required for LOS sialylation in related bacteria. ORF-1 (hssT-I), ORF-2 (hssT-II), and ORF-3 (neuA(Hs)) were predicted to encode for putative proteins with 37% amino acid homology to an α-(2-3)-sialyltransferase in H. influenzae, 43% amino acid homology to an Haemophilus ducreyi sialyltransferase, and 72% amino acid homology to an H. influenzae CMP-Neu5Ac synthetase, respectively. The specific enzyme activity of each ORF was determined using synthetic acceptor substrates. The HssT-I sialyltransferase primarily sialylated N-acetyllactosamine (LacNAc, Gal-β-[1-4]-GlcNAc-R), which is expressed on strain 2336, whereas HssT-II preferentially sialylated lacto-N-biose (LNB, Gal-β-[1-3]-GlcNAc-R), which is expressed on a phase variant of strain 2336: strain 738. Phase variation of the terminal galactose linkage in strain 738 from β-(1-3)-(LNB) to β-(1-4)-(LacNAc) was confirmed using monoclonal antibody reactivity and nuclear magnetic resonance spectroscopy. Sialylated LOS induced significantly less chemokine response from macrophages derived from Toll-like receptor (TLR)-4 knockout mice than from de-sialylated LOS. Furthermore, sialylated LOS induced significantly less NF-κB activity from mouse-derived bone marrow macrophages than de-sialylated LOS. Therefore, sialylation inhibited LOS signaling through TLR-4. In conclusion, H. somni utilizes linkage-specific sialyltransferases to sialylate its LOS to avoid innate host defense mechanisms despite simultaneous epitope phase variation. Copyright © 2011 Elsevier B.V. All rights reserved.
2012-01-01
Backgrounds Streptococcus pneumoniae expresses three distinct sialidases, NanA, NanB, and NanC, that are believed to be key virulence factors and thus, potential important drug targets. We previously reported that the three enzymes release different products from sialosides, but could share a common catalytic mechanism before the final step of product formation. However, the kinetic investigations of the three sialidases have not been systematically done thus far, due to the lack of an easy and steady measurement of sialidase reaction rate. Results In this work, we present further kinetic characterization of pneumococcal sialidases by using a direct spectrophotometric method with the chromogenic substrate p-nitrophenyl-N-acetylneuraminic acid (p-NP-Neu5Ac). Using our assay, the measured kinetic parameters of the three purified pneumococcal sialidase, NanA, NanB and NanC, were obtained and were in perfect agreement with the previously published data. The major advantage of this alternative method resides in the direct measurement of the released product, allowing to readily determine of initial reaction rates and record complete hydrolysis time courses. Conclusion We developed an accurate, fast and sensitive spectrophotometric method to investigate the kinetics of sialidase-catalyzed reactions. This fast, sensitive, inexpensive and accurate method could benefit the study of the kinetics and inhibition of sialidases in general. PMID:23031230
Regulation of neuraminidase expression in Streptococcus pneumoniae
2012-01-01
Background Sialic acid (N-acetylneuraminic acid; NeuNAc) is one of the most important carbohydrates for Streptococcus pneumoniae due of its role as a carbon and energy source, receptor for adhesion and invasion and molecular signal for promotion of biofilm formation, nasopharyngeal carriage and invasion of the lung. Results In this work, NeuNAc and its metabolic derivative N-acetyl mannosamine (ManNAc) were used to analyze regulatory mechanisms of the neuraminidase locus expression. Genomic and metabolic comparison to Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii and Streptococcus sanguinis elucidates the metabolic association of the two amino sugars to different parts of the locus coding for the two main pneumococcal neuraminidases and confirms the substrate specificity of the respective ABC transporters. Quantitative gene expression analysis shows repression of the locus by glucose and induction of all predicted transcriptional units by ManNAc and NeuNAc, each inducing with higher efficiency the operon encoding for the transporter with higher specificity for the respective amino sugar. Cytofluorimetric analysis demonstrated enhanced surface exposure of NanA on pneumococci grown in NeuNAc and ManNAc and an activity assay allowed to quantify approximately twelve times as much neuraminidase activity on induced cells as opposed to glucose grown cells. Conclusions The present data increase the understanding of metabolic regulation of the nanAB locus and indicate that experiments aimed at the elucidation of the relevance of neuraminidases in pneumococcal virulence should possibly not be carried out on bacteria grown in glucose containing media. PMID:22963456
Nöhle, U; Schauer, R
1981-11-01
N-Acetyl-D-[2-14C,9-3H]neuraminic acid, enzymically prepared from sodium [2-14C]-pyruvate and N-acetyl-D-[6-3H]mannosamine by N-acetylneuraminate lyase in 75% yield, was orally administered to 20 day old fasted mice. 90% of the administered neuraminic acid was absorbed from the intestine in the course of 4 h, at a rate depending on the retention time of neuraminic acid in the intestine and the mental conditions of the animals. Between 60 and 90% of the neuraminic acid was excreted in the urine without chemical alteration within the first 6 h. Four hours after administration 10% of the 3H- and 1.3% of the 14C-radioactivity were recovered in the whole blood and in liver, spleen, kidney and brain. After 3 days 0.5% of 3H- and 0.01% of 14C-radioactivity still remained in these tissues. The discrepancy of the 14C-amount relative to the 3H-quantity was accounted for by exhaled 14CO2. After intravenous injection of N-acetylneuraminic acid into rats, 90% of the radioactivity corresponding to the original substance was excreted in the urine within 10 min. Four hours after administration only 5% of the applied 3H- and 1.2% of the 14C-radioactivity were left in the blood and in liver, spleen, kidney and brain. The experiments show that neither orally nor intravenously applied N-acetylneuraminic acid can penetrate cell membranes to a large extent, with the exception of the intestine. The isotopic ratio and N-acetylneuraminate lyase activity suggest that the small amount of the neuraminic acid retained in tissues was largely cleaved by the lyase, followed by metabolism of the reaction products. It may be concluded from these observations that neuraminic acid occurring in food cannot directly be used for the biosynthesis of glycoconjugates on a large scale.
Shigeyasu, Chika; Yamada, Masakazu; Akune, Yoko; Tsubota, Kazuo
2015-11-01
To evaluate the clinical efficacy of 3% diquafosol sodium ophthalmic solution for dry eye, and to analyze the concentration of tear proteins and mucin-like substances after the treatment. Fifty eyes of 25 patients with dry eye syndrome were prospectively enrolled. The patients were treated with diquafosol solution at a dose of 1 drop in each eye 6 times daily for 4 weeks. The parameters of clinical efficacy were tear osmolarity, tear breakup time (BUT), fluorescein staining scores for the cornea and conjunctiva, Schirmer test values, and subjective symptoms evaluated using the ocular surface disease index (OSDI). Tears collected with Schirmer test strips were analyzed by high-performance liquid chromatography, and the concentrations of the total protein and the 4 major tear proteins, namely, secretory IgA, lactoferrin, lipocalin-1, lysozyme, and N-acetyl-neuraminic acid (Neu5Ac), were measured. Neu5Ac is a major sialic acid, a marker of secretory mucins. The BUT, keratoconjunctival staining scores, and Schirmer test values were improved with statistical significance after the treatment with diquafosol solution, while changes in the other parameters, including tear osmolarity, corneal staining scores, and OSDI scores were not significant. The Neu5Ac concentration was significantly increased, which was not accompanied by changes in tear proteins. Topical application of diquafosol significantly improved the clinical parameters of the BUT, keratoconjunctival staining scores, and Schirmer test values and was accompanied by increased sialic acid content in the tears of patients with dry eye.
Chavas, Leonard M G; Tringali, Cristina; Fusi, Paola; Venerando, Bruno; Tettamanti, Guido; Kato, Ryuichi; Monti, Eugenio; Wakatsuki, Soichi
2005-01-07
Gangliosides play key roles in cell differentiation, cell-cell interactions, and transmembrane signaling. Sialidases hydrolyze sialic acids to produce asialo compounds, which is the first step of degradation processes of glycoproteins and gangliosides. Sialidase involvement has been implicated in some lysosomal storage disorders such as sialidosis and galactosialidosis. Neu2 is a recently identified human cytosolic sialidase. Here we report the first high resolution x-ray structures of mammalian sialidase, human Neu2, in its apo form and in complex with an inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA). The structure shows the canonical six-blade beta-propeller observed in viral and bacterial sialidases with its active site in a shallow crevice. In the complex structure, the inhibitor lies in the catalytic crevice surrounded by ten amino acids. In particular, the arginine triad, conserved among sialidases, aids in the proper positioning of the carboxylate group of DANA within the active site region. The tyrosine residue, Tyr(334), conserved among mammalian and bacterial sialidases as well as in viral neuraminidases, facilitates the enzymatic reaction by stabilizing a putative carbonium ion in the transition state. The loops containing Glu(111) and the catalytic aspartate Asp(46) are disordered in the apo form but upon binding of DANA become ordered to adopt two short alpha-helices to cover the inhibitor, illustrating the dynamic nature of substrate recognition. The N-acetyl and glycerol moieties of DANA are recognized by Neu2 residues not shared by bacterial sialidases and viral neuraminidases, which can be regarded as a key structural difference for potential drug design against bacteria, influenza, and other viruses.
Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs.
Kim, Geon A; Lee, Eun Mi; Jin, Jun-Xue; Lee, Sanghoon; Taweechaipaisankul, Anukul; Hwang, Jong Ik; Alam, Zahid; Ahn, Curie; Lee, Byeong Chun
2017-08-01
As an alternative source of organs for transplantation into humans, attention has been directed to pigs due to their similarities in biological features and organ size. However, severe immune rejection has prevented successful xenotransplantation using pig organs and tissues. To overcome immune rejection, recently developed genetic engineering systems such as TALEN coupled with somatic cell nuclear transfer (SCNT) to make embryos could be used to produce pigs compatible with xenotransplantation. We used the TALEN system to target the non-Gal antigen cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene in pigs that is naturally deleted in humans. Gal-deleted cells expressing both soluble human tumor necrosis factor receptor I IgG 1 -Fc (shTNFRI-Fc) and human hemagglutinin -tagged-human heme oxygenase-1 (hHO-1) were transfected with a TALEN target for CMAH. Cells lacking CMAH were negatively selected using N-glyconeuraminic acid (Neu5Gc)/magnetic beads and the level of Neu5Gc expression of isolated cells were analyzed by FACS and DNA sequencing. Cloned embryos using 3 different genetically modified cell clones were respectively transferred into 3 recipients, with 55.6% (5/9) becoming pregnant and three cloned pigs were produced. Successful genetic disruption of the CMAH gene was confirmed by sequencing, showing lack of expression of CMAH in tail-derived fibroblasts of the cloned piglets. Besides decreased expression of Neu5Gc in piglets produced by SCNT, antibody-mediated complement-dependent cytotoxicity assays and natural antibody binding for examining immuno-reactivity of the quadruple gene modified pigs derived from endothelial cells and fibroblasts were reduced significantly compared to those of wild type animals. We conclude that by combining the TALEN system and transgenic cells, targeting of multiple genes could be useful for generating organs for xenotransplantation. We produced miniature pigs with quadruple modified genes CMAHKO/GTKO/shTNFRI-Fc/hHO-1 that will be suitable for xenotransplantation by overcoming hyperacute, acute and anti-inflammatory rejection.
Kajiura, Hiroyuki; Hamaguchi, Yuichi; Mizushima, Hiroki; Misaki, Ryo; Fujiyama, Kazuhito
2015-12-01
N-Glycosylation is an important post-translational modification in most secreted and membrane-bound proteins in eukaryotic cells. However, the insect N-glycosylation pathway and the potentials contributing to the N-glycan synthesis are still unclear because most of the studies on these subjects have focused on mammals and plants. Here, we identified Bombyx mori sialyltransferase (BmST), which is a Golgi-localized glycosyltransferase and which can modify N-glycans. BmST was ubiquitously expressed in different organs and in various stages of development and localized at the Golgi. Biochemical analysis using Sf9-expressed BmST revealed that BmST encoded α2,6-sialyltransferase and transferred N-acetylneuraminic acid (NeuAc) to the nonreducing terminus of Galβ1-R, but exhibited the highest activity toward GalNAcβ1,4-GlcNAc-R. Unlike human α2,6-sialyltransferase, BmST required the post-translational modification, especially N-glycosylation, for its full activity. N-Glycoprotein analysis of B. mori fifth instar larvae revealed that high-mannose-type structure was predominant and GlcNAc-linked and fucosylated structures were observed but endogenous galactosyl-, N-acetylgalactosaminyl- and sialyl-N-glycoproteins were undetectable under the standard analytical approach. These results indicate that B. mori genome encodes an α2,6-sialyltransferase, but further investigations of the sialylation potentials are necessary. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Urashima, Tadasu; Kobayashi, Mami; Asakuma, Sadaki; Uemura, Yusuke; Arai, Ikichi; Fukuda, Kenji; Saito, Tadao; Mogoe, Toshihiro; Ishikawa, Hajime; Fukui, Yutaka
2007-02-01
Samples of milk from a Bryde's whale and a Sei whale contained 2.7 g/100 mL and 1.7 g/100 mL of hexose, respectively. Both contained lactose as the dominant saccharide along with small amounts of Neu5Ac(alpha2-3)Gal(beta1-4)Glc (3'-N-acetylneuraminyllactose), Neu5Ac(alpha2-6)Gal(beta1-4)Glc (6'-N-acetylneuraminyllactose) and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (LST c). The dominance of lactose in the carbohydrate of these milks is similar to that of Minke whale milk and bottlenose dolphin colostrum, but the oligosaccharide patterns are different from those of these two species, illustrating the heterogeneity of milk oligosaccharides among the Cetacea.
N-Glycans Modulate the Function of Human Corticosteroid-Binding Globulin*
Sumer-Bayraktar, Zeynep; Kolarich, Daniel; Campbell, Matthew P.; Ali, Sinan; Packer, Nicolle H.; Thaysen-Andersen, Morten
2011-01-01
Human corticosteroid-binding globulin (CBG), a heavily glycosylated protein containing six N-linked glycosylation sites, transports cortisol and other corticosteroids in blood circulation. Here, we investigate the biological importance of the N-glycans of CBG derived from human serum by performing a structural and functional characterization of CBG N-glycosylation. Liquid chromatography-tandem MS-based glycoproteomics and glycomics combined with exoglycosidase treatment revealed 26 complex type N-glycoforms, all of which were terminated with α2,3-linked neuraminic acid (NeuAc) residues. The CBG N-glycans showed predominantly bi- and tri-antennary branching, but higher branching was also observed. N-glycans from all six N-glycosylation sites were identified with high site occupancies (70.5–99.5%) and glycoforms from all sites contained a relatively low degree of core-fucosylation (0–34.9%). CBG showed site-specific glycosylation and the site-to-site differences in core-fucosylation and branching could be in silico correlated with the accessibility to the individual glycosylation sites on the maturely folded protein. Deglycosylated and desialylated CBG analogs were generated to investigate the biological importance of CBG N-glycans. As a functional assay, MCF-7 cells were challenged with native and glycan-modified CBG and the amount of cAMP, which is produced as a quantitative response upon CBG binding to its cell surface receptor, was used to evaluate the CBG:receptor interaction. The removal of both CBG N-glycans and NeuAc residues increased the production of cAMP significantly. This confirms that N-glycans are involved in the CBG:receptor interaction and indicates that the modulation is performed by steric and/or electrostatic means through the terminal NeuAc residues. PMID:21558494
Chemical characterization of milk oligosaccharides of the eastern quoll (Dasyurus viverrinus).
Urashima, Tadasu; Sun, Yiliang; Fukuda, Kenji; Hirayama, Kentaro; Taufik, Epi; Nakamura, Tadashi; Saito, Tadao; Merchant, Jim; Green, Brian; Messer, Michael
2015-08-01
Structural characterizations of marsupial milk oligosaccharides have been performed in four species to date: the tammar wallaby (Macropus eugenii), the red kangaroo (Macropus rufus), the koala (Phascolarctos cinereus) and the common brushtail possum (Trichosurus vulpecula). To clarify the homology and heterogeneity of milk oligosaccharides among marsupials, the oligosaccharides in the carbohydrate fraction of eastern quoll milk were characterized in this study. Neutral and acidic oligosaccharides were separated and characterized by (1)H-nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The structures of the neutral oligosaccharides were Gal(β1-3)Gal(β1-4)Glc (3'-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3",3'-digalactosyllactose), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I), Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl lacto-N-novopentaose I), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)Gal(β1-4)Glc (galactosyl lacto-N-novopentaose II), Gal(β1-3)[Gal(β1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl lacto-N-novopentaose III) and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novooctaose). The structures of the acidic oligosaccharides detected are Neu5Ac(α2-3)Gal(β1-4)Glc (3'-sialyllactose), Gal(β1-3)(O-3-sulfate)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate a), Gal(β1-3)[Gal(β1-4)(O-3-sulfate)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate b), Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)[Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose c), Neu5Ac(α2-3) Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc with an α(2-3) Neu5Ac linked to β(1-4)Gal residue of either branch of Gal(β1-4)GlcNAc(β1-6) units. The most predominant oligosaccharides in the carbohydrate fraction of mid-lactation milk were found to be lacto-N-novopentaose I and lacto-N-novooctaose, i.e., branched oligosaccharides that contain N-acetylglucosamine. The predominance of these branched oligosaccharides, rather than of a series of linear β(1-3) linked galacto oligosaccharides, appears to be the main feature of the eastern quoll milk oligosaccharides that differentiates them from those of the tammar wallaby and the brushtail possum.
Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo
2015-02-03
We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.
Identification and analysis of o-acetylated sialoglycoproteins.
Mandal, Chandan; Mandal, Chitra
2013-01-01
5-N-acetylneuraminic acid, commonly known as sialic acid (Sia), constitutes a family of N- and O-substituted 9-carbon monosaccharides. Frequent modification of O-acetylations at positions C-7, C-8, or C-9 of Sias generates a family of O-acetylated sialic acid (O-AcSia) and plays crucial roles in many cellular events like cell-cell adhesion, proliferation, migration, etc. Therefore, identification and analysis of O-acetylated sialoglycoproteins (O-AcSGPs) are important. In this chapter, we describe several approaches for successful identification of O-AcSGPs. We broadly divide them into two categories, i.e., invasive and noninvasive methods. Several O-AcSias-binding probes are used for this purpose. Detailed methodologies for step-by-step identification using these probes have been discussed. We have also included a few invasive analytical methods for identification and quantitation of O-AcSias. Several indirect methods are also elaborated for such purpose, in which O-acetyl group from sialic acids is initially removed followed by detection of Sias by several approaches. For molecular identification, we have described methods for affinity purification of O-AcSGPs using an O-AcSias-binding lectin as an affinity matrix followed by sequencing using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF) mass spectroscopy (MS). In spite of special attention, loss of O-acetyl groups due to its sensitivity towards alkaline pH and high temperature along with migration of labile O-acetyl groups from C7-C8-C9 during sample preparation is difficult to avoid. Therefore there is always a risk for underestimation of O-AcSias.
Interaction of a lectin from Psathyrella velutina mushroom with N-acetylneuraminic acid.
Ueda, H; Kojima, K; Saitoh, T; Ogawa, H
1999-04-01
A lectin from the fruiting body of Psathyrella velutina has been used as a specific probe for non-reducing terminal N-acetylglucosamine residues. We reveal in this report that P. velutina lectin recognizes a non-reducing terminal N-acetylneuraminic acid residue in glycoproteins and oligosaccharides. Binding of biotinyl P. velutina lectin to N-acetylneuraminic acid residues was prevented by desialylation of glycoconjugates and was distinguished from the binding to N-acetylglucosamine. Sialooligosaccharides were retarded or bound and eluted with N-acetylglucosamine on a P. velutina lectin column, being differentiated from each other and also from the oligosaccharides with non-reducing terminal N-acetylglucosamine which bound more strongly to the column.
Taufik, Epi; Fukuda, Kenji; Senda, Akitsugu; Saito, Tadao; Williams, Cathy; Tilden, Chris; Eisert, Regina; Oftedal, Olav; Urashima, Tadasu
2012-04-01
The structures of milk oligosaccharides were characterized for four strepsirrhine primates to examine the extent to which they resemble milk oligosaccharides in other primates. Neutral and acidic oligosaccharides were isolated from milk of the greater galago (Galagidae: Otolemur crassicaudatus), aye-aye (Daubentoniidae: Daubentonia madagascariensis), Coquerel's sifaka (Indriidae: Propithecus coquereli) and mongoose lemur (Lemuridae: Eulemur mongoz), and their chemical structures were characterized by (1)H-NMR spectroscopy. The oligosaccharide patterns observed among strepsirrhines did not appear to correlate to phylogeny, sociality or pattern of infant care. Both type I and type II neutral oligosaccharides were found in the milk of the aye-aye, but type II predominate over type I. Only type II oligosaccharides were identified in other strepsirrhine milks. α3'-GL (isoglobotriose, Gal(α1-3)Gal(β1-4)Glc) was found in the milks of Coquerel's sifaka and mongoose lemur, which is the first report of this oligosaccharide in the milk of any primate species. 2'-FL (Fuc(α1-2)Gal(β1-4)Glc) was found in the milk of an aye-aye with an ill infant. Oligosaccharides containing the Lewis x epitope were found in aye-aye and mongoose lemur milk. Among acidic oligosaccharides, 3'-N-acetylneuraminyllactose (3'-SL-NAc, Neu5Ac(α2-3)Gal(β1-4)Glc) was found in all studied species, whereas 6'-N-acetylneuraminyllactose (6'-SL-NAc, Neu5Ac(α2-6)Gal(β1-4)Glc) was found in all species except greater galago. Greater galago milk also contained 3'-N-glycolylneuraminyllactose (3'-SL-NGc, Neu5Gc(α2-3)Gal(β1-4)Glc). The finding of a variety of neutral and acidic oligosaccharides in the milks of strepsirrhines, as previously reported for haplorhines, suggests that such constituents are ancient rather than derived features, and are as characteristic of primate lactation is the classic disaccharide, lactose.
Piao, Da-Chuan; Lee, Yoon-Seok; Bok, Jin-Duck; Cho, Chong-Su; Hong, Zhong-Shan; Kang, Sang-Kee; Choi, Yun-Jaie
2016-10-01
The emergence of highly pathogenic variant porcine epidemic diarrhea virus (PEDV) strains, from 2013 to 2014, in North American and Asian countries have greatly threatened global swine industry. Therefore, development of effective vaccines against PEDV variant strains is urgently needed. Recently, it has been reported that the N-terminal domain (NTD) of S1 domain of PEDV spike protein is responsible for binding to the 5-N-acetylneuraminic acid (Neu5Ac), a possible sugar co-receptor. Therefore, the NTD of S1 domain could be an attractive target for the development of subunit vaccines. In this study, the NTD spanning amino acid residues 25-229 (S25-229) of S1 domain of PEDV variant strain was expressed in Escherichia coli BL21 (DE3) in the form of inclusion bodies (IBs). S25-229 IBs were solubilized in 20 mM sodium acetate (pH 4.5) buffer containing 8 M urea and 1 mM dithiothreitol with 95% yield. Solubilized S25-229 IBs were refolded by 10-fold flash dilution and purified by one-step cation exchange chromatography with >95% purity and 20% yield. The CD spectrum of S25-229 showed the characteristic pattern of alpha helical structure. In an indirect ELISA, purified S25-229 showed strong reactivity with mouse anti-PEDV sera. In addition, immunization of mice with 20 μg of purified S25-229 elicited highly potent serum IgG titers. Finally, mouse antisera against S25-229 showed immune reactivity with native PEDV S protein in an immunofluorescence assay. These results suggest that purified S25-229 may have potential to be used as a subunit vaccine against PEDV variant strains. Copyright © 2016 Elsevier Inc. All rights reserved.
Ganzorig, Khuukhenbaatar; Asakawa, Takuya; Sasaki, Masashi; Saito, Tadao; Suzuki, Isao; Fukuda, Kenji; Urashima, Tadasu
2018-01-01
Mammalian milk/colostrum usually contains milk oligosaccharides along with the predominant lactose. Although milk oligosaccharides of a variety of Bovidae species including cow, sheep and goat have been characterized, those of the addax, an Antelopinae species of the Bovidae, have not as yet been clarified. In this study, several sialyl oligosaccharides were purified from a sample of addax colostrum and characterized as follows: Neu5Ac(α2-8)Neu5Ac(α2-3)Gal(β1-4)Glc, Neu5Gc(α2-8)Neu5Gc(α2-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-4)Glc, Neu5Ac(α2-6)Gal(β1-4)GlcNAc, Neu5Gc(α2-3)Gal(β1-4)Glc, Neu5Gc(α2-6)Gal(β1-4)Glc, Neu5Gc(α2-6)Gal(β1-4)GlcNAc. In addition, an oligosaccharide nucleotide Neu5Gc(α2-6)Gal(β1-4)GlcNAcα1-UDP was characterized. Molecular species of a variety of sialyl oligosaccharides found in milk and colostrum of these Bovidae were compared. © 2017 Japanese Society of Animal Science.
Rota, Paola; Allevi, Pietro; Mattina, Roberto; Anastasia, Mario
2010-08-21
An efficient short protocol for the preparation of N-perfluoroacylated glycals of neuraminic acid, by simple short treatment of differently protected N-acetylneuraminic acid with perfluorinated anhydrides in acetonitrile at 135 degrees C, is reported, together with a rationalitazion of the reaction that allows the alternative formation of N-perfluoroacylated 1,7-lactones to be previewed under the same reaction conditions.
Expression of prostate glycoconjugates in the stallion and castrated horse.
Parillo, F; Mancuso, R; Vullo, C; Catone, G
2010-10-01
This work was undertaken to determine the glycoconjugates secreted by the epithelium of the prostate in the intact stallion and castrated horse using lectin histochemical procedures in conjunction with enzymatic digestion and deglycosylation treatments. Additionally, anti-5 and 13-16-cytokeratin antibodies were used to localize epithelial basal cells. In the stallion, lectin histochemistry showed the following sugar residues in the Golgi zone of the glandular cells: α-Glu/Man, α-Fuc and β-Gal included in both O- and N-linked oligosaccharides as well as β-GalNAc, GlcNAc and α-Gal, which belonged to O-glycoproteins. β-Gal and β-GalNAc moieties were also noted subterminal to sialyl residues. Sialic acid specific lectins identified Neu-5Ac(α2,3-6)-β-Gal or Neu5Ac(α2,6)-β-GalNAc sequences in both N- and O-bound glycoproteins. The prostatic glandular cells of the castrated horse expressed some of the same sugar moieties found in the stallions, such as α-Glu/Man, α-Gal and GlcNAc, but significant differences were also noted. In particular, β-D-GalNAc was only detected subterminal to sialic acid, β-D-Gal-(1-3)-D-GalNAc was found in N-linked glycans, whereas β-D-Gal-(1-4)-D-GlcNAc and Neu5Acα2,6Gal/GalNAc were noted only in O-glycoproteins. These results indicate that the lectin binding patterns in glandular cells may be modified by sex hormones. No specific lectin labelling of basal cells was found in either the stallion or the castrated horse even though they were immunostained with specific anti-cytokeratin antibodies. These cells stained more strongly in the castrated horse than in the intact stallion suggesting that they are androgen responsive. The glycomolecules detected in the equine prostate secretions may contribute to the remodelling of the sperm surface, which occurs during sperm transit through the male genital tract and also after ejaculation in the seminal plasma. These changes may be important in the understanding of the stallion fertility. © 2009 Blackwell Verlag GmbH.
N-glycolyl groups of nonhuman chondroitin sulfates survive in ancient fossils.
Bergfeld, Anne K; Lawrence, Roger; Diaz, Sandra L; Pearce, Oliver M T; Ghaderi, Darius; Gagneux, Pascal; Leakey, Meave G; Varki, Ajit
2017-09-26
Biosynthesis of the common mammalian sialic acid N -glycolylneuraminic acid (Neu5Gc) was lost during human evolution due to inactivation of the CMAH gene, possibly expediting divergence of the Homo lineage, due to a partial fertility barrier. Neu5Gc catabolism generates N -glycolylhexosamines, which are potential precursors for glycoconjugate biosynthesis. We carried out metabolic labeling experiments and studies of mice with human-like Neu5Gc deficiency to show that Neu5Gc degradation is the metabolic source of UDP-GlcNGc and UDP-GalNGc and the latter allows an unexpectedly selective incorporation of N -glycolyl groups into chondroitin sulfate (CS) over other potential glycoconjugate products. Partially N -glycolylated-CS was chemically synthesized as a standard for mass spectrometry to confirm its natural occurrence. Much lower amounts of GalNGc in human CS can apparently be derived from Neu5Gc-containing foods, a finding confirmed by feeding Neu5Gc-rich chow to human-like Neu5Gc-deficient mice. Unlike the case with Neu5Gc, N -glycolyl-CS was also stable enough to be detectable in animal fossils as old as 4 My. This work opens the door for investigating the biological and immunological significance of this glycosaminoglycan modification and for an "ancient glycans" approach to dating of Neu5Gc loss during the evolution of Homo .
Ueda, H; Saitoh, T; Kojima, K; Ogawa, H
1999-09-01
An N-acetylglucosamine (GlcNAc)/N-acetylneuraminic acid-specific lectin from the fruiting body of Psathyrella velutina (PVL) is a useful probe for the detection and fractionation of specific carbohydrates. In this study, PVL was found to exhibit multispecificity to acidic polysaccharides and sulfatides. Purified PVL and a counterpart lectin to PVL in the mycelium interact with heparin neoproteoglycans, as detected by both membrane analysis and solid phase assay. The pH-dependencies of the binding to heparin and GlcNAc5-6 differ. The heparin binding of PVL is inhibited best by pectin, polygalacturonic acid, and highly sulfated polysaccharides, but not by GlcNAc, colominic acid, or other glycosaminoglycans. Sandwich affinity chromatography indicated that PVL can simultaneously interact with heparin- and GlcNAc-containing macromolecules. Extensive biotinylation was found to suppress the binding activity to heparin while the GlcNAc binding activity is retained. On the other hand, biotinyl PVL binds to sulfatide and the binding is not inhibited by GlcNAc, N-acetylneuraminic acid, or heparin. These results indicate that PVL is a multi-ligand adhesive lectin that can interact with various glycoconjugates. This multispecificity needs to be recognized when using PVL as a sugar-specific probe to avoid misleading information about the nature of glycoforms.
Birikaki, Lémonia; Pradeau, Stéphanie; Armand, Sylvie; Priem, Bernard; Márquez-Domínguez, Luis; Reyes-Leyva, Julio; Santos-López, Gerardo; Samain, Eric; Driguez, Hugues; Fort, Sébastien
2015-07-20
A fast chemoenzymatic synthesis of sialylated oligosaccharides containing C5-modified neuraminic acids is reported. Analogues of GM3 and GM2 ganglioside saccharidic portions where the acetyl group of NeuNAc has been replaced by a phenylacetyl (PhAc) or a propanoyl (Prop) moiety have been efficiently prepared with metabolically engineered E. coli bacteria. GM3 analogues were either obtained by chemoselective modification of biosynthetic N-acetyl-sialyllactoside (GM3 NAc) or by direct bacterial synthesis using C5-modified neuraminic acid precursors. The latter strategy proved to be very versatile as it led to an efficient synthesis of GM2 analogues. These glycomimetics were assessed against hemagglutinins and sialidases. In particular, the GM3 NPhAc displayed a binding affinity for Maackia amurensis agglutinin (MAA) similar to that of GM3 NAc, while being resistant to hydrolysis by Vibrio cholerae (VC) neuraminidase. A preliminary study with influenza viruses also confirmed a selective inhibition of N1 neuraminidase by GM3 NPhAc, suggesting potential developments for the detection of flu viruses and for fighting them. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetic Variation in Sialidase and Linkage to N-acetylneuraminate Catabolism in Mycoplasma synoviae
May, Meghan; Brown, Daniel R.
2008-01-01
We explored the genetic basis for intraspecific variation in mycoplasmal sialidase activity that correlates with virulence, and its potentially advantageous linkage to nutrient catabolism. Polymorphism in N-acetylneuraminate scavenging and degradation genes (sialidase, N-acetylneuraminate lyase, N-acetylmannosamine kinase, N-acetylmannosamine-6-phosphate epimerase, N-acetylglucosamine-6-phosphate deacetylase, and glucosamine-6-phosphate deaminase) was evident among eight strains of the avian pathogen Mycoplasma synoviae. Most differences were single nucleotide polymorphisms, ranging from 0.34 ± 0.04 substitutions per 100 bp for N-acetylmannosamine kinase to 0.65 ± 0.03 for the single-copy sialidase gene nanI. Missense mutations were twice as common as silent mutations in nanI; 26% resulted in amino acids dissimilar to consensus; and there was a 12-base deletion near the nanI promoter in strain WVU1853T, supporting a complex genetic basis for differences in sialidase activity. Two strains had identical frameshifts in the N-acetylneuraminate lyase gene nanA, resulting in nonsense mutations, and both had downstream deletions in nanA. Such genetic lesions uncouple extracellular liberation of sialic acid from generation of fructose-6-phosphate and pyruvate via intracellular N-acetylneuraminate degradation. Retention of nanI by such strains, but not others in the M. synoviae phylogenetic cluster, is evidence that sialidase has an important non-nutritional role in the ecology of M. synoviae and certain other mycoplasmas. PMID:18490131
Chan, Renee W Y; Chan, Louisa L Y; Mok, Chris K P; Lai, Jimmy; Tao, Kin P; Obadan, Adebimpe; Chan, Michael C W; Perez, Daniel R; Peiris, J S Malik; Nicholls, John M
2017-07-24
H9N2 viruses are the most widespread influenza viruses in poultry in Asia. We evaluated the infection and tropism of human and avian H9 influenza virus in the human respiratory tract using ex vivo respiratory organ culture. H9 viruses infected the upper and lower respiratory tract and the majority of H9 viruses had a decreased ability to release virus from the bronchus rather than the lung. This may be attributed to a weak neuraminidase (NA) cleavage of carbon-6-linked sialic acid (Sia) rather than carbon-3-linked Sia. The modified cleavage of N-acetlylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) by NA in H9 virus replication was observed by reverse genetics, and recombinant H9N2 viruses with amino acids (38KQ) deleted in the NA stalk, and changing the amino acid at position 431 from Proline-to-Lysine. Using recombinant H9 viruses previously evaluated in the ferret, we found that viruses which replicated well in the ferret did not replicate to the same extent in the human ex vivo cultures. The existing risk assessment models for H9N2 viruses in ferrets may not always have a strong correlation with the replication in the human upper respiratory tract. The inclusion of the human ex vivo cultures would further strengthen the future risk-assessment strategies.
Rodrigues, M L; Rozental, S; Couceiro, J N; Angluster, J; Alviano, C S; Travassos, L R
1997-01-01
Sialic acids from sialoglycoconjugates present at the cell surface of Cryptococcus neoformans yeast forms were analyzed by high-performance thin-layer chromatography, binding of influenza A and C virus strains, enzymatic treatment, and flow cytofluorimetry with fluorescein isothiocyanate-labeled lectins. C. neoformans yeast forms grown in a chemically defined medium contain N-acetylneuraminic acid and its 9-O-acetylated derivative. A density of 3 x 10(6) residues of sialic acid per cell was found in C. neoformans. Sialic acids in cryptococcal cells are glycosidically linked to galactopyranosyl units as inferred from the increased reactivity of neuraminidase-treated yeasts with peanut agglutinin. N-Acetylneuraminic acids are alpha-2,6 and alpha-2,3 linked, as indicated by using virus strains M1/5 and M1/5 HS8, respectively, as agglutination probes. The alpha-2,6 linkage markedly predominated. These findings were essentially confirmed by the interaction of cryptococcal cells with the lectins Sambucus nigra agglutinin and Maackia amurensis agglutinin. We also investigated whether the sialyl residues present in C. neoformans are involved in the fungal interaction with a cationic solid-phase substrate and with mouse resident macrophages. Adhesion of yeast cells to poly-L-lysine was mediated, in part, by sialic acid residues, since the number of adherent cells was markedly reduced after treatment with bacterial neuraminidase. The enzymatic removal of sialic acids also made C. neoformans yeast cells more susceptible to endocytosis by macrophages. The results show that sialic acids are components of the cryptococcal cell surface that contribute to its negative charge and protect yeast forms against phagocytosis. PMID:9393779
Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species
Gambaryan, Alexandra S.; Matrosovich, Tatyana Y.; Philipp, Jennifer; Munster, Vincent J.; Fouchier, Ron A. M.; Cattoli, Giovanni; Capua, Ilaria; Krauss, Scott L.; Webster, Robert G.; Banks, Jill; Bovin, Nicolai V.; Klenk, Hans-Dieter
2012-01-01
Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO3)GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO3)GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry. PMID:22345462
Three mutations switch H7N9 influenza to human-type receptor specificity.
de Vries, Robert P; Peng, Wenjie; Grant, Oliver C; Thompson, Andrew J; Zhu, Xueyong; Bouwman, Kim M; de la Pena, Alba T Torrents; van Breemen, Marielle J; Ambepitiya Wickramasinghe, Iresha N; de Haan, Cornelis A M; Yu, Wenli; McBride, Ryan; Sanders, Rogier W; Woods, Robert J; Verheije, Monique H; Wilson, Ian A; Paulson, James C
2017-06-01
The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.
Xiao, Shuo; Li, Rong; Diao, Honglu; Zhao, Fei; Ye, Xiaoqin
2013-01-01
N-acetylneuraminate pyruvate lyase (NPL) catalyzes N-acetylneuraminic acid, the predominant sialic acid. Microarray analysis of the periimplantation mouse uterine luminal epithelium (LE) revealed Npl being the most downregulated (35×) gene in the LE upon embryo implantation. In natural pregnant mouse uterus, Npl expression increased 56× from gestation day 0.5 (D0.5) to D2.5. In ovariectomized mouse uterus, Npl was significantly upregulated by progesterone (P4) but downregulated by 17β-estradiol (E2). Progesterone receptor (PR) antagonist RU486 blocked the upregulation of Npl in both preimplantation uterus and P4-treated ovariectomized uterus. Npl was specifically localized in the preimplantation D2.5 and D3.5 uterine LE. Since LE is essential for establishing uterine receptivity, it was hypothesized that NPL might play a critical role in uterine function, especially during embryo implantation. This hypothesis was tested in the Npl (−/−) mice. No significant differences were observed in the numbers of implantation sites on D4.5, gestation periods, litter sizes, and postnatal offspring growth between wild type (WT) and Npl (−/−) females from mating with WT males. Npl (−/−)xNpl (−/−) crosses produced comparable little sizes as that from WTxWT crosses. Comparable mRNA expression levels of several genes involved in sialic acid metabolism were observed in D3.5 uterus and uterine LE between WT and Npl (−/−), indicating no compensatory upregulation in the D3.5 Npl (−/−) uterus and LE. This study demonstrates PR-mediated dynamic expression of Npl in the periimplantation uterus and dispensable role of Npl in uterine function and embryo development. PMID:23741500
Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.
Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori
2016-10-11
The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an S N 1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.
Unexpected Diversity of Escherichia coli Sialate O-Acetyl Esterase NanS
Rangel, Ariel; Steenbergen, Susan M.
2016-01-01
ABSTRACT The sialic acids (N-acylneuraminates) are a group of nine-carbon keto-sugars existing mainly as terminal residues on animal glycoprotein and glycolipid carbohydrate chains. Bacterial commensals and pathogens exploit host sialic acids for nutrition, adhesion, or antirecognition, where N-acetyl- or N-glycolylneuraminic acids are the two predominant chemical forms of sialic acids. Each form may be modified by acetyl esters at carbon position 4, 7, 8, or 9 and by a variety of less-common modifications. Modified sialic acids produce challenges for colonizing bacteria, because the chemical alterations to N-acetylneuraminic acid (Neu5Ac) confer increased resistance to sialidase and aldolase activities essential for the catabolism of host sialic acids. Bacteria with O-acetyl sialate esterase(s) utilize acetylated sialic acids for growth, thereby gaining a presumed metabolic advantage over competitors lacking this activity. Here, we demonstrate the esterase activity of Escherichia coli NanS after purifying it as a C-terminal HaloTag fusion. Using a similar approach, we show that E. coli strain O157:H7 Stx prophage or prophage remnants invariably include paralogs of nanS often located downstream of the Shiga-like toxin genes. These paralogs may include sequences encoding N- or C-terminal domains of unknown function where the NanS domains can act as sialate O-acetyl esterases, as shown by complementation of an E. coli strain K-12 nanS mutant and the unimpaired growth of an E. coli O157 nanS mutant on O-acetylated sialic acid. We further demonstrate that nanS homologs in Streptococcus spp. also encode active esterase, demonstrating an unexpected diversity of bacterial sialate O-acetyl esterase. IMPORTANCE The sialic acids are a family of over 40 naturally occurring 9-carbon keto-sugars that function in a variety of host-bacterium interactions. These sugars occur primarily as terminal carbohydrate residues on host glycoproteins and glycolipids. Available evidence indicates that diverse bacterial species use host sialic acids for adhesion or as sources of carbon and nitrogen. Our results show that the catabolism of the diacetylated form of host sialic acid requires a specialized esterase, NanS. Our results further show that nanS homologs exist in bacteria other than Escherichia coli, as well as part of toxigenic E. coli prophage. The unexpected diversity of these enzymes suggests new avenues for investigating host-bacterium interactions. Therefore, these original results extend our previous studies of nanS to include mucosal pathogens, prophage, and prophage remnants. This expansion of the nanS superfamily suggests important, although as-yet-unknown, functions in host-microbe interactions. PMID:27481927
Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Arrighi, Silvana
2013-09-01
The glycoprotein pattern was investigated by lectin histochemistry in the urothelium lining the urinary bladder of the donkey Equus asinus. Tissue sections were stained with a panel of twelve lectins, in combination with saponification and sialidase digestion (K-s). The urinary bladder urothelium has three distinct layers from the basal zone to the lumen consisting of basal, intermediate and superficial cells (umbrella cells). Cytoplasm of basal cells reacted with SNA, PNA, K-s-PNA, GSA I-B4 and Con A showing glycans ending with Neu5Acα2,6Gal/GalNAc, Neu5AcGalβ1,3GalNAc, αGal and with terminal/internal αMan. The cytoplasm of umbrella cells displayed an increase of Neu5AcGalβ1,3GalNAc and the appearance of Neu5AcGalβ1,3GalNAc, Neu5acα2,3Galβ1,4GlcNAc and Neu5AcGalNAc residues (MAL II, K-s-SBA and K-s-HPA staining). Scattered umbrella cells were characterized by glycans terminating with GalNAc binding DBA, SBA and HPA. The mucosa forms folds with a crypt-like appearance where the urothelium shows a different pattern of glycans. The bladder luminal surface stained with K-s-PNA, K-s-DBA, KOH-s-SBA, and K-s-HPA displaying a coating of sialoglycoproteins belonging to O-linked glycans (typical secretory moieties). These findings show that different glycosylation patterns exist along the donkey bladder urothelium, and different sub-populations of umbrella cells are present secreting the sialoglycans which constitute the protective gel layer lining the bladder. Copyright © 2013 Elsevier GmbH. All rights reserved.
Three mutations switch H7N9 influenza to human-type receptor specificity
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Vries, Robert P.; Peng, Wenjie; Grant, Oliver C.
The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. Tomore » determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.« less
Metabolic glycoengineering: Sialic acid and beyond
Du, Jian; Meledeo, M Adam; Wang, Zhiyun; Khanna, Hargun S; Paruchuri, Venkata D P; Yarema, Kevin J
2009-01-01
This report provides a perspective on metabolic glycoengineering methodology developed over the past two decades that allows natural sialic acids to be replaced with chemical variants in living cells and animals. Examples are given demonstrating how this technology provides the glycoscientist with chemical tools that are beginning to reproduce Mother Nature's control over complex biological systems – such as the human brain – through subtle modifications in sialic acid chemistry. Several metabolic substrates (e.g., ManNAc, Neu5Ac, and CMP-Neu5Ac analogs) can be used to feed flux into the sialic acid biosynthetic pathway resulting in numerous – and sometime quite unexpected – biological repercussions upon nonnatural sialoside display in cellular glycans. Once on the cell surface, ketone-, azide-, thiol-, or alkyne-modified glycans can be transformed with numerous ligands via bioorthogonal chemoselective ligation reactions, greatly increasing the versatility and potential application of this technology. Recently, sialic acid glycoengineering methodology has been extended to other pathways with analog incorporation now possible in surface-displayed GalNAc and fucose residues as well as nucleocytoplasmic O-GlcNAc-modified proteins. Finally, recent efforts to increase the “druggability” of sugar analogs used in metabolic glycoengineering, which have resulted in unanticipated “scaffold-dependent” activities, are summarized. PMID:19675091
Chiodelli, P; Rezzola, S; Urbinati, C; Federici Signori, F; Monti, E; Ronca, R; Presta, M; Rusnati, M
2017-11-23
Vascular endothelial growth factor receptor-2 (VEGFR2) is the main pro-angiogenic receptor expressed by endothelial cells (ECs). Using surface plasmon resonance, immunoprecipitation, enzymatic digestion, immunofluorescence and cross-linking experiments with specific sugar-binding lectins, we demonstrated that VEGFR2 bears both α,1-fucose and α(2,6)-linked sialic acid (NeuAc). However, only the latter is required for VEGF binding to VEGFR2 and consequent VEGF-dependent VEGFR2 activation and motogenic response in ECs. Notably, downregulation of β-galactoside α(2,6)-sialyltransferase expression by short hairpin RNA transduction inhibits VEGFR2 α(2,6) sialylation that is paralleled by an increase of β-galactoside α(2,3)-sialyltransferase expression. This results in an ex-novo α(2,3)-NeuAc sialylation of the receptor that functionally replaces the lacking α(2,6)-NeuAc, thus allowing VEGF/VEGFR2 interaction. In keeping with the role of VEGFR2 sialylation in angiogenesis, the α(2,6)-NeuAc-binding lectin Sambucus nigra (SNA) prevents VEGF-dependent VEGFR2 autophosphorylation and EC motility, proliferation and motogenesis. In addition, SNA exerts a VEGF-antagonist activity in tridimensional angiogenesis models in vitro and in the chick-embryo chorioallantoic membrane neovascularization assay and mouse matrigel plug assay in vivo. In conclusion, VEGFR2-associated NeuAc plays an important role in modulating VEGF/VEGFR2 interaction, EC pro-angiogenic activation and neovessel formation. VEGFR2 sialylation may represent a target for the treatment of angiogenesis-dependent diseases.
Uemura, Yusuke; Asakuma, Sadaki; Nakamura, Tadashi; Arai, Ikichi; Taki, Michihiro; Urashima, Tadasu
2005-10-10
Crude oligosaccharides were recovered from bottlenose dolphin (Tursiops truncatus) colostrum after chloroform/methanol extraction of lipids and protein precipitation, and purified using gel filtration, anion exchange chromatography and high performance liquid chromatography (HPLC). Their chemical structures characterized by NMR spectroscopy were as follows: GalNAc(beta1-4)[Neu5Ac(alpha2-3)]Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc and Gal(alpha1-4)Gal(beta1-4)Glc. The monosialyltetrasaccharide and neutral trisaccharide have not previously been found as free forms in any natural sources including milk or colostrum, although these structures have been found in the carbohydrate units of glycosphingolipids GM2 and Gb3.
Gambaryan, A S; Tuzikov, A B; Bovin, N V; Yamnikova, S S; Lvov, D K; Webster, R G; Matrosovich, M N
2003-01-01
To study whether influenza virus receptors in chickens differ from those in other species, we compared the binding of lectins and influenza viruses with known receptor specificity to cell membranes and gangliosides from epithelial tissues of ducks, chickens, and African green monkeys. We found that chicken cells contained Neu5Ac alpha(2-6)Gal-terminated receptors recognized by Sambucus nigra lectin and by human viruses. This finding explains how some recent H9N2 viruses replicate in chickens despite their human virus-like receptor specificity. Duck virus bound to gangliosides with short sugar chains that were abundant in duck intestine. Human and chicken viruses did not bind to these gangliosides and bound more strongly than duck virus to gangliosides with long sugar chains that were found in chicken intestinal and monkey lung tissues. Chicken and duck viruses also differed by their ability to recognize the structure of the third sugar moiety in Sia2-3Gal-terminated receptors. Chicken viruses preferentially bound to Neu5Ac alpha(2-3)Gal beta(1-4)GlcNAc-containing synthetic sialylglycopolymer, whereas duck viruses displayed a higher affinity for Neu5Ac alpha(2-3)Gal beta(1-3)GalNAc-containing polymer. Our data indicate that sialyloligosaccharide receptors in different avian species are not identical and provide a potential explanation for the differences between the hemagglutinin and neuraminidase proteins of duck and chicken viruses.
Li, Yu-Teh; Li, Su-Chen; Kiso, Makoto; Ishida, Hideharu; Mauri, Laura; Raimondi, Laura; Bernardi, Anna; Sonnino, Sandro
2008-01-01
Summary The effect of inter-molecular carbohydrate-to-carbohydrate interaction on basic cell biological processes has been well documented and appreciated. In contrast, very little is known about the intra-molecular carbohydrate-to-carbohydrate interaction. The presence of an interaction between the GalNAc and the Neu5Ac in GM2 detected by NMR spectroscopy represents a well-defined intra-molecular carbohydrate-to-carbohydrate interaction. This intriguing interaction is responsible for the GM2-epitope, GalNAcβ1Π4(Neu5Acα2Π3)Gal-, to exhibit a rigid and compact conformation. We hypothesized that this compact conformation may be the cause for both the GalNAc and the Neu5Ac in GM2 to be refractory to enzymatic hydrolysis and the GM2 activator protein is able to interact with the compact trisaccharide GM2-epitope, rendering the GalNAc and the Neu5Ac accessible to β-hexosaminidase A and sialidase. We have used a series of structurally modified GM2 to study the effect of modifications of sugar chains on the conformation and enzymatic susceptibility of this ganglioside. Our hypothesis was borne out by the fact that when the GalNAcβ1Π4Gal linkage in GM2 was converted to the GalNAcβ1Π6Gal, both the GalNAc and the Neu5Ac became susceptible to β-hexosaminidase A and sialidase, respectively, without GM2 activator protein. We hope our work will engender interest in identifying other intra-molecular carbohydrate-to-carbohydrate interactions in glycoconjugates. PMID:17967427
Weïwer, Michel; Chen, Chi-Chang; Kemp, Melissa M.; Linhardt, Robert J.
2013-01-01
α-Sialic acid azide 1 has been used as a substrate for the efficient preparation of 1,2,3-triazole derivatives of sialic acid using the copper-catalyzed azide-alkyne Huisgen cycloaddition (“click chemistry”). Our approach is to generate non-natural N-glycosides of sialic acid that are resistant to neuraminidase catalyzed hydrolysis as opposed to the natural O-glycosides. These N-glycosides would act as neuraminidase inhibitors to prevent the release of new virions. As a preliminary study, a small library of 1,2,3-triazole-linked sialic acid derivatives has been synthesized in 71-89% yield. A disaccharide mimic of sialic acid has also been prepared using the α-sialic acid azide 1 and a C-8 propargyl sialic acid acceptor in 68% yield. A model sialic acid coated dendrimer was also synthesized from a per-propargylated pentaerythritol acceptor. These novel sialic acid derivatives were then evaluated as potential neuraminidase inhibitors using a 96-well plate fluorescence assay; micromolar IC50 values were observed, comparable to the known sialidase inhibitor Neu5Ac2en. PMID:24223493
Ueda, Haruko; Matsumoto, Hanako; Takahashi, Noriko; Ogawa, Haruko
2002-07-12
A lectin from the fruiting body of the Psathyrella velutina mushroom (PVL) was found to bind specifically to N-acetylneuraminic acid, as well as to GlcNAc (Ueda, H., Kojima, K., Saitoh, T., and Ogawa, H. (1999) FEBS Lett. 448, 75-80). In this study, the glycan sequences that PVL recognizes with high affinity on sialoglycoproteins were revealed. Among sialic acid-specific lectins only PVL could reveal the sialylated N-acetyllactosamine structure of glycoproteins in blotting studies, based on the dual specificity. The affinity of PVL to fetuin was measured by surface plasmon resonance to be 10(7) m(-1), which is an order of magnitude higher than those of Sambucus nigra agglutinin and Maackia amurensis mitogen, whereas affinity to asialofetuin was approximately 0 and to asialo-agalactofetuin was 10(8) m(-1), suggesting that PVL exhibits remarkably high affinities toward glycoproteins possessing trisialo- or GlcNAc-exposed glycans. Transferrin was separated into fractions that correspond to the sialylation states on an immobilized PVL column. Transferrin-possessing trisialoglycans containing alpha2,3-linked N-acetylneuraminic acid on the beta1,4-linked GlcNAc branch bound to the PVL column and eluted with GlcNAc; those containing only alpha2,6-linked sialic acids were retarded, whereas other transferrin fractions passed through the column. These results indicate that PVL is a lectin with potential for separation and detection of sialoglycoproteins because of its dual specificity toward sialoglycans and GlcNAc exposed glycans.
Li, Yu-Teh; Li, Su-Chen; Kiso, Makoto; Ishida, Hideharu; Mauri, Laura; Raimondi, Laura; Bernardi, Anna; Sonnino, Sandro
2008-03-01
The effect of inter-molecular carbohydrate-to-carbohydrate interaction on basic cell biological processes has been well documented and appreciated. In contrast, very little is known about the intra-molecular carbohydrate-to-carbohydrate interaction. The presence of an interaction between the GalNAc and the Neu5Ac in GM2 detected by NMR spectroscopy represents a well-defined intra-molecular carbohydrate-to-carbohydrate interaction. This intriguing interaction is responsible for the GM2-epitope, GalNAcbeta1-->4(Neu5Acalpha2-->3)Gal-, to exhibit a rigid and compact conformation. We hypothesized that this compact conformation may be the cause for both the GalNAc and the Neu5Ac in GM2 to be refractory to enzymatic hydrolysis and the GM2 activator protein is able to interact with the compact trisaccharide GM2-epitope, rendering the GalNAc and the Neu5Ac accessible to beta-hexosaminidase A and sialidase. We have used a series of structurally modified GM2 to study the effect of modifications of sugar chains on the conformation and enzymatic susceptibility of this ganglioside. Our hypothesis was borne out by the fact that when the GalNAcbeta1-->4Gal linkage in GM2 was converted to the GalNAcbeta1-->6Gal, both the GalNAc and the Neu5Ac became susceptible to beta-hexosaminidase A and sialidase, respectively, without GM2 activator protein. We hope our work will engender interest in identifying other intra-molecular carbohydrate-to-carbohydrate interactions in glycoconjugates.
Isotopic labeling of milk disialogangliosides (GD3).
Reis, Mariza Gomes; Bibiloni, Rodrigo; McJarrow, Paul; MacGibbon, Alastair; Fong, Bertram; Bassett, Shalome; Roy, Nicole; Dos Reis, Marlon Martins
2016-10-01
The most abundant ganglioside group in both human milk and bovine milk during the first postnatal week is ganglioside GD3. This group of disialogangliosides forms up to 80% of the total ganglioside content of colostrum. Although dietary gangliosides have shown biological activity such as improvement of cognitive development, gastrointestinal health, and immune function, there is still a gap in our understanding of the molecular mechanisms governing its uptake and the metabolic processes affecting its bioavailability. The use of isotopically labeled ganglioside to track the bioavailability, absorption, distribution, and metabolism of gangliosides may provide key information to bridge this gap. However, isotope labeled GD3 is not commercially available and its preparation has not been described. We report for the first time the preparation of labeled GD3 with stable isotopes. Using alkaline hydrolysis, we were able to selectively remove both acetyl groups from the tetrasaccharide portion of GD3 without promoting significant hydrolysis of the ceramide portion of the molecule to generate N-deacetyl-GD3 (Neu5α2-8Neu5-GD3). The N-deacetyl-GD3 was then chemoselectively re-acetylated in aqueous medium using deuterated acetic anhydride in the presence of Triton X 100 to produce 2 H 6 -GD3 {GD3[(Neu5Ac-11- 2 H 3 )-(Neu5Ac-11- 2 H 3 )]}. This method provided 2 H 6 -GD3 with approximately 60% yield. This compound was characterized by proton nuclear magnetic resonance ( 1 H NMR) and liquid chromatography mass spectrometry (LC-MS). The oral absorption of the 2 H 6 -GD3 was demonstrated using a Sprague-Dawley weaning rats. Our results indicate that some ingested labeled milk gangliosides are absorbed and transported into the bloodstream without modification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Otsubo, N; Ishida, H; Kiso, M
2001-01-15
Novel ganglioside GM4 analogues, which contain N-deacetylated or lactamized sialic acid instead of usual N-acetylneuraminic acid, were synthesized in a highly efficient manner. (Methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-trifluoroacetamido-D-glycero-alpha-D-galacto-2-nonulopyranosylonate)-(2-->3)-4,6-di-O-acetyl-2-O-benzoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(tetradecyl)hexadecanol to give the desired beta-glycoside in high yield. Successive O- and N-deacylation, and saponification of the methyl ester group afforded the N-deacetylated sialyl derivative that was converted by treatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in Me2SO into the lactamized sialic acid-containing ganglioside GM4 analogue.
Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin
Byres, Emma; Paton, Adrienne W.; Paton, James C.; Löfling, Jonas C.; Smith, David F.; Wilce, Matthew C.J.; Talbot, Ursula M.; Chong, Damien C.; Yu, Hai; Huang, Shengshu; Chen, Xi; Varki, Nissi M.; Varki, Ajit; Rossjohn, Jamie; Beddoe, Travis
2009-01-01
AB5 toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB5 toxin secreted by Shiga toxigenic Escherichia coli (STEC)1, which causes serious gastrointestinal disease in humans2. SubAB causes haemolytic uraemic syndrome-like pathology in mice3 via SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone4. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesised in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite human lack of Neu5Gc biosynthesis, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, together with the human lack of Neu5Gc-containing body fluid competitors, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin’s receptor is generated by metabolic incorporation of an exogenous factor derived from food. PMID:18971931
Badr, Haitham A; AlSadek, Dina M M; Mathew, Mohit P; Li, Chen-Zhong; Djansugurova, Leyla B; Yarema, Kevin J; Ahmed, Hafiz
2015-11-01
Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nakajima, Kazuki; Ito, Emi; Ohtsubo, Kazuaki; Shirato, Ken; Takamiya, Rina; Kitazume, Shinobu; Angata, Takashi; Taniguchi, Naoyuki
2013-01-01
Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS. Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells. Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism. PMID:23720760
Vasile, Francesca; Panigada, Maddalena; Siccardi, Antonio; Potenza, Donatella; Tiana, Guido
2018-04-24
The development of small-molecule inhibitors of influenza virus Hemagglutinin could be relevant to the opposition of the diffusion of new pandemic viruses. In this work, we made use of Nuclear Magnetic Resonance (NMR) spectroscopy to study the interaction between two derivatives of sialic acid, Neu5Ac-α-(2,6)-Gal-β-(1⁻4)-GlcNAc and Neu5Ac-α-(2,3)-Gal-β-(1⁻4)-GlcNAc, and hemagglutinin directly expressed on the surface of recombinant human cells. We analyzed the interaction of these trisaccharides with 293T cells transfected with the H5 and H1 variants of hemagglutinin, which thus retain their native trimeric conformation in such a realistic environment. By exploiting the magnetization transfer between the protein and the ligand, we obtained evidence of the binding event, and identified the epitope. We analyzed the conformational features of the glycans with an approach combining NMR spectroscopy and data-driven molecular dynamics simulations, thus obtaining useful information for an efficient drug design.
Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin.
Nakamura, Toshio; Tonozuka, Takashi; Ide, Azusa; Yuzawa, Takayuki; Oguma, Keiji; Nishikawa, Atsushi
2008-02-22
Clostridium botulinum type C 16S progenitor toxin contains a hemagglutinin (HA) subcomponent, designated HA1, which appears to play an important role in the effective internalization of the toxin in gastrointestinal epithelial cells and in creating a broad specificity for the oligosaccharide structure that corresponds to various targets. In this study, using the recombinant protein fused to glutathione S-transferase, we investigated the binding specificity of the HA1 subcomponent to sugars and estimated the binding sites of HA1 based on X-ray crystallography and soaking experiments using various sugars. N-Acetylneuraminic acid, N-acetylgalactosamine, and galactose effectively inhibited the binding that occurs between glutathione S-transferase-HA1 and mucins, whereas N-acetylglucosamine and glucose did not inhibit it. The crystal structures of HA1 complex with N-acetylneuraminic acid, N-acetylgalactosamine, and galactose were also determined. There are two sugar-binding sites, sites I and II. Site I corresponds to the electron densities noted for all sugars and is located at the C-terminal beta-trefoil domain, while site II corresponds to the electron densities noted only for galactose. An aromatic amino acid residue, Trp176, at site I has a stacking interaction with the hexose ring of the sugars. On the other hand, there is no aromatic residue at site II; thus, the interaction with galactose seems to be poor. The double mutant W176A at site I and D271F at site II has no avidity for N-acetylneuraminic acid but has avidity for galactose. In this report, the binding specificity of botulinum C16S toxin HA1 to various sugars is demonstrated based on its structural features.
Salton, S R; Margolis, R U; Margolis, R K
1983-10-01
Cultured PC12 pheochromocytoma cells were labeled with [3H]glucosamine, and the glycoproteins and proteoglycans released following potassium-induced depolarization were fractionated and characterized. Exposure of PC12 cells for 20 min to a high concentration of potassium (51.5 mM in Krebs-Ringers-HEPES buffer) results in an approximately sixfold increase in the release of labeled glycoproteins and proteoglycans, compared to incubation in physiological levels of potassium (6 mM). The released complex carbohydrates include chromogranins, dopamine beta-hydroxylase, and two chondroitin sulfate/heparan sulfate proteoglycan fractions, which together account for 7.4% of the soluble cell radioactivity. The chromogranins contained galactosyl(beta 1 leads to 3)N-acetylgalactosamine, as well as several mono- and disialyl O-glycosidically-linked oligosaccharides, and the tetrasaccharide AcNeu(alpha 2 leads to 3)Gal(beta 1 leads to 3)[AcNeu(alpha 2 leads to 6)] GalNAcol, obtained by alkaline borohydride treatment of the chromogranin glycopeptides, accounted for almost half of the total chromogranin labeling. The proteoglycan fractions varied in their relative proportions of chondroitin sulfate (23-68%), heparan sulfate (16-23%), and glycoprotein oligosaccharides (16-54%), which are of the tri- and tetraantennary and O-glycosidic types. As previously found in the case of proteoglycans from bovine chromaffin granules, the more acidic species has a considerably higher proportion of carbohydrate in the form of sulfated glycosaminoglycans.
[Reptile-associated salmonellosis as an important epidemiological problem].
Pawlak, Aleksandra
2014-11-17
of food poisoning. One of the reservoirs of Salmonella are reptiles, which are increasingly kept as pets. Most reptiles are asymptomatic carriers of Salmonella. These strains, isolated from reptiles, can cause serious infections, especially in infants, young children and people with immunodeficiencies. The disease called reptile-associated salmonellosis (RAS) may manifest with bloody diarrhea, meningitis, and arthritis, and consequently can cause bacteremia and sepsis. Among the strains described in the literature, Salmonella strains possessing the O48 antigen are an important group. Lipopolysaccharide (LPS) of Salmonella O48 contains sialic acid (NeuAc) in an O-specific-chain. LPS containing NeuAc exhibits antigenic similarity to antigens found in the human body, including blood serum, and therefore is correlated with the occurrence of the dangerous phenomenon of molecular mimicry. Bacteria containing NeuAc in their outer structures can evade the immunological response of the host, which significantly increases their virulence. Most data about RAS come from the USA, but in recent years cases from European countries are more frequent in the literature. Unfortunately, the occurrence of RAS in Poland has not been monitored so far. There is also no campaign to inform the public about the health risks connected with contact of people with reptiles.
Okerblom, Jonathan; Varki, Ajit
2017-07-04
About 2-3 million years ago, Alu-mediated deletion of a critical exon in the CMAH gene became fixed in the hominin lineage ancestral to humans, possibly through a stepwise process of selection by pathogen targeting of the CMAH product (the sialic acid Neu5Gc), followed by reproductive isolation through female anti-Neu5Gc antibodies. Loss of CMAH has occurred independently in some other lineages, but is functionally intact in Old World primates, including our closest relatives, the chimpanzee. Although the biophysical and biochemical ramifications of losing tens of millions of Neu5Gc hydroxy groups at most cell surfaces remains poorly understood, we do know that there are multiscale effects functionally relevant to both sides of the host-pathogen interface. Hominin CMAH loss might also contribute to understanding human evolution, at the time when our ancestors were starting to use stone tools, increasing their consumption of meat, and possibly hunting. Comparisons with chimpanzees within ethical and practical limitations have revealed some consequences of human CMAH loss, but more has been learned by using a mouse model with a human-like Cmah inactivation. For example, such mice can develop antibodies against Neu5Gc that could affect inflammatory processes like cancer progression in the face of Neu5Gc metabolic incorporation from red meats, display a hyper-reactive immune system, a human-like tendency for delayed wound healing, late-onset hearing loss, insulin resistance, susceptibility to muscular dystrophy pathologies, and increased sensitivity to multiple human-adapted pathogens involving sialic acids. Further studies in such mice could provide a model for other human-specific processes and pathologies involving sialic acid biology that have yet to be explored. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds.
Garcia-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A
1991-01-01
Influenza C virus (strain C/Johannesburg/1/66) was grown, harvested, purified and used as source for the enzyme O-acetylesterase (N-acyl-O-acetylneuraminate O-acetylhydrolase; EC 3.1.1.53). This activity was studied and characterized with regard to some new substrates. The pH optimum of the enzyme is around 7.6, its stability at different pH values shows a result similar to that of the pH optimum, and its activity is well maintained in the pH range from 7.0 to 8.5 (all these tests were performed with 4-nitrophenyl acetate as substrate). Remarkable differences were found in the values of both Km and Vmax, with the synthetic substrates 4-nitrophenyl acetate, 2-nitrophenyl acetate, 4-methylumbelliferyl acetate, 1-naphthyl acetate and fluorescein diacetate. The use of 4-nitrophenyl acetate, 4-methylumbelliferyl acetate or 1-naphthyl acetate as substrate seems to be convenient for routine work, but it is better to carry out the measurements in parallel with those on bovine submandibular gland mucin (the latter is a natural and commercially available substrate). It was found that 4-acetoxybenzoic acid, as well as the methyl ester of 2-acetoxybenzoic acid, but not 2-acetoxybenzoic acid itself, are cleaved by this enzyme. Triacetin, di-O-acetyladenosine, tri-O-acetyladenosine, and di-O-acetyl-N-acetyladenosine phosphate, hitherto unreported as substrates for this viral esterase, are hydrolysed at different rates by this enzyme. We conclude that the O-acetylesterase from influenza C virus has a broad specificity towards both synthetic and natural non-sialic acid-containing substrates. Zn2+, Mn2+ and Pb2+ (as their chloride salts), N-acetylneuraminic acid, 4-methyl-umbelliferone and 2-acetoxybenzoic acid (acetylsalicylic acid) did not act as inhibitors. Images Fig. 1. PMID:1991039
Mochalova, Larisa; Harder, Timm; Tuzikov, Alexander; Bovin, Nicolai; Wolff, Thorsten; Matrosovich, Mikhail; Schweiger, Brunhilde
2015-01-01
ABSTRACT Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin H5 and H7 subtypes emerge after introduction of low-pathogenic avian influenza viruses (LPAIVs) from wild birds into poultry flocks, followed by subsequent circulation and evolution. The acquisition of multiple basic amino acids at the endoproteolytical cleavage site of the hemagglutinin (HA) is a molecular indicator for high pathogenicity, at least for infections of gallinaceous poultry. Apart from the well-studied significance of the multibasic HA cleavage site, there is only limited knowledge on other alterations in the HA and neuraminidase (NA) molecules associated with changes in tropism during the emergence of HPAIVs from LPAIVs. We hypothesized that changes in tropism may require alterations of the sialyloligosaccharide specificities of HA and NA. To test this hypothesis, we compared a number of LPAIVs and HPAIVs for their HA-mediated binding and NA-mediated desialylation of a set of synthetic receptor analogs, namely, α2-3-sialylated oligosaccharides. NA substrate specificity correlated with structural groups of NAs and did not correlate with pathogenic potential of the virus. In contrast, all HPAIVs differed from LPAIVs by a higher HA receptor-binding affinity toward the trisaccharides Neu5Acα2-3Galβ1-4GlcNAcβ (3′SLN) and Neu5Acα2-3Galβ1-3GlcNAcβ (SiaLec) and by the ability to discriminate between the nonfucosylated and fucosylated sialyloligosaccharides 3′SLN and Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ (SiaLex), respectively. These results suggest that alteration of the receptor-binding specificity accompanies emergence of the HPAIVs from their low-pathogenic precursors. IMPORTANCE Here, we have found for the first time correlations of receptor-binding properties of the HA with a highly pathogenic phenotype of poultry viruses. Our study suggests that enhanced receptor-binding affinity of HPAIVs for a typical “poultry-like” receptor, 3′SLN, is provided by substitutions in the receptor-binding site of HA which appeared in HA of LPAIVs in the course of transmission of LPAIVs from wild waterfowl into poultry flocks, with subsequent adaptation in poultry. The identification of LPAIVs with receptor characteristics of HPAIVs argues that the sialic acid-binding specificity of the HA may be used as a novel phenotypic marker of HPAIVs. PMID:25741006
Muñoz-Barroso, I; García-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A
1992-09-01
Influenza virus type C (Johannesburg/1/66) was used as a source for the enzyme O-acetylesterase (EC 3.1.1.53) with several natural sialoglycoconjugates as substrates. The resulting products were immediately employed as substrates using influenza virus type A [(Singapore/6/86) (H1N1) or Shanghai/11/87 (H3N2)] as a source for sialidase (neuraminidase, EC 3.2.1.18). A significant increase in the percentage of sialic acid released was found when the O-acetyl group was cleaved by O-acetylesterase activity from certain substrates (bovine submandibular gland mucin, rat serum glycoproteins, human saliva glycoproteins, mouse erythrocyte stroma, chick embryonic brain gangliosides and bovine brain gangliosides). A common feature of all these substrates is that they contain N-acetyl-9-O-acetylneuraminic acid residues. By contrast, no significant increase in the release of sialic acid was detected when certain other substrates could not be de-O-acetylated by the action of influenza C esterase, either because they lacked O-acetylsialic acid (human glycophorin A, alpha 1-acid glycoprotein from human serum, fetuin and porcine submandibular gland mucin) or because the 4-O-acetyl group was scarcely cleaved by the viral O-acetylesterase (equine submandibular gland mucin). The biological significance of these facts is discussed, relative to the infective capacity of influenza C virus.
Cioci, Gianluca; Mitchell, Edward P; Chazalet, Valerie; Debray, Henri; Oscarson, Stefan; Lahmann, Martina; Gautier, Catherine; Breton, Christelle; Perez, Serge; Imberty, Anne
2006-04-14
The lectin from the mushroom Psathyrella velutina recognises specifically N-acetylglucosamine and N-acetylneuraminic acid containing glycans. The crystal structure of the 401 amino acid residue lectin shows that it adopts a very regular seven-bladed beta-propeller fold with the N-terminal region tucked into the central cavity around the pseudo 7-fold axis. In the complex with N-acetylglucosamine, six monosaccharides are bound in pockets located between two consecutive propeller blades. Due to the repeats shown by the sequence the binding sites are very similar. Five hydrogen bonds between the protein and the sugar hydroxyl and N-acetyl groups stabilize the complex, together with the hydrophobic interactions with a conserved tyrosine and histidine. The complex with N-acetylneuraminic acid shows molecular mimicry with the same hydrogen bond network, but with different orientations of the carbohydrate ring in the binding site. The beta-hairpin loops connecting the two inner beta-strands of each blade are metal binding sites and two to three calcium ions were located in the structure. The multispecificity and high multivalency of this mushroom lectin, combined with its similarity to the extracellular domain of an important class of cell adhesion molecules, integrins, are another example of the outstanding success of beta-propeller structures as molecular binding machines in nature.
Rota, Paola; Allevi, Pietro; Agnolin, Irene S; Mattina, Roberto; Papini, Nadia; Anastasia, Mario
2012-04-14
A simple protocol for the synthesis of N-perfluoroacylated and N-acylated glycals of neuraminic acid, with a secondary cyclic amine (morpholine or piperidine) at the 4α position, has been set-up, starting from peracetylated N-acetylneuraminic acid methyl ester that undergoes, sequentially to its direct N-transacylation followed by a C-4 amination, a β-elimination, and a selective hydrolysis of the ester functions, without affecting the sensitive perfluorinated amide. This journal is © The Royal Society of Chemistry 2012
NKG2D and CD94 bind to multimeric alpha2,3-linked N-acetylneuraminic acid.
Imaizumi, Yuzo; Higai, Koji; Suzuki, Chiho; Azuma, Yutaro; Matsumoto, Kojiro
2009-05-08
Killer lectin-like receptors on natural killer cells mediate cytotoxicity through glycans on target cells including the sialyl Lewis X antigen (sLeX). We investigated whether NK group 2D (NKG2D) and CD94 can bind to sialylated N-linked glycans, using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rNKG2Dlec) and CD94 (rCD94lec). Both rNKG2Dlec and rCD94lec bound to plates coated with high-sLeX-expressing transferrin secreted by HepG2 cells (HepTF). The binding of rNKG2Dlec and rCD94lec to HepTF was markedly suppressed by treatment of HepTF with neuraminidase and in the presence of N-acetylneuraminic acid. Moreover, rNKG2Dlec and rCD94lec bound to alpha2,3-sialylated human alpha(1)-acid glycoprotein (AGP) but not to alpha2,6-sialylated AGP. Mutagenesis revealed that (152)Y of NKG2D and (144)F and (160)N of CD94 were critical for HepTF binding. This is the first report that NKG2D and CD94 bind to alpha2,3-sialylated but not to alpha2,6-sialylated multi-antennary N-glycans.
Isolation and identification of a high molecular weight protein in sow milk.
Qin, Y; Qi, N; Tang, Y; He, J; Li, X; Gu, F; Zou, S
2015-05-01
A high molecular weight protein (HMWP) was isolated and purified from sow milk, and some of its biochemical characteristics and biological functions were identified. The origin of HMWP was also investigated. The molecular weight of HMWP was determined to be about 115 000 and 114 800 by SDS-PAGE and gel filtration, respectively. The sequence of 10 amino acids in N-terminal of HMWP was Ala-Leu-Val-Gln-Ser-Cys-Leu-Asn-Leu-Val. The sequence was blasted against GenBank. No protein showed significant similarity with this sequence suggesting the HMWP may be novel. The result of liquid chromatography mass spectrometry (LC-MS) also proved HMWP could be a novel protein. By amino acid assay, HMWP was rich in glutamate (including glutamine), cysteine, glycine, aspartic acid (including asparagines) and proline. The content of hydrophobic amino acids (Ala, Val, Leu, Ile, Met, Phe and Pro) was lower at 18.59% of the total amino acids suggesting HMWP has high solubility in water. Western blots of lectins were used to identify the kinds of carbohydrate residues attached to HMWP qualitatively. The result showed that HMWP was a kind of glycoprotein containing N-acetylneuraminic acid (NeuNAc), mannose (Man) and/or N-acetylglucosamine (GlcNAc). By isoelectric focusing, HMWP pI was found to be 5.1. Compared with milk fat globule membrane protein (MFGMP) isolated from the sow milk in SDS-PAGE, MFGMP did not contain HMWP. HMWP was assumed to be a secretory milk protein. HMWP was not found in bovine, goat, rabbit or human milk in SDS-PAGE gel suggesting HMWP may be unique to sow milk. By Western blot, HMWP could be detected in sow milk, not in sow serum, which suggests it is synthesized and secreted by the mammary gland. HMWP concentrations in sows milk were the lowest in the first day of lactation, rose significantly during lactation 1 to 7 days. The HMWP content of sows milk remained relatively constant ((1.95±0.13) g/l) during lactation 7 to 20 days. HMWP significantly inhibited Escherichia coli in a dose related manner in vitro. Overall, HMWP could be a novel sow milk protein with implications for the mammary gland and the piglet.
Rota, Paola; Cirillo, Federica; Piccoli, Marco; Gregorio, Antonio; Tettamanti, Guido; Allevi, Pietro; Anastasia, Luigi
2015-10-05
Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guo, Shoudong; Tian, Hua; Dong, Rongrong; Yang, Nana; Zhang, Ying; Yao, Shutong; Li, Yongjun; Zhou, Yawei; Si, Yanhong; Qin, Shucun
2016-08-01
Previous studies investigating the correlation between plasma sialic acid and the severity of atherosclerosis present conflicting results. In atherosclerosis patients, plasma levels of N-acetylneuraminic acid (NANA) are increased; however, the underlying mechanisms have not yet been clarified. We assume the increased NANA level may be a compensatory mechanism due to oxidative stress and/or inflammation. The aim of this study is to investigate whether supplementation of NANA could attenuate the progression of atherosclerosis. Exogenous NANA was used to determine its effect on apolipoprotein E-deficient (apoE(-/-)) mice taking natural quercetin as a positive control. The effect of NANA on lipid lowering, antioxidant activity and anti-inflammation was investigated by methods of molecular biology. 1) NANA administration decreased 18.9% of the atherosclerotic plaque formation in the aorta and 26.7% of the lipid deposition in the liver of high-fat diet apoE(-/-) mice; 2) notably, NANA treatment reduced 62.6% of the triglyceride by improving lipoprotein lipase activity; 3) NANA lowered 17.5% of the plasma total cholesterol by up-regulating reverse cholesterol transport (RCT)-related protein expression such as ATP-binding cassette transporter (ABC) G1 and ABCG5 in liver or small intestine; 4) NANA administration notably decreased oxidative stress by increasing antioxidant enzymes activity and protein expression of paraoxonase 1 and 2; 5) NANA markedly reduced tumour necrosis factor-α and intercellular adhesion molecule-1 expression in aorta and liver. NANA exhibited triglyceride lowering, anti-oxidation, and RCT promoting activities, and therefore NANA supplementation may be a new strategy for prevention and treatment of atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Jia, Nan; Barclay, Wendy S; Roberts, Kim; Yen, Hui-Ling; Chan, Renee W Y; Lam, Alfred K Y; Air, Gillian; Peiris, J S Malik; Dell, Anne; Nicholls, John M; Haslam, Stuart M
2014-10-10
The initial recognition between influenza virus and the host cell is mediated by interactions between the viral surface protein hemagglutinin and sialic acid-terminated glycoconjugates on the host cell surface. The sialic acid residues can be linked to the adjacent monosaccharide by α2-3- or α2-6-type glycosidic bonds. It is this linkage difference that primarily defines the species barrier of the influenza virus infection with α2-3 binding being associated with avian influenza viruses and α2-6 binding being associated with human strains. The ferret has been extensively used as an animal model to study the transmission of influenza. To better understand the validity of this model system, we undertook glycomic characterization of respiratory tissues of ferret, which allows a comparison of potential viral receptors to be made between humans and ferrets. To complement the structural analysis, lectin staining experiments were performed to characterize the regional distributions of glycans along the respiratory tract of ferrets. Finally, the binding between the glycans identified and the hemagglutinins of different strains of influenza viruses was assessed by glycan array experiments. Our data indicated that the respiratory tissues of ferret heterogeneously express both α2-3- and α2-6-linked sialic acids. However, the respiratory tissues of ferret also expressed the Sda epitope (NeuAcα2-3(GalNAcβ1-4)Galβ1-4GlcNAc) and sialylated N,N'-diacetyllactosamine (NeuAcα2-6GalNAcβ1-4GlcNAc), which have not been observed in the human respiratory tract surface epithelium. The presence of the Sda epitope reduces potential binding sites for avian viruses and thus may have implications for the usefulness of the ferret in the study of influenza virus infection. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Diwakar, Ganesh; Klump, Vincent; Lazova, Rossitza; Pawelek, John
2015-08-01
The major regulators of melanogenesis are glycoproteins, however no role for glycosylation in the pathway has yet been described. We stained skin biopsies and melanocyte-keratinocyte co-cultures with a panel of 20 lectins as oligosaccharide markers. Notably, the Elderberry Bark Lectin (EBL/SNA) stained melanocytes in both systems. EBL binds the sequence Neu5Ac(α(2-6)Gal/GalNAc)- at the termini of some oligosaccharide antennae. We used inhibitors of synthesis and/or binding of this sequence to assess effects on pigmentation. Cell culture, lectin histochemistry, siRNA transfection, and assays for dopa oxidase and melanin were carried out by standard techniques. 6'-sialyllactose, a short homolog of the sequence in question, anti-sialyltransferase 6 (ST6) siRNA, and cytidine, a sialyltransferase (ST) inhibitor, each inhibited EBL binding, melanogenesis and melanosome transfer. Unexpectedly, 3'-sialyllactose and siRNA for ST3, chosen as a negative controls, also inhibited these processes. Though strong inhibitors of melanization, none of the agents affected tyrosinase/dopa oxidase activity, indicating previously unrecognized post-tyrosinase regulation of melanization. We report for the first time that Neu5Ac (α(2-6)Gal/GalNAc)- and possibly Neu5Ac(α(2-3)Gal/GalNAc)-terminated oligosaccharides play multiple roles in melanin synthesis and transfer.
New Insights on Non-Enzymatic Oxidation of Ganglioside GM1 Using Mass Spectrometry
NASA Astrophysics Data System (ADS)
Couto, Daniela; Melo, Tânia; Maciel, Elisabete; Campos, Ana; Alves, Eliana; Guedes, Sofia; Domingues, M. Rosário M.; Domingues, Pedro
2016-12-01
Gangliosides are acidic glycosphingolipids that are present in cell membranes and lipid raft domains, being particularly abundant in central nervous systems. They participate in modulating cell membrane properties, cell-cell recognition, cell regulation, and signaling. Disturbance in ganglioside metabolism has been correlated with the development of diseases, such as neurodegenerative diseases, and in inflammation. Both conditions are associated with an increased production of reactive oxidation species (ROS) that can induce changes in the structure of biomolecules, including lipids, leading to the loss or modification of their function. Oxidized phospholipids are usually involved in chronic diseases and inflammation. However, knowledge regarding oxidation of gangliosides is scarce. In order to evaluate the effect of ROS in gangliosides, an in vitro biomimetic model system was used to study the susceptibility of GM1 (Neu5Ac α2-3(Gal β1-3GalNAc β1-4)Gal β1-4Glc β1Cer) to undergo oxidative modifications. Oxidation of GM1 under Fenton reaction conditions was monitored using high resolution electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Upon oxidation, GM1 underwent oxidative cleavages in the carbohydrate chain, leading to the formation of other gangliosides GM2 (GalNAcβ1-4Gal(Neu5Acα2-3)1-4Glcβ1Cer), GM3 (Neu5Acα2-3Galβ1-4Glcβ1Cer), asialo-GM1 (Gal β1-3GalNAc β1-4Gal β1-4Glc β1Cer), asialo-GM2 (GalNAc β1-4Gal β1-4Glc β1Cer), of the small glycolipids lactosylceramide (LacCer), glucosylceramide (GlcCer), and of ceramide (Cer). In addition, oxygenated GM1 and GM2 (as keto and hydroxy derivatives), glycans, oxidized glycans, and oxidized ceramides were also identified. Nonenzymatic oxidation of GM1 under oxidative stress contributes to the generation of other gangliosides that may participate in the imbalance of gangliosides metabolism in vivo, through uncontrolled enzymatic pathways and, consequently, play some role in neurodegenerative processes.
Courville, Pascal; Quick, Matthias; Reimer, Richard J.
2010-01-01
Salla disease and infantile sialic acid storage disorder are human diseases caused by loss of function of sialin, a lysosomal transporter that mediates H+-coupled symport of acidic sugars N-acetylneuraminic acid and glucuronic acid out of lysosomes. Along with the closely related vesicular glutamate transporters, sialin belongs to the SLC17 transporter family. Despite their critical role in health and disease, these proteins remain poorly understood both structurally and mechanistically. Here, we use substituted cysteine accessibility screening and radiotracer flux assays to evaluate experimentally a computationally generated three-dimensional structure model of sialin. According to this model, sialin consists of 12 transmembrane helices (TMs) with an overall architecture similar to that of the distantly related glycerol 3-phosphate transporter GlpT. We show that TM4 in sialin lines a large aqueous cavity that forms a part of the substrate permeation pathway and demonstrate substrate-induced alterations in accessibility of substituted cysteine residues in TM4. In addition, we demonstrate that one mutant, F179C, has a dramatically different effect on the apparent affinity and transport rate for N-acetylneuraminic acid and glucuronic acid, suggesting that it may be directly involved in substrate recognition and/or translocation. These findings offer a basis for further defining the transport mechanism of sialin and other SLC17 family members. PMID:20424173
Reynolds, Anna R; Saunders, Meredith A; Prendergast, Mark A
2016-07-01
Prior studies demonstrate that ethanol (EtOH) exposure induces the release of intracellular calcium (CA(2+) ) in modulation of γ-aminobutyric acid-ergic tone and produces concomitant alterations in sigma (σ)-1 protein expression that may contribute to the development EtOH dependence. However, the influence of CA(2+) released from endoplasmic reticulum (ER)-bound inositol triphosphate (IP3) and σ-1 receptors in regulating hippocampal function has yet to be delineated. Rat hippocampal explants were subjected to chronic intermittent EtOH (CIE) exposure with or without the addition of IP3 inhibitor xestospongin C (0 to 0.5 μM) or σ-1 receptor antagonist BD-1047 (0 to 80 μM). Hippocampal viability was assessed via immunohistochemical labeling of neuron-specific nuclear protein (NeuN)/Fox-3 in CA1, CA3, and dentate gyrus (DG) subregions. Exposure to CIE produced consistent and significant decreases of NeuN/Fox-3 in each primary cell layer of the hippocampal formation. Co-exposure to xestospongin reversed these effects in the CA1 subregion and significantly attenuated these effects in the CA3 and DG regions. Xestospongin application also significantly increased NeuN/Fox-3 immunofluorescence in EtOH-naïve hippocampi. Co-exposure to 20 μM BD-1047 also reversed the loss of NeuN/Fox-3 during CIE exposure in each hippocampal cell layer, whereas exposure to 80 μM BD-1047 did not alter NeuN/Fox-3 in EtOH-treated hippocampi. By contrast, 80 μM BD-1047 application significantly increased NeuN/Fox-3 immunofluorescence in EtOH-naïve hippocampi in each subregion. These data suggest that EtOH stimulates ER IP3 and σ-1 receptors to promote hippocampal loss of NeuN/Fox-3 during CIE. Copyright © 2016 by the Research Society on Alcoholism.
Kinetics of Neuraminidase Action on Glycoproteins by One- and Two-Dimensional NMR
ERIC Educational Resources Information Center
Barb, Adam W.; Glushka, John N.; Prestegard, James H.
2011-01-01
The surfaces of mammalian cells are coated with complex carbohydrates, many terminated with a negatively charged "N"-acetylneuraminic acid residue. This motif is specifically targeted by pathogens, including influenza viruses and many pathogenic bacteria, to gain entry into the cell. A necessary step in the influenza virus life cycle is the…
A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Vries, Robert P.; Tzarum, Netanel; Peng, Wenjie
In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completelymore » switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding.« less
Koda, Toshiaki; Kijimoto-Ochiai, Shigeko; Uemura, Satoshi; Inokuchi, Jin-ichi
2009-10-02
Neu2 mRNA from the mouse thymus, as we have reported [K. Kotani, A. Kuroiwa, T. Saito, Y. Matsuda, T. Koda, S. Kijimoto-Ochiai, Cloning, chromosomal mapping, and characteristic 5'-UTR sequence of murine cytosolic sialidase, Biochem. Biophys. Res. Commun. 286 (2001) 250-258], has a novel sequence at the 5' terminus that shows the ability to encode 6 extra amino acids in the N-terminus than that of the muscle. In this paper, we analyzed the cDNA and EST database and found the five types of alternative splicing of Neu2 mRNA: A, B, C, D and N. We studied the expression of these types in the immune tissues and found that the thymus expressed only type B. We constructed 2 types of plasmid that encode long (B) or short (C) form of Neu2 protein, and transfected them into COS7 cells to study them under the same conditions. We found that 30-40% of the both forms of Neu2 activity was located in the crude membrane-fraction, and hydrolyzed ganglioside effectively, while both soluble fraction showed particular behavior with substrate specificity. Microscopic study by active staining with X-NANA showed that they located not only in the cytoplasm but also in areas surrounding the nucleus and in the peripheral ruffled spot.
Approaches in the study of ganglioside metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tettamanti, G.; Ghidoni, R.; Sonnino, S.
1984-01-01
Ganglioside GM1, /sup 3/H-labeled in the sphingosine or terminal galactose moiety was injected into mice and its metabolic fate in the liver was followed. After administration of sphingosine-labeled GM1 all major liver gangliosides (GM3, GM2, GM1, GD1a-NeuAc, NeuG1) became radioactive, the radioactivity residing in all cases on the sphingosine moiety. The specific radioactivity was highest on GM1, followed by GM2, GM3 and GD1a-NeuAc, NeuG1. Several neutral glycosphingolipids and sphingomyelin were also formed. After administration of galactose-labelled GM1 the only radioactive gangliosides present in the liver were GM1 and GD1a-NeuAc, NeuG1, both carrying the radioactivity on the terminal galactose residue, withmore » no formation of labelled neutral glycosphingolipids. Subcellular studies gave clear evidence that GM1, after being taken up by the liver, was mainly degraded to GM2, GM3 and neutral glycosphingolipids at the level of lysosomes. A part of it was sialylated to more complex gangliosides and some of its metabolic by-products were used for the biosynthesis of other sphingolipid species, likely at the level of the Golgi apparatus. All this suggests that exogenous GM1 is introduced in the metabolic routes of endogenous gangliosides and of other sphingolipids, which are operating in the liver.« less
Ogata, Makoto; Umemura, Seiichiro; Sugiyama, Naohiro; Kuwano, Natsuki; Koizumi, Ami; Sawada, Tadakazu; Yanase, Michiyo; Takaha, Takeshi; Kadokawa, Jun-Ichi; Usui, Taichi
2016-11-20
A series of multivalent sialoglyco-conjugated nanoparticles were efficiently synthesized by using highly-branched α-glucuronic acid-linked cyclic dextrins (GlcA-HBCD) as a backbone. The sialoglycoside-moieties, with varying degrees of substitution, could be incorporated onto the preformed nanoparticles. These synthesized particles, which are highly soluble in aqueous solution, were shown to have a spherical nanostructure with a diameter of approximately 15nm. The interactions of the sialoglyco-nanoparticles (Neu5Acα2,6LacNAc-GlcA-HBCDs) with human influenza virus strain A/Beijing/262/95 (H1N1) were investigated using a hemagglutination inhibition assay. The sialoglyco-nanoparticle, in which the number of sialic acid substitution is 30, acted as a powerful inhibitor of virus binding activity. We show that both distance and multiplicity of effective ligand-virus formation play important roles in enhancing viral inhibition. Our results indicate that the GlcA-HBCD backbone can be used as a novel spherical nanocluster material for preparing a variety of glyco-nanoparticles to facilitate molecular recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Khosravi, Farhad; Michel, Vera; Galuska, Christina E.; Bhushan, Sudhanshu; Christian, Philipp; Schuppe, Hans-Christian; Pilatz, Adrian; Galuska, Sebastian P.; Meinhardt, Andreas
2016-01-01
Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in humans. In men, pathogens can also spread to the genital tract via the continuous ductal system, eliciting bacterial prostatitis and/or epididymo-orchitis. Antibiotic treatment usually clears pathogens in acute epididymitis; however, the fertility of patients can be permanently impaired. Because a premature acrosome reaction was observed in an UPEC epididymitis mouse model, and sialidases on the sperm surface are considered to be activated via proteases of the acrosome, we aimed to investigate whether alterations of the sialome of epididymal spermatozoa and surrounding epithelial cells occur during UPEC infection. In UPEC-elicited acute epididymitis in mice, a substantial loss of N-acetylneuraminic acid residues was detected in epididymal spermatozoa and epithelial cells using combined laser microdissection/HPLC-ESI-MS analysis. In support, a substantial reduction of sialic acid residues bound to the surface of spermatozoa was documented in men with a recent history of E. coli-associated epididymitis. In vitro, such an UPEC induced N-acetylneuraminic acid release from human spermatozoa was effectively counteracted by a sialidase inhibitor. These findings strongly suggest a substantial remodeling of the glycocalyx of spermatozoa and epididymal epithelial cells by endogenous sialidases after a premature acrosome reaction during acute epididymitis. PMID:27339898
Mapping substrate interactions of the human membrane-associated neuraminidase, NEU3, using STD NMR.
Albohy, Amgad; Richards, Michele R; Cairo, Christopher W
2015-03-01
Saturation transfer difference (STD) nuclear magnetic resonance (NMR) is a powerful technique which can be used to investigate interactions between proteins and their substrates. The method identifies specific sites of interaction found on a small molecule ligand when in complex with a protein. The ability of STD NMR to provide specific insight into binding interactions in the absence of other structural data is an attractive feature for its use with membrane proteins. We chose to employ STD NMR in our ongoing investigations of the human membrane-associated neuraminidase NEU3 and its interaction with glycolipid substrates (e.g., GM3). In order to identify critical substrate-enzyme interactions, we performed STD NMR with a catalytically inactive form of the enzyme, NEU3(Y370F), containing an N-terminal maltose-binding protein (MBP)-affinity tag. In the absence of crystallographic data on the enzyme, these data represent a critical experimental test of proposed homology models, as well as valuable new structural data. To aid interpretation of the STD NMR data, we compared the results with molecular dynamics (MD) simulations of the enzyme-substrate complexes. We find that the homology model is able to predict essential features of the experimental data, including close contact of the hydrophobic aglycone and the Neu5Ac residue with the enzyme. Additionally, the model and STD NMR data agree on the facial recognition of the galactose and glucose residues of the GM3-analog studied. We conclude that the homology model of NEU3 can be used to predict substrate recognition, but our data indicate that unstructured portions of the NEU3 model may require further refinement. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Glycomic Characterization of Respiratory Tract Tissues of Ferrets
Jia, Nan; Barclay, Wendy S.; Roberts, Kim; Yen, Hui-Ling; Chan, Renee W. Y.; Lam, Alfred K. Y.; Air, Gillian; Peiris, J. S. Malik; Dell, Anne; Nicholls, John M.; Haslam, Stuart M.
2014-01-01
The initial recognition between influenza virus and the host cell is mediated by interactions between the viral surface protein hemagglutinin and sialic acid-terminated glycoconjugates on the host cell surface. The sialic acid residues can be linked to the adjacent monosaccharide by α2–3- or α2–6-type glycosidic bonds. It is this linkage difference that primarily defines the species barrier of the influenza virus infection with α2–3 binding being associated with avian influenza viruses and α2–6 binding being associated with human strains. The ferret has been extensively used as an animal model to study the transmission of influenza. To better understand the validity of this model system, we undertook glycomic characterization of respiratory tissues of ferret, which allows a comparison of potential viral receptors to be made between humans and ferrets. To complement the structural analysis, lectin staining experiments were performed to characterize the regional distributions of glycans along the respiratory tract of ferrets. Finally, the binding between the glycans identified and the hemagglutinins of different strains of influenza viruses was assessed by glycan array experiments. Our data indicated that the respiratory tissues of ferret heterogeneously express both α2–3- and α2–6-linked sialic acids. However, the respiratory tissues of ferret also expressed the Sda epitope (NeuAcα2-3(GalNAcβ1–4)Galβ1–4GlcNAc) and sialylated N,N′-diacetyllactosamine (NeuAcα2–6GalNAcβ1–4GlcNAc), which have not been observed in the human respiratory tract surface epithelium. The presence of the Sda epitope reduces potential binding sites for avian viruses and thus may have implications for the usefulness of the ferret in the study of influenza virus infection. PMID:25135641
de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie; Thompson, Andrew J; Ambepitiya Wickramasinghe, Iresha N; de la Pena, Alba T Torrents; van Breemen, Marielle J; Bouwman, Kim M; Zhu, Xueyong; McBride, Ryan; Yu, Wenli; Sanders, Rogier W; Verheije, Monique H; Wilson, Ian A; Paulson, James C
2017-09-01
In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Kumar, Rishi; Maulik, Prakas R; Misra, Anup Kumar
2008-08-01
Concise chemical synthesis of a tetrasaccharide repeating unit of the O-antigen of Hafnia alvei 10457 is reported. Construction of the tetrasaccharide as its 4-methoxyphenyl glycoside was achieved by condensation of less abundant monosaccharide units such as, D-galactofuranose, N-acetyl-D-galactosamine and N-acetylneuraminic acid. The synthetic strategy consists of the preparation of suitably protected required monosaccharide intermediates from the commercially available reducing sugars and high yielding glycosylation reactions.
Arden, Sheldon B.; Chang, Woo-Hyun; Barksdale, Lane
1972-01-01
In Corynebacterium diphtheriae and closely related neuraminidase-producing corynebacteria, we have found an N-acetylneuraminate (NAN) lyase activity which cleaves NAN into N-acetyl-d-mannosamine and, presumably, pyruvate. In vitro, these lyases can be shown to synthesize NAN. A survey of representative corynebacteria, “plant pathogenic corynebacteria,” mycobacteria, and nocardias revealed that only those corynebacteria closely related to C. diphtheriae exhibited both neuraminidase and NAN lyase activities. PMID:4629654
Chemoselective synthesis of sialic acid 1,7-lactones.
Allevi, Pietro; Rota, Paola; Scaringi, Raffaella; Colombo, Raffaele; Anastasia, Mario
2010-08-20
The chemoselective synthesis of the 1,7-lactones of N-acetylneuraminic acid, N-glycolylneuraminic acid, and 3-deoxy-d-glycero-d-galacto-nononic acid is accomplished in two steps: a simple treatment of the corresponding free sialic acid with benzyloxycarbonyl chloride and a successive hydrogenolysis of the formed 2-benzyloxycarbonyl 1,7-lactone. The instability of the 1,7-lactones to protic solvents has been also evidenced together with the rationalization of the mechanism of their formation under acylation conditions. The results permit to dispose of authentic 1,7-sialolactones to be used as reference standards and of a procedure useful for the preparation of their isotopologues to be used as inner standards in improved analytical procedures for the gas liquid chromatography-mass spectrometry (GLC-MS) analysis of 1,7-sialolactones in biological media.
Shin, Yoshimura; Kentaro, Kawano; Ryusuke, Matsumura; Narumi, Sugihara; Koji, Furuno
2009-01-01
N-acetyl 5-aminosalicylic acid (5-AcASA) that was intracellularly formed from 5-aminosalicylic acid (5-ASA) at 200 μM was discharged 5.3, 7.1, and 8.1-fold higher into the apical site than into the basolateral site during 1, 2, and 4-hour incubations, respectively, in Caco-2 cells grown in Transwells. The addition of flavonols (100 μM) such as fisetin and quercetin with 5-ASA remarkably decreased the apically directed efflux of 5-AcASA. When 5-ASA (200 μM) was added to Caco-2 cells grown in tissue culture dishes, the formation of 5-AcASA decreased, and, in addition, the formed 5-AcASA was found to be accumulated within the cells in the presence of such flavonols. Thus, the decrease in 5-AcASA efflux by such flavonols was attributed not only to the inhibition of N-acetyl-conjugation of 5-ASA but to the predominant cellular accumulation of 5-AcASA. Various flavonoids also had both of the effects with potencies that depend on their specific structures. The essential structure of flavonoids was an absence of a hydroxyl substitution at the C5 position on the A-ring of flavone structure for the inhibitory effect on the N-acetyl-conjugation of 5-ASA, and a presence of hydroxyl substitutions at the C3′ or C4′ position on the B-ring of flavone structure for the promoting effect on the cellular accumulation of 5-AcASA. Both the decrease in 5-AcASA apical efflux and the increase in 5-AcASA cellular accumulation were also caused by MK571 and indomethacin, inhibitors of MRPs, but not by quinidine, cyclosporin A, P-glycoprotein inhibitors, and mitoxantrone, a BCRP substrate. These results suggest that certain flavonoids suppress the apical efflux of 5-AcASA possibly by inhibiting MRPs pumps located on apical membranes in Caco-2 cells. PMID:19688110
MIYAGAWA, Shuji; MATSUNARI, Hitomi; WATANABE, Masahito; NAKANO, Kazuaki; UMEYAMA, Kazuhiro; SAKAI, Rieko; TAKAYANAGI, Shuko; TAKEISHI, Toki; FUKUDA, Tooru; YASHIMA, Sayaka; MAEDA, Akira; EGUCHI, Hiroshi; OKUYAMA, Hiroomi; NAGAYA, Masaki; NAGASHIMA, Hiroshi
2015-01-01
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs. PMID:26227017
Miyagawa, Shuji; Matsunari, Hitomi; Watanabe, Masahito; Nakano, Kazuaki; Umeyama, Kazuhiro; Sakai, Rieko; Takayanagi, Shuko; Takeishi, Toki; Fukuda, Tooru; Yashima, Sayaka; Maeda, Akira; Eguchi, Hiroshi; Okuyama, Hiroomi; Nagaya, Masaki; Nagashima, Hiroshi
2015-01-01
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs.
Ling, Li; Zeng, Jinsheng; Pei, Zhong; Cheung, Raymond T F; Hou, Qinghua; Xing, Shihui; Zhang, Suping
2009-09-01
Neurogenesis and angiogenesis in the subventricular zone and peri-infarct region have been confirmed. However, newly formed neuronal cells and blood vessels that appear in the nonischemic ipsilateral ventroposterior nucleus (VPN) of the thalamus with secondary damage after stroke has not been previously studied. Twenty-four stroke-prone renovascular hypertensive rats were subjected to distal right middle cerebral artery occlusion (MCAO) or sham operation. 5'-Bromo-2'-deoxyuridine (BrdU) was used to label cell proliferation. Rats were killed at 7 or 14 days after the operation. Neuronal nuclei (NeuN), OX-42, BrdU, nestin, laminin(+), BrdU(+)/nestin(+), BrdU(+)/NeuN(+), nestin(+)/GFAP(+)(glial fibrillary acidic protein), and BrdU(+)/laminin(+) immunoreactive cells were detected within the ipsilateral VPN. The primary infarction was confined to the right somatosensory cortex. Within the ipsilateral VPN of the ischemic rats, the number of NeuN(+) neurons decreased, the OX-42(+) microglia cells were activated, and BrdU(+) and nestin(+) cells were detected at day 7 after MCAO and increased in number at day 14. Moreover, BrdU(+)/nestin(+) cells and BrdU(+)/NeuN(+) cells were detected at day 14 after MCAO. In addition, the ischemic rats showed a significant increase in vascular density in the ipsilateral VPN compared with the sham-operated rats. These results suggest that secondary damage with neurogenesis and angiogenesis of the ipsilateral VPN of the thalamus occurs after focal cortical infarction.
Yang, Guohua; Li, Shoujun; Blackmon, Sherry; Ye, Jianqiang; Bradley, Konrad C.; Cooley, Jim; Smith, Dave; Hanson, Larry; Cardona, Carol; Steinhauer, David A.; Webby, Richard; Liao, Ming
2013-01-01
An avian-like H3N2 influenza A virus (IAV) has recently caused sporadic canine influenza outbreaks in China and Korea, but the molecular mechanisms involved in the interspecies transmission of H3N2 IAV from avian to canine species are not well understood. Sequence analysis showed that residue 222 in haemagglutinin (HA) is predominantly tryptophan (W) in the closely related avian H3N2 IAV, but was leucine (L) in canine H3N2 IAV. In this study, reassortant viruses rH3N2-222L (canine-like) and rH3N2-222W (avian-like) with HA mutation L222W were generated using reverse genetics to evaluate the significance of the L222W mutation on receptor binding and host tropism of H3N2 IAV. Compared with rH3N2-222W, rH3N2-222L grew more rapidly in MDCK cells and had significantly higher infectivity in primary canine tracheal epithelial cells. Tissue-binding assays demonstrated that rH3N2-222L had a preference for canine tracheal tissues rather avian tracheal tissues, whereas rH3N2-222W favoured slightly avian rather canine tracheal tissues. Glycan microarray analysis suggested both rH3N2-222L and rH3N2-222W bound preferentially to α2,3-linked sialic acids. However, the rH3N2-222W had more than twofold less binding affinity than rH3N2-222L to a set of glycans with Neu5Aca2–3Galb1–4(Fuca-)-like or Neu5Aca2–3Galb1–3(Fuca-)-like structures. These data suggest the W to L mutation at position 222 of the HA could facilitate infection of H3N2 IAV in dogs, possibly by increasing the binding affinities of the HA to specific receptors with Neu5Aca2–3Galb1–4(Fuca-) or Neu5Aca2–3Galb1–3(Fuca-)-like structures that are present in dogs. PMID:23994833
Ahmed, Ayesha; Al-Tamimi, Dalal M
2018-12-01
Her2-neu overexpression has a pathogenetic, therapeutic and a controversial prognostic role in gastric cancer. p-53 mutation status and Ki-67 proliferation index are established prognostic markers in many tumors. In this study we evaluated p-53 and Ki-67 in relation to Her2-neu positive and negative gastric adenocarcinoma (GA). This cross-sectional study was carried out at King Fahd Hospital of Imam Abdulrahman bin Faisal University. Fifty cases of GA were retrieved from pathology archives. Clinico-pathological parameters were evaluated. Immunohistochemical protein analysis for Her2-neu, Ki-67 and p-53 was carried out. Fluorescent in situ hybridization (FISH) analysis was done for Her2-neu positive cases showing 2+ immunoexpression. Frequency of Ki-67 and p-53 positivity in Her2-neu positive cases was calculated and compared with those in Her2-neu negative cases. Correlation of clinicopatological parameters with Her2 positive and negative cases, p-53 mutation status and Ki-67 proliferation index was carried out. Her2-neu overexpression was present in 12% (n = 6) cases. A high Ki-67 was seen predominantly in Her2-neu positive cases (83%, n = 5). Her2-neu negative cases (n = 44) showed moderate (31.88%, n = 14) to low (34%, n = 15) Ki-67. Diffuse p-53 positivity was seen predominantly in Her2-neu positive cases (33.33%, n = 2). Focal p-53 was seen mainly in Her2-neu negative cases 56.8% (n = 25). Negative p-53 was seen to be independent of Her2-neu status. Her2-neu positivity is strongly associated with diffuse p-53 mutation status and high Ki-67 proliferation. Her 2-neu negative status is associated with focal p-53 positivity and low to moderate Ki-67 proliferation index. Such stratifications in prognostic markers could not only be predictive in patient's prognostics but could also form a basis of molecular classification of gastric cancer.
Effect of Parainfluenza-3 Neuraminidase on Bovine Nasal Secretion
Morein, Bror; Bergman, Rune
1972-01-01
Three samples of bovine nasal secretion were each separated into a sol phase and a surface gel phase. In all samples, the gel phase contained an approximately four times greater amount of bound N-acetylneuraminic acid (NANA) than the sol phase. From the gel phase, bound NANA could be released by exposure to parainfluenza-3 virus neuraminidase. The surface gel appears to be a natural substrate for this enzyme. PMID:4347547
NASA Astrophysics Data System (ADS)
Zhang, Yixuan; Deng, Lu; Kitova, Elena N.; Klassen, John S.
2013-10-01
The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (β-D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal p-(1→4)-β-D-Glc p (GM1)) and corresponding glycosphingolipid (β-D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal p-(1→4)-β-D-Glc p-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)n+ ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)n- ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)n+/- ions, as well as for deprotonated (S4 + 4Btl)n- ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)n+ ions was observed as a minor pathway. The (S4 + 4Btl)n+ ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)15+ ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein-ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.
Boulnois, G J; Roberts, I S; Hodge, R; Hardy, K R; Jann, K B; Timmis, K N
1987-06-01
Transposon and deletion analysis of the cloned K1 capsule biosynthesis genes of Escherichia coli revealed that approximately 17 kb of DNA, split into three functional regions, is required for capsule production. One block (region 1) is required for translocation of polysaccharide to the cell surface and mutations in this region result in the intracellular appearance of polymer indistinguishable on immunoelectrophoresis to that found on the surface of K1 encapsulated bacteria. This material was released from the cell by osmotic shock indicating that the polysaccharide was probably present in the periplasmic space. Insertions in a second block (region 2) completely abolished polymer production and this second region is believed to encode the enzymes for the biosynthesis and polymerisation of the K1 antigen. Addition of exogenous N-acetylneuraminic acid to one insertion mutant in this region restored its ability to express surface polymer as judged by K1 phage sensitivity. This insertion probably defines genes involved in biosynthesis of N-acetylneuraminic acid. Insertions in a third block (region 3) result in the intracellular appearance of polysaccharide with a very low electrophoretic mobility. The presence of the cloned K1 capsule biosynthesis genes on a multicopy plasmid in an E. coli K-12 strain did not increase the yields of capsular polysaccharide produced compared to the K1+ isolate from which the genes were cloned.
Gao, Hanchao; Zhao, Chengjiang; Xiang, Xi; Li, Yong; Zhao, Yanli; Li, Zesong; Pan, Dengke; Dai, Yifan; Hara, Hidetaka; Cooper, David K C; Cai, Zhiming; Mou, Lisha
2017-02-16
Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT). Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) instead of SCNT, to generate double gene-knockout pigs. First, we applied the CRISPR/Cas9 system to target α1,3-galactosyltransferase (GGTA1) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes simultaneously in porcine fetal fibroblast cells (PFFs), which were derived from wild-type Chinese domestic miniature Wuzhishan pigs. Cell colonies were obtained by screening and were identified by Surveyor assay and sequencing. Next, we chose the GGTA1/CMAH double-knockout (DKO) cells for HMC to produce piglets. As a result, we obtained 11 live bi-allelic GGTA1/CMAH DKO piglets with the identical phenotype. Compared to cells from GGTA1-knockout pigs, human antibody binding and antibody-mediated complement-dependent cytotoxicity were significantly reduced in cells from GGTA1/CMAH DKO pigs, which demonstrated that our pigs would exhibit reduced humoral rejection in xenotransplantation. These data suggested that the combination of CRISPR/Cas9 and HMC technology provided an efficient and new strategy for producing pigs with multiple genetic modifications.
Aiyer, Rohit; Mehta, Neel; Gungor, Semih; Gulati, Amitabh
2018-05-01
To investigate the efficacy of N-methyl-D-aspartate receptor (NMDAR) antagonists for neuropathic pain (NeuP) and review literature to determine if specific pharmacologic agents provide adequate NeuP relief. Literature was reviewed on PubMed using a variety of key words for 8 NMDAR antagonists. These key words include: "Ketamine and Neuropathy," "Ketamine and Neuropathic Pain," "Methadone and Neuropathy," "Methadone and Neuropathic Pain," "Memantine and Neuropathic pain," "Memantine and Neuropathy," "Amantadine and Neuropathic Pain," "Amantadine and Neuropathy," "Dextromethorphan and Neuropathic Pain," "Dextromethorphan and Neuropathy," "Carbamazepine and Neuropathic Pain," "Carbamazepine and Neuropathy," "Valproic Acid and Neuropathy," "Valproic Acid and Neuropathic Pain," "Phenytoin and Neuropathy," and "Phenytoin and Neuropathic Pain." With the results, the papers were reviewed using the PRISMA (Preferred Reporting in Systematic and Meta-Analyses) guideline. A total of 58 randomized controlled trials were reviewed among 8 pharmacologic agents, which are organized by date and alphabetical order. Of the trials for ketamine, 15 showed some benefit for analgesia. Methadone had 3 positive trials, while amantadine and memantine each only had 2 trials showing NeuP analgesic properties. Dextromethorphan and valproic acid both had 4 randomized controlled trials that showed some NeuP treatment benefit while carbamazepine had over 8 trials showing efficacy. Finally, phenytoin only had 1 trial that showed clinical response in treatment. There are a variety of NMDAR antagonist agents that should be considered for treatment of NeuP. Nevertheless, continued and further investigation of the 8 pharmacologic agents is needed to continue to evaluate their efficacy for treatment of NeuP.
Hitchen, Paul; Brzostek, Joanna; Panico, Maria; Butler, Jonathan A.; Morris, Howard R.; Dell, Anne; Linton, Dennis
2010-01-01
The Campylobacter jejuni flagellin protein is O-glycosylated with structural analogues of the nine-carbon sugar pseudaminic acid. The most common modifications in the C. jejuni 81-176 strain are the 5,7-di-N-acetylated derivative (Pse5Ac7Ac) and an acetamidino-substituted version (Pse5Am7Ac). Other structures detected include O-acetylated and N-acetylglutamine-substituted derivatives (Pse5Am7Ac8OAc and Pse5Am7Ac8GlnNAc, respectively). Recently, a derivative of pseudaminic acid modified with a di-O-methylglyceroyl group was detected in C. jejuni NCTC 11168 strain. The gene products required for Pse5Ac7Ac biosynthesis have been characterized, but those genes involved in generating other structures have not. We have demonstrated that the mobility of the NCTC 11168 flagellin protein in SDS-PAGE gels can vary spontaneously and we investigated the role of single nucleotide repeats or homopolymeric-tract-containing genes from the flagellin glycosylation locus in this process. One such gene, Cj1295, was shown to be responsible for structural changes in the flagellin glycoprotein. Mass spectrometry demonstrated that the Cj1295 gene is required for glycosylation with the di-O-methylglyceroyl-modified version of pseudaminic acid. PMID:20338909
Urashima, Tadasu; Yamamoto, Tomoko; Hirayama, Kentaro; Fukuda, Kenji; Nakamura, Tadashi; Saito, Tadao; Newgrain, Keith; Merchant, Jim; Green, Brian; Messer, Michael
2016-10-01
Milk oligosaccharides were separated from the carbohydrate fraction of milk of the tiger quoll a species of marsupial that is closely related to the eastern quoll, Dasyurus viverrinus. They were characterized by (1)H - nuclear magnetic resonance spectroscopy and matrix - assisted laser desorption/ionization time-of-flight mass spectrometry. The following oligosaccharides were identified; Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Neu5Ac(α2-3) Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc with an α(2-3)Neu5Ac linked to β(1-4)Gal residue of either branch of Gal(β1-4)GlcNAc(β1-6) units, and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc with a β(1-3) linked Gal and an α(2-3) linked Neu5Ac. In addition, larger oligosaccharides were characterized as follows; Gal(β1-3){Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)GlcNAc(β1-6)}Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3){Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)GlcNAc(β1-6)}Gal(β1-4)Glc and their α(2-3) linked Neu5Ac derivatives.
EXPRESSION OF NeuGc ON PIG CORNEAS AND ITS POTENTIAL SIGNIFICANCE IN PIG CORNEAL XENOTRANSPLANTATION
Lee, Whayoung; Miyagawa, Yuko; Long, Cassandra; Ekser, Burcin; Walters, Eric; Ramsoondar, Jagdeece; Ayares, David; Tector, A. Joseph; Cooper, David K. C.; Hara, Hidetaka
2016-01-01
Purpose Pigs expressing neither galactose-α1,3-galactose (Gal) nor N-glycolylneuraminic acid (NeuGc) take xenotransplantation one step closer to the clinic. Our aims were (i) to document the lack of NeuGc expression on corneas and aortas, and cultured endothelial cells (aortic [AECs]; corneal [CECs]) of GTKO/NeuGcKO pigs, and (ii) to investigate whether the absence of NeuGc reduced human antibody binding to the tissues and cells. Methods Wild-type (WT), GTKO, and GTKO/NeuGcKO pig were used for the study. Human tissues and cultured cells were negative controls. Immunofluorescence staining was performed using anti-Gal and anti-NeuGc antibodies, and to determine human IgM and IgG binding to tissues. Flow cytometric analysis was used to determine Gal and NeuGc expression on cultured CECs and AECs and to measure human IgM/IgG binding to these cells. Results Both Gal and NeuGc were detected on WT pig corneas and aortas. Although GTKO pigs expressed NeuGc, neither human nor GTKO/NeuGcKO pigs expressed Gal or NeuGc. Human IgM/IgG binding to corneas and aortas from GTKO and GTKO/NeuGcKO pigs was reduced compared to binding to WT pigs. Human antibody binding to GTKO/NeuGcKO AECs was significantly less than to GTKO AECs, but there was no significant difference in binding between GTKO and GTKO/NeuGcKO CECs. Conclusions The absence of NeuGc on GTKO aortic tissue and AECs is associated with reduced human antibody binding, and possibly will provide better outcome in clinical xenotransplantation using vascularized organs. For clinical corneal xenotransplantation, the absence of NeuGc expression on GTKO/NeuGcKO pig corneas may not prove an advantage over GTKO corneas. PMID:26418433
Nash, Jason W; Barrett, Terry L; Kies, Merrill; Ross, Merrick I; Sneige, Nour; Diwan, A Hafeez; Lazar, Alexander J F
2007-01-01
A 44-year-old man was referred for a right chest nodule of 3 months duration. A 'benign' nodule had been excised from this location 8 years prior. On examination, palpable nodes were noted in the right axilla. Radiographic studies were significant only for right axillary lymphadenopathy. Histologically, a nodular dermal proliferation composed of poorly differentiated epithelioid cells in nests and focally forming ducts with pseudopapillary architecture comprised the primary tumor. Features of a clear cell hidradenoma were noted focally. Immunohistochemical (IHC) analysis revealed reactivity for HMW cytokeratins, CK5 and CK7, p53, p63, CEA (focal), androgen receptor, EGFR, estrogen receptor (ER), MUC5AC, and strong/diffuse membranous staining for Her-2/neu. Negative stains included villin, TTF-1, CDX2, S-100 protein, vimentin, gross cystic disease fluid protein 15 (GCDFP-15), mammoglobulin, and MUC2. A wide local excision and axillary node dissection was performed. Metastatic tumor involved nine of 28 nodes. Interphase fluorescence in situ hybridization (FISH) demonstrated chromosomal amplification of the Her-2/neu locus within the tumor and a nodal metastasis. The patient has completed adjuvant and radiotherapy, including trastuzumab, and is asymptomatic. We believe this to be the first demonstration of Her-2/neu amplification in a malignant skin adnexal tumor. In analogy to breast carcinoma, these findings suggest the applicability of trastuzumab for patients with metastatic adnexal carcinomas demonstrating Her-2/neu amplification.
1997-08-01
anti-neu antibody response of DNA vaccine immunized mice again by indirectly flowcytometry assay, we confirm our previous finding. We also examine the... flowcytometry assay, I have confirmed my previous finding from Elisa assay. 5 I also examined the cellular immunity response of DNA immunized mice by CTL...immunized mice by indirectly flowcytometry assay. I also find mice immunized with neu DNA vaccine did not develop detectable cytotoxic T lymphocyte
Morin, Lawrence P; Hefton, Sara; Studholme, Keith M
2011-11-03
The suprachiasmatic nucleus (SCN) has several structural characteristics and cell phenotypes shared across species. Here, we describe a novel feature of SCN anatomy that is seen in both hamster and mouse. Frozen sections through the SCN were obtained from fixed brains and stained for the presence of immunoreactivity to neuronal nuclear protein (NeuN-IR) using a mouse monoclonal antibody which is known to exclusively identify neurons. NeuN-IR did not identify all SCN neurons as medial NeuN-IR neurons were generally not present. In the hamster, NeuN-IR cells are present rostrally, scattered in the dorsal half of the nucleus. More caudally, the NeuN-IR cells are largely, but not exclusively, scattered inside the lateral and dorsolateral border. At mid- to mid-caudal SCN levels, a dense group of NeuN-IR cells extends from the dorsolateral border ventromedially to encompass the central subnucleus of the SCN (SCNce). The pattern is similar in the mouse SCN. NeuN-IR does not co-localize with either cholecystokinin- or vasoactive intestinal polypeptide, but does with vasopressin-IR in the caudal SCN. In the hamster SCNce, numerous cells contain both calbindin- and NeuN-IR. The distribution of NeuN-IR cells in the SCN is unique, especially with regard to its generally lateral location through the length of the nucleus. The distribution of NeuN-IR cells is not consistent with most schemas representing SCN organization or with terminology referring to its widely accepted subdivisions. NeuN has recently been identified as Fox-3 protein. Its function in the SCN is not known, nor is it known why a large proportion of SCN cells do not contain NeuN-IR. Copyright © 2011 Elsevier B.V. All rights reserved.
Halder, Sujata; Cotmore, Susan; Heimburg-Molinaro, Jamie; Smith, David F.; Cummings, Richard D.; Chen, Xi; Trollope, Alana J.; North, Simon J.; Haslam, Stuart M.; Dell, Anne; Tattersall, Peter; McKenna, Robert; Agbandje-McKenna, Mavis
2014-01-01
The recognition of sialic acids by two strains of minute virus of mice (MVM), MVMp (prototype) and MVMi (immunosuppressive), is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA) capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM). Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3′SIA-LN) and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3′SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3′SIA-LeX identified in a previous glycan microarray screen. PMID:24475195
The specificity of Centruroides sculpturatus Ewing (Arizona lethal scorpion) hemolymph agglutinins.
Vasta, G R; Cohen, E
1982-01-01
C. sculpturatus sera agglutinate human erythrocytes independently of the ABO blood group, enzyme treatment, incubation temperature or sex of the scorpions. Tested with human lymphocytes and reptile and bird erythrocytes, C. sculpturatus serum reacts like an anti-sialic acid agglutinin. With leukemic lymphocytes, titers are higher than with normal lymphocytes. Mammalian erythrocytes show characteristic agglutination patterns for C. sculpturatus for Limulus polyphemus (horseshoe crab) that suggest different receptors for agglutinins of both species. Cross absorption and elution experiments indicate the presence of at least two specific agglutinins in C. sculpturatus serum. Agglutination is inhibited by N-acetylneuraminic acid and N-glycolyneuraminic acid, for all erythrocytes tested. Calcium is required for optimal activity of C. sculpturatus agglutinins. C. sculpturatus agglutinating activity is destroyed at 65% degrees C for 20 minutes. Titers are decreased by 2-mercaptoethanol, and more so after alkylation with iodoacetic acid suggesting that disulfide bonds are present in C. sculpturatus agglutinin molecules.
Sánchez, O; Montesino, R; Toledo, J R; Rodríguez, E; Díaz, D; Royle, L; Rudd, P M; Dwek, R A; Gerwig, G J; Kamerling, J P; Harvey, D J; Cremata, J A
2007-08-15
We have established a continuous, non-transformed cell line from primary cultures from Capra hircus mammary gland. Low-density cultures showed a homogeneous epithelial morphology without detectable fibroblastic or myoepithelial cells. The culture was responsive to contact inhibition of proliferation and its doubling time was dependent on the presence of insulin and epidermal growth factor (EGF). GMGE cells secrete caseins regardless of the presence or absence of lactogenic hormones in the culture media. Investigation of the total N-glycan pool of human erythropoietin (rhEPO) expressed in GMGE cells by monosaccharide analysis, HPLC profiling, and mass spectrometry, indicated significant differences with respect to the same protein expressed in Chinese hamster ovary (CHO) cells. N-Glycans of rhEPO-GMGE are core-fucosylated, but fucosylation of outer arms was also found. Our results also revealed the presence of low levels of sialylation (>95% Neu5Ac), N,N'-diacetyllactosediamine units, and possibly Gal-Gal non-reducing terminal elements.
Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR).
Krotkiewska, Bozena; Pasek, Marta; Krotkiewski, Hubert
2002-01-01
Glycophorin A (GPA), the major sialoglycoprotein of the human erythrocyte membrane, was isolated from erythrocytes of healthy individuals of blood groups A, B and O using phenol-water extraction of erythrocyte membranes. Interaction of individual GPA samples with three lectins (Psathyrella velutina lectin, PVL; Triticum vulgaris lectin, WGA and Sambucus nigra I agglutinin SNA-I) was analyzed using a BIAcore biosensor equipped with a surface plasmon resonance (SPR) detector. The experiments showed no substantial differences in the interaction between native and desialylated GPA samples originating from erythrocytes of either blood group and each of the lectins. Desialylated samples reacted weaker than the native ones with all three lectins. PVL reacted about 50-fold more strongly than WGA which, similar to PVL, recognizes GlcNAc and Neu5Ac residues. SNA-I lectin, recognizing alpha2-6 linked Neu5Ac residues, showed relatively weak reaction with native and only residual reaction with desialylated GPA samples. The data obtained show that SPR is a valuable method to determine interaction of glycoproteins with lectins, which potentially can be used to detect differences in the carbohydrate moiety of individual glycoprotein samples.
Gatos, M; Formaggio, F; Crisma, M; Toniolo, C; Bonora, G M; Benedetti, Z; Di Blasio, B; Iacovino, R; Santini, A; Saviano, M; Kamphuis, J
1997-01-01
A series of N- and C-protected, monodispersed homo-oligopeptides (to the dodecamer level) from the small-ring alicyclic C alpha, alpha-dialkylated glycine 1-aminocyclobutane-1-carboxylic acid (Ac4c) and two Ala/Ac4c tripeptides were synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives Z-Ac4c-OH and Z2-Ac4c-OH, the tripeptides Z-(Ac4c)3-OtBu, Z-Ac4c-(L-Ala)2-OMe and Z-L-Ala-Ac4c-L-Ala-OMe, and the tetrapeptide Z-(Ac4c)4-OtBu were determined in the crystal state by X-ray diffraction. The average geometry of the cyclobutyl moiety of the Ac4c residue was assessed and the tau(N-C alpha-C') bond angle was found to be significantly expanded from the regular tetrahedral value. The conformational data are strongly in favour of the conclusion that the Ac4c residue is an effective beta-turn and helix former. A comparison with the structural propensities of alpha-aminoisobutyric acid, the prototype of C alpha, alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3, 5-8) is made and the implications for the use of the Ac4c residue in conformationally constrained peptide analogues are briefly examined.
NASA Astrophysics Data System (ADS)
Tailford, Louise E.; Owen, C. David; Walshaw, John; Crost, Emmanuelle H.; Hardy-Goddard, Jemma; Le Gall, Gwenaelle; de Vos, Willem M.; Taylor, Garry L.; Juge, Nathalie
2015-07-01
The gastrointestinal mucus layer is colonized by a dense community of microbes catabolizing dietary and host carbohydrates during their expansion in the gut. Alterations in mucosal carbohydrate availability impact on the composition of microbial species. Ruminococcus gnavus is a commensal anaerobe present in the gastrointestinal tract of >90% of humans and overrepresented in inflammatory bowel diseases (IBD). Using a combination of genomics, enzymology and crystallography, we show that the mucin-degrader R. gnavus ATCC 29149 strain produces an intramolecular trans-sialidase (IT-sialidase) that cleaves off terminal α2-3-linked sialic acid from glycoproteins, releasing 2,7-anhydro-Neu5Ac instead of sialic acid. Evidence of IT-sialidases in human metagenomes indicates that this enzyme occurs in healthy subjects but is more prevalent in IBD metagenomes. Our results uncover a previously unrecognized enzymatic activity in the gut microbiota, which may contribute to the adaptation of intestinal bacteria to the mucosal environment in health and disease.
Min, Jun Zhe; Tomiyasu, Yuki; Morotomi, Takashi; Jiang, Ying-Zi; Li, Gao; Shi, Qing; Yu, Hai-Fu; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa
2015-04-15
Type 2 diabetes patients (DP) have significantly higher plasma levels of valine, leucine, isoleucine and alanine than the controls. Specific amino acids may acutely and chronically regulate insulin secretion from the pancreatic β-cells. We recently identified a metabolic signature of N-acetyl leucine (Ac-Leu) that strongly predicts diabetes development in mice hair. The Ac-Leu appears to be a potential biomarker candidate related to diabetes. However, the determination of Ac-Leu in human hair has not been reported. We measured the Ac-Leu, and its structure is similar to N-acetyl isoleucine (Ac-Ile) in human hair by ultra-performance liquid chromatography (UPLC) with electrospray ionization tandem mass spectrometry (ESI-MS/MS). The developed method was applied to the determination of Ac-Leu and Ac-Ile in the hair of healthy volunteers (HV) and DP. Ac-Leu, Ac-Ile and N-acetyl norleucine (Ac-Nle, IS) were extracted from human hair samples by a micropulverized extraction procedure, then separated on a C18 column by isocratic elution of acetonitrile-0.1% formic acid in water:0.1% formic acid (14:86, vol./vol.). MRM using the fragmentation transitions of m/z 174.1→86.1 in the positive ESI mode was performed to quantify the N-acetyl leucine, N-acetyl isoleucine and IS. Ac-Leu, Ac-Ile and Ac-Nle in the human hair samples were completely separated by isocratic elution of a 5.0 min duration wash program using a reversed-phase column, and sensitively detected by LC-MS/MS in the ESI(+) MRM mode. The amounts of Ac-Leu and Ac-Ile in the hairs of HV and DP were determined. When comparing the concentrations between DP and those from HV, a statistically significant correlation was observed for the Ac-Leu (p<0.001) and Ac-Ile (p<0.01). The proposed method is useful for the determination of Ac-Leu and Ac-Ile in the hairs of DP and HV. Human hair may serve as a noninvasive biosample for the diagnosis of diabetes. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Crystal structure of the HA3 subcomponent of Clostridium botulinum type C progenitor toxin.
Nakamura, Toshio; Kotani, Mao; Tonozuka, Takashi; Ide, Azusa; Oguma, Keiji; Nishikawa, Atsushi
2009-01-30
The Clostridium botulinum type C 16S progenitor toxin contains a neurotoxin and several nontoxic components, designated nontoxic nonhemagglutinin (HA), HA1 (HA-33), HA2 (HA-17), HA3a (HA-22-23), and HA3b (HA-53). The HA3b subcomponent seems to play an important role cooperatively with HA1 in the internalization of the toxin by gastrointestinal epithelial cells via binding of these subcomponents to specific oligosaccharides. In this study, we investigated the sugar-binding specificity of the HA3b subcomponent using recombinant protein fused to glutathione S-transferase and determined the three-dimensional structure of the HA3a-HA3b complex based on X-ray crystallography. The crystal structure was determined at a resolution of 2.6 A. HA3b contains three domains, domains I to III, and the structure of domain I resembles HA3a. In crystal packing, three HA3a-HA3b molecules are assembled to form a three-leaved propeller-like structure. The three HA3b domain I and three HA3a alternate, forming a trimer of dimers. In a database search, no proteins with high structural homology to any of the domains (Z score >10) were found. Especially, HA3a and HA3b domain I, mainly composed of beta-sheets, reveal a unique fold. In binding assays, HA3b bound sialic acid with high affinity, but did not bind galactose, N-acetylgalactosamine, or N-acetylglucosamine. The electron density of liganded N-acetylneuraminic acid was determined by crystal soaking. In the sugar-complex structure, the N-acetylneuraminic acid-binding site was located in the cleft formed between domains II and III of HA3b. This report provides the first determination of the three-dimensional structure of the HA3a-HA3b complex and its sialic acid binding site. Our results will provide useful information for elucidating the mechanism of assembly of the C16S toxin and for understanding the interactions with oligosaccharides on epithelial cells and internalization of the botulinum toxin complex.
Gatos, M; Formaggio, F; Crisma, M; Valle, G; Toniolo, C; Bonora, G M; Saviano, M; Iacovino, R; Menchise, V; Galdiero, S; Pedone, C; Benedetti, E
1997-01-01
A series of N- and C-protected, monodispersed homo-oligopeptides (to the pentamer level) from the cycloaliphatic C alpha,alpha-dialkylated glycine 1-aminocyclononane-1-carboxylic acid (Ac9c) and two Ala/Ac9c tripeptides have been synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives mCIAc-Ac9c-OH and Z-Ac9c-OtBu, the dipeptide pBrBz-(Ac9c)2-OtBu, the tetrapeptide Z-(Ac9c)4-OtBu, and the pentapeptide Z-(Ac9c)5-OtBu were determined in the crystal state by X-ray diffraction. Based on this information, the average geometry and the preferred conformation for the cyclononyl moiety of the Ac9c residue have been assessed. The backbone conformational data are strongly in favour of the conclusion that the Ac9c residue is a strong beta-turn and helix former. A comparison with the structural propensity of alpha-aminoisobutyric acid, the prototype of C alpha,alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3-8) is made and the implications for the use of the Ac9c residue in conformationally constrained analogues of bioactive peptides are briefly examined.
Solvent extraction separation of Th-227 and Ac-225 in room temperature ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Jason R; Boll, Rose Ann; Dai, Sheng
2012-01-01
The solvent extractions of Th-227 and Ac-225 from the aqueous phase into ionic liquids (ILs) were investigated by using N,N,N ,N - tetraoctyldiglycolamide (TODGA) or di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant. Four ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium bis(perfluoroethanesulfonyl)imide ([C4mim][BETI]), 1-butyl-2,3-trimethyleneimidazolium (trifluoromethanesulfonyl)imide [BuI5][NTf2], and 1-benzyl pyridinium bis(trifluoromethanesulfonyl)imide ([PhCH2Py][NTf2]) were used as extraction solvents for separation of Th-227 and Ac-225 in this study. Excellent extraction efficiencies and selectivities were found for Th-227/Ac-225 when HDEHP was used as an extractant in these ionic liquids. The effects of different extractant concentrations in ionic liquids and acidities of the aqueous phase on extraction efficienciesmore » and selectivities of Th-227/Ac-225 are also presented in this article.« less
Zhang, Chen; Deng, Yuanying; Dai, Hongmei; Zhou, Wenjuan; Tian, Jing; Bing, Guoying; Zhao, Lingling
2017-01-01
Dimethyl sulfoxide (DMSO) is a widely used solvent and vehicle for in vivo and in vitro administration of test compounds. Effects of DMSO independent of the test compound, such as in studies examining morphological plasticity or neurotoxic responses, may lead to spurious results. To investigate effects of DMSO concentration ([DMSO]) on morphology and survival of primary cultured neurons and astrocytes. Primary cultured neurons and astrocytes were treated with 0.25%-10.00% [DMSO] for 12-48h. Viable cell number and morphology were compared to untreated cultures using the CCK-8 assay and phase-contrast microscopy. Expression levels of the neuronal marker NeuN and astrocyte marker glial fibrillary acidic protein (GFAP) were determined by immunofluorescence and western blotting. A [DMSO]≤0.50% had no effect on neuronal number or NeuN expression up to 24h, while ≥1.00% induced a progressive and dramatic loss of both viability and NeuN expression even after 12h. Brief (12h) exposure to ≤1.00% DMSO had no effect on astrocytes survival or GFAP expression, while ≥5.00% significantly reduced both at all exposure durations. In contrast to neurons, exposure to 0.50% and 1.00% DMSO for 24 or 48h enhanced astrocytes proliferation and GFAP expression. Astrocytic processes were maintained at 0.50% and 1.00% DMSO, while neurons exhibited marked neurite retraction at ≥0.50%. A [DMSO]≥0.5% markedly disrupts neuronal morphology and reduces viability, even after brief exposure. In astrocytes, 0.50% and 1.00% DMSO appear to induce reactive gliosis. For treatment of neural cells, [DMSO] should be ≤0.25% to obviate spurious vehicle effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of HER-2/Neu Signaling on Sensitivity to TRAIL in Prostate Cancer
2007-06-01
acetyl salicylic acid (ASA: aspirin), amiloride, and quercetin inhibit the PI(3)K-Akt signal transduction pathway and promote TRAIL-induced...SUBJECT TERMS HER-2/neu; TRAIL; Amiloride; Aspirin; Quercetin ; PI(3)K; Akt; NF-κB; Survivin 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...by quercetin through Akt dephosphorylation. J Cell Biochem., 100:998-1009. 5. Yoo J, Kim HR, Lee YJ. (2006) Hyperthermia enhances tumour necrosis
Sialic acids as link to Japanese scientistsDedicated to Prof. Dr. Tamio Yamakawa.
SCHAUER, Roland
2016-01-01
This manuscript is dedicated to Prof. Tamio Yamakawa and describes my cooperations on sialic acid-related topics with Japanese scientists during the last 40 years. We studied sialic acids and their O-acetylated derivatives in the sea urchin Pseudocentrotus depressus, in Halocynthia species, and in human and bovine milk. In seafood we mainly searched for N-glycolylneuraminic acid. With synthetic substrates it was shown that sialic acid O-acetylation at C-4 hinders the activity of sialidases, with the exception of viral enzymes. The biosynthesis of Neu5Gc was discussed and the distribution of this sialic acid in dogs followed in modern literature and reviewed regarding their migration. An excellent source of sialic acids is edible bird nest substance (Collocalia mucin) which was used for the synthesis of sialylation inhibitors. PMID:27063181
Chen, Xianlan; Zhang, Guowei; Shi, Ling; Pan, Shanqing; Liu, Wei; Pan, Hiabo
2016-08-01
The formation of nitrogen-doped (N-doped) graphene uses hydrothermal method with urea as reducing agent and nitrogen source. The surface elemental composition of the catalyst was analyzed through XPS, which showed a high content of a total N species (7.12at.%), indicative of the effective N-doping, present in the form of pyridinic N, pyrrolic N and graphitic N groups. Moreover, Au nanoparticles deposited on ZnO nanocrystals surface, forming Au/ZnO hybrid nanocatalysts, undergo a super-hydrophobic to super-hydrophilic conversion. Herein, we present Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene sheets through sonication technique of the Au/ZnO/N-doped graphene hybrid nanostructures. The as-prepared Au/ZnO/N-doped graphene hybrid nanostructure modified glassy carbon electrode (Au/ZnO/N-doped graphene/GCE) was first employed for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and acetaminophen (AC). The oxidation over-potentials of AA, DA and AC decreased dramatically, and their oxidation peak currents increased significantly at Au/ZnO/N-doped graphene/GCE compared to those obtained at the N-doped graphene/GCE and bare CCE. The peak separations between AA and DA, DA and AC, and AC and AA are large up to 195, 198 and 393mV, respectively. The calibration curves for AA, DA and AC were obtained in the range of 30.00-13.00×10(3), 2.00-0.18×10(3) and 5.00-3.10×10(3)μM, respectively. The detection limits (S/N=3) were 5.00, 0.40 and 0.80μM for AA, DA and AC, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Liyan; He, Yujie; Lu, Huimin; Wang, Maoqing; Sun, Changhao; Na, Lixin; Li, Ying
2013-05-15
To study the toxic effect of chronic exposure to 3-chloro-1,2-propanediol (3-MCPD) at low doses, a metabonomics approach based on ultrahigh-performance liquid chromatography and quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was performed. Two different doses of 3-MCPD (1.1 and 5.5mg/kg bw/d) were administered to Wistar rats for 120 days (1.1mg/kg bw/d: lowest observed adverse effect level [LOAEL]). The metabolite profiles and biochemical parameters were obtained at five time points after treatment. For the 3-MCPD-treated groups, a significant change in urinary N-acetyl-β-d-glucosaminidase and β-d-galactosidase was detected on day 90, while some biomarkers based on the metabonomics, such as N-acetylneuraminic acid, N-acetyl-l-tyrosine, and gulonic acid, were detected on day 30. These results suggest that these biomarkers changed more sensitively and earlier than conventional biochemical parameters and were thus considered early and sensitive biomarkers of exposure to 3-MCPD; these biomarkers provide more information on toxicity than conventional biochemical parameters. These results might be helpful to investigate the toxic mechanisms of 3-MCPD and provide a scientific basis for assessing the effect of chronic exposure to low-dose 3-MCPD on human health. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Hoffmann, Julia; Schneider, Carola; Heinbockel, Lena; Brandenburg, Klaus; Reimer, Rudolph; Gabriel, Gülsah
2014-04-01
Influenza A viruses are a continuous threat to human health as illustrated by the 2009 H1N1 pandemic. Since circulating influenza virus strains become increasingly resistant against currently available drugs, the development of novel antivirals is urgently needed. Here, we have evaluated a recently described new class of broad-spectrum antiviral peptides (synthetic anti-lipopolysaccharide peptides; SALPs) for their potential to inhibit influenza virus replication in vitro and in vivo. We found that particularly SALP PEP 19-2.5 shows high binding affinities for the influenza virus receptor molecule, N-Acetylneuraminic acid, leading to impaired viral attachment and cellular entry. As a result, replication of several influenza virus subtypes (H7N7, H3N2 and 2009 pandemic H1N1) was strongly reduced. Furthermore, mice co-treated with PEP 19-2.5 were protected against an otherwise 100% lethal H7N7 influenza virus infection. These findings show that SALPs exhibit antiviral activity against influenza viruses by blocking virus attachment and entry into host cells. Thus, SALPs present a new class of broad-spectrum antiviral peptides for further development for influenza virus therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Gulati, Shelly; Smith, David F.; Cummings, Richard D.; Couch, Robert B.; Griesemer, Sara B.; St. George, Kirsten; Webster, Robert G.; Air, Gillian M.
2013-01-01
It is generally accepted that human influenza viruses bind glycans containing sialic acid linked α2–6 to the next sugar, that avian influenza viruses bind glycans containing the α2–3 linkage, and that mutations that change the binding specificity might change the host tropism. We noted that human H3N2 viruses showed dramatic differences in their binding specificity, and so we embarked on a study of representative human H3N2 influenza viruses, isolated from 1968 to 2012, that had been isolated and minimally passaged only in mammalian cells, never in eggs. The 45 viruses were grown in MDCK cells, purified, fluorescently labeled and screened on the Consortium for Functional Glycomics Glycan Array. Viruses isolated in the same season have similar binding specificity profiles but the profiles show marked year-to-year variation. None of the 610 glycans on the array (166 sialylated glycans) bound to all viruses; the closest was Neu5Acα2–6(Galβ1–4GlcNAc)3 in either a linear or biantennary form, that bound 42 of the 45 viruses. The earliest human H3N2 viruses preferentially bound short, branched sialylated glycans while recent viruses bind better to long polylactosamine chains terminating in sialic acid. Viruses isolated in 1996, 2006, 2010 and 2012 bind glycans with α2–3 linked sialic acid; for 2006, 2010 and 2012 viruses this binding was inhibited by oseltamivir, indicating binding of α2–3 sialylated glycans by neuraminidase. More significantly, oseltamivir inhibited virus entry of 2010 and 2012 viruses into MDCK cells. All of these viruses were representative of epidemic strains that spread around the world, so all could infect and transmit between humans with high efficiency. We conclude that the year-to-year variation in receptor binding specificity is a consequence of amino acid sequence changes driven by antigenic drift, and that viruses with quite different binding specificity and avidity are equally fit to infect and transmit in the human population. PMID:23805213
Mobile contingency locus controlling Escherichia coli K1 polysialic acid capsule acetylation.
Vimr, Eric R; Steenbergen, Susan M
2006-05-01
Escherichia coli K1 is part of a reservoir of adherent, invasive facultative pathogens responsible for a wide range of human and animal disease including sepsis, meningitis, urinary tract infection and inflammatory bowel syndrome. A prominent virulence factor in these diseases is the polysialic acid capsular polysaccharide (K1 antigen), which is encoded by the kps/neu accretion domain inserted near pheV at 67 map units. Some E. coli K1 strains undergo form (phase) variation involving loss or gain of O-acetyl esters at carbon positions 7 or 9 of the individual sialic acid residues of the polysialic acid chains. Acetylation is catalysed by the receptor-modifying acetyl coenzyme-A-dependent O-acetyltransferase encoded by neuO, a phase variable locus mapping near the integrase gene of the K1-specific prophage, CUS-3, which is inserted in argW at 53.1 map units. As the first E. coli contingency locus shown to operate by a translational switch, further investigation of neuO should provide a better understanding of the invasive K1 pathotype. Minimal estimates of morbidity and economic costs associated with human infections caused by extraintestinal pathogenic E. coli strains such as K1 indicate at least 6.5 million cases with attendant medical costs exceeding 2.5 billion US dollars annually in the United States alone.
Murine Sialidase Neu3 facilitates GM2 degradation and bypass in mouse model of Tay-Sachs disease.
Seyrantepe, Volkan; Demir, Secil Akyildiz; Timur, Zehra Kevser; Von Gerichten, Johanna; Marsching, Christian; Erdemli, Esra; Oztas, Emin; Takahashi, Kohta; Yamaguchi, Kazunori; Ates, Nurselin; Dönmez Demir, Buket; Dalkara, Turgay; Erich, Katrin; Hopf, Carsten; Sandhoff, Roger; Miyagi, Taeko
2018-01-01
Tay-Sachs disease is a severe lysosomal storage disorder caused by mutations in Hexa, the gene that encodes for the α subunit of lysosomal β-hexosaminidase A (HEXA), which converts GM2 to GM3 ganglioside. Unexpectedly, Hexa -/- mice have a normal lifespan and show no obvious neurological impairment until at least one year of age. These mice catabolize stored GM2 ganglioside using sialidase(s) to remove sialic acid and form the glycolipid GA2, which is further processed by β-hexosaminidase B. Therefore, the presence of the sialidase (s) allows the consequences of the Hexa defect to be bypassed. To determine if the sialidase NEU3 contributes to GM2 ganglioside degradation, we generated a mouse model with combined deficiencies of HEXA and NEU3. The Hexa -/- Neu3 -/- mice were healthy at birth, but died at 1.5 to 4.5months of age. Thin-layer chromatography and mass spectrometric analysis of the brains of Hexa -/- Neu3 -/- mice revealed the abnormal accumulation of GM2 ganglioside. Histological and immunohistochemical analysis demonstrated cytoplasmic vacuolation in the neurons. Electron microscopic examination of the brain, kidneys and testes revealed pleomorphic inclusions of many small vesicles and complex lamellar structures. The Hexa -/- Neu3 -/- mice exhibited progressive neurodegeneration with neuronal loss, Purkinje cell depletion, and astrogliosis. Slow movement, ataxia, and tremors were the prominent neurological abnormalities observed in these mice. Furthermore, radiographs revealed abnormalities in the skeletal bones of the Hexa -/- Neu3 -/- mice. Thus, the Hexa -/- Neu3 -/- mice mimic the neuropathological and clinical abnormalities of the classical early-onset Tay-Sachs patients, and provide a suitable model for the future pre-clinical testing of potential treatments for this condition. Copyright © 2017 Elsevier Inc. All rights reserved.
Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments.
Yamakoshi, Yasuo; Nagano, Takatoshi; Hu, Jan Cc; Yamakoshi, Fumiko; Simmer, James P
2011-02-03
Dentin sialophosphoprotein (Dspp) is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp), the N-terminal domain of dentin sialophosphoprotein (Dspp), is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB) and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG) attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were tentatively assigned at Thr200, Thr216 and Thr316. Porcine Dsp GAG attachments were found at Ser238 and Ser250 and were comprised of chondroitin 6-sulfate and chondroitin 4-sulfate in a ratio of 7 to 3, respectively. The distribution of porcine Dsp posttranslational modifications indicate that porcine Dsp has an N-terminal domain with at least six N-glycosylations and a C-terminal domain with two GAG attachments and at least two O-glycosylations.
Thermal and ac electrical properties of N-methylanthranilic acid below room temperature
NASA Astrophysics Data System (ADS)
Abdel-Kader, M. M.; Basha, M. A. F.; Ramzy, G. H.; Aboud, A. I.
2018-06-01
In this study, we investigated the thermal and alternating current (ac) electrical properties of N-methylanthranilic acid. Based on data obtained by differential scanning calorimetry, we detected two endothermic transitions at ≈ 213 K and ≈265.41 K. The weakening of hydrogen bonds as the temperature increased appeared to be the main cause of these phase transitions. We also recorded the melting point at about 475.5 K. Both the ac conductivity (σac) and complex dielectric constant (ε∗ = ε ' - jε ' ') were studied as functions of temperature over the frequency range from 1 kHz to 100 kHz. We observed significant variations in the thermal and electrical properties before and after the transition temperature at 265.41 K. The conduction mechanism responsible for the ac electrical properties before this transition was due to overlapping large polarons. These novel results are expected to have impacts on the application of organic semiconductors and dielectrics.
Sialic acid-triggered macroscopic properties switching on a smart polymer surface
NASA Astrophysics Data System (ADS)
Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei
2018-01-01
Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.
Ghandi, Mehdi; Salimi, Farshid; Olyaei, Abolfazl
2006-07-26
The acid-catalyzed cyclocondensation of N,N'-bisaryl (aryl = 2-pyrimidinyl, 2-pyrazinyl and 4-nitrophenyl) methanediamines 5a-c with aqueous formaldehyde in refluxing acetonitrile leads to the formation of the corresponding 1,3,5-triaryl-1,3,5-hexa-hydrotriazines 6a-c. The stoichiometric reactions of 2-aminopyrimidine and 2-amino-pyrazine with aqueous formaldehyde in acetonitrile under reflux conditions also afforded 6a and 6b, respectively. Treatment of 2-aminopyrimidine with aqueous formaldehyde in a 3:2 ratio yielded N,N',N"-tris(2-pyrimidinyl)dimethylenetriamine (7a) as a sole product, which upon subsequent reaction with formaldehyde also afforded 6a. The reaction of N,N'-biphenylmethanediamine with formaldehyde was also investigated.
Parasuraman, Ponnusamy; Murugan, Veeramani; Selvin, Jeyasigamani F A; Gromiha, M Michael; Fukui, Kazuhiko; Veluraja, Kasinadar
2014-08-01
Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.
Wright, C S
1990-10-20
The crystal structures of complexes of isolectins 1 and 2 of wheat germ agglutinin (WGA1 and WGA2) with N-acetylneuraminyl-lactose (NeuNAc-alpha(2-3)-Gal-beta(1-4)-Glc) have been refined on the basis of data in the 8 to 2.2 A resolution range to final crystallographic R-factors of 17.2% and 15.3% (Fo greater than 1 sigma), respectively. Specific binding interactions and water association, as well as changes in conformation and mobility of the structure upon ligand binding, were compared in the two complexes. The temperature factors (B = 16.3 A2 and 18.4 A2) were found to be much lower compared with those of their respective native structures (19 to 22 A2). Residues involved in sugar binding, dimerization and in lattice contacts exhibit the largest decreases in B-value, suggesting that sugar binding reduces the overall mobility of the protein molecules in the crystal lattice. The binding mode of this sialyl-trisaccharide, an important cell receptor analogue, has been compared in the two isolectins. Only one of the two unique binding sites (4 per dimer), located in the subunit/subunit interface, is occupied in the crystals. This site, termed the "primary" binding site, contains one of the five amino acid substitutions that differentiate WGA1 and WGA2. Superposition of the refined models in each of the independent crystallographic environments indicates a close match only of the terminal non-reducing NeuNAc residue (root-mean-square delta r of 0.5 to 0.6 A). The Gal-Glc portion was found to superimpose poorly, lack electron density, and possess high atomic thermal factors. In both complexes NeuNAc is stabilized through contact with six amino acid side-chains (Ser114 and Glu115 of subunit 1 and Ser62, Tyr64, Tyr(His)66 and Tyr73 of subunit 2), involving all NeuNAc ring substituents. Refinement has allowed accurate assessment of the contact distances for four hydrogen bonds, a strong buried non-polar contact with the acetamido CH3 group and a large number of van der Waals' interactions with the three aromatic side-chains. The higher affinity of N-acetylneuraminyl-lactose observed by nuclear magnetic resonance studies for WGA1 can be explained by the more favorable binding interactions that occur when residue 66 is a Tyr. The tyrosyl side-chain provides a larger surface for van der Waals' stacking against the NeuNAc pyranose ring than His66 and a hydrogen bond contact with Gal (C2-OH), not possible in WGA2.(ABSTRACT TRUNCATED AT 400 WORDS)
Bhattachary, R; Bukkapatnam, R; Prawoko, I; Soto, J; Morgan, M; Salup, R R
2002-05-01
Despite early diagnosis and improved therapy, 31,500 men will die from prostate cancer (PC) this year. The HER2/neu oncoprotein is an important effector of cell growth found in the majority of high-grade prostatic tumors and is capable of rendering immunogenicity. The antigenicity of this oncoprotein might prove useful in the development of PC vaccines. Our goal is to prove the principle that a single DNA vaccine can provide reliable immunity against PC in the MatLyLu (MLL) translational tumor model. The parental rat MatLyLu PC cell line expresses low to moderate levels of the rat neu protein. To simulate in vivo human PC, MatLyLu cells were transfected with a truncated sequence of human HER2/neu cDNA cloned into the pCI-neo vector. This HER2/neu cDNA sequence encodes the first 433 amino acids of the extracellular domain (ECD). MatLyLu cells were also transfected with the same HER2/neu cDNA sequence cloned into the N1-terminal sequence of EGFP reporter gene to produce a fusion protein. The partial ECD sequence of HER2/neu includes five rat major histocompatibility (MHC)-II-restricted peptides with complete human-to-rat cross-species homology. The HER2/neu protein overexpression was documented by Western Blot analysis, and the expression of fusion protein was monitored by confocal microscopy and fluorimetry. Vaccination with a single injection of HER2/neu cDNA protected 50% of animals against HER2/neu-MatLyLu tumors (P < 0.01). When the tumor cells were engineered to express HER2/neu-EGFP fusion protein, the antitumor immunity was enhanced, as following vaccination with HER2/neu-EGFP cDNA, 80% of these rats rejected HER2/neu-EGFP-MatLyLu (P<0.001). Both vaccines induced HER2/neu-specific antibody titers. Rats vaccinated with EGFP-cDNA rejected 80% of EGFP-MatLyLu tumors and, interestingly, 40% of HER2/neu-MatLyLu tumors. None of the cDNA vaccines induced immunity against parental MatLyLu cells. Our data clearly demonstrate that a single injection of HER2/neu-EGFP cDNA is a very effective vaccine against PC tumors expressing the cognate tumor-associated antigen (TA). The antitumor immunity is significantly more pronounced if the tumors express xenogeneic HER2/neu-EGFP fusion protein as opposed to only the syngeneic HER2/neu oncoprotein. Our data suggests that the HER2/neu-EGFP-MatLyLu tumor is a potential animal tumor model for investigating therapeutic vaccine strategies against PC in vivo and demonstrates the limitations of a cDNA vaccine only encoding for MHC-II-restricted HER2/neu-ECD sequence peptides.
Pereira, L; Pereira, R; Pereira, M F R; van der Zee, F P; Cervantes, F J; Alves, M M
2010-11-15
The surface chemistry of a commercial AC (AC(0)) was selectively modified, without changing significantly its textural properties, by chemical oxidation with HNO(3) (AC(HNO3)) and O(2) (AC(O2)), and thermal treatments under H(2) (AC(H2)) or N(2) (AC(N2)) flow. The effect of modified AC on anaerobic chemical dye reduction was assayed with sulphide at different pH values 5, 7 and 9. Four dyes were tested: Acid Orange 7, Reactive Red 2, Mordant Yellow 10 and Direct Blue 71. Batch experiments with low amounts of AC (0.1 g L(-1)) demonstrated an increase of the first-order reduction rate constants, up to 9-fold, as compared with assays without AC. Optimum rates were obtained at pH 5 except for MY10, higher at pH 7. In general, rates increased with increasing the pH of point zero charge (pH(pzc)), following the trend AC(HNO3) < AC(O2) < AC(0) < AC(N2) < AC(H2). The highest reduction rate was obtained for MY10 with AC(H2) at pH 7, which corresponded to the double, as compared with non-modified AC. In a biological system using granular biomass, AC(H2) also duplicated and increase 4.5-fold the decolourisation rates of MY10 and RR2, respectively. In this last experiment, reaction rate was independent of AC concentration in the tested range 0.1-0.6 g L(-1). Copyright © 2010 Elsevier B.V. All rights reserved.
Global metabolite profiling analysis of lipotoxicity in HER2/neu-positive breast cancer cells.
Baumann, Jan; Kokabee, Mostafa; Wong, Jason; Balasubramaniyam, Rakshika; Sun, Yan; Conklin, Douglas S
2018-06-05
Recent work has shown that HER2/neu-positive breast cancer cells rely on a unique Warburg-like metabolism for survival and aggressive behavior. These cells are dependent on fatty acid (FA) synthesis, show markedly increased levels of stored fats and disruption of the synthetic process results in apoptosis. In this study, we used global metabolite profiling and a multi-omics network analysis approach to model the metabolic changes in this physiology under palmitate-supplemented growth conditions to gain insights into the molecular mechanism and its relevance to disease prevention and treatment. Computational analyses were used to define pathway enrichment based on the dataset of significantly altered metabolites and to integrate metabolomics and transcriptomics data in a multi-omics network analysis. Network-predicted changes and functional relationships were tested with cell assays in vitro . Palmitate-supplemented growth conditions induce distinct metabolic alterations. Growth of HER2-normal MCF7 cells is unaffected under these conditions whereas HER2/neu-positive cells display unchanged neutral lipid content, AMPK activation, inhibition of fatty acid synthesis and significantly altered glutamine, glucose and serine/glycine metabolism. The predominant upregulated lipid species is the novel bioactive lipid N-palmitoylglycine, which is non-toxic to these cells. Limiting the availability of glutamine significantly ameliorates the lipotoxic effects of palmitate, reduces CHOP and XBP1(s) induction and restores the expression levels of HER2 and HER3. The study shows that HER2/neu-positive breast cancer cells change their metabolic phenotype in the presence of palmitate. Palmitate induces AMPK activation and inhibition of fatty acid synthesis that feeds back into glycolysis as well as anaplerotic glutamine metabolism.
Ebrahimi, Bahram
2017-03-01
A new solid-phase extraction (SPE) sorbent was introduced based on acidic-modified (AM) activated carbon (AC) prepared from acorn shells of native oak trees in Kurdistan. Hydrochloric acid (15%, w/w) and nitric acid (32.5%, w/w) were used to condition and modify AC. The IR spectra of AC and AM-AC showed that AM lead to the formation of increasing numbers of acidic functional groups on AM-AC. AM-AC was used in the SPE method for the extraction and preconcentration of Ni+2 prior to flame atomic absorption spectrometric determination at ng/mL levels in model and real food samples. Effective parameters of the SPE procedure, such as the pH of the solutions, sorbent dosage, extraction time, sample volume, type of eluent, and matrix ions, were considered and optimized. An enrichment factor of 140 was obtained. The calibration curve was linear with an R2 of 0.997 in the concentration range of 1-220 ng/mL. The RSD was 5.67% (for n = 7), the LOD was 0.352 ng/mL, and relative recoveries in vegetable samples ranged from 96.7 to 103.7%.
Figueroa, Johnny D.; Serrano-Illan, Miguel; Licero, Jenniffer; Cordero, Kathia; Miranda, Jorge D.
2016-01-01
Abstract Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA–mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN+ neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP+, APC+, and NG2+) and precursor cells (DCX+, nestin+). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 μg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the injured spinal cord. PMID:26715431
Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro
2011-01-01
We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on “CSF-type” Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on “serum-type” Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected “CSF-type” Tf but not “serum-type” Tf whereas SSA-TfAb ELISA detected “serum-type” Tf but not “CSF-type” Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases. PMID:21876827
Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro
2011-01-01
We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on "CSF-type" Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on "serum-type" Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected "CSF-type" Tf but not "serum-type" Tf whereas SSA-TfAb ELISA detected "serum-type" Tf but not "CSF-type" Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases.
Timms, Nicole; Windle, Claire L; Polyakova, Anna; Ault, James R; Trinh, Chi H; Pearson, Arwen R; Nelson, Adam; Berry, Alan
2013-03-04
Chemical modification has been used to introduce the unnatural amino acid γ-thialysine in place of the catalytically important Lys165 in the enzyme N-acetylneuraminic acid lyase (NAL). The Staphylococcus aureus nanA gene, encoding NAL, was cloned and expressed in E. coli. The protein, purified in high yield, has all the properties expected of a class I NAL. The S. aureus NAL which contains no natural cysteine residues was subjected to site-directed mutagenesis to introduce a cysteine in place of Lys165 in the enzyme active site. Subsequently chemical mutagenesis completely converted the cysteine into γ-thialysine through dehydroalanine (Dha) as demonstrated by ESI-MS. Initial kinetic characterisation showed that the protein containing γ-thialysine regained 17 % of the wild-type activity. To understand the reason for this lower activity, we solved X-ray crystal structures of the wild-type S. aureus NAL, both in the absence of, and in complex with, pyruvate. We also report the structures of the K165C variant, and the K165-γ-thialysine enzyme in the presence, or absence, of pyruvate. These structures reveal that γ-thialysine in NAL is an excellent structural mimic of lysine. Measurement of the pH-activity profile of the thialysine modified enzyme revealed that its pH optimum is shifted from 7.4 to 6.8. At its optimum pH, the thialysine-containing enzyme showed almost 30 % of the activity of the wild-type enzyme at its pH optimum. The lowered activity and altered pH profile of the unnatural amino acid-containing enzyme can be rationalised by imbalances of the ionisation states of residues within the active site when the pK(a) of the residue at position 165 is perturbed by replacement with γ-thialysine. The results reveal the utility of chemical mutagenesis for the modification of enzyme active sites and the exquisite sensitivity of catalysis to the local structural and electrostatic environment in NAL. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya
2014-07-01
Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less
Tul'skaya, Elena M; Shashkov, Alexander S; Streshinskaya, Galina M; Potekhina, Natalia V; Evtushenko, Ludmila I
2014-12-01
The structures of the cell wall teichoic acids (TA) from some species of the genus Nocardiopsis were established by chemical and NMR spectroscopic methods. The cell walls of Nocardiopsis synnemataformans VKM Ac-2518(T) and Nocardiopsis halotolerans VKM Ac-2519(T) both contain two TA with unique structures-poly(polyol phosphate-glycosylpolyol phosphate)-belonging to the type IV TA. In both organisms, the minor TA have identical structures: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-4 of the amino sugar. This structure is found for the first time. The major TA of N. halotolerans has a hitherto unknown structure: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate), the N-acetyl-β-galactosamine being acetalated with pyruvic acid at positions 4 and 6. The major TA of N. synnemataformans is a poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-3 of the amino sugar. The cell walls of Nocardiopsis composta VKM Ac-2520 and N. composta VKM Ac-2521(T) contain only one TA, namely 1,3-poly(glycerol phosphate) partially substituted with N-acetyl-α-glucosamine. The cell wall of Nocardiopsis metallicus VKM Ac-2522(T) contains two TA. The major TA is 1,5-poly(ribitol phosphate), each ribitol unit carrying a pyruvate ketal group at positions 2 and 4. The structure of the minor TA is the same as that of N. composta. The results presented correlate well with the phylogenetic grouping of strains and confirm the species and strain specific features of cell wall TA in members of the genus Nocardiopsis.
Benevides, Raquel Guimarães; Ganne, Géraldine; Simões, Rafael da Conceição; Schubert, Volker; Niemietz, Mathäus; Unverzagt, Carlo; Chazalet, Valérie; Breton, Christelle; Varrot, Annabelle; Cavada, Benildo Sousa; Imberty, Anne
2012-01-01
Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with Kd of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm. PMID:22692206
Crystal structures of sialyltransferase from Photobacterium damselae
Huynh, Nhung; Li, Yanhong; Yu, Hai; ...
2014-11-15
Sialyltransferase structures fall into either GT-A or GT-B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N-terminal immunoglobulin (Ig)-like domain. Photobacterium damselae α2–6-sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2–6-linked sialosides. In this paper, we report three crystal structures of this enzyme. Two structures with and without a donor substrate analog CMP-3F(a)Neu5Ac contain an immunoglobulin (Ig)-like domain and adopt the GT-B sialyltransferase fold. The binary structure reveals a non-productive pre-Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks themore » Ig-domain. Finally, comparison of the three structures reveals small inherent flexibility between the two Rossmann-like domains of the GT-B fold.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Stacy A.; Holloway, Gavan; Coulson, Barbara S.
2005-06-01
The sialic acid-binding domain (VP8*) component of the porcine CRW-8 rotavirus spike protein has been overexpressed in E. coli, purified and co-crystallized with an N-acetylneuraminic acid derivative. X-ray diffraction data have been collected to 2.3 Å, which has enabled determination of the structure by molecular replacement. Rotavirus recognition and attachment to host cells involves interaction with the spike protein VP4 that projects outwards from the surface of the virus particle. An integral component of these spikes is the VP8* domain, which is implicated in the direct recognition and binding of sialic acid-containing cell-surface carbohydrates and facilitates subsequent invasion by themore » virus. The expression, purification, crystallization and preliminary X-ray diffraction analysis of VP8* from porcine CRW-8 rotavirus is reported. Diffraction data have been collected to 2.3 Å resolution, enabling the determination of the VP8* structure by molecular replacement.« less
Adsorptive Removal of Nitrate from Aqueous Solution Using Nitrogen Doped Activated Carbon.
Machida, Motoi; Goto, Tatsuru; Amano, Yoshimasa; Iida, Tatsuya
2016-01-01
Activated carbon (AC) has been widely applied for adsorptive removal of organic contaminants from aqueous phase, but not for ionic pollutants. In this study, nitrogen doped AC was prepared to increase the adsorption capacity of nitrate from water. AC was oxidized with (NH 4 ) 2 S 2 O 8 solution to maximize oxygen content for the first step, and then NH 3 gas treatment was carried out at 950°C to aim at forming quaternary nitrogen (N-Q) species on AC surface (Ox-9.5AG). Influence of solution pH was examined so as to elucidate the relationship between surface charge and adsorption amounts of nitrate. The results showed that Ox-9.5AG exhibited about twice higher adsorption capacity than non-treatment AC at any initial nitrate concentration and any equilibrium solution pH (pH e ) investigated. The more decrease in pH e value, the more adsorption amount of negatively charged nitrate ion, because the surface charge of AC and Ox-9.5AG could become more positive in acidic solution. The oxidation and consecutive ammonia treatments lead to increase in nitrogen content from 0.35 to 6.4% and decrease in the pH of the point of zero charge (pH pzc ) from 7.1 to 4.0 implying that positively charged N-Q of a Lewis acid was created on the surface of Ox-9.5AG. Based on a Langmuir data analysis, maximum adsorption capacity attained 0.5-0.6 mmol/g of nitrate and adsorption affinity was 3.5-4.0 L/mmol at pH e 2.5 for Ox-9.5AG.
Sriwilaijaroen, Nongluk; Suzuki, Katsuhiko; Takashita, Emi; Hiramatsu, Hiroaki; Kanie, Osamu; Suzuki, Yasuo
2015-10-01
The purpose of this study was to develop a new compound to overcome influenza epidemics and pandemics as well as drug resistance. We synthesized a new compound carrying: (i) Neu5Acα2-6Galβ1-4GlcNAc (6SLN) for targeting immutable haemagglutinins (HAs) unless switched from human-type receptor preference; (ii) an acyl chain (lipo) for locking the compound with the viral HA via hydrophobic interactions; and (iii) a flexible poly-α-L-glutamic acid (PGA) for enhancing the compound solubility and for coating the viral surface, precluding accessibility of the PGA-coated virus to the negatively charged sialic acid on the host cell surface. 6SLN-lipo PGA appears to subvert binding of pandemic H1 and seasonal H3 HAs to receptors, as assessed by using guinea pig erythrocytes, which is critical for virus entry into host cells for multiplication. It shows high potency with IC50 values in the range of 300-500 nM against multiplication of both influenza pandemic H1N1/2009 and seasonal H3N2/2004 viruses in cell culture. It acts in synergism with either of the two FDA-approved neuraminidase inhibitor (NAI) clinical drugs, zanamivir (Relenza(®)) and oseltamivir carboxylate (active form of Tamiflu(®)), and it has the potential to aid NAI drugs to achieve complete clearance of the virus from the culture. 6SLN-lipo PGA is a new potential candidate drug for influenza control and is an attractive candidate for use in combination with an NAI drug for minimized toxicity, delayed development of resistance, prevention and treatment with the potential for eradication of human influenza. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lewis, Amanda L; Hensler, Mary E; Varki, Ajit; Nizet, Victor
2006-04-21
Nearly two dozen microbial pathogens have surface polysaccharides or lipo-oligosaccharides that contain sialic acid (Sia), and several Sia-dependent virulence mechanisms are known to enhance bacterial survival or result in host tissue injury. Some pathogens are also known to O-acetylate their Sias, although the role of this modification in pathogenesis remains unclear. We report that neuD, a gene located within the Group B Streptococcus (GBS) Sia biosynthetic gene cluster, encodes a Sia O-acetyltransferase that is itself required for capsular polysaccharide (CPS) sialylation. Homology modeling and site-directed mutagenesis identified Lys-123 as a critical residue for Sia O-acetyltransferase activity. Moreover, a single nucleotide polymorphism in neuD can determine whether GBS displays a "high" or "low" Sia O-acetylation phenotype. Complementation analysis revealed that Escherichia coli K1 NeuD also functions as a Sia O-acetyltransferase in GBS. In fact, NeuD homologs are commonly found within Sia biosynthetic gene clusters. A bioinformatic approach identified 18 bacterial species with a Sia biosynthetic gene cluster that included neuD. Included in this list are the sialylated human pathogens Legionella pneumophila, Vibrio parahemeolyticus, Pseudomonas aeruginosa, and Campylobacter jejuni, as well as an additional 12 bacterial species never before analyzed for Sia expression. Phylogenetic analysis shows that NeuD homologs of sialylated pathogens share a common evolutionary lineage distinct from the poly-Sia O-acetyltransferase of E. coli K1. These studies define a molecular genetic approach for the selective elimination of GBS Sia O-acetylation without concurrent loss of sialylation, a key to further studies addressing the role(s) of this modification in bacterial virulence.
Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments
2011-01-01
Background Dentin sialophosphoprotein (Dspp) is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp), the N-terminal domain of dentin sialophosphoprotein (Dspp), is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. Results To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB) and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG) attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were tentatively assigned at Thr200, Thr216 and Thr316. Porcine Dsp GAG attachments were found at Ser238 and Ser250 and were comprised of chondroitin 6-sulfate and chondroitin 4-sulfate in a ratio of 7 to 3, respectively. Conclusions The distribution of porcine Dsp posttranslational modifications indicate that porcine Dsp has an N-terminal domain with at least six N-glycosylations and a C-terminal domain with two GAG attachments and at least two O-glycosylations. PMID:21291557
Gittins, Rebecca; Harrison, Paul J
2004-03-15
There are an increasing number of quantitative morphometric studies of the human cerebral cortex, especially as part of comparative investigations of major psychiatric disorders. In this context, the present study had two aims. First, to provide quantitative data regarding key neuronal morphometric parameters in the anterior cingulate cortex. Second, to compare the results of conventional Nissl staining with those observed after immunostaining with NeuN, an antibody becoming widely used as a selective neuronal marker. We stained adjacent sections of area 24b from 16 adult brains with cresyl violet or NeuN. We measured the density of pyramidal and non-pyramidal neurons, and the size and shape of pyramidal neurons, in laminae II, III, Va, Vb and VI, using two-dimensional counting methods. Strong correlations between the two modes of staining were seen for all variables. However, NeuN gave slightly higher estimates of neuronal density and size, and a more circular perikaryal shape. Brain pH was correlated with neuronal size, measured with both methods, and with neuronal shape. Age and post-mortem interval showed no correlations with any parameter. These data confirm the value of NeuN as a tool for quantitative neuronal morphometric studies in routinely processed human brain tissue. Absolute values are highly correlated between NeuN and cresyl violet stains, but cannot be interchanged. NeuN may be particularly useful when it is important to distinguish small neurons from glia, such as in cytoarchitectural studies of the cerebral cortex in depression and schizophrenia.
Alpuche, Juan; Pereyra, Ali; Agundis, Concepción; Rosas, Carlos; Pascual, Cristina; Slomianny, Marie-Christine; Vázquez, Lorena; Zenteno, Edgar
2005-06-20
A 291-kDa lectin (LsL) was purified from the hemolymph of the white shrimp Litopenaeus setiferus by affinity chromatography on glutaraldehyde-fixed stroma from rabbit erythrocytes. LsL is a heterotetramer of two 80-kDa and two 52-kDa subunits, with no covalently-liked carbohydrate, and mainly composed by aspartic and glutamic acids, glycine and alanine, with relatively lower methionine and cysteine contents. Edman degradation indicated that the NH2-terminal of the 80-kDa subunit is composed DASNAQKQHDVNFLL, whereas the NH2-terminal of the 52-kDa subunit is blocked. The peptide mass fingerprint of LsL was predicted from tryptic peptides from each subunit by MALDI-TOF, and revealed that each subunit showed 23 and 22%, respectively, homology with the hemocyanin precursor from Litopenaeus vannamei. Circular dichroism analysis revealed beta sheet and alpha helix contents of 52.7 and 6.1%, respectively. LsL agglutinate at higher titers guinea pig, murine, and rabbit erythrocytes its activity is divalent cation-dependent. N-acetylated sugars, such as GlcNAc, GalNAc, and NeuAc, were the most effective inhibitors of the LsL hemagglutinating activity. Sialylated O-glycosylated proteins, such as bovine submaxillary gland mucin, human IgA, and fetuin, showed stronger inhibitory activity than sialylated N-glycosylated proteins, such as human orosomucoid, IgG, transferrin, and lactoferrin. Desialylation of erythrocytes or inhibitory glycoproteins abolished their capacity to bind LsL, confirming the relevance of sialic acid in LsL-ligand interactions.
Saviano, M; Iacovino, R; Menchise, V; Benedetti, E; Bonora, G M; Gatos, M; Graci, L; Formaggio, F; Crisma, M; Toniolo, C
2000-02-01
Two complete series of N-protected, monodispersed oligopeptide esters to the pentamer level from 1-aminocyclododecane-1-carboxylic acid (Ac(12)c), an alpha-amino acid conformationally constrained through C(alpha)(i) <--> C(alpha)(i) cyclization, and either L-Ala or Aib residues, along with the N-protected Ac(12)c homopeptide alkylamide series from monomer to trimer, have been synthesized by solution methods and fully characterized. The solution-preferred conformations of these peptides have been assessed by Fourier transform ir absorption and (1)H-nmr techniques. Moreover, the molecular structures of one derivative (Z-Ac(12)c-OH) and three peptides [the tripeptide ester Z-L-Ala-Ac(12)c-L-Ala-OMe, the tripeptide alkylamide Z-(Ac(12)c)(3)-NHiPr, and the tetrapeptide ester Z-(Aib)(2)-Ac(12)c-Aib-OtBu (Aib, alpha-aminoisobutyric acid)] have been determined in the crystal state by x-ray diffraction. The results obtained point to the conclusion that beta-bends and 3(10)-helices are preferentially adopted by peptides based on Ac(12)c, the largest cycloaliphatic C-disubstituted glycine known. A comparison with the structural tendencies extracted from published works on peptides from Aib, the prototype of C-disubstituted glycines, and the other extensively studied members of the class of 1-aminocycloalkane-1-carboxylic acids (Ac(n) c, with n = 3-9), is made and the implications for the use of the Ac(12)c residue in the Ac(n) c scan approach of conformationally restricted analogues of bioactive peptides are briefly discussed. Copyright 2000 John Wiley & Sons, Inc.
The prevalence of neuropathic pain is high after treatment for breast cancer: a systematic review.
Ilhan, Emre; Chee, Edwin; Hush, Julia; Moloney, Niamh
2017-11-01
Pain is common, but often poorly managed after breast cancer treatment. Screening questionnaires and the Neuropathic Pain Special Interest Group (NeuPSIG) criteria are 2 clinical approaches used to determine whether pain has neuropathic components, which may enable better pain management. The aims of this review were (1) to synthesise data from the literature on neuropathic pain prevalence in women after breast cancer treatment; (2) to investigate whether the prevalence of neuropathic pain differed between studies using screening questionnaires and the NeuPSIG criteria. We searched for studies that administered a validated neuropathic pain screening questionnaire and/or the NeuPSIG criteria to women treated for early-stage (I-III) breast cancer. Thirteen studies using screening questionnaires (N = 3792) and 3 studies using components of the NeuPSIG criteria (N = 621) were included. Meta-analyses were conducted for questionnaire data but not for NeuPSIG criteria data because of inadequate homogeneity. Among all participants treated for early-stage breast cancer, pooled prevalence estimates (95% confidence interval) ranged between 14.2% (8.3-21.4) and 27.2% (24.7-88.4) for studies using screening questionnaires; studies using NeuPSIG criteria reported prevalence rates from 24.1% to 31.3%. Among those who reported pain after treatment, the pooled prevalence estimate (95% confidence interval) of neuropathic pain from screening questionnaires ranged from 32.6% (24.2-41.6) to 58.2% (24.7-88.4); studies using NeuPSIG criteria reported prevalence rates from 29.5% to 57.1%. These prevalence estimates are higher than those reported for other types of cancer, and emphasise the need to assess the contribution of neuropathic pain after breast cancer treatment. PROSPERO registration CRD42015029987.
Syntheses and characterizations of secondary Pb-O bonding supported Pb(II)-sulfonate complexes
NASA Astrophysics Data System (ADS)
Huang, Guo-Zhen; Zou, Xin; Zhu, Zhi-Biao; Deng, Zhao-Peng; Huo, Li-Hua; Gao, Shan
2018-06-01
The reaction of Pb(II) salts and mono- or disulfonates leads to the formation of eight new Pb(II)-mono/disulfonate complexes, [Pb(L1)(H2O)]2 (1), [Pb4(L2)2(AcO)2]n·5nH2O (2), [Pb(L3)(H2O)]2 (3), [Pb(HL4)(H2O)2]n·nH2O (4), [Pb(HL5)(H2O)2]n·2nH2O (5), [Pb(H2L6)(H2O)]n·nDMF·2nH2O (6), [Pb2(H3L7)4(H2O)6]·2H2O (7) and [Pb(H2L7)(H2O)]n·nH2O (8) (H2L1= 2-hydroxy-5-methyl-benzenesulfonic acid, H3L2= 2-hydroxyl-5-methyl- 1,3-benzenedisulfonic acid, H2L3= 2-hydroxy-5-nitro-benzenesulfonic acid, H3L4= 2-hydroxyl-5-bromo-1,3- benzenedisulfonic acid, H3L5= 2-hydroxyl-5-carboxyl-benzenesulfonic acid, H4L6= 2,5-dihydroxyl-3-carboxyl- benzenesulfonic acid, H4L7= 2,4-dihydroxyl-5-carboxyl-benzenesulfonic acid, DMF = N,N'-dimethyl-formamide, AcO- = acetate), which have been characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. In view of the primary Pb-O bonds, these eight complexes exhibit diverse dinuclear (1, 3 and 7), helical chain (4), wave-like chain (5), linear chain (6), zigzag chain (8) and layer structure (2), in which the Pb(II) cations present different hemi-directed geometries. Taking the secondary Pb-O bonds into account, chain structure for complex 7, layer motifs for complexes 1 and 3-6, as well as 3-D framework for complex 8 are observed with Pb(II) cations showing more intricate holo-directed geometries. The various coordination modes of these seven different mono/disulfonate anions are responsible for the formation of these multiple structures. Furthermore, the introduction of hydroxyl and carboxyl groups increases the coordination ability of sulfonate to the p-block metal cation. Luminescent analyses indicate that complex 7 presents purple emission at 395 nm at room temperature.
[Tartrate-sensitive and tartrate-resistant acid phosphatases in Amoeba proteus].
Sopina, V A; Beliaeva, T N
2000-01-01
In free-living Amoeba proteus (strain B), acid phosphatase (AcP) was examined by disc-electrophoresis in polyacrylamide gel. The tartrate-sensitive amebian AcP was greatly inhibited by dithiothreitol and Cu2+, and only partly inhibited by sodium orthovanadate, ammonium molybdate, EDTA, disodium salt and Mg2+, Ca2+, Zn2+ and Mn2+. On the contrary, it appeared to be resistant to sulfhydryl reagents--4(hydroxymercury) benzoic acid, sodium salt and N-ethylmaleimide. Unlike the tartrate-sensitive enzyme, the tartrate-resistant AcP was greatly inhibited by EDTA and partly inhibited by dithiothreitol, Mg2+ and Cu2+ (Mn2+ > Cu2+), being activated by orthovanadate, molybdate, sulfhydryl reagents, Mg2+, Ca2+ and Zn2+. Both tartrate-sensitive and tartrate-resistant AcPs lack apparently free SH-groups necessary for their catalytic activities. Using 2-naphthyl phosphate as a substrate at pH 4.5, six AcP electromorphs were revealed in cytosol and sediment, four of these being most frequently localized in the former, and two in the latter. Two other AcP electromorphs were confined to the sediment only. Depending on the quantity of sedimented amoebae making a homogenate (0.5 or 2.0 cm3), that was added to Percoll solution, the lysosomal AcP fraction in polyacrylamide gel was represented by one or two tartrate-sensitive electromorphs. Therefore, tartrate-resistant AcP in A. proteus may be a lysosomal enzyme, while tartrate-resistant AcP may correspond to serine/threonine protein phosphatase.
Cuadros, Camilo; Dominguez, Ana Lucia; Frost, Gregory I; Borgstrom, Per; Lustgarten, Joseph
2003-09-15
Immunotherapy is an attractive strategy for cancer treatment. However, self-tolerance is one of the major mechanisms that dampen immune responses against self-tumor antigens. We have demonstrated that Her-2/neu transgenic mice (neu mice) are tolerant to neu antigens and contain only a low avidity repertoire for neu. However, this repertoire has antitumor activity. Immunizations of neu mice are capable of activating the low-avidity T cells that, at best, retard the tumor growth. To increase the efficacy of the antitumor responses in neu mice, we hypothesized that immunotherapy in combination with antiangiogenic therapy would be a more efficient strategy for tumor eradication. The rationale for using this combination was that by decreasing the growth rate of the tumor with an antiangiogenic therapy, the low-avidity repertoire of neu mice stimulated by immunotherapeutic intervention would be more effective in destroying the slow growing tumor. To test this hypothesis, we stably expressed a soluble form of the Flt-1 vascular endothelial growth factor receptor (sFlt-1) on N202.1A cells, using a retrovirus vector. Expression of sFlt-1 on N202.1A (N202-Flt) cells significantly inhibited the tumor growth compared with N202.1A parental cells. In contrast to the application of immunotherapy alone or antiangiogenic therapy alone, which delayed the tumor growth, the combination of the two therapies provided complete inhibition of tumor growth in Her-2/neu mice. These results indicate that the use of tumor targeting with immunotherapy in simultaneous combination with antiangiogenic therapy provides a more efficient strategy for the treatment of solid tumors.
Dosenovic, Svjetlana; Jelicic Kadic, Antonia; Vucic, Katarina; Markovina, Nikolina; Pieper, Dawid; Puljak, Livia
2018-05-08
Systematic reviews (SRs) in the field of neuropathic pain (NeuP) are increasingly important for decision-making. However, methodological flaws in SRs can reduce the validity of conclusions. Hence, it is important to assess the methodological quality of NeuP SRs critically. Additionally, it remains unclear which assessment tool should be used. We studied the methodological quality of SRs published in the field of NeuP and compared two assessment tools. We systematically searched 5 electronic databases to identify SRs of randomized controlled trials of interventions for NeuP available up to March 2015. Two independent reviewers assessed the methodological quality of the studies using the Assessment of Multiple Systematic Reviews (AMSTAR) and the revised AMSTAR (R-AMSTAR) tools. The scores were converted to percentiles and ranked into 4 grades to allow comparison between the two checklists. Gwet's AC1 coefficient was used for interrater reliability assessment. The 97 included SRs had a wide range of methodological quality scores (AMSTAR median (IQR): 6 (5-8) vs. R-AMSTAR median (IQR): 30 (26-35)). The overall agreement score between the 2 raters was 0.62 (95% CI 0.39-0.86) for AMSTAR and 0.62 (95% CI 0.53-0.70) for R-AMSTAR. The 31 Cochrane systematic reviews (CSRs) were consistently ranked higher than the 66 non-Cochrane systematic reviews (NCSRs). The analysis of individual domains showed the best compliance in a comprehensive literature search (item 3) on both checklists. The results for the domain that was the least compliant differed: conflict of interest (item 11) was the item most poorly reported on AMSTAR vs. publication bias assessment (item 10) on R-AMSTAR. A high positive correlation between the total AMSTAR and R-AMSTAR scores for all SRs, as well as for CSRs and NCSRs, was observed. The methodological quality of analyzed SRs in the field of NeuP was not optimal, and CSRs had a higher quality than NCSRs. Both AMSTAR and R-AMSTAR tools produced comparable quality ratings. Our results point out to weaknesses in the methodology of existing SRs on interventions for the management NeuP and call for future improvement by better adherence to analyzed quality checklists, either AMSTAR or R-AMSTAR.
Smetanová, Libuše; Stětinová, Věra; Kholová, Dagmar; Kuneš, Martin; Nobilis, Milan; Svoboda, Zbyněk; Květina, Jaroslav
2013-09-01
The aim of the study was 1) to estimate permeability of 5-aminosalicylic acid (5-ASA), 2) to categorize 5-ASA according to BCS (Biopharmaceutics Classification System), and 3) to contribute to determination of 5-ASA transintestinal transport and biotransformation mechanisms. The in situ rat intestine perfusion was used as an initial method to study 5-ASA transport. The amount of 5-ASA (released from tablet) transferred into portal circulation reached 5.79 ± 0.24%. During this transport, the intestinal formation of 5-ASA main metabolite (N-ac-5-ASA) occurred. N-ac-5-ASA was found in perfusate both from intestinal lumen and from v. portae. In in vitro Caco-2 monolayers, transport of 5-ASA (10-1000 µmol/l) was studied in apical-basolateral and basolateral-apical direction (iso-pH 7.4 conditions). The transport of total 5-ASA (parent drug plus intracellularly formed N-ac-5-ASA) was linear with time, concentration- and direction-dependent. Higher basolateral-apical (secretory) transport was mainly caused by higher transport of the metabolite (suggesting metabolite efflux transport). Transport of 5-ASA (only parent drug) was saturable (transepithelial carrier-mediated) at low doses, dominated by passive, paracellular process in higher doses which was confirmed by increased 5-ASA transport using Ca2+-free transport medium. The estimated low 5-ASA permeability and its low solubility enable to classify 5-ASA as BCS class IV.
Wang, Qing-fei; Ding, Hui; Liu, Bao-rui; Zhang, Kui
2014-07-01
To generate two genetically engineered mouse models of ErbB2/Neu positive-PTEN deficient breast cancer and to compare their biological properties. The genetically engineered mice previously developed with mouse mammary tumor virus (MMTV) promoter driven expression of activated ErbB2/Neu and recombinant Cre (FVB/N-MMTV-NIC) were interbred with Flox-PTEN mice; and FVB/N-ErbB2KI mice, harboring endogenous promoter driven activated ErbB2/Neu expression, FVB/N-MMTV-Cre mice and the flox-PTEN mice were interbred. Neu, Cre and PTEN genes were amplified by PCR for genotyping of the offsprings. ErbB2/Neu and PTEN expression in mammary tumors were detected by immunohistochemistry. Tumor formation time, tumor number, histopathology and lung metastasis were compared between two models, Ki-67 expression was detected by immunohistochemistry, and TUNEL staining of tumor tissues was performed. Two genetically engineered mouse models of ErbB2/Neu positive-PTEN homozygous deficient breast cancer were generated. The models were confirmed by genotyping and immunohistochemistry. One model with exogenous MMTV promoter driven expression of activated ErbB2/Neu and Cre coupling PTEN disruption was designated as NIC/PTEN(-/-) mice, and the other with MMTV-Cre induced endogenous promoter driven expression of activated ErbB2/Neu with PTEN disruption was designated as ErbB2KI/PTEN(-/-) mice. The tumor formation time in NIC/PTEN(-/-) mice was significantly shorter than that of ErbB2KI/PTEN(-/-) mice (30 vs 368 d, P<0.01); the number of tumor and incidence of lung metastasis was also significantly higher in NIC/PTEN(-/-) mice (10 vs 1-2 and 75.0% vs 37.5%, respectively, Ps<0.01). The Two models displayed distinct histopathological morphology. NIC/PTEN(-/-) tumor showed more Ki-67 positive cells than ErbB2KI/PTEN(-/-) tumor did (86.9%±2.8% vs 37.4%±7.2%, P<0.01), while the amount of cell apoptosis in tumors was not significantly different between two models. Two genetically engineered mouse models of ErbB2/Neu positive-PTEN homozygous deficient breast cancer with different phenotypes have been successfully generated, which may provide useful resource for further investigation of the initiation and progression of HER2/ErbB2 breast cancer, as well as for the development of novel prevention and treatment regimens of this malignance.
2006-02-01
was gradually increased along with increasing dosage of the AAV.ARHP8 particles injected. No GFP expression was observed in PBS-injected xenograft...receptor. Cancer Gene Ther 2002;9:117–25. 16. Craft N, Shostak Y , Carey M, Sawyers CL. A mechanism for hormone- independent prostate cancer through...modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 1999;5:280–5. 17. Wen Y , Hu MC, Makino K, et al. HER-2/neu promotes
Mai, Hoa Le; Treilhaud, Michèle; Ben-Arye, Shani Leviatan; Yu, Hai; Perreault, Hélène; Ang, Evelyn; Trébern-Launay, Katy; Laurent, Julie; Malard-Castagnet, Stéphanie; Cesbron, Anne; Nguyen, Thi Van Ha; Brouard, Sophie; Rostaing, Lionel; Houssel-Debry, Pauline; Legendre, Christophe; Girerd, Sophie; Kessler, Michèle; Morelon, Emmanuel; Sicard, Antoine; Garrigue, Valérie; Karam, Georges; Chen, Xi; Giral, Magali; Padler-Karavani, Vered; Soulillou, Jean Paul
2018-04-01
End-stage renal failure occurs in a substantial number of patients having received a nonrenal transplantation (NRT), for whom a kidney transplantation is needed. The medical strategy regarding the use of immunosuppression (IS) for a kidney graft in patients after an NRT is not well established. The prekidney grafts long-term IS advocates for a mild induction, such as using anti-IL-2R antibodies, whereas addition of new incompatibilities and anti-HLA preimmunization may suggest using stronger IS such as induction by polyclonal antithymocyte globulins (ATG). We performed Cox multivariate and propensity score analysis of our validated transplant database to study the impact of the type of induction therapy on kidney graft survival of recipients of a kidney graft after NRT. We report here that kidney transplantation after NRT treated with an ATG induction has a poorer outcome (kidney and recipient survival) than that with an anti-IL-2R induction. After accounting for potential baseline differences with a multivariate Cox model, or by adjusting on a propensity score, we found that despite patients having received ATG cumulate more risk factors, ATG appears independently involved. As animal-derived biotherapeutics induce antiglycan antibodies and particularly anti-N-glycolylneuraminic acid (Neu5Gc) IgGs which may activate endothelial cells in patients and grafts, we also investigated the magnitude and the nature of the anti-Neu5Gc elicited by the induction and showed that induction was associated with a shift in anti-Neu5Gc IgG repertoire. Possible reasons and mechanisms of a deleterious ATG usage in these patients are discussed. Our study suggests that ATG induction after a kidney transplantation in recipients already under maintenance IS for a NRT should be used cautiously.
Wang, Xijun; Lv, Haitao; Zhang, Guangmei; Sun, Wenjun; Zhou, Dixin; Jiao, Guozheng; Yu, Yang
2008-09-01
Ultra-performance LC coupled to quadrupole TOF/MS (UPLC-QTOF/MS) in positive and negative ESI was developed and validated to analyze metabolite profiles for urine from healthy men during the day and at night. Data analysis using principal components analysis (PCA) revealed differences between metabolic phenotypes of urine in healthy men during the day and at night. Positive ions with mass-to-charge ratio (m/z) 310.24 (5.35 min), 286.24 (4.74 min) and 310.24 (5.63 min) were elevated in the urine from healthy men at night compared to that during the day. Negative ions elevated in day urine samples of healthy men included m/z 167.02 (0.66 min), 263.12 (2.55 min) and 191.03 (0.73 min), whilst ions m/z 212.01 (4.77 min) were at a lower concentration in urine of healthy men during the day compared to that at night. The ions m/z 212.01 (4.77 min), 191.03 (0.73 min) and 310.24 (5.35 min) preliminarily correspond to indoxyl sulfate, citric acid and N-acetylneuraminic acid, providing further support for an involvement of phenotypic difference in urine of healthy men in day and night samples, which may be associated with notably different activities of gut microbiota, velocity of tricarboxylic acid cycle and activity of sialic acid biosynthesis in healthy men as regulated by circadian rhythm of the mammalian bioclock.
A recombinant fungal lectin for labeling truncated glycans on human cancer cells.
Audfray, Aymeric; Beldjoudi, Mona; Breiman, Adrien; Hurbin, Amandine; Boos, Irene; Unverzagt, Carlo; Bouras, Mourad; Lantuejoul, Sylvie; Coll, Jean-Luc; Varrot, Annabelle; Le Pendu, Jacques; Busser, Benoit; Imberty, Anne
2015-01-01
Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases.
A Recombinant Fungal Lectin for Labeling Truncated Glycans on Human Cancer Cells
Hurbin, Amandine; Boos, Irene; Unverzagt, Carlo; Bouras, Mourad; Lantuejoul, Sylvie; Coll, Jean-Luc; Varrot, Annabelle; Le Pendu, Jacques; Busser, Benoit; Imberty, Anne
2015-01-01
Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases. PMID:26042789
Allgayer, H; Sonnenbichler, J; Kruis, W; Paumgartner, G
1985-01-01
Sulphasalazine (SASP), used in the treatment of inflammatory bowel disease, is split into sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) in the colon. Lower plasma levels of SASP and 5-ASA as compared to those of SP may be due to different absorption rates from the colon because of different pK values and pH dependent lipid-water partition coefficients. In this study we determined the pK values of 5-ASA and its major metabolite, N-acetyl amino-salicylic acid (AcASA), by 13C-NMR spectroscopy and compared the pH dependent apparent benzene-water partition coefficients (Papp) of SASP, SP and 5-ASA with respect to their different plasma levels. The COOH group of 5-ASA had a pK value of 3.0, the -NH3+ group had 6.0, the -OH group 13.9; the -COOH group of AcASA had 2.7 and the -OH group 12.9; The Papp of SASP (0.042 +/- 0.004) and 5-ASA (0.059 +/- 0.01) were significantly lower than that of SP (0.092 +/- 0.03) (at pH 5.5).
Saludes, Jonel P; Natarajan, Arutselvan; DeNardo, Sally J; Gervay-Hague, Jacquelyn
2010-05-01
Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half-life and increase resistance. One modification is the incorporation of non-alpha-amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric alpha/delta-peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor-associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en alpha/delta-peptides. DOTA was conjugated at the peptide N-termini by solid phase peptide synthesis, radiolabeled with (111)In, incubated in human blood plasma at 37 degrees C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half-life that is two- to three-orders of magnitude higher than natural alpha-peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid-derived peptides that may find pharmaceutical application.
Abdulkhalek, Samar; Szewczuk, Myron R
2013-11-01
The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses. © 2013. Published by Elsevier Inc. All rights reserved.
cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vardon, Derek R.; Rorrer, Nicholas A.; Salvachúa, Davinia
cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid -- the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstratesmore » bioreactor production of muconate at 34.5 g L-1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1-9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical counterpart, thereby demonstrating a path towards bio-based nylon production via muconic acid.« less
Miller, K W; Schamber, R; Osmanagaoglu, O; Ray, B
1998-06-01
A collection of pediocin AcH amino acid substitution mutants was generated by PCR random mutagenesis of DNA encoding the bacteriocin. Mutants were isolated by cloning mutagenized DNA into an Escherichia coli malE plasmid that directs the secretion of maltose binding protein-pediocin AcH chimeric proteins and by screening transformant colonies for bactericidal activity against Lactobacillus plantarum NCDO955 (K. W. Miller, R. Schamber, Y. Chen, and B. Ray, 1998. Appl. Environ. Microbiol. 64:14-20, 1998). In all, 17 substitution mutants were isolated at 14 of the 44 amino acids of pediocin AcH. Seven mutants (N5K, C9R, C14S, C14Y, G37E, G37R, and C44W) were completely inactive against the pediocin AcH-sensitive strains L. plantarum NCDO955, Listeria innocua Lin11, Enterococcus faecalis M1, Pediococcus acidilactici LB42, and Leuconostoc mesenteroides Ly. A C24S substitution mutant constructed by other means also was inactive against these bacteria. Nine other mutants (K1N, W18R, I26T, M31T, A34D, N41K, H42L, K43N, and K43E) retained from <1% to approximately 60% of wild-type activity when assayed against L. innocua Lin11. One mutant, K11E, displayed approximately 2. 8-fold-higher activity against this indicator. About one half of the mutations mapped to amino acids that are conserved in the pediocin-like family of bacteriocins. All four cysteines were found to be required for activity, although only C9 and C14 are conserved among pediocin-like bacteriocins. Several basic amino acids as well as nonpolar amino acids located within the hydrophobic C-terminal region also were found to be important. The mutations are discussed in the context of structural models that have been proposed for the bacteriocin.
Reduction of Campylobacter jejuni on chicken wings by chemical treatments.
Zhao, Tong; Doyle, Michael P
2006-04-01
Eight chemicals, including glycerol monolaurate, hydrogen peroxide, acetic acid, lactic acid, sodium benzoate, sodium chlorate, sodium carbonate, and sodium hydroxide, were tested individually or in combination for their ability to inactivate Campylobacter jejuni at 4 degrees C in suspension. Results showed that treatment for up to 20 min with 0.01% glycerol monolaurate, 0.1% sodium benzoate, 50 or 100 mM sodium chlorate, or 1% lactic acid did not substantially (< or = 0.5 log CFU/ml) reduce C. jejuni populations but that 0.1 and 0.2% hydrogen peroxide for 20 min reduced C. jejuni populations by ca. 2.0 and 4.5 log CFU/ml, respectively. By contrast, treatments with 0.5, 1.0, 1.5, and 2.0% acetic acid, 25, 50, and 100 mM sodium carbonate, and 0.05 and 0.1 N sodium hydroxide reduced C. jejuni populations by >5 log CFU/ml within 2 min. A combination of 0.5% acetic acid plus 0.05% potassium sorbate or 0.5% acetic acid plus 0.05% sodium benzoate reduced C. jejuni populations by >5 log CFU/ml within 1 min; however, substituting 0.5% lactic acid for 0.5% acetic acid was not effective, with a reduction of C. jejuni of <0.5 log CFU/ml. A combination of acidic calcium sulfate, lactic acid, ethanol, sodium dodecyl sulfate, and polypropylene glycol (ACS-LA) also reduced C. jejuni in suspension by >5 log CFU/ml within 1 min. All chemicals or chemical combinations for which there was a >5-log/ml reduction of C. jejuni in suspension were further evaluated for C. jejuni inactivation on chicken wings. Treatments at 4 degrees C of 2% acetic acid, 100 mM sodium carbonate, or 0.1 N sodium hydroxide for up to 45 s reduced C. jejuni populations by ca. 1.4, 1.6, or 3.5 log CFU/g, respectively. Treatment with ACS-LA at 4 degrees C for 15 s reduced C. jejuni by >5 log CFU/g to an undetectable level. The ACS-LA treatment was highly effective in chilled water at killing C. jejuni on chicken and, if recycled, may be a useful treatment in chill water tanks for poultry processors to reduce campylobacters on poultry skin after slaughter.
Honda, Akinobu; Chigwechokha, Petros Kingstone; Kamada-Futagami, Yuko; Komatsu, Masaharu; Shiozaki, Kazuhiro
2018-06-01
Sialidase catalyzes the removal of sialic acids from glycoconjugates. Different from Neu1 and Neu3 sialidases, Neu4 enzymatic properties such as substrate specificity and subcellular localization are not well-conserved among vertebrates. In fish only zebrafish and medaka neu4 genes have been cloned and their polypeptides have been characterized so far. Thus, characterization of Neu4 from other fish species is necessary to evaluate Neu4 physiological functions. Here, Nile tilapia was chosen for the characterization of Neu4 polypeptide considering that it is one of the major cultured fish all over the world and that its genomic sequences are now available. Coding DNA sequence of tilapia Neu4 was identified as 1,497 bp and its recombinant protein showed broad substrate specificity and optimal sialidase enzyme activity pH at 4.0. Neu4 activity was sustained even in neutral and alkali pH. Interestingly, immunofluorescence analysis revealed that major subcellular localization of tilapia Neu4 was nuclear, quite distinct from zebrafish (ER) and medaka Neu4 (lysosome). Bioinformatic analysis showed the existence of putative nuclear localization signal (NLS) in tilapia Neu4. In general, it is known that importin families bind to several proteins via NLS and transfer them into nucleus. Therefore, to determine the involvement of putative NLS in Neu4 nuclear localization, Neu4 mutant deleting NLS was constructed and expressed in cultured cells. As a result, NLS deletion significantly diminished the nuclear localization. Furthermore, treatment of importazole, interrupter of binding importin β and RanGTP, significantly suppressed Neu4 nuclear localization. In summary, tilapia Neu4 is a unique sialidase localized at nucleus and its transport system into nucleus is regulated by importin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Neutron-encoded Signatures Enable Product Ion Annotation From Tandem Mass Spectra*
Richards, Alicia L.; Vincent, Catherine E.; Guthals, Adrian; Rose, Christopher M.; Westphall, Michael S.; Bandeira, Nuno; Coon, Joshua J.
2013-01-01
We report the use of neutron-encoded (NeuCode) stable isotope labeling of amino acids in cell culture for the purpose of C-terminal product ion annotation. Two NeuCode labeling isotopologues of lysine, 13C615N2 and 2H8, which differ by 36 mDa, were metabolically embedded in a sample proteome, and the resultant labeled proteins were combined, digested, and analyzed via liquid chromatography and mass spectrometry. With MS/MS scan resolving powers of ∼50,000 or higher, product ions containing the C terminus (i.e. lysine) appear as a doublet spaced by exactly 36 mDa, whereas N-terminal fragments exist as a single m/z peak. Through theory and experiment, we demonstrate that over 90% of all y-type product ions have detectable doublets. We report on an algorithm that can extract these neutron signatures with high sensitivity and specificity. In other words, of 15,503 y-type product ion peaks, the y-type ion identification algorithm correctly identified 14,552 (93.2%) based on detection of the NeuCode doublet; 6.8% were misclassified (i.e. other ion types that were assigned as y-type products). Searching NeuCode labeled yeast with PepNovo+ resulted in a 34% increase in correct de novo identifications relative to searching through MS/MS only. We use this tool to simplify spectra prior to database searching, to sort unmatched tandem mass spectra for spectral richness, for correlation of co-fragmented ions to their parent precursor, and for de novo sequence identification. PMID:24043425
2014-01-01
Background Artemisia capillaries Thunb. (AC) has been used to treat inflammatory and hepatic disorders such as hepatic injury, hepatic fibrosis and hepatitis. However, the efficacy of AC against atopic dermatitis (AD), an inflammatory disease, has not been examined. In the present study, AC was evaluated for anti-inflammatory and anti-AD effects using both in vitro and in vivo systems. Methods The contents of six compounds (chlorogenic acid, caffeic acid, isochlorogenic acid A, hyperoside, isoquercitrin and scoparone) in AC were simultaneously assayed using HPLC system. To evaluate the anti-inflammatory effect of AC, NO production was measured in RAW264.7 cell stimulated with 1 μg/mL LPS. Histamine levels were assayed in MC/9 cells stimulated with 50 nM PMA and 1 μM A23187. To examine the role of AC in vivo, AC (10 mg/mouse/day) was topically applied for four weeks the back and ears of Dermatophagoides farinae-sensitized Nc/Nga mice. Protopic ointment (0.1% tacrolimus) was used as a positive control. Results The contents of the six components in AC range from 0.44 to 43.14 mg/g. Chlorogenic acid (21.06 ± 0.08 mg/g) and isochlorogenic acid A (43.14 ± 0.12 mg/g) were major components in AC. AC inhibited NO and histamine production in cells respectively. In D. farinae-sensitized Nc/Nga mice, the topical application of AC reduced dermatitis scores, hemorrhage, hypertrophy and hyperkeratosis of the epidermis in the dorsal skin and ear. The treatment of AC also reduced the plasma levels of histamine (1.5 fold) and IgE (1.4 fold). Conclusions Our results suggest that AC should be explored as a potential therapeutic agent to treat atopic dermatitis and analysis by HPLC will help to improve the quality of AC. PMID:24624888
Cai, Huawei; Singh, Ajay N; Sun, Xiankai; Peng, Fangyu
2015-01-01
To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron emitting radionuclide.
Nakagawa, Tetsuto; Shimada, Yoshimi; Pavlova, Nadejda V; Li, Su-Chen; Li, Yu-Teh
2015-01-01
We have previously reported that oyster hepatopancreas contained three unusual α-ketoside hydrolases: (i) a 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase (α-Kdo-ase), (ii) a 3-deoxy-d-glycero-d-galacto-non-2-ulosonic acid α-ketoside hydrolase and (iii) a bifunctional ketoside hydrolase capable of cleaving both the α-ketosides of Kdn and Neu5Ac (Kdn-sialidase). After completing the purification of Kdn-sialidase, we proceeded to clone the gene encoding this enzyme. Unexpectedly, we found that instead of expressing Kdn-sialidase, our cloned gene expressed α-Kdo-ase activity. The full-length gene, consisting of 1176-bp (392 amino acids, Mr 44,604), expressed an active recombinant α-Kdo-ase (R-α-Kdo-ase) in yeast and CHO-S cells, but not in various Escherichia coli strains. The deduced amino acid sequence contains two Asp boxes (S277PDDGKTW and S328TDQGKTW) commonly found in sialidases, but is devoid of the signature FRIP-motif of sialidase. The R-α-Kdo-ase effectively hydrolyzed the Kdo in the core-oligosaccharide of the structurally defined lipopolysaccharide (LPS), Re-LPS (Kdo2-Lipid A) from Salmonella minnesota R595 and E. coli D31m4. However, Rd-LPS from S. minnesota R7 that contained an extra outer core phosphorylated heptose was only slowly hydrolyzed. The complex type LPS from Neisseria meningitides A1 and M992 that contained extra 5–6 sugar units at the outer core were refractory to R-α-Kdo-ase. This R-α-Kdo-ase should become useful for studying the structure and function of Kdo-containing glycans. PMID:26362869
Xie, Y; Chen, Y; Ahmed, K A; Li, W; Ahmed, S; Sami, A; Chibbar, R; Tang, X; Tao, M; Xu, J; Xiang, J
2013-10-01
One of the major obstacles in human epidermal growth factor receptor (HER)-2/neu-specific trastuzumab immunotherapy of HER2/neu-positive breast cancer is the development of trastuzumab resistance, warranting the search for other therapeutic strategies. Although dendritic cell (DC) vaccines have been extensively applied in clinical trials for cancer treatment, the vaccination efficacy is still limited, mostly because DC vaccines are not sufficient to break tumor-associated antigen-specific self-immune tolerance in cancer patients. P30 (FNNFTVSFWLRVPKVSASHLE) derived from tetanus toxin is a universally potent CD4(+) T helper epitope capable of enhancing CD8(+) cytotoxic T-lymphocyte (CTL) responses. In this study, we constructed two recombinant adenoviral vectors (AdVs), AdVOVA-P30 and AdVHER2/neu-P30, expressing ovalbumin (OVA)-P30 and HER2/neu-P30. In order to enhance DC vaccine efficacy, we transfected mouse bone marrow (BM)-derived DCs with AdVOVA-P30 and AdVHER2/neu-P30 to generate engineered DCOVA-P30 and DCHER2/neu-P30 vaccines, respectively. We, then, compared CD4(+) and CD8(+) T-cell responses and antitumor immunity derived from DCOVA-P30 and DCHER2/neu-P30 vaccination in wild-type C57BL/6 and transgenic FVBneuN mice, respectively. We demonstrate that engineered DCOVA-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses than DCOVA in C57BL/6 mice. Interestingly, the increased DCOVA-P30-induced CTL responses are mainly contributed by enhanced CD4(+) T-cell-stimulated CTL proliferation. We show that DCOVA-P30 vaccine also stimulates more efficient therapeutic immunity against OVA-expressing BL6-10OVA melanoma than DCOVA in C57BL/6 mice. In addition, we demonstrate that DCHER2/neu-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses and protective immunity against HER2/neu-expressing Tg1-1 breast cancer than DCHER2/neu in transgenic FVBneuN mice with HER2/neu-specific self-immune tolerance. Therefore, the engineered DCHER2/neu-P30 vaccine may provide a new immunotherapy alternative for women with HER2/neu(+) breast cancer, especially for trastuzumab-resistant HER2/neu(+) breast cancer patients.
Rabbit antithymocyte globulin–induced serum sickness disease and human kidney graft survival
Couvrat-Desvergnes, Grégoire; Salama, Apolline; Le Berre, Ludmilla; Evanno, Gwénaëlle; Viklicky, Ondrej; Hruba, Petra; Vesely, Pavel; Guerif, Pierrick; Dejoie, Thomas; Rousse, Juliette; Nicot, Arnaud; Bach, Jean-Marie; Ang, Evelyn; Foucher, Yohann; Brouard, Sophie; Castagnet, Stéphanie; Giral, Magali; Harb, Jean; Perreault, Hélène; Charreau, Béatrice; Lorent, Marine; Soulillou, Jean-Paul
2015-01-01
BACKGROUND. Rabbit-generated antithymocyte globulins (ATGs), which target human T cells, are widely used as immunosuppressive agents during treatment of kidney allograft recipients. However, ATGs can induce immune complex diseases, including serum sickness disease (SSD). Rabbit and human IgGs have various antigenic differences, including expression of the sialic acid Neu5Gc and α-1-3-Gal (Gal), which are not synthesized by human beings. Moreover, anti-Neu5Gc antibodies have been shown to preexist and be elicited by immunization in human subjects. This study aimed to assess the effect of SSD on long-term kidney allograft outcome and to compare the immunization status of grafted patients presenting with SSD following ATG induction treatment. METHODS. We analyzed data from a cohort of 889 first kidney graft recipients with ATG induction (86 with SSD [SSD+] and 803 without SSD [SSD–]) from the Données Informatisées et Validées en Transplantation data bank. Two subgroups of SSD+ and SSD– patients that had received ATG induction treatment were then assessed for total anti-ATG, anti-Neu5Gc, and anti-Gal antibodies using ELISA assays on sera before and after transplantation. RESULTS. SSD was significantly associated with long-term graft loss (>10 years, P = 0.02). Moreover, SSD+ patients exhibited significantly elevated titers of anti-ATG (P = 0.043) and anti-Neu5Gc (P = 0.007) IgGs in late post-graft samples compared with SSD– recipients. CONCLUSION. In conclusion, our data indicate that SSD is a major contributing factor of late graft loss following ATG induction and that anti-Neu5Gc antibodies increase over time in SSD+ patients. FUNDING. This study was funded by Société d’Accélération du Transfert de Technologies Ouest Valorisation, the European FP7 “Translink” research program, the French National Agency of Research, Labex Transplantex, the Natural Science and Engineering Research Council of Canada, and the Canadian Foundation for Innovation. PMID:26551683
Liu, S X; Chen, X; Chen, X Y; Liu, Z F; Wang, H L
2007-03-06
In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).
Activity-Guided Identification of in Vitro Antioxidants in Beer.
Spreng, Stefan; Hofmann, Thomas
2018-01-24
In order to locate the key antioxidants contributing to oxidative stability of beer, activity-guided fractionation in combination with the oxygen radical absorbance capacity (ORAC) assay, hydrogen peroxide scavenging (HPS) assay, and linoleic acid (LA) assay was applied to a pilsner-type beer. LC-MS and 1D/2D NMR experiments led to the identification of a total of 31 antioxidants, among which 3-methoxy-4-hydroxyphenyl-β-d-glucopyranoside (tachioside), 4-(2-formylpyrrol-1-yl)butyric acid, 4-[2-formyl-5-(hydroxymethyl)pyrrol-1-yl]butyric acid, n-multifidol-3-O-β-d-glucoside, quercetin-3-O-(6″-malonyl)-glucoside, 4-feruloylquinic acid, syringaresinol, saponarin, and hordatines A-C have been isolated from beer for the first time. On a molar comparison, the hordatines A-C, saponarin, and quercetin-3-O-β-d-(6″-malonyl)glucoside were evaluated with the highest antioxidant activities of all identified beer constituents, reaching values of 10-17.5 (ORAC), 2.0-4.1 (HPS), and 1.1-6.1 μmol TE/μmol (LA) for hordatines A-C.
Binding properties of Clostridium botulinum type C progenitor toxin to mucins.
Nakamura, Toshio; Takada, Noriko; Tonozuka, Takashi; Sakano, Yoshiyuki; Oguma, Keiji; Nishikawa, Atsushi
2007-04-01
It has been reported that Clostridium botulinum type C 16S progenitor toxin (C16S toxin) first binds to the sialic acid on the cell surface of mucin before invading cells [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells, Biochem. Biophys. Res. Commun. 319 (2004) 327-333]. In this study we investigated the binding properties of the C16S toxin to glycoproteins. Although the toxin bound to membrane blotted mucin derived from the bovine submaxillary gland (BSM), which contains a lot of sialyl oligosaccharides, it did not bind to neuraminidase-treated BSM. The binding of the toxin to BSM was inhibited by N-acetylneuraminic acid, N-glycolylneuraminic acid, and sialyl oligosaccharides strongly, but was not inhibited by neutral oligosaccharides. Both sialyl alpha2-3 lactose and sialyl alpha2-6 lactose prevented binding similarly. On the other hand, the toxin also bound well to porcine gastric mucin. In this case, neutral oligosaccharides might play an important role as ligand, since galactose and lactose inhibited binding. These results suggest that the toxin is capable of recognizing a wide variety of oligosaccharide structures.
Arikan, Ozgur; Yýldýrým, Asýf; Ýsbilen, Banu; Canakci, Cengiz; Atýs, Gokhan; Gurbuz, Cenk; Erol, Bulent; Ýsman, Ferruh Kemal; Ozkanli, Seyma; Caskurlu, Turhan
2015-01-01
We aimed to compare serum and urinary HER2/neu levels between healthy control group and patients with non-muscle invasive bladder cancer. Additionally, we evaluated relationship of HER2/neu levels with tumor stage, grade, recurrence and progression. Fourty-four patients with primary non-muscle invasive bladder tumors (Group 2) and 40 healthy control group (Group 1) were included the study. Blood and urinary samples were collected from all patients and HER2/neu levels were measured by ELISA method. Blood and urinary HER2/neu levels and additionally, ratio of urinary HER2/neu levels to urinary creatinine levels were recorded. Demographic data and tumor characteristics were recorded. Mean serum HER2/neu levels were similar between two groups and statistically significant difference wasn't observed. Urinary HER2/neu levels were significantly higher in group 2 than group 1. Ratio of urinary HER2/neu to urinary creatinine was significantly higher in group 2 than group 1, (p=0,021). Serum and urinary HER2/ neu levels were not associated with tumor stage, grade, recurrence and progression while ratio of urinary HER2/neu to urinary creatinin levels were significantly higher in high-grade tumors. HER2/neu, the sensitivity of the test was found to be 20.5%, and the specificity was 97.5%, also for the urinary HER2/neu/urinary creatinine ratio, the sensitivity and specificity of the test were found to be 31.8% and 87.5%, respectively. Urinary HER2/neu and ratio of urinary creatinine urine were significantly higher in patients with bladder cancer compared to healthy subjects. Large series and controlled studies are needed for use as a tumor marker.
Taha, Ameer Y; Henderson, Samuel T; Burnham, W M
2009-09-01
Dogs demonstrate an age-related cognitive decline, which may be related to a decrease in the concentration of omega-3 polyunsaturated fatty acids (n-3 PUFA) in the brain. Medium chain triglycerides (MCT) increase fatty acid oxidation, and it has been suggested that this may raise brain n-3 PUFA levels by increasing mobilization of n-3 PUFA from adipose tissue to the brain. The goal of the present study was to determine whether dietary MCT would raise n-3 PUFA concentrations in the brains of aged dogs. Eight Beagle dogs were randomized to a control diet (n = 4) or an MCT (AC-1203) enriched diet (n = 4) for 2 months. The animals were then euthanized and the parietal cortex was removed for phospholipid, cholesterol and fatty acid determinations by gas-chromatography. Dietary enrichment with MCT (AC-1203) resulted in a significant increase in brain phospholipid and total lipid concentrations (P < 0.05). In particular, n-3 PUFA within the phospholipid, unesterified fatty acid, and total lipid fractions were elevated in AC-1203 treated subjects as compared to controls (P < 0.05). Brain cholesterol concentrations did not differ significantly between the groups (P > 0.05). These results indicate that dietary enrichment with MCT, raises n-3 PUFA concentrations in the parietal cortex of aged dogs.
Mucins in Gastric Cancer – An Update
Boltin, Doron; Niv, Yaron
2013-01-01
Mucins are high-molecular-weight glycoproteins expressed throughout the gastrointestinal tract, with a key role in mucosal protection and function. In gastric cancer expression of MUC5AC and MUC1 is reduced and denovo expression of MUC2 occurs. With progressive loss of tumor differentiation and increased tumor stage, expression of MUC5AC and MUC1 is further reduced, and MUC2 decreases. Isolated MUC2 expression (the intestinal phenotype) correlates with metastatic spread and poor survival. There is emerging evidence that MUC1 acts as an oncoprotein when overexpressed. The cytoplasmic tail of MUC1 interacts with the H. pylori virulence factor cagA and is a major effector of the wnt-β catenin intracellular signalling cascade. Polymorphism in the MUC1 gene has been identified in gastric cancer patients and may have a prospective role in the stratification of high-risk subjects. The MUC1 gene also mediates resistance to the recombinant HER2/neu antibody trastuzumab. Future research efforts will examine targeting MUC1 for therapeutic purposes. PMID:24077811
Wen, Li-Li; Dang, Dong-Bin; Duan, Chun-Ying; Li, Yi-Zhi; Tian, Zheng-Fang; Meng, Qing-Jin
2005-10-03
Five novel interesting d(10) metal coordination polymers, [Zn(PDCO)(H2O)2]n (PDCO = pyridine-2,6-dicarboxylic acid N-oxide) (1), [Zn2(PDCO)2(4,4'-bpy)2(H2O)2.3H2O]n (bpy = bipyridine) (2), [Zn(PDCO)(bix)]n (bix = 1,4-bis(imidazol-1-ylmethyl)benzene) (3), [Zn(PDCO)(bbi).0.5H2O]n (bbi = 1,1'-(1,4-butanediyl)bis(imidazole)) (4), and [Cd(PDCO)(bix)(1.5).1.5H2O]n (5), have been synthesized under hydrothermal conditions and structurally characterized. Polymer 1 possesses a one-dimensional (1D) helical chainlike structure with 4(1) helices running along the c-axis with a pitch of 10.090 Angstroms. Polymer 2 has an infinite chiral two-dimensional (2D) brick-wall-like layer structure in the ac plane built from achiral components, while both 3 and 4 exhibit an infinite 2D herringbone architecture, respectively extended in the ac and ab plane. Polymer 5 features a most remarkable and unique three-dimensional (3D) porous framework with 2-fold interpenetration related by symmetry, which contains channels in the b and c directions, both distributed in a rectangular grid fashion. Compounds 1-5, with systematic variation in dimensionality from 1D to 2D to 3D, are the first examples of d(10) metal coordination polymers into which pyridinedicarboxylic acid N-oxide has been introduced. In addition, polymers 1, 4, and 5 display strong blue fluorescent emissions in the solid state. Polymer 3 exhibits a strong SHG response, estimated to be approximately 0.9 times that of urea.
Reynard, Olivier; Jacquot, Frédéric; Evanno, Gwénaëlle; Mai, Hoa Le; Martinet, Bernard; Duvaux, Odile; Bach, Jean-Marie; Conchon, Sophie; Judor, Jean-Paul; Perota, Andrea; Lagutina, Irina; Duchi, Roberto; Lazzari, Giovanna; Le Berre, Ludmilla; Perreault, Hélène; Lheriteau, Elsa; Raoul, Hervé; Volchkov, Viktor; Galli, Cesare; Soulillou, Jean-Paul
2016-01-01
Polyclonal xenogenic IgGs, although having been used in the prevention and cure of severe infectious diseases, are highly immunogenic, which may restrict their usage in new applications such as Ebola hemorrhagic fever. IgG glycans display powerful xenogeneic antigens in humans, for example α1–3 Galactose and the glycolyl form of neuraminic acid Neu5Gc, and IgGs deprived of these key sugar epitopes may represent an advantage for passive immunotherapy. In this paper, we explored whether low immunogenicity IgGs had a protective effect on a guinea pig model of Ebola virus (EBOV) infection. For this purpose, a double knock-out pig lacking α1–3 Galactose and Neu5Gc was immunized against virus-like particles displaying surface EBOV glycoprotein GP. Following purification from serum, hyper-immune polyclonal IgGs were obtained, exhibiting an anti-EBOV GP titer of 1:100,000 and a virus neutralizing titer of 1:100. Guinea pigs were injected intramuscularly with purified IgGs on day 0 and day 3 post-EBOV infection. Compared to control animals treated with IgGs from non-immunized double KO pigs, the anti-EBOV IgGs-treated animals exhibited a significantly prolonged survival and a decreased virus load in blood on day 3. The data obtained indicated that IgGs lacking α1–3 Galactose and Neu5Gc, two highly immunogenic epitopes in humans, have a protective effect upon EBOV infection. PMID:27280712
Buzard, G S; Enomoto, T; Hongyo, T; Perantoni, A O; Diwan, B A; Devor, D E; Reed, C D; Dove, L F; Rice, J M
1999-10-01
Peripheral nerve tumors (PNT) and melanomas induced transplacentally on day 14 of gestation in Syrian golden hamsters by N-nitrosoethylurea were analyzed for activated oncogenes by the NIH 3T3 transfection assay, and for mutations in the neu oncogene by direct sequencing, allele-specific oligonucleotide hybridization, MnlI restriction-fragment-length polymorphism, single-strand conformation polymorphism, and mismatch amplification mutation assays. All (67/67) of the PNT, but none of the melanomas, contained a somatic missense T --> A transversion within the neu oncogene transmembrane domain at a site corresponding to that which also occurs in rat schwannomas transplacentally induced by N-nitrosoethylurea. In only 2 of the 67 individual hamster PNT did the majority of tumor cells appear to carry the mutant neu allele, in contrast to comparable rat schwannomas in which it overwhelmingly predominates. The low fraction of hamster tumor cells carrying the mutation was stable through multiple transplantation passages. In the hamster, as in the rat, specific point-mutational activation of the neu oncogene thus constitutes the major pathway for induction of PNT by transplacental exposure to an alkylating agent, but the low allelic representation of mutant neu in hamster PNT suggests a significant difference in mechanism by which the mutant oncogene acts in this species.
Driskell, Elizabeth A; Pickens, Jennifer A; Humberd-Smith, Jennifer; Gordy, James T; Bradley, Konrad C; Steinhauer, David A; Berghaus, Roy D; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, Stephen Mark
2012-01-01
Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential.
The Role of Amplified Wild-Type Neu in the Etiology of Breast Cancer
2002-07-01
T change of chromosome 5 (data not shown). DAPI banding patterns of nucleotide 2137) was present in clones derived from both identified the...erbB2 to rat chromosome band 10q32.1 Siegel, P.M., Dankort, D.L., Hardy, W.R., and Muller, W.J. (1994). Novelb y in situ h y b rid iza tio n . C y to g e...pregnancy stimulated neu mRNA expression in the TG female transgene in lines 6500 and 2477. Metaphase chromosomal 70 CANCER CELL : JULY 2002 complete
Prototype amperometric biosensor for sialic acid determination.
Marzouk, Sayed A M; Ashraf, S S; Tayyari, Khawla A Al
2007-02-15
This paper describes the first report on the development, characterization, and applications of a prototype amperometric biosensor for free sialic acid (SA). The sensor was constructed by the coimmobilization of two enzymes, i.e., N-acetylneuraminic acid aldolase and pyruvate oxidase, on a polyester microporous membrane, which was then mounted on top of a platinum disk electrode. The SA biosensor operation was based on the sequential action of the two enzymes to ultimately produce hydrogen peroxide, which was then detected by anodic amperometry at the platinum electrode. The surface of the platinum electrode was coated with an electropolymeric layer to enhance the biosensor selectivity in the presence of interfering oxidizable species. Optimization of the enzyme layer composition resulted in a fast and steady current response in phosphate buffer pH 7.2 at 37 degrees C. The limit of detection was 10 microM, and the response was linear to 3.5 mM (r = 0.9987). The prepared SA biosensors retained approximately 85% of their initial sensitivity after 8 days and showed excellent response reproducibility (CV = 2.3%). Utilization of a third enzyme, sialidase, expanded the scope of the present SA biosensor to determine bound sialic acid as well. The merits of the described biosensor allowed its successful application in determining SA in biological and pharmaceutical samples. The obtained results indicated that the presented SA biosensor should be a useful bioanalytical tool in several biological and clinical applications such as screening of SA as a nonspecific tumor marker as well as monitoring of tumor therapy.
Plancke, Y; Delplace, F; Wieruszeski, J M; Maes, E; Strecker, G
1996-01-15
As previously reported [Ishii, K., Iwasaki, M., Inoue, S., Kenny, P. T. M., Komura, H. & Inoue, Y. (1989) J. Biol. Chem. 264, 1623-1630; Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K. & Inoue, Y. (1989) J. Biol. Chem. 264, 18520-185261, the unfertilized eggs of two different species of fresh-water fish, Plecoglossus altivelis and Tribodolon hakonensis, contain relatively large amounts of free sialooligosaccharides. These oligosaccharides were found to derive from glycophosphoproteins, owing to the activity of a peptide - N4-(N-acetyl-beta-D-glucosaminyl)asparagine amidase [Iwasaki, M., Seko, A., Kitajima, K., Inoue, Y. & Inoue, S. (1992) J. Biol. Chem. 267, 24287-24296; Seko, A., Kitajima, K., Inoue, Y. & Inoue, S. (1991) J. Biol. Chem. 266, 22110-22114]. Here we describe a new type of free oligosaccharides, isolated from unfertilized eggs of Scyliorhinus caniculus. From the structural analysis, based upon 1H-NMR spectroscopy, the following glycan units are proposed.[Formula: see text
León, I; Alonso, E R; Mata, S; Cabezas, C; Rodríguez, M A; Grabow, J-U; Alonso, J L
2017-09-20
The steric effects imposed by the isopropyl group of valine in the conformational stabilization of the capped dipeptide N-acetyl-l-valinamide (Ac-Val-NH 2 ) have been studied by laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. The rotational and quadrupole coupling constants of the two 14 N nuclei determined in this work show that this dipeptide exists as a mixture of C 7 and C 5 conformers in the supersonic expansion. The conformers are stabilized by a C[double bond, length as m-dash]OH-N intramolecular hydrogen bond closing a seven- or a five-membered ring, respectively. The observation of both conformers is in good agreement with previous results on the related dipeptides containing different residues, confirming that the polarity/non-polarity of the side chains of the amino acid is responsible for the conformational locking/unlocking. The voluminous isopropyl group is not able to prevent the less stable C 5 conformer from forming but it destabilizes the C[double bond, length as m-dash]OH-N interaction.
Rhoads, Timothy W.; Prasad, Aman; Kwiecien, Nicholas W.; Merrill, Anna E.; Zawack, Kelson; Westphall, Michael S.; Schroeder, Frank C.; Kimble, Judith; Coon, Joshua J.
2015-01-01
The nematode Caenorhabditis elegans is an important model organism for biomedical research. We previously described NeuCode stable isotope labeling by amino acids in cell culture (SILAC), a method for accurate proteome quantification with potential for multiplexing beyond the limits of traditional stable isotope labeling by amino acids in cell culture. Here we apply NeuCode SILAC to profile the proteomic and phosphoproteomic response of C. elegans to two potent members of the ascaroside family of nematode pheromones. By consuming labeled E. coli as part of their diet, C. elegans nematodes quickly and easily incorporate the NeuCode heavy lysine isotopologues by the young adult stage. Using this approach, we report, at high confidence, one of the largest proteomic and phosphoproteomic data sets to date in C. elegans: 6596 proteins at a false discovery rate ≤ 1% and 6620 phosphorylation isoforms with localization probability ≥75%. Our data reveal a post-translational signature of pheromone sensing that includes many conserved proteins implicated in longevity and response to stress. PMID:26392051
Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W; Vanden Broeck, Jozef; Tourwé, Dirk
2011-04-14
A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.
Rangarajan, Erumbi S; Ruane, Karen M; Proteau, Ariane; Schrag, Joseph D; Valladares, Ricardo; Gonzalez, Claudio F; Gilbert, Michel; Yakunin, Alexander F; Cygler, Miroslaw
2011-01-01
There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into two subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates. PMID:21557376
NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes*
Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi
2016-01-01
NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. PMID:26987901
NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes.
Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi
2016-05-13
NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Viau, Sabrina; Pasquis, Bruno; Maire, Marie-Annick; Fourgeux, Cynthia; Grégoire, Stéphane; Acar, Niyazi; Bretillon, Lionel; Creuzot-Garcher, Catherine P; Joffre, Corinne
2011-04-01
Epidemiological studies suggest that dietary n-3 polyunsaturated fatty acids (PUFAs) may protect against dry eye. This study aimed to evaluate whether a dietary deficiency in n-3 PUFAs may increase the severity of the pathology in a scopolamine-induced model of dry eye in the rat. Lewis rats of three consecutive generations were bred under a balanced diet or a diet deprived of n-3 PUFAs. Dry eye was experimentally induced by continuous scopolamine delivery in female animals from the third generation of both groups. After 10 days of treatment, the clinical signs of ocular dryness were evaluated in vivo using fluorescein staining. MHC II and the rat mucin rMuc5AC were immunostained on ocular sphere cryosections. The transcript levels of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were quantified in the exorbital lacrimal glands (LG) and in the conjunctiva using reverse transcription followed by polymerase chain reaction. Lipids were extracted from the exorbital LG for fatty acid analysis of the phospholipids using gas chromatography. When compared to control animals, the scopolamine treatment induced an increase in the cornea fluorescein staining score (from 0.5 ± 0.0 to 2.5 ± 1.0 arbitrary units (AU) for the balanced diet and from 1.2 ± 0.8 to 2.6 ± 0.5 AU for the n-3 PUFA-deficient diet); a decrease in rMuc5AC immunostaining in the conjunctival epithelium (-34% for the balanced diet and -23% for the n-3 PUFA-deficient diet); an increase in the LG transcript levels of TNF-α for the balanced diet and of TNF-α and IFN-γ for the deficient diet; an increase in the conjunctival transcript levels of IL-1β and IL-6 for the deficient diet; an increase in arachidonic acid (AA) and in the ∆5-desaturase index (ratio of AA to dihomo-gamma-linolenic acid) in the exorbital LG for both diets. When compared to the balanced diet, the n-3 PUFA-deficient diet induced an increase in the LG transcript levels of IL-6 for the control animals and of TNF-α for the control and dry eye animals as well as an increase in the conjunctival transcript levels of IL-6 for the dry eye animals. There was no significant diet difference in fluorescein staining, rMuc5AC, and MHC II immunostaining scores. Our data suggest that an n-3 PUFA deficiency does not increase the severity of dry eye in a rat model of dry eye.
Matsuoka, Hirofumi; Niimi, Akio; Matsumoto, Hisako; Takemura, Masaya; Ueda, Tetsuya; Yamaguchi, Masafumi; Jinnai, Makiko; Inoue, Hideki; Ito, Isao; Chin, Kazuo; Mishima, Michiaki
2010-12-01
Sputum cell-subtype profiles in cough-variant asthma (CVA) are unknown. Ninety-eight inhaled corticosteroid (ICS)-naive CVA patients were classified according to sputum eosinophil (eos)/neutrophil (neu) counts, as reported in subjects with asthma, as eosinophilic (E) (eos ≥ 1.0%, neu < 61%; n = 28), neutrophilic (N) (eos < 1.0%, neu ≥ 61%; n = 31), mixed granulocytic (M) (eos ≥ 1.0%, neu ≥ 61%; n = 12), and paucigranulocytic (P) (eos < 1.0%, neu < 61%; n = 27) subtypes. Patient characteristics; sputum levels of eosinophil cationic protein (ECP), IL-8, and neutrophil elastase (NE); and daily ICS doses required to maintain control during follow-up (6, 12, 18, and 24 months) were compared, retrospectively. Subtype N patients, predominantly women, were marginally older than the other subtypes, but FEV(1), airway responsiveness, and total and specific IgE results did not differ. ECP levels were higher in M and E than in N and P subtypes, being similar between M and E or N and P subtypes. Levels of IL-8 and NE were higher in M than in other subtypes, being similar among the latter. ICS doses were initially similar in all subtypes (800 μg equivalent of beclomethasone) but were higher in M than in N and P subtypes throughout follow-up, with E being intermediate between M and N or P subtypes. ICS doses decreased (halved or quartered) in E, N, and P patients followed for 24 months (P < .0001 for all) but remained unchanged in M subjects. IL-8 and NE levels correlated positively with ECP levels. In addition to eosinophils, neutrophils, which are possibly activated in the presence of eosinophils, may participate in the pathophysiology of CVA.
Paolini, Lucia; Orizio, Flavia; Busatto, Sara; Radeghieri, Annalisa; Bresciani, Roberto; Bergese, Paolo; Monti, Eugenio
2017-12-05
Sialidases are glycohydrolases that remove terminal sialic acid residues from oligosaccharides, glycolipids, and glycoproteins. The plasma membrane-associated sialidase NEU3 is involved in the fine-tuning of sialic acid-containing glycans directly on the cell surface and plays relevant roles in important biological phenomena such as cell differentiation, molecular recognition, and cancer transformation. Extracellular vesicles are membranous structures with a diameter of 0.03-1 μm released by cells and can be detected in blood, urine, and culture media. Among extracellular vesicles, exosomes play roles in intercellular communication and maintenance of several physiological and pathological conditions, including cancer, and could represent a useful diagnostic tool for personalized nanomedicine approaches. Using inducible expression of the murine form of NEU3 in HeLa cells, a study of the association of the enzyme with exosomes released in the culture media has been performed. Briefly, NEU3 is associated with highly purified exosomes and localizes on the external leaflet of these nanovesicles, as demonstrated by enzyme activity measurements, Western blot analysis, and dot blot analysis using specific protein markers. On the basis of these results, it is plausible that NEU3 activity on exosome glycans enhances the dynamic biological behavior of these small extracellular vesicles by modifying the negative charge and steric hindrance of their glycocalyx. The presence of NEU3 on the exosomal surface could represent a useful marker for the detection of these nanovesicles and a tool for improving our understanding of the biology of these important extracellular carriers in physiological and pathological conditions.
NASA Technical Reports Server (NTRS)
Lacey, J. C. Jr; Wickramasinghe, N. S.; Sabatini, R. S.
1992-01-01
We have studied the chemistry of aminoacyl AMP to model reactions at the 3' terminus of aminoacyl tRNA for the purpose of understanding the origin of protein synthesis. The present studies relate to the D, L preference in the esterification of 5'-AMP. All N-acetyl amino acids we studied showed faster reaction of the D-isomer, with a generally decreasing preference for D-isomer as the hydrophobicity of the amino acid decreased. The beta-branched amino acids, Ile and Val, showed an extreme preference for D-isomer. Ac-Leu, the gamma-branched amino acid, showed a slightly low D/L ratio relative to its hydrophobicity. The molecular basis for these preferences for D-isomer is understandable in the light of our previous studies and seems to be due to preferential hydrophobic interaction of the D-isomer with adenine. The preference for hydrophobic D-amino acids can be decreased by addition of an organic solvent to the reaction medium. Conversely, peptidylation with Ac-PhePhe shows a preference for the LL isomer over the DD isomer.
Altarawneh, Suha; İslamoğlu, Timur; Sekizkardes, Ali Kemal; El-Kaderi, Hani M
2015-04-07
Benzimidazole-linked polymers (BILPs) are emerging candidates for gas storage and separation applications; however, their current synthetic methods offer limited control over textural properties which are vital for their multifaceted use. In this study, we investigate the impact of acid-catalyzed formation rates of the imidazole units on the porosity levels of BILPs and subsequent effects on CO2 and CH4 binding affinities and selective uptake of CO2 over CH4 and N2. Treatment of 3,3'-Diaminobenzidine tetrahydrochloride hydrate with 1,2,4,5-tetrakis(4-formylphenyl)benzene and 1,3,5-(4-formylphenyl)-benzene in anhydrous DMF afforded porous BILP-15 (448 m(2) g(-1)) and BILP-16 (435 m(2) g(-1)), respectively. Alternatively, the same polymers were prepared from the neutral 3,3'-Diaminobenzidine and catalytic amounts of aqueous HCl. The resulting polymers denoted BILP-15(AC) and BILP-16(AC) exhibited optimal surface areas; 862 m(2) g(-1) and 643 m(2) g(-1), respectively, only when 2 equiv of HCl (0.22 M) was used. In contrast, the CO2 binding affinity (Qst) dropped from 33.0 to 28.9 kJ mol(-1) for BILP-15 and from 32.0 to 31.6 kJ mol(-1) for BILP-16. According to initial slope calculations at 273 K/298 K, a notable change in CO2/N2 selectivity was observed for BILP-15(AC) (61/50) compared to BILP-15 (83/63). Similarly, ideal adsorbed solution theory (IAST) calculations also show the higher specific surface area of BILP-15(AC) and BILP-16(AC) compromises their CO2/N2 selectivity.
NASA Astrophysics Data System (ADS)
Maurice, Pascal; Baud, Stéphanie; Bocharova, Olga V.; Bocharov, Eduard V.; Kuznetsov, Andrey S.; Kawecki, Charlotte; Bocquet, Olivier; Romier, Beatrice; Gorisse, Laetitia; Ghirardi, Maxime; Duca, Laurent; Blaise, Sébastien; Martiny, Laurent; Dauchez, Manuel; Efremov, Roman G.; Debelle, Laurent
2016-12-01
Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139-159 (TM1) and 316-333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity.
CMP‑N‑acetylneuraminic acid synthetase interacts with fragile X related protein 1.
Ma, Yun; Tian, Shuai; Wang, Zongbao; Wang, Changbo; Chen, Xiaowei; Li, Wei; Yang, Yang; He, Shuya
2016-08-01
Fragile X mental retardation protein (FMRP), fragile X related 1 protein (FXR1P) and FXR2P are the members of the FMR protein family. These proteins contain two KH domains and a RGG box, which are characteristic of RNA binding proteins. The absence of FMRP, causes fragile X syndrome (FXS), the leading cause of hereditary mental retardation. FXR1P is expressed throughout the body and important for normal muscle development, and its absence causes cardiac abnormality. To investigate the functions of FXR1P, a screen was performed to identify FXR1P‑interacting proteins and determine the biological effect of the interaction. The current study identified CMP‑N‑acetylneuraminic acid synthetase (CMAS) as an interacting protein using the yeast two‑hybrid system, and the interaction between FXR1P and CMAS was validated in yeast using a β‑galactosidase assay and growth studies with selective media. Furthermore, co‑immunoprecipitation was used to analyze the FXR1P/CMAS association and immunofluorescence microscopy was performed to detect expression and intracellular localization of the proteins. The results of the current study indicated that FXR1P and CMAS interact, and colocalize in the cytoplasm and the nucleus of HEK293T and HeLa cells. Accordingly, a fragile X related 1 (FXR1) gene overexpression vector was constructed to investigate the effect of FXR1 overexpression on the level of monosialotetrahexosylganglioside 1 (GM1). The results of the current study suggested that FXR1P is a tissue‑specific regulator of GM1 levels in SH‑SY5Y cells, but not in HEK293T cells. Taken together, the results initially indicate that FXR1P interacts with CMAS, and that FXR1P may enhance the activation of sialic acid via interaction with CMAS, and increase GM1 levels to affect the development of the nervous system, thus providing evidence for further research into the pathogenesis of FXS.
Genome-wide miRNA response to anacardic acid in breast cancer cells
Schultz, David J.; Muluhngwi, Penn; Alizadeh-Rad, Negin; Green, Madelyn A.; Rouchka, Eric C.; Waigel, Sabine J.
2017-01-01
MicroRNAs are biomarkers and potential therapeutic targets for breast cancer. Anacardic acid (AnAc) is a dietary phenolic lipid that inhibits both MCF-7 estrogen receptor α (ERα) positive and MDA-MB-231 triple negative breast cancer (TNBC) cell proliferation with IC50s of 13.5 and 35 μM, respectively. To identify potential mediators of AnAc action in breast cancer, we profiled the genome-wide microRNA transcriptome (microRNAome) in these two cell lines altered by the AnAc 24:1n5 congener. Whole genome expression profiling (RNA-seq) and subsequent network analysis in MetaCore Gene Ontology (GO) algorithm was used to characterize the biological pathways altered by AnAc. In MCF-7 cells, 69 AnAc-responsive miRNAs were identified, e.g., increased let-7a and reduced miR-584. Fewer, i.e., 37 AnAc-responsive miRNAs were identified in MDA-MB-231 cells, e.g., decreased miR-23b and increased miR-1257. Only two miRNAs were increased by AnAc in both cell lines: miR-612 and miR-20b; however, opposite miRNA arm preference was noted: miR-20b-3p and miR-20b-5p were upregulated in MCF-7 and MDA-MB-231, respectively. miR-20b-5p target EFNB2 transcript levels were reduced by AnAc in MDA-MB-231 cells. AnAc reduced miR-378g that targets VIM (vimentin) and VIM mRNA transcript expression was increased in AnAc-treated MCF-7 cells, suggesting a reciprocal relationship. The top three enriched GO terms for AnAc-treated MCF-7 cells were B cell receptor signaling pathway and ribosomal large subunit biogenesis and S-adenosylmethionine metabolic process for AnAc-treated MDA-MB-231 cells. The pathways modulated by these AnAc-regulated miRNAs suggest that key nodal molecules, e.g., Cyclin D1, MYC, c-FOS, PPARγ, and SIN3, are targets of AnAc activity. PMID:28886127
Nath, Shalini; Mandal, Chhabinath; Chatterjee, Uttara; Mandal, Chitra
2018-02-12
Modulation of sialylation by sialyltransferases and sialidases plays essential role in carcinogenesis. There are few reports on sialyltransferase, however, the contribution of cytosolic sialidase (Neu2) remains unexplored in pancreatic ductal adenocarcinoma (PDAC). We observed lower expression of Neu2 in different PDAC cells, patient tissues, and a significant strong association with clinicopathological characteristics. Neu2 overexpression guided drug-resistant MIAPaCa2 and AsPC1 cells toward apoptosis as evidenced by decreased Bcl2/Bax ratio, activation of caspase-3/caspase-6/caspase-8, PARP reduction, reduced CDK2/CDK4/CDK6, and cyclin-B1/cyclin-E with unaffected caspase-9. Neu2-overexpressed cells exhibited higher expression of Fas/CD95-death receptor, FasL, FADD, and Bid cleavage confirming extrinsic pathway-mediated apoptosis. α2,6-linked sialylation of Fas helps cancer cells to survive, which is a substrate for Neu2. Therefore, their removal should enhance Fas-mediated apoptosis. Neu2-overexpressed cells indeed showed increased enzyme activity even on membrane. Interestingly, this membrane-bound Neu2 exhibited enhanced association with Fas causing its desialylation and activation as corroborated by decreased association of Fas with α2,6-sialic acid-binding lectin. Additionally, enhanced cytosolic Neu2 inhibited the expression of several growth factor-mediated signaling molecules involved in PI3K/Akt-mTOR pathway probably through desialylation which in turn also causes Fas activation. Furthermore, Neu2-overexpressed cells exhibited reduced cell migration, invasion with decreased VEGF, VEGFR, and MMP9 levels. To the best of our knowledge, this is the first report of cytosolic Neu2 on membrane, its association with Fas, enhanced desialylation, activation, and Fas-mediated apoptosis. Taken together, our study ascertains a novel concept by which the function of Fas/CD95 could be modulated indicating a critical role of upstream Neu2 as a promising target for inducing apoptosis in pancreatic cancer.
Structure of the LPS O-chain from Fusobacterium nucleatum strain 10953, containing sialic acid
Vinogradov, Evgeny; St. Michael, Frank; Homma, Kiyonobu; Sharma, Ashu; Cox, Andrew D.
2017-01-01
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. Recently, it has been gaining attention as a potential causative agent for colorectal cancer and is strongly linked with pregnancy complications including pre-term and still births. Little is known about virulence factors of this organism and thus we have initiated studies to examine the bacterial surface glycochemistry. Consistent with a recent paper suggesting that F. nucleatum strain 10593 can synthesize sialic acid, a staining technique identified sialic acid on the bacterial surface. We isolated lipopolysaccharide from this F. nucleatum strain and performed structural analysis on the O-antigen. Our studies identified a trisaccharide repeating unit of the O-antigen with the following structure: -[→4)-α-Neup5Ac-(2→4)-β-D-Galp-(1→3)-α-D-FucpNAc4NAc-(1-]-where Ac indicates 4-N-acetylation of ∼30% FucNAc4N residues. The presence of sialic acid as a constituent of the O-antigen is consistent with recent data identifying de novo sialic acid synthesis in this strain. PMID:28199859
Lu, Shih-Chin; Lin, Sung-Chyr
2012-01-05
Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins. Copyright © 2011 Elsevier Inc. All rights reserved.
Anisimov, Vladimir N; Khavinson, Vladimir K H; Provinciali, Mauro; Alimova, Irina N; Baturin, Dmitri A; Popovich, Irina G; Zabezhinski, Mark A; Imyanitov, Eugeni N; Mancini, Romina; Franceschi, Claudio
2002-09-01
Female FVB/N HER-2/neu transgenic mice from the age of 2 months were subcutaneously injected with saline, the peptide Epitalon(R) (Ala-Glu-Asp-Gly) or with the peptide Vilon(R) (Lys-Glu) in a single dose of 1 microg/mouse for 5 consecutive days every month. Epitalon treatment reduced the cumulative number and the maximum size of tumors (p < 0.05). Furthermore, the number of mice bearing 1 mammary tumor was increased, whereas the number of mice bearing 2 or more mammary tumors was reduced in Epitalon-treated in comparison to saline-treated animals (p < 0.05). The size but not the number of lung metastases was reduced in Epitalon-treated compared to saline-treated mice (p < 0.05). The treatment with Vilon produced significant negative effects when compared to the control group, with an increased incidence of mammary cancer development (p < 0.05), a shorter mean latent period of tumors (p < 0.05) and an increased cumulative number of tumors (p < 0.05). A 3.7-fold reduction in the expression of HER-2/neu mRNA was found in mammary tumors from HER-2/neu transgenic mice treated with Epitalon compared to control animals. The expression of mRNA for HER-2/neu was also partially reduced in Vilon-treated mice, but it remained significantly higher in Vilon- than in Epitalon-treated animals (1.9-fold increase). The data demonstrate the inhibitory effect of Epitalon in the development of spontaneous mammary tumors in HER-2/neu mice, suggesting that a downregulation of HER-2/neu gene expression in mammary adenocarcinoma may be responsible, at least in part, for the antitumor effect of the peptide. Copyright 2002 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon
2007-05-11
The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC inmore » the presence of TNF-{alpha}. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-{alpha}-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-{alpha}-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-{alpha}. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-{kappa}B and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis.« less
Reiding, Karli R; Ruhaak, L Renee; Uh, Hae-Won; El Bouhaddani, Said; van den Akker, Erik B; Plomp, Rosina; McDonnell, Liam A; Houwing-Duistermaat, Jeanine J; Slagboom, P Eline; Beekman, Marian; Wuhrer, Manfred
2017-02-01
Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome, it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large-scale studies (n >200) of the total plasma N-glycome have been performed with methods of chromatographic and electrophoretic separation, which, although being informative, are limited in resolving the structural complexity of plasma N-glycans. MS has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species.Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)-MS to study the total plasma N-glycome of 2144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex 4 HexNAc 2 to Hex 7 HexNAc 6 dHex 1 Neu5Ac 4 , as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and smoking. Overall, the bisection, galactosylation, and sialylation of diantennary species, the sialylation of tetraantennary species, and the size of high-mannose species proved to be important plasma characteristics associated with inflammation and metabolic health. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Reiding, Karli R.; Ruhaak, L. Renee; Uh, Hae-Won; el Bouhaddani, Said; van den Akker, Erik B.; Plomp, Rosina; McDonnell, Liam A.; Houwing-Duistermaat, Jeanine J.; Slagboom, P. Eline; Beekman, Marian; Wuhrer, Manfred
2017-01-01
Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome, it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large-scale studies (n >200) of the total plasma N-glycome have been performed with methods of chromatographic and electrophoretic separation, which, although being informative, are limited in resolving the structural complexity of plasma N-glycans. MS has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species. Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)-MS to study the total plasma N-glycome of 2144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex4HexNAc2 to Hex7HexNAc6dHex1Neu5Ac4, as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and smoking. Overall, the bisection, galactosylation, and sialylation of diantennary species, the sialylation of tetraantennary species, and the size of high-mannose species proved to be important plasma characteristics associated with inflammation and metabolic health. PMID:27932526
Assessment transcallosal Diaschisis in a model of focal cerebral ischemia in rats.
Arango-Dávila, César Augusto; Muñoz Ospina, Beatriz Elena; Castaño, Daniel Manrique; Potes, Laura; Umbarila Prieto, John
2016-06-30
To evaluate transcallosal changes after a local ischemic injury in rats by using the monoclonal marker anti-NeuN (Mouse anti-neuronal nuclei). Twenty-eight adult, male, Wistar rats were subjected to focal injury in the right hemisphere. The technique used was the experimental model of focal ischemic injury through intraluminal suture of the middle cerebral artery. Analyses were made for the five groups: after the lesion (control), at 24 h, 96 h, 10 days and 20 days. Exofocal neuronal damage was inferred from neuronal immunoreactivity changes to NeuN. In the cortex contralateral to the lesion, immunoreactivity was diminished. This finding was most notable in the supra-granular sheets 24 h post ischemia. After 96 h, there was a generalized diminishment of the inmmunoreactivity in the supra and infra-granular sheets. At 10 and 20 days, the tissue recovered some immunoreactivity to NeuN, but there were some changes in the VI layer. The immunoreactive changes to NeuN support the process of inter-hemispheric diaschisis. Changes in immunoreactivity could indicate metabolic stress secondary to the disruption in connectivity to the site of lesion.
Schwardt, Oliver; Koliwer-Brandl, Hendrik; Zimmerli, Raphael; Mesch, Stefanie; Rossato, Gianluca; Spreafico, Morena; Vedani, Angelo; Kelm, Sørge; Ernst, Beat
2010-10-15
Broad modifications of various positions of the minimal natural epitope recognized by the myelin-associated glycoprotein (MAG), a blocker of regeneration of neurite injuries, produced sialosides with nanomolar affinities. However, important pharmacokinetic issues, for example, the metabolic stability of these sialosides, remain to be addressed. For this reason, the novel non-carbohydrate mimic 3 was designed and synthesized from (-)-quinic acid. For the design of 3, previously identified beneficial modifications of side chains of Neu5Ac were combined with the replacement of the ring oxygen by a methylene group and the substitution of the C(4)-OH by an acetamide. Although docking experiments to a homology model of MAG revealed that mimic 3 forms all but one of the essential hydrogen bonds identified for the earlier reported lead 2, its affinity was substantially reduced. Extensive molecular-dynamics simulation disclosed that the missing hydrogen bond of the former C(8)-OH leads to a change of the orientation of the side chain. As a consequence, an important hydrophobic contact is compromised leading to a loss of affinity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Crost, Emmanuelle H; Tailford, Louise E; Monestier, Marie; Swarbreck, David; Henrissat, Bernard; Crossman, Lisa C; Juge, Nathalie
2016-07-03
We previously identified and characterized an intramolecular trans-sialidase (IT-sialidase) in the gut symbiont Ruminococcus gnavus ATCC 29149, which is associated to the ability of the strain to grow on mucins. In this work we have obtained and analyzed the draft genome sequence of another R. gnavus mucin-degrader, ATCC 35913, isolated from a healthy individual. Transcriptomics analyses of both ATCC 29149 and ATCC 35913 strains confirmed that the strategy utilized by R. gnavus for mucin-degradation is focused on the utilization of terminal mucin glycans. R. gnavus ATCC 35913 also encodes a predicted IT-sialidase and harbors a Nan cluster dedicated to sialic acid utilization. We showed that the Nan cluster was upregulated when the strains were grown in presence of mucin. In addition we demonstrated that both R. gnavus strains were able to grow on 2,7-anyhydro-Neu5Ac, the IT-sialidase transglycosylation product, as a sole carbon source. Taken together these data further support the hypothesis that IT-sialidase expressing gut microbes, provide commensal bacteria such as R. gnavus with a nutritional competitive advantage, by accessing and transforming a source of nutrient to their own benefit.
Luzina, Irina G; Lockatell, Virginia; Hyun, Sang W; Kopach, Pavel; Kang, Phillip H; Noor, Zahid; Liu, Anguo; Lillehoj, Erik P; Lee, Chunsik; Miranda-Ribera, Alba; Todd, Nevins W; Goldblum, Simeon E; Atamas, Sergei P
2016-05-15
Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.
HER-2 Pulsed Dendritic Cell Vaccine Can Eliminate HER-2 Expression and Impact DCIS
Sharma, Anupama; Koldovsky, Ursula; Xu, Shuwen; Mick, Rosemarie; Roses, Robert; Fitzpatrick, Elizabeth; Weinstein, Susan; Nisenbaum, Harvey; Levine, Bruce L; Fox, Kevin; Zhang, Paul; Koski, Gary; Czerniecki, Brian J
2011-01-01
Background HER-2/neu over-expression plays a critical role in breast cancer development and its expression in ductal carcinoma in situ (DCIS) is associated with development of invasive breast cancer. A vaccine targeting HER-2/neu expression in DCIS may initiate immunity against invasive cancer. Methods A HER-2/neu dendritic cell (DC) vaccine was administered to 27 patients with HER-2/neu over-expressing DCIS. The HER-2/neu vaccine was administered prior to surgical resection and pre- and post-vaccination analysis was conducted to assess clinical results. Results At surgery, 5 of 27 (18.5%) vaccinated subjects had no evidence of remaining disease, while among 22 subjects with residual DCIS, HER-2/neu expression was eradicated in 11 (50%). When comparing ERneg with ERpos DCIS lesions, vaccination was more effective in hormone-independent DCIS. Following vaccination, no residual DCIS was found in 40% of ERneg subjects compared to 5.9% in ERpos subject. Sustained HER-2/neu expression was found in 10% of ERneg subjects compared to 47.1% in ERpos subjects (p=0.04). Post-vaccination phenotypes were significantly different between ERpos and ERneg subjects (p=0.01), with 7 of 16 (43.8%) initially presenting with ERpos HER-2/neupos Luminal B phenotype finishing with the ERpos HER-2/neuneg Luminal A phenotype, and 3 of 6 (50%) with the ERneg HER-2/neupos phenotype changing to the ERneg HER-2/neuneg phenotype. Conclusions Results suggest vaccination against HER-2/neu is safe, well-tolerated and induces decline and or eradication of HER-2/neu expression. These findings warrant further exploration of HER-2/neu vaccination in estrogen-independent breast cancer and highlight the need to target additional tumor associated antigens and pathways. PMID:22252842
Liu, Meiling; Chen, Qiong; Lai, Cailang; Zhang, Youyu; Deng, Jianhui; Li, Haitao; Yao, Shouzhuo
2013-10-15
A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (AC) was fabricated by a nanocomposite of ferrocene thiolate stabilized Fe₃O₄@Au nanoparticles with graphene sheet. The platform was constructed by coating a newly synthesized phenylethynyl ferrocene thiolate (Fc-SAc) modified Fe₃O₄@Au NPs coupling with graphene sheet/chitosan (GS-chitosan) on a glassy carbon electrode (GCE) surface. The Fe₃O₄@Au-S-Fc/GS-chitosan modified GCE exhibits a synergistic catalytic and amplification effect toward AA, DA, UA and AC oxidation. The oxidation peak currents of the four compounds on the electrode were linearly dependent on AA, DA, UA and AC concentrations in the ranges of 4-400 μM, 0.5-50 μM, 1-300 μM and 0.3-250 μM in the individual detection of each component, respectively. By simultaneously changing the concentrations of AA, DA, UA and AC, their electrochemical oxidation peaks appeared at -0.03, 0.15, 0.24 and 0.35 V, and good linear current responses were obtained in the concentration ranges of 6-350, 0.5-50, 1-90 and 0.4-32 μM with the detection limits of 1, 0.1, 0.2 and 0.05 μM (S/N=3), respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N.; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W.; Broeck, Jozef Vanden; Tourwé, Dirk
2011-01-01
A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3′,5′-(CF3)2-Bn], 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn] and 23 [Ac-Tic-NMe-3′,5′-(CF3)2-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], which combines the N-terminus of the established Dmt1-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH2) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, i.e. Dmt-D-Arg-Aba-Gly-NH2 36, also proved to be an extremely potent and balanced μ- and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity. PMID:21413804
Effect of Na+ impregnated activated carbon on the adsorption of NH4(+)-N from aqueous solution.
Shi, Mo; Wang, Zhengfang; Zheng, Zheng
2013-08-01
Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na, respectively), were used as adsorbents to remove NH4(+)-N. The surface features of samples were investigated by BET, SEM, XRD and FT-IR. The adsorption experiments were conducted in equilibrium and kinetic conditions. Influencing factors such as initial solution pH and initial concentration were investigated. A possible mechanism was proposed. Results showed that optimal NH4(+)-N removal efficiency was achieved at a neutral pH condition for the modified ACs. The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study. The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model. Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment, especially oxidation by nitric acid, thus increasing the removal efficiency of the modified ACs for NH4(+)-N. Na(+)-impregnated ACs had a higher removal capability in removing NH4(+)-N than unmodified AC, possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion. The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4(+)-N adsorption on the active homogenous sites within the adsorbents. The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism. The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.
Lee, Hyeyoung; An, Hyun Joo; Lerno, Larry A.; German, J. Bruce; Lebrilla, Carlito B.
2010-01-01
Gangliosides are anionic glycosphingolipids widely distributed in vertebrate tissues and fluids. Their structural and quantitative expression patterns depend on phylogeny and are distinct down to the species level. In milk, gangliosides are exclusively associated with the milk fat globule membrane. They may participate in diverse biological processes but more specifically to host-pathogen interactions. However, due to the molecular complexities, the analysis needs extensive sample preparation, chromatographic separation, and even chemical reaction, which makes the process very complex and time-consuming. Here, we describe a rapid profiling method for bovine and human milk gangliosides employing matrix-assisted desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Prior to the analyses of biological samples, milk ganglioside standards GM3 and GD3 fractions were first analyzed in order to validate this method. High mass accuracy and high resolution obtained from MALDI FTICR MS allow for the confident assignment of chain length and degree of unsaturation of the ceramide. For the structural elucidation, tandem mass spectrometry (MS/MS), specifically as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) were employed. Complex ganglioside mixtures from bovine and human milk were further analyzed with this method. The samples were prepared by two consecutive chloroform/methanol extraction and solid phase extraction. We observed a number of differences between bovine milk and human milk. The common gangliosides in bovine and human milk are NeuAc-NeuAc-Hex-Hex-Cer (GD3) and NeuAc-Hex-Hex-Cer (GM3); whereas, the ion intensities of ganglioside species are different between two milk samples. Kendrick mass defect plot yields grouping of ganglioside peaks according to their structural similarities. Gangliosides were further probed by tandem MS to confirm the compositional and structural assignments. We found that only in human milk gangliosides was the ceramide carbon always even numbered, which is consistent with the notion that differences in the oligosaccharide and the ceramide moieties confer to their physiological distinctions. PMID:21860602
Brom, Maarten; Joosten, Lieke; Oyen, Wim Jg; Gotthardt, Martin; Boerman, Otto C
2012-01-27
In single photon emission computed tomography [SPECT], high specific activity of 111In-labelled tracers will allow administration of low amounts of tracer to prevent receptor saturation and/or side effects. To increase the specific activity, we studied the effect of the buffer used during the labelling procedure: NaAc, NH4Ac, HEPES and MES buffer. The effect of the ageing of the 111InCl3 stock and cadmium contamination, the decay product of 111In, was also examined in these buffers. Escalating amounts of 111InCl3 were added to 1 μg of the diethylene triamine pentaacetic acid [DTPA]- and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA]-conjugated compounds (exendin-3, octreotide and anti-carbonic anhydrase IX [CAIX] antibody). Five volumes of 2-(N-morpholino)ethanesulfonic acid [MES], 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], NH4Ac or NaAc (0.1 M, pH 5.5) were added. After 20 min at 20°C (DTPA-conjugated compounds), at 95°C (DOTA-exendin-3 and DOTA-octreotide) or at 45°C (DOTA-anti-CAIX antibody), the labelling efficiency was determined by instant thin layer chromatography. The effect of the ageing of the 111InCl3 stock on the labelling efficiency of DTPA-exendin-3 as well as the effect of increasing concentrations of Cd2+ (the decay product of 111In) were also examined. Specific activities obtained for DTPA-octreotide and DOTA-anti-CAIX antibody were five times higher in MES and HEPES buffer. Radiolabelling of DTPA-exendin-3, DOTA-exendin-3 and DTPA-anti-CAIX antibody in MES and HEPES buffer resulted in twofold higher specific activities than that in NaAc and NH4Ac. Labelling of DTPA-exendin-3 decreased with 66% and 73% for NaAc and NH4Ac, respectively, at day 11 after the production date of 111InCl3, while for MES and HEPES, the maximal decrease in the specific activity was 10% and 4% at day 11, respectively. The presence of 1 pM Cd2+ in the labelling mixture of DTPA-exendin-3 in NaAc and NH4Ac markedly reduced the labelling efficiency, whereas Cd2+ concentrations up to 0.1 nM did not affect the labelling efficiency in MES and HEPES buffer. We showed improved labelling of DTPA- and DOTA-conjugated compounds with 111In in HEPES and MES buffer. The enhanced labelling efficiency appears to be due to the reduced competitive chelation of cadmium. The enhanced labelling efficiency will allow more sensitive imaging of the biomarkers with SPECT.
Effects of a human plasma membrane-associated sialidase siRNA on prostate cancer invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaojie; Taizhou Polytechnic College, Taizhou; Zhang, Ling
2011-12-16
Highlights: Black-Right-Pointing-Pointer Neu3 is as one of the sialidases and regulates cell surface functions. Black-Right-Pointing-Pointer A Neu3-specific siRNA inhibited prostrate cancer cell invasion and migration. Black-Right-Pointing-Pointer The Neu3-specific siRNA inhibited prostate cancer metastasis in mice. Black-Right-Pointing-Pointer Targeting Neu3 may have utility for gene-based therapy of human cancer metastasis. -- Abstract: Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated themore » effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed decreased expressions of MMP-2 and MMP-9 at the mRNA and protein levels. Taken together, the present findings suggest that Neu3 is a promising molecular target for the prevention of prostate cancer metastasis.« less
Anti-GM2 gangliosides IgM paraprotein induces neuromuscular block without neuromuscular damage.
Santafé, Manel M; Sabaté, M Mar; Garcia, Neus; Ortiz, Nico; Lanuza, M Angel; Tomàs, Josep
2008-11-15
We analyzed the effect on the mouse neuromuscular synapses of a human monoclonal IgM, which binds specifically to gangliosides with the common epitope [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-]. We focused on the role of the complement. Evoked neurotransmission was partially blocked by IgM both acutely (1 h) and chronically (10 days). Transmission electron microscopy shows important nerve terminal growth and retraction remodelling though axonal injury can be ruled out. Synapses did not show mouse C5b-9 immunofluorescence and were only immunolabelled when human complement was added. Therefore, the IgM-induced synaptic changes occur without complement-mediated membrane attack.
Sieve, Irina; Ricke-Hoch, Melanie; Kasten, Martina; Battmer, Karin; Stapel, Britta; Falk, Christine S; Leisegang, Matthias S; Haverich, Axel; Scherr, Michaela; Hilfiker-Kleiner, Denise
2018-04-01
Inflammation plays an important role in atherosclerosis, a notion supported by the beneficial effects of the IL-1β inhibitor canakinumab in the CANTOS trial. Sialic acids (Sias), components of the surface glycocalyx, regulate intercellular and intermolecular interactions. We investigated the expression of the Sia cleaving enzyme neuraminidase-1 (NEU1) in atherosclerotic plaques and its potential role in inflammatory processes. In isolated mononuclear blood cells from patients with myocardial infarction, NEU1 expression was increased compared to healthy controls. High expression of NEU1 in macrophages located on the intima layer, in calcified regions and the adventitia of the plaque was observed in human carotid arteries' atherectomies. IL-1β and LPS induced NEU1 expression in THP-1 monocytic cells. Lentiviral NEU1-overexpression in THP-1-cells enhanced expression of CD80, TNF-α, IL-1β, number of multinuclear cells, phagocytosis and chemotaxis indicative for M1 monocyte/macrophage polarization. CRISPR/Cas9-mediated knock-out of NEU1 in THP-1-cells did not affect differentiation of monocytes to macrophages but attenuated LPS- and IL-1β -induced TNF-α and IL-1β expression. SiRNA-mediated knock-down of NEU1 in M1-macrophages differentiated from primary human CD14 + monocytes reduced the expression of TNF-α and IL-1β. Thus, in monocytes/macrophages, LPS, NEU1 and IL-1β act in a positive feedback loop as enhancers of inflammation and may therefore promote atherosclerosis and plaque instability. Copyright © 2018 Elsevier Inc. All rights reserved.
Joshi, Dipesh; Fung, Samantha J; Rothwell, Alice; Weickert, Cynthia Shannon
2012-11-01
In the orbitofrontal cortex (OFC), reduced gray matter volume and reduced glutamic acid decarboxylase 67kDa isoform (GAD67) messenger (m)RNA are found in schizophrenia; however, how these alterations relate to developmental pathology of interneurons is unclear. The present study therefore aimed to determine if increased interstitial white matter neuron (IWMN) density exists in the OFC; whether gamma-aminobutyric acid (GABA)ergic neuron density in OFC white matter was altered; and how IWMN density may be related to an early-expressed inhibitory neuron marker, Dlx1, in OFC gray matter in schizophrenia. IWMN densities were determined (38 schizophrenia and 38 control subjects) for neuronal nuclear antigen (NeuN+) and 65/67 kDa isoform of glutamic acid decarboxylase immunopositive (GAD65/67+) neurons. In situ hybridization was performed to determine Dlx1 and GAD67 mRNA expression in the OFC gray matter. NeuN and GAD65/67 immunopositive cell density was significantly increased in the superficial white matter in schizophrenia. Gray matter Dlx1 and GAD67 mRNA expression were reduced in schizophrenia. Dlx1 mRNA levels were negatively correlated with GAD65/67 IWMN density. Our study provides evidence that pathology of IWMNs in schizophrenia includes GABAergic interneurons and that increased IWMN density may be related to GABAergic deficits in the overlying gray matter. These findings provide evidence at the cellular level that the OFC is a site of pathology in schizophrenia and support the hypothesis that inappropriate migration of cortical inhibitory interneurons occurs in schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Komori, Tatsuya; Ando, Takayuki; Imamura, Akihiro; Li, Yu-Teh; Ishida, Hideharu; Kiso, Makoto
2008-10-01
To elucidate the mechanism underlying the hydrolysis of the GalNAcbeta1-->4Gal linkage in ganglioside GM2 [GalNAcbeta1-->4(NeuAcalpha2-->3)Galbeta1-->4Glcbeta1-->1' Cer] by beta-hexosaminidase A (Hex A) with GM2 activator protein, we designed and synthesized two kinds of GM2 linkage analogues-6'-NeuAc-GM2 and alpha-GalNAc-GM2. In this paper, the efficient and systematic synthesis of these GM2 analogues was described. The highlight of our synthesis process is that the key intermediates, newly developed sialyllactose derivatives, were efficiently prepared in sufficient quantities; these derivatives directly served as highly reactive glycosyl acceptors and coupled with GalNTroc donors to furnish the assembly of GM2 tetrasaccharides in large quantities.
Synthesis and anti-inflammatory activity of some benzofuran and benzopyran-4-one derivatives.
Ragab, Fatma Abd El-Fattah; Eid, Nahed Mahmoud; Hassan, Ghaneya Sayed; Nissan, Yassin Mohammed
2012-01-01
New series of furosalicylic acids 3a-c, furosalicylanilides 6a-n, furobenzoxazines 8a-f, 1-benzofuran-3-arylprop-2-en-1-ones 12a,b, 6-(aryl-3-oxoprop-1-enyl)-4H-chromen-4-ones 16a-c and 6-[6-aryl-2-thioxo-2,5-dihydropyrimidin-4-yl]-4H-chromen-4-ones 17a-c were synthesized. Anti-inflammatory activity evaluation was performed using carrageenan-induced paw edema model in rats and prostaglandin E(2) (PGE(2)) synthesis inhibition activity. Some of the tested compounds revealed comparable activity with less ulcerogenic effect than Diclofenac at a dose 100 mg/kg. All the synthesized compounds were docked on the active site of cyclooxygenase-2 (COX-2) enzyme and most of them showed good interactions with the amino acids of the active site comparable to the interactions exhibited by Diclofenac.
Mastelić, Angela; Čikeš Čulić, Vedrana; Režić Mužinić, Nikolina; Vuica-Ross, Milena; Barker, David; Leung, Euphemia Y; Reynisson, Jóhannes; Markotić, Anita
2017-01-01
Tumor progression may be driven by a small subpopulation of cancer stem cells (CSCs characterized by CD44 + /CD24 - phenotype). We investigated the influence of a newly developed thienopyridine anticancer compound (3-amino-5-oxo- N -naphthyl-5,6,7, 8-tetrahydrothieno[2,3- b ]quinoline-2-carboxamide, 1 ) on the growth, survival and glycophenotype (CD15s and GM3 containing neuraminic acid substituted with acetyl residue, NeuAc) of breast and prostate cancer stem/progenitor-like cell population. MDA-MB-231 and Du-145 cells were incubated with compound 1 alone or in combination with paclitaxel. The cellular metabolic activity was determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. The type of cell death induced by 48-h treatment was assessed using a combination of Annexin-V-FITC and propidium iodide staining. Flow cytometric analysis was performed to detect the percentage of CD44 + /CD24 - cells, and GM3 and CD15s positive CSCs, as well as the expression of GM3 and CD15s per one CSC, in both cell lines. Compound 1 produces a dose- and time-dependent cytotoxicity, mediated mainly by apoptosis in breast cancer cells, and slightly (2.3%) but statistically significant lowering breast CSC subpopulation. GM3 expression per one breast CSC was increased, and the percentage of prostate GM3 + CSC subpopulation was decreased in cells treated with compound 1 compared with non-treated cells. The percentage of CD15s + CSCs was lower in both cell lines after treatment with compound 1 . Considering that triple-negative breast cancers are characterized by an increased percentage of breast CSCs and knowing their association with an increased risk of metastasis and mortality, compound 1 is a potentially effective drug for triple-negative breast cancer treatment.
Pan, Aihua; Li, Ming; Gao, Jun-Yan; Xue, Zhi-Qin; Li, Zhiyuan; Yuan, Xian-Yui; Luo, Duan-Wu; Luo, Xue-Gang; Yan, Xiao-Xin
2013-02-01
Epidural hematoma (EDH) is a type of life-threatening traumatic brain injury. Little is known about the extent to which EDH may cause neural damage and regenerative response in the cerebral cortex. Here we attempted to explore these issues by using guinea pigs as an experimental model. Unilateral EDH was induced by injection of 0.1 ml autologous blood into the extradural space, with experimental effects examined at 7, 14, 30, and 60 days postlesion. An infarct developed in the cortex deep to the EDH largely after 7 days postlesion, with neuronal death occurred from layers I to V in the central infarct region, as evidenced by loss of immunoreactivity (IR) for neuron-specific nuclear antigen (NeuN). Glial fibrillary acidic protein (GFAP) IR appeared as a cellular band surrounding the infarct and extending into the periinfarct cortex along the pia. Doublecortin (DCX) IR emerged in these same areas, with labeled cells appearing as astrocytic and neuronal profiles. DCX/GFAP colocalization was found in these regions commonly at 7 and 14 days postlesion, whereas DCX/NeuN-colabeled neurons were detectable at 30 and 60 days postlesion. Subpopulations of GFAP-, DCX-, or NeuN-immunoreactive cells colocalized with the endogenous proliferative marker Ki-67 or bromodeoxyuridine (BrdU) after pulse-chase with this birth-dating marker. The results suggest that experimental EDH can cause severe neuronal loss, induce significant glial activation, and promote a certain degree of local neuronal genesis in adult guinea pig neocortex. These findings point to potential therapeutic targets for improving neuronal recovery in clinical management of EDH. Copyright © 2012 Wiley Periodicals, Inc.
Aguilar-Arredondo, Andrea; Zepeda, Angélica
2018-07-01
The dentate gyrus (DG) is a neurogenic structure that exhibits functional and structural reorganization after injury. Neurogenesis and functional recovery occur after brain damage, and the possible relation between both processes is a matter of study. We explored whether neurogenesis and the activation of new neurons correlated with DG recovery over time. We induced a DG lesion in young adult rats through the intrahippocampal injection of kainic acid and analyzed functional recovery and the activation of new neurons after animals performed a contextual fear memory task (CFM) or a control spatial exploratory task. We analyzed the number of BrdU+ cells that co-localized with doublecortin (DCX) or with NeuN within the damaged DG and evaluated the number of cells in each population that were labelled with the activity marker c-fos after either task. At 10 days post-lesion (dpl), a region of the granular cell layer was devoid of cells, evidencing the damaged area, whereas at 30 dpl this region was significantly smaller. At 10 dpl, the number of BrdU+/DCX+/c-fos positive cells was increased compared to the sham-lesion group, but CFM was impaired. At 30 dpl, a significantly greater number of BrdU+/NeuN+/c-fos positive cells was observed than at 10 dpl, and activation correlated with CFM recovery. Performance in the spatial exploratory task induced marginal c-fos immunoreactivity in the BrdU+/NeuN+ population. We demonstrate that neurons born after the DG was damaged survive and are activated in a time- and task-dependent manner and that activation of new neurons occurs along functional recovery.
Mao, Shanping; Xiong, Guoxiang; Zhang, Lei; Dong, Huimin; Liu, Baohui; Cohen, Noam A; Cohen, Akiva S
2016-01-01
A60, the mouse monoclonal antibody against the neuronal nuclear protein (NeuN), is the most widely used neuronal marker in neuroscience research and neuropathological assays. Previous studies identified fragments of A60-immunoprecipitated protein as Synapsin I (Syn I), suggesting the antibody will demonstrate cross immunoreactivity. However, the likelihood of cross reactivity has never been verified by immunohistochemical techniques. Using our established tissue processing and immunofluorescent staining protocols, we found that A60 consistently labeled mossy fiber terminals in hippocampal area CA3. These A60-positive mossy fiber terminals could also be labeled by Syn I antibody. After treating brain slices with saponin in order to better preserve various membrane and/or vesicular proteins for immunostaining, we observed that A60 could also label additional synapses in various brain areas. Therefore, we used A60 together with a rabbit monoclonal NeuN antibody to confirm the existence of this cross reactivity. We showed that the putative band positive for A60 and Syn I could not be detected by the rabbit anti-NeuN in Western blotting. As efficient as Millipore A60 to recognize neuronal nuclei, the rabbit NeuN antibody demonstrated no labeling of synaptic structures in immunofluorescent staining. The present study successfully verified the cross reactivity present in immunohistochemistry, cautioning that A60 may not be the ideal biomarker to verify neuronal identity due to its cross immunoreactivity. In contrast, the rabbit monoclonal NeuN antibody used in this study may be a better candidate to substitute for A60.
Assessment transcallosal Diaschisis in a model of focal cerebral ischemia in rats
Muñoz Ospina, Beatriz Elena; Castaño, Daniel Manrique; Potes, Laura; Umbarila Prieto, John
2016-01-01
Objective: To evaluate transcallosal changes after a local ischemic injury in rats by using the monoclonal marker anti-NeuN (Mouse anti-neuronal nuclei). Methods: Twenty-eight adult, male, Wistar rats were subjected to focal injury in the right hemisphere. The technique used was the experimental model of focal ischemic injury through intraluminal suture of the middle cerebral artery. Analyses were made for the five groups: after the lesion (control), at 24 h, 96 h, 10 days and 20 days. Exofocal neuronal damage was inferred from neuronal immunoreactivity changes to NeuN. Results: In the cortex contralateral to the lesion, immunoreactivity was diminished. This finding was most notable in the supra-granular sheets 24 h post ischemia. After 96 h, there was a generalized diminishment of the inmmunoreactivity in the supra and infra-granular sheets. At 10 and 20 days, the tissue recovered some immunoreactivity to NeuN, but there were some changes in the VI layer. Conclusion: The immunoreactive changes to NeuN support the process of inter-hemispheric diaschisis. Changes in immunoreactivity could indicate metabolic stress secondary to the disruption in connectivity to the site of lesion. PMID:27546930
Tsuge, Takeharu; Watanabe, Shinko; Shimada, Daisuke; Abe, Hideki; Doi, Yoshiharu; Taguchi, Seiichi
2007-12-01
Aeromonas caviae polyhydroxyalkanoate synthase (PhaC(Ac)) is an important biocatalyst for the synthesis of practically useful two-component polyhydroxyalkanoate copolymer, poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)]. In a previous study, two PhaC(Ac) mutants that have a single amino acid substitution of either asparagine 149 by serine (N149S) or aspartate 171 by glycine (D171G) were isolated as higher active enzymes by means of evolutionary engineering. In this study, the synergistic effects of N149S and D171G double mutation (NSDG) in PhaC(Ac) on polyhydroxyalkanoate biosynthesis were investigated in recombinant Ralstonia eutropha. The PhaC(Ac) NSDG mutant showed enhanced incorporation of longer 3-hydroxyalkanoate (3HA) units into the polyhydroxyalkanoate copolymer from octanoate (3HA fraction: 18.5 mol%) and soybean oil (5.4 mol%) as a carbon source. Besides, the NSDG mutant synthesized P(3HB) homopolymer with a very high molecular weight (M(w)=368 x 10(4)) when fructose was used as a carbon source. Thus, a combination of the beneficial mutations synergistically altered enzymatic properties, leading to synthesis of a polyhydroxyalkanoate copolymer with enhanced 3HA fraction and increased molecular weight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilder, Richard B.; Curcio, Lisa D.; Khanijou, Rajesh K.
2010-11-01
Purpose: To report our results with accelerated partial breast irradiation (APBI) in terms of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2/neu) status. Methods and Materials: Between February 2003 and June 2009, 209 women with early-stage breast carcinomas were treated with APBI using multicatheter, MammoSite, or Contura brachytherapy to 34 Gy in 10 fractions twice daily over 5-7 days. Three patient groups were defined by receptor status: Group 1: ER or PR (+) and HER-2/neu (-) (n = 180), Group 2: ER and PR (-) and HER-2/neu (+) (n = 10), and Group 3:more » ER, PR, and HER-2/neu (-) (triple negative breast cancer, n = 19). Median follow-up was 22 months. Results: Group 3 patients had significantly higher Scarff-Bloom-Richardson scores (p < 0.001). The 3-year ipsilateral breast tumor control rates for Groups 1, 2, and 3 were 99%, 100%, and 100%, respectively (p = 0.15). Group 3 patients tended to experience relapse in distant sites earlier than did non-Group 3 patients. The 3-year relapse-free survival rates for Groups 1, 2, and 3 were 100%, 100%, and 81%, respectively (p = 0.046). The 3-year cause-specific and overall survival rates for Groups 1, 2, and 3 were 100%, 100%, and 89%, respectively (p = 0.002). Conclusions: Triple negative breast cancer patients typically have high-grade tumors with significantly worse relapse-free, cause-specific, and overall survival. Longer follow-up will help to determine whether these patients also have a higher risk of ipsilateral breast tumor relapse.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Rangarajan; K Ruane; A Proteau
2011-12-31
There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into twomore » subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates.« less
Reiser, Hans; Klingenberg, Roland; Hof, Danielle; Cooksley-Decasper, Seraina; Fuchs, Nina; Akhmedov, Alexander; Zoller, Stefan; Marques-Vidal, Pedro; Marti Soler, Helena; Heg, Dik; Landmesser, Ulf; Rodondi, Nicolas; Mach, Francois; Windecker, Stephan; Vollenweider, Peter; Matter, Christian M; Lüscher, Thomas F; von Eckardstein, Arnold; Gawinecka, Joanna
2015-08-01
Blood-borne biomarkers reflecting atherosclerotic plaque burden have great potential to improve clinical management of atherosclerotic coronary artery disease and acute coronary syndrome (ACS). Using data integration from gene expression profiling of coronary thrombi versus peripheral blood mononuclear cells and proteomic analysis of atherosclerotic plaque-derived secretomes versus healthy tissue secretomes, we identified fatty acid-binding protein 4 (FABP4) as a biomarker candidate for coronary artery disease. Its diagnostic and prognostic performance was validated in 3 different clinical settings: (1) in a cross-sectional cohort of patients with stable coronary artery disease, ACS, and healthy individuals (n=820), (2) in a nested case-control cohort of patients with ACS with 30-day follow-up (n=200), and (3) in a population-based nested case-control cohort of asymptomatic individuals with 5-year follow-up (n=414). Circulating FABP4 was marginally higher in patients with ST-segment-elevation myocardial infarction (24.9 ng/mL) compared with controls (23.4 ng/mL; P=0.01). However, elevated FABP4 was associated with adverse secondary cerebrovascular or cardiovascular events during 30-day follow-up after index ACS, independent of age, sex, renal function, and body mass index (odds ratio, 1.7; 95% confidence interval, 1.1-2.5; P=0.02). Circulating FABP4 predicted adverse events with similar prognostic performance as the GRACE in-hospital risk score or N-terminal pro-brain natriuretic peptide. Finally, no significant difference between baseline FABP4 was found in asymptomatic individuals with or without coronary events during 5-year follow-up. Circulating FABP4 may prove useful as a prognostic biomarker in risk stratification of patients with ACS. © 2015 American Heart Association, Inc.
Cooper, Gareth R; Moir, Anne
2011-05-01
The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore.
Senda, Akitsugu; Hatakeyama, Emi; Kobayashi, Rui; Fukuda, Kenji; Uemura, Yusuke; Saito, Tadao; Packer, Craig; Oftedal, Olav T; Urashima, Tadasu
2010-12-01
The Carnivora include the superfamilies Canoidea and Feloidea. In species of Canoidea other than the domestic dog, Canis lupus, the milk contains only traces of lactose and much larger concentrations of oligosaccharides. In this study, lactose was found to be the dominant saccharide in the milk or colostrum of two species of Feloidea, namely the African lion (Panthera leo) and the clouded leopard (Neofelis nebulosa). In addition to lactose, the following oligosaccharides were characterized in the milk of a lion; Neu5Gc(α2-3)Gal(β1-4)Glc (3'-NGc-SL), Fuc(α1-2)Gal(β1-4)Glc (2'-fucosyllactose) and GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (A-tetrasaccharide). The colostrum of a clouded leopard contained 3'-NGc-SL, Gal(α1-3)Gal(β1-4)Glc (isoglobotriose) and A-tetrasaccharide. These oligosaccharides differ in some respects from those previously identified in another species of Feloidea, the spotted hyena (Crocuta crocuta). These milks contained 3'-NGc-SL and A-tetrasaccharide, while spotted hyena colostrum did not; however, it contained Neu5Ac(α2-3)Gal(β1-4)Glc (3'-NAc-SL) and Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (B-tetrasaccharide). © 2010 The Authors. Journal compilation © 2010 Japanese Society of Animal Science.
Attenuation of Streptococcus suis virulence by the alteration of bacterial surface architecture
Feng, Youjun; Cao, Min; Shi, Jie; Zhang, Huimin; Hu, Dan; Zhu, Jing; Zhang, Xianyun; Geng, Meiling; Zheng, Feng; Pan, Xiuzhen; Li, Xianfu; Hu, Fuquan; Tang, Jiaqi; Wang, Changjun
2012-01-01
NeuB, a sialic acid synthase catalyzes the last committed step of the de novo biosynthetic pathway of sialic acid, a major element of bacterial surface structure. Here we report a functional NeuB homologue of Streptococcus suis, a zoonotic agent, and systematically address its molecular and immunological role in bacterial virulence. Disruption of neuB led to thinner capsules and more susceptibility to pH, and cps2B inactivation resulted in complete absence of capsular polysaccharides. These two mutants both exhibited increased adhesion and invasion to Hep-2 cells and improved sensibility to phagocytosis. Not only do they retain the capability of inducing the release of host pro-inflammatory cytokines, but also result in the faster secretion of IL-8. Easier cleaning up of the mutant strains in whole blood is consistent with virulence attenuation seen with experimental infections of both mice and SPF-piglets. Therefore we concluded that altered architecture of S. suis surface attenuates its virulence. PMID:23050094
Biomarker Surrogates Do Not Accurately Predict Sputum Eosinophils and Neutrophils in Asthma
Hastie, Annette T.; Moore, Wendy C.; Li, Huashi; Rector, Brian M.; Ortega, Victor E.; Pascual, Rodolfo M.; Peters, Stephen P.; Meyers, Deborah A.; Bleecker, Eugene R.
2013-01-01
Background Sputum eosinophils (Eos) are a strong predictor of airway inflammation, exacerbations, and aid asthma management, whereas sputum neutrophils (Neu) indicate a different severe asthma phenotype, potentially less responsive to TH2-targeted therapy. Variables such as blood Eos, total IgE, fractional exhaled nitric oxide (FeNO) or FEV1% predicted, may predict airway Eos, while age, FEV1%predicted, or blood Neu may predict sputum Neu. Availability and ease of measurement are useful characteristics, but accuracy in predicting airway Eos and Neu, individually or combined, is not established. Objectives To determine whether blood Eos, FeNO, and IgE accurately predict sputum eosinophils, and age, FEV1% predicted, and blood Neu accurately predict sputum neutrophils (Neu). Methods Subjects in the Wake Forest Severe Asthma Research Program (N=328) were characterized by blood and sputum cells, healthcare utilization, lung function, FeNO, and IgE. Multiple analytical techniques were utilized. Results Despite significant association with sputum Eos, blood Eos, FeNO and total IgE did not accurately predict sputum Eos, and combinations of these variables failed to improve prediction. Age, FEV1%predicted and blood Neu were similarly unsatisfactory for prediction of sputum Neu. Factor analysis and stepwise selection found FeNO, IgE and FEV1% predicted, but not blood Eos, correctly predicted 69% of sputum Eos
Haskell-Luevano, C; Holder, J R; Monck, E K; Bauzo, R M
2001-06-21
The central melanocortin receptors, melanocortin-4 (MC4R) and melanocortin-3 (MC3R), are involved in the regulation of satiety and energy homeostasis. The MC4R in particular has become a pharmaceutical industry drug target due to its direct involvement in the regulation of food intake and its potential therapeutic application for the treatment of obesity-related diseases. The melanocortin receptors are stimulated by the native ligand, alpha-melanocyte stimulating hormone (alpha-MSH). The potent and enzymatically stable analogue NDP-MSH (Ac-Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2)) is a lead peptide for the identification of melanocortin amino acids important for receptor molecular recognition and stimulation. We have synthesized nine peptide fragments of NDP-MSH, deleting N- and C-terminal amino acids to determine the "minimally active" sequence of NDP-MSH. Additionally, five peptides were synthesized to study stereochemical inversion at the Phe 7 and Trp 9 positions in attempts to increase tetra- and tripeptide potencies. These peptide analogues were pharmacologically characterized at the mouse melanocortin MC1, MC3, MC4, and MC5 receptors. This study has identified the Ac-His-DPhe-Arg-Trp-NH(2) tetrapeptide as possessing 10 nM agonist activity at the brain MC4R. The tripeptide Ac-DPhe-Arg-Trp-NH(2) possessed micromolar agonist activities at the MC1R, MC4R, and MC5R but only slight stimulatory activity was observed at the MC3R (at up to 100 microM concentration). This study has also examined to importance of both N- and C-terminal NDP-MSH amino acids at the different melanocortin receptors, providing information for drug design and identification of putative ligand-receptor interactions.
Mordhorst, Ines L; Claus, Heike; Ewers, Christa; Lappann, Martin; Schoen, Christoph; Elias, Johannes; Batzilla, Julia; Dobrindt, Ulrich; Wieler, Lothar H; Bergfeld, Anne K; Mühlenhoff, Martina; Vogel, Ulrich
2009-12-01
Escherichia coli K1 causes disease in humans and birds. Its polysialic acid capsule can be O-acetylated via phase-variable expression of the acetyltransferase NeuO encoded by prophage CUS-3. The role of capsule O-acetylation in ecological adaptation or pathogenic invasion of E. coli K1 is largely unclear. A population genetics approach was performed to study the distribution of neuO among E. coli K1 isolates from human and avian sources. Multilocus sequence typing revealed 39 different sequence types (STs) among 183 E. coli K1 strains. The proportion of the ST95 complex (STC95) was 44%. NeuO was found in 98% of the STC95 strains, but only in 24% of other STs. Grouping of STs and prophage genotypes revealed a segregation of prophage types according to STs, suggesting coevolution of CUS-3 and the E. coli K1 host. Within the STC95, which is known to harbour both human and avian pathogenic isolates, CUS-3 genotypes were shared irrespective of the host species. Functional analysis of a variety of strain pairs revealed that NeuO-mediated K1 capsule O-acetylation enhanced desiccation resistance. In contrast, NeuO expression led to a reduced biofilm formation in biofilm positive E. coli K1 isolates. These findings suggest a delicate ecological balance of neuO'on'/'off' switching.
Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B
2016-08-08
The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the protective capabilities of the prodrugs against H2O2-induced cell death. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Hong, Lan; Jiang, Wendy; Zheng, Wei; Zeng, Su
2011-01-01
Para-aminosalicylic acid (PAS), an approved drug for treatment of tuberculosis, is a promising therapeutic agent for treatment of manganese (Mn)-induced parkinsonian syndromes. Lack of a quantifying method, however, has hindered the clinical evaluation of its efficacy and thereupon new drug development. This study was aimed at developing a simple and effective method to quantify PAS and its major metabolite, N-acetyl-para-aminosalicylic acid (AcPAS), in plasma, cerebrospinal fluid (CSF) and tissues. Biological samples underwent one-step protein precipitation. The supernatant was fractionated on a reversed-phase C18 column with a gradient mobile system, followed by on-line fluorescence detection. The lower limits of quantification for both PAS and AcPAS were 50 ng/ml of plasma and 17 ng/g of tissues. The intra-day and inter-day precision values did not exceed 5% and 8%, respectively, in all three matrices. The method was used to quantify PAS and AcPAS in rat plasma and brain following a single iv injection of PAS. Data showed a greater amount of PAS than AcPAS in plasma, while a greater amount of AcPAS than PAS was found in brain tissues. The method has been proven to be sensitive, reproducible, and practically useful for laboratory and clinical investigations of PAS in treatment of Mn Parkinsonism. PMID:21159459
Marutani, Eizo; Kosugi, Shizuko; Tokuda, Kentaro; Khatri, Ashok; Nguyen, Rebecca; Atochin, Dmitriy N.; Kida, Kotaro; Van Leyen, Klaus; Arai, Ken; Ichinose, Fumito
2012-01-01
Physiological levels of H2S exert neuroprotective effects, whereas high concentrations of H2S may cause neurotoxicity in part via activation of NMDAR. To characterize the neuroprotective effects of combination of exogenous H2S and NMDAR antagonism, we synthesized a novel H2S-releasing NMDAR antagonist N-((1r,3R,5S,7r)-3,5-dimethyladamantan-1-yl)-4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzamide (S-memantine) and examined its effects in vitro and in vivo. S-memantine was synthesized by chemically combining a slow releasing H2S donor 4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzoic acid (ACS48) with a NMDAR antagonist memantine. S-memantine increased intracellular sulfide levels in human neuroblastoma cells (SH-SY5Y) 10-fold as high as that was achieved by ACS48. Incubation with S-memantine after reoxygenation following oxygen and glucose deprivation (OGD) protected SH-SY5Y cells and murine primary cortical neurons more markedly than did ACS48 or memantine. Glutamate-induced intracellular calcium accumulation in primary cortical neurons were aggravated by sodium sulfide (Na2S) or ACS48, but suppressed by memantine and S-memantine. S-memantine prevented glutamate-induced glutathione depletion in SH-SY5Y cells more markedly than did Na2S or ACS48. Administration of S-memantine after global cerebral ischemia and reperfusion more robustly decreased cerebral infarct volume and improved survival and neurological function of mice than did ACS48 or memantine. These results suggest that an H2S-releasing NMDAR antagonist derivative S-memantine prevents ischemic neuronal death, providing a novel therapeutic strategy for ischemic brain injury. PMID:22815476
Martín-Ortiz, A.; Salcedo, J.; Barile, D.; Bunyatratchata, A.; Moreno, F.J.; Martin-García, I.; Clemente, A.; Sanz, M.L.; Ruiz-Matute, A.I.
2016-01-01
A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2–0.6 min) and good symmetry (As: 0.8–1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40 °C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315 mg L−1 for neutral oligosaccharides and from 83 to 251 mg L−1 for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. PMID:26427327
Çavuşoğlu, Yüksel; Gök, Bülent; Demirüstü, Canan; Birdane, Alparslan; Görenek, Bülent; Ata, Necmi
2012-11-01
The aim of this prospective study was to evaluate the diagnostic value of heart-type fatty acid binding protein (H-FABP) determined by qualitative immunoassay method for the detection of minor myocardial damage (MMD) in patients with non-ST elevation acute coronary syndrome (NSTE-ACS). The study consisted of 62 patients with NSTE-ACS. Cardiac troponin I (cTnI) and creatine kinase MB isoenzyme (CK-MB) values were measured at arrival. Myoglobin and H-FABP were obtained if cTnI level was found to be elevated. A control group included 20 subjects with normal cTnI and CK-MB values. H-FABP was determined by a rapid qualitative immunochromatographic test. Patients were classified as MMD-ACS group if they had abnormal cTnI and normal CK-MB (n=24) and as NSTEMI-ACS group if they had elevated both cTnI and CK-MB (n=38). The diagnostic accuracy of H-FABP for minor myocardial damage was determined using ROC analysis. The sensitivity of the H-FABP was significantly higher for NSTEMI-ACS than for MMD-ACS (44.7% vs 0%, p<0.001) and its specificity was 95% for both groups. The diagnostic efficacy rates for myoglobin and H-FABP were 75% and 43% for MMD-ACS, 74% and 62% for NSTEMI-ACS. Positive predictive value for H-FABP and myoglobin were found to be 0% and 80.8% in MMD-ACS, 94% and 87% in NSTEMI-ACS and negative predictive value was 44% and 69.5% in MMD-ACS, 47.5% and 59% in NSTEMI-ACS, respectively. AUC for myoglobin was significantly greater than that for H-FABP in MMD-ACS group (0.754 vs 0.525, p=0.027). The sensitivity of the H-FABP was significantly higher in patients with >3-fold increase in cTnI than those with <3-fold increase in cTnI (46.8% vs. 6.7%, p<0.001). A positive correlation was found between the magnitude of cTnI rise and H-FABP results (r=0.45, p<0.001). H-FABP determined by the rapid qualitative immunochromatographic test has almost similar diagnostic value to that of myoglobin for identifying NSTEMI-ACS, however, does not seem to represent diagnostic potential for the detection of MMD.
Suspected non-AD pathology in mild cognitive impairment.
Wisse, Laura E M; Butala, Nirali; Das, Sandhitsu R; Davatzikos, Christos; Dickerson, Bradford C; Vaishnavi, Sanjeev N; Yushkevich, Paul A; Wolk, David A
2015-12-01
We aim to better characterize mild cognitive impairment (MCI) patients with suspected non-Alzheimer's disease (AD) pathology (SNAP) based on their longitudinal outcome, cognition, biofluid, and neuroimaging profile. MCI participants (n = 361) from ADNI-GO/2 were designated "amyloid positive" with abnormal amyloid-beta 42 levels (AMY+) and "neurodegeneration positive" (NEU+) with abnormal hippocampal volume or hypometabolism using fluorodeoxyglucose-positron emission tomography. SNAP was compared with the other MCI groups and with AMY- controls. AMY-NEU+/SNAP, 16.6%, were older than the NEU- groups but not AMY- controls. They had a lower conversion rate to AD after 24 months than AMY+NEU+ MCI participants. SNAP-MCI participants had similar amyloid-beta 42 levels, florbetapir and tau levels, but larger white matter hyperintensity volumes than AMY- controls and AMY-NEU- MCI participants. SNAP participants performed worse on all memory domains and on other cognitive domains, than AMY-NEU- participants but less so than AMY+NEU+ participants. Subthreshold levels of cerebral amyloidosis are unlikely to play a role in SNAP-MCI, but pathologies involving the hippocampus and cerebrovascular disease may underlie the neurodegeneration and cognitive impairment in this group. Copyright © 2015 Elsevier Inc. All rights reserved.
Reynolds, Anna R; Saunders, Meredith A; Berry, Jennifer N; Sharrett-Field, Lynda J; Winchester, Sydney; Prendergast, Mark A
2017-11-01
Chronic, intermittent ethanol (CIE) exposure is known to produce neuroadaptive alterations in excitatory neurotransmission that contribute to the development of dependence. Although activation of protein kinases (e.g., cyclic AMP [cAMP]-dependent protein kinase) is implicated in the synaptic trafficking of these receptors following CIE exposure, the functional consequences of these effects are yet to be fully understood. The present study sought to delineate the influence of protein kinase in regulating cytotoxicity following CIE exposure, as well as to examine the relative roles of ethanol exposure and ethanol withdrawal (EWD) in promoting these effects. Rat hippocampal explants were exposed to a developmental model of CIE with or without co-application of broad-spectrum protein kinase inhibitor KT-5720 (1 μM) either during ethanol exposure or EWD. Hippocampal cytotoxicity was assessed via immunofluorescence (IF) of neuron-specific nuclear protein (NeuN) with thionine staining of Nissl bodies to confirm IF findings. Concomitant application of ethanol and KT-5720 restored the loss of NeuN/Fox-3 IF in pyramidal CA1 and granule DG cell layers produced by CIE, but there was no restoration in CA3. Application of KT-5720 during EWD failed to significantly alter levels of NeuN IF, implying that ethanol exposure activates protein kinases that, in part, mediate the effects of EWD. KT-5720 application during EWD also restored thionine staining in CA1, suggesting kinase regulation of both neurons and non-neuronal cells. These data demonstrate that CIE exposure alters protein kinase activity to promote ethanol withdrawal-associated loss of NeuN/Fox-3 and highlight the influence of kinase signaling on distinct cell types in the developing hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of Chelating Agents on the Stability of Nano-TiO2 Sol Particles for Sol-Gel Coating.
Maeng, Wan Young; Yoo, Mi
2015-11-01
Agglomeration of sol particles in a titanium alkoxide (tetrabutyl orthotitanate (TBOT), > 97%) solution during the hydrolysis and condensation steps makes the sol solution difficult to use for synthesizing homogeneous sol-gel coating. Here, we have investigated the effect of stabilizing agents (acetic acid and ethyl acetoacetate (EAcAc)) on the agglomeration of Ti alkoxide particles during hydrolysis and condensation in order to determine the optimized conditions for controlling the precipitation of TiO2 particles. The study was conducted at R(AC) ([acetic acid]/[TBOT]) = 0.1-5 and R(EAcAc)([EAcAc]/[TBOT]) = 0.05-0.65. We also studied the effects of a basic catalyst ethanolamine (ETA), water, and HCl on sol stability. The chelating ligands in the precursor sol were analyzed with FT-IR. The coating properties were examined by focused ion beam. The stabilizing agents (acetic acid and EAcAc) significantly influenced the agglomeration and precipitation of TBOT precursor particles during hydrolysis. As R(AC) and R(EAcAc) increased, the agglomeration remarkably decreased. The stability of the sol with acetic acid and EAcAc arises from the coordination of the chelating ligand to TBOT that hinders hydrolysis and condensation. A uniform fine coating (thickness: 30 nm) on stainless steel was obtained by using an optimized sol with R(AC) = 0.5 and R(EAcAc) = 0.65.
Bazylak, Grzegorz; Nagels, Luc J
2003-08-08
Potentiometric detection of clenbuterol, ambroxol and bromhexine in marketed pharmaceuticals was described in six isocratic HPLC systems. The podant- and macrocyclic-type neutral ionophores, N,N,N',N'-tetracyclohexyl-oxybis(o-phenyleneoxy)diacetamide (TOPA) and hexakis(2,3,6-tri-O-octyl)-alpha-cyclodextrin (OCD), were applied in poly(vinyl)chloride (PVC)-based liquid membrane electrodes. Both types of neutral ionophores improve the sensitivity for all mentioned drugs when compared with a tetrakis(p-chlorophenyl)borate (BOR)-based electrode as well as with single wavelength UV detection. Detection limits (S/N=3) of 2.6 x 10(-10) mol l(-1) (injected concentration) for the highly hydrophobic bromhexine were achieved with the TOPA-based electrode and a cyano reversed-phase (RP)-HPLC with Uptisphere UP5CN-25QS silica column (250 x 4.6 mm i.d.) eluted with acetonitrile (AcN)-ethanol-perchloric acid (1.66 mM) (60:2:38, v/v/v) (pH* 2.45). Comparable result was obtained with OCD-based electrodes and an XTerra RP18 hybrid silica-polymer column eluted with AcN-phosphoric acid (20 mM) (25:75, v/v) (pH* 2.60). In the mobile phases containing 60-75% v/v AcN or methanol, stable and reproducible response of both types of neutral ionophore-based electrodes was observed for at least 3 days. The results of the validated procedure for reliable simultaneous determination of the drugs in fortified representative samples of pharmaceuticals were also presented.
Todeschini, P; Cocco, E; Bellone, S; Varughese, J; Lin, K; Carrara, L; Guzzo, F; Buza, N; Hui, P; Silasi, D-A; Ratner, E; Azodi, M; Schwartz, P E; Rutherford, T J; Pecorelli, S; Santin, A D
2011-10-11
We evaluated shedding of epidermal growth factor type II receptor (Her2/neu) extracellular domain (ECD) in primary uterine serous carcinoma (USC) cell lines and in the serum of USC patients and its biological effects in experiments of trastuzumab-induced cytotoxicity in vitro. Her2/neu expression was evaluated by immunohistochemistry (IHC), real-time PCR and flow cytometry, while c-erbB2 gene amplification was assessed using fluorescent in situ hybridisation (FISH). Her2/neu ECD levels in the supernatants of USC cell lines and in the serum of 38 USC patients and 19 controls were tested using ELISA. The biologic effect of Her2/neu ECD on trastuzumab-induced antibody-dependent cell-mediated cytotoxicity (ADCC) was evaluated in 5-h chromium-release assays. Five out of ten USC cell lines overexpressed Her2/neu by IHC and showed amplification of the c-erbB2 gene. High levels of Her2/neu ECD were found in supernatants of all FISH-positive tumours. In contrast, FISH-negative USC was negative for Her2/neu ECD shedding. Serum Her2/neu ECD levels in patients harbouring 3+Her2/neu tumours were higher than those found in healthy women (P=0.02) or USC patients with 2+ or 1+/negative Her2/neu expression (P=0.02). In cytotoxicity experiments, trastuzumab-mediated ADCC was significantly decreased by the addition of Her2/neu ECD-containing supernatants (P=0.01). FISH-positive c-erbB2 USC cell lines shed high levels of Her2/neu ECD. High levels of Her2/neu ECD in USC patients may reduce trastuzumab-mediated ADCC in vitro and potentially neutralise its therapeutic effect in vivo.
Protein Glycosylation in Helicobacter pylori: Beyond the Flagellins?
Hopf, Patrick S.; Ford, Rachel S.; Zebian, Najwa; Merkx-Jacques, Alexandra; Vijayakumar, Somalinga; Ratnayake, Dinath; Hayworth, Jacqueline; Creuzenet, Carole
2011-01-01
Glycosylation of flagellins by pseudaminic acid is required for virulence in Helicobacter pylori. We demonstrate that, in H. pylori, glycosylation extends to proteins other than flagellins and to sugars other than pseudaminic acid. Several candidate glycoproteins distinct from the flagellins were detected via ProQ-emerald staining and DIG- or biotin- hydrazide labeling of the soluble and outer membrane fractions of wild-type H. pylori, suggesting that protein glycosylation is not limited to the flagellins. DIG-hydrazide labeling of proteins from pseudaminic acid biosynthesis pathway mutants showed that the glycosylation of some glycoproteins is not dependent on the pseudaminic acid glycosylation pathway, indicating the existence of a novel glycosylation pathway. Fractions enriched in glycoprotein candidates by ion exchange chromatography were used to extract the sugars by acid hydrolysis. High performance anion exchange chromatography with pulsed amperometric detection revealed characteristic monosaccharide peaks in these extracts. The monosaccharides were then identified by LC-ESI-MS/MS. The spectra are consistent with sugars such as 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Ac) previously described on flagellins, 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Am7Ac), bacillosamine derivatives and a potential legionaminic acid derivative (Leg5AmNMe7Ac) which were not previously identified in H. pylori. These data open the way to the study of the mechanism and role of protein glycosylation on protein function and virulence in H. pylori. PMID:21984942
Role of the Non-Receptor Tyrosine Kinase ACK2 in EGF Receptor Degradation
2005-04-01
antibodies that inhibit ErbB-2/Neu activity, paired with chemotherapy, is the most successful mode of treatment for patients with metastatic breast cancer [9... antibody , Trastuzumab (HerceptinTM) [10]. Based on these findings, our studies are now focused on elucidating the molecular machinery underlying growth...blotting using an anti-phosphotyrosine antibody . Loss of phosphorylation, as detected with HRP-conjugated 4G10 antibody (Upstate), occurs between AC 197
Ultrafast Excited-State Dynamics of Cytosine Aza-Derivative and Analogues.
Zhou, Zhongneng; Zhou, Xueyao; Wang, Xueli; Jiang, Bin; Li, Yongle; Chen, Jinquan; Xu, Jianhua
2017-04-13
Excited state dynamics of 5-azacytosine (5-AC), 2,4-diamino-1,3,5-triazine (2,4-DT), and 2-amino-1,3,5-triazine (2-AT) were comprehensively investigated by steady state absorption, fluorescence, and femtosecond transient absorption measurements. Time-dependent density functional theory (TDDFT) calculations were performed to help assign the absorption bands and understand the excited state decay mechanisms. The experimental results of excited singlet state dynamics for 5-AC, 2,4-DT, and 2-AT with femtosecond time resolution were reported for the first time. Two distinct decay pathways, with ∼1 ps and tens of picosecond lifetimes, were observed in 5-AC. Only one decay pathway with 17 ps lifetime was observed in 2,4-DT while an emissive state was found in 2-AT. TDDFT calculations suggest that 5-AC has a dark nπ* (S 1 ) state below the first allowed ππ* (S 2 ) state, which leads to the ultrafast decay of the ππ* state. In 2,4-DT, there is no dark nπ* state below the bright ππ* (S 1 ) state and the 17 ps lifetime is assigned to the relaxation from the ππ* (S 1 ) state to ground state. Two dark nπ* states (S 1 and S 2 ) were found in 2-AT, which exhibits much more complex excited state dynamics compared with the other two. Photoluminescence in 2-AT has been confirmed to be fluorescence emission from its bright ππ* (S 3 ) state. Our results strongly suggest that electronic structures are very sensitive to the substitution on the triazine ring and that the photophysical properties of nucleic acid analogues depend highly on their molecular structures.
Wang, Guohao; Yang, Huaqiang; Yan, Sen; Wang, Chuan-En; Liu, Xudong; Zhao, Bentian; Ouyang, Zhen; Yin, Peng; Liu, Zhaoming; Zhao, Yu; Liu, Tao; Fan, Nana; Guo, Lin; Li, Shihua; Li, Xiao-Jiang; Lai, Liangxue
2015-09-03
TAR DNA-binding protein 43 (TDP-43) is a nuclear protein, but it is redistributed in the neuronal cytoplasm in both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Because small transgenic animal models often lack cytoplasmic TDP-43, how the cytoplasmic accumulation of TDP-43 contributes to these diseases remains unclear. The current study is aimed at studying the mechanism of cytoplasmic pathology of TDP-43. We established transgenic pigs expressing mutant TDP-43 (M337V). This pig model shows severe phenotypes and early death. We found that transgenic TDP-43 is also distributed in the cytoplasm of neuronal cells in the spinal cord and brain. Transgenic TDP-43 interacts with PSF, an RNA splicing factor that associates with NeuN to regulate neuronal RNA splicing. The interaction of TDP-43, PSF and NeuN causes PSF and NeuN mislocalize into the neuronal cytoplasm in transgenic pigs. Consistently, abnormal PSF-related neuronal RNA splicing is seen in TDP-43 transgenic pigs. The cytoplasmic localization of PSF and NeuN as well as abnormal PSF-related neuronal RNA splicing was also found in ALS patient brains. Our findings from a large mammalian model suggest that cytoplasmic mutant TDP-43 could reduce the nuclear function of RNA splicing factors, contributing to neuropathology.
Extending enzyme molecular recognition with an expanded amino acid alphabet
Windle, Claire L.; Simmons, Katie J.; Ault, James R.; Trinh, Chi H.; Nelson, Adam
2017-01-01
Natural enzymes are constructed from the 20 proteogenic amino acids, which may then require posttranslational modification or the recruitment of coenzymes or metal ions to achieve catalytic function. Here, we demonstrate that expansion of the alphabet of amino acids can also enable the properties of enzymes to be extended. A chemical mutagenesis strategy allowed a wide range of noncanonical amino acids to be systematically incorporated throughout an active site to alter enzymic substrate specificity. Specifically, 13 different noncanonical side chains were incorporated at 12 different positions within the active site of N-acetylneuraminic acid lyase (NAL), and the resulting chemically modified enzymes were screened for activity with a range of aldehyde substrates. A modified enzyme containing a 2,3-dihydroxypropyl cysteine at position 190 was identified that had significantly increased activity for the aldol reaction of erythrose with pyruvate compared with the wild-type enzyme. Kinetic investigation of a saturation library of the canonical amino acids at the same position showed that this increased activity was not achievable with any of the 20 proteogenic amino acids. Structural and modeling studies revealed that the unique shape and functionality of the noncanonical side chain enabled the active site to be remodeled to enable more efficient stabilization of the transition state of the reaction. The ability to exploit an expanded amino acid alphabet can thus heighten the ambitions of protein engineers wishing to develop enzymes with new catalytic properties. PMID:28196894
Anisimov, V N; Khavinson, V Kh; Alimova, I N; Semchenko, A V; Yashin, A I
2002-08-01
Female transgenic FVB/N mice carrying the breast cancer gene HER-2/neu received epithalon (Ala-Glu-Asp-Gly) in a dose of 1 mg subcutaneously 5 times a week to from the 2nd month of life to death. Epithalon prolonged the average and maximum lifetimes of mice by 13.5 (p<0.05) and 13.9%, respectively. The peptide prolonged the average lifetime of animals without neoplasms (by 34.2%, p<0.05). Epithalon decelerated the development of age-related disturbances in reproductive activity and suppressed the formation of neoplasms. The peptide decreased the incidence of breast adenocarcinomas, lungs metastases (by 1.6 times, p<0.05), and multiple tumors (by 2 times). Epithalon 3.7-fold increased the number of mice without breast tumors (p<0.05), while the number of animals with 6 or more breast tumors decreased by 3 times (p<0.05). Epithalon prolonged the lifetime of mice with breast tumors by 1.4 times (p<0.05). These results indicate that Epithalon possesses geroprotective activity and inhibits breast carcinogenesis in transgenic mice, which is probably related to suppression of HER-2/neu expression.
Abdulkhalek, Samar; Guo, Merry; Amith, Schammim Ray; Jayanth, Preethi; Szewczuk, Myron R
2012-11-01
The mechanism(s) behind GPCR transactivation of TLR receptors independent of TLR ligands is unknown. Here, GPCR agonists bombesin, bradykinin, lysophosphatidic acid (LPA), cholesterol, angiotensin-1 and -2, but not thrombin induce Neu1 activity in live macrophage cell lines and primary bone marrow macrophage cells from wild-type (WT) mice but not from Neu1-deficient mice. Using immunocytochemistry and NFκB-dependent secretory alkaline phosphatase (SEAP) analyses, bombesin induced NFκB activation in BMC-2 and RAW-blue macrophage cells, which was inhibited by MyD88 homodimerization inhibitor, Tamiflu, galardin, piperazine and anti-MMP-9 antibody. Bombesin receptor, neuromedin B (NMBR), forms a complex with TLR4 and MMP9. Silencing MMP9 mRNA using siRNA transfection of RAW-blue macrophage cells markedly reduced Neu1 activity associated with bombesin-, bradykinin- and LPA-treated cells to the untreated controls. These findings uncover a molecular organizational GPCR signaling platform to potentiate Neu1 and MMP-9 cross-talk on the cell surface that is essential for the transactivation of TLR receptors and subsequent cellular signaling. Copyright © 2012 Elsevier Inc. All rights reserved.
Kien, C. Lawrence; Everingham, Karen I.; Stevens, Robert D.; Fukagawa, Naomi K.; Muoio, Deborah M.
2010-01-01
In cultured cells, palmitic acid (PA) and oleic acid (OA) confer distinct metabolic effects, yet, unclear, is whether changes in dietary fat intake impact cellular fatty acid (FA) composition. We hypothesized that short-term increases in dietary PA or OA would result in corresponding changes in the FA composition of skeletal muscle diacylglycerol (DAG) and triacylglycerol (TAG) and/or the specific FA selected for β-oxidation. Healthy males (N = 12) and females (N = 12) ingested a low-PA diet for 7 days. After fasting measurements of the serum acylcarnitine (AC) profile, subjects were randomized to either high-PA (HI PA) or low-PA/high-OA (HI OA) diets. After 7 days, the fasting AC measurement was repeated and a muscle/fat biopsy obtained. FA composition of intramyocellular DAG and TAG and serum AC was measured. HI PA increased, whereas HI OA decreased, serum concentration of 16:0 AC (P < 0.001). HI OA increased 18:1 AC (P = 0.005). HI PA was associated with a higher PA/OA ratio in muscle DAG and TAG (DAG: 1.03 ± 0.24 vs. 0.46 ± 0.08, P = 0.04; TAG: 0.63 ± 0.07 vs. 0.41 ± 0.03, P = 0.01). The PA concentration in the adipose tissue DAG (μg/mg adipose tissue) was 0.17 ± 0.02 in those receiving the HI PA diet (n = 6), compared to 0.11 ± 0.02 in the HI OA group (n = 4) (P = 0.067). The relative PA concentration in muscle DAG and TAG and the serum palmitoylcarnitine concentration was higher in those fed the high-PA diet. PMID:20559306
Kien, C Lawrence; Everingham, Karen I; D Stevens, Robert; Fukagawa, Naomi K; Muoio, Deborah M
2011-02-01
In cultured cells, palmitic acid (PA) and oleic acid (OA) confer distinct metabolic effects, yet, unclear, is whether changes in dietary fat intake impact cellular fatty acid (FA) composition. We hypothesized that short-term increases in dietary PA or OA would result in corresponding changes in the FA composition of skeletal muscle diacylglycerol (DAG) and triacylglycerol (TAG) and/or the specific FA selected for β-oxidation. Healthy males (N = 12) and females (N = 12) ingested a low-PA diet for 7 days. After fasting measurements of the serum acylcarnitine (AC) profile, subjects were randomized to either high-PA (HI PA) or low-PA/high-OA (HI OA) diets. After 7 days, the fasting AC measurement was repeated and a muscle/fat biopsy obtained. FA composition of intramyocellular DAG and TAG and serum AC was measured. HI PA increased, whereas HI OA decreased, serum concentration of 16:0 AC (P < 0.001). HI OA increased 18:1 AC (P = 0.005). HI PA was associated with a higher PA/OA ratio in muscle DAG and TAG (DAG: 1.03 ± 0.24 vs. 0.46 ± 0.08, P = 0.04; TAG: 0.63 ± 0.07 vs. 0.41 ± 0.03, P = 0.01). The PA concentration in the adipose tissue DAG (µg/mg adipose tissue) was 0.17 ± 0.02 in those receiving the HI PA diet (n = 6), compared to 0.11 ± 0.02 in the HI OA group (n = 4) (P = 0.067). The relative PA concentration in muscle DAG and TAG and the serum palmitoylcarnitine concentration was higher in those fed the high-PA diet.
Yu, Gang; Praveen Rao, P N; Chowdhury, Morshed A; Abdellatif, Khaled R A; Dong, Ying; Das, Dipankar; Velázquez, Carlos A; Suresh, Mavanur R; Knaus, Edward E
2010-04-01
A new group of acetic acid (7a-c, R(1) = H), and propionic acid (7d-f, R(1) = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF(2) substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO(2)NH(2)) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs. 2010 Elsevier Ltd. All rights reserved.
Boriollo, Marcelo Fabiano Gomes; Resende, Marielly Reis; da Silva, Thaísla Andrielle; Públio, Juliana Yoshida; Souza, Luiz Silva; Dias, Carlos Tadeu dos Santos; de Mello Silva Oliveira, Nelma; Fiorini, João Evangelista
2014-01-01
The aim of this study was to evaluate the mutagenicity (clastogenicity/aneugenicity) of a glycolic extract of Ziziphus joazeiro bark (GEZJ) by the micronucleus assay in mice bone marrow. Antimutagenic activity was also assessed using treatments associated with GEZJ and doxorubicin (DXR). Mice were evaluated 24–48 h after exposure to positive (N-nitroso-N-ethylurea, NEU - 50 mg.kg−1 and DXR - 5 mg.kg−1) and negative (150 mM NaCl) controls, as well as treatment with GEZJ (0.5–2 g.kg−1), GEZJ (2 g.kg−1) + NEU and GEZJ (2 g.kg−1) + DXR. There were no significant differences in the frequencies of micronucleated polychromatic erythrocytes in mice treated with GEJZ and GEJZ + DXR compared to the negative controls, indicating that GEZJ was not mutagenic. Analysis of the polychromatic:normochromatic erythrocyte ratio revealed significant differences in the responses to doses of 0.5 g.kg−1 and 1–2 g.kg−1 and the positive control (NEU). These results indicated no systemic toxicity and moderate toxicity at lower and higher doses of GEZJ. The lack of mutagenicity and systemic toxicity in the antimutagenic assays, especially for treatment with GEZJ + DXR, suggested that phytochemical compounds in Z. joazeiro bark attenuated DXR-induced mutagenicity and the moderate systemic toxicity of a high dose of Z. joazeiro bark (2 g.kg−1). Further studies on the genotoxicity of Z. joazeiro extracts are necessary to establish the possible health risk in humans and to determine the potential as a chemopreventive agent for therapeutic use. PMID:25071409
Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.
Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren
2009-08-25
Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.
SPINAL TRANSLOCATOR PROTEIN (TSPO) MODULATES PAIN BEHAVIOR IN RATS WITH CFA-INDUCED MONOARTHRITIS
Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren
2009-01-01
Translocator protein 18kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund’s Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on day 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral lamina I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Day 7 and 14. Moreover, TSPO was co-localized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain. PMID:19555675
Baieli, María F; Urtasun, Nicolás; Martinez, María J; Hirsch, Daniela B; Pilosof, Ana M R; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J
2017-01-01
Casein glycomacropeptide (CMP) is a 64- amino acid peptide found in cheese whey, which is released after κ-casein specific cleavage by chymosin. CMP lacks aromatic amino acids, a characteristic that makes it usable as a nutritional supplement for people with phenylketonuria. CMP consists of two nonglycosylated isoforms (aCMP A and aCMP B) and its different glycosylated forms (gCMP A and gCMP B). The most predominant carbohydrate of gCMP is N-acetylneuraminic acid (sialic acid). Here, we developed a CMP purification process based on the affinity of sialic acid for wheat germ agglutinin (WGA). After formation of chitosan beads and adsorption of WGA, the agglutinin was covalently attached with glutaraldehyde. Two matrices with different WGA density were assayed for CMP adsorption. Maximum adsorption capacities were calculated according to the Langmuir model from adsorption isotherms developed at pH 7.0, being 137.0 mg/g for the matrix with the best performance. In CMP reduction from whey, maximum removal percentage was 79% (specifically 33.7% of gCMP A and B, 75.8% of aCMP A, and 93.9% of aCMP B). The CMP was recovered as an aggregate with an overall yield of 64%. Therefore, the matrices developed are promising for CMP purification from cheese whey. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:171-180, 2017. © 2016 American Institute of Chemical Engineers.
Trastuzumab-binding peptide display by Tobacco mosaic virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolova, Olga Y.; Petrunia, Igor V.; Komarova, Tatiana V.
2010-11-10
Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturabilitymore » of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.« less
Humberd-Smith, Jennifer; Gordy, James T.; Bradley, Konrad C.; Steinhauer, David A.; Berghaus, Roy D.; Stallknecht, David E.; Howerth, Elizabeth W.; Tompkins, Stephen Mark
2012-01-01
Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential. PMID:22675507
Glycophenotype evaluation in cutaneous tumors using lectins labeled with acridinium ester.
Lima, Luiza Rayanna Amorim; Bezerra, Matheus Filgueira; Almeida, Sinara Mônica Vitalino; Silva, Lúcia Patrícia Bezerra Gomes; Beltrão, Eduardo Isidoro Carneiro; Carvalho Júnior, Luiz Bezerra
2013-01-01
Tumor cells show alterations in their glycosylation patterns when compared to normal cells. Lectins can be used to evaluate these glycocode changes. Chemiluminescence assay is an effective technique for quantitative analysis of proteins, nucleic acids, and carbohydrates due to its high sensitivity, specificity, and rapid testing. To use histochemiluminescence based on lectin conjugated to acridinium ester (AE) for the investigation of glycophenotype changes in cutaneous tumors. Concanavalin A (Con A), Peanut agglutinin (PNA), Ulex europaeus agglutinin-I (UEA-I), and Maackia amurensis agglutinin (MAA) were conjugated to acridinium ester. Biopsies of cutaneous tumors and normal skin were incubated with the lectins-AE, and chemiluminescence was quantified and expressed as Relative Light Units (RLU). Results. Actinic keratosis (AK), keratoacanthoma (KA), squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) showed lower expression of α -D-glucose/mannose and α -L-fucose residues compared to normal tissue. Cutaneous tumors displayed higher expression of Gal- β (1-3)-GalNAc residues than normal tissue. AK and SCC exhibited higher expression of Neu5Ac- α (2,3)Gal residues than normal epidermis. KA and BCC showed equivalent RLU values compared to normal tissue. Lectin histochemiluminescence allowed quantitative assessment of the carbohydrate expression in cutaneous tissues, contributing to eliminate the subjectivity of conventional techniques used in the histopathological diagnosis.
Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P
2017-02-01
In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Frank; Li Wenrong; Li Fang
2011-01-01
Purpose: To develop a split-luciferase-based reporter system that allows for noninvasive monitoring of activation of the Her2/neu pathway in vivo in a quantitative and sensitive manner. Methods and Materials: Fusion proteins of the ErbB2/Her2/neu receptor to the N-terminal fragment of luciferase and of its downstream binding partner Shc to the C-terminal fragment of luciferase have been engineered owing to the rationale that on activation and binding of the Her2 receptor molecule to Shc, luciferase function will be reconstituted. Thus, the resulting bioluminescence signals can serve as a surrogate measure of receptor activation. Results: We have shown that our reporter systemsmore » functions well in vitro in breast cancer cells and in vivo in xenograft tumors. In particular, the activities of Her2/neu in xenograft tumors could be monitored serially for an extended period after radiotherapy. Conclusions: We believe that the novel ErbB2/Her2/neu reporter we have presented is a powerful tool to study the biology of the Her2-neu pathway in vitro and in vivo. It should also facilitate the development and rapid evaluation of new Her2/neu-targeted therapeutic agents.« less
Safran, Howard; DiPetrillo, Thomas; Nadeem, Ahmed; Steinhoff, Margaret; Tantravahi, Umadevi; Rathore, Ritesh; Wanebo, Harold; Hughes, Marilyn; Maia, Chris; Tsai, James Y; Pasquariello, Terry; Pepperell, John R; Cioffi, William; Kennedy, Teresa; Reeder, Laurie; Ng, Thomas; Adrian, Alyn; Goldstein, Lisa; Chak, Bapsi; Choy, Hak
2004-01-01
To conduct a phase I study incorporating trastuzumab with paclitaxel, cisplatin, and radiation for adenocarcinoma of the esophagus. Patients with adenocarcinoma of the esophagus without distant organ metastases were eligible. All patients received cisplatin 25 mg/m2 and paclitaxel 50 mg/m2 weekly for 6 weeks with radiation 50.4 Gy. HER-2/neu-positive patients (2+/3+ by immunohistochemistry) received weekly trastuzumab at dose levels of 1, 1.5, or 2 mg/kg weekly for 5 weeks after an initial bolus of 2, 3, or 4 mg/kg, respectively. HER-2/neu-negative patients received the same chemoradiation without trastuzumab as a control for toxicity. Dose-limiting toxicities were defined as grade 3 esophageal, cardiac, or pulmonary toxicity. Twelve of 36 screened patients (33%) overexpressed HER-2/neu by immunohistochemistry (seven 3+ and five 2+). Eight of 12 patients with HER-2/neu overexpression by IHC had an increase in the number of HER-2/neu genes, six from amplification of the HER-2/ neu gene and two were hypderdiploid for chromosome 17. Thirty patients were enrolled (12 HER-2/neu-positive and 18 HER-2/neu-negative controls). No increase in toxicity was seen with the addition of trastuzumab. One of 12 patients in the trastuzumab arm and 8 of 17 in the control arm had grade 3 esophagitis (p < or = .026). Mean left ventricular ejection fraction for the trastuzumab group was 57% before treatment and 56% after treatment. HER-2/neu is overexpressed in approximately one-third of esophageal adenocarcinomas. Trastuzumab can be added at full dose to cisplatin, paclitaxel, and radiation. Future studies of trastuzumab in esophageal adenocarcinoma are indicated.
Panagiotopoulou, Maria; Kunath, Stephanie; Medina-Rangel, Paulina Ximena; Haupt, Karsten; Tse Sum Bui, Bernadette
2017-02-15
Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression. Copyright © 2016 Elsevier B.V. All rights reserved.
Mütze, Ulrike; Bürger, Friederike; Hoffmann, Jessica; Tegetmeyer, Helmut; Heichel, Jens; Nickel, Petra; Lemke, Johannes R; Syrbe, Steffen; Beblo, Skadi
2017-03-01
Lysosomal storage diseases (LSD) often manifest with cherry red macular spots. Diagnosis is based on clinical features and specific biochemical and enzymatic patterns. In uncertain cases, genetic testing with next generation sequencing can establish a diagnosis, especially in milder or atypical phenotypes. We report on the diagnostic work-up in a boy with sialidosis type I, presenting initially with marked cherry red macular spots but non-specific urinary oligosaccharide patterns and unusually mild excretion of bound sialic acid. Biochemical, enzymatic and genetic tests were performed in the patient. The clinical and electrophysiological data was reviewed and a genotype-phenotype analysis was performed. In addition a systematic literature review was carried out. Cherry red macular spots were first noted at 6 years of age after routine screening myopia. Physical examination, psychometric testing, laboratory investigations as well as cerebral MRI were unremarkable at 9 years of age. So far no clinical myoclonic seizures occurred, but EEG displays generalized epileptic discharges and visual evoked potentials are prolonged bilaterally. Urine thin layer chromatography showed an oligosaccharide pattern compatible with different LSD including sialidosis, galactosialidosis, GM1 gangliosidosis or mucopolysaccharidosis type IV B. Urinary bound sialic acid excretion was mildly elevated in spontaneous and 24 h urine samples. In cultured fibroblasts, α-sialidase activity was markedly decreased to < 1%; however, bound and free sialic acid were within normal range. Diagnosis was eventually established by multigene panel next generation sequencing of genes associated to LSD, identifying two novel, compound heterozygous variants in NEU1 gene (c.699C > A, p.S233R in exon 4 and c.803A > G; p.Y268C in Exon 5 in NEU1 transcript NM_000434.3), leading to amino acid changes predicted to impair protein function. Sialidosis should be suspected in patients with cherry red macular spots, even with non-significant urinary sialic acid excretion. Multigene panel next generation sequencing can establish a definite diagnosis, allowing for counseling of the patient and family.
Zur Hausen, Harald; Bund, Timo; de Villiers, Ethel-Michele
2017-01-01
Red meat and dairy products have frequently been suggested to represent risk factors for certain cancers, chronic neurodegenerative diseases, and autoimmune and cardiovascular disorders. This review summarizes the evidence and investigates the possible involvement of infectious factors in these diseases. The isolation of small circular single-stranded DNA molecules from serum and dairy products of Eurasian Aurochs (Bos taurus)-derived cattle, obviously persisting as episomes in infected cells, provides the basis for further investigations. Gene expression of these agents in human cells has been demonstrated, and frequent infection of humans is implicated by the detection of antibodies in a high percentage of healthy individuals. Epidemiological observations suggest their relationship to the development multiple sclerosis, to heterophile antibodies, and to N-glycolylneuraminic acid (Neu5Gc) containing cell surface receptors.
Studies on the structures of the Tm, Sj, M1, Can, Sext and Hu blood group antigens.
Dahr, W; Knuppertz, G; Beyreuther, K; Moulds, J J; Moulds, M; Wilkinson, S; Capon, C; Fournet, B; Issitt, P D
1991-08-01
The Glycophorins (GPs = sialoglycoproteins) in erythrocyte membranes from various Black individuals, some of which exhibit the M1, Can, Sj, Tm, Sext and/or Hu antigens, and several Caucasian donors, including pooled fetal red cells, were studied. Using agglutination inhibition assays with GP fractions, GP fragments and chemically modified GPs as well as trypsin treatment of intact red cells, the antigens defined by anti-M1, anti-M+M1, anti-Can and anti-Tm sera were found to be located on the N-terminal tryptic peptide (T2, residues 1-31) of the major GP (GP A = MN sialoglycoprotein). Evidence was obtained that the N-terminal amino-acid residue, NeuNAc and/or (a) different sugar residue(s) are involved in the antigens. Amino-acid sequence and composition analyses excluded an amino-acid exchange within the N-terminal region (residues 1-31) of GP A. Carbohydrate analyses revealed the attachment of GlcNAc residues (up to about five, dependent on the strength of the above-mentioned antigens) to O-glycosidically linked oligosaccharides within the N-terminal portion (residues 1-31) of GP A. As judged from the carbohydrate compositions of peptides, the alteration of the O-glycosidic oligosaccharides is associated with a slight increase of the Gal and Fuc contents and a slight decrease of the NeuNAc level. Analyses of small, secondary cyanogen bromide and V8 proteinase peptides from the N-terminal region of GP A from Blacks, Caucasians and Caucasian fetal cells suggest that the variable attachment of small quantities of GlcNAc (about 0.03 to about 0.2 residues per peptide molecule) accounts, at least in part, for the polymorphisms detected by anti-Can and the original anti-Tm (serum Sheerin). Remarkably, the GlcNAc-containing O-glycosidic oligosaccharides occur only in small quantities, or not all at, within the positions 32-61 of GP A and the glycosylated domains of GP B and GP C.(ABSTRACT TRUNCATED AT 400 WORDS)
Lee, Mun-Yong; Choi, Yun-Sik; Choi, Jeong-Sun; Min, Do Sik; Chun, Myung-Hoon; Kim, Ok Nyu; Lee, Sang Bok; Kim, Seong Yun
2002-01-11
The cellular localization and spatiotemporal expression pattern of APG-2 protein, a member of the heat shock protein 110 family, were investigated in the rat hippocampus after transient forebrain ischemia. The spatiotemporal patterns of immunoreactivity of both APG-2 and glial fibrillary acidic protein were very similar, indicating that reactive astrocytes express APG-2, which was confirmed by double immunofluorescence histochemistry. Colocalization of APG-2 and a neuronal marker NeuN in the neurons of the CA2 and CA3 subfields was also confirmed.
Olfactory transduction pathways in the Senegalese sole Solea senegalensis.
Velez, Z; Hubbard, P C; Barata, E N; Canário, A V M
2013-09-01
This study tested whether differences in sensitivity between the upper and lower olfactory epithelia of Solea senegalensis are associated with different odorant receptors and transduction pathways, using the electro-olfactogram. Receptor mechanisms were assessed by cross-adaptation with amino acids (L-cysteine, L-phenylalanine and 1-methyl-L-tryptophan) and bile acids (taurocholic acid and cholic acid). This suggested that relatively specific receptors exist for 1-methyl-L-tryptophan and L-phenylalanine (food-related odorants) in the lower epithelium, and for taurocholic acid (conspecific-derived odorant) in the upper. Inhibition by U73122 [a phospholipase C (PLC) inhibitor] suggested that olfactory responses to amino acids were mediated mostly, but not entirely, by PLC-mediated transduction (IC50 ; 15-55 nM), whereas bile acid responses were mediated by both PLC and adenylate cyclase-cyclic adenosine monophosphate (AC-cAMP) (using SQ-22536; an AC inhibitor). Simultaneous application of both drugs rarely inhibited responses completely, suggesting possible involvement of non-PLC and non-AC mediated mechanisms. For aromatic amino acids and bile acids, there were differences in the contribution of each transduction pathway (PLC, AC and non-PLC and non-AC) between the two epithelia. These results suggest that differences in sensitivity of the two epithelia are associated with differences in odorant receptors and transduction mechanisms. © 2013 The Fisheries Society of the British Isles.
Martín-Ortiz, A; Salcedo, J; Barile, D; Bunyatratchata, A; Moreno, F J; Martin-García, I; Clemente, A; Sanz, M L; Ruiz-Matute, A I
2016-01-08
A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2-0.6min) and good symmetry (As: 0.8-1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40°C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315mgL(-1) for neutral oligosaccharides and from 83 to 251mgL(-1) for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Yong; Geng, Chang-An; Ma, Yun-Bao; Huang, Xiao-Yan; Chen, Hao; Cao, Tuan-Wu; He, Kang; Wang, Hao; Zhang, Xue-Mei; Chen, Ji-Jun
2014-10-28
Hepatitis B induced by HBV is a serious health problem. Artemisia capillaris (Yin-Chen) has long been used to treat hepatitis in traditional Chinese medicine. Coumarins, flavonoids and organic acids were revealed as its hepatoprotective and choleretic components, but its anti-HBV active components remain unknown. This current study focused on its anti-HBV active constituents by various chromatographic methods. LC/MS and bioassay-guided fractionation on the active extract of Artemisia capillaris led to the isolation of nine chlorogenic acid analogues. Structures of the isolates were elucidated by MS/MS and NMR techniques. Anti-HBV assay was performed on HepG 2.2.15 cell line in vitro: reduction of HBsAg and HBeAg secretions was measured by an ELISA method; inhibition of HBV DNA replication was monitored by real-time quantitative PCR and cellular toxicity was assessed by a MTT method. The 90% ethanol extract of Artemisia capillaris (Fr. AC) showed significantly inhibitory activity on HBV DNA replication with an IC₅₀ value of 76.1 ± 3.9 μg/mL and low cytotoxic effects (SI>20.1). To clarify its active constituents, the extract was further separated into 3 sub-fractions (AC-1, AC-2 and AC-3), of which Fr. AC-2 was the most active fraction against HBeAg secretion and HBV DNA replication with IC50 values of 44.2 ± 2.8 and 23.2 ± 1.9 μg/mL. Nine chlorogenic acid analogues were detected from the active part (Fr. AC-2) by a LC/MS technique and further separated by a HPLC method. The isolates were determined as chlorogenic acid (1), cryptochlorogenic acid (2), neochlorogenic acid (3), 3,5-dicaffeoylquinic acid (4), 4,5-dicaffeoylquinic acid (5), 3,4-dicaffeoylquinic acid (6), chlorogenic acid methyl ester (7), cryptochlorogenic acid methyl ester (8), neochlorogenic acid methyl ester (9). Compounds 1-6 possessed potent activity against HBV DNA replication with IC50 values in the range of 5.5 ± 0.9-13.7 ± 1.3 μM. Di-caffeoyl analogues (4-6) also exhibited activity against the secretions of HBsAg and HBeAg. Esterified analogues (7-9) showed dramatically decreased anti-HBV activity, indicating that carboxyl group is closely associated to the anti-HBV activity. This investigation was focused on the active fractions of Artemisia capillaris and their active compositions, which showed that Fr. AC-2 was the main active section of Artemisia capillaris and chlorogenic acid analogues were the main constituents contributing to its anti-HBV activity. These results support the ethnopharmacological use of Artemisia capillaris as anti-HBV agents. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The role of brain extracellular proteins in neuroplasticity and learning.
Shashoua, V E
1985-06-01
Double labeling studies of the pattern of protein synthesis in goldfish and mouse brain identified a class of glycoproteins (the ependymins) whose turnover rate was enhanced after training. A variety of control experiments indicated that these macromolecules have an important role in the molecular and cell biology of learning. Antisera to the ependymins when injected into the brains of trained goldfish cause amnesia of a newly acquired behavior. Isolation and localization studies by immunocytochemical methods indicate that the ependymins are released into the brain extracellular fluid by a class of neurosecretory cells. In mammalian brain ependymin-containing cells are highly concentrated in the limibic system. The ependymins are constituted from two disulfide-linked acidic polypeptide chains (M.W.37K and 31K). They contain at least 5% covalently bound carbohydrate per chain with mannose, galactose, N-acetylglucosamine and N-acetylneuraminic acid as the predominant components. The highly soluble ependymins can rapidly polymerize to form an insoluble fibrous matrix if calcium is removed from solution by the addition of a Ca2+-chelating agent or dialysis. The self-aggregation property of the ependymins can be triggered by the depletion of Ca2+ from the extracellular space. Studies of the kinetics of the aggregation phenomenon by measurements of turbidity changes indicate that the process can be terminated but not reversed by restoring Ca2+ to its normal CSF level. Immunohistochemical studies of the brains of trained goldfish show the presence of punctate statining sites in the perimeter of certain cells located in specific brain regions. This suggests that ependymin aggregation might occur in vivo during learning. A molecular hypothesis relating the aggregation properties of the ependymins to neuroplasticity and learning is proposed.
Characterization and expression profiles of MaACS and MaACO genes from mulberry (Morus alba L.)*
Liu, Chang-ying; Lü, Rui-hua; Li, Jun; Zhao, Ai-chun; Wang, Xi-ling; Diane, Umuhoza; Wang, Xiao-hong; Wang, Chuan-hong; Yu, Ya-sheng; Han, Shu-mei; Lu, Cheng; Yu, Mao-de
2014-01-01
1-Aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) are encoded by multigene families and are involved in fruit ripening by catalyzing the production of ethylene throughout the development of fruit. However, there are no reports on ACS or ACO genes in mulberry, partly because of the limited molecular research background. In this study, we have obtained five ACS gene sequences and two ACO gene sequences from Morus Genome Database. Sequence alignment and phylogenetic analysis of MaACO1 and MaACO2 showed that their amino acids are conserved compared with ACO proteins from other species. MaACS1 and MaACS2 are type I, MaACS3 and MaACS4 are type II, and MaACS5 is type III, with different C-terminal sequences. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) expression analysis showed that the transcripts of MaACS genes were strongly expressed in fruit, and more weakly in other tissues. The expression of MaACO1 and MaACO2 showed different patterns in various mulberry tissues. MaACS and MaACO genes demonstrated two patterns throughout the development of mulberry fruit, and both of them were strongly up-regulated by abscisic acid (ABA) and ethephon. PMID:25001221
Siddiqui, Fariha Masood; Akram, Muhammad; Noureen, Nighat; Noreen, Zobia; Bokhari, Habib
2015-03-01
To determine antibiotic resistance patterns and virulence potential of Campylobacter jejuni (C. jejuni) isolates from clinical human diarrheal infections, cattle and healthy broilers. Antibiotic sensitivity patterns of C. jejuni isolates were determined by Kirby Bauer Disc Diffusion assay. These isolates were then subjected to virulence profiling for the detection of mapA (membrane-associated protein), cadF (fibronectin binding protein), wlaN (beta-l,3-galactosyltransferase) and neuAB (sialic acid biosynthesis gene). Further C. jejuni isolates were grouped by random amplification of polymorphic DNA (RAPD) profiling. A total of 436 samples from poultry (n=88), cattle (n=216) and humans (n=132) from different locations were collected. Results revealed percentage of C. jejuni isolates were 35.2% (31/88), 25.0% (54/216) and 11.3% (15/132) among poultry, cattle and clinical human samples respectively. Antibiotic susceptibility results showed that similar resistance patterns to cephalothin was ie. 87.0%, 87.1% and 89%among humans, poultry and cattle respectively, followed by sulfamethoxazole+trimethoprim 40.0%, 38.7% and 31.0% in humans, poultry and cattle and Ampicillin 40%, 32% and 20% in humans, poultry and cattle respectively. Beta-lactamase activity was detected in 40.00% humans, 20.37% cattle and 32.25% in poultry C. jejuni isolates. CadF and mapA were present in all poultry, cattle and human C. jejuni isolates, wlaN was not detected in any isolate and neuAB was found in 9/31 (36%) poultry isolates. RAPD profiling results suggested high diversity of C. jejuni isolates. Detection of multidrug resistant C. jejuni strains from poultry and cattle is alarming as they can be potential hazard to humans. Moreover, predominant association of virulence factors, cadF and mapA (100% each) in C. jejuni isolates from all sources and neuAB (36%) with poultry isolates suggest the potential source of transmission of diverse types of C. jejuni to humans. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Zheng, Yu; Wang, Jing; Bai, Xiaolei; Chang, Yangang; Mou, Jun; Song, Jia; Wang, Min
2018-05-21
Acetic acid bacteria (AAB) are widely used in acetic acid fermentation due to their remarkable ability to oxidize ethanol and high tolerance against acetic acid. In Acetobacter pasteurianus, nucleotide excision repair protein UvrA was up-regulated 2.1 times by acetic acid when compared with that without acetic acid. To study the effects of UvrA on A. pasteurianus acetic acid tolerance, uvrA knockout strain AC2005-ΔuvrA, uvrA overexpression strain AC2005 (pMV24-uvrA), and the control strain AC2005 (pMV24), were constructed. One percent initial acetic acid was almost lethal to AC2005-ΔuvrA. However, the biomass of the UvrA overexpression strain was higher than that of the control under acetic acid concentrations. After 6% acetic acid shock for 20 and 40 min, the survival ratios of AC2005 (pMV24-uvrA) were 2 and 0.12%, respectively; however, they were 1.5 and 0.06% for the control strain AC2005 (pMV24). UvrA overexpression enhanced the acetification rate by 21.7% when compared with the control. The enzymes involved in ethanol oxidation and acetic acid tolerance were up-regulated during acetic acid fermentation due to the overexpression of UvrA. Therefore, in A. pasteurianus, UvrA could be induced by acetic acid and is related with the acetic acid tolerance by protecting the genome against acetic acid to ensure the protein expression and metabolism.
Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M
2017-05-01
Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films. Copyright © 2017 Elsevier B.V. All rights reserved.
78 FR 32349 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
... occurs first: Inspect the A/C compressor motor to determine whether P/N 1134104-1 or P/N 1134104-5 is... number of the A/C compressor motor can be conclusively determined from that review. (h) Inspection of..., any A/C compressor motor is found having P/N 1134104-1 or P/N 1134104-5: Within 30 days or 10 flight...
Chaillou, Stéphane; Zagorec, Monique; Champomier-Vergès, Marie-Christine
2013-01-01
In silico analysis of the genome sequence of the meat-borne lactic acid bacterium (LAB) Lactobacillus sakei 23K has revealed a repertoire of potential functions related to the adaptation of this bacterium to the meat environment. Among these functions, the ability to use N-acetyl-neuraminic acid (NANA) as a carbon source could provide a competitive advantage for growth on meat in which this amino sugar is present. In this work, we proposed to analyze the functionality of a gene cluster encompassing nanTEAR and nanK (nanTEAR-nanK). We established that this cluster encoded a pathway allowing transport and early steps of the catabolism of NANA in this genome. We also demonstrated that this cluster was absent from the genome of other L. sakei strains that were shown to be unable to grow on NANA. Moreover, L. sakei 23K nanA, nanT, nanK, and nanE genes were able to complement Escherichia coli mutants. Construction of different mutants in L. sakei 23K ΔnanR, ΔnanT, and ΔnanK and the double mutant L. sakei 23K Δ(nanA-nanE) made it possible to show that all were impaired for growth on NANA. In addition, two genes located downstream from nanK, lsa1644 and lsa1645, are involved in the catabolism of sialic acid in L. sakei 23K, as a L. sakei 23K Δlsa1645 mutant was no longer able to grow on NANA. All these results demonstrate that the gene cluster nanTEAR-nanK-lsa1644-lsa1645 is indeed involved in the use of NANA as an energy source by L. sakei. PMID:23335758
Charge effects in the selection of NPF motifs by the EH domain of EHD1.
Henry, Gillian D; Corrigan, Daniel J; Dineen, Joseph V; Baleja, James D
2010-04-27
The Eps15 homology (EH) domain is found in proteins associated with endocytosis and vesicle trafficking. EH domains bind to their target proteins through an asparagine-proline-phenylalanine (NPF) motif. We have measured the interaction energetics of the EH domain from EHD1 with peptides derived from two of its binding partners: Rabenosyn-5 (Ac-GPSLNPFDEED-NH(2)) and Rab11-Fip2 (Ac-YESTNPFTAK-NH(2)). Heteronuclear single quantum coherence (HSQC) spectroscopy shows that both peptides bind in the canonical binding pocket of EHD1 EH and induce identical structural changes, yet the affinity of the negatively charged Ac-GPSLNPFDEED-NH(2) (K(a) = 8 x 10(5) M(-1)) is tighter by 2 orders of magnitude. The thermodynamic profiles (DeltaG, DeltaH, DeltaS) were measured for both peptides as a function of temperature. The enthalpies of binding are essentially identical, and the difference in affinity is a consequence of the difference in entropic cost. Ac-GPSLNPFDEED-NH(2) binding is salt-dependent, demonstrating an electrostatic component to the interaction, whereas Ac-YESTNPFTAK-NH(2) binding is independent of salt. Successive replacement of acidic residues in Ac-GPSLNPFDEED-NH(2) with neutral residues showed that all are important. Lysine side chains in EHD1 EH create a region of strong positive surface potential near the NPF binding pocket. Contributions by lysine epsilon-amino groups to complex formation with Ac-GPSLNPFDEED-NH(2) was shown using direct-observe (15)N NMR spectroscopy. These experiments have enabled us to define a new extended interaction motif for EHD proteins, N-P-F-[DE]-[DE]-[DE], which we have used to predict new interaction partners and hence broaden the range of cellular activities involving the EHD proteins.
Villa, Natalie M.; Li, Ning; Yeh, Michael W.; Hurvitz, Sara A.; Dawson, Nicole A.; Leung, Angela M.
2015-01-01
Objective The potential influence of hypothyroidism on breast cancer remains incompletely understood. The objective of this study was to investigate the relationship between serum thyrotropin [thyroid-stimulating hormone (TSH)] concentration and markers of aggressive breast cancer biology, as defined by receptor expression profile, tumor grade, and American Joint Committee on Cancer (AJCC) stage characteristics. Methods This was a retrospective cohort study of patients from 2002–2014. All breast cancer patients who had complete receptor (estrogen receptor, ER; progesterone receptor, PR; and Her2/neu) and pre-diagnosis serum TSH data (n=437) were included. All patients had one of six receptor profiles: ER+ PR+ Her2/neu −, ER+ PR− Her2/neu−, ER+ PR+ Her2/neu+, ER+ PRHer2/ neu+, ER− PR− Her2/neu+, ER− PR− Her2/neu−. Log-transformed serum TSH concentrations were analyzed using multinomial and logistic regressions for a potential relationship with markers of breast cancer aggressiveness. Results Increasing serum TSH concentration was associated with a lower probability of having the receptor expression profile ER+ PR+ Her2/neu+ compared to patients with the ER+ PR+ Her2/neu− profile (OR=0.52, p=0.0045). No significant associations between other receptor expression profiles and serum TSH concentration were found. All time-weighted and unweighted median serum TSH concentrations were within normal limits. No significant associations between serum TSH concentration and tumor grade, overall AJCC stage, or tumor size (T), lymph node positivity (N), or presence of metastasis (M) were observed. Conclusions Serum TSH was not associated with markers of breast cancer aggressiveness in our cohort. PMID:26121443
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chigorno, V.; Cardace, G.; Pitto, M.
1986-03-01
A radiometric method for the assay of ganglioside sialidase in cultured human fibroblasts was set up. As substrate, highly radioactive (1.28 Ci/mmol) ganglioside GD/sub 1a/ isotopically tritium-labeled at carbon C-3 of the long chain base was employed; the liberated, and TLC separated (/sup 3/H)GM/sub 1/ was determined by computer-assisted radiochromatoscanning. Under experimental conditions that provided a low and quite acceptable (4-5%) coefficient of variation, the detection limit of the method was 0.1 nmol of liberated GM/sub 1/, using as low as 10 ..mu..g of fibroblast homogenate as protein. The detection limit could be lowered to 0.02-0.03 nmol, adopting conditions that,more » however, carried a higher analytical error (coefficient of variation over 10%). The content of ganglioside sialidase in human fibroblasts cultured in 75-cm/sup 2/ plastic flasks was 5.8 -/+ 2.5 (SD) nmol liberated GM/sub 1/ h/sup -1/ mg protein/sup -1/. Subfractionation studies performed on fibroblast homogenate showed that the ganglioside sialidase was mainly associated with the light membrane subfraction that was rich in plasma and intracellular membranes. This subfraction displayed almost no sialidase activity on the artificial substrate 4-methylumbelliferyl-D-N-acetylneuraminic acid. A small but measurable ganglioside sialidase activity was also present in the lysosome-enriched subfraction, which contained a very high sialidase activity on the above artificial substrate.« less
Lin, Chi-Chen; Pan, I-Hong; Li, Yi-Rong; Pan, Yi-Gen; Lin, Ming-Kuem; Lu, Yi-Huang; Wu, Hsin-Chieh; Chu, Ching-Liang
2015-01-01
The biological activity of the edible basidiomycete Antrodia cinnamomea (AC) has been studied extensively. Many effects, such as anti-cancer, anti-inflammatory, and antioxidant activities, have been reported from either crude extracts or compounds isolated from AC. However, research addressing the function of AC in enhancing immunity is rare. The aim of the present study is to investigate the active components and the mechanism involved in the immunostimulatory effect of AC. We found that polysaccharides (PS) in the water extract of AC played a major role in dendritic cell (DC) activation, which is a critical leukocyte in initiating immune responses. We further size purified and identified that the high-molecular weight PS fraction (greater than 100 kDa) exhibited the activating effect. The AC high-molecular weight PSs (AC hmwPSs) promoted pro-inflammatory cytokine production by DCs and the maturation of DCs. In addition, DC-induced antigen-specific T cell activation and Th1 differentiation were increased by AC hmwPSs. In studying the molecular mechanism, we confirmed the activation of the MAPK and NF-κB pathways in DCs after AC hmwPSs treatment. Furthermore, we demonstrated that TLR2 and TLR4 are required for the stimulatory activity of AC hmwPSs on DCs. In a mouse tumor model, we demonstrated that AC hmwPSs enhanced the anti-tumor efficacy of the HER-2/neu DNA vaccine by facilitating specific Th1 responses. Thus, we conclude that hmwPSs are the major components of AC that stimulate DCs via the TLR2/TLR4 and NF-κB/MAPK signaling pathways. The AC hmwPSs have potential to be applied as adjuvants. PMID:25723174
Differentiation of V2a interneurons from human pluripotent stem cells
Butts, Jessica C.; McCreedy, Dylan A.; Martinez-Vargas, Jorge Alexis; Mendoza-Camacho, Frederico N.; Hookway, Tracy A.; Gifford, Casey A.; Taneja, Praveen; Noble-Haeusslein, Linda; McDevitt, Todd C.
2017-01-01
The spinal cord consists of multiple neuronal cell types that are critical to motor control and arise from distinct progenitor domains in the developing neural tube. Excitatory V2a interneurons in particular are an integral component of central pattern generators that control respiration and locomotion; however, the lack of a robust source of human V2a interneurons limits the ability to molecularly profile these cells and examine their therapeutic potential to treat spinal cord injury (SCI). Here, we report the directed differentiation of CHX10+ V2a interneurons from human pluripotent stem cells (hPSCs). Signaling pathways (retinoic acid, sonic hedgehog, and Notch) that pattern the neural tube were sequentially perturbed to identify an optimized combination of small molecules that yielded ∼25% CHX10+ cells in four hPSC lines. Differentiated cultures expressed much higher levels of V2a phenotypic markers (CHX10 and SOX14) than other neural lineage markers. Over time, CHX10+ cells expressed neuronal markers [neurofilament, NeuN, and vesicular glutamate transporter 2 (VGlut2)], and cultures exhibited increased action potential frequency. Single-cell RNAseq analysis confirmed CHX10+ cells within the differentiated population, which consisted primarily of neurons with some glial and neural progenitor cells. At 2 wk after transplantation into the spinal cord of mice, hPSC-derived V2a cultures survived at the site of injection, coexpressed NeuN and VGlut2, extended neurites >5 mm, and formed putative synapses with host neurons. These results provide a description of V2a interneurons differentiated from hPSCs that may be used to model central nervous system development and serve as a potential cell therapy for SCI. PMID:28438991
Hübner, Anette; Danganan, Clyde E.; Xun, Luying; Chakrabarty, A. M.; Hendrickson, William
1998-01-01
Burkholderia cepacia AC1100 uses the chlorinated aromatic compound 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a sole source of carbon and energy. The enzyme which converts the first intermediate in the pathway, 2,4,5-trichlorophenol, to 5-chlorohydroquinone has been purified and consists of two subunits of 58 and 22 kDa, encoded by the tftC and tftD genes (48). A degenerate primer was designed from the N terminus of the 58-kDa polypeptide and used to isolate a clone containing the tftC and tftD genes from a genomic library of AC1100. The derived amino acid sequences of tftC and tftD show significant homology to the two-component monooxygenases HadA of Burkholderia pickettii, HpaBC of Escherichia coli, and HpaAH of Klebsiella pneumonia. Expression of the tftC and tftD genes appeared to be induced when they were grown in the presence of 2,4,5-T, as shown by RNA slot blot and primer extension analyses. Three sets of cloned tft genes were used as probes to explore the genomic organization of the pathway. Pulsed-field gel electrophoresis analyses of whole chromosomes of B. cepacia AC1100 demonstrated that the genome is comprised of five replicons of 4.0, 2.7, 0.53, 0.34, and 0.15 Mbp, designated I to V, respectively. The tft genes are located on the smaller replicons: the tftAB cluster is on replicon IV, tftEFGH is on replicon III, and copies of the tftC and the tftCD operons are found on both replicons III and IV. When cells were grown in the absence of 2,4,5-T, the genes were lost at high frequency by chromosomal deletions and rearrangements to produce 2,4,5-T-negative mutants. In one mutant, the tftA and tftB genes translocated from one replicon to another, with the concomitant loss of tftEFGH and one copy of tftCD. PMID:9603818
Corbett, M D; Wei, C; Corbett, B R
1985-05-01
p-Nitrophenylhydroxylamine (NPH) and two hydroxamic acids derived from it were synthesized and subjected to mutagenicity testing in Salmonella typhimurium strains TA98, TA98NR, TA1538 and TA1538NR. In addition, p-dinitrobenzene (DNB), p-nitroaniline (NA) and p-nitroacetanilide (AcNA) were simultaneously examined for mutagenic action against these four tester strains. NPH, its N-acetyl (AcNPH) and N-formyl (FoNPH) derivatives, and also DNB displayed strong mutagenic action to the nitroreductase-containing strains, TA98 and TA1538. NPH was the most potent chemical in this series against both of these strains, while the two hydroxamic acids AcNPH and FoNPH, and also DNB displayed approximately the same degree of mutagenicity. In the nitroreductase-deficient strains, TA98NR and TA1538NR, the mutagenicity of these four compounds was markedly reduced. The necessity for nitroreduction in order to activate these promutagens is fairly certain; however, the lack of mutagenicity of NA and AcNA towards all four tester strains made the interpretation of these data somewhat more complicated. Several possible bioactivation pathways were presented, with one mechanism in particular being proposed. This mechanism requires only that the strong electron-withdrawing nitro group be converted to an electron-donating group by bacterial nitroreductase. Such a mechanism is unique for the bioactivation of nitro aromatics by nitroreductase, since the enzymatic reduction need not produce the intermediary hydroxylamine metabolite.
Porous texture of activated carbons prepared by phosphoric acid activation of woods
NASA Astrophysics Data System (ADS)
Díaz-Díez, M. A.; Gómez-Serrano, V.; Fernández González, C.; Cuerda-Correa, E. M.; Macías-García, A.
2004-11-01
Activated carbons (ACs) have been prepared using chestnut, cedar and walnut wood shavings from furniture industries located in the Comunidad Autónoma de Extremadura (SW Spain). Phosphoric acid (H3PO4) at different concentrations (i.e. 36 and 85 wt.%) has been used as activating agent. ACs have been characterized from the results obtained by N2 adsorption at 77 K. Moreover, the fractal dimension (D) has been calculated in order to determine the AC surface roughness degree. Optimal textural properties of ACs have been obtained by chemical activation with H3PO4 36 wt.%. This is corroborated by the slightly lower values of D for samples treated with H3PO4 85 wt.%.
Expanding sialidosis spectrum by genome-wide screening: NEU1 mutations in adult-onset myoclonus.
Canafoglia, Laura; Robbiano, Angela; Pareyson, Davide; Panzica, Ferruccio; Nanetti, Lorenzo; Giovagnoli, Anna Rita; Venerando, Anna; Gellera, Cinzia; Franceschetti, Silvana; Zara, Federico
2014-06-03
To identify the genetic cause of a familial form of late-onset action myoclonus in 2 unrelated patients. Both probands had 2 siblings displaying a similar disorder. Extensive laboratory examinations, including biochemical assessment for urine sialic acid in the 2 probands, were negative. Exome sequencing was performed in the probands using an Illumina platform. Segregation analysis of putative mutations was performed in all family members by standard Sanger sequencing protocols. NEU1 mutations were detected in 3 siblings of each family with prominent cortical myoclonus presenting in the third decade of life and having a mild and slowly progressive course. They did not have macular cherry-red spot and their urinary sialic acid excretion was within normal values. Genetic analysis demonstrated a homozygous mutation in family 1 (c.200G>T, p.S67I) and 2 compound heterozygous mutations in family 2 (c.679G>A, p.G227R; c.913C>T, p.R305C). Our observation indicates that sialidosis should be suspected and the NEU1 gene analyzed in patients with isolated action myoclonus presenting in adulthood in the absence of other typical clinical and laboratory findings. © 2014 American Academy of Neurology.
Structure-based Mechanism of CMP-2-keto-3-deoxymanno-octulonic Acid Synthetase
Heyes, Derren J.; Levy, Colin; Lafite, Pierre; Roberts, Ian S.; Goldrick, Marie; Stachulski, Andrew V.; Rossington, Steven B.; Stanford, Deborah; Rigby, Stephen E. J.; Scrutton, Nigel S.; Leys, David
2009-01-01
The enzyme CMP-Kdo synthetase (KdsB) catalyzes the addition of 2-keto-3-deoxymanno-octulonic acid (Kdo) to CTP to form CMP-Kdo, a key reaction in the biosynthesis of lipopolysaccharide. The reaction catalyzed by KdsB and the related CMP-acylneuraminate synthase is unique among the sugar-activating enzymes in that the respective sugars are directly coupled to a cytosine monophosphate. Using inhibition studies, in combination with isothermal calorimetry, we show the substrate analogue 2β-deoxy-Kdo to be a potent competitive inhibitor. The ligand-free Escherichia coli KdsB and ternary complex KdsB-CTP-2β-deoxy-Kdo crystal structures reveal that Kdo binding leads to active site closure and repositioning of the CTP phosphates and associated Mg2+ ion (Mg-B). Both ligands occupy conformations compatible with an Sn2-type attack on the α-phosphate by the Kdo 2-hydroxyl group. Based on strong similarity with DNA/RNA polymerases, both in terms of overall chemistry catalyzed as well as active site configuration, we postulate a second Mg2+ ion (Mg-A) is bound by the catalytically competent KdsB-CTP-Kdo ternary complex. Modeling of this complex reveals the Mg-A coordinated to the conserved Asp100 and Asp235 in addition to the CTP α-phosphate and both the Kdo carboxylic and 2-hydroxyl groups. EPR measurements on the Mn2+-substituted ternary complex support this model. We propose the KdsB/CNS sugar-activating enzymes catalyze the formation of activated sugars, such as the abundant CMP-5-N-acetylneuraminic acid, by recruitment of two Mg2+ to the active site. Although each metal ion assists in correct positioning of the substrates and activation of the α-phosphate, Mg-A is responsible for activation of the sugar-hydroxyl group. PMID:19815542
Spider wrapping silk fibre architecture arising from its modular soluble protein precursor
NASA Astrophysics Data System (ADS)
Tremblay, Marie-Laurence; Xu, Lingling; Lefèvre, Thierry; Sarker, Muzaddid; Orrell, Kathleen E.; Leclerc, Jérémie; Meng, Qing; Pézolet, Michel; Auger, Michèle; Liu, Xiang-Qin; Rainey, Jan K.
2015-06-01
Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable “beads-on-a-string” concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability.
NASA Astrophysics Data System (ADS)
Guo, Ning; Liang, Qimeng; Li, Shuo; Ouyang, Ruizhuo; Lü, Wei
2017-11-01
A family of apatite-type fluorophosphate phosphors with general formula Sr3Gd(1-m-n)Na(PO4)3F:mTb3+,nEu3+ (SGN:mTb3+,nEu3+) have been synthesized via the high-temperature solid-state reaction method. Triple energy transfer processes from Gd3+ in the host to both Tb3+ and Eu3+, as well as from Tb3+ to Eu3+ have been verified by the photoluminescence spectra. Under the excitation of UV light, both green line from the transitions of Tb3+ and red line origin from the transitions of Eu3+ have been simultaneously observed in a single phase phosphor, which makes a promise for tunable color emissions from yellowish-green through yellow and ultimately to reddish-orange by simply adjusting the Eu3+ content (n) in SGN:0.20Tb3+,nEu3+ phosphors. Additionally, the energy transfer from the Tb3+ to the Eu3+ ions has been demonstrated to be a resonant type via a quadrupole-quadrupole mechanism based on the Dexter's theoretical model, and the energy transfer efficiency increases with an increase in Eu3+ concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xin-Hui, E-mail: iamxhzhou@njupt.edu.cn; Chen, Qiang
The title coordination polymer ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O){sub 6.25}){sub n} (H{sub 3}tda = 1,2,3-triazole-4,5-dicarboxylic acid), has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complex crystallizes in orthorhombic sp. gr. Pmn2{sub 1} with Z = 4. The Cd{sub 2} unit doublebridged by one carboxylate oxygen atom and two neighboring nitrogen atoms from the tda{sup 3–} ligands are linked by the tda{sup 3–}ligands to lead to the 2D (4,4) network in the ac plane. The almost coplanar Cd{sub 2}(μ{sub 5}-tda){sub 2} unit comprised of two Cd ions double-bridged by two tda{sup 3–} ligands through themore » neighboring nitrogen atoms is connected with the other four Cd{sub 2}(μ{sub 5}-tda){sub 2} units form the undulating 2D network in the ac plane. The (4,4) networks and undulating 2D networks are alternatively connected along the b axis by the tda{sup 3–} ligands coordinating to the Cd ions to form the 3D framework.« less
Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi
2004-03-01
The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients.
Reaction of hydroxyl radicals with azacytosines: a pulse radiolysis and theoretical study.
Pramod, G; Prasanthkumar, K P; Mohan, Hari; Manoj, V M; Manoj, P; Suresh, C H; Aravindakumar, C T
2006-10-12
Pulse radiolysis and density functional theory (DFT) calculations at B3LYP/6-31+G(d,p) level have been carried out to probe the reaction of the water-derived hydroxyl radicals (*OH) with 5-azacytosine (5Ac) and 5-azacytidine (5Acyd) at near neutral and basic pH. A low percentage of nitrogen-centered oxidizing radicals, and a high percentage of non-oxidizing carbon-centered radicals were identified based on the reaction of transient intermediates with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate), ABTS2-. Theoretical calculations suggests that the N3 atom in 5Ac is the most reactive center as it is the main contributor of HOMO, whereas C5 atom is the prime donor for the HOMO of cytosine (Cyt) where the major addition site is C5. The order of stability of the adduct species were found to be C6-OH_5Ac*>C4-OH_5Ac*>N3-OH_5Ac*>N5-OH_5Ac* both in the gaseous and solution phase (using the PCM model) respectively due to the additions of *OH at C6, C4, N3, and N5 atoms. These additions occur in direct manner, without the intervention of any precursor complex formation. The possibility of a 1,2-hydrogen shift from the C6 to N5 in the nitrogen-centered C6-OH_5Ac* radical is considered in order to account for the experimental observation of the high yield of non-oxidizing radicals, and found that such a conversion requires activation energy of about 32 kcal/mol, and hence this possibility is ruled out. The hydrogen abstraction reactions were assumed to occur from precursor complexes (hydrogen bonded complexes represented as S1, S2, S3, and S4) resulted from the electrostatic interactions of the lone pairs on the N3, N5, and O8 atoms with the incoming *OH radical. It was found that the conversion of these precursor complexes to their respective transition states has ample barrier heights, and it persists even when the effect of solvent is considered. It was also found that the formation of precursor complexes itself is highly endergonic in solution phase. Hence, the abstraction reactions will not occur in the present case. Finally, the time dependent density functional theory (TDDFT) calculations predicted an absorption maximum of 292 nm for the N3-OH_5Ac* adduct, which is close to the experimentally observed spectral maxima at 290 nm. Hence, it is assumed that the addition to the most reactive center N3, which results the N3-OH_5Ac* radical, occurs via a kinetically driven process.
Siegel, P M; Ryan, E D; Cardiff, R D; Muller, W J
1999-01-01
To assess the importance of Neu activation during mammary tumorigenesis, altered receptors harboring in-frame deletions within the extracellular domain were expressed in transgenic mice. Females from several independent lines develop multiple mammary tumors that frequently metastasize to the lung. Tumor progression in these strains was associated with elevated levels of tyrosine-phosphorylated Neu and ErbB-3. Consistent with these observations, a survey of primary human breast tumors revealed frequent co-expression of both erbB-2 and erbB-3 transcripts. The ability of altered Neu receptors to induce mammary tumorigenesis in transgenic mice prompted us to examine whether similar mutations occurred in ErbB-2 during human breast cancer progression. Interestingly, an alternatively spliced form of erbB-2, closely resembling spontaneous activated forms of neu, was detected in human breast tumors. The ErbB-2 receptor encoded by this novel transcript harbors an in-frame deletion of 16 amino acids in the extracellular domain and can transform Rat-1 fibroblasts. Together, these observations argue that co-expression of ErbB-2 and ErbB-3 may play a critical role in the induction of human breast tumors, and raise the possibility that activating mutations in the ErbB-2 receptor may also contribute to this process. PMID:10205169
Anastasia, Luigi; Holguera, Javier; Bianchi, Anna; D'Avila, Francesca; Papini, Nadia; Tringali, Cristina; Monti, Eugenio; Villar, Enrique; Venerando, Bruno; Muñoz-Barroso, Isabel; Tettamanti, Guido
2008-03-01
The paramyxovirus Newcastle Disease Virus (NDV) binds to sialic acid-containing glycoconjugates, sialoglycoproteins and sialoglycolipids (gangliosides) of host cell plasma membrane through its hemagglutinin-neuraminidase (sialidase) HN glycoprotein. We hypothesized that the modifications of the cell surface ganglioside pattern determined by over-expression of the mammalian plasma-membrane associated, ganglioside specific, sialidase NEU3 would affect the virus-host cell interactions. Using COS7 cells as a model system, we observed that over-expression of the murine MmNEU3 did not affect NDV binding but caused a marked reduction in NDV infection and virus propagation through cell-cell fusion. Moreover, since GD1a was greatly reduced in COS7 cells following NEU3-over-expression, we added [(3)H]-labelled GD1a to COS7 cells under conditions that block intralysosomal metabolic processing, and we observed a marked increase of GD1a cleavage to GM1 during NDV infection, indicating a direct involvement of the virus sialidase and host cell GD1a in NDV infectivity. Therefore, the decrease of GD1a in COS7 cell membrane upon MmNEU3 over-expression is likely to be instrumental to NDV reduced infection. Evidence was also provided for the preferential association of NDV-HN at 4 degrees C to detergent resistant microdomains (DRMs) of COS7 cells plasma membranes.
Liu, Liming
2015-06-01
Understanding the impact of glycosylation and keeping a close control on glycosylation of product candidates are required for both novel and biosimilar monoclonal antibodies (mAbs) and Fc-fusion protein development to ensure proper safety and efficacy profiles. Most therapeutic mAbs are of IgG class and contain a glycosylation site in the Fc region at amino acid position 297 and, in some cases, in the Fab region. For Fc-fusion proteins, glycosylation also frequently occurs in the fusion partners. Depending on the expression host, glycosylation patterns in mAb or Fc-fusions can be significantly different, thus significantly impacting the pharmacokinetics (PK) and pharmacodynamics (PD) of mAbs. Glycans that have a major impact on PK and PD of mAb or Fc-fusion proteins include mannose, sialic acids, fucose (Fuc), and galactose (Gal). Mannosylated glycans can impact the PK of the molecule, leading to reduced exposure and potentially lower efficacy. The level of sialic acid, N-acetylneuraminic acid (NANA), can also have a significant impact on the PK of Fc-fusion molecules. Core Fuc in the glycan structure reduces IgG antibody binding to IgG Fc receptor IIIa relative to IgG lacking Fuc, resulting in decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activities. Glycoengineered Chinese hamster ovary (CHO) expression systems can produce afucosylated mAbs that have increased ADCC activities. Terminal Gal in a mAb is important in the complement-dependent cytotoxicity (CDC) in that lower levels of Gal reduce CDC activity. Glycans can also have impacts on the safety of mAb. mAbs produced in murine myeloma cells such as NS0 and SP2/0 contain glycans such as Galα1-3Galβ1-4N-acetylglucosamine-R and N-glycolylneuraminic acid (NGNA) that are not naturally present in humans and can be immunogenic when used as therapeutics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Veeramani, Vediyappan; Madhu, Rajesh; Chen, Shen-Ming; Lou, Bih-Show; Palanisamy, Jayabal; Vasantha, Vairathevar Sivasamy
2015-05-22
The biomass-derived activated carbons (ACs) have been prepared with high surface areas up to 793 m(2) g(-1) is by ZnCl2 activation at three different temperatures, viz. AC700, AC800, and AC900. The AC samples were characterized by a variety of analytical and spectroscopy techniques. The as-synthesized ACs were adopted for the simultaneous electrochemical detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). For comparison, reduced graphene oxide (RGO) was employed for the proposed sensor. The high surface area, modulated pore size and the presence of oxygen surface functional groups like heteroatoms (83.427% C, 1.085% N, 0.383% S, and 0.861% H) in the biomass-derived AC is found to be responsible for the excellent catalytic activities of biomolecules. Fascinatingly, the facile sensor further used to detect biomolecules levels in the snail hemolymph and human blood serum. Notably, the obtained analytical parameters for the biomolecules detection over the AC modified GCE, outperforming several carbon-based modified electrodes in literatures.
Veeramani, Vediyappan; Madhu, Rajesh; Chen, Shen-Ming; Lou, Bih-Show; Palanisamy, Jayabal; Vasantha, Vairathevar Sivasamy
2015-01-01
The biomass-derived activated carbons (ACs) have been prepared with high surface areas up to 793 m2 g−1 is by ZnCl2 activation at three different temperatures, viz. AC700, AC800, and AC900. The AC samples were characterized by a variety of analytical and spectroscopy techniques. The as-synthesized ACs were adopted for the simultaneous electrochemical detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). For comparison, reduced graphene oxide (RGO) was employed for the proposed sensor. The high surface area, modulated pore size and the presence of oxygen surface functional groups like heteroatoms (83.427% C, 1.085% N, 0.383% S, and 0.861% H) in the biomass-derived AC is found to be responsible for the excellent catalytic activities of biomolecules. Fascinatingly, the facile sensor further used to detect biomolecules levels in the snail hemolymph and human blood serum. Notably, the obtained analytical parameters for the biomolecules detection over the AC modified GCE, outperforming several carbon-based modified electrodes in literatures. PMID:25998156
NASA Astrophysics Data System (ADS)
Veeramani, Vediyappan; Madhu, Rajesh; Chen, Shen-Ming; Lou, Bih-Show; Palanisamy, Jayabal; Vasantha, Vairathevar Sivasamy
2015-05-01
The biomass-derived activated carbons (ACs) have been prepared with high surface areas up to 793 m2 g-1 is by ZnCl2 activation at three different temperatures, viz. AC700, AC800, and AC900. The AC samples were characterized by a variety of analytical and spectroscopy techniques. The as-synthesized ACs were adopted for the simultaneous electrochemical detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). For comparison, reduced graphene oxide (RGO) was employed for the proposed sensor. The high surface area, modulated pore size and the presence of oxygen surface functional groups like heteroatoms (83.427% C, 1.085% N, 0.383% S, and 0.861% H) in the biomass-derived AC is found to be responsible for the excellent catalytic activities of biomolecules. Fascinatingly, the facile sensor further used to detect biomolecules levels in the snail hemolymph and human blood serum. Notably, the obtained analytical parameters for the biomolecules detection over the AC modified GCE, outperforming several carbon-based modified electrodes in literatures.
NKG2D and CD94 bind to heparin and sulfate-containing polysaccharides.
Higai, Koji; Imaizumi, Yuzo; Suzuki, Chiho; Azuma, Yutaro; Matsumoto, Kojiro
2009-09-04
Killer lectin-like receptors NKG2D and CD94 on natural killer cells trigger cytotoxicity through binding of glycans on target cells including sialyl Lewis X antigen. We previously reported that NKG2D and CD94 recognize alpha2,3-linked NeuAc on multi-antennary N-glycans. Here we further investigated polysaccharide binding by these receptors, using glutathione-S-transferase-fused extracellular domains of NKG2D AA 73-216 (rNKG2Dlec) and CD94 AA 68-179 (rCD94lec). We found that rNKG2Dlec and rCD94lec bind in a dose-dependent manner to plates coated with heparin-conjugated bovine serum albumin (heparin-BSA). Binding to heparin-BSA was suppressed by soluble sulfate-containing polysaccharides, but minimally impacted by 2-O-, 6-O-, and 2-N-desulfated heparin. Mutagenesis revealed that (152)Y and (199)Y of NKG2D and (144)F, (160)N, and (166)C of CD94 were critical for binding to heparin-BSA. The present manuscript provides the first evidence that NKG2D and CD94 bind to heparin and sulfate-containing polysaccharides.
Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.
Roa, Jinae N; Tresguerres, Martin
2016-08-01
Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. Copyright © 2016 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Wickramasinghe, N. S.; Lacey, J. C. Jr; Lacey JC, J. r. (Principal Investigator)
1992-01-01
We recently reported that esterification of 5'-AMP with N-acetyl amino acids proceeds with a preference for D-amino acids, and the D/L ratio in products declines as the hydrophobicity of the amino acid declines. Using one amino acid, Ac-Val, we now show that esterification of all four nucleotides proceeds with a preference for the D-isomer and the preference declines as the hydrophobicity of the nucleotide declines. So, in both types of experiments, the preferences seem determined by hydrophobic interactions.
Comparative evaluation of Bis(thiosemicarbazone)- Biotin and Met-ac-TE3A for tumor imaging
NASA Astrophysics Data System (ADS)
Singh, Sweta; Tiwari, Anjani K.; Varshney, Raunak; Mathur, R.; Shukla, Gauri; Bag, N.; Singh, B.; Mishra, Anil K.
2016-01-01
2,2‧,2″-(11-(2-((4-mercapto-1-methoxy-1-oxobutan-2-yl)amino)-2-oxoethyl)-1,4,8,11-tetraaza cyclotetradecane-1,4,8-triyl)triacetic acid, Met-ac-TE3A and (E)-N-methyl-2-((E)-3-(2-(2-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl)hydrazinecarbono-thioyl)hydrazonobutan-2-ylidene)hydrazinecarbothioamide, Bis(thiosemicarbazone)- Biotin were synthesized and evaluated for imaging application. The pharmacokinetics of these ligands were determined by tracer methods. In vitro human serum stability of 99mTc Met-ac-TE3A/99mTc Bis(thiosemicarbazone)-Biotin after 24 h was found to be 96.5% and 97.0% respectively. Blood kinetics of both ligands in normal rabbits showed biphasic clearance pattern. Ex vivo biodistribution study revealed significant initial tumor uptake and high tumor/muscles ratio which is a pre-requisite condition for a ligand to work as SPECT-radiopharmaceutical for tumor imaging.
Glycophenotype Evaluation in Cutaneous Tumors Using Lectins Labeled with Acridinium Ester
Lima, Luiza Rayanna Amorim; Almeida, Sinara Mônica Vitalino; Silva, Lúcia Patrícia Bezerra Gomes; Beltrão, Eduardo Isidoro Carneiro; Carvalho Júnior, Luiz Bezerra
2013-01-01
Background. Tumor cells show alterations in their glycosylation patterns when compared to normal cells. Lectins can be used to evaluate these glycocode changes. Chemiluminescence assay is an effective technique for quantitative analysis of proteins, nucleic acids, and carbohydrates due to its high sensitivity, specificity, and rapid testing. Objective. To use histochemiluminescence based on lectin conjugated to acridinium ester (AE) for the investigation of glycophenotype changes in cutaneous tumors. Methods. Concanavalin A (Con A), Peanut agglutinin (PNA), Ulex europaeus agglutinin-I (UEA-I), and Maackia amurensis agglutinin (MAA) were conjugated to acridinium ester. Biopsies of cutaneous tumors and normal skin were incubated with the lectins-AE, and chemiluminescence was quantified and expressed as Relative Light Units (RLU). Results. Actinic keratosis (AK), keratoacanthoma (KA), squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) showed lower expression of α-D-glucose/mannose and α-L-fucose residues compared to normal tissue. Cutaneous tumors displayed higher expression of Gal-β(1-3)-GalNAc residues than normal tissue. AK and SCC exhibited higher expression of Neu5Ac-α(2,3)Gal residues than normal epidermis. KA and BCC showed equivalent RLU values compared to normal tissue. Conclusions. Lectin histochemiluminescence allowed quantitative assessment of the carbohydrate expression in cutaneous tissues, contributing to eliminate the subjectivity of conventional techniques used in the histopathological diagnosis. PMID:24167360
Fernández, Silvina; Córdoba, Mariana
2017-04-01
Hyaluronic acid, as well as heparin, is a glycosaminoglycan present in the female genital tract of cattle. The aim of this study was to evaluate oxidative metabolism and intracellular signals mediated by a membrane-associated adenylate cyclase (mAC), in sperm capacitation with hyaluronic acid and heparin, in cryopreserved bull sperm. The mAC inhibitor, 2',5'-dideoxyadenosine, was used in the present study. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities and lactate concentration were determined spectrophotometrically in the incubation medium. Capacitation and acrosome reaction were evaluated by chlortetracycline technique, while plasma membrane and acrosome integrity were determined by trypan blue stain/differential interference contrast microscopy. Heparin capacitated samples had a significant decrease in LDH and CK activities, while in hyaluronic acid capacitated samples LDH and CK activities both increased compared to control samples, in heparin and hyaluronic acid capacitation conditions, respectively. A significant increase in lactate concentration in the incubation medium occurred in hyaluronic acid-treated sperm samples compared to heparin treatment, indicating this energetic metabolite is produced during capacitation. The LDH and CK enzyme activities and lactate concentrations in the incubation medium were decreased with 2',5'-dideoxyadenosine treatment in hyaluronic acid samples. The mAC inhibitor significantly inhibited heparin-induced capacitation of sperm cells, but did not completely inhibit hyaluronic acid capacitation. Therefore, hyaluronic acid and heparin are physiological glycosaminoglycans capable of inducing in vitro capacitation in cryopreserved bull sperm, stimulating different enzymatic pathways and intracellular signals modulated by a mAC. Hyaluronic acid induces sperm capacitation involving LDH and CK activities, thereby reducing oxidative metabolism, and this process is mediated by mAC. Copyright © 2017 Elsevier B.V. All rights reserved.
Porphyrin amino acids-amide coupling, redox and photophysical properties of bis(porphyrin) amides.
Melomedov, Jascha; Wünsche von Leupoldt, Anica; Meister, Michael; Laquai, Frédéric; Heinze, Katja
2013-07-14
New trans-AB2C meso-substituted porphyrin amino acid esters with meso-substituents of tunable electron withdrawing power (B = mesityl, 4-C6H4F, 4-C6H4CF3, C6F5) were prepared as free amines 3a-3d, as N-acetylated derivatives Ac-3a-Ac-3d and corresponding zinc(II) complexes Zn-Ac-3a-Zn-Ac-3d. Several amide-linked bis(porphyrins) with a tunable electron density at each porphyrin site were obtained from the amino porphyrin precursors by condensation reactions (4a-4d) and mono- and bis(zinc(II)) complexes Zn(2)-4d and Zn(1)Zn(2)-4d were prepared. The electronic interaction between individual porphyrin units in bis(porphyrins) 4 is probed by electrochemical experiments (CV, EPR), electronic absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy in combination with DFT/PCM calculations on diamagnetic neutral bis(porphyrins) 4 and on respective charged mixed-valent radicals 4(+/-). The interaction via the -C6H4-NHCO-C6H4- bridge, the site of oxidation and reduction and the lowest excited singlet state S1, is tuned by the substituents on the individual porphyrins and the metalation state.
Structural insight into the TFIIE–TFIIH interaction: TFIIE and p53 share the binding region on TFIIH
Okuda, Masahiko; Tanaka, Aki; Satoh, Manami; Mizuta, Shoko; Takazawa, Manabu; Ohkuma, Yoshiaki; Nishimura, Yoshifumi
2008-01-01
RNA polymerase II and general transcription factors (GTFs) assemble on a promoter to form a transcription preinitiation complex (PIC). Among the GTFs, TFIIE recruits TFIIH to complete the PIC formation and regulates enzymatic activities of TFIIH. However, the mode of binding between TFIIE and TFIIH is poorly understood. Here, we demonstrate the specific binding of the C-terminal acidic domain (AC-D) of the human TFIIEα subunit to the pleckstrin homology domain (PH-D) of the human TFIIH p62 subunit and describe the solution structures of the free and PH-D-bound forms of AC-D. Although the flexible N-terminal acidic tail from AC-D wraps around PH-D, the core domain of AC-D also interacts with PH-D. AC-D employs an entirely novel binding mode, which differs from the amphipathic helix method used by many transcriptional activators. So the binding surface between PH-D and AC-D is much broader than the specific binding surface between PH-D and the p53 acidic fragments. From our in vitro studies, we demonstrate that this interaction could be a switch to replace p53 with TFIIE on TFIIH in transcription. PMID:18354501
Liao, S-J; Gong, Q; Chen, X-R; Ye, L-X; Ding, Q; Zeng, J-S; Yu, J
2013-02-12
Neurological deficit following cerebral infarction correlates with not only primary injury, but also secondary neuronal apoptosis in remote loci connected to the infarction. Netrin-1 is crucial for axonal guidance by interacting with its receptors, deleted in colorectal cancer (DCC) and uncoordinated gene 5H (UNC5H). DCC and UNC5H are also dependence receptors inducing cell apoptosis when unbound by netrin-1. The present study is to investigate the role of netrin-1 and its receptors in ipsilateral ventroposterior thalamic nucleus (VPN) injury secondary to stroke in hypertensive rats. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO). Continuous intracerebroventricular infusion of netrin-1 (600 ng/d for 7 days) or vehicle (IgG/Fc) was given 24h after MCAO. Neurological function was evaluated by postural reflex 8 and 14 days after MCAO. Then, immunoreactivity was determined in the ipsilateral VPN for NeuN, glial fibrillary acidic protein, netrin-1 and its receptors (DCC and UNC5H2), apoptosis was detected with Terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay, and the expressions of caspase-3, netrin-1, DCC, and UNC5H2 were quantified by western blot analysis. MCAO resulted in the impaired postural reflex after 8 and 14 days, with decreased NeuN marked neurons and increased TUNEL-positive cells, as well as an up-regulation in the levels of cleaved caspase-3 and UNC5H2 protein in the ipsilateral VPN, without significant change in DCC or netrin-1 expression. By exogenous netrin-1 infusion, the number of neurons was increased in the ipsilateral VPN, and both TUNEL-positive cell number and caspase-3 protein level were reduced, while UNC5H2 expression remained unaffected, simultaneously, the impairment of postural reflex was improved. Taken together, the present study indicates that exogenous netrin-1 could rescue neuron loss by attenuating secondary apoptosis in the ipsilateral VPN after focal cerebral infarction, possibly via its receptor UNC5H2, suggesting that relative insufficiency of endogenous netrin-1 be an underlying mechanism of secondary injury in the VPN post stroke. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Seeley, Todd W; Sternlicht, Mark D; Klaus, Stephen J; Neff, Thomas B; Liu, David Y
2017-01-01
The effects of pharmacological hypoxia-inducible factor (HIF) stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD) mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF), using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs), FG-4497 or roxadustat (FG-4592). In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. PMID:28331872
Fine-tuning the physicochemical properties of peptide-based blood-brain barrier shuttles.
Ghasemy, Somaye; García-Pindado, Júlia; Aboutalebi, Fatemeh; Dormiani, Kianoush; Teixidó, Meritxell; Malakoutikhah, Morteza
2018-05-01
N-methylation is a powerful method to modify the physicochemical properties of peptides. We previously found that a fully N-methylated tetrapeptide, Ac-(N-MePhe) 4 -CONH 2 , was more lipophilic than its non-methylated analog Ac-(Phe) 4 -CONH 2 . In addition, the former crossed artificial and cell membranes while the latter did not. Here we sought to optimize the physicochemical properties of peptides and address how the number and position of N-methylated amino acids affect these properties. To this end, 15 analogs of Ac-(Phe) 4 -CONH 2 were designed and synthesized in solid-phase. The solubility of the peptides in water and their lipophilicity, as measured by ultra performance liquid chromatography (UPLC) retention times, were determined. To study the permeability of the peptides, the Parallel Artificial Membrane Permeability Assay (PAMPA) was used as an in vitro model of the blood-brain barrier (BBB). Contrary to the parent peptide, the 15 analogs crossed the artificial membrane, thereby showing that N-methylation improved permeability. We also found that N-methylation enhanced lipophilicity but decreased the water solubility of peptides. Our results showed that both the number and position of N-methylated residues are important factors governing the physicochemical properties of peptides. There was no correlation between the number of N-methylated amide bonds and any of the properties measured. However, for the peptides consecutively N-methylated from the N-terminus to the C-terminus (p1, p5, p11, p12 and p16), lipophilicity correlated well with the number of N-methylated amide bonds and the permeability of the peptides. Moreover, the peptides were non-toxic to HEK293T cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Copyright © 2018 Elsevier Ltd. All rights reserved.
Anisimov, V N; Khavinsov, V Kh; Alimova, I N; Provintsiali, M; Manchini, R; Francheski, K
2002-02-01
Female transgenic FVB mice carrying breast cancer gene HER-2/neu were monthly injected with Vilon or Epithalon (1 microgram subcutaneously for 5 consecutive days) starting from the 2nd month of life. Epithalon markedly inhibited neoplasm development: the maximum size of breast adenocarcinomas was 33% lower than in the control (p < 0.05). The intensity of HER-2/neu mRNA expression in breast tumors of Epithalon-treated mice was 3.7 times lower than in control animals. These results indicate that Epithalon inhibits breast tumor development in transgenic mice, which is probably related to suppression of HER-2/neu expression.
Medina, Scott H; Tiruchinapally, Gopinath; Chevliakov, Maxim V; Durmaz, Yasemin Yuksel; Stender, Rachell N; Ensminger, William D; Shewach, Donna S; Elsayed, Mohamed E H
2013-10-01
Poly(amidoamine) (PAMAM) dendrimers are branched water-soluble polymers defined by consecutive generation numbers (Gn) indicating a parallel increase in size, molecular weight, and number of surface groups available for conjugation of bioactive agents. In this article, we compare the biodistribution of N-acetylgalactosamine (NAcGal)-targeted [(14) C]1 -G5-(NH2 )5 -(Ac)108 -(NAcGal)14 particles to non-targeted [(14) C]1 -G5-(NH2 )127 and PEGylated [(14) C]1 -G5-(NH2 )44 -(Ac)73 -(PEG)10 particles in a mouse hepatic cancer model. Results show that both NAcGal-targeted and non-targeted particles are rapidly cleared from the systemic circulation with high distribution to the liver. However, NAcGal-targeted particles exhibited 2.5-fold higher accumulation in tumor tissue compared to non-targeted ones. In comparison, PEGylated particles showed a 16-fold increase in plasma residence time and a 5-fold reduction in liver accumulation. These results motivated us to engineer new PEGylated G5 particles with PEG chains anchored to the G5 surface via acid-labile cis-aconityl linkages where the free PEG tips are functionalized with NAcGal or SP94 peptide to investigate their potential as targeting ligands for hepatic cancer cells as a function of sugar conformation (α versus β), ligand concentration (100-4000 nM), and incubation time (2 and 24 hours) compared to fluorescently (Fl)-labeled and non-targeted G5-(Fl)6 -(NH2 )122 and G5-(Fl)6 -(Ac)107 -(cPEG)15 particles. Results show G5-(Fl)6 -(Ac)107 -(cPEG[NAcGalβ ])14 particles achieve faster uptake and higher intracellular concentrations in HepG2 cancer cells compared to other G5 particles while escaping the non-specific adsorption of serum protein and phagocytosis by Kupffer cells, which make these particles the ideal carrier for selective drug delivery into hepatic cancer cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Le Bihan, Guillaume; Sicard, Jean-Félix; Garneau, Philippe; Bernalier-Donadille, Annick; Gobert, Alain P; Garrivier, Annie; Martin, Christine; Hay, Anthony G; Beaudry, Francis; Harel, Josée; Jubelin, Grégory
2017-01-01
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are human pathogens responsible for bloody diarrhea and renal failures. EHEC employ a type 3 secretion system to attach directly to the human colonic epithelium. This structure is encoded by the locus of enterocyte effacement (LEE) whose expression is regulated in response to specific nutrients. In this study, we show that the mucin-derived sugars N-acetylglucosamine (NAG) and N-acetylneuraminic acid (NANA) inhibit EHEC adhesion to epithelial cells through down-regulation of LEE expression. The effect of NAG and NANA is dependent on NagC, a transcriptional repressor of the NAG catabolism in E. coli . We show that NagC is an activator of the LEE1 operon and a critical regulator for the colonization of mice intestine by EHEC. Finally, we demonstrate that NAG and NANA as well as the metabolic activity of Bacteroides thetaiotaomicron affect the in vivo fitness of EHEC in a NagC-dependent manner. This study highlights the role of NagC in coordinating metabolism and LEE expression in EHEC and in promoting EHEC colonization in vivo .
Le Bihan, Guillaume; Sicard, Jean-Félix; Garneau, Philippe; Bernalier-Donadille, Annick; Gobert, Alain P.; Garrivier, Annie; Martin, Christine; Hay, Anthony G.; Beaudry, Francis; Harel, Josée; Jubelin, Grégory
2017-01-01
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are human pathogens responsible for bloody diarrhea and renal failures. EHEC employ a type 3 secretion system to attach directly to the human colonic epithelium. This structure is encoded by the locus of enterocyte effacement (LEE) whose expression is regulated in response to specific nutrients. In this study, we show that the mucin-derived sugars N-acetylglucosamine (NAG) and N-acetylneuraminic acid (NANA) inhibit EHEC adhesion to epithelial cells through down-regulation of LEE expression. The effect of NAG and NANA is dependent on NagC, a transcriptional repressor of the NAG catabolism in E. coli. We show that NagC is an activator of the LEE1 operon and a critical regulator for the colonization of mice intestine by EHEC. Finally, we demonstrate that NAG and NANA as well as the metabolic activity of Bacteroides thetaiotaomicron affect the in vivo fitness of EHEC in a NagC-dependent manner. This study highlights the role of NagC in coordinating metabolism and LEE expression in EHEC and in promoting EHEC colonization in vivo. PMID:28484684
Leriche, V.; Sibille, P.; Carpentier, B.
2000-01-01
An enzyme-linked lectinsorbent assay (ELLA) was developed for quantification and characterization of extracellular polysaccharides produced by 1- and 4-day biofilms of 10 bacterial strains isolated from food industry premises. Peroxidase-labeled concanavalin A (ConA) and wheat germ agglutinin (WGA) were used, as they specifically bind to saccharide residues most frequently encountered in biofilms matrices: d-glucose or d-mannose for ConA and N-acetyl-d-glucosamine or N-acetylneuraminic acid for WGA. The ELLA applied to 1- and 4-day biofilms colonizing wells of microtiter plates was able to detect that for Stenotrophomonas maltophilia and to a lesser extent Staphylococcus sciuri, the increase in production of exopolysaccharides over time was not the same for sugars binding with ConA and those binding with WGA. Differences in extracellular polysaccharides produced were observed among strains belonging to the same species. These results demonstrate that ELLA is a useful tool not only for rapid characterization of biofilm extracellular polysaccharides but also, in studies of individual strains, for detection of changes over time in the proportion of the exopolysaccharidic component within the polymeric matrix. PMID:10788349
Ballano, Gema; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos
2009-01-01
Here we study conformational stabilization induced in a β-helical nanostructure by position-specific mutations. The nanostructure is constructed through the self-assembly of the β-helical building block excised from E. coli galactoside acetyltransferase (PDB code 1krr, chain A; residues 131-165). The mutations involve substitutions by cyclic, conformationally constrained amino acids. Specifically, a complete structural analysis of the Pro-Xaa-Val sequence [with Xaa being Gly, Ac3c (1-aminocyclopropane-1-carboxylic acid) and Ac5c (1-aminocyclopentane-1-carboxylic acid)], corresponding to the 148-150 loop region in the wild-type (Gly) and mutated (Ac3c and Ac5c) 1krr, has been performed using Molecular Dynamics simulations and X-ray crystallography. Simulations have been performed for the wild-type and mutants of three different systems, namely the building block, the nanoconstruct and the isolated Pro-Xaa-Val tripeptide. Furthermore, the crystalline structures of five peptides of Pro-Xaa-Val or Xaa-Val sequences have been solved by X-ray diffraction analysis and compared with theoretical predictions. Both the theoretical and crystallographic studies indicate that the Pro-Acnc-Val sequences exhibit a high propensity to adopt turn-like conformations, and this propensity is little affected by the chemical environment. Overall, the results indicate that replacement of Gly149 by Ac3c or Ac5c significantly reduce the conformational flexibility of the target site enhancing the structural specificity of the building block and the nanoconstruct derived from the 1krr β-helical motif. PMID:18811190
Product development studies of amino acid conjugate of Aceclofenac.
Singh, Ajay Pal; Ramadan, Wafa Mossa; Dahiya, Rajiv; Sarpal, A S; Pathak, Kamla
2009-04-01
The prodrugs designed by classical approach increase lipophilicity of the drug, which decreases the water solubility thus decreasing the concentration gradient, which controls drug absorption. To overcome the limitations of traditional prodrug approach, water soluble prodrugs can be designed by adding selected amino acid to the drug moiety that are the substrates for the enzyme located at the intestinal brush border thus overcoming pharmaceutical problem without compromising bioavailability. ACaa (Amino acid conjugate of Aceclofenac) was synthesized by conjugation with l-phenylalanine by conventional coupling method using N, N-dicyclohexylcarbodiimide and ACaa was characterized by melting point, TLC, photomicrograph, UV, FT-IR, FT-NMR, MS-FAB, XRD and DSC. As a part of product development study ACaa was subjected to studies like In-vivo in albino rats and in-vitro like ACaa reversion to AC (Aceclofenac) in aqueous buffers of pH 1.21, 2.38. 3.10, 6.22 and 7.41, at a constant concentration (0.05M), ionic strength (micro = 0.5) and at a temperature of 37 degrees C +/- 0.5 degrees C, ACaa showed negligible reversion (2.15 %) up to 24 hrs study at acidic pH thus suggesting stability in acidic environment of stomach, the rate of reversion increased as pH of medium increased. pH- partition profile, pH- solubility profile and micromeritic studies were also carried out in comparison to pure drug. The solubility and lipophilicity of ACaa exhibited higher values at all pH range when compared to AC. The micromeritic properties also evaluated in terms of particle shape and size, IQCS and kurtosis. Resulting IQCS value approached zero thus suggesting reducing in the degree of skewness.
Sasa health exerts a protective effect on Her2/NeuN mammary tumorigenesis.
Ren, Mingqiang; Reilly, R Todd; Sacchi, Nicoletta
2004-01-01
Bamboo grass leaves of different Sasa species have been widely used in food and medicine in Eastern Asia for hundreds of years. Of special interest are Kumazasa (Sasa senanensis rehder) leaves used to prepare an alkaline extract known as Sasa Health. This extract was reported to inhibit both the development and growth of mammary tumors in a mammary tumor strain of virgin SHN mice (1). We found that Sasa Health exerts a significant protective effect on spontaneous mammary tumorigenesis in another mouse model of human breast cancer, the transgenic FVB-Her2/NeuN mouse model. Two cohorts of Her2/NeuN female mice of different age (eleven-week-old and twenty-four-week-old) chronically treated with Sasa Health in drinking water showed both a delay in the development of tumors and reduced tumor multiplicity. Sasa Health also induced inhibition of mammary duct branching and side bud development in association with reduced angiogenesis. Altogether these findings indicate that Sasa Health contains phytochemicals that can effectively retard spontaneous mammary tumorigenesis.
Can Reproductive Hormones Modulate Host Immunity to Breast Cancer Antigens
2005-07-01
AD Award Number: W81XWH-04-1-0668 TITLE: Can Reproductive Hormones Modulate Host Immunity to Breast Cancer Antigens PRINCIPAL INVESTIGATOR: Richard T...AND SUBTITLE 5a. CONTRACT NUMBER Can Reproductive Hormones Modulate Host Immunity to Breast Cancer Antigens 5b. GRANT NUMBER W81XWH-04-!1-0668 5c...neu-N mice can be readily applied to clinical trial development. The goal of the present work is to test the hypothesis that reproductive hormones can
Aguilar-Arredondo, Andrea; López-Hernández, Fernanda; García-Velázquez, Lizbeth; Arias, Clorinda; Zepeda, Angélica
2017-02-01
Kainic acid-induced (KA) hippocampal damage leads to neuronal death and further synaptic plasticity. Formation of aberrant as well as of functional connections after such procedure has been documented. However, the impact of such structural plasticity on cell activation along time after damage and in face of a behavioral demand has not been explored. We evaluated if the mRNA and protein levels of plasticity-related protein synaptophysin (Syp and SYP, respectively) and activity-regulated cytoskeleton-associated protein mRNA and protein levels (Arc and Arc, respectively) in the dentate gyrus were differentially modulated in time in response to a spatial-exploratory task after KA-induced hippocampal damage. In addition, we analyzed Arc+/NeuN+ immunopositive cells in the different experimental conditions. We infused KA intrahippocampally to young-adult rats and 10 or 30 days post-lesion (dpl) animals performed a hippocampus-activating spatial-exploratory task. Our results show that Syp mRNA levels significantly increase at 10dpl and return to control levels after 30dpl, whereas SYP protein levels are diminished at 10dpl, but significantly increase at 30dpl, as compared to 10dpl. Arc mRNA and protein levels are both increased at 30dpl as compared to sham. Also the number of NeuN+/Arc+ cells significantly increases at 30dpl in the group with a spatial-exploratory demand. These results provide information on the long-term modifications associated to structural plasticity and neuronal activation in the dentate gyrus after excitotoxic damage and in face of a spatial-exploratory behavior. Anat Rec, 300:425-432, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chang, G.-Q.; Karatayev, O.; Lukatskaya, O.; Leibowitz, S. F.
2016-01-01
Gestational exposure to a fat-rich diet, while elevating maternal circulating fatty acids, increases in the offspring's hypothalamus and amygdala the proliferation and density of neurons that express neuropeptides known to stimulate consummatory behavior. To understand the relationship between these phenomena, this study examined in the brain of postnatal offspring (day 15) the effect of prenatal fat exposure on the transcription factor, peroxisome proliferator-activated receptor (PPAR) β/δ, which is sensitive to fatty acids, and the relationship of PPAR β/δ to the orexigenic neuropeptides, orexin, melanin-concentrating hormone, and enkephalin. Prenatal exposure to a fat-rich diet compared to low-fat chow increased the density of cells immunoreactive for PPAR β/δ in the hypothalamic paraventricular nucleus (PVN), perifornical lateral hypothalamus (PFLH), and central nucleus of the amygdala (CeA), but not the hypothalamic arcuate nucleus or basolateral amygdaloid nucleus. It also increased co-labeling of PPAR β/δ with the cell proliferation marker, BrdU, or neuronal marker, NeuN, and the triple labeling of PPAR β/δ with BrdU plus NeuN, indicating an increase in proliferation and density of new PPAR β/δ neurons. Prenatal fat exposure stimulated the double-labeling of PPAR β/δ with orexin or melanin-concentrating hormone in the PFLH and enkephalin in the PVN and CeA and also triple-labeling of PPAR β/δ with BrdU and these neuropeptides, indicating that dietary fat increases the genesis of PPAR β/δ neurons that produce these peptides. These findings demonstrate a close anatomical relationship between PPAR β/δ and the increased proliferation and density of peptide-expressing neurons in the hypothalamus and amygdala of fat-exposed offspring. PMID:27002387
Long, Patrick M; Moffett, John R; Namboodiri, Aryan M A; Viapiano, Mariano S; Lawler, Sean E; Jaworski, Diane M
2013-09-06
Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required.
Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.
Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter
2014-11-25
Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.
2013-01-22
hydrofluoric acid in the hydro- thermal synthesis of MIL-101 MOF, and employed an optimized TMAOH/Cr(NO3)3/TPA/H2O (0.25/1/1/280) alkaline medium.41 MOF...identical to those of as-synthesized, parent MIL-101. This demonstrates that the framework integrity of MIL-101 was retained after both thermal water...Materials & Interfaces Research Article dx.doi.org/10.1021/am302359b | ACS Appl. Mater. Interfaces 2013, 5, 1269−12781272 of most zeolites or silicas
STOPEM: A Simulation Interdiction Model of a Motorized Rifle Division.
1983-03-01
4 em t n - - tat ion - 4 Fig 1.9. Simulation Process (Ref 51:24) . 4 2 8 Illy ."’p 4 44. * s ~ ... .. ** % 0;7...10)= 14.964/A( 11) CALL FILEM-(1,A) A(2)-l.0 A(3)-33 A( 4 )-9 A(5)-l. I A(6)-2.2 A(7)-.iA5-\\XX(15)*1.65 A( 8 )=TRIAfG(A(5) ,A(7) ,A(’) , 4 ) A(C 11)-TRIAC...IA),30.0, 1) AC l2)-TRIAC(3.n,XX(IP),5.0, 3) AC 10)_n] 4 .R64/A( 11) CALL FILF.M( 1,A) AC 1)-In A(2)-l.0 A(3)-0 136 7 r r - . ,. - A5=1.6 A( 8
Goudarzi, Farjam; Tayebinia, Heidar; Karimi, Jamshid; Habibitabar, Elahe; Khodadadi, Iraj
2018-06-05
This study comparatively investigated the effectiveness of calcium and other well-known inducers such as isobutylmethylxanthine (IBMX) and insulin in differentiating human adipose-derived stem cells (ADSCs) into neuronal-like cells. ADSCs were immunophenotyped and differentiated into neuron-like cells with different combinations of calcium, IBMX, and insulin. Calcium mobilization across the membrane was determined. Differentiated cells were characterized by cell cycle profiling, staining of Nissl bodies, detecting the gene expression level of markers such as neuronal nuclear antigen (NeuN), microtubule associated protein 2 (MAP2), neuron-specific enolase (NSE), doublecortin, synapsin I, glial fibrillary acidic protein (GFAP), and myelin basic protein (MBP) by quantitative real-time polymerase chain reaction (quantitative real-time polymerase chain reaction (qRT-PCR) and protein level by the immunofluorescence technique. Treatment with Ca + IBMX + Ins induced neuronal appearance and projection of neurite-like processes in the cells, accompanied with inhibition of proliferation and halt in the cell cycle. A significantly higher expression of MBP, GFAP, NeuN, NSE, synapsin 1, doublecortin, and MAP2 was detected in differentiated cells, confirming the advantages of Ca + IBMX + Ins to the other combinations of inducers. Here, we showed an efficient protocol for neuronal differentiation of ADSCs, and calcium fostered differentiation by augmenting the number of neuron-like cells and instantaneous increase in the expression of neuronal markers. © 2018 Wiley Periodicals, Inc.
Anumula, Kalyan Rao
2012-07-01
Assays were developed using the unique labeling chemistry of 2-aminobenzoic acid (2AA; anthranilic acid, AA) for measuring activities of both β1-4 galactosyltransferase (GalT-1) and α2-6 sialyltransferase (ST-6) by high-performance liquid chromatography (HPLC) with fluorescence detection (Anumula KR. 2006. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 350:1-23). N-Acetylglucosamine (GlcNAc) and N-acetyllactosamine were used as acceptors and uridine diphosphate (UDP)-galactose and cytidine monophosphate (CMP)-N-acetylneuraminic acid (NANA) as donors for GalT-1 and ST-6, respectively. Enzymatic products were labeled in situ with AA and were separated from the substrates on TSKgel Amide 80 column using normal-phase conditions. Enzyme units were determined from the peak areas by comparison with the concomitantly derivatized standards Gal-β1-4GlcNAc and NANA-α2-6 Gal-β1-4GlcNAc. Linearity (time and enzyme concentration), precision (intra- and interassay) and reproducibility for the assays were established. The assays were found to be useful in monitoring the enzyme activities during isolation and purification. The assays were highly sensitive and performed equal to or better than the traditional radioactive sugar-based measurements. The assay format can also be used for measuring the activity of other transferases, provided that the carbohydrate acceptors contain a reducing end for labeling. An assay for glycoprotein acceptors was developed using IgG. A short HPLC profiling method was developed for the separation of IgG glycans (biantennary G0, G1, G2, mono- and disialylated), which facilitated the determination of GalT-1 and ST-6 activities in a rapid manner. Furthermore, this profiling method should prove useful for monitoring the changes in IgG glycans in clinical settings.
NASA Astrophysics Data System (ADS)
Wang, Li; Yan, Wei; He, Chi; Wen, Hang; Cai, Zhang; Wang, Zixuan; Chen, Zhengzheng; Liu, Weifeng
2018-03-01
Nitrogen-doped biochars derived from Phragmites australis (PA) were prepared using ammonium chloride (AC) and ammonium acetate (AA) as nitrogen sources by phosphoric acid activation via microwave assisted treatment. Their physicochemical properties, acid red 18 (AR18) adsorption performance and possible mechanisms were systematically evaluated. Nitrogen was successfully doped onto the biochar's surface in the formation of pyrrole-N, pyridine-N and oxidized-N with pyridine-N being the major component (64%). The pHiep and basic foundational groups of the biochars increased consequently however their surface areas slightly decreased. The adsorption kinetic data were best fit to the pseudo-second order model and the equilibrium data were well simulated by Freundlich model for all biochars, indicating the important role of chemical interactions. The maximum AR18 adsorption capacities of PAB-AA and PAB-AC were 1.41 and 1.18 times higher compared with the non N-doped biochar, which were mainly attributed to the π-π EDA interaction between the pyridine-N and AR18 as revealed by the comparison of XPS analyses before and after AR18 adsorption. Meanwhile, other mechanisms such as pore filling effect, Lewis acid-base interaction, electrostatic attraction and hydrogen bonding also existed as demonstrated by BET, XPS and FTIR analyses.
Sugar-induced conformational change found in the HA-33/HA-17 trimer of the botulinum toxin complex.
Sagane, Yoshimasa; Hayashi, Shintaro; Matsumoto, Takashi; Miyashita, Shin-Ichiro; Inui, Ken; Miyata, Keita; Yajima, Shunsuke; Suzuki, Tomonori; Hasegawa, Kimiko; Yamano, Akihito; Nishikawa, Atsushi; Ohyama, Tohru; Watanabe, Toshihiro; Niwa, Koichi
2013-08-30
Large-sized botulinum toxin complex (L-TC) is formed by conjugation of neurotoxin, nontoxic nonhemagglutinin and hemagglutinin (HA) complex. The HA complex is formed by association of three HA-70 molecules and three HA-33/HA-17 trimers, comprised of a single HA-17 and two HA-33 proteins. The HA-33/HA-17 trimer isolated from serotype D L-TC has the ability to bind to and penetrate through the intestinal epithelial cell monolayer in a sialic acid-dependent manner, and thus it plays an important role in toxin delivery through the intestinal cell wall. In this study, we determined the solution structure of the HA-33/HA-17 trimer by using small-angle X-ray scattering (SAXS). The SAXS image of HA-33/HA-17 exhibited broadly similar appearance to the crystal image of the complex. On the other hand, in the presence of N-acetylneuraminic acid, glucose and galactose, the solution structure of the HA-33/HA-17 trimer was drastically altered compared to the structure in the absence of the sugars. Sugar-induced structural change of the HA-33/HA-17 trimer may contribute to cell binding and subsequent transport across the intestinal cell layer. Copyright © 2013 Elsevier Inc. All rights reserved.
Cell and Tissue Imaging with Molecularly Imprinted Polymers.
Panagiotopoulou, Maria; Kunath, Stephanie; Haupt, Karsten; Tse Sum Bui, Bernadette
2017-01-01
Advanced tools for cell imaging are of particular interest as they can detect, localize and quantify molecular targets like abnormal glycosylation sites that are biomarkers of cancer and infection. Targeting these biomarkers is often challenging due to a lack of receptor materials. Molecularly imprinted polymers (MIPs) are promising artificial receptors; they can be tailored to bind targets specifically, be labeled easily, and are physically and chemically stable. Herein, we demonstrate the application of MIPs as artificial antibodies for selective labeling and imaging of cellular targets, on the example of hyaluronan and sialylation moieties on fixated human skin cells and tissues. Thus, fluorescently labeled MIP nanoparticles templated with glucuronic acid (MIPGlcA) and N-acetylneuraminic acid (MIPNANA) are respectively applied. Two different fluorescent probes are used: (1) MIPGlcA particles, ~400 nm in size are labeled with the dye rhodamine that target the extracellular hyaluronan on cells and tissue specimens and (2) MIP-coated InP/ZnS quantum dots (QDs) of two different colors, ~125 nm in size that target the extracellular and intracellular hyaluronan and sialylation sites. Green and red emitting QDs are functionalized with MIPGlcA and MIPNANA respectively, enabling multiplexed cell imaging. This is a general approach that can also be adapted to other target molecules on and in cells.
Cao, Wenfeng; Zhang, Bin; Liu, Yanxue; Li, Hongtao; Zhang, Shiwu; Fu, Li; Niu, Yun; Ning, Liansheng; Cao, Xuchen; Liu, Zhihua; Sun, Baocun
2007-09-01
There is sufficient evidence that human stomatin-like protein 2 (SLP-2) is a novel cancer-related gene. Its protein is overexpressed in many human cancers. SLP-2 can contribute to the promotion of cell growth, cell adhesion, and tumorigenesis in esophageal squamous cell carcinoma and lymph node metastasis in laryngeal squamous cell carcinoma. Immunohistochemical detection of SLP-2, estrogen and progesterone receptors, and HER-2/neu were performed on 263 cases of primary invasive breast cancer with a tissue microarray. Of 263 cases, 138 (52.5%) showed high expression of SLP-2 protein, and 125 (47.5%) showed low or absent expression. In addition, there were significant positive associations between tumor stage and size (P = .020), lymph node metastasis (P < .001), clinical stage (P < .001), distant metastasis (P = .002), and HER-2/neu protein expression (P = .037) and high-level SLP-2 expression. High-level SLP-2 expression was associated with decreased overall survival (P = .011) and was more often found in patients with tumors larger than 20 mm, lymph node metastasis, advanced clinical stage, distant metastasis, and HER-2/neu protein-positive expression. More important, lymph node metastasis, HER-2/neu-positive expression, and high-level SLP-2 expression were associated with significantly decreased survival.
Understanding and Controlling Sialylation in a CHO Fc-Fusion Process
Lewis, Amanda M.; Croughan, William D.; Aranibar, Nelly; Lee, Alison G.; Warrack, Bethanne; Abu-Absi, Nicholas R.; Patel, Rutva; Drew, Barry; Borys, Michael C.; Reily, Michael D.; Li, Zheng Jian
2016-01-01
A Chinese hamster ovary (CHO) bioprocess, where the product is a sialylated Fc-fusion protein, was operated at pilot and manufacturing scale and significant variation of sialylation level was observed. In order to more tightly control glycosylation profiles, we sought to identify the cause of variability. Untargeted metabolomics and transcriptomics methods were applied to select samples from the large scale runs. Lower sialylation was correlated with elevated mannose levels, a shift in glucose metabolism, and increased oxidative stress response. Using a 5-L scale model operated with a reduced dissolved oxygen set point, we were able to reproduce the phenotypic profiles observed at manufacturing scale including lower sialylation, higher lactate and lower ammonia levels. Targeted transcriptomics and metabolomics confirmed that reduced oxygen levels resulted in increased mannose levels, a shift towards glycolysis, and increased oxidative stress response similar to the manufacturing scale. Finally, we propose a biological mechanism linking large scale operation and sialylation variation. Oxidative stress results from gas transfer limitations at large scale and the presence of oxygen dead-zones inducing upregulation of glycolysis and mannose biosynthesis, and downregulation of hexosamine biosynthesis and acetyl-CoA formation. The lower flux through the hexosamine pathway and reduced intracellular pools of acetyl-CoA led to reduced formation of N-acetylglucosamine and N-acetylneuraminic acid, both key building blocks of N-glycan structures. This study reports for the first time a link between oxidative stress and mammalian protein sialyation. In this study, process, analytical, metabolomic, and transcriptomic data at manufacturing, pilot, and laboratory scales were taken together to develop a systems level understanding of the process and identify oxygen limitation as the root cause of glycosylation variability. PMID:27310468
Ghylin, Trevor W; Garcia, Sarahi L; Moya, Francisco; Oyserman, Ben O; Schwientek, Patrick; Forest, Katrina T; Mutschler, James; Dwulit-Smith, Jeffrey; Chan, Leong-Keat; Martinez-Garcia, Manuel; Sczyrba, Alexander; Stepanauskas, Ramunas; Grossart, Hans-Peter; Woyke, Tanja; Warnecke, Falk; Malmstrom, Rex; Bertilsson, Stefan; McMahon, Katherine D
2014-12-01
Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di- and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.
Romero-Huelva, M; Ramos-Morales, E; Molina-Alcaide, E
2012-10-01
The effects of replacing 35% of cereals-based concentrate with feed blocks (FB) containing waste fruits of tomato, cucumber, or barley grain in diets for lactating goats on nutrient utilization, ruminal fermentation, microbial N flow to the duodenum, milk yield and quality, methane emissions, and abundances of total bacteria and methanogens were studied. Eight Murciano-Granadina goats (39.4 ± 5.39 kg of body weight, mean ± SD) in the middle of the third lactation were used and 4 diets were studied in a replicated 4×4 Latin square experimental design. Diets consisted of alfalfa hay (A) plus concentrate (C) in a 1:1 ratio (diet AC) or diets in which 35% of the concentrate was replaced with FB including wastes of tomato fruit, cucumber, or barley. In each period, 2 goats were randomly assigned to 1 of the dietary treatments. Intakes of FB including tomato, cucumber, and barley were 208 ± 65, 222 ± 52, and 209 ± 83 g of dry matter per animal and day, respectively. The replacement of 35% of concentrate with FB did not compromise nutrient apparent digestibility, total purine derivative urinary excretion, milk yield and composition, and total bacteria and methanogen abundances. Digestible energy and that in methane and urine were higher for AC than for FB-containing diets, whereas the metabolizable energy value was not affected by diet. The inclusion of tomato and cucumber fruits in FB decreased N in urine and CH(4) emissions compared with AC, which is environmentally relevant. However, tomato-based FB decreased microbial N flow in the rumen, whereas goats fed cucumber-based FB had the highest values for this measurement. Moreover, FB containing barley or tomato and cucumber led to lower rumen volatile fatty acid and NH(3)-N concentrations, respectively. Milk from goats fed diets including tomato and cucumber-based FB had higher linoleic, linolenic, and total polyunsaturated fatty acid concentrations than that from goats fed AC. Overall, our study suggests that tomato and cucumber FB could replace 35% of the concentrate in the dairy goat diet, reducing animal feeding cost and methane production, leading to higher polyunsaturated fatty acid proportions in milk, and without compromising nutrient utilization or milk yield. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
[The chiral mutagens: cytogenetic effects on higher plants].
Morgun, V V; Larchenko, E A; Kostianovskiĭ, R G; Keterinchuk, A M
2011-01-01
The paper covers investigation of cytogenetic activity of chiral mutagens and their specific effects on the plant cells chromosomes of soft winter wheat (Triticum aestivum L.). Comparative analysis of cytogenetic activity of chiral NEU: S(+)1-N-nitroso- 1-N-methyl-3-N-sec-buthylureas (S(+)NMsBU) and R(-)1-N-nitroso- 1N-methyl-3-Nsec-buthylureas (R(-)NMsBU) on winter wheat was performed. As it was shown by the frequency of chromosomal aberrations the S(+) stereoisomer was twice more active than R(-). In addition to typical anaphase aberrations (fragments, bridges, lagging chromosomes) the numerous mitosis pathologies were revealed - K-mitoses, hyperspiralization and despiralization of chromosomes, unequal allocation of chromosomes between the daughter nuclei, mass fragmentation, nondisjunction and chromosome adhesion, three-pole mitoses, etc. Neither of the mentioned pathologies was observed under the action of NEU and gamma-rays.
A series of spontaneous 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) nonmetabolizing mutants of Pseudomonas cepacia AC1100 were characterized to be defective in either 2,4,5-T uptake or conversion of this compound to 2,4,5-trichlorophenol (2,4,5-TCP). Two of these mutants, RHC22 a...
Microsporols A-C from the Plant Endophytic Fungus Pestalotiopsis microspore.
Wu, Xianfu; Wang, Yadan; Liu, Shuchun; Liu, Xinzhong; Guo, Liangdong
2015-10-01
Three new ambuic acid derivatives, microsporols A-C (1-3) and the known compound ambuic acid (4), were isolated from the solid-substrate fermentation cultures of the plant endophytic fungus Pestalotiopsis microspora. Their structures were elucidated primarily by NMR experiments. The absolute configurations of the 6,7-diol moiety in 1 and 2 were assigned using the Snatzke's method, whereas that of 3 was deduced by circular dichroism (CD) exciton chirality method. Compounds 1, 3, and 4 showed moderate 5-lipoxygenase (5-LOX) inhibitory effects.
1978-07-01
J4-..L&-. 3--014190-14-14-- @911*0 w9805 c9751 e96437 .9545 .*9531 a9455 99430 e9333 A666* *6462 96663 .6621 07132 .*159 .1757 0Mli . 7845 .9873 .1882...PfWWIETERS TO SE CW#4GEI INPUT TIE PARAIiETERS TO BE CH *IG*ED FLLO1UED IVB THE NEU VALUE" IN PnIZR(PAPAFMiTER N.411iEIR tEU WLUC) 1>1 .95 4 2.5 5 .03
Halene, Tobias B.; Kozlenkov, Alexey; Jiang, Yan; Mitchell, Amanda; Javidfar, Behnam; Dincer, Aslihan; Park, Royce; Wiseman, Jennifer; Croxson, Paula; Giannaris, Eustathia Lela; Hof, Patrick R.; Roussos, Panos; Dracheva, Stella; Hemby, Scott E.; Akbarian, Schahram
2016-01-01
Increased neuronal densities in subcortical white matter have been reported for some cases with schizophrenia. The underlying cellular and molecular mechanisms remain unresolved. We exposed 26 young adult macaque monkeys for 6 months to either clozapine, haloperidol or placebo and measured by structural MRI frontal gray and white matter volumes before and after treatment, followed by observer-independent, flow-cytometry-based quantification of neuronal and non-neuronal nuclei and molecular fingerprinting of cell-type specific transcripts. After clozapine exposure, the proportion of nuclei expressing the neuronal marker NeuN increased by approximately 50% in subcortical white matter, in conjunction with a more subtle and non-significant increase in overlying gray matter. Numbers and proportions of nuclei expressing the oligodendrocyte lineage marker, OLIG2, and cell-type specific RNA expression patterns, were maintained after antipsychotic drug exposure. Frontal lobe gray and white matter volumes remained indistinguishable between antipsychotic-drug-exposed and control groups. Chronic clozapine exposure increases the proportion of NeuN+ nuclei in frontal subcortical white matter, without alterations in frontal lobe volumes or cell type-specific gene expression. Further exploration of neurochemical plasticity in non-human primate brain exposed to antipsychotic drugs is warranted. PMID:26776227
Jeong, Ji Hun; Seo, Yiel Hea; Ahn, Jeong Yeal; Kim, Kyung Hee; Seo, Ja Young; Kim, Moon Jin; Lee, Hwan Tae; Park, Pil Whan
2016-09-01
Amino-terminal pro-B type natriuretic peptide (NT-proBNP) is a well-established prognostic factor in heart failure (HF). However, numerous causes may lead to elevations in NT-proBNP, and thus, an increased NT-proBNP level alone is not sufficient to predict outcome. The aim of this study was to evaluate the utility of two acute response markers, high sensitivity C-reactive protein (hsCRP) and heart-type fatty acid binding protein (H-FABP), in patients with an increased NT-proBNP level. The 278 patients were classified into three groups by etiology: 1) acute coronary syndrome (ACS) (n=62), 2) non-ACS cardiac disease (n=156), and 3) infectious disease (n=60). Survival was determined on day 1, 7, 14, 21, 28, 60, 90, 120, and 150 after enrollment. H-FABP (P<0.001), NT-proBNP (P=0.006), hsCRP (P<0.001) levels, and survival (P<0.001) were significantly different in the three disease groups. Patients were divided into three classes by using receiver operating characteristic curves for NT-proBNP, H-FABP, and hsCRP. Patients with elevated NT-proBNP (≥3,856 pg/mL) and H-FABP (≥8.8 ng/mL) levels were associated with higher hazard ratio for mortality (5.15 in NT-proBNP and 3.25 in H-FABP). Area under the receiver operating characteristic curve analysis showed H-FABP was a better predictor of 60-day mortality than NT-proBNP. The combined measurement of H-FABP with NT-proBNP provides a highly reliable means of short-term mortality prediction for patients hospitalized for ACS, non-ACS cardiac disease, or infectious disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulagin, N.
2005-02-15
Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f{sup N} and excited 5f{sup N}n'l'{sup N'} configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC{sup +1}-AC{sup +4} show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC{supmore » +n}:[L]{sub k} are compared, too.« less
Selective production of chemicals from biomass pyrolysis over metal chlorides supported on zeolite.
Leng, Shuai; Wang, Xinde; Cai, Qiuxia; Ma, Fengyun; Liu, Yue'e; Wang, Jianguo
2013-12-01
Direct biomass conversion into chemicals remains a great challenge because of the complexity of the compounds; hence, this process has attracted less attention than conversion into fuel. In this study, we propose a simple one-step method for converting bagasse into furfural (FF) and acetic acid (AC). In this method, bagasse pyrolysis over ZnCl2/HZSM-5 achieved a high FF and AC yield (58.10%) and a 1.01 FF/AC ratio, but a very low yield of medium-boiling point components. However, bagasse pyrolysis using HZSM-5 alone or ZnCl2 alone still remained large amounts of medium-boiling point components or high-boiling point components. The synergistic effect of HZSM-5 and ZnCl2, which combines pyrolysis, zeolite cracking, and Lewis acid-selective catalysis results in highly efficient bagasse conversion into FF and AC. Therefore, our study provides a novel, simple method for directly converting biomass into high-yield useful chemical. Copyright © 2013 Elsevier Ltd. All rights reserved.
Targeting mrtl to Reverse Myc in Breast Oncogenesis
2011-06-01
overlying skin , perineural invasion, lymphovascular invasion, 1/14 lymph nodes positive metastatic carcinoma with extranodal extension, 2.5 cm pT4b...successfully acquired an additional 8 primary invasive breast carcinoma specimens, 1 metastatic lesion of breast tumor origin, 3 adjacent uninvolved...Her2-neu-positive, lobular features, 21 cm, modified Bloom-Richardson grade III/III, ypT3; N2. metastatic carcinoma involving 4/11 lymph nodes
Anitua, Eduardo; Pascual, Consuelo; Pérez-Gonzalez, Rocio; Antequera, Desiree; Padilla, Sabino; Orive, Gorka; Carro, Eva
2013-01-01
Neurodegeneration together with a reduction in neurogenesis are cardinal features of Alzheimer's disease (AD) induced by a combination of toxic amyloid-β peptide (Aβ) and a loss of trophic factor support. Amelioration of these was assessed with diverse neurotrophins in experimental therapeutic approaches. The aim of this study was to investigate whether intranasal delivery of plasma rich in growth factors (PRGF-Endoret), an autologous pool of morphogens and proteins, could enhance hippocampal neurogenesis and reduce neurodegeneration in an amyloid precursor protein/presenilin-1 (APP/PS1) mouse model. Neurotrophic and neuroprotective actions were firstly evident in primary neuronal cultures, where cell proliferation and survival were augmented by Endoret treatment. Translation of these effects in vivo was assessed in wild type and APP/PS1 mice, where neurogenesis was evaluated using 5-bromodeoxyuridine (BdrU), doublecortin (DCX), and NeuN immunostaining 5 weeks after Endoret administration. The number of BrdU, DCX, and NeuN positive cell was increased after chronic treatment. The number of degenerating neurons, detected with fluoro Jade-B staining was reduced in Endoret-treated APP/PS1 mice at 5 week after intranasal administration. In conclusion, Endoret was able to activate neuronal progenitor cells, enhancing hippocampal neurogenesis, and to reduce Aβ-induced neurodegeneration in a mouse model of AD.
Anitua, Eduardo; Pascual, Consuelo; Pérez-Gonzalez, Rocio; Antequera, Desiree; Padilla, Sabino; Orive, Gorka; Carro, Eva
2013-01-01
Neurodegeneration together with a reduction in neurogenesis are cardinal features of Alzheimer’s disease (AD) induced by a combination of toxic amyloid-β peptide (Aβ) and a loss of trophic factor support. Amelioration of these was assessed with diverse neurotrophins in experimental therapeutic approaches. The aim of this study was to investigate whether intranasal delivery of plasma rich in growth factors (PRGF-Endoret), an autologous pool of morphogens and proteins, could enhance hippocampal neurogenesis and reduce neurodegeneration in an amyloid precursor protein/presenilin-1 (APP/PS1) mouse model. Neurotrophic and neuroprotective actions were firstly evident in primary neuronal cultures, where cell proliferation and survival were augmented by Endoret treatment. Translation of these effects in vivo was assessed in wild type and APP/PS1 mice, where neurogenesis was evaluated using 5-bromodeoxyuridine (BdrU), doublecortin (DCX), and NeuN immunostaining 5 weeks after Endoret administration. The number of BrdU, DCX, and NeuN positive cell was increased after chronic treatment. The number of degenerating neurons, detected with fluoro Jade-B staining was reduced in Endoret-treated APP/PS1 mice at 5 week after intranasal administration. In conclusion, Endoret was able to activate neuronal progenitor cells, enhancing hippocampal neurogenesis, and to reduce Aβ-induced neurodegeneration in a mouse model of AD. PMID:24069173
Liu, Sanly; Lim, May; Fabris, Rolando; Chow, Christopher; Chiang, Ken; Drikas, Mary; Amal, Rose
2008-05-01
The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV(254) absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV(254) absorbance. The THMFPs of samples were decreased to below 20 microg l(-1) after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.
Expression of HER2/Neu in B-Cell Acute Lymphoblastic Leukemia.
Rodriguez-Rodriguez, Sergio; Pomerantz, Alan; Demichelis-Gomez, Roberta; Barrera-Lumbreras, Georgina; Barrales-Benitez, Olga; Aguayo-Gonzalez, Alvaro
2016-01-01
The expression of HER2/neu in B-cell acute lymphoblastic leukemia has been reported in previous studies. The objective of this research was to study the expression of HER2/neu on the blasts of patients with acute leukemia from the Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran. From June 2015 to February 2016, a HER2/neu monoclonal antibody was added to the panel of antibodies that we routinely use in patients with acute leukemia. An expression of ≥ 30% was considered positive. We studied 33 patients: 19 had de novo leukemia (57.6%), three (9.1%) were in relapse, and in 11 (33.3%) their status could not be specified. Seventeen patients (51.5%) were classified as B-cell acute lymphoblastic leukemia with a median expression of HER2/neu of 0.3% (range 0-90.2). Three patients with B-cell acute lymphoblastic leukemia were positive for HER2/neu: 89.4%, 90.9%, and 62.4%. The first and third patient had de novo B-cell acute lymphoblastic leukemia. The second patient was in second relapse after allogeneic stem cell transplant. All three patients were categorized as high-risk at the time of diagnosis. In the studied Mexican population, we found a positive expression of HER2/neu in 17% of the B-cell acute lymphoblastic leukemia patients, similar to previous studies in which the expression was found in 15-50%.
Long, Patrick M.; Moffett, John R.; Namboodiri, Aryan M. A.; Viapiano, Mariano S.; Lawler, Sean E.; Jaworski, Diane M.
2013-01-01
Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required. PMID:23884408
Zaiac, Martin; Clement, Annabelle
2011-11-01
Actinic cheilitis (AC), a common disorder of the lower lip, should be treated early to prevent progression to invasive squamous cell carcinoma. This study evaluated the safety and efficacy of photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) activated by blue light for the treatment of AC. Fifteen patients with clinically evident or biopsy-proven AC received two treatments with ALA PDT with blue light activation. Treatments were spaced three to five weeks apart. Most patients achieved 65% to 75% clearance three to five weeks after the first treatment and all achieved more than 75% clearance one month after the second treatment. Three patients achieved complete clearance. Pain and burning during irradiation were absent or mild. All patients said they would repeat the procedure. ALA PDT with 417 nm blue light is a promising option for the treatment of AC of the lower lip.
Protic ionic liquids based on the dimeric and oligomeric anions: [(AcO)xH(x-1)]-.
Johansson, K M; Izgorodina, E I; Forsyth, M; MacFarlane, D R; Seddon, K R
2008-05-28
We describe a fluidity and conductivity study as a function of composition in N-methylpyrrolidine-acetic acid mixtures. The simple 1 : 1 acid-base mixture appears to form an ionic liquid, but its degree of ionicity is quite low and such liquids are better thought of as poorly dissociated mixtures of acid and base. The composition consisting of 3 moles acetic acid and 1 mole N-methylpyrrolidine is shown to form the highest ionicity mixture in this binary due to the presence of oligomeric anionic species [(AcO)(x)H(x-1)](-) stabilised by hydrogen bonds. These oligomeric species, being weaker bases than the acetate anion, shift the proton transfer equilibrium towards formation of ionic species, thus generating a higher degree of ionicity than is present at the 1 : 1 composition. A Walden plot analysis, thermogravimetric behaviour and proton NMR data, as well as ab initio calculations of the oligomeric species, all support this conclusion.
Nanni, Patrizia; Nicoletti, Giordano; De Giovanni, Carla; Landuzzi, Lorena; Di Carlo, Emma; Cavallo, Federica; Pupa, Serenella M.; Rossi, Ilaria; Colombo, Mario P.; Ricci, Cinzia; Astolfi, Annalisa; Musiani, Piero; Forni, Guido; Lollini, Pier-Luigi
2001-01-01
Transgenic Balb/c mice expressing the transforming rat HER-2/neu oncogene develop early and multifocal mammary carcinomas. Within the first 5 months of life the tissue-specific expression of HER-2/neu causes a progression in all their 10 mammary glands from atypical hyperplasia to invasive carcinoma. It was previously observed that chronic administration of interleukin (IL)-12 increased tumor latency, but every mouse eventually succumbed to multiple carcinomas. A significant improvement in tumor prevention was sought by administering allogeneic mammary carcinoma cells expressing HER-2/neu combined with systemic IL-12. This treatment reduced tumor incidence by 90% and more than doubled mouse lifetime. For the maximum prevention p185neu antigen must be expressed by allogeneic cells. IL-12 treatment strongly increased the cell vaccine efficacy. The mammary glands of mice receiving the combined treatment displayed a markedly reduced epithelial cell proliferation, angiogenesis, and HER-2/neu expression, while the few hyperplastic foci were heavily infiltrated by granulocytes, macrophages, and CD8+ lymphocytes. Specific anti–HER-2/neu antibodies were produced and a nonpolarized activation of CD4+ and CD8+ cells secreting IL-4 and interferon (IFN)-γ were evident. A central role for IFN-γ in the preventive effect was proven by the lack of efficacy of vaccination in IFN-γ gene knockout HER-2/neu transgenic Balb/c mice. A possible requirement for IFN-γ is related to its effect on antibody production, in particular on IgG2a and IgG2b subclasses, that were not induced in IFN-γ knockout HER-2/neu mice. In conclusion, our data show that an allogeneic HER-2/neu–expressing cell vaccine combined with IL-12 systemic treatment can prevent the onset of genetically determined tumors. PMID:11696586
Findeisen, Felix; Linder, Jürgen U; Schultz, Anita; Schultz, Joachim E; Brügger, Britta; Wieland, Felix; Sinning, Irmgard; Tews, Ivo
2007-06-22
The universal secondary messenger cAMP is produced by adenylyl cyclases (ACs). Most bacterial and all eukaryotic ACs belong to class III of six divergent classes. A class III characteristic is formation of the catalytic pocket at a dimer interface and the presence of additional regulatory domains. Mycobacterium tuberculosis possesses 15 class III ACs, including Rv1264, which is activated at acidic pH due to pH-dependent structural transitions of the Rv1264 dimer. It has been shown by X-ray crystallography that the N-terminal regulatory and C-terminal catalytic domains of Rv1264 interact in completely different ways in the active and inhibited states. Here, we report an in-depth structural and functional analysis of the regulatory domain of Rv1264. The 1.6 A resolution crystal structure shows the protein in a tight, disk-shaped dimer, formed around a helical bundle, and involving a protein chain crossover. To understand pH regulation, we determined structures at acidic and basic pH values and employed structure-based mutagenesis in the holoenzyme to elucidate regulation using an AC activity assay. It has been shown that regulatory and catalytic domains must be linked in a single protein chain. The new studies demonstrate that the length of the linker segment is decisive for regulation. Several amino acids on the surface of the regulatory domain, when exchanged, altered the pH-dependence of AC activity. However, these residues are not conserved amongst a number of related ACs. The closely related mycobacterial Rv2212, but not Rv1264, is strongly activated by the addition of fatty acids. The structure resolved the presence of a deeply embedded fatty acid, characterised as oleic acid by mass spectrometry, which may serve as a hinge. From these data, we conclude that the regulatory domain is a structural scaffold used for distinct regulatory purposes.
Guo, Zizhang; Zhang, Jian; Kang, Yan; Liu, Hai
2017-11-01
This study developed an humic acid (HA) in-situ modified activated carbon adsorbent (AC-HA) for the rapid and efficient removal of Pb(II) from aqueous media, and adsorption mechanisms are discussed. The physicochemical characteristics of activated carbons (AC) were investigated via N 2 adsorption/desorption, scanning electron microscopy (SEM), Boehm's titration method and Fourier transform infrared spectroscopy (FTIR). AC-HA exhibited richer oxygen-containing functional groups than the original AC. In addition, the removal performance of AC-HA (250.0mg/g) toward Pb(II) was greatly improved compared with the original AC (166.7mg/g). The batch adsorption study results revealed that the Pb(II) adsorption data were best fit by the pseudo-second-order model of kinetics and Langmuir isotherm of isothermals, and therefore, the effect of the solution pH was studied. The superior performance of AC-HA was attributed to the HA modification, which contains numbers of groups and has a strong π-π interaction binding energy with AC and Pb(II) species. The adsorption mechanisms were confirmed via the XPS study. More importantly, the modified method is simple and has a low cost of production. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Shou-Xin; Chen, Xi; Zhang, Xian-Quan
2008-05-01
Commercial activated carbon was treated by HNO3 oxidation and then subsequently heat treated under N2 atmosphere. Effect of surface chemical properties and pore structure on the adsorption performance of nitrobenzene was investigated. N2/77K adsorption isotherm and scanning electron microscopy (SEM) were used to characterize the pore structure and surface morphology of carbon. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results reveal that HNO3 oxidation can modify the surface chemical properties, increase the number of acidic surface oxygen-containing groups and has trivial effect on the pore structure of carbon. Further heat treatment can cause the decomposition of surface oxygen-containing groups, and increase the external surface area and the number of mesopores. Adsorption capacity of nitrobenzene on AC(NO-T), AC(raw) and AC(NO) was 1011.31, 483.09 and 321.54 mg x g(-1), respectively. Larger external surface area and the number of meso-pores, together with the less acid surface oxygen-containing groups were the main reason for the larger adsorption capacity AC(NO-T).
Fluorescent immunolabeling of cancer cells by quantum dots and antibody scFv fragment.
Zdobnova, Tatiana A; Dorofeev, Sergey G; Tananaev, Piter N; Vasiliev, Roman B; Balandin, Taras G; Edelweiss, Eveline F; Stremovskiy, Oleg A; Balalaeva, Irina V; Turchin, Ilya V; Lebedenko, Ekaterina N; Zlomanov, Vladimir P; Deyev, Sergey M
2009-01-01
Semiconductor quantum dots (QDs) coupled with cancer-specific targeting ligands are new promising agents for fluorescent visualization of cancer cells. Human epidermal growth factor receptor 2/neu (HER2/neu), overexpressed on the surface of many cancer cells, is an important target for cancer diagnostics. Antibody scFv fragments as a targeting agent for direct delivery of fluorophores offer significant advantages over full-size antibodies due to their small size, lower cross-reactivity, and immunogenicity. We have used quantum dots linked to anti-HER2/neu 4D5 scFv antibody to label HER2/neu-overexpressing live cells. Labeling of target cells was shown to have high brightness, photostability, and specificity. The results indicate that construction based on quantum dots and scFv antibody can be successfully used for cancer cell visualization.
NASA Astrophysics Data System (ADS)
Dong, Shihao; Wen, Ping; Zhang, Qi; Li, Xinyu; Tan, Ken; Nieh, James
2017-03-01
In highly social bees, queen mandibular pheromone (QMP) is vital for colony life. Both Apis cerana (Ac) and Apis mellifera (Am) share an evolutionarily conserved set of QMP compounds: (E)-9-oxodec-2-enoic acid (9-ODA), (E)-9-hydroxydec-2-enoic acid (9-HDA), (E)-10-hydroxy-dec-2-enoic acid (10-HDA), 10-hydroxy-decanoic acid (10-HDAA), and methyl p-hydroxybenzoate (HOB) found at similar levels. However, evidence suggests there may be species-specific sensitivity differences to QMP compounds because Ac workers have higher levels of ovarian activation than Am workers. Using electroantennograms, we found species-specific sensitivity differences for a blend of the major QMP compounds and three individual compounds (9-HDA, 10-HDAA, and 10-HDA). As predicted, Am was more sensitive than Ac in all cases (1.3- to 2.7- fold higher responses). There were also species differences in worker retinue attraction to three compounds (9-HDA, HOB, and 10-HDA). In all significantly different cases, Am workers were 4.5- to 6.2-fold more strongly attracted than Ac workers were. Thus, Ac workers responded less strongly to QMP than Ac workers, and 9-HDA and 10-HDA consistently elicited stronger antennal and retinue formation responses.
Body, Richard; Sperrin, Matthew; Lewis, Philip S; Burrows, Gillian; Carley, Simon; McDowell, Garry; Buchan, Iain; Greaves, Kim; Mackway-Jones, Kevin
2017-01-01
Background The original Manchester Acute Coronary Syndromes model (MACS) ‘rules in’ and ‘rules out’ acute coronary syndromes (ACS) using high sensitivity cardiac troponin T (hs-cTnT) and heart-type fatty acid binding protein (H-FABP) measured at admission. The latter is not always available. We aimed to refine and validate MACS as Troponin-only Manchester Acute Coronary Syndromes (T-MACS), cutting down the biomarkers to just hs-cTnT. Methods We present secondary analyses from four prospective diagnostic cohort studies including patients presenting to the ED with suspected ACS. Data were collected and hs-cTnT measured on arrival. The primary outcome was ACS, defined as prevalent acute myocardial infarction (AMI) or incident death, AMI or coronary revascularisation within 30 days. T-MACS was built in one cohort (derivation set) and validated in three external cohorts (validation set). Results At the ‘rule out’ threshold, in the derivation set (n=703), T-MACS had 99.3% (95% CI 97.3% to 99.9%) negative predictive value (NPV) and 98.7% (95.3%–99.8%) sensitivity for ACS, ‘ruling out’ 37.7% patients (specificity 47.6%, positive predictive value (PPV) 34.0%). In the validation set (n=1459), T-MACS had 99.3% (98.3%–99.8%) NPV and 98.1% (95.2%–99.5%) sensitivity, ‘ruling out’ 40.4% (n=590) patients (specificity 47.0%, PPV 23.9%). T-MACS would ‘rule in’ 10.1% and 4.7% patients in the respective sets, of which 100.0% and 91.3% had ACS. C-statistics for the original and refined rules were similar (T-MACS 0.91 vs MACS 0.90 on validation). Conclusions T-MACS could ‘rule out’ ACS in 40% of patients, while ‘ruling in’ 5% at highest risk using a single hs-cTnT measurement on arrival. As a clinical decision aid, T-MACS could therefore help to conserve healthcare resources. PMID:27565197
[Multiple risk factors models of patients with acute coronary syndromes of different genders].
Sun, Wanglexian; Hu, Tiemin; Huang, Xiansheng; Zhang, Ying; Guo, Jinrui; Wang, Wenfeng; Shi, Fei; Wang, Pengfei; Wang, Huarong; Sun, Jing; Li, Chunhua
2014-12-23
To establish the multiple risk factors models for patients with acute coronary syndromes (ACS) of different genders and quantitatively assess the pathopoiesis of all factors. A total of 2 308 consecutive ACS inpatients and a control group of 256 cases with normal coronary artery from January 2010 to December 2012 were enrolled and divided into 4 groups of female ACS (n = 970), male ACS (n = 1 338), female control (n = 136) and male control (n = 120). All demographic and clinical data were collected by the physicians and master degree candidates in the division of cardiology. The Logistic regression models of multiple risk factors were established for ACS by different genders. More than 45 years of age, dyslipidemia, type 2 diabetes mellitus, obesity and hypertension were all independent risk factors of ACS for different genders (P < 0.05). However, the same risk factors had different pathogenic effects on ACS between genders. The odds ratio (OR) was markedly different for females and males: per 5-year increase aged over 45 years (1.45 vs 1.13), dyslipidemia (3.45 vs 1.68), type 2 diabetes mellitus (4.06 vs 2.33), obesity (2.93 vs 1.91) and hypertension (1.78 vs 3.80) respectively (all P < 0.05). In addition, current smoking increased the risk of ACS attack in males by 5.49 (P < 0.05) while not statistically significant in females. Particularly cerebral ischemic stroke increased the risk of ACS attack by 5.49 folds in males other than females (P < 0.05). Type 2 diabetes mellitus, dyslipidemia and obesity may present higher risks of ACS attack for females than males. And smoking and hypertension are much more dangerous for males. Males with cerebral infarction are more susceptible for ACS than females.
Dhillon, Kuldeep S; Bhandal, Ajit S; Aznar, Constantino P; Lorey, Fred W; Neogi, Partha
2011-05-12
Succinylacetone (SUAC), a specific marker for tyrosinemia type I (Tyr I) cannot be detected by the routine LC-MS/MS screening of amino acids (AA) and acylcarnitines (AC) in newborns. The current derivatized methods require double extraction of newborn dried blood spots (DBS); one for AA and AC and the second for SUAC from the blood spot left after the first extraction. We have developed a method in which AA, AC and SUAC are extracted in a single extraction resulting in significant reduction in labor and assay time. The 3.2 mm DBS were extracted by incubating at 45 °C for 45 min with 100 μl of acetonitrile (ACN)-water-formic acid mixture containing hydrazine and stable-isotope labeled internal standards of AA, AC and SUAC. The extract was derivatized with n-butanolic-HCl and analyzed by LC-MS/MS. The average inter-assay CVs for, AA, AC and SUAC were 10.1, 10.8 and 7.1% respectively. The extraction of analytes with ACN-water mixture showed no significant difference in their recovery compared to commonly used solvent MeOH. The concentration of hydrazine had considerable impact on SUAC extraction. We developed a new MS/MS derivatized method to detect AA/AC/SUAC in a single extraction process for screening Tyr I along with disorders of AA and AC. Published by Elsevier B.V.
Suspected non-AD pathology in Mild Cognitive Impairment
Wisse, Laura E.M.; Butala, Nirali; Das, Sandhitsu R.; Davatzikos, Christos; Dickerson, Bradford C.; Vaishnavi, Sanjeev N.; Yushkevich, Paul A.; Wolk, David A.
2015-01-01
We aim to better characterize Mild Cognitive Impairment (MCI) patients with suspected non-Alzheimer’s Disease (AD) pathology (SNAP) based on their longitudinal outcome, cognition, biofluid and neuroimaging profile. MCI participants (n=361) from ADNI-GO/2 were designated ‘amyloid positive’ with abnormal Aβ42 levels (AMY+) and ‘neurodegeneration positive’ (NEU+) with abnormal hippocampal volume or hypometabolism using FDG-PET. SNAP was compared with the other MCI groups and with AMY− controls. AMY−NEU+/SNAP, 16.6%, were older than the NEU− groups, but not AMY− controls. They had a lower conversion rate to AD after 24 months than AMY+NEU+ MCI participants. SNAP MCI participants had similar Aβ42 levels, florbetapir and tau levels, but larger white matter hyperintensity volumes than AMY− controls and AMY−NEU− MCI participants. SNAP participants performed worse on all memory domains and on other cognitive domains, than AMY−NEU− participants, but less so than AMY+NEU+ participants. Subthreshold levels of cerebral amyloidosis are unlikely to play a role in SNAP MCI, but pathologies involving the hippocampus and cerebrovascular disease may underlie the neurodegeneration and cognitive impairment in this group. PMID:26422359
O'Donnell, Sharon; McKee, Gabrielle; Mooney, Mary; O'Brien, Frances; Moser, Debra K
2014-04-01
Patient decision delay is the main reason why many patients fail to receive timely medical intervention for symptoms of acute coronary syndrome (ACS). This study examines the validity of slow-onset and fast-onset ACS presentations and their influence on ACS prehospital delay times. A fast-onset ACS presentation is characterized by sudden, continuous, and severe chest pain, and slow-onset ACS pertains to all other ACS presentations. Baseline data pertaining to medical profiles, prehospital delay times, and ACS symptoms were recorded for all ACS patients who participated in a large multisite randomized control trial (RCT) in Dublin, Ireland. Patients were interviewed 2-4 days after their ACS event, and data were gathered using the ACS Response to Symptom Index. Only baseline data from the RCT, N = 893 patients, were analyzed. A total of 65% (n = 577) of patients experienced slow-onset ACS presentation, whereas 35% (n = 316) experienced fast-onset ACS. Patients who experienced slow-onset ACS were significantly more likely to have longer prehospital delays than patients with fast-onset ACS (3.5 h vs. 2.0 h, respectively, t = -5.63, df 890, p < 0.001). A multivariate analysis of delay revealed that, in the presence of other known delay factors, the only independent predictors of delay were slow-onset and fast-onset ACS (β = -.096, p < 0.002) and other factors associated with patient behavior. Slow-onset ACS and fast-onset ACS presentations are associated with distinct behavioral patterns that significantly influence prehospital time frames. As such, slow-onset ACS and fast-onset ACS are legitimate ACS presentation phenomena that should be seriously considered when examining the factors associated with prehospital delay. Copyright © 2014 Elsevier Inc. All rights reserved.
Feng, Chencheng; He, Jinyue; Zhang, Yang; Lan, Minghong; Yang, Minghui; Liu, Huan; Huang, Bo; Pan, Yong; Zhou, Yue
2017-07-01
N-acetylated proline-glycine-proline (N-Ac-PGP) is a chemokine involved in inflammatory diseases and is found to accumulate in degenerative discs. N-Ac-PGP has been demonstrated to have a pro-inflammatory effect on human cartilage endplate stem cells. However, the effect of N-Ac-PGP on human intervertebral disc cells, especially nucleus pulposus (NP) cells, remains unknown. The purpose of this study was to investigate the effect of N-Ac-PGP on the expression of pro-inflammatory factors and extracellular matrix (ECM) proteases in NP cells and the molecular mechanism underlying this effect. Therefore, Milliplex assays were used to detect the levels of various inflammatory cytokines in conditioned culture medium of NP cells treated with N-Ac-PGP, including interleukin-1β (IL-1β), IL-6, IL-17, tumor necrosis factor-α (TNF-α) and C-C motif ligand 2 (CCL2). RT-qPCR was also used to determine the expression of pro-inflammatory cytokines and ECM proteases in the NP cells treated with N-Ac-PGP. Moreover, the role of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in mediating the effect of N-Ac-PGP on the phenotype of NP cells was investigated using specific signaling inhibitors. Milliplex assays showed that NP cells treated with N-Ac-PGP (10 and 100 µg/ml) secreted higher levels of IL-1β, IL-6, IL-17, TNF-α and CCL2 compared with the control. RT-qPCR assays showed that NP cells treated with N-Ac-PGP (100 µg/ml) had markedly upregulated expression of matrix metalloproteinase 3 (MMP3), MMP13, a disintegrin and metalloproteinase with thrombospondin motif 4 (ADAMTS4), ADAMTS5, IL-6, CCL-2, CCL-5 and C-X-C motif chemokine ligand 10 (CXCL10). Moreover, N-Ac-PGP was shown to activate the MAPK and NF-κB signaling pathways in NP cells. MAPK and NF-κB signaling inhibitors suppressed the upregulation of proteases and pro-inflammatory cytokines in NP cells treated with N-Ac-PGP. In conclusion, N-Ac-PGP induces the expression of pro-inflammatory cytokines and matrix catabolic enzymes in NP cells via the NF-κB and MAPK signaling pathways. N-Ac-PGP is a novel therapeutic target for intervertebral disc degeneration.
Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells.
Narayanamoorthy, B; Datta, K K R; Eswaramoorthy, M; Balaji, S
2012-07-25
A novel Pt nanoparticle (Pt NP) embedded aminoclay/Nafion (Pt/AC/N) nanocomposite catalyst film was prepared for oxygen reduction reaction by sol-gel method. The prepared nanocomposite films were surface characterized using XRD and TEM and thermal stability was studied by TGA. The prepared film has firmly bound Pt NP and could exhibit an improved electro-reduction activity compared to vulcan carbon/Nafion supported Pt NP (Pt/VC/N). Moreover, the Pt/AC/N film possessed good stability in the acidic environment. The limiting current density of the Pt/AC/N film with 35.4 μg/cm(2) of Pt loading was found to be 4.2 mA/cm(2), which is 30% higher than that of the Pt/VC/N. The maximum H2O2 intermediate formation was found to be ∼1.6% and the reaction found to follow a four electron transfer mechanism. Accelerated durability test for 2000 potential cycles showed that ca. 78% of initial limiting current was retained. The results are encouraging for possible use of the Pt/AC/N as the free-standing electrocatalyst layer for polymer electrolyte membrane fuel cells.
Structural Insights into SraP-Mediated Staphylococcus aureus Adhesion to Host Cells
Zhang, Juan; Wang, Lei; Bai, Xiao-Hui; Zhang, Shi-Jie; Ren, Yan-Min; Li, Na; Zhang, Yong-Hui; Zhang, Zhiyong; Gong, Qingguo; Mei, Yide; Xue, Ting; Zhang, Jing-Ren; Chen, Yuxing; Zhou, Cong-Zhao
2014-01-01
Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelets. It remains unclear how SraP interacts with human host. Here we report the 2.05 Å crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a β-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differ in calcium coordination pattern. Under the conditions tested, small-angle X-ray scattering and molecular dynamic simulation indicated that the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outwards. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated host-pathogen interaction of S. aureus. PMID:24901708
NASA Astrophysics Data System (ADS)
Wu, Feng-Chin; Tseng, Ru-Ling; Hu, Chi-Chang; Wang, Chen-Ching
Four kinds of activated carbons (denoted as ACs) with specific surface area of ca. 1050 m 2 g -1 were fabricated from fir wood and pistachio shell by means of steam activation or chemical activation with KOH. Pore structures of ACs were characterized by a t-plot method based on N 2 adsorption isotherms. The amount of mesopores within KOH-activated carbons ranged from 9.2 to 15.3% while 33.3-49.5% of mesopores were obtained for the steam-activated carbons. The pore structure, surface functional groups, and raw materials of ACs, as well as pH and the supporting electrolyte were also found to be significant factors determining the capacitive characteristics of ACs. The excellent capacitive characteristics in both acidic and neutral media and the weak dependence of the specific capacitance on the scan rate of cyclic voltammetry (CV) for the ACs derived from the pistachio shell with steam activation (denoted as P-H 2O-AC) revealed their promising potential in the application of supercapacitors. The ACs derived from fir wood with KOH activation (denoted as F-KOH-AC), on the other hand, showed the best capacitive performance in H 2SO 4 due to excellent reversibility and high specific capacitance (180 F g -1 measured at 10 mV s -1), which is obviously larger than 100 F g -1 (a typical value of activated carbons with specific surface areas equal to/above 1000 m 2 g -1).
Purification and some properties of the protein component of tissue thromboplastin from human brain.
Bjorklid, E; Storm, E
1977-01-01
The protein component of tissue thromboplastib (Factor III) from human brain was purified by extraction of a microsomal fraction with sodium deoxycholate, gel filtration of the extract on Sephadex G-100 and preparative polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. The product, apoprotein III, was homogeneous by anayltical polyacrylamide-gel electrophoresis, and it induced monospecific antibodies in rabbits and goat as shown by immunodiffusion and immunoelectrophoresis. Amino acid- and carbohydrate-analysis data for apoprotein III are presented. The carbohydrate moiety of the protein consists of fucose, mannose, galactose, N-acetylglucosamine and N-acetylneuraminate, amounting to a total content of 6.3g/100g. The apoprotein alone had no procoagulant activity. When Factor III was reconstituted by combining the pure apoprotein with a purified lipid fraction from the deoxycholate extract of crude Factor III, a high and optimal procoagulant activity was obtained at a phospholipid/protein ratio of 1.1g/g. Phosphatidylethanolamine alone had a weak but significant ability to restore activity, whereas phosphatidylcholine and phosphatidylserine separately had almost none. Two-component mixtures were on average more effective, and three-component mixtures far more effective, than the single phospholipids. The inclusion of a small amount of phosphatidylserine was very important for high activity. Images Fig. 2. PLATE 1 PMID:889578
Study of metal corrosion using ac impedance techniques in the STS launch environment
NASA Technical Reports Server (NTRS)
Calle, Luz M.
1989-01-01
AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.
Ortmeyer, Heidi K.; Goldberg, Andrew P.; Ryan, Alice S.
2017-01-01
Objective The effects of six-months weight loss (WL) versus aerobic exercise training (AEX)+WL on fat and skeletal muscle markers of fatty acid metabolism were determined in normal (NGT) and impaired (IGT) glucose tolerant African-American and Caucasian postmenopausal women with overweight/obesity. Methods Fat (gluteal and abdominal) lipoprotein lipase (LPL), and skeletal muscle LPL, acyl-CoA synthase (ACS), β-hydroxacyl-CoA dehydrogenase, carnitine palmitoyltransferase (CPT-1), and citrate synthase (CS) activities were measured at baseline (n=104) and before and after WL (n=34) and AEX+WL (n=37). Results After controlling for age and race, muscle LPL and CPT-1 were lower in IGT, and the ratios of fat/muscle LPL activity were higher in IGT compared to NGT. Muscle LPL was related to insulin sensitivity (M), and inversely related to G120, fasting insulin, and HOMA-IR. AEX+WL decreased abdominal fat LPL and increased muscle LPL, ACS, and CS. The ratios of fat/muscle LPL decreased after AEX+WL. The change in VO2max was related to the changes in LPL, ACS, and CS and inversely related to the changes in fat/muscle LPL activity ratios. Conclusions Six-month AEX+WL, and not WL alone, is capable of enhancing skeletal muscle fatty acid metabolism in postmenopausal African-American and Caucasian women with NGT, IGT, and overweight/obesity. PMID:28547918
Luo, Jing; Zheng, Haiqing; Zhang, Liying; Zhang, Qingjie; Li, Lili; Pei, Zhong; Hu, Xiquan
2017-01-01
Repetitive transcranial magnetic stimulation (rTMS) has rapidly become an attractive therapeutic approach for stroke. However, the mechanisms underlying this remain elusive. This study aimed to investigate whether high-frequency rTMS improves functional recovery mediated by enhanced neurogenesis and activation of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway and to compare the effect of conventional 20 Hz rTMS and intermittent theta burst stimulation (iTBS) on ischemic rats. Rats after rTMS were sacrificed seven and 14 days after middle cerebral artery occlusion (MCAO), following evaluation of neurological function. Neurogenesis was measured using specific markers: Ki67, Nestin, doublecortin (DCX), NeuN and glial fibrillary acidic protein (GFAP), and the expression levels of BDNF were visualized by Western blotting and RT-PCR analysis. Both high-frequency rTMS methods significantly improved neurological function and reduced infarct volume. Moreover, 20 Hz rTMS and iTBS significantly promoted neurogenesis, shown by an increase of Ki67/DCX, Ki67/Nestin, and Ki67/NeuN-positive cells in the peri-infarct striatum. These beneficial effects were accompanied by elevated protein levels of BDNF and phosphorylated-TrkB. In conclusion, high-frequency rTMS improves functional recovery possibly by enhancing neurogenesis and activating BDNF/TrkB signaling pathway and conventional 20 Hz rTMS is better than iTBS at enhancing neurogenesis in ischemic rats. PMID:28230741
Combined cell suspensions of the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-metabolizing organism Pseudomonas cepacia AC1100, and the 2,4-dichlorophenoxyacetic acid (2,4-D)-metabolizing organism Alcaligenes eutrophus JMP134 were shown to effectively degrade either of these compo...
Abdolshahi, Anna; Majd, Mojtaba Heydari; Rad, Javad Sharifi; Taheri, Mehrdad; Shabani, Aliakbar; Teixeira da Silva, Jaime A
2015-04-01
Pistachio (Pistacia vera L.) oil has important nutritional and therapeutic properties because of its high concentration of essential fatty acids. The extraction method used to obtain natural compounds from raw material is critical for product quality, in particular to protect nutritional value. This study compared the fatty acid composition of pistachio oil extracted by two conventional procedures, Soxhlet extraction and maceration, analyzed by a gas chromatography-flame ionization detector (GC-FID). Four solvents with different polarities were tested: n-hexane (Hx), dichloromethane (DCM), ethyl acetate (EtAc) and ethanol (EtOH). The highest unsaturated fatty acid content (88.493 %) was obtained by Soxhlet extraction with EtAc. The Soxhlet method extracted the most oleic and linolenic acids (51.99 % and 0.385 %, respectively) although a higher concentration (36.32 %) of linoleic acid was extracted by maceration.
Srivastava, Ritika; Kaur, Amanpreet; Sharma, Charu; Karthikeyan, Subramanian
2018-04-01
In bacteria, biosynthesis of riboflavin occurs through a series of enzymatic steps starting with one molecule of GTP and two molecules of ribulose-5-phosphate. In Bacillus subtilis (B. subtilis) the genes (ribD/G, ribE, ribA, ribH and ribT) which are involved in riboflavin biosynthesis are organized in an operon referred as rib operon. All the genes of rib operon are characterized functionally except for ribT. The ribT gene with unknown function is found at the distal terminal of rib operon and annotated as a putative N-acetyltransferase. Here, we report the crystal structure of ribT from B. subtilis (bribT) complexed with coenzyme A (CoA) at 2.1 Å resolution determined by single wavelength anomalous dispersion method. Our structural study reveals that bribT is a member of GCN5-related N-acetyltransferase (GNAT) superfamily and contains all the four conserved structural motifs that have been in other members of GNAT superfamily. The members of GNAT family transfers the acetyl group from acetyl coenzyme A (AcCoA) to a variety of substrates. Moreover, the structural analysis reveals that the residues Glu-67 and Ser-107 are suitably positioned to act as a catalytic base and catalytic acid respectively suggesting that the catalysis by bribT may follow a direct transfer mechanism. Surprisingly, the mutation of a non-conserved amino acid residue Cys-112 to alanine or serine affected the binding of AcCoA to bribT, indicating a possible role of Cys-112 in the catalysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Low and high dietary folic acid levels perturb postnatal cerebellar morphology in growing rats.
Partearroyo, Teresa; Pérez-Miguelsanz, Juliana; Peña-Melián, Ángel; Maestro-de-Las-Casas, Carmen; Úbeda, Natalia; Varela-Moreiras, Gregorio
2016-06-01
The brain is particularly sensitive to folate metabolic disturbances, because methyl groups are critical for brain functions. This study aimed to investigate the effects of different dietary levels of folic acid (FA) on postnatal cerebellar morphology, including the architecture and organisation of the various layers. A total of forty male OFA rats (a Sprague-Dawley strain), 5 weeks old, were classified into the following four dietary groups: FA deficient (0 mg/kg FA); FA supplemented (8 mg/kg FA); FA supra-supplemented (40 mg/kg FA); and control (2 mg/kg FA) (all n 10 per group). Rats were fed ad libitum for 30 d. The cerebellum was quickly removed and processed for histological and immunohistochemical analysis. Slides were immunostained for glial fibrillary acidic protein (to label Bergmann glia), calbindin (to label Purkinje cells) and NeuN (to label post-mitotic neurons). Microscopic analysis revealed two types of defect: partial disappearance of fissures and/or neuronal ectopia, primarily in supra-supplemented animals (incidence of 80 %, P≤0·01), but also in deficient and supplemented groups (incidence of 40 %, P≤0·05), compared with control animals. The primary fissure was predominantly affected, sometimes accompanied by defects in the secondary fissure. Our findings show that growing rats fed an FA-modified diet, including both deficient and supplemented diets, have an increased risk of disturbances in cerebellar corticogenesis. Defects caused by these diets may have functional consequences in later life. The present study is the first to demonstrate that cerebellar morphological defects can arise from deficient, as well as high, FA levels in the diet.
Dependently Typed Programming with Domain-Specific Logics
2011-02-28
van den Berg and Garner, 2010; Voevodsky, 2010). This work promises a new class of proof assistants that intrinsically support proof irrelevance, equal...InΣ (neuA⇐ neu ⊗ sem) neut : InΣ (semA⇐ neu) slam : InΣ (semA⇐ (∀6 neuC (sem ⊃ sem))) reifyenv : Vars Vars Type reifyenv Ψe Ψs = ([Ψs ] * (neuC...ϕ) = lam · reify (Ψe, , expC) (Ψs, , neuC) σ’ (ϕ [neuC ] ( neut · (. i0))) where σ’ : (reifyenv (Ψe, , expC) (Ψs, , neuC)) σ’ i0 = i0 σ’ (iS x) = iS
Modifying the sugar icing on the transplantation cake
Cooper, David K C
2016-01-01
As a transplant surgeon, my interest in glycobiology began through my research into ABO-incompatible allotransplantation, and grew when my goal became overcoming the shortage of organs from deceased human donors by the transplantation of pig organs into patients with terminal organ failure (xenotransplantation/cross-species transplantation). The major target for human “natural” (preformed) anti-pig antibodies is galactose-α(1,3)-galactose (the “Gal” epitope), which is expressed on many pig cells, including the vascular endothelium. The binding of human IgM and IgG antibodies to Gal antigens initiates the process of hyperacute rejection, resulting in destruction of the pig graft within minutes or hours. This major barrier has been overcome by the production of pigs in which the gene for the enzyme α(1,3)-galactosyltransferase (GT) has been deleted by genetic engineering, resulting in GT knockout (GTKO) pigs. The two other known carbohydrate antigenic targets on pig cells for human anti-pig antibodies are (i) the product of the cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene, i.e., N-glycolylneuraminic acid, and (ii) the product of the β1,4 N-acetylgalactosaminyltransferase gene, i.e., the Sd(a) antigen. Expression of these two has also been deleted in pigs. These genetic manipulations, together with others directed to overcoming primate complement and coagulation activation (the latter of which also relates to glycobiology) have contributed to the prolongation of pig graft survival in nonhuman primate recipients to many months rather than a few minutes. Clinical trials of the transplantation of pig cells are already underway and transplantation of pig organs may be expected within the relatively near future. PMID:26935763
Modifying the sugar icing on the transplantation cake.
Cooper, David K C
2016-06-01
As a transplant surgeon, my interest in glycobiology began through my research into ABO-incompatible allotransplantation, and grew when my goal became overcoming the shortage of organs from deceased human donors by the transplantation of pig organs into patients with terminal organ failure (xenotransplantation/cross-species transplantation). The major target for human "natural" (preformed) anti-pig antibodies is galactose-α(1,3)-galactose (the "Gal" epitope), which is expressed on many pig cells, including the vascular endothelium. The binding of human IgM and IgG antibodies to Gal antigens initiates the process of hyperacute rejection, resulting in destruction of the pig graft within minutes or hours. This major barrier has been overcome by the production of pigs in which the gene for the enzyme α(1,3)-galactosyltransferase (GT) has been deleted by genetic engineering, resulting in GT knockout (GTKO) pigs. The two other known carbohydrate antigenic targets on pig cells for human anti-pig antibodies are (i) the product of the cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene, i.e., N-glycolylneuraminic acid, and (ii) the product of the β1,4 N-acetylgalactosaminyltransferase gene, i.e., the Sd(a) antigen. Expression of these two has also been deleted in pigs. These genetic manipulations, together with others directed to overcoming primate complement and coagulation activation (the latter of which also relates to glycobiology) have contributed to the prolongation of pig graft survival in nonhuman primate recipients to many months rather than a few minutes. Clinical trials of the transplantation of pig cells are already underway and transplantation of pig organs may be expected within the relatively near future. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Le Berre, L; Rousse, J; Gourraud, P-A; Imbert-Marcille, B-M; Salama, A; Evanno, G; Semana, G; Nicot, A; Dugast, E; Guérif, P; Adjaoud, C; Freour, T; Brouard, S; Agbalika, F; Marignier, R; Brassat, D; Laplaud, D-A; Drouet, E; Van Pesch, V; Soulillou, J-P
2017-07-01
The etiology of multiple sclerosis (MS) remains elusive. Among the possible causes, the increase of anti-Neu5Gc antibodies during EBV primo-infection of Infectious mononucleosis (IMN) may damage the integrity of the blood-brain barrier facilitating the transfer of EBV-infected B cells and anti-EBV T cell clones in the brain. We investigated the change in titers of anti-Neu5Gc and anti-α1,3 Galactose antibodies in 49 IMN, in 76 MS, and 73 clinically isolated syndrome (CIS) patients, as well as age/gender-matched healthy individuals. Anti-Gal and anti-Neu5Gc are significantly increased during IMN (p=0.02 and p<1.10 -4 respectively), but not in acute CMV primo-infection. We show that, whereas there was no change in anti-Neu5Gc in MS/CIS, the two populations exhibit a significant decrease in anti-Gal (combined p=2.7.10 -3 ), in contrast with patients with non-MS/CIS central nervous system pathologies. Since anti-Gal result from an immunization against α1,3 Gal, lacking in humans but produced in the gut, our data suggest that CIS and MS patients have an altered microbiota or an altered response to this microbiotic epitope. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications
NASA Astrophysics Data System (ADS)
Pal, Kaushik; Zhan, Bihong; Madhu Mohan, M. L. N.; Schirhagl, Romana; Wang, Guoping
2015-12-01
The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. In this article, we exhibit a simple, one-step bench top synthesis of zinc oxide nano-tetrapods and nano-spheres which were tailored by the facial growth of nano-wires (diameter ≈ 24 nm; length ≈ 118 nm) and nano-cubes (≈395 nm edge) to nano-sphere (diameter ≈ 585 nm) appeaded. The possibilities of inexpensive, simple solvo-chemical synthesis of nanostructures were considered. In this article, a successful attempt has been made that ZnO nano-structures dispersed on well aligned hydrogen bonded liquid crystals (HBLC) comprising azelaic acid (AC) with p-n-alkyloxy benzoic acid (nBAO) by varying the respective alkyloxy carbon number (n = 5). The dispersion of nanomaterials with HBLC is an effective route to enhance the existing functionalities. A series of these composite materials were analyzed by polarizing optical microscope's electro-optical switching. An interesting feature of AC + nBAO is the inducement of tilted smectic G phase with increasing carbon chain length. Phase diagrams of the above hybrid ZnO nanomaterial influenced LC complex and pure LC were constructed and compared. The switching times, the contrast ratio and spontaneous polarization of the nanostructures-HBLC composite film were carried out by systematic investigation. The sample preparation parameters, such as the curing time and curing intensity were optimized. The critical applied voltage to achieve the switching bi-stability of our device is only 4.5 V, which is approximately twice its threshold voltage for Freedericksz transition. This performance puts the hybrid structure at the top level in the state of the art in application oriented research in optics of liquid crystalline composite materials.
Lyon, E; Millson, A; Lowery, M C; Woods, R; Wittwer, C T
2001-05-01
Molecular detection methods for HER2/neu gene amplification include fluorescence in situ hybridization (FISH) and competitive PCR. We designed a quantitative PCR system utilizing fluorescent hybridization probes and a competitor that differed from the HER2/neu sequence by a single base change. Increasing twofold concentrations of competitor were coamplified with DNA from cell lines with various HER2/neu copy numbers at the HER2/neu locus. Competitor DNA was distinguished from the HER2/neu sequence by a fluorescent hybridization probe and melting curve analysis on a fluorescence-monitoring thermal cycler. The percentages of competitor to target peak areas on derivative fluorescence vs temperature curves were used to calculate copy number. Real-time monitoring of the PCR reaction showed comparable relative areas throughout the log phase and during the PCR plateau, indicating that only end-point detection is necessary. The dynamic range was over two logs (2000-250 000 competitor copies) with CVs < 20%. Three cell lines (MRC-5, T-47D, and SK-BR-3) were determined to have gene doses of 1, 3, and 11, respectively. Gene amplification was detected in 3 of 13 tumor samples and was correlated with conventional real-time PCR and FISH analysis. Use of relative peak areas allows gene copy numbers to be quantified against an internal competitive control in < 1 h.
Recombinant fungal lectin as a new tool to investigate O-GlcNAcylation processes.
Machon, Oriane; Baldini, Steffi F; Ribeiro, João P; Steenackers, Agata; Varrot, Annabelle; Lefebvre, Tony; Imberty, Anne
2017-01-01
Glycosylation is a group of post-translational modifications that displays a large variety of structures and are implicated in a plethora of biological processes. Therefore, studying glycosylation requires different technical approaches and reliable tools, lectins being part of them. Here, we describe the use of the recombinant mushroom lectin PVL to discriminate O-GlcNAcylation, a modification consisting in the attachment of a single N-acetylglucosamine residue to proteins confined within the cytosolic, nuclear and mitochondrial compartments. Recombinant PVL (Psathyrella velutina lectin) (rPVL) displays significantly stronger affinity for GlcNAc over Neu5Ac residues as verified by thermal shift assays and surface plasmon resonance experiments, being therefore an excellent alternative to WGA (wheat germ agglutinin). Labeling of rPVL with biotin or HRP (horseradish peroxidase) allows its useful and efficient utilization by western blot. The staining of whole cell lysates with labeled-rPVL was dramatically decreased in response to O-GlcNAc transferase knockdown and seen to increase after pharmacological blockade of O-GlcNAcase. Also, HRP-rPVL seemed to be more sensitive than the anti-O-GlcNAc antibody RL2. Thus, rPVL is a potent new tool to selectively detect O-GlcNAcylated proteins. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DoganKoruznjak, Jasna; Slade, Neda; Zamola, Branimir; Pavelić, Kresimir; Karminski-Zamola, Grace
2002-05-01
The novel derivatives of thieno[3',2':4,5]thieno[2,3-c]quinolones 6a, 6b, 7, 10a and 10b were synthesized in multistep synthesis starting from thiophene-3-carboxaldehyde and malonic acid reacting in aldol condensation or from 3-bromothiophenes or methyl 4-bromothiophene-2-carboxylate reacting in Heck reaction. They resulted in corresponding substituted thienylacrylic acids 3a-c, which were cyclized into thieno[2,3-c]thiophene-2-carbonyl chlorides 4a-c and converted into thieno[2,3-c]thiophene-2-carboxamides 5a-d. Prepared carboxamides were photochemically dehydrohalogenated into corresponding substituted thieno[3',2':4,5]thieno[2,3-c]quinolones 6a-d. Compound 7 was prepared from 6d by alkylation with N-[3-(dimethylamino)propyl]chloride hydrochloride in the presence of NaH. Compounds 10a and 10b were prepared from 6c in the multistep synthesis over acid 8 and acid chloride 9. Compounds 6a, 6b, 7, 10a and 10b were found to exert cytostatic activities against malignant cell lines: pancreatic carcinoma (MiaPaCa2), breast carcinoma (MCF7), cervical carcinoma (HeLa), laryngeal carcinoma (Hep2), colon carcinoma (CaCo-2), melanoma (HBL), and human fibroblast cell lines (WI-38). The compound 6b, which bears the 3-dimethylaminopropyl substituent on quinolone nitrogen and methoxycarbonyl substituent on position 9, exhibited marked antitumor activity. On the contrary, compound 7, which also bears the 3-dimethylaminopropyl substituent on the quinolone nitrogen but anilido substituent on position 9, exhibited less antitumor activity than the others.
NASA Astrophysics Data System (ADS)
Souchard, J.-P.; Nepveu, F.
1998-05-01
We present a method for the quantitative ESR analysis of the antioxidant properties of drugs using the acetaldhehyde/xanthine oxidase (AC/XOD) superoxide generating system and 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as spin trap. In stoichiometric conditions (AC/XOD, 60 mM/0.018 U), the resulting paramagnetic DMPO adduct disappeared with superoxide dismutase and remained when catalase or DMSO were used. That adduct was dependent only on superoxide and resulted from the trapping of a carboxyl radical by DMPO (aN = 15.2 G, aH = 18.9 G). Similar results were obtained using 4-pyridyl-l-oxide-N-t-butyl nitrone (POBN) as spin trap. The ESR signal of the DMPO-CO2- adduct was very stable and allowed quantitative analysis of the antioxidative activity of redox molecules from an IC{50} value representing the concentration causing 50% inhibition of its intensity. Among the tested compounds, manganese(II), complexes were the most effective, 25 times as active as ascorbic acid or (+)catechin and 500-fold more antioxidative than Trolox^R. Nous présentons une méthode d'analyse quantitative de l'activité antioxydante de composés d'intérêt pharmaceutique basée sur le système acétaldéhyde/xanthine oxydase (AC/XOD), l'utilisation de la RPE et du piégeage de spin avec le 5,5-diméthyl-l-pyrroline-N-oxyde (DMPO). Dans les conditions stoechiométriques {AC/XOD, 60 mM/0,018 U/ml}, l'adduit radicalaire résultant de ce système disparaît en présence de superoxyde dismutase et persiste en présence de catalase ou de DMSO. Cet adduit ne dépend que de la présence de l'anion superoxyde et provient du piégeage d'un radical carboxyle CO2- sur le DMPO (aN = 15.2 G, aH = 18.9 G). Des résultats similaires ont été obtenus avec le piégeur de spin 4-pyridyl-l-oxyde-N-t-butyl nitrone (POBN). Le signal RPE de l'adduit DMPO-CO2- est très stable et permet la quantification de l'activité antioxydante de pharmacophores redox par la détermination de la CI{50}, concentration qui diminue de 50 % son intensité. Parmi les composés testés, les complexes du manganèse sont les plus antioxydants, 25 fois plus actifs que la vitamine C ou la catéchine(+), 500 fois plus antioxydants que le Trolox^R.
Lee, Chunsik; Liu, Anguo; Miranda-Ribera, Alba; Hyun, Sang Won; Lillehoj, Erik P.; Cross, Alan S.; Passaniti, Antonino; Grimm, P. Richard; Kim, Bo-Young; Welling, Paul A.; Madri, Joseph A.; DeLisser, Horace M.; Goldblum, Simeon E.
2014-01-01
The highly sialylated vascular endothelial surface undergoes changes in sialylation upon adopting the migratory/angiogenic phenotype. We recently established endothelial cell (EC) expression of NEU1 sialidase (Cross, A. S., Hyun, S. W., Miranda-Ribera, A., Feng, C., Liu, A., Nguyen, C., Zhang, L., Luzina, I. G., Atamas, S. P., Twaddell, W. S., Guang, W., Lillehoj, E. P., Puché, A. C., Huang, W., Wang, L. X., Passaniti, A., and Goldblum, S. E. (2012) NEU1 and NEU3 sialidase activity expressed in human lung microvascular endothelia. NEU1 restrains endothelial cell migration whereas NEU3 does not. J. Biol. Chem. 287, 15966–15980). We asked whether NEU1 might regulate EC capillary-like tube formation on a Matrigel substrate. In human pulmonary microvascular ECs (HPMECs), prior silencing of NEU1 did not alter tube formation. Infection of HPMECs with increasing multiplicities of infection of an adenovirus encoding for catalytically active WT NEU1 dose-dependently impaired tube formation, whereas overexpression of either a catalytically dead NEU1 mutant, NEU1-G68V, or another human sialidase, NEU3, did not. NEU1 overexpression also diminished EC adhesion to the Matrigel substrate and restrained EC migration in a wounding assay. In HPMECs, the adhesion molecule, CD31, also known as platelet endothelial cell adhesion molecule-1, was sialylated via α2,6-linkages, as shown by Sambucus nigra agglutinin lectin blotting. NEU1 overexpression increased CD31 binding to Arachis hypogaea or peanut agglutinin lectin, indicating CD31 desialylation. In the postconfluent state, when CD31 ectodomains are homophilically engaged, NEU1 was recruited to and desialylated CD31. In postconfluent ECs, CD31 was desialylated compared with subconfluent cells, and prior NEU1 silencing completely protected against CD31 desialylation. Prior CD31 silencing and the use of CD31-null ECs each abrogated the NEU1 inhibitory effect on EC tube formation. Sialyltransferase 6 GAL-I overexpression increased α2,6-linked CD31 sialylation and dose-dependently counteracted NEU1-mediated inhibition of EC tube formation. These combined data indicate that catalytically active NEU1 inhibits in vitro angiogenesis through desialylation of its substrate, CD31. PMID:24550400
Wang, Lu; Xie, Yufeng; Ahmed, Khawaja Ashfaque; Ahmed, Shahid; Sami, Amer; Chibbar, Rajni; Xu, Qingyong; Kane, Susan E; Hao, Siguo; Mulligan, Sean J; Xiang, Jim
2013-07-01
One of the major obstacles in human epidermal growth factor receptor 2 (HER2)-specific trastuzumab antibody immunotherapy of HER2-positive breast cancer is the development of trastuzumab resistance, warranting the search for other therapeutic strategies. Using mouse models, we previously demonstrated that ovalbumin (OVA)-specific dendritic cell (DC)-released exosome (EXOOVA)-targeted CD4(+) T cell-based (OVA-TEXO) vaccine stimulates efficient cytotoxic T lymphocyte (CTL) responses via exosomal peptide/major histocompatibility complex (pMHC)-I, exosomal CD80 and endogenous IL-2 signaling; and long-term CTL memory by means of via endogenous CD40L signaling. In this study, using two-photon microscopy, we provide the first visual evidence on targeting OVA-TEXO to cognate CD8(+) T cells in vivo via exosomal pMHC-I complex. We prepared HER2/neu-specific Neu-TEXO and HER2-TEXO vaccines using adenoviral vector (AdVneu and AdVHER2)-transfected DC (DCneu and DCHER2)-released EXOs (EXOneu and EXOHER2), and assessed their stimulatory effects on HER2/neu-specific CTL responses and antitumor immunity. We demonstrate that Neu-TEXO vaccine is capable of stimulating efficient neu-specific CTL responses, leading to protective immunity against neu-expressing Tg1-1 breast cancer in all 6/6 transgenic (Tg) FVBneuN mice with neu-specific self-immune tolerance. We also demonstrate that HER2-TEXO vaccine is capable of inducing HER2-specific CTL responses and protective immunity against transgene HLA-A2(+)HER2(+) BL6-10A2/HER2 B16 melanoma in 2/8 double Tg HLA-A2/HER2 mice with HER2-specific self-immune tolerance. The remaining 6/8 mice had significantly prolonged survival. Furthermore, we demonstrate that HER2-TEXO vaccine stimulates responses of CD8(+) T cells capable of not only inducing killing activity to HLA-A2(+)HER2(+) BL6-10A2/HER2 melanoma and trastuzumab-resistant BT474A2 breast cancer cells in vitro but also eradicating 6-day palpable HER2(+) BT474A2 breast cancer (3-4 mm in diameter) in athymic nude mice. Therefore, the novel T cell-based HER2-TEXO vaccine may provide a new therapeutic alternative for women with HER2(+) breast cancer, especially for trastuzumab-resistant HER2(+) breast cancer patients.
Hanley, Kevin W.; Petersen, Martin R.; Cheever, Kenneth L.; Luo, Lian
2009-01-01
1-Bromopropane (1-BP) has been marketed as an alternative for ozone depleting and other solvents; it is used in aerosol products, adhesives, metal, precision, and electronics cleaning solvents. Mechanisms of toxicity of 1-BP are not fully understood, but it may be a neurological and reproductive toxicant. Sparse exposure information prompted this study using 1-BP air sampling and urinary metabolites. Mercapturic acid conjugates are excreted in urine from 1-BP metabolism involving debromination. Research objectives were to evaluate the utility of urinary N-acetyl-S-(n-propyl)-L-cysteine (AcPrCys) for assessing exposure to 1-BP and compare it to urinary bromide [Br(−)] previously reported for these workers. Forty-eight-hour urine specimens were obtained from 30 workers at two factories where 1-BP spray adhesives were used to construct polyurethane foam seat cushions. Urine specimens were also obtained from 21 unexposed control subjects. All the workers' urine was collected into composite samples representing three time intervals: at work, after work but before bedtime, and upon awakening. Time-weighted average (TWA) geometric mean breathing zone concentrations were 92.4 and 10.5 p.p.m. for spraying and non-spraying jobs, respectively. Urinary AcPrCys showed the same trend as TWA exposures to 1-BP: higher levels were observed for sprayers. Associations of AcPrCys concentrations, adjusted for creatinine, with 1-BP TWA exposure were statistically significant for both sprayers (P < 0.05) and non-sprayers (P < 0.01). Spearman correlation coefficients for AcPrCys and Br(−) analyses determined from the same urine specimens were highly correlated (P < 0.0001). This study confirms that urinary AcPrCys is an important 1-BP metabolite and an effective biomarker for highly exposed foam cushion workers. PMID:19706636
Five-year Effects of Chlorhexidine on the In Vitro Durability of Resin/Dentin Interfaces.
Loguercio, Alessandro D; Hass, Viviane; Gutierrez, Mario Felipe; Luque-Martinez, Issis Virginia; Szezs, Anna; Stanislawczuk, Rodrigo; Bandeca, Matheus Coelho; Reis, Alessandra
2016-01-01
To evaluate the effect of an acid containing 2% chlorhexidine (Ac/CHX) or a 2% CHX aqueous solution (Aq/CHX) on the immediate and 5-year bonding properties of resin/dentin interfaces produced by two adhesives. The presence of CHX in these interfaces was also evaluated under micro-Raman spectroscopy. Forty-two molars were ground to expose a flat dentin surface. In the control group, the surfaces were etched with conventional phosphoric acid, and Prime&Bond NT (PB) and Adper Single Bond 2 (SB) were applied. In Ac/CHX, an acid containing 2% CHX was applied after adhesive application. In the Aq/CHX group, an aqueous solution of 2% CHX was applied for 60 s after etching. After placing the restoration, specimens were prepared and tested using the microtensile bond strength test (μTBS, 0.5 mm/min) immediately or after 5 years. For nanoleakage (NL), specimens at each period were immersed in silver nitrate solution and examined by EDX-SEM. In addition, specimens at each period underwent examination for CHX using micro-Raman spectroscopy. Data were submitted to appropriate statistical analysis (a=0.05). After 5 years, NL was more pronounced in the control than in the Ac/CHX or Aq/CHX (p<0.001). Significant reductions in the μTBS were observed for all groups; however, they were more pronounced for the control (p<0.001). CHX was still present in the hybrid layers Ac/CHX or Aq/CHX groups after 5 years. The use of a 2% chlorhexidine-containing acid or the application of an aqueous CHX primer may increase the long-term stability of resin/dentin interfaces.
Dobrivojević, Marina; Bohaček, Ivan; Erjavec, Igor; Gorup, Dunja; Gajović, Srećko
2013-01-01
Aim To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). Methods Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. Results Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. Conclusion MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema. PMID:23444240
Dobrivojević, Marina; Bohaček, Ivan; Erjavec, Igor; Gorup, Dunja; Gajović, Srećko
2013-02-01
To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema.
NASA Astrophysics Data System (ADS)
Godino-Salido, M. Luz; Santiago-Medina, Antonio; López-Garzón, Rafael; Gutiérrez-Valero, María D.; Arranz-Mascarós, Paloma; López de la Torre, M. Dolores; Domingo-García, María; López-Garzón, F. Javier
2016-11-01
The main objective of this study is to prepare and characterize two functionalizated carbon materials with enhanced adsorptive properties for Cu(II). Thus, two novel hybrid materials have been prepared by a non-covalent functionalization method based on the adsorption of a pyrimidine-desferrioxamine-B conjugate compound (H4L) on two activated carbons, ACs (labelled Merck and F). The adsorption of H4L on the ACs is pH-dependent and highly irreversible. This is due to strong π-π interactions between the arene centers of the ACs and the pyrimidine moiety of H4L. The textural characterization of the AC/H4L hybrids shows large decreases of their surface areas. Thus the values of Merck and F are 1031 and 1426 m2/g respectively, while these of Merck/H4L and F/H4L hybrids are 200 and 322 m2/g. An important decrease in the micropore volumes is also found, due to the blockage of narrow porosity produced by the adsorption of H4L molecules. The ACs/H4L hybrids show larger adsorption capacities for Cu(II) (0.105(4) and 0.13(2) mmol/g, at pH 2.0, and 0.20(3) and 0.242(9) mmol/g, at pH 5.5, for Merck/H4L and F/H4L, respectively) than those of the ACs (0.024(6) and 0.096(9) mmol/g, at pH 2.0, and 0.10(2) and 0.177(8) mmol/g, at pH 5.5, for Merck and F respectively), which is explained on the basis of the complexing ability of the trihydroxamic acid functions. The desorption of Cu(II) from the ACs/H4L/Cu(II) materials in acid solution allows the regeneration of most active sites (78.5% in the case of Merck/H4L/Cu(II) and 83.0% in the case of F/H4L/Cu(II)).
Samanta, Suman K; Lee, Joomin; Hahm, Eun-Ryeong; Singh, Shivendra V
2018-07-01
We have reported previously that withaferin A (WA) prevents breast cancer development in mouse mammary tumor virus-neu (MMTV-neu) transgenic mice, but the mechanism is not fully understood. Unbiased proteomics of the mammary tumors from control- and WA-treated MMTV-neu mice revealed downregulation of peptidyl-prolyl cis/trans isomerase (Pin1) protein by WA administration. The present study extends these findings to elucidate the role of Pin1 in cancer chemopreventive mechanisms of WA. The mammary tumor level of Pin1 protein was lower by about 55% in WA-treated rats exposed to N-methyl-N-nitrosourea, compared to control. Exposure of MCF-7 and SK-BR-3 human breast cancer cells to WA resulted in downregulation of Pin1 protein. Ectopic expression of Pin1 attenuated G 2 and/or mitotic arrest resulting from WA treatment in both MCF-7 and SK-BR-3 cells. WA-induced apoptosis was increased by Pin1 overexpression in MCF-7 cells but not in the SK-BR-3 cell line. In addition, molecular docking followed by mass spectrometry indicated covalent interaction of WA with cysteine 113 of Pin1. Overexpression of Pin1 C113A mutant failed to attenuate WA-induced mitotic arrest or apoptosis in the MCF-7 cells. Furthermore, antibody array revealed upregulation of proapoptotic insulin-like growth factor binding proteins (IGFBPs), including IGFBP-3, IGFBP-4, IGFBP-5, and IGFBP-6, in Pin1 overexpressing MCF-7 cells following WA treatment when compared to empty vector transfected control cells. These data support a crucial role of the Pin1 for mitotic arrest and apoptosis signaling by WA at least in the MCF-7 cells. © 2018 Wiley Periodicals, Inc.
Carbohydrate binding specificity of immobilized Psathyrella velutina lectin.
Endo, T; Ohbayashi, H; Kanazawa, K; Kochibe, N; Kobata, A
1992-01-15
The carbohydrate binding specificity of Psathyrella velutina lectin (PVL) was thoroughly investigated by analyzing the behavior of various complex-type oligosaccharides and human milk oligosaccharides on a PVL-Affi-Gel 10 column. Basically, the lectin interacts with the nonreducing terminal beta-N-acetylglucosamine residue, but does not show any affinity for the nonreducing terminal N-acetylgalactosamine or N-acetylneuraminic acid residue. Substitution of the terminal N-acetylglucosamine residues of oligosaccharides by galactose completely abolishes their affinity to the column. GlcNAc beta 1----3Gal beta 1----4sorbitol binds to the column, but GlcNAc beta 1----6Gal beta 1----4sorbitol is only retarded in the column. The behavior of degalactosylated N-linked oligosaccharides is quite interesting. Although all degalactosylated monoantennary sugar chain isomers are retarded in the column, those with the GlcNAc beta 1----2Man group interact more strongly with the column than those with the GlcNAc beta 1----4Man group or the GlcNAc beta 1----6Man group. The degalactosylated bi- and triantennary sugar chains bind to the column, but the tetraantennary ones are only retarded in the column. These results indicated that the binding affinity is not simply determined by the number of terminal N-acetylglucosamine residues. Addition of the bisecting N-acetylglucosamine residue reduces the affinity of oligosaccharides to the column, but addition of an alpha-fucosyl residue at the C-6 position of the proximal N-acetylglucosamine residue does not affect the behavior of oligosaccharides in the column. These results indicated that the binding specificity of PVL is quite different from those of other N-acetylglucosamine-binding lectins from higher plants, which interact preferentially with the GlcNAc beta 1----4 residue.
Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie
2003-12-01
Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.
Heo, Hye Seon; An, MinJi; Lee, Ji Sun; Kim, Hee Kyong; Park, Yeong-Chul
2018-06-01
G-7% NANA is N-acetylneuraminic acid(NANA) containing 7% sialic acid isolated from glycomacropeptide (GMP), a compound of milk. Since NANA is likely to have immunotoxicity, the need to ensure safety for long-term administration has been raised. In this study, a 90-day repeated oral dose toxicity test was performed in rats using G-7% NANA in the dosages of 0, 1250, 2500 and 5000 mg/kg/day.A toxicity determination criterion based on the significant change caused by the administration of the substancewas developed for estimating NOEL, NOAEL and LOAELapplied to this study. When analyzing the immunological markers, no significant changes were observed, even if other significant changes were observed in the high dose group. In accordance with the toxicity determination criterion developed, the NOEL in male and female has been determined as 2500 mg/kg/day, and the NOAEL in females has been determined as 5000 mg/kg/day. The toxicity determination criterion, applied for the first time in the repeated dose toxicity tests, could provide a basis for distinguishing NOEL and NOAEL more clearly; nevertheless, the toxicity determination criterion needs to be supplemented by adding differentiating adverse effects and non-adverse effects based on more experiences of the repeated dose toxicity tests. Copyright © 2018 Elsevier Inc. All rights reserved.
Leal, Claudio A M; Leal, Daniela B R; Adefegha, Stephen A; Morsch, Vera M; Beckmann, Diego V; Castilhos, Lívia G; Thorstenberg, Maria L P; Jaques, Jeandre A Dos S; Souza, Viviane do C G; Farias, Júlia G; Martins, Caroline C; Schetinger, Maria R C
2016-07-01
The effects of chlorogenic acid (one of the major phenolic acid found in human diets) were investigated on the adenine nucleotides hydrolyzing enzymes; ecto-nucleotide pyrophosphatase/phophodiesterase (E-NPP), ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), E-5'- nucleotidase and ecto-adenosine deaminase (E-ADA) activities and expression in platelets of rats experimentally demyelinated with ethidium bromide. Rats were divided into four groups of eight animals each. Group I rats were control rats; injected with saline (CT), group II rats were injected with saline and treated with chlorogenic acid (AC), group III rats were injected with 0.1% ethidium bromide (EB) and group IV rats were injected with 0.1% EB and treated with chlorogenic acid (EB+AC). The activities of the enzymes were analyzed using colorimetric methods, and the gene expression of NTPDase 1, 2 and 3 were analyzed using the polymerase chain reaction (PCR). The results revealed that there was a significant (P<0.01) reduction in E-NPP activity in EB group (1.63±0.10nmol p-nitrophenol released/min/mg protein) when compared to CT group (2.33±0.14nmol p-nitrophenol released/min/mg protein). However, treatment with chlorogenic acid significantly (P<0.05) increased E-NPP activity in EB group. Furthermore, no significant (P>0.05) change was observed in the E-NPP activity of EB+AC group (2.19±0.08nmol p-nitrophenol released/min/mg protein) when compared to CT group (2.33±0.14nmol p-nitrophenol released/min/mg protein). In addition, there was a significant (P<0.05) increase in AMP hydrolysis in EB rat group when compared to CT group. No significant (P>0.05) difference was observed in AMP hydrolysis between AC, AC+EB and CT groups. Conversely, there were no significant (P>0.05) differences in ATP and ADP hydrolyses between all the groups (AC, EB, AC+EB and CT groups). Likewise, there were no significant (P>0.05) changes in E-ADA activity and percentage platelet aggregation among all groups studied. Similarly, no significant (P>0.05) change was observed in the expression of E-NTPDase 1, 2 and 3 in all the groups tested. Our study revealed that chlorogenic acid may modulate the hydrolysis of adenine nucleotides in platelets of rats demyelinated and treated with chlorogenic acid via alteration of E-NPP and ecto-5'-nucleotidase activities. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Development of device producing electrolyzed water for home care
NASA Astrophysics Data System (ADS)
Umimoto, K.; Nagata, S.; Yanagida, J.
2013-06-01
When water containing ionic substances is electrolyzed, electrolyzed water with strong bactericidal ability due to the available chlorine(AC) is generated on the anode side. Slightly acidic to neutral electrolyzed water (pH 6.5 to 7.5) is physiological pH and is suitable for biological applications. For producing slightly acidic to neutral electrolyzed water simply, a vertical-type electrolytic tank with an asymmetric structure was made. As a result, a small amount of strongly alkaline water was generated in the upper cathodic small chamber, and a large amount of weakly acidic water generated in the lower anodic large chamber. The pH and AC concentration in solutin mixed with both electrolyzed water were 6.3 and 39.5 ppm, respectively, This solution was slightly acidic to neutral electrolyzed water and had strong bactericidal activity. This device is useful for producing slightly acidic to neutral electrolyzed water as a disinfectant to employ at home care, when considering economic and environmental factors, since it returns to ordinary water after use.
2013-01-29
Scanning Confocal Microscope (Zeiss- Pascal) using 20x obj. and edited using Zeiss Image Examiner Ver 5.0. The iso-cortical pyramidal layers 1 and 2 are...NeuN immunoreactivity is seen in the neuronal cytoplasm and especially apical dendrites of pyramidal neurons (white arrows), which facilitates the...identification of the pyramidal cell morphology in the outer pyramidal cell layer of neo-cortex (see picture A, depicted as py). Cortical Pyramidal
Dong, Shihao; Wen, Ping; Zhang, Qi; Li, Xinyu; Tan, Ken; Nieh, James
2017-03-15
In highly social bees, queen mandibular pheromone (QMP) is vital for colony life. Both Apis cerana (Ac) and Apis mellifera (Am) share an evolutionarily conserved set of QMP compounds: (E)-9-oxodec-2-enoic acid (9-ODA), (E)-9-hydroxydec-2-enoic acid (9-HDA), (E)-10-hydroxy-dec-2-enoic acid (10-HDA), 10-hydroxy-decanoic acid (10-HDAA), and methyl p-hydroxybenzoate (HOB) found at similar levels. However, evidence suggests there may be species-specific sensitivity differences to QMP compounds because Ac workers have higher levels of ovarian activation than Am workers. Using electroantennograms, we found species-specific sensitivity differences for a blend of the major QMP compounds and three individual compounds (9-HDA, 10-HDAA, and 10-HDA). As predicted, Am was more sensitive than Ac in all cases (1.3- to 2.7- fold higher responses). There were also species differences in worker retinue attraction to three compounds (9-HDA, HOB, and 10-HDA). In all significantly different cases, Am workers were 4.5- to 6.2-fold more strongly attracted than Ac workers were. Thus, Ac workers responded less strongly to QMP than Am workers, and 9-HDA and 10-HDA consistently elicited stronger antennal and retinue formation responses [corrected].
Kamita, S G; Maeda, S
1993-01-01
Coinfection of Bombyx mori nuclear polyhedrosis virus (BmNPV) with Autographa californica NPV (AcNPV) in the BmNPV-permissive BmN cell line resulted in the complete inhibition of BmNPV replication. Coinfected BmN cells exhibited an atypical cytopathic effect (CPE) and synthesis of viral and host proteins was dramatically attenuated by 5 h postinfection (p.i.) and nearly completely blocked by 24 h p.i. Viral transcription, however, appeared to occur normally during both early (5-h-p.i.) and late (24-h-p.i.) stages of infection. Superinfection of BmN cells with AcNPV at 5 and 12 h post-BmNPV infection resulted in limited inhibition of BmNPV replication. BmN cells singly infected with AcNPV also showed similar CPE, premature inhibition of viral and host protein synthesis, and apparently normal viral transcription. BmNPV replication occurred normally following coinfection of BmNPV and eh2-AcNPV, an AcNPV mutant identical to AcNPV except for a 572-bp region in its putative DNA helicase gene originating from BmNPV (S. Maeda, S. G. Kamita, and A. Kondo, J. Virol. 67:6234-6238, 1993). Furthermore, atypical CPE and premature attenuation of host and viral protein synthesis were not observed. These results indicated that the inhibition of BmNPV replication was caused either directly or indirectly at the translational level by the putative AcNPV DNA helicase gene. Images PMID:7690422
Hahner, Stefanie; Spinnler, Christina; Fassnacht, Martin; Burger-Stritt, Stephanie; Lang, Katharina; Milovanovic, Danijela; Beuschlein, Felix; Willenberg, Holger S; Quinkler, Marcus; Allolio, Bruno
2015-02-01
Adrenal crisis (AC) is a life-threatening complication of adrenal insufficiency (AI), which according to retrospective data represents a significant clinical complication. Here we aimed to prospectively assess incidence of AC and mortality associated with AC in patients with chronic AI. A total of 423 patients with AI (primary AI, n = 221; secondary AI, n = 202) were prospectively followed up for 2 years. Baseline assessment included a general questionnaire and detailed written instructions on glucocorticoid dose adaptation during stress. Patients received follow-up questionnaires every 6 months and were contacted by phone in case of reported adrenal crisis. A total of 423 data sets were available for baseline analysis, and 364 patients (86%) completed the whole study. Sixy-four AC in 767.5 patient-years were documented (8.3 crises per 100 patient-years). Precipitating causes were mainly gastrointestinal infection, fever, and emotional stress (20%, respectively) but also other stressful events (eg, major pain, surgery, strenuous physical activity, heat, pregnancy) or unexplained sudden onset of AC (7%) were documented. Patients with a previous AC were at higher risk of crisis (odds ratio 2.85, 95% confidence interval 1.5-5.5, P < .01). However, no further risk factors could be identified. Ten patients died during follow-up; in four cases death was associated with AC (0.5 AC related deaths per 100 patient-years). Even in educated patients with chronic adrenal insufficiency, AC occurs in a substantial proportion of cases. Furthermore, we identified AC-associated mortality in approximately 6% of AC. Our findings further emphasize the need for improved management of AC in patients with chronic AI.
NASA Astrophysics Data System (ADS)
Taşçıoğlu, İ.; Tüzün Özmen, Ö.; Şağban, H. M.; Yağlıoğlu, E.; Altındal, Ş.
2017-04-01
In this study, poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT:PCBM:F4-TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements in the frequency range of 10 kHz-2 MHz. The C- V- f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states ( N ss). The values of N ss located in semiconductor bandgap at the organic film/semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant ( ɛ') and dielectric loss ( ɛ″) decrease with increasing frequency, whereas loss tangent (tan δ) remains nearly the same. The decrease in ɛ' and ɛ″ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity ( σ ac) and electric modulus ( M' and M″) increase with increasing frequency.
Diclofenac in hyaluronic acid gel: an alternative treatment for actinic cheilitis
LIMA, Giana da Silveira; da SILVA, Gabriela Ferrari; GOMES, Ana Paula Neutzling; de ARAÚJO, Lenita Maria Aver; SALUM, Fernanda Gonçalves
2010-01-01
Objective Actinic cheilitis (AC) is a precancerous lesion of the lip vermillion caused by prolonged exposure to ultraviolet light. The aim of this study was to evaluate the effect of 3% diclofenac in 2.5% hyaluronic acid gel in the treatment of AC. Methods Thirty-four patients with chronic AC were treated twice a day with topical diclofenac during a period of 30 to 180 days. The individuals were followed up every 15 days by means of clinical examination and digital photographic documentation. Results Of the 27 patients that completed the study, 12 (44%) showed complete remission of the whitish plaques and exfoliative areas, and 15 (56%) had partial remission of the clinical picture of cheilitis. The latter group was submitted to excision of the leukoplakic areas which diagnosis varied from mild to moderate epithelial dysplasia. Conclusion The results suggest a promising role for diclofenac in hyaluronic acid gel in the treatment of AC. This treatment has the advantages of not being invasive and showing few side effects. PMID:21085813
Hamajima, Rina; Kobayashi, Michihiro; Ikeda, Motoko
2017-04-02
We previously demonstrated that ribosomal RNA (rRNA) of Bombyx mori BM-N cells is rapidly degraded upon infection with heterologous nucleopolyhedroviruses (NPVs), including Autographa californica multiple NPV (AcMNPV), Hyphantria cunea MNPV, Spodoptera exigua MNPV and S. litura MNPV, and that this response is triggered by viral P143 proteins. The transient expression of P143 proteins from heterologous NPVs was also shown to induce apoptosis and caspase-3-like protease activation in BM-N cells. In the present study, we conducted a transient expression assay using BM-N cells expressing mutant AcMNPV P143 (Ac-P143) proteins and demonstrated that five amino acid residues cooperatively participate in Ac-P143 protein-triggered apoptosis of BM-N cells. Notably, these five residues were previously shown to be required for triggering rRNA degradation in BM-N cells. As rRNA degradation in BM-N cells does not result from apoptosis, the present results suggest that Ac-P143-triggered rRNA degradation is the upstream signal for apoptosis induction in BM-N cells. We further showed that P143 protein-triggered apoptosis does not occur in S. frugiperda Sf9 or Lymantria dispar Ld652Y cells, indicating that apoptosis induction by heterologous P143 proteins is a BM-N cell-specific response. In addition, the observed induction of apoptosis in BM-N cells was found to be mediated by activation of the initiator caspase Bm-Dronc. Taken together, these results suggest that BM-N cells evolved a unique antiviral system that recognizes heterologous NPV P143 proteins to induce rRNA degradation and caspase-dependent apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.
2005-03-01
anti- HLA -A2, -A24, -A28 mAb CR11-351 (13,14); anti- HLA -A2, -A28 mAb KS-1 (14); anti- HLA -B7, - B27 , -Bw42, -Bw54, -Bw55, -Bw56, -Bw67, -Bw73 mAb KS-4 (15...AD Award Number: W81XWH-04-1-0372 TITLE: CTL-Tumor Cell Interaction: The Generation of Molecular Probes of Monitoring the HLA -A*0201-HER-2/neu...AND SUBTITLE 5. FUNDING NUMBERS CTL-Tumor Cell Interaction: The Generation of Molecular W81XWH-04-1-0372 Probes of Monitoring the HLA -A*0201-HER-2/neu
Han, Jin; Wan, Hai-Tong; Yang, Jie-Hong; Zhang, Yu-Yan; Ge, Li-Jun; Bie, Xiao-Dong
2014-01-01
This study aimed to evaluate the effect of ligustrazine on levels of amino acid transmitters in the extracellular fluid of striatum following cerebral ischemia/reperfusion (I/R) in male Sprague-Dawley rats. A microdialysis cannula guide was implanted into the right striatum. After recovery, animals underwent a sham operation or middle cerebral artery occlusion (MCAO). Those that developed cerebral ischemia after MCAO were randomized to receive propylene glycol salt water and ligustrazine respectively. Striatal fluid samples were collected from all animals at 15-min intervals after treatment and were subjected to HPLC analysis of aspartic acid, glutamic acid, taurine, and γ-amino butyric acid. Upon the last sample collection, animals were sacrificed and brain tissue specimens were collected for triphenyltetrazolium chloride staining and NeuN staining. Compared with the sham operation, MCAO induced significant neurological deficits and increased striatal concentrations of the four neurotransmitters assessed in a time-dependent manner (P < 0.01). Ligustrazine effectively attenuated the detrimental effects of MCAO on the brain. These observations suggest that ligustrazine as a novel cerebral infarction-protective agent may have potential clinical implications for I/R-related brain damage.
Khota, Waroon; Pholsen, Suradej; Higgs, David; Cai, Yimin
2016-12-01
Natural lactic acid bacteria (LAB) populations in tropical grasses and their fermentation characteristics on silage prepared with cellulase enzyme and LAB inoculants were studied. A commercial inoculant Lactobacillus plantarum Chikuso 1 (CH), a local selected strain Lactobacillus casei TH14 (TH14), and 2 cellulases, Acremonium cellulase (AC) and Maicelase (MC; Meiji Seika Pharma Co. Ltd., Tokyo, Japan), were used as additives to silage preparation with fresh and wilted (6 h) Guinea grass and Napier grass. Silage was prepared using a laboratory-scale fermentation system. Treatments were CH, TH14, AC at 0.01% fresh matter, AC 0.1%, MC 0.01%, MC 0.1%, CH+AC 0.01%, CH+AC 0.1%, CH+MC 0.01%, CH+MC 0.1%, TH14+AC 0.1%, TH14+AC 0.01%, TH14+MC 0.1%, and TH14+MC 0.01%. Microorganism counts of Guinea grass and Napier grass before ensiling were 10 2 LAB and 10 6 aerobic bacteria; these increased during wilting. Based on morphological and biochemical characteristics, and 16S rRNA gene sequence analysis, natural strains from both grasses were identified as L. plantarum, L. casei, Lactobacillus acidipiscis, Leuconostoc pseudomesenteroides, Leuconostoc garlicum, Weissella confusa, and Lactococcus lactis. Lactobacillus plantarum and L. casei are the dominant species and could grow at lower pH and produce more lactic acid than the other isolates. Crude protein and neutral detergent fiber were 5.8 and 83.7% of dry matter (DM) for Guinea grass, and 7.5 and 77.1% of DM for Napier grass. Guinea grass had a low level of water-soluble carbohydrates (0.39% of DM). Guinea grass silage treated with cellulase had a lower pH and higher lactic acid content than control and LAB treatments. The 0.1% AC and MC treatments had the best result for fermentation quality. All high water-soluble carbohydrate (2.38% DM) Napier grass silages showed good fermentation quality. Compared with control and LAB-inoculated silage, the cellulase-treated silages had significantly higher crude protein content and lower neutral detergent fiber and acid detergent fiber contents. The results confirmed that cellulase could improve tropical silage quality, inhibiting protein degradation and promoting fiber degradation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Krakowski, L; Bartoszek, P; Krakowska, I; Olcha, P; Piech, T; Stachurska, A; Brodzki, P
2017-03-01
The aim of the study was to evaluate physiological changes in hematological and biochemical parameters in mares in perinatal period. Blood samples were collected from 24 pregnant Polish Konik breed mares which were divided into two groups. The first group (Group - I, n=12) comprised mares living in the wild, in the reserve. The second group (Group - II, n=12) consisted of mares kept in stables. The blood was collected 2 weeks prior to the parturition, then 24 hours after the delivery, and then at the 7th and 21st day after foaling. When comparing the two groups before the parturition, no significant differences in terms of WBC, RBC, and Hb were found, however, there was a significant difference in MCV, MCH, LYM, NEU and SEG NEU (p≤0.05). In Group II, 24 hours after the parturition and at the 21st day after foaling, a significant raise in WBC, NEU and SEG NEU (p≤0.05) was detected. No significant differences in serum concentrations of proteins such as TP, Alb or Glb were observed. As to acute phase proteins, significant rise in SAA and Hp (p≤0.05) was found in the two examined groups 24 hours after the parturition. Yet, this rise remained within physiological range. The study revealed a certain degree of fluctuations in hematological parameters, in serum concentrations of acute-phase proteins and total proteins in the mares in the perinatal period. However, these changes remained still within physiological ranges and thus they do not indicate potential susceptibility to disorders of perinatal period.
Wanassi, Béchir; Hariz, Ichrak Ben; Ghimbeu, Camélia Matei; Vaulot, Cyril; Hassen, Mohamed Ben; Jeguirim, Mejdi
2017-04-01
Recycling cotton waste derived from the textile industry was used as a low-cost precursor for the elaboration of an activated carbon (AC) through carbonization and zinc chloride chemical activation. The AC morphological, textural, and surface chemistry properties were determined using different analytical techniques including Fourier transform infrared, temperature programmed desorption-mass spectroscopy, nitrogen manometry and scanning electron microscopy. The results show that the AC was with a hollow fiber structure in an apparent diameter of about 6.5 μm. These analyses indicate that the AC is microporous and present a uniform pore size distributed centered around 1 nm. The surface area and micropore volume were 292 m 2 .g -1 and 0.11 cm 3 .g -1 , respectively. Several types of acidic and basic oxygenated surface groups were highlighted. The point of zero charge (pH PZC ) of theca was 6.8. The AC performance was evaluated for the removal of Alizarin Red S (ARS) from aqueous solution. The maximum adsorption capacity was 74 mg.g -1 obtained at 25 °C and pH = 3. Kinetics and equilibrium models were used to determine the interaction nature of the ARS with the AC. Statistical tools were used to select the suitable models. The pseudo-second order was found to be the most appropriate kinetic model. The application of two and three isotherm models shows that Langmuir-Freundlich (n = 0.84, K = 0.0014 L.mg -1 , and q = 250 mg.g -1 ) and Sips (n = 0.84, K = 0.003 L.mg -1 , and q = 232.6 mg.g -1 ) were the suitable models. The results demonstrated that cotton waste can be used in the textile industry as a low-cost precursor for the AC synthesis and the removal of anionic dye from textile wastewater.
A comprehensive glycome profiling of Huntington's disease transgenic mice.
Gizaw, Solomon T; Koda, Toshiaki; Amano, Maho; Kamimura, Keiko; Ohashi, Tetsu; Hinou, Hiroshi; Nishimura, Shin-Ichiro
2015-09-01
Huntington's disease (HD) is an autosomal, dominantly inherited and progressive neurodegenerative disease, nosologically classified as the presence of intranuclear inclusion bodies and the loss of GABA-containing neurons in the neostriatum and subsequently in the cerebellar cortex. Abnormal processing of neuronal proteins can result in the misfolding of proteins and altered post-translational modification of newly synthesized proteins. Total glycomics, namely, N-glycomics, O-glycomics, and glycosphingolipidomics (GSL-omics) of HD transgenic mice would be a hallmark for central nervous system disorders in order to discover disease specific biomarkers. Glycoblotting method, a high throughput glycomic protocol, and matrix-assisted laser desorption ionization-time of flight/mass spectrometry (MALDI-TOF/MS) were used to study the total glycome expression levels in the brain tissue (3 mice of each sex) and sera (5 mice of each sex) of HD transgenic and control mice. All experiments were performed twice and differences in the expression levels of major glycoforms were compared between HD transgenic and control mice. We estimated the structure and expression levels of 87 and 58N-glycans in brain tissue and sera, respectively, of HD transgenic and control mice. The present results clearly indicated that the brain glycome and their expression levels are significantly gender specific when compared with those of other tissues and serum. Core-fucosylated and bisecting-GlcNAc types of N-glycans were found in increased levels in the brain tissue HD transgenic mice. Accordingly, core-fucosylated and sialic acid (particularly N-glycolylneuraminic acid, NeuGc) for biantennary type glycans were found in increased amounts in the sera of HD transgenic mice compared to that of control mice. Core 3 type O-glycans were found in increased levels in male and in decreased levels in both the striatum and cortexes of female HD transgenic mice. Furthermore, serum levels of core 1 type O-glycans decreased and were undetected for core 2 type O-glycans for HD transgenic mice. In glycosphingolipids, GD1a in brain tissue and GM2-NeuGc serum levels were found to have increased and decreased, respectively, in HD transgenic mice compared to those of the control group mice. Total glycome expression levels are significantly different between HD transgenic and control group mice. Glycoblotting combined with MALDI-TOF/MS total glycomics warrants a comprehensive, effective, novel and versatile technique for qualitative and quantitative analysis of total glycome expression levels. Furthermore, glycome-focused studies of both environmentally and genetically rooted neurodegenerative diseases are promising candidates for the discovery of potential disease glyco-biomarkers in the post-genome era. Copyright © 2015 Elsevier B.V. All rights reserved.
Themistocleous, Andreas C.; Ramirez, Juan D.; Shillo, Pallai R.; Lees, Jonathan G.; Selvarajah, Dinesh; Orengo, Christine; Tesfaye, Solomon; Rice, Andrew S.C.; Bennett, David L.H.
2016-01-01
Abstract Disabling neuropathic pain (NeuP) is a common sequel of diabetic peripheral neuropathy (DPN). We aimed to characterise the sensory phenotype of patients with and without NeuP, assess screening tools for NeuP, and relate DPN severity to NeuP. The Pain in Neuropathy Study (PiNS) is an observational cross-sectional multicentre study. A total of 191 patients with DPN underwent neurological examination, quantitative sensory testing, nerve conduction studies, and skin biopsy for intraepidermal nerve fibre density assessment. A set of questionnaires assessed the presence of pain, pain intensity, pain distribution, and the psychological and functional impact of pain. Patients were divided according to the presence of DPN, and thereafter according to the presence and severity of NeuP. The DN4 questionnaire demonstrated excellent sensitivity (88%) and specificity (93%) in screening for NeuP. There was a positive correlation between greater neuropathy severity (r = 0.39, P < 0.01), higher HbA1c (r = 0.21, P < 0.01), and the presence (and severity) of NeuP. Diabetic peripheral neuropathy sensory phenotype is characterised by hyposensitivity to applied stimuli that was more marked in the moderate/severe NeuP group than in the mild NeuP or no NeuP groups. Brush-evoked allodynia was present in only those with NeuP (15%); the paradoxical heat sensation did not discriminate between those with (40%) and without (41.3%) NeuP. The “irritable nociceptor” subgroup could only be applied to a minority of patients (6.3%) with NeuP. This study provides a firm basis to rationalise further phenotyping of painful DPN, for instance, stratification of patients with DPN for analgesic drug trials. PMID:27088890
Köhrle, J; Rasmussen, U B; Rokos, H; Leonard, J L; Hesch, R D
1990-04-15
125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney. The pattern of other affinity labeled proteins with p27 as the predominant band was similar in liver and kidney. Peptide mapping of affinity labeled p27 and p55 bands by chemical cleavage and protease fragmentation revealed no common bands excluding that p27 is a degradation product of p55. These data indicate that N-bromoacetyl derivatives of T4 and T3 affinity label a limited but similar constellation of membrane proteins with BrAcT4 incorporation greater than that of BrAcT3. One membrane protein (p27) of low abundance (2-5 pmol/mg microsomal protein) with a reactive sulfhydryl group is selectively labeled under conditions identical to those used to measure thyroid hormone 5'-deiodination. Only p27 showed differential affinity labeling in the presence of noncovalently bound inhibitors or substrates on 5'-deiodinase suggesting that p27 is likely to be a component of type I 5'-deiodinase in rat liver and kidney.
Binding affinities of NKG2D and CD94 to sialyl Lewis X-expressing N-glycans and heparin.
Higai, Koji; Suzuki, Chiho; Imaizumi, Yuzo; Xin, Xin; Azuma, Yutaro; Matsumoto, Kojiro
2011-01-01
Lectin-like receptors natural killer group 2D (NKG2D) and CD94 on natural killer (NK) cells bind to α2,3-NeuAc-containing N-glycans and heparin/heparan sulfate (HS). Using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rGST-NKG2Dlec) and CD94 (rGST-CD94lec), we evaluated their binding affinities (K(d)) to high sialyl Lewis X (sLeX)-expressing transferrin secreted by HepG2 cells (HepTf) and heparin-conjugated bovine serum albumin (Heparin-BSA), using quartz crystal microbalance (QCM) and enzyme immunoassay (EIA) microplate methods. K(d) values obtained by linear reciprocal plots revealed good coincidence between the two methods. K(d) values of rGST-NKG2Dlec obtained by QCM and EIA, respectively, were 1.19 and 1.11 µM for heparin-BSA >0.30 and 0.20 µM for HepTf, while those of rGST-CD94lec were 1.31 and 1.45 µM for HepTf >0.37 and 0.36 µM for heparin-BSA. These results suggested that these glycans can interact with NKG2D and CD94 to modulate NK cell-dependent cytotoxicity.
Zhao, Yimin; Liu, Jianhui; Hao, Wangjun; Zhu, Hanyue; Liang, Ning; He, Zouyan; Ma, Ka Ying; Chen, Zhen-Yu
2017-12-20
Previous studies have shown that short-chain fatty acids (SCFAs) are capable of decreasing plasma cholesterol. However, the relative plasma-cholesterol-lowering activity of individual SCFAs and the underlying mechanisms by which SCFAs decrease plasma cholesterol remain largely unknown. The present study was done to compare the plasma-cholesterol-lowering potencies of four common SCFAs with 2-5 carbons and to investigate their interactions with gene expressions of key regulatory factors involved in cholesterol metabolism. For 6 weeks, five groups of male Golden hamsters were fed either a control high-cholesterol diet (HCD) or one of the four experimental HCDs containing 0.5 mol of acetate (Ac), propionate (Pr), butyrate (Bu), or valerate (Va) per kilogram of the diet. The results showed that Ac, Pr, and Bu significantly reduced plasma total cholesterol (TC) by 24, 18, and 17% (P < 0.05), respectively. All four SCFAs could decrease non-HDL cholesterol (non-HDL-C) and the non-HDL-C/HDL-C ratio. The addition of Ac, Pr, or Bu into the diet significantly promoted fecal excretion of bile acids by 121, 113, or 120% (P < 0.05), respectively, and upregulated the gene expressions of sterol-regulatory-element-binding protein 2 (SREBP2), low-density-lipoprotein receptor (LDLR), and cholesterol 7α-hydroxylase (CYP7A1) in the liver. It was concluded that SCFAs with 2-4 carbons (Ac, Pr, and Bu) are more hypocholesterolemic than Va, which has 5 carbons, via enhancing fecal excretion of bile acids and promoting the hepatic uptake of cholesterol from the blood.
May, Addison K; Cuschieri, Joseph; Johnson, Jeffrey L; Duane, Therese M; Cherry-Bukowiec, Jill R; Rosengart, Matthew R
2013-12-01
Recent data highlight the educational, financial, and healthcare benefits of acute care surgery (ACS). These data serve as the impetus to create ACS fellowships, which now are accredited by the American Association for the Surgery of Trauma. However, the core components of a curriculum fundamental for ACS training and that yield competence and proficiency have yet to be determined. Experts in ACS from the United States (n=86) were asked to propose topics in surgical infectious diseases of potential importance in developing a core curriculum for ACS fellowship training. They were then required to rank these topics in order of importance to identify those considered most fundamental. Thirty-one filters ranking in the highest tertile are proposed as topics of surgical infectious diseases that are fundamental to any curriculum of ACS fellowship training. The majority pertains to aspects of thoracic infections (n=8), although topics of soft tissue infections (n=5) comprised four of the top 10 (40%) filters. Abdominal infections (n=6), the biology of sepsis (n=6), and risk, prevention, and prophylaxis (n=6) completed the list. This study identifies the most important topics of surgical infectious disease that merit consideration for incorporation into a core curriculum of ACS training. Hopefully, this information will assist in the development of ACS fellowships that optimize the training of future ACS surgeons.
Hamilton, A J; Jeavons, L; Youngchim, S; Vanittanakom, N
1999-10-01
Adhesion of Penicillium marneffei conidia to the extracellular matrix protein laminin via a sialic acid-dependent process has previously been demonstrated. This study describes the interaction of P. marneffei conidia with fibronectin and examines the relationship of this process to the recognition of laminin via conidia. Immunofluorescence microscopy demonstrated that fibronectin bound to the surface of conidia and to phialides, but not to hyphae, in a pattern similar to that reported for laminin. Conidia were able to bind to fibronectin immobilized on microtiter plates in a concentration-dependent manner. However, binding to fibronectin (at any given concentration of protein and conidia) was less than that to laminin under equivalent conditions. Soluble fibronectin and antifibronectin antibody inhibited adherence of conidia to fibronectin in the plate adherence assay; soluble laminin also caused pronounced inhibition. Various monosaccharides and several peptides had no effect on adherence to fibronectin. However, N-acetylneuraminic acid abolished adherence to fibronectin, indicating that the interaction was mediated through a sialic acid-dependent process; the latter parallels observations of laminin binding by conidia. Fibronectin binding (and binding of laminin) was considerably reduced by prolonged preincubation of conidia with chymotrypsin, suggesting the protein nature of the binding site. Conidia from older cultures were more adherent to both immobilized fibronectin and laminin than conidia from younger cultures. Ligand affinity binding demonstrated the presence of a 20-kDa protein with the ability to bind both fibronectin and laminin. There would therefore appear to be a common receptor for the binding of fibronectin and laminin on the surface of P. marneffei, and the interaction described here maybe important in mediating attachment of the fungus to host tissue.
New indole, aminoindole and pyranoindole derivatives with anti-inflammatory activity.
Nakkady, S S; Fathy, M M; Hishmat, O H; Mahmond, S S; Ebeid, M Y
2000-01-01
6-Methoxy-1-methyl-2,3-diphenyl indol-5-carboxaldehyde (2) was demethylated to give the 6-hydroxy derivative (3) which was cyclized to the pyrano[3,2-f]indole derivatives (4a-d) by the action of ethyl acetoacetate, diethyl malonate, malononitrile, ethyl cyanoacetate. When 4c was boiled in acetic acid, it gave 4d. Reduction of 4c by sodium borohydride yielded the orthoaminonitrile (5). Friedel Craft's acetylation of 1b yielded the 5-acetyl derivative (6), which reacted with hydrazine hydrate, o-toluidine and o-aminophenol to afford (7a-c). Demethylation of (1b) yielded the hydroxyl derivative (8), which differs from compound (9) obtained by demethylation of 6-methoxy-2,3-diphenyl-indole (1a). Friedel Craft's acetylation of 9 gave the 7-acetyl compound (10) which yielded the hydrazone (11). The reaction of primary aromatic amines, (i.e. p-nitroaniline, p-anisidine and p-bromo aniline) with 6-methoxy-1-methyl-2,3-diphenyl-indol-5-carboxaldehyde (2) gave the Schiff bases (12a-c). The latter compounds were reduced by sodium borohydride to yield the corresponding Mannich bases (13a-c). Treatment of 12a-c with thioglycolic acid led to the thiazolidin-4-one-derivatives (14a-c). When (12a-c) reacted with cyanoacetamide, the amino group was replaced by the active methylene to form the cyano compound (15). The structure was confirmed by reacting the carboxaldehyde (2) with cyanoacetamide to yield (15). Pharmacological screening was has been carried out to test the anti-inflammatory activity, ulcerogenecity, effect on the isolated rabbit intestine and the antispasmodic activity.
Neurobiological Effects of Morphine after Spinal Cord Injury
Woller, Sarah A.; Bancroft, Eric; Aceves, Miriam; Funk, Mary Katherine; Hartman, John; Garraway, Sandra M.
2017-01-01
Abstract Opioids and non-steroidal anti-inflammatory drugs are used commonly to manage pain in the early phase of spinal cord injury (SCI). Despite its analgesic efficacy, however, our studies suggest that intrathecal morphine undermines locomotor recovery and increases lesion size in a rodent model of SCI. Similarly, intravenous (IV) morphine attenuates locomotor recovery. The current study explores whether IV morphine also increases lesion size after a spinal contusion (T12) injury and quantifies the cell types that are affected by early opioid administration. Using an experimenter-administered escalating dose of IV morphine across the first seven days post-injury, we quantified the expression of neuron, astrocyte, and microglial markers at the injury site. SCI decreased NeuN expression relative to shams. In subjects with SCI treated with IV morphine, virtually no NeuN+ cells remained across the rostral-caudal extent of the lesion. Further, whereas SCI per se increased the expression of astrocyte and microglial markers (glial fibrillary acidic protein and OX-42, respectively), morphine treatment decreased the expression of these markers. These cellular changes were accompanied by attenuation of locomotor recovery (Basso, Beattie, Bresnahan scores), decreased weight gain, and the development of opioid-induced hyperalgesia (increased tactile reactivity) in morphine-treated subjects. These data suggest that morphine use is contraindicated in the acute phase of a spinal injury. Faced with a lifetime of intractable pain, however, simply removing any effective analgesic for the management of SCI pain is not an ideal option. Instead, these data underscore the critical need for further understanding of the molecular pathways engaged by conventional medications within the pathophysiological context of an injury. PMID:27762659
Code of Federal Regulations, 2012 CFR
2012-04-01
... and 7 The dye is dissolved in glacial acetic and 8 N hydrochloric acids (1.33 : 1) and extracted with... required. (A) Glacial Acetic Acid (ACS grade). (B) Diethyl ether (Anhydrous)—Note and follow safety... acetic acid to the beaker and stir. Place the beaker on a hot plate and heat with stirring, until all of...
Code of Federal Regulations, 2011 CFR
2011-04-01
... and 7 The dye is dissolved in glacial acetic and 8 N hydrochloric acids (1.33 : 1) and extracted with... required. (A) Glacial Acetic Acid (ACS grade). (B) Diethyl ether (Anhydrous)—Note and follow safety... acetic acid to the beaker and stir. Place the beaker on a hot plate and heat with stirring, until all of...
Organic acid-tolerant microorganisms and uses thereof for producing organic acids
Pfleger, Brian Frederick; Begemann, Matthew Brett
2014-05-06
Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.
Wang, Jingping; Zhang, Yuean; Wang, Huixian; Zeng, Xiaoxia; Yang, Jinjing; Dong, Jin; Wang, Jianling; Yang, Yan; Wang, Rijun; Zhang, Xiaojuan; Chai, Xiaohong; Zhang, Haozhou; Li, Bao
2015-02-17
To explore the levels of autoantibodies against AT1-receptor (AT1-AA) in hypertensive patients with acute coronary syndrome (ACS) and observe the in vitro effects of AT1-AA on resting tension of isolated anterior descending artery of vascular ring in male Wistar rats. All patients were recruited from June 2007 to August 2008. There were hypertensive patients with ACS (n = 120), those with simple hypertension (n = 253) and those with simple ACS (n = 115). And the outpatients for health examination during the same period were selected as healthy control group (n = 188). The second extracellular loop amino acid sequences of peptides of ATI receptor was synthesized and used as antigen (AT1-Ag) and sialic acid-enzyme-linked immunosorbent assay (SA-ELISA) for detect the serum levels of AT1-AA. Microvascular ring tension technology was used to test the vascular loop resting tension of anterior descending coronary artery from rats induced by a high-fat diet. The positive rates of AT1-AA in patients with simple hypertension (35.2%) and those with simple ACS (30.4%) were significantly higher than those in healthy control group (7.2%, P < 0.01). And the positive rate of AT1-AA in hypertensive patients with ACS (43.3%) was significantly higher than that in those with simple hypertension (35.2%, P < 0.05) and that in healthy control group (7.2%, P < 0.05).Furthermore, AT1-AA increased the vascular loop resting tension of anterior descending coronary artery rings in rats induced by a high-fat diet in a dose-dependant manner. And the vasoconstrictive action of AT1-AA was equal to 46.4% of AngII's action. And such an action was blocked by losartan and antigens. The level of AT1-AA increases markedly in hypertensive patients with ACS. And AT1-AA induces vasoconstrictive effects on anterior descending artery rings in rats induced by a high-fat diet.
Dostalek, Miroslav; Court, Michael H; Hazarika, Suwagmani; Akhlaghi, Fatemeh
2011-03-01
Mycophenolic acid (MPA) is an immunosuppressive agent commonly used after organ transplantation. Altered concentrations of MPA metabolites have been reported in diabetic kidney transplant recipients, although the reason for this difference is unknown. We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors. Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized. We have found that both diabetic and nondiabetic human liver microsomes and kidney microsomes formed MPAG with similar efficiency; however, AcMPAG formation was significantly lower in diabetic samples. This finding is supported by markedly lower glucuronidation of the UGT2B7 probe zidovudine, UGT2B7 protein, and UGT2B7 mRNA in diabetic tissues. UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation. Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation. These findings suggest that diabetes mellitus is associated with significantly reduced UGT2B7 mRNA expression, protein level, and enzymatic activity of human liver and kidney, explaining in part the relatively low circulating concentrations of AcMPAG in diabetic patients.
Reddy, Lakshmi Lavanya; Shah, Swarup A V; Dherai, Alpa J; Ponde, Chandrashekhar K; Ashavaid, Tester F
2016-03-01
Acute coronary syndrome (ACS) is a term for a range of clinical signs and symptoms suggestive of myocardial ischemia. It results in functional and structural changes and ultimately releasing protein from injured cardiomyocytes. These cardiac markers play a major role in diagnosis and prognosis of ACS. This study aims to assess the efficacy of heart type fatty acid binding protein (h-FABP) as a marker for ACS along with the routinely used hs-TropT. In our observational study, plasma h-FABP (cut-off 6.32 ng/ml) and routinely done hs-Trop T (cutoff 0.1 and 0.014 ng/ml) were estimated by immunometric laboratory assays in 88 patients with acute chest pain. Based on the clinical and laboratory test findings the patients were grouped into ACS (n = 41) and non-ACS (n = 47). The diagnostic sensitivity, specificity, NPV, PPV and ROC curve at 95 % CI were determined. Sensitivity of hs-TropT (0.1 ng/ml), hs-TropT (0.014 ng/ml) and h-FABP were 53, 86 and 78 % respectively and specificity for the same were 98, 73 and 70 % respectively. Sensitivity, specificity and NPV calculated for a cut-off combination of hs-TropT 0.014 ng/ml and h-FABP was 100, 51 and 100 % respectively. These results were substantiated by ROC analysis. Measurement of plasma h-FABP and hs-TropT together on admission appears to be more precise predictor of ACS rather than either hs-Trop T or h-FABP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yaru; Xing, Zhiyan; Zhang, Xiao
To systematically explore the influence of inorganic anions on building coordination complexes, five novel complexes based on 1-(benzotriazole-1-methyl)−2-propylimidazole (bpmi), [Cu(bpmi){sub 2}(Ac){sub 2}]·H{sub 2}O (1), [Cu(bpmi){sub 2}(H{sub 2}O){sub 2}]·2NO{sub 3}·2H{sub 2}O (2), [Cu(bpmi)(N{sub 3}){sub 2}] (3), [Ag(bpmi)(NO{sub 3})] (4) and [Cu{sub 3}(bpmi){sub 2}(SCN){sub 4}(DMF)] (5) (Ac{sup −}=CH{sub 3}COO{sup −}, DMF=N,N-Dimethylformamide) are synthesized through rationally introducing Cu(II) salts and Ag(I) salt with different inorganic anions. X-ray single-crystal analyses reveal that these complexes show interesting structural features from mononuclear (1), one-dimensional (2 and 3), two-dimensional (4) to three-dimensional (5) under the influence of inorganic anions with different basicities. The structural variation can bemore » explained by the hard-soft-acid-base (HSAB) theory. Magnetic susceptibility measurement indicates that complex 3 exhibits an antiferromagnetic coupling between adjacent Cu(II) ions. - Graphical abstract: Five new Cu(II)/Ag(I) complexes show interesting structural features from mononuclear, one-dimension, two-dimension to three-dimension under the influence of inorganic anions. The structural variation can be explained by the HSAB theory. - Highlights: • Five inorganic anion-dependent complexes are synthesized. • Structural variation can be explained by the hard-soft-acid-base (HSAB) theory. • The magnetic property of complex has been studied.« less
Pozdnyakova, Olga; Hoang, Mai M P; Dresser, Karen A; Mahalingam, Meera
2009-08-01
Our recent experience with a patient developing cutaneous metastases within 3 months of diagnosis of esophageal adenocarcinoma suggests that altered expression of the cellular adhesion molecules, E-cadherin and CD44v6, may have had a role to play in the rapid onset of metastases. To corroborate these findings, we designed a cross-sectional study to investigate the expression of select molecules involved in the metastatic cascade. E-cadherin, beta-catenin, CD44v6, and HER2/neu immunohistochemical stains were performed on archival materials of metastatic adenocarcinoma to the skin from 27 patients and the available corresponding primary tumors in 10 patients. The primary sites included breast (n = 10; 37%), gastrointestinal tract (n = 10; 37%), ovary (n = 1; 4%), thyroid (n = 2; 7%), lung (n = 1; 4%), and unknown primary (n = 3; 11%). Expression of all markers was noted with the most significant increases observed in beta-catenin (26 of 27 cases; 96%), followed by CD44v6 (24 of 27 cases; 89%), E-cadherin (22 of 27 cases; 82%), and HER2/neu (11 of 27 cases; 41%). Contrasting expression of these molecules in the primary versus the metastatic tumors, enhanced expression of CD44v6 was observed in the cutaneous metastases relative to the primary in 6 of 10 (60%) cases. Of interest, 2 of these 6 cases (33%) also showed reduction in E-cadherin--a member of the cadherin family functioning as an invasion suppressor molecule. These findings reinforce the complexities of the metastatic cascade and imply that the variation in adhesive properties of tumor cells is, perhaps, a consequence of the difference in density of the molecules mediating this process.
Wang, Xiaoyan; Wang, Jian-Ping; Rao, Xiao-Mei; Price, Janet E; Zhou, Heshan S; Lachman, Lawrence B
2005-01-01
Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.
Lasiojasmonates A-C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen.
Andolfi, Anna; Maddau, Lucia; Cimmino, Alessio; Linaldeddu, Benedetto T; Basso, Sara; Deidda, Antonio; Serra, Salvatorica; Evidente, Antonio
2014-07-01
In this study, a strain (BL 101) of a species of Lasiodiplodia, not yet formally described, which was isolated from declining grapevine plants showing wedge-shaped cankers, was investigated for its ability to produce in vitro bioactive secondary metabolites. From culture filtrates of this strain three jasmonic acid esters, named lasiojasmonates A-C and 16-O-acetylbotryosphaerilactones A and C were isolated together with (1R,2R)-jasmonic acid, its methyl ester, botryosphaerilactone A, (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone and (3R,4S)-botryodiplodin. The structures of lasiojasmonates A-C were established by spectroscopic methods as (1R*,2R*,3'S*,4'R*,5'R*)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, (1R*,2R*,3'S*,4'R*,5'R*,10'R*,12'R*,13'R*,14'S*) and (1R*,2R*,3'S*,4'R*,5'R*,10'S*,12'R*,13'R*,14'S*)-4-(4-hydroxymethyl-3,5-dimethyltetrahydro-furan-2-yloxymethyl)-3,5-dimethyldihydro-2-furanones jasmonates (1, 4 and 5). The structures of 16-O-acetylbotryosphaerilactones A and C were determined by comparison of their spectral data with those of the corresponding acetyl derivatives obtained by acetylation of botryosphaerilactone A. The metabolites isolated, except 4 and 5, were tested at 1mg/mL on leaves of grapevine cv. Cannonau and cork oak using the leaf puncture assay. They were also tested on detached grapevine leaves at 0.5mg/mL and tomato cuttings at 0.1mg/mL. In all phytotoxic assays only jasmonic acid was found to be active. All metabolites were inactive in the zootoxic assay at 50 μg/mL. Copyright © 2014. Published by Elsevier Ltd.
PinaColada: peptide-inhibitor ant colony ad-hoc design algorithm.
Zaidman, Daniel; Wolfson, Haim J
2016-08-01
Design of protein-protein interaction (PPI) inhibitors is a major challenge in Structural Bioinformatics. Peptides, especially short ones (5-15 amino acid long), are natural candidates for inhibition of protein-protein complexes due to several attractive features such as high structural compatibility with the protein binding site (mimicking the surface of one of the proteins), small size and the ability to form strong hotspot binding connections with the protein surface. Efficient rational peptide design is still a major challenge in computer aided drug design, due to the huge space of possible sequences, which is exponential in the length of the peptide, and the high flexibility of peptide conformations. In this article we present PinaColada, a novel computational method for the design of peptide inhibitors for protein-protein interactions. We employ a version of the ant colony optimization heuristic, which is used to explore the exponential space ([Formula: see text]) of length n peptide sequences, in combination with our fast robotics motivated PepCrawler algorithm, which explores the conformational space for each candidate sequence. PinaColada is being run in parallel, on a DELL PowerEdge 2.8 GHZ computer with 20 cores and 256 GB memory, and takes up to 24 h to design a peptide of 5-15 amino acids length. An online server available at: http://bioinfo3d.cs.tau.ac.il/PinaColada/. danielza@post.tau.ac.il; wolfson@tau.ac.il. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
New Agents for Taxol-Resistant Breast Adenocarcinoma
2004-07-01
mg/ mi2 (14) using 3 hr infusion schedules failed to demonstrate marked improvement in disease response or survival, despite incurring severe sensory...analyzed immediately by flow cytometry. Immunoblotting The anti-human HER-2/neu mouse monoclonal antibody , clone 3B5, isotype IgGI, was obtained from...carboxyl domain of the human c-neu gene product. An affinity-purified sheep anti-mouse IgG whole antibody preparation conjugated to horseradish peroxidase
Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation.
Andrés-Barrao, Cristina; Saad, Maged M; Chappuis, Marie-Louise; Boffa, Mauro; Perret, Xavier; Ortega Pérez, Ruben; Barja, François
2012-03-16
Acetic acid bacteria (AAB) are Gram-negative, strictly aerobic microorganisms that show a unique resistance to ethanol (EtOH) and acetic acid (AcH). Members of the Acetobacter and Gluconacetobacter genera are capable of transforming EtOH into AcH via the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes and are used for the industrial production of vinegar. Several mechanisms have been proposed to explain how AAB resist high concentrations of AcH, such as the assimilation of acetate through the tricarboxylic acid (TCA) cycle, the export of acetate by various transporters and modifications of the outer membrane. However, except for a few acetate-specific proteins, little is known about the global proteome responses to AcH. In this study, we used 2D-DIGE to compare the proteome of Acetobacter pasteurianus LMG 1262(T) when growing in glucose or ethanol and in the presence of acetic acid. Interesting protein spots were selected using the ANOVA p-value of 0.05 as threshold and 1.5-fold as the minimal level of differential expression, and a total of 53 proteins were successfully identified. Additionally, the size of AAB was reduced by approximately 30% in length as a consequence of the acidity. A modification in the membrane polysaccharides was also revealed by PATAg specific staining. Copyright © 2011 Elsevier B.V. All rights reserved.
Application of 1-aminocyclohexane carboxylic acid to protein nanostructure computer design
Rodríguez-Ropero, Francisco; Zanuy, David; Casanovas, Jordi; Nussinov, Ruth; Alemán, Carlos
2009-01-01
Conformationally restricted amino acids are promising candidates to serve as basic pieces in redesigned protein motifs which constitute the basic modules in synthetic nanoconstructs. Here we study the ability of constrained cyclic amino acid 1-aminocyclohexane-1-carboxylic acid (Ac6c) to stabilize highly regular β-helical motifs excised from naturally occurring proteins. Calculations indicate that the conformational flexibility observed in both the ring and the main chain is significantly higher than that detected for other 1-aminocycloalkane-1-carboxylic acid (Acnc, where n refers to the size of the ring) with smaller cycles. Incorporation of Ac6c into the flexible loops of β-helical motifs indicates that the stability of such excised building blocks as well as the nano-assemblies derived from them is significantly enhanced. Thus, the intrinsic Ac6c tendency to adopt folded conformations combined with the low structural strain of the cyclohexane ring confers the ability to both self-adapt to the β-helix motif and to stabilize the overall structure by absorbing part of its conformational fluctuations. Comparison with other Acnc residues indicates that the ability to adapt to the targeted position improves considerably with the ring size, i.e. when the rigidity introduced by the strain of the ring decreases. PMID:18201062
Ge, Lilin; Lyu, Peng; Zhou, Mei; Zhang, Huiling; Wan, Yuantai; Li, Bin; Li, Renjie; Wang, Lei; Chen, Tianbao; Shaw, Chris
2014-01-01
Tryptophyllins are a diverse family of amphibian peptides originally found in extracts of phyllomedusine frog skin by chemical means. Their biological activities remain obscure. Here we describe the isolation and preliminary pharmacological characterization of a novel type 2 tryptophyllin, named AcT-2, from the skin secretion of the red-eyed leaf frog, Agalychnis callidryas. The peptide was initially identified during smooth muscle pharmacological screening of skin secretion HPLC fractions and the unique primary structure--GMRPPWF-NH2--was established by both Edman degradation and electrospray MS/MS fragmentation sequencing. A. cDNA encoding the biosynthetic precursor of AcT-2 was successfully cloned from a skin secretion-derived cDNA library by means of RACE PCR and this contained an open-reading frame consisting of 62 amino acid residues with a single AcT-2 encoding sequence located towards the C-terminus. A synthetic replicate of AcT-2 was found to relax arterial smooth muscle (EC50 = 5.1 nM) and to contract rat urinary bladder smooth muscle (EC50 = 9.3 μ M). The peptide could also inhibit the growth of the microorganisms, Staphylococcus aureus, (MIC = 256 mg/L) Escherichia coli (MIC = 512 mg/L), and Candida albicans (128 mg/L). AcT-2 is thus the first amphibian skin tryptophyllin found to possess both myotropic and antimicrobial activities.
Vartiainen, Johanna; Kesäniemi, Y Antero; Ukkola, Olavi
2006-10-01
Ghrelin is a 28-amino-acid peptide with several functions linked to energy metabolism. Low ghrelin plasma concentrations are associated with obesity, hypertension, and type 2 diabetes mellitus, whereas high concentrations reflect states of negative energy balance. Several studies addressing the hormonal and neural regulation of ghrelin gene expression have been carried out, but the role of genetic factors in the regulation of ghrelin plasma levels remains unclear. To elucidate the role of genetic factors in the regulation of ghrelin expression, we screened 1657 nucleotides of the ghrelin gene 5' flanking region (promoter and possible regulatory sites) for new sequential variations from patient samples with low (n = 50) and high (n = 50) fasting plasma total ghrelin concentrations (low- and high-ghrelin groups). Eleven single nucleotide polymorphisms (SNPs), 3 of which were rare variants (allelic frequency less than 1%) were found in our population. The genotype distribution patterns of the SNPs did not differ between the study groups, except for SNP-501A>C (P = .039). In addition, the SNP-01A>C was associated with body mass index (BMI) (P = .018). This variant was studied further in our large and well-defined Oulu Project Elucidating Risk for Atherosclerosis (OPERA) cohort (n = 1045) by the restriction fragment length polymorphism (RFLP) technique. No significant association of SNP-501A>C genotypes with fasting ghrelin plasma concentrations was found in the whole OPERA population. However, the association of this SNP with BMI and with waist circumference reached statistical significance in OPERA (P = .047 and .049, respectively), remaining of borderline significance for BMI after adjustments (P = .055). The results indicate that factors other than the 11 SNPs found in this study in the 5' flanking region of ghrelin gene are the main determinants of ghrelin plasma levels. However, SNP-501 A>C genotype distribution seems to be different in subjects having the highest compared with those with the lowest ghrelin levels, and the SNP may be associated with BMI and waist circumference.
Understanding the Etiology of Tuberous Sclerosis Complex
2012-07-01
catalog #4856), mouse anti-NeuN (1:500; Millipore), GFAP (1:100, DAKO) and DCX (1:500, Santa Cruz Biotechnology). Each staining was replicated in slices...Tramontin, A.D., Quinones-Hinojosa, A., Barbaro, N.M., Gupta, N., Kunwar, S., Lawton, M.T., McDermott, M.W., Parsa, A.T., Manuel -Garcia, V.J. et al
Le Marrec, Claire; Hyronimus, Bertrand; Bressollier, Philippe; Verneuil, Bernard; Urdaci, Maria C.
2000-01-01
A plasmid-linked antimicrobial peptide, named coagulin, produced by Bacillus coagulans I4 has recently been reported (B. Hyronimus, C. Le Marrec and M. C. Urdaci, J. Appl. Microbiol. 85:42–50, 1998). In the present study, the complete, unambiguous primary amino acid sequence of the peptide was obtained by a combination of both N-terminal sequencing of purified peptide and the complete sequence deduced from the structural gene harbored by plasmid I4. Data revealed that this peptide of 44 residues has an amino acid sequence similar to that described for pediocins AcH and PA-1, produced by different Pediococcus acidilactici strains and 100% identical. Coagulin and pediocin differed only by a single amino acid at their C terminus. Analysis of the genetic determinants revealed the presence, on the pI4 DNA, of the entire 3.5-kb operon of four genes described for pediocin AcH and PA-1 production. No extended homology was observed between pSMB74 from P. acidilactici and pI4 when analyzing the regions upstream and downstream of the operon. An oppositely oriented gene immediately dowstream of the bacteriocin operon specifies a 474-amino-acid protein which shows homology to Mob-Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from gram-positive bacteria. This is the first report of a pediocin-like peptide appearing naturally in a non-lactic acid bacterium genus. PMID:11097892
Neratinib shows efficacy in the treatment of HER2 amplified carcinosarcoma in vitro and in vivo
Schwab, Carlton L.; English, Diana P.; Black, Jonathan; Bellone, Stefania; Lopez, Salvatore; Cocco, Emiliano; Bonazzoli, Elena; Bussi, Beatrice; Predolini, Federica; Ferrari, Francesca; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Rutherford, Thomas; Schwartz, Peter E.; Santin, Alessandro D.
2015-01-01
Objective Carcinosarcoma is a deadly gynecologic malignancy with few effective treatment options. The study of new therapies is difficult because of its rarity. The objective of this study was to determine the efficacy of neratinib in the treatment of HER2 amplified carcinosarcoma. Methods The efficacy of neratinib in the treatment of HER2 amplified carcinosarcoma was determined in vitro using seven primary carcinosarcoma cell lines with differential expression of HER2/neu. Data regarding IC50, cell cycle distribution, and cell signaling changes were assessed by flow cytometry. The efficacy of neratinib was determined in treating mice harboring HER2 amplified carcinosarcoma xenografts. Results Two of seven (28.5%) carcinosarcoma cell lines were HER2/neu amplified. HER2/neu amplified cell lines SARARK6 and SARARK9 were significantly more sensitive to neratinib than the five non-HER2/neu amplified carcinosarcoma cell lines (mean±SEM IC50: 0.014μM±0.004 vs. 0.164μM±0.019 p=0.0003). Neratinib treatment caused a significant build up in G0/G1 phase of the cell cycle, arrest auto phosphorylation of HER2/neu and activation of S6. Neratinib inhibited tumor growth (p=0.012) and prolonged survival in mice harboring HER2 amplified carcinosarcoma xenografts (p=0.0039). Conclusions Neratinib inhibits HER2 amplified carcinosarcoma proliferation, signaling, cell cycle progression and tumor growth in vitro. Neratinib inhibits HER2/neu amplified xenograft growth and improves overall survival. Clinical trials are warranted. PMID:26260909
Neratinib shows efficacy in the treatment of HER2 amplified carcinosarcoma in vitro and in vivo.
Schwab, Carlton L; English, Diana P; Black, Jonathan; Bellone, Stefania; Lopez, Salvatore; Cocco, Emiliano; Bonazzoli, Elena; Bussi, Beatrice; Predolini, Federica; Ferrari, Francesca; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Rutherford, Thomas; Schwartz, Peter E; Santin, Alessandro D
2015-10-01
Carcinosarcoma is a deadly gynecologic malignancy with few effective treatment options. The study of new therapies is difficult because of its rarity. The objective of this study was to determine the efficacy of neratinib in the treatment of HER2 amplified carcinosarcoma. The efficacy of neratinib in the treatment of HER2 amplified carcinosarcoma was determined in vitro using seven primary carcinosarcoma cell lines with differential expression of HER2/neu. Data regarding IC50, cell cycle distribution, and cell signaling changes were assessed by flow cytometry. The efficacy of neratinib was determined in treating mice harboring HER2 amplified carcinosarcoma xenografts. Two of seven (28.5%) carcinosarcoma cell lines were HER2/neu amplified. HER2/neu amplified cell lines SARARK6 and SARARK9 were significantly more sensitive to neratinib than the five non-HER2/neu amplified carcinosarcoma cell lines (mean±SEM IC50:0.014μM±0.004vs.0.164μM±0.019 p=0.0003). Neratinib treatment caused a significant build up in G0/G1 phase of the cell cycle, arrest auto phosphorylation of HER2/neu and activation of S6. Neratinib inhibited tumor growth (p=0.012) and prolonged survival in mice harboring HER2 amplified carcinosarcoma xenografts (p=0.0039). Neratinib inhibits HER2 amplified carcinosarcoma proliferation, signaling, cell cycle progression and tumor growth in vitro. Neratinib inhibits HER2/neu amplified xenograft growth and improves overall survival. Clinical trials are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.
Kovačević, Monika; Kodrin, Ivan; Cetina, Mario; Kmetič, Ivana; Murati, Teuta; Semenčić, Mojca Čakić; Roca, Sunčica; Barišić, Lidija
2015-10-07
A novel synthetic approach toward a poorly explored bioorganometallic consisting of ferrocene-1,1'-diamine bearing structurally and chirally diverse amino acid sequences is reported. Until now, ferrocene-1,1'-diamine was suitable for accommodating only identical amino acid sequences at its N-termini, leading to the symmetrically disubstituted homochiral products stabilized through a 14-membered intramolecular hydrogen-bonded ring as is seen in antiparallel β-sheet peptides. The key step of the novel synthetic pathway is the transformation of Ac-Ala-NH-Fn-COOH (5) (Fn = 1,1'-ferrocenylene) to orthogonally protected Ac-Ala-NH-Fn-NHBoc (7). The spectroscopic analysis (IR, NMR, CD) of the novel compounds, corroborated with DFT studies, suggests the interesting feature of the ferrocene-1,1'-diamine scaffold. The same hydrogen-bonding pattern, i.e. a 14-membered hydrogen-bonded ring, was determined both in solution and in the solid state, thus making them promising, yet simple scaffolds capable of mimicking β-sheet peptides. In vitro screening of potential anticancer activity in Hep G2 human liver carcinoma cells and Hs 578 T human breast cancer cells revealed a cytotoxic pattern for novel compounds (150-500 μM) with significantly decreased cell proliferation.
Fluorescent coumarin-based probe for cysteine and homocysteine with live cell application
NASA Astrophysics Data System (ADS)
Wei, Ling-Fang; Thirumalaivasan, Natesan; Liao, Yu-Cheng; Wu, Shu-Pao
2017-08-01
Cysteine (Cys) and homocysteine (Hcy) are two of important biological thiols and function as important roles in several biological processes. The development of Cys and Hcy probes will help to explore the functions of biothiols in biological systems. In this work, a new coumarin-based probe AC, containing an acryloyl moiety, was developed for Cys and Hcy detection in cells. Cys and Hcy undergo a nucleophilic addition and subsequent cyclization reaction to remove to the acryloyl group and yield a fluorescent product, 7-hydroxylcomuarin. The probe AC showed good selectivity for cysteine and homocysteine over glutathione and other amino acids and had low detection limits of 65 nM for Cys and 79 nM for Hcy, respectively. Additionally, confocal imaging experiments demonstrated that the probe AC can be applied to visualize Cys and Hcy in living cells.
1980-11-01
j a aja-a, *a-’a .4 - .4 VS a a - a fl WV’ *-rI0&a. a.~ a-c.,.., a a a *a-,~ .~ ... a a. NO a- a.C5 a 004 a a la-n aCCa -) 0 2. 0 * a3O0 * aQ *a3 0...N C ’N** KU N - NNN.V(4t4 N, C, 3.5 .1 0 . - N4 4 N-NW * U ( 4MW Nt OOOCOOOOOC...NNVUACION.NNCNNV,1’ N’CC’VNVA V.. I NNNN AAAtNCA P2 5.3 3. CI N
Evidence for Differential Glycosylation of Trophoblast Cell Types*
Chen, Qiushi; Pang, Poh-Choo; Cohen, Marie E.; Longtine, Mark S.; Schust, Danny J.; Haslam, Stuart M.; Blois, Sandra M.; Dell, Anne; Clark, Gary F.
2016-01-01
Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3–4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2–3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2–3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered. PMID:26929217
Evidence for Differential Glycosylation of Trophoblast Cell Types.
Chen, Qiushi; Pang, Poh-Choo; Cohen, Marie E; Longtine, Mark S; Schust, Danny J; Haslam, Stuart M; Blois, Sandra M; Dell, Anne; Clark, Gary F
2016-06-01
Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3-4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2-3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2-3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Choi, Jae-Hyeog; Kim, Ki Hyang; Roh, Kug-Hwan; Jung, Hana; Lee, Anbok; Lee, Ji-Young; Song, Joo Yeon; Park, Seung Jae; Kim, Ilhwan; Lee, Won-Sik; Seo, Su-Kil; Choi, Il-Whan; Fu, Yang-Xin; Yea, Sung Su; Park, SaeGwang
2018-01-01
Combination therapies with phosphoinositide 3-kinase (PI3K) inhibitors and trastuzumab (anti-human epidermal growth factor receptor [HER]2/neu antibody) are effective against HER2+ breast cancer. Isoform-selective PI3K inhibitors elicit anti-tumor immune responses that are distinct from those induced by inhibitors of class I PI3K isoforms (pan-PI3K inhibitors). The present study investigated the therapeutic effect and potential for stimulating anti-tumor immunity of combined therapy with an anti-HER2/neu antibody and pan-PI3K inhibitor (GDC-0941) or a PI3K p110α isoform-selective inhibitor (A66) in mouse models of breast cancer. The anti-neu antibody inhibited tumor growth and enhanced anti-tumor immunity in HER2/neu+ breast cancer TUBO models, whereas GDC-0941 or A66 alone did not. Anti-neu antibody and PI3K inhibitor synergistically promoted anti-tumor immunity by increasing functional T cell production. In the presence of the anti-neu antibody, A66 was more effective than GDC-0941 at increasing the fraction of CD4 + , CD8 + , and IFN-γ + CD8 + T cells in the tumor-infiltrating lymphocyte population. Detection of IFN-γ levels by enzyme-linked immunospot assay showed that the numbers of tumor-specific T cells against neu and non-neu tumor antigens were increased by combined PI3K inhibitor plus anti-neu antibody treatment, with A66 exhibiting more potent effects than GDC-0941. In a TUBO (neu+) and TUBO-P2J (neu-) mixed tumor model representing immunohistochemistry 2+ tumors, A66 suppressed tumor growth and prolonged survival to a greater extent than GDC-0941 when combined with anti-neu antibody. These results demonstrate that a PI3K p110α-isoform-selective inhibitor is an effective adjunct to trastuzumab in the treatment of HER2-positive breast cancer.
NASA Astrophysics Data System (ADS)
Bragina, O.; Larkina, M.; Stasyuk, E.; Chernov, V.; Zelchan, R.; Medvedeva, A.; Sinilkin, I.; Yusubov, M.; Skuridin, V.; Deyev, S.; Buldakov, M.
2017-09-01
It is still necessary to search for new informative diagnostic methods to detect malignant tumors with overexpression of Her-2/neu, which are characterized by the aggressive course of the disease, rapid rate of tumor growth and low rates of relapse-free and overall survival. In recent years, the radioisotope techniques for detection of specific tumor targets have been developing actively. Purpose: to develop a chemically stable radiochemical compound for the targeted imaging of cells overexpressing Her-2/neu. Material and methods: The study was performed using 2 cell lines. The human breast adenocarcinoma HER2-overexpressing cell line BT-474 was chosen to detect specific binding. As a control, HER2-negative human breast adenocarcinoma MCF-7 was used. The human breast adenocarcinoma BT-474 and MCF-7 cell lines were seeded in chamber-slides at the density of 35,000 cells/ml in trypsin-EDTA (PanEco) medium and grown overnight at 37°C. After that both cell lines were washed with Phosphate buffered saline (PBS) and distributed into test tubes to 1 ml (5 millions cells in each). After adding 100 µl (70 MBq) studied complex of 99mTc-DPAH- DARPinG3 was incubated for 40 min at +4°C. Washing was performed three times with buffer PBS and 5% Bovine Serum Albumin (BSA). The characteristics of the binding specificity of the test set with the HER-2/neu receptor were determined by direct radiometric and planar scintigraphy. Nonparametric Mann-Whitney test was used to assess the differences in the quantitative characteristics between groups. Results: The output of the labeled complex was more than 91%, with a radiochemical purity of more than 94%. When carrying out a visual scintigraphic assessment much greater intensity accumulation of radiotracer was observed in the studied cell culture surface receptor overexpressing Her-2/neu. The results of direct radiometric also showed higher accumulation of the radiopharmaceutical in the adenocarcinoma cell line BT-474 human breast cancer overexpressing Her-2/neu compared to the control group. Conclusion: The preclinical studies demonstrated a high in vitro stability of the study compound, as well as its accumulation in the cell group overexpressing Her-2/neu.
Franz, S; Schuld, C; Wilder-Smith, E P; Heutehaus, L; Lang, S; Gantz, S; Schuh-Hofer, S; Treede, R-D; Bryce, T N; Wang, H; Weidner, N
2017-11-01
Neuropathic pain (NeuP) is a frequent sequel of spinal cord injury (SCI). The SCI Pain Instrument (SCIPI) was developed as a SCI-specific NeuP screening tool. A preliminary validation reported encouraging results requiring further evaluation in terms of psychometric properties. The painDETECT questionnaire (PDQ), a commonly applied NeuP assessment tool, was primarily validated in German, but not specifically developed for SCI and not yet validated according to current diagnostic guidelines. We aimed to provide convergent construct validity and to identify the optimal item combination for the SCIPI. The PDQ was re-evaluated according to current guidelines with respect to SCI-related NeuP. Prospective monocentric study. Subjects received a neurological examination according to the International Standards for Neurological Classification of SCI. After linguistic validation of the SCIPI, the IASP-grading system served as reference to diagnose NeuP, accompanied by the PDQ after its re-evaluation as binary classifier. Statistics were evaluated through ROC-analysis, with the area under the ROC curve (AUROC) as optimality criterion. The SCIPI was refined by systematic item permutation. Eighty-eight individuals were assessed with the German SCIPI. Of 127 possible combinations, a 4-item-SCIPI (cut-off-score = 1.5/sensitivity = 0.864/specificity = 0.839) was identified as most reasonable. The SCIPI showed a strong correlation (r sp = 0.76) with PDQ. ROC-analysis of SCIPI/PDQ (AUROC = 0.877) revealed comparable results to SCIPI/IASP (AUROC = 0.916). ROC-analysis of PDQ/IASP delivered a score threshold of 10.5 (sensitivity = 0.727/specificity = 0.903). The SCIPI is a valid easy-to-apply NeuP screening tool in SCI. The PDQ is recommended as complementary NeuP assessment tool in SCI, e.g. to monitor pain severity and/or its time-dependent course. In SCI-related pain, both SCIPI and PainDETECT show strong convergent construct validity versus the current IASP-grading system. SCIPI is now optimized from a 7-item to an easy-to-apply 4-item screening tool in German and English. We provided evidence that the scope for PainDETECT can be expanded to individuals with SCI. © 2017 European Pain Federation - EFIC®.
Coyne, C. P.; Jones, Toni; Bear, Ryan
2015-01-01
Immunochemotherapeutics, epirubicin-(C3-amide)-SS-[anti-HER2/neu] with an internal disulfide bond, and epirubicin-(C3-amide)-[anti-HER2/neu] were synthesized utilizing succinimidyl 2-[(4,4′-azipentanamido) ethyl]-1,3′-dithioproprionate or succinimidyl 4,4-azipentanoate respectively. Western blot analysis was used to determine the presence of any immunoglobulin fragmentation or IgG-IgG polymerization. Retained HER2/neu binding characteristics of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] were validated by cell-ELISA using a mammary adenocarcinoma (SKBr-3) population that highly over-expresses trophic HER2/neu receptor complexes. Cytotoxic anti-neoplastic potency of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] between epirubicin-equivalent concentrations of 10−10 M and 10−6 M was determined by measuring the vitality/proliferation of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3 cell type). Cytotoxic anti-neoplastic potency of benzimidazoles (albendazole, flubendazole, membendazole) and griseofulvin were assessed between 0-to-2 μg/ml and 0-to-100 μg/ml respectively while mebendazole and griseofulvin were analyzed at fixed concentrations of 0.35 μg/ml and 35 g/ml respectively in dual combination with gradient concentrations of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency for epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was nearly identical at epirubicin-equivalent concentrations of 10−10 M and 10−6 M. The benzimadazoles also possessed cytotoxic anti-neoplastic activity with flubendazole and albendazole being the most and least potent respectively. Similarly, griseofulvin had cytotoxic anti-neoplastic activity and was more potent than methylselenocysteine. Both mebendazole and griseofulvin when applied in dual combination with either epirubicin-(C3-amide)-[anti-HER2/neu] or epirubicin-(C3-amide)-SS-[anti-HER2/neu] produced enhanced levels of cytotoxic anti-neoplatic potency. PMID:26225190