Sample records for n-alkenyl heme adduct

  1. In situ generation of N-Boc-protected alkenyl imines: controlling the E/Z geometry of alkenyl moieties in the Mukaiyama-Mannich reaction.

    PubMed

    Bai, Jian-Fei; Sasagawa, Hajime; Yurino, Taiga; Kano, Taichi; Maruoka, Keiji

    2017-07-18

    Readily available Boc-protected Z-alkenyl aminals could be used as Z-alkenyl and E-alkenyl imine precursors under acidic conditions. In the Mukaiyama-Mannich reaction of Z-alkenyl Boc-aminals, the E/Z geometry of the products was controlled by the catalyst used. The present method was also applied to asymmetric Mukaiyama-Mannich reactions.

  2. Nitric oxide coupling to generate N2O promoted by a single-heme system as examined by density functional theory.

    PubMed

    Yi, Jun; Campbell, Adam L O; Richter-Addo, George B

    2016-11-30

    Bacteria utilize a heme/non-heme enzyme system to detoxify nitric oxide (NO) to N 2 O. In order to probe the capacity of a single-heme system to mediate this NO-to-N 2 O transformation, various scenarios for addition of electrons, protons, and a second NO molecule to a heme nitrosyl to generate N 2 O were explored by density functional theory calculations. We describe, utilizing this single-heme system, several stepwise intermediates along pathways that enable the critical N-N bond formation step yielding the desired Fe-N 2 O product. We also report a hitherto unreported directional second protonation that results in either productive N 2 O formation with loss of water, or formation of a non-productive hyponitrous acid adduct Fe{HONNOH}. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Asymmetric synthesis of α-alkenyl homoallylic primary amines via 1,2-addition of Grignard reagent to α,β-unsaturated phosphonyl imines.

    PubMed

    Xiong, Yiwen; Mei, Haibo; Xie, Chen; Han, Jianlin; Li, Guigen; Pan, Yi

    2013-01-01

    A series of chiral N -phosphonyl protected α-alkenyl homoallylic primary amines were synthesized by asymmetric addition of allylmagnesium bromide Grignard reagent towards chiral α,β-unsaturated imines. Only 1,2-adduct was obtained for all the imines with good yields and excellent diastereoselectivities. The chiral auxiliary could be easily removed under simple conditions, giving free multiple functionalized primary amines.

  4. DNA adduct profiling of in vitro colonic meat digests to map red vs. white meat genotoxicity.

    PubMed

    Hemeryck, Lieselot Y; Rombouts, Caroline; De Paepe, Ellen; Vanhaecke, Lynn

    2018-05-01

    The consumption of red meat has been linked to an increased colorectal cancer (CRC) risk. One of the major hypotheses states that heme iron (present in red meat) stimulates the formation of genotoxic N-nitroso compounds (NOCs) and lipid peroxidation products (LPOs). By means of DNA adductomics, chemically induced DNA adduct formation can be mapped in relation to e.g. dietary exposures. In this study, this state-of-the-art methodology was used to investigate alkylation and (lipid per)oxidation induced DNA adduct formation in in vitro red vs. white meat digests. In doing so, 90 alkylation and (lipid per)oxidation induced DNA adduct types could be (tentatively) identified. Overall, 12 NOC- and/or LPO-related DNA adduct types, i.e. dimethyl-T (or ethyl-T), hydroxymethyl-T, tetramethyl-T, methylguanine (MeG), guanidinohydantoin, hydroxybutyl-C, hydroxymethylhydantoin, malondialdehyde-x3-C, O 6 -carboxymethylguanine, hydroxyethyl-T, carboxyethyl-T and 3,N 4 -etheno-C were singled out as potential heme-rich meat digestion markers. The retrieval of these DNA adduct markers is in support of the heme, NOC and LPO hypotheses, suggesting that DNA adduct formation may indeed contribute to red meat related CRC risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Synthesis and properties of alkoxy- and alkenyl-substituted peralkylated imidazolium ionic liquids.

    PubMed

    Maton, Cedric; Brooks, Neil R; Van Meervelt, Luc; Binnemans, Koen; Schaltin, Stijn; Fransaer, Jan; Stevens, Christian V

    2013-10-21

    Novel peralkylated imidazolium ionic liquids bearing alkoxy and/or alkenyl side chains have been synthesized and studied. Different synthetic routes towards the imidazoles and the ionic liquids comprising bromide, iodide, methanesulfonate, bis(trifluoromethylsulfonyl)imide ([NTf2](-)), and dicyanamide {[N(CN)2](-)} as the anion were evaluated, and this led to a library of analogues, for which the melting points, viscosities, and electrochemical windows were determined. Incorporation of alkenyl moieties hindered solidification, except for cations with high symmetry. The alkoxy-derivatized ionic liquids are often crystalline; however, room-temperature ionic liquids (RTILs) were obtained with the weakly coordinating anions [NTf2](-) and [N(CN)2](-). For the viscosities of the peralkylated RTILs, an opposite trend was found, that is, the alkoxy derivatives are less viscous than their alkenyl-substituted analogues. Of the crystalline compounds, X-ray diffraction data were recorded and related to their molecular properties. Upon alkoxy substitution, the electrochemical cathodic limit potential was found to be more positive, whereas the complete electrochemical window of the alkenyl-substituted imidazolium salts was shifted to somewhat more positive potentials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. General Synthesis of Alkenyl Sulfides by Palladium-Catalyzed Thioetherification of Alkenyl Halides and Tosylates.

    PubMed

    Velasco, Noelia; Virumbrales, Cintia; Sanz, Roberto; Suárez-Pantiga, Samuel; Fernández-Rodríguez, Manuel A

    2018-05-08

    The cross-coupling reaction of alkenyl bromides with thiols catalyzed by palladium complexes derived from inexpensive dppf ligand is reported. These reactions occur under low catalyst loading and in high yields and display wide scope, including the coupling of bulky thiols and trisubstituted bromoolefins, and functional group tolerance. In addition, the thioetherification of less reactive chloroalkenes and, for the first time, alkenyl tosylates was accomplished using a catalyst generated from CyPF tBu alkylbisphosphine ligand.

  7. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkenyl carboxylate, metal salt... Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance... alkenyl carboxylate, metal salt (PMN P-99-0848) is subject to reporting under this section for the...

  8. Substitution of the nitro group with Grignard reagents: facile arylation and alkenylation of pyridine N-oxides.

    PubMed

    Zhang, Fang; Zhang, Song; Duan, Xin-Fang

    2012-11-02

    The unprecedented substitution of a nitro group with aryl or alkenyl groups of Grignard reagents affords 2-aryl or alkenylpyridine N-oxides in modest to high yields with high chemoselectivity. This protocol allows a simple and clean synthesis of various 2-substituted pyridine N-oxides and the corresponding pyridine derivatives. Furthermore, straightforward one-pot iterative functionality of pyridine N-oxides could also be achieved simply by successive applications of two Grignard reagents.

  9. Methemoglobin Formation and Characterization of Hemoglobin Adducts of Carcinogenic Aromatic Amines and Heterocyclic Aromatic Amines.

    PubMed

    Pathak, Khyatiben V; Chiu, Ting-Lan; Amin, Elizabeth Ambrose; Turesky, Robert J

    2016-03-21

    Arylamines (AAs) and heterocyclic aromatic amines (HAAs) are structurally related carcinogens formed during the combustion of tobacco or cooking of meat. They undergo cytochrome P450 mediated N-hydroxylation to form metabolites which bind to DNA and lead to mutations. The N-hydroxylated metabolites of many AAs also can undergo a co-oxidation reaction with oxy-hemolgobin (HbO2) to form methemoglobin (met-Hb) and the arylnitroso intermediates, which react with the β-Cys(93) chain of Hb to form Hb-arylsulfinamide adducts. The biochemistry of arylamine metabolism has been exploited to biomonitor certain AAs through their Hb arylsulfinamide adducts in humans. We examined the reactivity of HbO2 with the N-hydroxylated metabolites of 4-aminobiphenyl (ABP, HONH-ABP), aniline (ANL, HONH-ANL), and the HAAs 2-amino-9H-pyrido[2,3-b]indole (AαC, HONH-AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP, HONH-PhIP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx, HONH-MeIQx). HONH-ABP, HO-ANL, and HONH-AαC induced methemoglobinemia and formed Hb sulfinamide adducts. However, HONH-MeIQx and HONH-PhIP did not react with the oxy-heme complex, and met-Hb formation and chemical modification of the β-Cys(93) residue were negligible. Molecular modeling studies showed that the distances between the H-ON-AA or H-ON-HAA substrates and the oxy-heme complex of HbO2 were too far away to induce methemoglobinemia. Different conformational changes in flexible helical and loop regions around the heme pocket induced by the H-ON-AA or H-ON-HAAs may explain the different proclivities of these chemicals to induce methemoglobinemia. Hb-Cys(93β) sulfinamide and sulfonamide adducts of ABP, ANL, and AαC were identified, by Orbitrap MS, following the proteolysis of Hb with trypsin, Glu-C, or Lys-C. Hb sulfinamide and sulfonamide adducts of ABP were identified in the blood of mice exposed to ABP, by Orbitrap MS. This is the first report of the identification of intact Hb

  10. Engaging Alkenyl Halides with Alkylsilicates via Photoredox Dual Catalysis.

    PubMed

    Patel, Niki R; Kelly, Christopher B; Jouffroy, Matthieu; Molander, Gary A

    2016-02-19

    Single-electron transmetalation via photoredox/nickel dual catalysis provides the opportunity for the construction of Csp(3)-Csp(2) bonds through the transfer of alkyl radicals under very mild reaction conditions. A general procedure for the cross-coupling of primary and secondary (bis-catecholato)alkylsilicates with alkenyl halides is presented. The developed method allows not only alkenyl bromides and iodides but also previously underexplored alkenyl chlorides to be employed.

  11. 40 CFR 721.10127 - Alkenyl dimethyl betaine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkenyl dimethyl betaine (generic... Specific Chemical Substances § 721.10127 Alkenyl dimethyl betaine (generic). (a) Chemical substance and... dimethyl betaine (PMN P-06-693) is subject to reporting under this section for the significant new uses...

  12. 40 CFR 721.10127 - Alkenyl dimethyl betaine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkenyl dimethyl betaine (generic... Specific Chemical Substances § 721.10127 Alkenyl dimethyl betaine (generic). (a) Chemical substance and... dimethyl betaine (PMN P-06-693) is subject to reporting under this section for the significant new uses...

  13. 40 CFR 721.10127 - Alkenyl dimethyl betaine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkenyl dimethyl betaine (generic... Specific Chemical Substances § 721.10127 Alkenyl dimethyl betaine (generic). (a) Chemical substance and... dimethyl betaine (PMN P-06-693) is subject to reporting under this section for the significant new uses...

  14. 40 CFR 721.10127 - Alkenyl dimethyl betaine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkenyl dimethyl betaine (generic... Specific Chemical Substances § 721.10127 Alkenyl dimethyl betaine (generic). (a) Chemical substance and... dimethyl betaine (PMN P-06-693) is subject to reporting under this section for the significant new uses...

  15. 40 CFR 721.10127 - Alkenyl dimethyl betaine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkenyl dimethyl betaine (generic... Specific Chemical Substances § 721.10127 Alkenyl dimethyl betaine (generic). (a) Chemical substance and... dimethyl betaine (PMN P-06-693) is subject to reporting under this section for the significant new uses...

  16. Mechanism of the CO-sensing heme protein CooA: new insights from the truncated heme domain and UVRR spectroscopy

    PubMed Central

    Ibrahim, Mohammed; Kuchinskas, Michael; Youn, Hwan; Kerby, Robert L.; Roberts, Gary P.; Poulos, Thomas L.; Spiro, Thomas G.

    2007-01-01

    The bacterial CO-sensing heme protein CooA activates expression of genes whose products perform CO-metabolism by binding its target DNA in response to CO binding. The required conformational change has been proposed to result from CO-induced displacement of the heme and of the adjacent C-helix, which connects the sensory and DNA-binding domains. Support for this proposal comes from UV Resonance Raman (UVRR) spectroscopy, which reveals a more hydrophobic environment for the C-helix residue Trp110 when CO binds. In addition, we find a tyrosine UVRR response, which is attributable to weakening of a Tyr55-Glu83 H-bond that anchors the proximal side of the heme. Both Trp and Tyr responses are augmented in the heme domain when the DNA-binding domain has been removed, apparently reflecting loss of the inter-domain restraint. This augmentation is abolished by a Glu83Gln substitution, which weakens the anchoring H-bond. The CO recombination rate following photolysis of the CO adduct is similar for truncated and full-length protein, though truncation does increase the rate of CO association in the absence of photolysis; together these data indicate that truncation causes a faster dissociation of the endogenous Pro2 ligand. These findings are discussed in the light of structural evidence that the N-terminal tail, once released from the heme, selects the proper orientation of the DNA-binding domain, via docking interactions. PMID:17720248

  17. Stereoselective Vinylation of Aryl N-(2-Pyridylsulfonyl) Aldimines with 1-Alkenyl-1,1-Heterobimetallic Reagents

    PubMed Central

    Hussain, Nusrah; Hussain, Mahmud M.; Ziauddin, Muhammed; Triyawatanyu, Plengchat; Walsh, Patrick J.

    2011-01-01

    Vinylation of aryl N-(2-pyridylsulfonyl) aldimines with versatile 1-alkenyl-1,1-borozinc heterobimetallic reagents is disclosed. In situ hydroboration of air-stable B(pin)-alkynes followed by chemoselective transmetallation with dimethylzinc and addition to aldimines provides B(pin)-substituted allylic amines in 60–93% yield in a one-pot procedure. The addition step can be followed by either B–C bond oxidation to provide α-amino ketones (71–98% yield) or Suzuki cross-coupling to furnish trisubstituted 2-arylated (E)-allylic amines (51–73% yield). PMID:22085226

  18. Pyrroloindolone synthesis via a Cp*Co(III)-catalyzed redox-neutral directed C-H alkenylation/annulation sequence.

    PubMed

    Ikemoto, Hideya; Yoshino, Tatsuhiko; Sakata, Ken; Matsunaga, Shigeki; Kanai, Motomu

    2014-04-09

    A unique synthetic utility of a Cp*Co(III) catalyst in comparison with related Cp*Rh(III) catalysts is described. A C2-selective indole alkenylation/annulation sequence proceeded smoothly with catalytic amount of a [Cp*Co(III)(C6H6)](PF6)2 complex and KOAc. Intramolecular addition of an alkenyl-Cp*Co species to a carbamoyl moiety gave pyrroloindolones in 58-89% yield in one pot. Clear difference was observed between the catalytic activity of the Cp*Co(III) complex and those of Cp*Rh(III) complexes, highlighting the unique nucleophilic activity of the organocobalt species. The Cp*Co(III) catalysis was also suitable for simple alkenylation process of N-carbamoyl indoles, and broad range of alkynes, including terminal alkynes, were applicable to give C2-alkenylated indoles in 50-99% yield. Mechanistic studies on C-H activation step under Cp*Co(III) catalysis with the aid of an acetate unit as well as evaluation of the difference between organo-Co(III) species and organo-Rh(III) species are also described.

  19. The Synthetic Analogs of Oxygen-Binding Heme Proteins.

    ERIC Educational Resources Information Center

    Suslick, Kenneth S.; Reinert, Thomas J.

    1985-01-01

    Discusses model studies aimed at elucidating various ways in which molecular oxygen interacts with metalloproteins. The focus is on the chemistry of iron(II) porphyrins and their adducts with nitrogenous bases, carbon monoxide, and dioxygen, which are most relevant to the functional proteries of the heme proteins, hemoglobin, and myoglobin. (JN)

  20. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand

    PubMed Central

    Jiang, Yongying; Trnka, Michael J.; Medzihradszky, Katalin F.; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R.

    2009-01-01

    To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron (Jiang, Y., Ortiz de Montellano, P.R., Inorg. Chem., 47, 3480-3482 (2008)), indicate that a selenyl radical is formed in the hHO1 His25SeCys mutant that adds to a heme vinyl group. PMID:19135260

  1. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.

    PubMed

    Jiang, Yongying; Trnka, Michael J; Medzihradszky, Katalin F; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R

    2009-03-01

    To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.

  2. Heme-binding activity of methoxyflavones from Pentzia monodiana Maire (Asteraceae).

    PubMed

    Ortiz, Sergio; Dali-Yahia, Kamel; Vasquez-Ocmin, Pedro; Grougnet, Raphaël; Grellier, Philippe; Michel, Sylvie; Maciuk, Alexandre; Boutefnouchet, Sabrina

    2017-04-01

    A heme-binding assay based on mass spectrometry was performed on P. monodiana Maire (Asteraceae) extracts to identify metabolites able to form adducts with heminic part of haemoglobin, as potential antimalarial drugs. Main adducts were characterized and their stability was measured. Isolation of main constituents of P. monodiana Maire lead to identification of the two methoxyflavones 3'-O-methyleupatorin (7) and artemetin (8) involved in the adducts formation. Four seco-tanapartholides (1-4), a guaianolide (5), a germacranolide (6) and two other methoxyflavones (9, 10) were also characterized. Evaluation of isolated compounds on P. falciparum and T. brucei brucei showed a moderate antiprotozoal activity of the two methoxyflavones. Copyright © 2017. Published by Elsevier B.V.

  3. Mass Spectrometric Analysis of a Cyclic 7,8-Butanoguanine Adduct of N-Nitrosopyrrolidine: Comparison to other N-Nitrosopyrrolidine Adducts in Rat Hepatic DNA

    PubMed Central

    Loureiro, Ana Paula M.; Zhang, Wenbing; Kassie, Fekadu; Zhang, Siyi; Villalta, Peter W.; Wang, Mingyao; Hecht, Stephen S.

    2009-01-01

    The well established rat hepatocarcinogen N-nitrosopyrrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6), has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for quantitation of adduct 6, and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900 – 3000 μmol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2 – 0.9 Pmol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl- like intermediates were in the range of 0.01 – 4 μmol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR. PMID:19761253

  4. Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials▿

    PubMed Central

    Creek, Darren J.; Charman, William N.; Chiu, Francis C. K.; Prankerd, Richard J.; Dong, Yuxiang; Vennerstrom, Jonathan L.; Charman, Susan A.

    2008-01-01

    The reaction of spiro- and dispiro-1,2,4-trioxolane antimalarials with heme has been investigated to provide further insight into the mechanism of action for this important class of antimalarials. A series of trioxolanes with various antimalarial potencies was found to be unreactive in the presence of Fe(III) hemin, but all were rapidly degraded by reduced Fe(II) heme. The major reaction product from the heme-mediated degradation of biologically active trioxolanes was an alkylated heme adduct resulting from addition of a radical intermediate. Under standardized reaction conditions, a correlation (R2 = 0.88) was found between the extent of heme alkylation and in vitro antimalarial activity, suggesting that heme alkylation may be related to the mechanism of action for these trioxolanes. Significantly less heme alkylation was observed for the clinically utilized artemisinin derivatives compared to the equipotent trioxolanes included in this study. PMID:18268087

  5. Heme versus non-heme iron-nitroxyl {FeN(H)O}⁸ complexes: electronic structure and biologically relevant reactivity.

    PubMed

    Speelman, Amy L; Lehnert, Nicolai

    2014-04-15

    steric bulk, monomeric high-spin {FeNO}(8) complexes decompose rapidly. Notably, in a recently prepared, dimeric [{FeNO}(7)]2 species, we observed that reduction leads to rapid N-N bond formation and N2O generation, which directly models the reactivity of flavodiiron NO reductases (FNORs). We have also made key progress in the preparation and stabilization of corresponding HNO complexes, {FeNHO}(8), using both heme and non-heme ligand sets. In both cases, we have taken advantage of sterically bulky coligands to stabilize these species. ls-{FeNO}(8) complexes are basic and easily form corresponding ls-{FeNHO}(8) species, which, however, decompose rapidly via disproportionation and H2 release. Importantly, we recently showed that we can suppress this reaction via steric protection of the bound HNO ligand. As a result, we have demonstrated that ls-{FeNHO}(8) model complexes are stable and amenable to spectroscopic characterization. Neither ls-{FeNO}(8) nor ls-{FeNHO}(8) model complexes are active for N-N coupling, and hence, seem unsuitable as reactive intermediates in nitric oxide reductases (NORs). Hs-{FeNO}(8) complexes are more basic than their hs-{FeNO}(7) precursors, but their electronic structure and reactivity is not as well characterized.

  6. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis

    PubMed Central

    Koh, Ming Joo; Nguyen, Thach T.; Zhang, Hanmo; Schrock, Richard R.; Hoveyda, Amir H.

    2016-01-01

    Olefin metathesis has made a significant impact on modern organic chemistry, but important shortcomings remain: for example, the lack of efficient processes that can be used to generate acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding high-oxidation-state systems is very limited. In this manuscript, we show that previously unknown halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-alkenyl halides. Transformations are promoted by small amounts of an in situ-generated catalyst with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents and proceed to high conversion at ambient temperature within four hours. Many alkenyl chlorides, bromides and fluorides can be obtained in up to 91 percent yield and complete Z selectivity. This method can be used to easily synthesize biologically active compounds and to perform the site- and stereoselective fluorination of other organic compounds. PMID:27008965

  7. Unusual hafnium-pyridylamido/ER(n) heterobimetallic adducts (ER(n) = ZnR2 or AlR3).

    PubMed

    Rocchigiani, Luca; Busico, Vincenzo; Pastore, Antonello; Talarico, Giovanni; Macchioni, Alceo

    2014-02-17

    NMR spectroscopy and DFT studies indicate that the Symyx/Dow Hf(IV)-pyridylamido catalytic system for olefin polymerization, [{N(-),N,CNph(-)}HfMe][B(C6F5)4] (1, Nph = naphthyl), interacts with ER(n) (E = Al or Zn, R = alkyl group) to afford unusual heterobimetallic adducts [{N(-),N}HfMe(μ-CNph)(μ-R)ER(n-1)][B(C6F5)4 in which the cyclometalated Nph acts as a bridge between Hf and E. (1)H VT (variable-temperature) EXSY NMR spectroscopy provides direct evidence of reversible alkyl exchanges in heterobimetallic adducts, with ZnR2 showing a higher tendency to participate in this exchange than AlR3. 1-Hexene/ERn competitive reactions with 1 at 240 K reveal that the formation of adducts is strongly favored over 1-hexene polymerization. Nevertheless, a slight increase in the temperature (to >265 K) initiates 1-hexene polymerization. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. N-acetylcysteine prevents the geldanamycin cytotoxicity by forming geldanamycin-N-acetylcysteine adduct.

    PubMed

    Mlejnek, Petr; Dolezel, Petr

    2014-09-05

    Geldanamycin (GDN) is a benzoquinone ansamycin antibiotic with anti-proliferative activity on tumor cells. GDN cytotoxicity has been attributed to the disruption of heat shock protein 90 (Hsp90) binding and stabilizing client proteins, and by the induction of oxidative stress with concomitant glutathione (GSH) depletion. The later mechanism of cytotoxicity can be abrogated by N-acetylcysteine (NAC). It was suggested that NAC prevents GDN cytotoxicity mainly by the restoring of glutathione (GSH) level (Clark et al., 2009). Here we argue that NAC does not protect cells from the GDN cytotoxicity by restoring the level of GSH. A detailed LC/MS/MS analysis of cell extracts indicated formation of GDN adducts with GSH. The amount of the GDN-GSH adduct is proportional to the GDN concentration and increases with incubation time. While nanomolar and low micromolar GDN concentrations induce cell death without an apparent GSH decrease, only much higher micromolar GDN concentrations cause a significant GSH decrease. Therefore, only high micromolar GDN concentrations can cause cell death which might be related to GSH depletion. Addition of NAC leads to the formation of adducts with GDN which diminish formation of GDN adducts with GSH. NAC also forms stable adducts with GDN extracellularly. Although NAC induces an increase in the GSH pool, this effect is not crucial for abrogation of GDN cytotoxicity. Indeed, the presence of NAC in the growth medium causes a rapid conversion of GDN into the GDN-NAC adduct, which is the real cause of the abrogated GDN cytotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Sequence distribution of acetaldehyde-derived N2-ethyl-dG adducts along duplex DNA.

    PubMed

    Matter, Brock; Guza, Rebecca; Zhao, Jianwei; Li, Zhong-ze; Jones, Roger; Tretyakova, Natalia

    2007-10-01

    Acetaldehyde (AA) is the major metabolite of ethanol and may be responsible for an increased gastrointestinal cancer risk associated with alcohol beverage consumption. Furthermore, AA is one of the most abundant carcinogens in tobacco smoke and induces tumors of the respiratory tract in laboratory animals. AA binding to DNA induces Schiff base adducts at the exocyclic amino group of dG, N2-ethylidene-dG, which are reversible on the nucleoside level but can be stabilized by reduction to N2-ethyl-dG. Mutagenesis studies in the HPRT reporter gene and in the p53 tumor suppressor gene have revealed the ability of AA to induce G-->A transitions and A-->T transversions, as well as frameshift and splice mutations. AA-induced point mutations are most prominent at 5'-AGG-3' trinucleotides, possibly a result of sequence specific adduct formation, mispairing, and/or repair. However, DNA sequence preferences for the formation of acetaldehyde adducts have not been previously examined. In the present work, we employed a stable isotope labeling-HPLC-ESI+-MS/MS approach developed in our laboratory to analyze the distribution of acetaldehyde-derived N2-ethyl-dG adducts along double-stranded oligodeoxynucleotides representing two prominent lung cancer mutational "hotspots" and their surrounding DNA sequences. 1,7,NH 2-(15)N-2-(13)C-dG was placed at defined positions within DNA duplexes derived from the K-ras protooncogene and the p53 tumor suppressor gene, followed by AA treatment and NaBH 3CN reduction to convert N2-ethylidene-dG to N2-ethyl-dG. Capillary HPLC-ESI+-MS/MS was used to quantify N2-ethyl-dG adducts originating from the isotopically labeled and unlabeled guanine nucleobases and to map adduct formation along DNA duplexes. We found that the formation of N2-ethyl-dG adducts was only weakly affected by the local sequence context and was slightly increased in the presence of 5-methylcytosine within CG dinucleotides. These results are in contrast with sequence

  10. Specific Function of the Met-Tyr-Trp Adduct Radical and Residues Arg-418 and Asp-137 in the Atypical Catalase Reaction of Catalase-Peroxidase KatG*

    PubMed Central

    Zhao, Xiangbo; Khajo, Abdelahad; Jarrett, Sanchez; Suarez, Javier; Levitsky, Yan; Burger, Richard M.; Jarzecki, Andrzej A.; Magliozzo, Richard S.

    2012-01-01

    Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction. PMID:22918833

  11. Biological exposure indices of pyrrole adducts in serum and urine for hazard assessment of n-hexane exposure.

    PubMed

    Yin, Hongyin; Zhang, Chunling; Guo, Ying; Shao, Xiaoying; Zeng, Tao; Zhao, Xiulan; Xie, Keqin

    2014-01-01

    Pyrrole adducts might be used as a biomarker for monitoring occupational exposure to n-hexane, but the Biological Exposure Indices of pyrrole adducts in serum and urine are still unknown. The current study was designed to investigate the biological exposure limit of pyrrole adducts for hazard assessment of n-hexane. Male Wistar rats were given daily dose of 500, 1000, 1500, 2000, 4000 mg/kg bw n-hexane by gavage for 24 weeks. The levels of pyrrole adducts in serum and urine were determined at 8, 24 hours postdose once a week. The Biological Exposure Indices was evaluated by neurological evaluation and the levels of pyrrole adducts. The difference in pyrrole adducts formation between humans and rats were estimated by using in vitro test. Dose-dependent effects were observed between the doses of n-hexane and pyrrole adducts in serum and urine, and the levels of pyrrole adduct in serum and urine approached a plateau at week 4. There was a significantly negative correlation between the time to paralysis and the level of pyrrole adducts in serum and urine, while a positive correlation between gait score and levels of pyrrole adducts in serum and urine was observed. In vitro, pyrrole adducts formed in human serum was about two times more than those in rat serum at the same level of 2,5-HD. It was concluded that the BEIs of pyrrole adducts in humans were 23.1 ± 5.91 nmol/ml in serum 8 h postdose, 11.7 ± 2.64 nmol/ml in serum 24 h postdose, 253.8 ± 36.3 nmol/ml in urine 8 h postdose and 54.6 ± 15.42 nmol/ml in urine 24 h postdose.

  12. Biological Exposure Indices of Pyrrole Adducts in Serum and Urine for Hazard Assessment of n-Hexane Exposure

    PubMed Central

    Yin, Hongyin; Zhang, Chunling; Guo, Ying; Shao, Xiaoying; Zeng, Tao; Zhao, Xiulan; Xie, Keqin

    2014-01-01

    Background Pyrrole adducts might be used as a biomarker for monitoring occupational exposure to n-hexane, but the Biological Exposure Indices of pyrrole adducts in serum and urine are still unknown. The current study was designed to investigate the biological exposure limit of pyrrole adducts for hazard assessment of n-hexane. Methods Male Wistar rats were given daily dose of 500, 1000, 1500, 2000, 4000 mg/kg bw n-hexane by gavage for 24 weeks. The levels of pyrrole adducts in serum and urine were determined at 8, 24 hours postdose once a week. The Biological Exposure Indices was evaluated by neurological evaluation and the levels of pyrrole adducts. The difference in pyrrole adducts formation between humans and rats were estimated by using in vitro test. Results Dose-dependent effects were observed between the doses of n-hexane and pyrrole adducts in serum and urine, and the levels of pyrrole adduct in serum and urine approached a plateau at week 4. There was a significantly negative correlation between the time to paralysis and the level of pyrrole adducts in serum and urine, while a positive correlation between gait score and levels of pyrrole adducts in serum and urine was observed. In vitro, pyrrole adducts formed in human serum was about two times more than those in rat serum at the same level of 2,5-HD. Conclusion It was concluded that the BEIs of pyrrole adducts in humans were 23.1±5.91 nmol/ml in serum 8 h postdose, 11.7±2.64 nmol/ml in serum 24 h postdose, 253.8±36.3 nmol/ml in urine 8 h postdose and 54.6±15.42 nmol/ml in urine 24 h postdose. PMID:24465904

  13. Spectroscopic studies reveal that the heme regulatory motifs of heme oxygenase-2 are dynamically disordered and exhibit redox-dependent interaction with heme

    DOE PAGES

    Bagai, Ireena; Sarangi, Ritimukta; Fleischhacker, Angela S.; ...

    2015-05-05

    Heme oxygenase (HO) catalyzes a key step in heme homeostasis: the O₂₋ and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. Mammals contain two isoforms of this enzyme, HO2 and HO1, which share the same α-helical fold forming the catalytic core and heme binding site, as well as a membrane spanning helix at their C-termini. However, unlike HO1, HO2 has an additional 30-residue N-terminus as well as two cysteine-proline sequences near the C-terminus that reside in heme regulatory motifs (HRMs).more » While the role of the additional N-terminal residues of HO2 is not yet understood, the HRMs have been proposed to reversibly form a thiol/disulfide redox switch that modulates the affinity of HO2 for ferric heme as a function of cellular redox poise. To further define the roles of the N- and C-terminal regions unique to HO2, we used multiple spectroscopic techniques to characterize these regions of the human HO2. Nuclear magnetic resonance spectroscopic experiments with HO2 demonstrate that, when the HRMs are in the oxidized state (HO2 O), both the extra N-terminal and the C-terminal HRM-containing regions are disordered. However, protein NMR experiments illustrate that, under reducing conditions, the C-terminal region gains some structure as the Cys residues in the HRMs undergo reduction (HO2 R) and, in experiments employing a diamagnetic protoporphyrin, suggest a redox-dependent interaction between the core and the HRM domains. Further, electron nuclear double resonance and X-ray absorption spectroscopic studies demonstrate that, upon reduction of the HRMs to the sulfhydryl form, a cysteine residue from the HRM region ligates to a ferric heme. Taken together with EPR measurements, which show the appearance of a new low-spin heme signal in reduced HO2, it appears that a cysteine residue(s) in the HRMs directly interacts with a

  14. Spectroscopic studies reveal that the heme regulatory motifs of heme oxygenase-2 are dynamically disordered and exhibit redox-dependent interaction with heme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagai, Ireena; Sarangi, Ritimukta; Fleischhacker, Angela S.

    Heme oxygenase (HO) catalyzes a key step in heme homeostasis: the O₂₋ and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. Mammals contain two isoforms of this enzyme, HO2 and HO1, which share the same α-helical fold forming the catalytic core and heme binding site, as well as a membrane spanning helix at their C-termini. However, unlike HO1, HO2 has an additional 30-residue N-terminus as well as two cysteine-proline sequences near the C-terminus that reside in heme regulatory motifs (HRMs).more » While the role of the additional N-terminal residues of HO2 is not yet understood, the HRMs have been proposed to reversibly form a thiol/disulfide redox switch that modulates the affinity of HO2 for ferric heme as a function of cellular redox poise. To further define the roles of the N- and C-terminal regions unique to HO2, we used multiple spectroscopic techniques to characterize these regions of the human HO2. Nuclear magnetic resonance spectroscopic experiments with HO2 demonstrate that, when the HRMs are in the oxidized state (HO2 O), both the extra N-terminal and the C-terminal HRM-containing regions are disordered. However, protein NMR experiments illustrate that, under reducing conditions, the C-terminal region gains some structure as the Cys residues in the HRMs undergo reduction (HO2 R) and, in experiments employing a diamagnetic protoporphyrin, suggest a redox-dependent interaction between the core and the HRM domains. Further, electron nuclear double resonance and X-ray absorption spectroscopic studies demonstrate that, upon reduction of the HRMs to the sulfhydryl form, a cysteine residue from the HRM region ligates to a ferric heme. Taken together with EPR measurements, which show the appearance of a new low-spin heme signal in reduced HO2, it appears that a cysteine residue(s) in the HRMs directly interacts with a

  15. Direct synthesis of alkenyl iodides via indium-catalyzed iodoalkylation of alkynes with alcohols and aqueous HI.

    PubMed

    Wu, Chao; Wang, Zheng; Hu, Zhan; Zeng, Fei; Zhang, Xing-Yu; Cao, Zhong; Tang, Zilong; He, Wei-Min; Xu, Xin-Hua

    2018-05-02

    A convenient and efficient indium-catalyzed approach to synthesize alkenyl iodides has been developed through direct iodoalkylation of alkynes with alcohols and aqueous HI under mild conditions. This catalytic protocol offers an attractive approach for the synthesis of a diverse range of alkenyl iodides in good to excellent yields.

  16. Structure of the Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme and enzymatic inactivation by mutation of the heme coordinating residue His-193

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suits,M.; Jaffer, N.; Jia, Z.

    2006-01-01

    Heme oxygenases catalyze the oxidation of heme to biliverdin, CO, and free iron. For pathogenic microorganisms, heme uptake and degradation are critical mechanisms for iron acquisition that enable multiplication and survival within hosts they invade. Here we report the first crystal structure of the pathogenic Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme at 1.45 {angstrom} resolution. When compared with other heme oxygenases, ChuS has a unique fold, including structural repeats and a {beta}-sheet core. Not surprisingly, the mode of heme coordination by ChuS is also distinct, whereby heme is largely stabilized by residues from the C-terminal domain,more » assisted by a distant arginine from the N-terminal domain. Upon heme binding, there is no large conformational change beyond the fine tuning of a key histidine (His-193) residue. Most intriguingly, in contrast to other heme oxygenases, the propionic side chains of heme are orientated toward the protein core, exposing the {alpha}-meso carbon position where O{sub 2} is added during heme degradation. This unique orientation may facilitate presentation to an electron donor, explaining the significantly reduced concentration of ascorbic acid needed for the reaction. Based on the ChuS-heme structure, we converted the histidine residue responsible for axial coordination of the heme group to an asparagine residue (H193N), as well as converting a second histidine to an alanine residue (H73A) for comparison purposes. We employed spectral analysis and CO measurement by gas chromatography to analyze catalysis by ChuS, H193N, and H73A, demonstrating that His-193 is the key residue for the heme-degrading activity of ChuS.« less

  17. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  18. Correlation between levels of 2, 5-hexanedione and pyrrole adducts in tissues of rats exposure to n-hexane for 5-days.

    PubMed

    Yin, Hongyin; Guo, Ying; Zeng, Tao; Zhao, Xiulan; Xie, Keqin

    2013-01-01

    The formation of pyrrole adducts might be responsible for peripheral nerve injury caused by n-hexane. The internal dose of pyrrole adducts would supply more information for the neurotoxicity of n-hexane. The current study was designed to investigate the tissue distributions of 2, 5-hexanedione (2,5-HD) and pyrrole adducts in rats exposed to n-hexane, and analyze the correlation between pyrrole adducts and 2,5-HD in tissues. Male Wistar rats were given daily dose of 500,1000, 2000, 4000 mg/kg bw n-hexane by gavage for 5 days. The rats were sacrificed 24 hours after the last administration. The levels of 2, 5-hexanedione and pyrrole adducts in tissues were measured by gas chromatography and Ehrlich's reagent, respectively. The correlations between 2, 5-hexanedione and pyrrole adducts were analyzed by linear regression. Dose-dependent effects were observed between the dosage of n-hexane and 2, 5-hexanedione, and pyrrole adducts in tissues. The highest level of 2, 5-hexanedione was found in urine and the lowest in sciatic nerve, while the highest level of pyrrole adducts was seen in liver and the lowest in serum. There were significant correlations among the free 2, 5-hexanedione, total 2, 5-hexanedione and pyrrole adducts within the same tissues. Pyrrole adducts in serum showed the most significant correlation with free 2, 5-hexanedione or pyrrole adducts in tissues. The findings suggested that pyrrole adducts in serum might be a better indicator for the internal dose of free 2, 5-hexanedione and pyrrole adducts in tissues.

  19. Alkenyl Carboxylic Acid: Engineering the Nanomorphology in Polymer-Polymer Solar Cells as Solvent Additive.

    PubMed

    Zhang, Yannan; Yuan, Jianyu; Sun, Jianxia; Ding, Guanqun; Han, Lu; Ling, Xufeng; Ma, Wanli

    2017-04-19

    We have investigated a series of commercially available alkenyl carboxylic acids with different alkenyl chain lengths (trans-2-hexenoic acid (CA-6), trans-2-decenoic acid (CA-10), 9-tetradecenoic acid (CA-14)) for use as solvent additives in polymer-polymer non-fullerene solar cells. We systematically investigated their effect on the film absorption, morphology, carrier generation, transport, and recombination in all-polymer solar cells. We revealed that these additives have a significant impact on the aggregation of polymer acceptor, leading to improved phase segregation in the blend film. This in-depth understanding of the additives effect on the nanomorphology in all-polymer solar cell can help further boost the device performance. By using CA-10 with the optimal alkenyl chain length, we achieved fine phase separation, balanced charge transport, and suppressed recombination in all-polymer solar cells. As a result, an optimal power conversion efficiency (PCE) of 5.71% was demonstrated which is over 50% higher than that of the as-cast device (PCE = 3.71%) and slightly higher than that of devices with DIO treatment (PCE = 5.68%). Compared with widely used DIO, these halogen-free alkenyl carboxylic acids have a more sustainable processing as well as better performance, which may make them more promising candidates for use as processing additives in organic non-fullerene solar cells.

  20. Synthetic Heme/Copper Assemblies: Toward an Understanding of Cytochrome c Oxidase Interactions with Dioxygen and Nitrogen Oxides

    PubMed Central

    Hematian, Shabnam; Garcia-Bosch, Isaac; Karlin, Kenneth D.

    2016-01-01

    Conspectus Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper and/or iron ions, those reacting with dioxygen (O2) and/or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2−)). As inspiration for this work, we turn to mitochondrial cytochrome c oxidase which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis and characterization of new O2-adducts whose further study will add insights into O2-reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO’s function, which is intimately tied to cellular O2-balance. We had first discovered that reduced heme/Cu compounds react with O2 giving μ-oxo heme-FeIII-O-CuII(L) products; their properties are discussed. The O-atom is derived from dioxygen and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo-complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a “naked” synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active-sites. The other sector of research is focused on heme/Cu assemblies mediating the

  1. Artificial hydrogenases based on cobaloximes and heme oxygenase

    DOE PAGES

    Bacchi, Marine; Veinberg, Elias; Field, Martin J.; ...

    2016-06-06

    The insertion of cobaloxime catalysts in the heme-binding pocket of heme oxygenase (HO) yields artificial hydrogenases active for H 2 evolution in neutral aqueous solutions. These novel biohybrids have been purified and characterized by using UV/visible and EPR spectroscopy. These analyses revealed the presence of two distinct binding conformations, thereby providing the cobaloxime with hydrophobic and hydrophilic environments, respectively. Quantum chemical/molecular mechanical docking calculations found open and closed conformations of the binding pocket owing to mobile amino acid residues. HO-based biohybrids incorporating a {Co(dmgH) 2} (dmgH 2 = dimethylglyoxime) catalytic center displayed up to threefold increased turnover numbers with respectmore » to the cobaloxime alone or to analogous sperm whale myoglobin adducts. Here, this study thus provides a strong basis for further improvement of such biohybrids, using well-designed modifications of the second and outer coordination spheres, through site-directed mutagenesis of the host protein.« less

  2. Artificial hydrogenases based on cobaloximes and heme oxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchi, Marine; Veinberg, Elias; Field, Martin J.

    The insertion of cobaloxime catalysts in the heme-binding pocket of heme oxygenase (HO) yields artificial hydrogenases active for H 2 evolution in neutral aqueous solutions. These novel biohybrids have been purified and characterized by using UV/visible and EPR spectroscopy. These analyses revealed the presence of two distinct binding conformations, thereby providing the cobaloxime with hydrophobic and hydrophilic environments, respectively. Quantum chemical/molecular mechanical docking calculations found open and closed conformations of the binding pocket owing to mobile amino acid residues. HO-based biohybrids incorporating a {Co(dmgH) 2} (dmgH 2 = dimethylglyoxime) catalytic center displayed up to threefold increased turnover numbers with respectmore » to the cobaloxime alone or to analogous sperm whale myoglobin adducts. Here, this study thus provides a strong basis for further improvement of such biohybrids, using well-designed modifications of the second and outer coordination spheres, through site-directed mutagenesis of the host protein.« less

  3. FORUM: Bioinspired Heme, Heme/non-heme Diiron, Heme/copper and Inorganic NOx Chemistry: ·NO(g) Oxidation, Peroxynitrite-Metal Chemistry and ·NO(g) Reductive Coupling

    PubMed Central

    Schopfer, Mark P.; Wang, Jun; Karlin, Kenneth D.

    2010-01-01

    The focus of this Forum review highlights work from our own laboratories and those of others in the area of biochemical and biologically inspired inorganic chemistry dealing with nitric oxide (nitrogen monoxide, ·NO(g)) and its biological roles and reactions. The latter focus is on (i) oxidation of ·NO(g) to nitrate by nitric oxide dioxygenases (NOD’s), and (ii) reductive coupling of two molecules of ·NO(g) to give N2O(g). In the former case, NOD’s are described and the highlighting of possible peroxynitrite-heme intermediates and consequences of this are given by discussion of recent works with myoglobin and a synthetic heme model system for NOD action. Summaries of recent copper complex chemistries with ·NO(g) and O2(g) leading to peroxynitrite species are given. The coverage of biological reductive coupling of ·NO(g) deals with bacterial nitric oxide reductases (NOR’s) with heme/non-heme diiron active sites, and on heme/Cu oxidases such as cytochrome c oxidase which can mediate the same chemistry. Recent designed protein and synthetic model compound (heme/non-heme diiron or heme/copper) as functional mimics are discussed in some detail. We also highlight examples from the chemical literature, not necessarily involving biologically relevant metal ions, which describe the oxidation of ·NO(g) to nitrate (or nitrite) and possible peroxynitrite intermediates, or reductive coupling of ·NO(g) to give nitrous oxide. PMID:20666386

  4. Correlation between Levels of 2, 5-Hexanedione and Pyrrole Adducts in Tissues of Rats Exposure to n-Hexane for 5-Days

    PubMed Central

    Yin, Hongyin; Guo, Ying; Zeng, Tao; Zhao, Xiulan; Xie, Keqin

    2013-01-01

    Background The formation of pyrrole adducts might be responsible for peripheral nerve injury caused by n-hexane. The internal dose of pyrrole adducts would supply more information for the neurotoxicity of n-hexane. The current study was designed to investigate the tissue distributions of 2, 5-hexanedione (2,5-HD) and pyrrole adducts in rats exposed to n-hexane, and analyze the correlation between pyrrole adducts and 2,5-HD in tissues. Methods Male Wistar rats were given daily dose of 500,1000, 2000, 4000 mg/kg bw n-hexane by gavage for 5 days. The rats were sacrificed 24 hours after the last administration. The levels of 2, 5-hexanedione and pyrrole adducts in tissues were measured by gas chromatography and Ehrlich’s reagent, respectively. The correlations between 2, 5-hexanedione and pyrrole adducts were analyzed by linear regression Results Dose-dependent effects were observed between the dosage of n-hexane and 2, 5-hexanedione, and pyrrole adducts in tissues. The highest level of 2, 5-hexanedione was found in urine and the lowest in sciatic nerve, while the highest level of pyrrole adducts was seen in liver and the lowest in serum. There were significant correlations among the free 2, 5-hexanedione, total 2, 5-hexanedione and pyrrole adducts within the same tissues. Pyrrole adducts in serum showed the most significant correlation with free 2, 5-hexanedione or pyrrole adducts in tissues. Conclusion The findings suggested that pyrrole adducts in serum might be a better indicator for the internal dose of free 2, 5-hexanedione and pyrrole adducts in tissues. PMID:24098756

  5. NirN Protein from Pseudomonas aeruginosa is a Novel Electron-bifurcating Dehydrogenase Catalyzing the Last Step of Heme d1 Biosynthesis*

    PubMed Central

    Adamczack, Julia; Hoffmann, Martin; Papke, Ulrich; Haufschildt, Kristin; Nicke, Tristan; Bröring, Martin; Sezer, Murat; Weimar, Rebecca; Kuhlmann, Uwe; Hildebrandt, Peter; Layer, Gunhild

    2014-01-01

    Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1. PMID:25204657

  6. Atomic-Resolution Structure of an N(5) Flavin Adduct in D-Arginine Dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guoxing; Yuan, Hongling; Wang, Siming

    2011-09-06

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 {angstrom} atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.

  7. LC-MS/MS screening strategy for unknown adducts to N-terminal valine in hemoglobin applied to smokers and nonsmokers.

    PubMed

    Carlsson, Henrik; von Stedingk, Hans; Nilsson, Ulrika; Törnqvist, Margareta

    2014-12-15

    Electrophilically reactive compounds have the ability to form adducts with nucleophilic sites in DNA and proteins, constituting a risk for toxic effects. Mass spectrometric detection of adducts to N-terminal valine in hemoglobin (Hb) after detachment by modified Edman degradation procedures is one approach for in vivo monitoring of exposure to electrophilic compounds/metabolites. So far, applications have been limited to one or a few selected reactive species, such as acrylamide and its metabolite glycidamide. This article presents a novel screening strategy for unknown Hb adducts to be used as a basis for an adductomic approach. The method is based on a modified Edman procedure, FIRE, specifically developed for LC-MS/MS analysis of N-terminal valine adducts in Hb detached as fluorescein thiohydantoin (FTH) derivatives. The aim is to detect and identify a priori unknown Hb adducts in human blood samples. Screening of valine adducts was performed by stepwise scanning of precursor ions in small mass increments, monitoring four fragments common for the FTH derivative of valine with different N-substitutions in the multiple-reaction mode, covering a mass range of 135 Da (m/z 503-638). Samples from six smokers and six nonsmokers were analyzed. Control experiments were performed to compare these results with known adducts and to check for artifactual formation of adducts. In all samples of smokers and nonsmokers, seven adducts were identified, of which six have previously been studied. Nineteen unknown adducts were observed, and 14 of those exhibited fragmentation patterns similar to earlier studied FTH derivatives of adducts to valine. Identification of the unknown adducts will be the focus of future work. The presented methodology is a promising screening tool using Hb adducts to indicate exposure to potentially toxic electrophilic compounds and metabolites.

  8. An Oxyferrous Heme/Protein-based Radical Intermediate Is Catalytically Competent in the Catalase Reaction of Mycobacterium tuberculosis Catalase-Peroxidase (KatG)*S⃞

    PubMed Central

    Suarez, Javier; Ranguelova, Kalina; Jarzecki, Andrzej A.; Manzerova, Julia; Krymov, Vladimir; Zhao, Xiangbo; Yu, Shengwei; Metlitsky, Leonid; Gerfen, Gary J.; Magliozzo, Richard S.

    2009-01-01

    A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed. PMID:19139099

  9. Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme

    PubMed Central

    Milani, Mario; Pesce, Alessandra; Ouellet, Yannick; Ascenzi, Paolo; Guertin, Michel; Bolognesi, Martino

    2001-01-01

    Macrophage-generated oxygen- and nitrogen-reactive species control the development of Mycobacterium tuberculosis infection in the host. Mycobacterium tuberculosis ‘truncated hemoglobin’ N (trHbN) has been related to nitric oxide (NO) detoxification, in response to macrophage nitrosative stress, during the bacterium latent infection stage. The three-dimensional structure of oxygenated trHbN, solved at 1.9 Å resolution, displays the two-over-two α-helical sandwich fold recently characterized in two homologous truncated hemoglobins, featuring an extra N-terminal α-helix and homodimeric assembly. In the absence of a polar distal E7 residue, the O2 heme ligand is stabilized by two hydrogen bonds to TyrB10(33). Strikingly, ligand diffusion to the heme in trHbN may occur via an apolar tunnel/cavity system extending for ∼28 Å through the protein matrix, connecting the heme distal cavity to two distinct protein surface sites. This unique structural feature appears to be conserved in several homologous truncated hemoglobins. It is proposed that in trHbN, heme Fe/O2 stereochemistry and the protein matrix tunnel may promote O2/NO chemistry in vivo, as a M.tuberculosis defense mechanism against macrophage nitrosative stress. PMID:11483493

  10. Nuclear Magnetic Resonance Studies of an N2-Guanine Adduct Derived from the Tumorigen Dibenzo[a,l]pyrene in DNA: Impact of Adduct Stereochemistry, Size, and Local DNA Sequence on Solution Conformations

    PubMed Central

    2015-01-01

    The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA adducts formed include the stereoisomeric 14S and 14Rtrans-anti-DB[a,l]P-N2-dG and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5′-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure–function relationship in NER. PMID

  11. Copper-catalyzed aerobic decarboxylative sulfonylation of cinnamic acids with sodium sulfinates: stereospecific synthesis of (E)-alkenyl sulfones.

    PubMed

    Jiang, Qing; Xu, Bin; Jia, Jing; Zhao, An; Zhao, Yu-Rou; Li, Ying-Ying; He, Na-Na; Guo, Can-Cheng

    2014-08-15

    A copper-catalyzed aerobic decarboxylative sulfonylation of alkenyl carboxylic acids with sodium sulfinates is developed. This study offers a new and expedient strategy for stereoselective synthesis of (E)-alkenyl sulfones that are widely present in biologically active natural products and therapeutic agents. Moreover, the transformation is proposed to proceed via a radical process and exhibits a broad substrate scope and good functional group tolerance.

  12. On the molecular basis of the activity of the antimalarial drug chloroquine: EXAFS-assisted DFT evidence of a direct Fe-N bond with free heme in solution

    NASA Astrophysics Data System (ADS)

    Macetti, Giovanni; Rizzato, Silvia; Beghi, Fabio; Silvestrini, Lucia; Lo Presti, Leonardo

    2016-02-01

    4-aminoquinoline antiplasmodials interfere with the biocrystallization of the malaria pigment, a key step of the malaria parasite metabolism. It is commonly believed that these drugs set stacking π···π interactions with the Fe-protoporphyrin scaffold of the free heme, even though the details of the heme:drug recognition process remain elusive. In this work, the local coordination of Fe(III) ions in acidic solutions of hematin at room temperature was investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy in the 4.0-5.5 pH range, both in the presence and in the absence of the antimalarial drug chloroquine. EXAFS results were complemented by DFT simulations in polarizable continuum media to model solvent effects. We found evidence that a complex where the drug quinoline nitrogen is coordinated with the iron center might coexist with formerly proposed adduct geometries, based on stacking interactions. Charge-assisted hydrogen bonds among lateral chains of the two molecules play a crucial role in stabilizing this complex, whose formation is favored by the presence of lipid micelles. The direct Fe-N bond could reversibly block the axial position in the Fe 1st coordination shell in free heme, acting as an inhibitor for the crystallization of the malaria pigment without permanently hampering the catalytic activity of the redox center. These findings are discussed in the light of possible implications on the engineering of drugs able to thwart the adaptability of the malaria parasite against classical aminoquinoline-based therapies.

  13. Evaluation of the DNA damaging potential of cannabis cigarette smoke by the determination of acetaldehyde derived N2-ethyl-2'-deoxyguanosine adducts.

    PubMed

    Singh, Rajinder; Sandhu, Jatinderpal; Kaur, Balvinder; Juren, Tina; Steward, William P; Segerbäck, Dan; Farmer, Peter B

    2009-06-01

    Acetaldehyde is an ubiquitous genotoxic compound that has been classified as a possible carcinogen to humans. It can react with DNA to form primarily a Schiff base N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dG) adduct. An online column-switching valve liquid chromatography tandem mass spectrometry (LC-MS/MS) selected reaction monitoring (SRM) method was developed for the determination of N(2)-ethylidene-dG adducts in DNA following reduction with sodium cyanoborohydride (NaBH(3)CN) to the chemically stable N(2)-ethyl-2'-deoxyguanosine (N(2)-ethyl-dG) adduct. Accurate quantitation of the adduct was obtained by the addition of the [(15)N(5)]N(2)-ethyl-dG stable isotope-labeled internal standard prior to enzymatic hydrolysis of the DNA samples to 2'-deoxynucleosides with the incorporation of NaBH(3)CN in the DNA hydrolysis buffer. The method required 50 microg of hydrolyzed DNA on column for the analysis, and the limit of detection for N(2)-ethyl-dG was 2.0 fmol. The analysis of calf thymus DNA treated in vitro with acetaldehyde (ranging from 0.5 to 100 mM) or with the smoke generated from 1, 5, and 10 cannabis cigarettes showed linear dose-dependent increases in the level of N(2)-ethyl-dG adducts (r = 0.954 and r = 0.999, respectively). Similar levels (332.8 +/- 21.9 vs 348.4 +/- 19.1 adducts per 10(8) 2'-deoxynucleosides) of N(2)-ethyl-dG adducts were detected following the exposure of calf thymus DNA to 10 tobacco or 10 cannabis cigarettes. No significant difference was found in the levels of N(2)-ethyl-dG adducts in human lung DNA obtained from nonsmokers (n = 4) and smokers (n = 4) with the average level observed as 13.3 +/- 0.7 adducts per 10(8) 2'-deoxynucleosides. No N(2)-ethyl-dG adducts were detected in any of the DNA samples following analysis with the omission of NaBH(3)CN from the DNA hydrolysis buffer. In conclusion, these results provide evidence for the DNA damaging potential of cannabis smoke, implying that the consumption of cannabis

  14. Heme-Induced ROS in Trypanosoma Cruzi Activates CaMKII-Like That Triggers Epimastigote Proliferation. One Helpful Effect of ROS

    PubMed Central

    Nogueira, Natália Pereira de Almeida; de Souza, Cintia Fernandes; Saraiva, Francis Monique de Souza; Sultano, Pedro Elias; Dalmau, Sergio Ranto; Bruno, Roberta Eitler; de Lima Sales Gonçalves, Renata; Laranja, Gustavo Augusto Travassos; Leal, Luís Henrique Monteiro; Coelho, Marsen Garcia Pinto; Masuda, Claudio A.; Oliveira, Marcus F.; Paes, Marcia Cristina

    2011-01-01

    Heme is a ubiquitous molecule that has a number of physiological roles. The toxic effects of this molecule have been demonstrated in various models, based on both its pro-oxidant nature and through a detergent mechanism. It is estimated that about 10 mM of heme is released during blood digestion in the blood-sucking bug's midgut. The parasite Trypanosoma cruzi, the agent of Chagas' disease, proliferates in the midgut of the insect vector; however, heme metabolism in trypanosomatids remains to be elucidated. Here we provide a mechanistic explanation for the proliferative effects of heme on trypanosomatids. Heme, but not other porphyrins, induced T. cruzi proliferation, and this phenomenon was accompanied by a marked increase in reactive oxygen species (ROS) formation in epimastigotes when monitored by ROS-sensitive fluorescent probes. Heme-induced ROS production was time-and concentration-dependent. In addition, lipid peroxidation and the formation of 4-hydroxy-2-nonenal (4-HNE) adducts with parasite proteins were increased in epimastigotes in the presence of heme. Conversely, the antioxidants urate and GSH reversed the heme-induced ROS. Urate also decreased parasite proliferation. Among several protein kinase inhibitors tested only specific inhibitors of CaMKII, KN93 and Myr-AIP, were able to abolish heme-induced ROS formation in epimastigotes leading to parasite growth impairment. Taken together, these data provide new insight into T. cruzi- insect vector interactions: heme, a molecule from the blood digestion, triggers epimastigote proliferation through a redox-sensitive signalling mechanism. PMID:22022475

  15. Chemistry and Biology of Aflatoxin-DNA Adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Michael P.; Banerjee, Surajit; Brown, Kyle L.

    Aspergillus flavus is a fungal contaminant of stored rice, wheat, corn, and other grainstuffs, and peanuts. This is of concern to human health because it produces the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}), which is genotoxic and is implicated in the etiology of liver cancer. AFB{sub 1} is oxidized in vivo by cytochrome P450 to form aflatoxin B{sub 1} epoxide, which forms an N7-dG adduct (AFB{sub 1}-N7-dG) in DNA. The latter rearranges to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative that equilibrates between {alpha} and {beta} anomers of the deoxyribose. In DNA, both the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts intercalate abovemore » the 5'-face of the damaged guanine. Each produces G {yields} T transversions in Escherichia coli, but the AFB{sub 1}-{beta}-FAPY adduct is more mutagenic. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) provides a model for understanding error-prone bypass of the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts. It bypasses the AFB{sub 1}-N7-dG adduct, but it conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including mis-insertion of dATP, consistent with the G {yields} T mutations characteristic of AFB{sub 1} mutagenesis in E. coli. Crystallographic analyses of a series of binary and ternary complexes with the Dpo4 polymerase revealed differing orientations of the N7-C8 bond of the AFB{sub 1}-N7-dG adduct as compared to the N{sup 5}-C8 bond in the AFB{sub 1}-{beta}-FAPY adduct, and differential accommodation of the intercalated AFB{sub 1} moieties within the active site. These may modulate AFB{sub 1} lesion bypass by this polymerase.« less

  16. Monitoring exposure to acrylonitrile using adducts with N-terminal valine in hemoglobin.

    PubMed

    Osterman-Golkar, S M; MacNeela, J P; Turner, M J; Walker, V E; Swenberg, J A; Sumner, S J; Youtsey, N; Fennell, T R

    1994-12-01

    Human exposure to acrylonitrile (ACN), a carcinogen in rats, may occur in industrial settings, through waste water and tobacco smoke. ACN is an electrophilic compound and binds covalently to nucleophilic sites in macromolecules. Measurements of adducts with hemoglobin could be utilized for improved exposure assessments. In this study, a method for quantification of N-(2-cyanoethyl)valine (CEVal), the product of reaction of ACN with N-terminal valine in hemoglobin has been developed. The method is based on the N-alkyl Edman procedure, which involves derivatization of the globin with pentafluorophenyl isothiocyanate and gas chromatographic-mass spectrometric analysis of the resulting thiohydantoin. An internal standard was prepared by reacting valylglycylglycine with [2H3]ACN, spiked with [14C]ACN to a known sp. act. Levels of CEVal were measured in globin from rats exposed to 3-300 p.p.m. ACN in drinking water for 105 days and from humans (four smokers and four non-smokers). CEVal was detected at all exposure levels in the drinking water study. The relationship between adduct level and water concentration was linear at concentrations of 10 p.p.m. (corresponding to an average daily uptake of c. 0.74 mg ACN/kg body wt during the 65 days prior to sacrifice) and below, with a slope of 37.7 pmol CEVal/g globin/p.p.m. At higher concentrations, adduct levels increased sublinearly, indicating saturation of a metabolic process for elimination of ACN. Comparison of adduct formation with the estimated dose (mg/kg/day) of ACN indicated that at low dose (0-10 p.p.m.) CEVal = 0.508 x ACN dose + 0.048 and at high dose (35-300 p.p.m.) CEVal = 1.142 x ACN dose - 1.098. Globin from the smokers (10-20 cigarettes/day) contained about 90 pmol CEVal/g, whereas the adduct levels in globin from non-smokers were below the detection limit. The analytical sensitivity should be sufficient to allow monitoring of occupationally exposed workers at levels well below the current Occupational Safety

  17. Nitrite curing of chicken, pork, and beef inhibits oxidation but does not affect N-nitroso compound (NOC)-specific DNA adduct formation during in vitro digestion.

    PubMed

    Van Hecke, Thomas; Vanden Bussche, Julie; Vanhaecke, Lynn; Vossen, Els; Van Camp, John; De Smet, Stefaan

    2014-02-26

    Uncured and nitrite-cured chicken, pork, and beef were used as low, medium, and high sources of heme-Fe, respectively, and exposed to an in vitro digestion model simulating the mouth, stomach, duodenum, and colon. With increasing content of iron compounds, up to 25-fold higher concentrations of the toxic lipid oxidation products malondialdehyde, 4-hydroxy-2-nonenal, and other volatile aldehydes were formed during digestion, together with increased protein carbonyl compounds as measurement of protein oxidation. Nitrite curing of all meats lowered lipid and protein oxidation to the level of oxidation in uncured chicken. Strongly depending on the individual fecal inoculum, colonic digestion of beef resulted in significantly higher concentrations of the NOC-specific DNA adduct O(6)-carboxymethyl-guanine compared to chicken and pork, whereas nitrite curing had no significant effect. This study confirms previously reported evidence that heme-Fe is involved in the epidemiological association between red meat consumption and colorectal cancer, but questions the role of nitrite curing in this association.

  18. Immuno-spin trapping of heme-induced protein radicals: Implications for heme oxygenase-1 induction and heme degradation

    PubMed Central

    Ganini, Douglas; Deterding, Leesa J.; Ehrenshaft, Marilyn; Chatterjee, Saurabh; Mason, Ronald P.

    2013-01-01

    Heme, in the presence of hydrogen peroxide, can act as a peroxidase. Intravascular hemolysis results in a massive release of heme into the plasma in several pathophysiological conditions such as hemolytic anemia, malaria, and sickle cell disease. Heme is known to induce heme oxygenase-1(HO-1) expression, and the extent of induction depends on the ratio of albumin to heme in plasma. HO-1 degrades heme and ultimately generates the antioxidant bilirubin. Heme also causes oxidative stress in cells, but whether it causes protein-radical formation has not yet been studied. In the literature, two purposes for the degradation of heme by HO-1 are discussed. One is the production of the antioxidant bilirubin and the other is the prevention of heme-dependent adverse effects. Here we have investigated heme-induced protein-radical formation, which might have pathophysiological consequences, and have used immunospin trapping to establish the formation of heme-induced protein radicals in two systems: human serum albumin (HSA)/H2O2 and human plasma/H2O2.We found that excess heme catalyzed the formation of HSA radicals in the presence of hydrogen peroxide. When heme and hydrogen peroxide were added to human plasma, heme was found to oxidize proteins, primarily and predominantly HSA; however, when HSA-depleted plasma was used, heme triggered the oxidation of several other proteins, including transferrin. Thus, HSA in plasma protected other proteins from heme/H2O2-induced oxidation. The antioxidants ascorbate and uric acid significantly attenuated protein-radical formation induced by heme/ H2O2; however, bilirubin did not confer significant protection. Based on these findings, we conclude that heme is degraded by HO-1 because it is a catalyst of protein-radical formation and not merely to produce the relatively inefficient antioxidant bilirubin. PMID:23624303

  19. Arylation, alkenylation, and alkylation of 2-halopyridine N-oxides with grignard reagents: a solution to the problem of C2/C6 regioselective functionalization of pyridine derivatives.

    PubMed

    Zhang, Song; Liao, Lian-Yan; Zhang, Fang; Duan, Xin-Fang

    2013-03-15

    A facile arylation, alkenylation, and alkylation of functionalized 2-halopyridine N-oxides with various Grignard reagents was developed. It represented a highly efficient and selective C-H bond functionalization of pyridine derivatives in the presence of reactive C-Cl or C-Br bonds. Using Cl or Br as a blocking group, C2/C6 site-controllable functionalization of pyridine derivatives has been achieved. Various pyridine compounds can be prepared as illustrated in the total syntheses of Onychine, dielsine, and PARP-1 inhibitor GPI 16539.

  20. Nickel-Catalyzed Addition-Type Alkenylation of Unactivated, Aliphatic C-H Bonds with Alkynes: A Concise Route to Polysubstituted γ-Butyrolactones.

    PubMed

    Li, Mingliang; Yang, Yudong; Zhou, Danni; Wan, Danyang; You, Jingsong

    2015-05-15

    Through the nickel-catalyzed chelation-assisted C-H bond activation strategy, the addition-type alkenylation of unreactive β-C(sp(3))-H bonds of aliphatic amides with internal alkynes is developed for the first time to produce γ,δ-unsaturated carboxylic amide derivatives. The resulting alkenylated products can further be transformed into polysubstituted γ-butyrolactones with pyridinium chlorochromate (PCC).

  1. Introduction of water into the heme distal side by Leu65 mutations of an oxygen sensor, YddV, generates verdoheme and carbon monoxide, exerting the heme oxygenase reaction.

    PubMed

    Stranava, Martin; Martínková, Markéta; Stiborová, Marie; Man, Petr; Kitanishi, Kenichi; Muchová, Lucie; Vítek, Libor; Martínek, Václav; Shimizu, Toru

    2014-11-01

    The globin-coupled oxygen sensor, YddV, is a heme-based oxygen sensor diguanylate cyclase. Oxygen binding to the heme Fe(II) complex in the N-terminal sensor domain of this enzyme substantially enhances its diguanylate cyclase activity which is conducted in the C-terminal functional domain. Leu65 is located on the heme distal side and is important for keeping the stability of the heme Fe(II)-O2 complex by preventing the entry of the water molecule to the heme complex. In the present study, it was found that (i) Escherichia coli-overexpressed and purified L65N mutant of the isolated heme-bound domain of YddV (YddV-heme) contained the verdoheme iron complex and other modified heme complexes as determined by optical absorption spectroscopy and mass spectrometry; (ii) CO was generated in the reconstituted system composed of heme-bound L65N and NADPH:cytochrome P450 reductase as confirmed by gas chromatography; (iii) CO generation of heme-bound L65N in the reconstituted system was inhibited by superoxide dismutase and catalase. In a concordance with the result, the reactive oxygen species increased the CO generation; (iv) the E. coli cells overexpressing the L65N protein of YddV-heme also formed significant amounts of CO compared to the cells overexpressing the wild type protein; (v) generation of verdoheme and CO was also observed for other mutants at Leu65 as well, but to a lesser extent. Since Leu65 mutations are assumed to introduce the water molecule into the heme distal side of YddV-heme, it is suggested that the water molecule would significantly contribute to facilitating heme oxygenase reactions for the Leu65 mutants. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols.

    PubMed

    Larionov, Evgeny; Lin, Luqing; Guénée, Laure; Mazet, Clément

    2014-12-03

    Herein we report the palladium-catalyzed isomerization of highly substituted allylic alcohols and alkenyl alcohols by means of a single catalytic system. The operationally simple reaction protocol is applicable to a broad range of substrates and displays a wide functional group tolerance, and the products are usually isolated in high chemical yield. Experimental and computational mechanistic investigations provide complementary and converging evidence for a chain-walking process consisting of repeated migratory insertion/β-H elimination sequences. Interestingly, the catalyst does not dissociate from the substrate in the isomerization of allylic alcohols, whereas it disengages during the isomerization of alkenyl alcohols when additional substituents are present on the alkyl chain.

  3. Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H; Stuehr, Dennis J

    2012-10-30

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-aminolevulinic acid. Our finding of heme binding to GAPDH expands the protein's potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.

  4. Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri- n-butyl phosphate–nitric acid adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Donna L.; Fox, Robert V.; Case, Mary E.

    A new tri- n-butylphosphate–nitric acid (TBP–HNO 3) adduct was prepared by combining TBP and fuming (90%) HNO 3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO 2) was modified with this new adduct [TBP(HNO 3) 5.2(H 2O) 1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO 3 and TBP [TBP(HNO 3) 1.7(H 2O) 0.6]. All rare earth oxides tested with both adduct species couldmore » be extracted with the exception of cerium oxide. Furthermore, the water and acid concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less

  5. Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri- n-butyl phosphate–nitric acid adducts

    DOE PAGES

    Baek, Donna L.; Fox, Robert V.; Case, Mary E.; ...

    2016-06-14

    A new tri- n-butylphosphate–nitric acid (TBP–HNO 3) adduct was prepared by combining TBP and fuming (90%) HNO 3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO 2) was modified with this new adduct [TBP(HNO 3) 5.2(H 2O) 1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO 3 and TBP [TBP(HNO 3) 1.7(H 2O) 0.6]. All rare earth oxides tested with both adduct species couldmore » be extracted with the exception of cerium oxide. Furthermore, the water and acid concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less

  6. THE HEME BINDING PROPERTIES OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE

    PubMed Central

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H.; Stuehr, Dennis J.

    2012-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for cellular heme insertion into inducible nitric oxide synthase (Chakravarti et al, PNAS 2010, 107(42):18004-9), we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (1 heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418 and 537 nm, and when reduced to ferrous gave maxima at 424, 527 and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were kon =17,800 M−1s−1 and koff1 = 7.0 × 10−3 s−1; koff2 = 3.3 × 10−4 s−1 respectively, giving approximate affinities of 19–390 nM. Ferrous heme bound more poorly to GAPDH and dissociated with a koff = 4.2 × 10−3 s−1. Magnetic circular dichroism (MCD), resonance Raman (rR) and EPR spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in ferric complex was not displaced by CN− or N3− but in ferrous complex was displaceable by CO at a rate of 1.75 s−1 (for [CO]>0.2 mM). Studies with heme analogs revealed selectivity toward the coordinating metal and porphyrin ring structure. GAPDH-heme was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-amino levulinic acid. Our finding of heme binding to GAPDH expands the protein’s potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH is consistent with it performing heme sensing or heme chaperone-like functions in cells. PMID:22957700

  7. Analysis of Protein Adduction Kinetics by Quantitative Mass Spectrometry. Competing Adduction Reactions of Glutathione-S-Transferase P1-1 with Electrophiles

    PubMed Central

    Orton, Christopher R.; Liebler, Daniel C.

    2007-01-01

    Defining the mechanisms and consequences of protein adduction is crucial to understanding the toxicity of reactive electrophiles. Application of tandem mass spectrometry and data analysis algorithms enables detection and mapping of chemical adducts at the level of amino acid sequence. Nevertheless, detection of adducts does not indicate relative reactivity of different sites. Here we describe a method to measure the kinetics of competing adduction reactions at different sites on the same protein. Adducts are formed by electrophiles at Cys14 and Cys47 on the metabolic enzyme glutathione-S-transferase P1-1 and modification is accompanied by a loss of enzymatic activity. Relative quantitation of protein adducts was done by tagging N-termini of peptide digests with isotopically labeled phenyl isocyanate and tracking the ratio of light-tagged peptide adducts to heavy-tagged reference samples in liquid chromatography-tandem mass spectrometry analyses using a multiple reaction monitoring method. This approach was used to measure rate constants for adduction at both positions with two different model electrophiles, N-iodoacetyl-N-biotinylhexylenediamine and 1-biotinamido-4-(4′-[maleimidoethyl-cyclohexane]-carboxamido)butane. The results indicate that Cys47 was approximately 2–3-fold more reactive toward both electrophiles than was Cys14. This result was consistent with the relative reactivity of these electrophiles in a complex proteome system and with previously reported trends in reactivity of these sites. Kinetic analyses of protein modification reactions provide a means of evaluating the selectivity of reactive mediators of chemical toxicity. PMID:17433278

  8. ApoHRP-based assay to measure intracellular regulatory heme.

    PubMed

    Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A; Dhahbi, Joseph M

    2015-02-01

    The majority of the heme-binding proteins possess a "heme-pocket" that stably binds to heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the "Heme-Regulatory Motifs" (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-established methods for assaying total cellular heme (e.g., heme-proteins plus RH), currently there is no method available for measuring RH independent of the total heme (TH). The current study describes and validates a new method to measure intracellular RH. This method is based on the reconstitution of apo-horseradish peroxidase (apoHRP) with heme to form holoHRP. The resulting holoHRP activity is then measured with a colorimetric substrate. The results show that apoHRP specifically binds RH but not with heme from housekeeping heme-proteins. The RH assay detects intracellular RH. Furthermore, using conditions that create positive (hemin) or negative (N-methyl protoporphyrin IX) controls for heme in normal human fibroblasts (IMR90), the RH assay shows that RH is dynamic and independent of TH. We also demonstrated that short-term exposure to subcytotoxic concentrations of lead (Pb), mercury (Hg), or amyloid-β (Aβ) significantly alters intracellular RH with little effect on TH. In conclusion the RH assay is an effective assay to investigate intracellular RH concentration and demonstrates that RH represents ∼6% of total heme in IMR90 cells.

  9. Tamoxifen-DNA adduct formation in monkey and human reproductive organs.

    PubMed

    Hernandez-Ramon, Elena E; Sandoval, Nicole A; John, Kaarthik; Cline, J Mark; Wood, Charles E; Woodward, Ruth A; Poirier, Miriam C

    2014-05-01

    The estrogen analog tamoxifen (TAM), used for adjuvant therapy of breast cancer, induces endometrial and uterine tumors in breast cancer patients. Proliferation stimulus of the uterine endometrium is likely involved in tumor induction, but genotoxicity may also play a role. Formation of TAM-DNA adducts in human tissues has been reported but remains controversial. To address this issue, we examined TAM-DNA adducts in uteri from two species of monkeys, Erythrocebus patas (patas) and Macaca fascicularis (macaque), and in human endometrium and myometrium. Monkeys were given 3-4 months of chronic TAM dosing scaled to be equivalent to the daily human dose. In the uteri, livers and brains from the patas (n = 3), and endometrium from the macaques (n = 4), TAM-DNA adducts were measurable by TAM-DNA chemiluminescence immunoassay. Average TAM-DNA adduct values for the patas uteri (23 adducts/10(8) nucleotides) were similar to those found in endometrium of the macaques (19 adducts/10(8) nucleotides). Endometrium of macaques exposed to both TAM and low-dose estradiol (n = 5) averaged 34 adducts/10(8) nucleotides. To examine TAM-DNA persistence in the patas, females (n = 3) were exposed to TAM for 3 months and to no drug for an additional month, resulting in low or non-detectable TAM-DNA in livers and uteri. Human endometrial and myometrial samples from women receiving (n = 8) and not receiving (n = 8) TAM therapy were also evaluated. Women receiving TAM therapy averaged 10.3 TAM-DNA adducts/10(8) nucleotides, whereas unexposed women showed no detectable TAM-DNA. The data indicate that genotoxicity, in addition to estrogen agonist effects, may contribute to TAM-induced human endometrial cancer.

  10. Formation of difluorothionoacetyl-protein adducts by S-(1,1,2,2-tetrafluoroethyl)-L-cysteine metabolites: Nucleophilic catalysis of stable lysyl adduct formation by histidine and tyrosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, P.J.; McCann, D.J.; Stevens, J.L.

    1991-06-18

    {sup 19}F NMR spectorscopy was used in conjunction with isotopic labeling to demonstrate that difluorothionoacetyl-protein adducts are formed by metabolites of the nephrotoxic cysteine conjugate S(1,1,2,2-tetrafluoroethyl)-L-cysteine (TFEC). To determine which amino acid residues can be involved in adduct formation, the reactivity of TFEC metabolites with a variety of N-acetyl amino acids was also investigated. An N{sup {alpha}}-acetyl-N{sup {epsilon}}-(difluorothionoacetyl)lysine (DFTAL) adduct was isolated and characterized by {sup 19}F and {sup 13}C NMR spectroscopy and mass spectrometry. N{sup {alpha}}-Acetylhistidine and N-acetyltyrosine were found to act as nucleophilic catalysts to facilitate the formation of both the protein and DFTAL adducts. Adduct formation wasmore » greatly reduced when lysyl-modified protein was used as the substrate, indicating that lysyl residues are primary sites of adduct formation. However, N{sup a}-acetyllysine, at concentrations of >100-fold in excess compared to protein lysyl residues, was not effective in preventing binding of metabolites to protein. Therefore, nucleophilic catalysis at the surface of the protein may be an important mechanism for the binding of TFEC metabolites to specific lysyl residues in protein. TFEC metabolites were very reactive with the thiol nucleophiles glutathione and N-acetylcysteine. However, the predicted difluorodithioesters could not be isolated. Bothe stable difluorothioacetamide and less stable difluorodithioester protein adducts may play a role in TFEC-mediated enphrotoxicity.« less

  11. Role of TLR4 signaling in the nephrotoxicity of heme and heme proteins.

    PubMed

    Nath, Karl A; Belcher, John D; Nath, Meryl C; Grande, Joseph P; Croatt, Anthony J; Ackerman, Allan W; Katusic, Zvonimir S; Vercellotti, Gregory M

    2018-05-01

    Destabilized heme proteins release heme, and free heme is toxic. Heme is now recognized as an agonist for the Toll-like receptor-4 (TLR4) receptor. This study examined whether the TLR4 receptor mediates the nephrotoxicity of heme, specifically, the effects of heme on renal blood flow and inflammatory responses. We blocked TLR4 signaling by the specific antagonist TAK-242. Intravenous administration of heme to mice promptly reduced renal blood flow, an effect attenuated by TAK-242. In vitro, TAK-242 reduced heme-elicited activation of NF-κB and its downstream gene monocyte chemoattractant protein-1(MCP-1); in contrast, TAK-242 failed to reduce heme-induced activation of the anti-inflammatory transcription factor Nrf2 and its downstream gene heme oxygenase-1 (HO-1). TAK-242 did not reduce heme-induced renal MCP-1 upregulation in vivo. TAK-242 did not reduce dysfunction and histological injury in the glycerol model of heme protein-induced acute kidney injury (AKI), findings corroborated by studies in TLR4 +/+ and TLR4 -/- mice. We conclude that 1) acute heme-mediated renal vasoconstriction occurs through TLR4 signaling; 2) proinflammatory effects of heme in renal epithelial cells involve TLR4 signaling, whereas the anti-inflammatory effects of heme do not; 3) TLR4 signaling does not mediate the proinflammatory effects of heme in the kidney; and 4) major mechanisms underlying glycerol-induced, heme protein-mediated AKI do not involve TLR4 signaling. These findings in the glycerol model are in stark contrast with findings in virtually all other AKI models studied to date and emphasize the importance of TLR4-independent pathways of heme protein-mediated injury in this model. Finally, these studies urge caution when using observations derived in vitro to predict what occurs in vivo.

  12. Chemistry and Biology of DNA Containing 1,N2-Deoxyguanosine Adducts of the α,β-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and 4-Hydroxynonenal

    PubMed Central

    2009-01-01

    The α,β-unsaturated aldehydes (enals) acrolein, crotonaldehyde, and trans-4-hydroxynonenal (4-HNE) are products of endogenous lipid peroxidation, arising as a consequence of oxidative stress. The addition of enals to dG involves Michael addition of the N2-amine to give N2-(3-oxopropyl)-dG adducts, followed by reversible cyclization of N1 with the aldehyde, yielding 1,N2-dG exocyclic products. The 1,N2-dG exocyclic adducts from acrolein, crotonaldehyde, and 4-HNE exist in human and rodent DNA. The enal-induced 1,N2-dG lesions are repaired by the nucleotide excision repair pathway in both Escherichia coli and mammalian cells. Oligodeoxynucleotides containing structurally defined 1,N2-dG adducts of acrolein, crotonaldehyde, and 4-HNE were synthesized via a postsynthetic modification strategy. Site-specific mutagenesis of enal adducts has been carried out in E. coli and various mammalian cells. In all cases, the predominant mutations observed are G→T transversions, but these adducts are not strongly miscoding. When placed into duplex DNA opposite dC, the 1,N2-dG exocyclic lesions undergo ring opening to the corresponding N2-(3-oxopropyl)-dG derivatives. Significantly, this places a reactive aldehyde in the minor groove of DNA, and the adducted base possesses a modestly perturbed Watson−Crick face. Replication bypass studies in vitro indicate that DNA synthesis past the ring-opened lesions can be catalyzed by pol η, pol ι, and pol κ. It also can be accomplished by a combination of Rev1 and pol ζ acting sequentially. However, efficient nucleotide insertion opposite the 1,N2-dG ring-closed adducts can be carried out only by pol ι and Rev1, two DNA polymerases that do not rely on the Watson−Crick pairing to recognize the template base. The N2-(3-oxopropyl)-dG adducts can undergo further chemistry, forming interstrand DNA cross-links in the 5′-CpG-3′ sequence, intrastrand DNA cross-links, or DNA−protein conjugates. NMR and mass spectrometric analyses

  13. Heme acquisition in the parasitic filarial nematode Brugia malayi.

    PubMed

    Luck, Ashley N; Yuan, Xiaojing; Voronin, Denis; Slatko, Barton E; Hamza, Iqbal; Foster, Jeremy M

    2016-10-01

    Nematodes lack a heme biosynthetic pathway and must acquire heme from exogenous sources. Given the indispensable role of heme, this auxotrophy may be exploited to develop drugs that interfere with heme uptake in parasites. Although multiple heme-responsive genes (HRGs) have been characterized within the free-living nematode Caenorhabditis elegans, we have undertaken the first study of heme transport in Brugia malayi, a causative agent of lymphatic filariasis. Through functional assays in yeast, as well as heme analog, RNAi, and transcriptomic experiments, we have shown that the heme transporter B. malayi HRG-1 (BmHRG-1) is indeed functional in B. malayi In addition, BmHRG-1 localizes both to the endocytic compartments and cell membrane when expressed in yeast cells. Transcriptomic sequencing revealed that BmHRG-1, BmHRG-2, and BmMRP-5 (all orthologs of HRGs in C. elegans) are down-regulated in heme-treated B. malayi, as compared to non-heme-treated control worms. Likely because of short gene lengths, multiple exons, other HRGs in B. malayi (BmHRG-3-6) remain unidentified. Although the precise mechanisms of heme homeostasis in a nematode with the ability to acquire heme remains unknown, this study clearly demonstrates that the filarial nematode B. malayi is capable of transporting exogenous heme.-Luck, A. N., Yuan, X., Voronin, D., Slatko, B. E., Hamza, I., Foster, J. M. Heme acquisition in the parasitic filarial nematode Brugia malayi. © The Author(s).

  14. Heme acquisition in the parasitic filarial nematode Brugia malayi

    PubMed Central

    Luck, Ashley N.; Yuan, Xiaojing; Voronin, Denis; Slatko, Barton E.; Hamza, Iqbal; Foster, Jeremy M.

    2016-01-01

    Nematodes lack a heme biosynthetic pathway and must acquire heme from exogenous sources. Given the indispensable role of heme, this auxotrophy may be exploited to develop drugs that interfere with heme uptake in parasites. Although multiple heme-responsive genes (HRGs) have been characterized within the free-living nematode Caenorhabditis elegans, we have undertaken the first study of heme transport in Brugia malayi, a causative agent of lymphatic filariasis. Through functional assays in yeast, as well as heme analog, RNAi, and transcriptomic experiments, we have shown that the heme transporter B. malayi HRG-1 (BmHRG-1) is indeed functional in B. malayi. In addition, BmHRG-1 localizes both to the endocytic compartments and cell membrane when expressed in yeast cells. Transcriptomic sequencing revealed that BmHRG-1, BmHRG-2, and BmMRP-5 (all orthologs of HRGs in C. elegans) are down-regulated in heme-treated B. malayi, as compared to non–heme-treated control worms. Likely because of short gene lengths, multiple exons, other HRGs in B. malayi (BmHRG-3–6) remain unidentified. Although the precise mechanisms of heme homeostasis in a nematode with the ability to acquire heme remains unknown, this study clearly demonstrates that the filarial nematode B. malayi is capable of transporting exogenous heme.—Luck, A. N., Yuan, X., Voronin, D., Slatko, B. E., Hamza, I., Foster, J. M. Heme acquisition in the parasitic filarial nematode Brugia malayi. PMID:27363426

  15. Heme impairs the ball-and-chain inactivation of potassium channels.

    PubMed

    Sahoo, Nirakar; Goradia, Nishit; Ohlenschläger, Oliver; Schönherr, Roland; Friedrich, Manfred; Plass, Winfried; Kappl, Reinhard; Hoshi, Toshinori; Heinemann, Stefan H

    2013-10-15

    Fine-tuned regulation of K(+) channel inactivation enables excitable cells to adjust action potential firing. Fast inactivation present in some K(+) channels is mediated by the distal N-terminal structure (ball) occluding the ion permeation pathway. Here we show that Kv1.4 K(+) channels are potently regulated by intracellular free heme; heme binds to the N-terminal inactivation domain and thereby impairs the inactivation process, thus enhancing the K(+) current with an apparent EC50 value of ∼20 nM. Functional studies on channel mutants and structural investigations on recombinant inactivation ball domain peptides encompassing the first 61 residues of Kv1.4 revealed a heme-responsive binding motif involving Cys13:His16 and a secondary histidine at position 35. Heme binding to the N-terminal inactivation domain induces a conformational constraint that prevents it from reaching its receptor site at the vestibule of the channel pore.

  16. Identification of the major tamoxifen-DNA adducts in rat liver by mass spectroscopy.

    PubMed

    Rajaniemi, H; Rasanen, I; Koivisto, P; Peltonen, K; Hemminki, K

    1999-02-01

    We present here the first mass spectroscopic (MS) identification of the main tamoxifen-induced DNA adducts in rat liver. The two main adducts were isolated by high-performance liquid chromatography (HPLC) and identified by MS, MS-MS and ultraviolet spectroscopy. Adduct 1 was the N-desmethyltamoxifen-deoxyguanosine adduct in which the alpha-position of the metabolite N-desmethyltamoxifen is linked covalently to the amino group of deoxyguanosine. Adduct 2 was confirmed to be the trans isomer of alpha-(N2-deoxyguanosinyl)tamoxifen, as previously suggested by co-chromatography.

  17. Electron Capture Dissociation of Divalent Metal-adducted Sulfated N-Glycans Released from Bovine Thyroid Stimulating Hormone

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Håkansson, Kristina

    2013-11-01

    Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca2+, Mg2+, and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glycosidic and cross-ring cleavages, but most product ions suffered from sulfonate loss. Internal fragments were also observed, which complicated the spectra. ECD provided complementary structural information compared with IRMPD, and all observed product ions retained the sulfonate group, allowing sulfonate localization. To our knowledge, this work represents the first application of ECD towards metal-adducted sulfated N-glycans released from a glycoprotein. Due to the ability of IRMPD and ECD to provide complementary structural information, the combination of the two strategies is a promising and valuable tool for glycan structural characterization. The influence of different metal ions was also examined. Calcium adducts appeared to be the most promising species because of high sensitivity and ability to provide extensive structural information.

  18. Heme orientational disorder in human adult hemoglobin reconstituted with a ring fluorinated heme and its functional consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagao, Satoshi; Hirai, Yueki; Kawano, Shin

    2007-03-16

    A ring fluorinated heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12, 18-trimethyl-porphyrin-atoiron(III), has been incorporated into human adult hemoglobin (Hb A). The heme orientational disorder in the individual subunits of the protein has been readily characterized using {sup 19}F NMR and the O{sub 2} binding properties of the protein have been evaluated through the oxygen equilibrium analysis. The equilibrated orientations of hemes in {alpha}- and {beta}- subunits of the reconstituted protein were found to be almost completely opposite to each other, and hence were largely different from those of the native and the previously reported reconstituted proteins [T. Jue, G.N. La Mar, Heme orientational heterogeneity inmore » deuterohemin-reconstituted horse and human hemoglobin characterized by proton nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 119 (1984) 640-645]. Despite the large difference in the degree of the heme orientational disorder in the subunits of the proteins, the O{sub 2} affinity and the cooperativity of the protein reconstituted with 2-MF were similar to those of the proteins reconstituted with a series of hemes chemically modified at the heme 3- and 8-positions [K. Kawabe, K. Imaizumi, Z. Yoshida, K. Imai, I. Tyuma, Studies on reconstituted myoglobins and hemoglobins II. Role of the heme side chains in the oxygenation of hemoglobin, J. Biochem. 92 (1982) 1713-1722], whose O{sub 2} affinity and cooperativity were higher and lower, respectively, relative to those of native protein. These results indicated that the heme orientational disorder could exert little effect, if any, on the O{sub 2} affinity properties of Hb A. This finding provides new insights into structure-function relationship of Hb A.« less

  19. Improved Method for the Incorporation of Heme Cofactors into Recombinant Proteins Using Escherichia coli Nissle 1917.

    PubMed

    Fiege, Kerstin; Querebillo, Christine Joy; Hildebrandt, Peter; Frankenberg-Dinkel, Nicole

    2018-05-15

    Recombinant production of heme proteins in Escherichia coli is often limited by the availability of heme in the host. Therefore, several methods, including the reconstitution of heme proteins after production but prior to purification or the HPEX system, conferring the ability to take up external heme have been developed and used in the past. Here we describe the use of the apathogenic E. coli strain Nissle 1917 (EcN) as a suitable host for the recombinant production of heme proteins. EcN has an advantage over commonly used lab strains in that it is able to take up heme from the environment through the heme receptor ChuA. Expression of several heme proteins from different prokaryotic sources led to high yield and quantitative incorporation of the cofactor when heme was supplied in the growth medium. Comparative UV-vis and resonance Raman measurements revealed that the method employed has significant influence on heme coordination with the EcN system representing the most native situation. Therefore, the use of EcN as a host for recombinant heme protein production represents an inexpensive and straightforward method to facilitate further investigations of structure and function.

  20. HEME-HEME COMUNICATION DURING THE ALKALINE INDUCED STRUCTURAL TRANSITION IN CYTOCROME C OXIDASE

    PubMed Central

    Ji, Hong; Rousseau, Denis L.; Yeh, Syun-Ru

    2009-01-01

    Alkaline induced conformational changes at pH 12.0 in the oxidized as well as the reduced state of cytochrome c oxidase have been systematically studied with time-resolved optical absorption and resonance Raman spectroscopies. In the reduced state, the heme a3 first converts from the native five-coordinate configuration to a six-coordinate bis-histidine intermediate as a result of the coordination of one of the CuB ligands, H290 or H291, to the heme iron. The coordination state change in the heme a3 causes the alteration in the microenvironment of the formyl group of the heme a3 and the disruption of the H-bond between R38 and the formyl group of the heme a. This structural transition, which occurs within 1 minute following the initiation of the pH jump, is followed by a slower reaction, in which Schiff base linkages are formed between the formyl groups of the two hemes and their nearby amino acid residues, presumably R38 and R302 for the heme a and a3, respectively. In the oxidized enzyme, a similar Schiff base modification on heme a and a3 was observed but it is triggered by the coordination of the H290 or H291 to heme a3 followed by the breakage of the native proximal H378-iron and H376-iron bonds in heme a and a3, respectively. In both oxidation states, the synchronous formation of the Schiff base linkages in heme a and a3 relies on the structural communication between the two hemes via the H-bonding network involving R438 and R439 and the propionate groups of the two hemes as well as the helix X housing the two proximal ligands, H378 and H376, of the hemes. The heme-heme communication mechanism revealed in this work may be important in controlling the coupling of the oxygen and redox chemistry in the heme sites to proton pumping during the enzymatic turnover of CcO. PMID:18187199

  1. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids.

    PubMed

    Maurya, Shiv Shyam; Khan, Shabana I; Bahuguna, Aparna; Kumar, Deepak; Rawat, Diwan S

    2017-03-31

    A series of novel N-substituted 4-aminoquinoline-pyrimidine hybrids have been synthesized via simple and economic route and evaluated for their antimalarial activity. Most compounds showed potent antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. The most active compound 7b was analysed for heme binding activity using UV-spectrophotometer. Compound was found to interact with heme and a complex formation between compound and heme in a 1:1 stoichiometry ratio was determined using job plots. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The pharmacokinetic property analysis of best active compounds was also studied by ADMET prediction. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Role of TP53 in repair of N-(deoxyguanosin-8-yl)-4-aminobiphenyl adducts in human transitional cell carcinoma of the urinary bladder.

    PubMed

    Torino, J L; Burger, M S; Reznikoff, C A; Swaminathan, S

    2001-01-01

    The global genomic repair of DNA adducts was examined in human papillary transitional cell carcinoma (TCC) cell lines after exposure to N:-hydroxy-4-acetylaminobiphenyl (N-OH-AABP), the proximate carcinogenic metabolite of the human bladder carcinogen 4-aminobiphenyl (ABP). (32)P-post-labeling analysis of TCC cultures exposed to N-OH-AABP revealed a major adduct, identified as the 3',5'-bisphosphate derivative of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP). The amount of adduct formation in TCC10 was dependent upon the dose and the duration of exposure and ranged between 1 and 5 adducts/10(7) nucleotides. To test if p53 regulates repair of the dG-C8-ABP adduct in genomic DNA, an isogeneic set of cell lines was obtained by infection of the TCC10 cultures with a retroviral construct expressing a trans-dominant mutant of p53, namely a Val-->Ala mutation at codon 143. The TDM143-TCC10 line expressing the mutant form of p53 was selected. The rate of repair of dG-C8-ABP was compared between TCC10 and TDM143-TCC10 cultures after treatment with 15 microM N-OH-AABP. The rate of disappearance of the adduct was monitored over a period of time after chemical treatment. (32)P-post-labeling analysis of dG-C8-ABP in parental TCC10 showed its rapid removal, the majority of adducts disappearing within 48 h. In contrast to TCC10, TDM143-TCC10 was relatively slower in removal of dG-C8-ABP. After 24 h DNA repair TDM143-TCC10 showed an approximately 3-fold greater amount of dG-C8-ABP compared with TCC10. These results imply that p53 plays a role in the repair of ABP adducts and that in p53 null cells the unrepaired DNA damage could cause accumulation of mutations, which might contribute to increased genomic instability and neoplastic progression.

  3. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA thanmore » that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.« less

  4. Heme Recognition By a Staphylococcus Aureus IsdE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, J.C.; Vermeiren, C.L.; Heinrichs, D.E.

    Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portionmore » of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single {alpha}-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met{sup 78} and His{sup 229}. Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His{sup 299} is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.« less

  5. Implication for using heme methyl hyperfine shifts as indicators of heme seating as related to stereoselectivity in the catabolism of heme by heme oxygenase: in-plane heme versus axial his rotation.

    PubMed

    Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2008-01-08

    The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.

  6. Cross-coupling of alkenyl/aryl carboxylates with Grignard reagent via Fe-catalyzed C-O bond activation.

    PubMed

    Li, Bi-Jie; Xu, Li; Wu, Zhen-Hua; Guan, Bing-Tao; Sun, Chang-Liang; Wang, Bi-Qin; Shi, Zhang-Jie

    2009-10-21

    Iron-catalyzed cross-coupling of alkenyl/aryl carboxylates with primary alkyl Grignard reagent was described. This reaction brought a new family of electrophiles to iron catalysis. The combination of an inexpensive carboxylate electrophile and an iron catalyst would generate ample advantages.

  7. Visualization of the role of host heme on the virulence of the heme auxotroph Streptococcus agalactiae.

    PubMed

    Joubert, Laetitia; Dagieu, Jean-Baptiste; Fernandez, Annabelle; Derré-Bobillot, Aurélie; Borezée-Durant, Elise; Fleurot, Isabelle; Gruss, Alexandra; Lechardeur, Delphine

    2017-01-16

    Heme is essential for several cellular key functions but is also toxic. Whereas most bacterial pathogens utilize heme as a metabolic cofactor and iron source, the impact of host heme during bacterial infection remains elusive. The opportunist pathogen Streptococcus agalactiae does not synthesize heme but still uses it to activate a respiration metabolism. Concomitantly, heme toxicity is mainly controlled by the HrtBA efflux transporter. Here we investigate how S. agalactiae manages heme toxicity versus benefits in the living host. Using bioluminescent bacteria and heme-responsive reporters for in vivo imaging, we show that the capacity of S. agalactiae to overcome heme toxicity is required for successful infection, particularly in blood-rich organs. Host heme is simultaneously required, as visualized by a generalized infection defect of a respiration-negative mutant. In S. agalactiae, HrtBA expression responds to an intracellular heme signal via activation of the two-component system HssRS. A hssRS promoter-driven intracellular luminescent heme sensor was designed to identify host compartments that supply S. agalactiae with heme. S. agalactiae acquires heme in heart, kidneys, and liver, but not in the brain. We conclude that S. agalactiae response to heme is organ-dependent, and its efflux may be particularly relevant in late stages of infection.

  8. An ethane-bridged porphyrin dimer as a model of di-heme proteins: inorganic and bioinorganic perspectives and consequences of heme-heme interactions.

    PubMed

    Sil, Debangsu; Rath, Sankar Prasad

    2015-10-07

    Interaction between heme centers has been cleverly implemented by Nature in order to regulate different properties of multiheme cytochromes, thereby allowing them to perform a wide variety of functions. Our broad interest lies in unmasking the roles played by heme-heme interactions in modulating different properties viz., metal spin state, redox potential etc., of the individual heme centers using an ethane-bridged porphyrin dimer as a synthetic model of dihemes. The large differences in the structure and properties of the diheme complexes, as compared to the monoheme analogs, provide unequivocal evidence of the role played by heme-heme interactions in the dihemes. This Perspective provides a brief account of our recent efforts to explore these interesting aspects and the subsequent outcomes.

  9. Formation of oligonucleotide adducts in pharmaceutical formulations.

    PubMed

    Krotz, Achim H; Gaus, Hans; Hardee, Gregory E

    2005-01-01

    During preformulation studies, we observed that oligonucleotide extracted from topical formulations contained considerable amounts of covalently modified oligonucleotide adducts. In this report, we describe the identification and characterization of reaction products that form when PS-oligodeoxyribonucleotide ISIS 2302 (1) is brought into contact with aqueous solutions of glycerol-derived excipients. Compatibility tests showed that the presence of certain glycerides in the formulation lead to adduct formation (1+58x amu, 1+72x amu, 1+58x+72y amu, x, and y are the number of modifications on one oligonucleotide strand). No adduct formation was observed in the presence of triglycerides or propylene glycol-derived excipients used in the study. Using nucleosides as model compounds, two modifications of deoxyguanosine were isolated by preparative reversed phase (RP)-high pressure liquid chromatography (HPLC) and characterized by nuclear magnetic resonance (NMR) and HPLC-mass spectrometry (MS). Modifications were identified as N2-(1-carboxymethyl)- and N2-(1-carboxyethyl) derivatives of 2'-deoxyguanosine. The mechanism of formation of these adducts may involve advanced glycation reactions possibly caused by excipient impurities or degradation products such as glyceraldehyde or glyceraldehyde derivatives.

  10. Identification and Characterization of 2′-Deoxyadenosine Adducts formed by Isoprene Monoepoxides In Vitro

    PubMed Central

    Begemann, Petra; Boysen, Gunnar; Georgieva, Nadia I.; Sangaiah, Ramiah; Koshlap, Karl M.; Koc, Hasan; Zhang, Daping; Golding, Bernard T.; Gold, Avram; Swenberg, James A.

    2011-01-01

    Isoprene, the 2-methyl analog of 1,3-butadiene, is ubiquitous in the environment, with major contributions to total isoprene emissions stemming from natural processes despite the compound being a bulk industrial chemical. Additionally, isoprene is a combustion product and a major component in cigarette smoke. Isoprene has been classified as possibly carcinogenic to humans (group 2B) by IARC and as reasonably anticipated to be a human carcinogen by the National Toxicology Program. Isoprene, like butadiene, requires metabolic activation to reactive epoxides to exhibit its carcinogenic properties. The mode of action has been postulated to be that of a genotoxic carcinogen, with formation of promutagenic DNA adducts being essential for mutagenesis and carcinogenesis. In rodents, isoprene-induced tumors show unique point mutations (A→T transversions) in the K-ras protooncogene at codon 61. Therefore, we investigated adducts formed after reaction of 2′-deoxyadenosine (dAdo1) with the two monoepoxides of isoprene, 2-ethenyl-2-methyloxirane (IP-1,2-O) and propen-2-yloxirane (IP-3,4-O), under physiological conditions. The formation of N1–2′-deoxyinosine (N1-dIno) due to deamination of N1-dAdo adducts was of particular interest, since N1-dIno adducts are suspected to have high mutagenic potential based on in vitro experiments. Major stable adducts were identified by HPLC, UV-Spectrometry and LC-MS/MS and characterized by 1H and 1H,13C HSQC and NMR experiments. Adducts of IP-1,2-O that were fully identified are: R,S-C1-N6-dAdo, R-C2-N6-dAdo, and S-C2-N6-dAdo; adducts of IP-3,4-O are: S-C3-N6-dAdo, R-C3-N6-dAdo, R,S-C4-N6-dAdo, S-C4-N1-dIno, R-C4-N1-dIno, R-C3-N1-dIno, S-C3-N1-dIno, and C3-N7-Ade. Both monoepoxides formed adducts on the external and internal oxirane carbons. This is the first study to describe adducts of isoprene monoepoxides with dAdo. Characterization of adducts formed by isoprene monoepoxides with deoxynucleosides and subsequently with DNA represent

  11. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans.

    PubMed

    Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando

    2017-05-24

    The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55 Fe and 59 Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.

  12. Increased levels of the acetaldehyde-derived DNA adduct N 2-ethyldeoxyguanosine in oral mucosa DNA from Rhesus monkeys exposed to alcohol

    PubMed Central

    Balbo, Silvia; Juanes, Rita Cervera; Khariwala, Samir; Baker, Erich J.; Daunais, James B.; Grant, Kathleen A.

    2016-01-01

    Alcohol is a human carcinogen. A causal link has been established between alcohol drinking and cancers of the upper aerodigestive tract, colon, liver and breast. Despite this established association, the underlying mechanisms of alcohol-induced carcinogenesis remain unclear. Various mechanisms may come into play depending on the type of cancer; however, convincing evidence supports the concept that ethanol’s major metabolite acetaldehyde may play a major role. Acetaldehyde can react with DNA forming adducts which can serve as biomarkers of carcinogen exposure and potentially of cancer risk. The major DNA adduct formed from this reaction is N 2-ethylidenedeoxyguanosine, which can be quantified as its reduced form N 2-ethyl-dG by LC-ESI-MS/MS. To investigate the potential use of N 2-ethyl-dG as a biomarker of alcohol-induced DNA damage, we quantified this adduct in DNA from the oral, oesophageal and mammary gland tissues from rhesus monkeys exposed to alcohol drinking over their lifetimes and compared it to controls. N 2-Ethyl-dG levels were significantly higher in the oral mucosa DNA of the exposed animals. Levels of the DNA adduct measured in the oesophageal mucosa of exposed animals were not significantly different from controls. A correlation between the levels measured in the oral and oesophageal DNA, however, was observed, suggesting a common source of formation of the DNA adducts. N 2-Ethyl-dG was measured in mammary gland DNA from a small cohort of female animals, but no difference was observed between exposed animals and controls. These results support the hypothesis that acetaldehyde induces DNA damage in the oral mucosa of alcohol-exposed animals and that it may play role in the alcohol-induced carcinogenic process. The decrease of N 2-ethyl-dG levels in exposed tissues further removed from the mouth also suggests a role of alcohol metabolism in the oral cavity, which may be considered separately from ethanol liver metabolism in the investigation of

  13. Resonance Raman studies of Escherichia coli cytochrome bd oxidase. Selective enhancement of the three heme chromophores of the "as-isolated" enzyme and characterization of the cyanide adduct.

    PubMed

    Sun, J; Osborne, J P; Kahlow, M A; Kaysser, T M; Hil, J J; Gennis, R B; Loehr, T M

    1995-09-26

    Cytochrome bd oxidase is a terminal bacterial oxidase containing three cofactors: a low-spin heme (b558), a high-spin heme (b595), and a chlorin d. The center of dioxygen reduction has been proposed to be at a dinuclear b595/d site, whereas b558 is mainly involved in transferring electrons from ubiquinone. One of the unique functional features of this enzyme is its resistance to high concentrations of cyanide (Ki in the millimolar range). With the appropriate selection of laser lines, the ligation and spin states of the b558, b595, and d hemes can be probed selectively by resonance Raman (rR) spectroscopy. Wavelengths between 400 and 500 nm predominantly excite the rR spectra of the b558 and b595 chromophores. Spectra obtained within this interval show a mixed population of spin and ligation states arising from b558 and b595, with the former more strongly enhanced at higher energy. Red excitation wavelengths (590-650 nm) generate rR spectra characteristic of chlorins, indicating the selective enhancement of the d heme. These rR results reveal that cytochrome bd oxidase "as isolated" contains the b558 heme in a six-coordinate low-spin ferric state, the b595 heme in a five-coordinate high-spin (5cHS) ferric state, and the d heme in a mixture of oxygenated (FeIIO2 <--> FeIIIO2-; d650) and ferryl-oxo (FeIV = O; d680) states. However, the rR spectra of these two chlorin species indicate that they are both in the 5cHS state, suggesting that the d heme is lacking a strongly coordinated sixth ligand.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases.more » Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G 2 or G 3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N 2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N 2-dG.« less

  15. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  16. Benzylic oxidation of gemfibrozil-1-O-beta-glucuronide by P450 2C8 leads to heme alkylation and irreversible inhibition.

    PubMed

    Baer, Brian R; DeLisle, Robert Kirk; Allen, Andrew

    2009-07-01

    Gemfibrozil-1-O-beta-glucuronide (GEM-1-O-gluc), a major metabolite of the antihyperlipidemic drug gemfibrozil, is a mechanism-based inhibitor of P450 2C8 in vitro, and this irreversible inactivation may lead to clinical drug-drug interactions between gemfibrozil and other P450 2C8 substrates. In light of this in vitro finding and the observation that the glucuronide conjugate does not contain any obvious structural alerts, the current study was conducted to determine the potential site of GEM-1-O-gluc bioactivation and the subsequent mechanism of P450 2C8 inhibition (i.e., modification of apoprotein or heme). LC/MS analysis of a reaction mixture containing recombinant P450 2C8 and GEM-1-O-gluc revealed that the substrate was covalently linked to the heme prosthetic heme group during catalysis. A combination of mass spectrometry and deuterium isotope effects revealed that a benzylic carbon on the 2',5'-dimethylphenoxy group of GEM-1-O-gluc was covalently bound to the heme of P450 2C8. The regiospecificity of substrate addition to the heme group was not confirmed experimentally, but computational modeling experiments indicated that the gamma-meso position was the most likely site of modification. The metabolite profile, which consisted of two benzyl alcohol metabolites and a 4'-hydroxy-GEM-1-O-gluc metabolite, indicated that oxidation of GEM-1-O-gluc was limited to the 2',5'-dimethylphenoxy group. These results are consistent with an inactivation mechanism wherein GEM-1-O-gluc is oxidized to a benzyl radical intermediate, which evades oxygen rebound, and adds to the gamma-meso position of heme. Mechanism-based inhibition of P450 2C8 can be rationalized by the formation of the GEM-1-O-gluc-heme adduct and the consequential restriction of additional substrate access to the catalytic iron center.

  17. Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.

    PubMed

    Haynes, Richard K; Cheu, Kwan-Wing; N'Da, David; Coghi, Paolo; Monti, Diego

    2013-08-01

    peroxide forms heme adducts that apparently inherit the exquisite cytotoxicities of the parent peroxide in one way or another. In a subsequent review, we screen the third and fourth hypotheses: the SERCA hypothesis wherein artemisinins modulate operation of the malaria parasite sarcoendo plasmic reticulum calcium pump SERCA Ca(2+)-ATPase ATP6 and the co-factor hypothesis wherein artemisinins act as oxidant drugs through rapidly oxidizing reduced conjugates of flavin cofactors, or those of flavin cofactor precursors such as riboflavin, and other susceptible endogenous substrates that play a role in maintaining intraparasitic redox homeostasis. For the C-radical hypothesis, details of in vitro chemical studies in the context of established chemistry of C-radicals and their ability to react with radical trapping agents such as nitroso compounds, cyclic nitrones, persistent nitroxyl radicals and atmospheric oxygen (dioxygen) are summarized. Overall, there is no correlation between antimalarial activities and abilities of the derived C-radicals to react with trapping agents in a chemical flask. This applies in particular to the reactions of C-radicals from artemisinins and steroidal tetraoxanes with the trapping agents vis-a-vis those from adamantyl capped systems. In an intraparasitic medium, it is not possible to intercept C-radicals either through use of a vast excess of a nitroxyl radical or dioxygen. The lack of correlation of antimalarial activities also applies to the Fe(2+)-mediated decomposition of artemisinins and synthetic peroxides, where literature data taken as indicating otherwise are critically assessed. The antagonism to antimalarial activities of artemisinins exerted by desferrioxamine (DFO) and related Fe(3+)-chelating agents is due to formation of stable chelates with bioavailable Fe(3+) that shuts down redox cycling through Fe(2+) and the subsequent generation of reactive oxygen species (ROS) via the Fenton reaction. The generation of ROS by Fe(2

  18. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production

    PubMed Central

    Fortes, Guilherme B.; Alves, Leticia S.; de Oliveira, Rosane; Dutra, Fabianno F.; Rodrigues, Danielle; Fernandez, Patricia L.; Souto-Padron, Thais; De Rosa, María José; Kelliher, Michelle; Golenbock, Douglas; Chan, Francis K. M.

    2012-01-01

    Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4−/− or to Myd88−/− macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1−/−) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS. PMID:22262768

  19. 2-Nitrosoamino-3-methylimidazo[4,5-f]quinoline activated by the inflammatory response forms nucleotide adducts.

    PubMed

    Lakshmi, Vijaya M; Schut, Herman A J; Zenser, Terry V

    2005-11-01

    Heterocyclic amines and inflammation have been implicated in the etiology of colon cancer. We have recently demonstrated that during autoxidation of the inflammatory mediator nitric oxide 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) undergoes nitrosation to form 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ). This study evaluates the genotoxicity of N-NO-IQ and compares the adducts it forms to those of 2-hydroxyamino-3-methylimidazo[4,5-f]quinoline (N-OH-IQ). N-NO-IQ was incubated with 2'-deoxyguanosine 3'-monophosphate (dGp) under a variety of inflammatory conditions. 32P-Postlabeling demonstrated the presence of multiple adducts. Incubation of N-OH-IQ with dGp at pH 7.4, 5.5, or 2.0 resulted in the formation of a single major adduct, N-(deoxyguanosin-8-yl)-IQ (dG-C8-IQ). Using a combination of 32P-postlabeling, HPLC, and nuclease P1 treatment, N-NO-IQ was shown to produce dG-C8-IQ under several different conditions. HOCl oxidation of N-NO-IQ increased dG-C8-IQ formation, and this was further increased as pH decreased from 7.4 to 5.5. Oxidation of N-NO-IQ formed a new adduct, adduct 2, while in the absence of oxidants adduct m was the major adduct. Adducts 2 and m were not formed by N-OH-IQ and not further identified. The results demonstrate that N-NO-IQ forms N-(deoxyguanosin-8-yl)-IQ, is genotoxic, is activated by conditions that mediate inflammatory responses, and is a possible cancer risk factor for individuals with colitis, inflammation of the colon.

  20. Conformational preferences of DNA following damage by aristolochic acids: Structural and energetic insights into the different mutagenic potential of the ALI and ALII-N(6)-dA adducts.

    PubMed

    Kathuria, Preetleen; Sharma, Purshotam; Abendong, Minette N; Wetmore, Stacey D

    2015-04-21

    Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural

  1. Pestalols A-E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum.

    PubMed

    Sun, Jian-Fan; Lin, Xiuping; Zhou, Xue-Feng; Wan, Junting; Zhang, Tianyu; Yang, Bin; Yang, Xian-Wen; Tu, Zhengchao; Liu, Yonghong

    2014-06-01

    Five alkenyl phenol and benzaldehyde derivatives, pestalols A-E (1-5), as well as seven known compounds (6-12), were isolated from endophytic fungus Pestalotiopsis sp. AcBC2 derived from the Chinese mangrove plant Aegiceras corniculatum. Their structures were determined by spectroscopic analyses. Compounds 2 and 3 showed cytotoxicity against a panel of 10 tumor cell lines. Compounds 1-5, 8, 9, 11, and 12 showed inhibitory activities against Influenza A virus subtype (H3N2) and Swine Flu (H1N1) viruses. Compound 2 also showed inhibitory activity against tuberculosis.

  2. The hydroxyl functionality and a rigid proximal N are required for forming a novel non-covalent quinine-heme complex.

    PubMed

    Alumasa, John N; Gorka, Alexander P; Casabianca, Leah B; Comstock, Erica; de Dios, Angel C; Roepe, Paul D

    2011-03-01

    Quinoline antimalarial drugs bind both monomeric and dimeric forms of free heme, with distinct preferences depending on the chemical environment. Under biological conditions, chloroquine (CQ) appears to prefer to bind to μ-oxo dimeric heme, while quinine (QN) preferentially binds monomer. To further explore this important distinction, we study three newly synthesized and several commercially available QN analogues lacking various functional groups. We find that removal of the QN hydroxyl lowers heme affinity, hemozoin (Hz) inhibition efficiency, and antiplasmodial activity. Elimination of the rigid quinuclidyl ring has similar effects, but elimination of either the vinyl or methoxy group does not. Replacing the quinuclidyl N with a less rigid tertiary aliphatic N only partially restores activity. To further study these trends, we probe drug-heme interactions via NMR studies with both Fe and Zn protoporphyrin IX (FPIX, ZnPIX) for QN, dehydroxyQN (DHQN), dequinuclidylQN (DQQN), and deamino-dequinuclidylQN (DADQQN). Magnetic susceptibility measurements in the presence of FPIX demonstrate that these compounds differentially perturb FPIX monomer-dimer equilibrium. We also isolate the QN-FPIX complex formed under mild aqueous conditions and analyze it by mass spectrometry, as well as fluorescence, vibrational, and solid-state NMR spectroscopies. The data elucidate key features of QN pharmacology and allow us to propose a refined model for the preferred binding of QN to monomeric FPIX under biologically relevant conditions. With this model in hand, we also propose how QN, CQ, and amodiaquine (AQ) differ in their ability to inhibit Hz formation. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Interaction of nitric oxide with human heme oxygenase-1.

    PubMed

    Wang, Jinling; Lu, Shen; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2003-01-24

    NO and CO may complement each other as signaling molecules in some physiological situations. We have examined the binding of NO to human heme oxygenase-1 (hHO-1), an enzyme that oxidizes heme to biliverdin, CO, and free iron, to determine whether inhibition of hHO-1 by NO can contribute to the signaling interplay of NO and CO. An Fe(3+)-NO hHO-1-heme complex is formed with NO or the NO donors NOC9 or 2-(N,N-diethylamino)-diazenolate-2-oxide.sodium salt. Resonance Raman spectroscopy shows that ferric hHO-1-heme forms a 6-coordinated, low spin complex with NO. The nu(N-O) vibration of this complex detected by Fourier transform IR is only 4 cm(-1) lower than that of the corresponding metmyoglobin (met-Mb) complex but is broader, suggesting a greater degree of ligand conformational freedom. The Fe(3+)-NO complex of hHO-1 is much more stable than that of met-Mb. Stopped-flow studies indicate that k(on) for formation of the hHO-1-heme Fe(3+)-NO complex is approximately 50-times faster, and k(off) 10 times slower, than for met-Mb, resulting in K(d) = 1.4 microm for NO. NO thus binds 500-fold more tightly to ferric hHO-1-heme than to met-Mb. The hHO-1 mutations E29A, G139A, D140A, S142A, G143A, G143F, and K179A/R183A do not significantly diminish the tight binding of NO, indicating that NO binding is not highly sensitive to mutations of residues that normally stabilize the distal water ligand. As expected from the K(d) value, the enzyme is reversibly inhibited upon exposure to pathologically, and possibly physiologically, relevant concentrations of NO. Inhibition of hHO-1 by NO may contribute to the pleiotropic responses to NO and CO.

  4. Electron Detachment Dissociation of Underivatized Chloride-Adducted Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Kornacki, James R.; Adamson, Julie T.; Håkansson, Kristina

    2012-11-01

    Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto- N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.

  5. Alcohol, Aldehydes, Adducts and Airways

    PubMed Central

    Sapkota, Muna; Wyatt, Todd A.

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  6. Alcohol, Aldehydes, Adducts and Airways.

    PubMed

    Sapkota, Muna; Wyatt, Todd A

    2015-11-05

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  7. [Heme-iron in the human body].

    PubMed

    Balla, József; Balla, György; Lakatos, Béla; Jeney, Viktória; Szentmihályi, Klára

    2007-09-09

    Iron is essential for all living organism, although in excess amount it is dangerous via catalyzing the formation of reactive oxygen species. Absorption of iron is strictly controlled resulting in a fine balance of iron-loss and iron-uptake. In countries where the ingestion of heme-iron is significant by meal, great part of iron content in the body originates from heme. Heme derived from food is absorbed by a receptor-mediated manner by enterocytes of small intestine then it is degraded in a reaction catalyzed by heme oxygenase. Iron released from the porphyrin ring leaves enterocytes as transferrin associated iron. Prosthetic group of several proteins contains heme, therefore, it is synthesized by all cells. One of the most significant heme proteins is hemoglobin which transports oxygen in the erythrocytes. Hemoglobin released from erythrocyte during intravascular hemolysis binds to haptoglobin and is taken up by cells of the monocyte-macrophage lineage. Oxidation of hemoglobin (ferro) to methemoglobin (ferri) is inhibited by the structure of hemoglobin although it is not hindered. Superoxide anion is also formed in the reaction that initiates further free radical reactions. In contrast to ferrohemoglobin, methemoglobin readily releases heme, therefore, oxidation of hemoglobin drives the formation of free heme in plasma. Heme binds to a plasma protein, hemopexin, and is internalized by cells of monocyte-macrophage lineage in a receptor-mediated manner, then degraded in reaction catalysed by heme oxygenase. Heme is also taken up by plasma lipoproteins and endothelial cells leading to oxidation of LDL and subsequent endothelial cell damage. The purpose of this work was to summarize the processes related to heme.

  8. The antimalarial activity of Ru–chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces

    PubMed Central

    Martínez, Alberto; Rajapakse, Chandima S. K.; Jalloh, Dalanda; Dautriche, Cula

    2012-01-01

    We have measured water/n-octanol partition coefficients, pKa values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium–πarene–chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied. PMID:19343380

  9. The antimalarial activity of Ru-chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces.

    PubMed

    Martínez, Alberto; Rajapakse, Chandima S K; Jalloh, Dalanda; Dautriche, Cula; Sánchez-Delgado, Roberto A

    2009-08-01

    We have measured water/n-octanol partition coefficients, pK(a) values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium-pi-arene-chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied.

  10. Synthesis of nucleosides and oligonucleotides containing adducts of acrolein and vinyl chloride.

    PubMed

    Nechev, L V; Harris, C M; Harris, T M

    2000-05-01

    Vinyl chloride and acrolein are important industrial chemicals. Both form DNA adducts, vinyl chloride after enzymatic oxidation to chlorooxirane and acrolein by direct reaction. Reaction at the N(2) position of guanine is a major pathway. The resulting 2-oxoethyl and 3-oxopropyl adducts cyclize spontaneously to hydroxyethano and hydroxypropano derivatives, respectively. The two cyclic adducts have been detected in DNA exposed to these mutagens. A new method has been developed for the synthesis of deoxyguanosine adducts of chlorooxirane and acrolein, as well as oligonucleotides containing these adducts. Reaction of O(6)-[(trimethylsilyl)ethyl]-2-fluoro-2'-deoxyinosine with the appropriate aminodiol followed by oxidative cleavage of the diol with NaIO(4) gave the adducts in excellent yields. Reaction of oligonucleotides containing the halonucleoside with the aminodiols followed by NaIO(4) efficiently created the nucleosides in the oligonucleotides. Deoxyadenosine adducts were created similarly using 6-chloropurine 9-(2'-deoxyriboside).

  11. Novel one-pot synthesis of 5-alkenyl-15-alkynylporphyrins and their derivatisation to a butadiyne-linked benzoporphyrin dimer.

    PubMed

    Yamada, Hiroko; Kushibe, Kayo; Okujuma, Tetsuo; Uno, Hidemitsu; Ono, Noboru

    2006-01-28

    5-Alkenyl-15-alkynylporphyrins have been obtained unexpectedly by [2 + 2] acid-catalyzed condensation of dipyrrylmethane and TMS propynal in addition to 5,15-dialkynylporphyrin, and the unsymmetrical porphyrin can be converted to a butadiyne-linked dimer by selective desilylation of the alkynyl TMS.

  12. Nitrogen Oxide Atom-Transfer Redox Chemistry; Mechanism of NO(g) to Nitrite Conversion Utilizing µ-oxo Heme-FeIII−O−CuII(L) Constructs

    PubMed Central

    Hematian, Shabnam; Kenkel, Isabell; Shubina, Tatyana E.; Dürr, Maximilian; Liu, Jeffrey J.; Siegler, Maxime A.; Ivanovic-Burmazovic, Ivana; Karlin, Kenneth D.

    2015-01-01

    While nitric oxide (NO, nitrogen monoxide) is a critically important signaling agent, its cellular concentrations must be tightly controlled, generally through its oxidative conversion to nitrite (NO2−) where it is held in reserve to be reconverted as needed. In part, this reaction is mediated by the binuclear heme a3/CuB active site of cytochrome c oxidase. In this report, the oxidation of NO(g) to nitrite is shown to occur efficiently in new synthetic µ-oxo heme-FeIII−O−CuII(L) constructs (L being a tridentate or tetradentate pyridyl/alkylamino ligand), and spectroscopic and kinetic investigations provide detailed mechanistic insights. Two new X-ray structures of µ-oxo complexes have been determined and compared to literature analogs. All µ-oxo complexes react with 2 mol equiv NO(g) to give 1:1 mixtures of discrete [(L)CuII(NO2−)]+ plus ferrous heme-nitrosyl compounds; when the first NO(g) equiv reduces the heme center and itself is oxidized to nitrite, the second equiv of NO(g) traps the ferrous heme thus formed. For one µ-oxo heme-FeIII−O−CuII(L) compound, the reaction with NO(g) reveals an intermediate species (“intermediate”), formally a bis-NO adduct, [(NO)(porphyrinate)FeII-(NO2−)−CuII(L)]+ (λmax = 433 nm), confirmed by cryo-spray ionization mass spectrometry and EPR spectroscopy, along with the observation that cooling a 1:1 mixture of [(L)CuII(NO2−)]+ and heme-FeII(NO) to −125 °C leads to association and generation of the key 433 nm UV–vis feature. Kinetic-thermodynamic parameters obtained from low-temperature stopped-flow measurements are in excellent agreement with DFT calculations carried out which describe the sequential addition of NO(g) to the µ-oxo complex. PMID:25974136

  13. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    DOE PAGES

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N -nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O 6 -alkylguaninemore » DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.« less

  14. Quantification of 3-nitrobenzanthrone-DNA adducts using online column-switching HPLC-electrospray tandem mass spectrometry.

    PubMed

    Gamboa da Costa, Gonçalo; Singh, Rajinder; Arlt, Volker M; Mirza, Amin; Richards, Meirion; Takamura-Enya, Takeji; Schmeiser, Heinz H; Farmer, Peter B; Phillips, David H

    2009-11-01

    The aromatic nitroketone 3-nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one; 3-NBA) is an extremely potent mutagen and a suspected human carcinogen detected in the exhaust of diesel engines and in airborne particulate matter. 3-NBA is metabolically activated via reduction of the nitro group to the hydroxylamine (N-OH-3-ABA) to form covalent DNA adducts. Thus far, the detection and quantification of covalent 3-NBA-DNA adducts has relied solely on (32)P-postlabeling methodologies. In order to expand the range of available techniques for the detection and improved quantification of 3-NBA-DNA adducts, we have developed a method based upon online column-switching HPLC coupled to electrospray tandem mass spectrometry, with isotopic dilution of (15)N-labeled internal standards. This methodology was applied to the determination of three 3-NBA-derived adducts: 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone (dG-N(2)-3-ABA), N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-N-3-ABA) and 2-(2'-deoxyguanosine-8-yl)-3-aminobenzanthrone (dG-C8-C2-3-ABA). Dose-dependent increases were observed for all three adducts when salmon testis DNA was reacted with N-acetoxy-3-aminobenzanthrone (N-AcO-3-ABA). dG-C8-C2-3-ABA was detected at much lower levels (overall 1%) than the other two adducts. DNA samples isolated from tissues of rats treated either intratracheally with 3-NBA or intraperitoneally with N-OH-3-ABA were analyzed by mass spectrometry, and the results compared to those obtained by (32)P-postlabeling. The method required 50 microg of hydrolyzed animal DNA on column and the limit of detection was 2.0 fmol for each adduct. dG-C8-C2-3-ABA was not observed in any of the samples providing confirmation that it is not formed in vivo. Linear regression analysis of the levels of dG-N(2)-3-ABA and dG-C8-N-3-ABA in the rat DNA showed a reasonable correlation between the two methods (R(2) = 0.88 and 0.93, respectively). In summary, the mass spectrometric method is a faster, more

  15. Formation of tamoxifen-DNA adducts in multiple organs of adult female cynomolgus monkeys dosed with tamoxifen for 30 days.

    PubMed

    Schild, Laura J; Divi, Rao L; Beland, Frederick A; Churchwell, Mona I; Doerge, Daniel R; Gamboa da Costa, Gonçalo; Marques, M Matilde; Poirier, Miriam C

    2003-09-15

    The use of the antiestrogen tamoxifen (TAM) is associated with an increase in endometrial cancer. TAM-induced endometrial carcinogenesis may proceed through a genotoxin-mediated pathway, although the detection of endometrial TAM-DNA adducts in exposed women is still controversial. In this study, a monkey model has been used to investigate the question of TAM-DNA adduct formation in primates. Two methods have been used to determine TAM-DNA adducts: a TAM-DNA chemiluminescence immunoassay (TAM-DNA CIA), using an antiserum that has specificity for (E)-alpha-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-TAM) and (E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-desmethyl-TAM) and electrospray ionization tandem mass spectrometry (ES-MS/MS) coupled with on-line sample preparation and high-performance liquid chromatography (HPLC). Mature (19 year old) cynomolgus monkeys were given either vehicle control (n = 1) or TAM (n = 3) twice daily for a total dose of 2 mg of TAM/kg body weight (bw)/day for 30 days by naso-gastric intubation. Tissues were harvested, and DNA was isolated from uterus, ovary, liver, brain cortex, and kidney. By TAM-DNA CIA, values for uterine TAM-DNA adducts in two monkeys were 0.9 and 1.7 adducts/10(8) nucleotides, whereas values for ovarian TAM-DNA adducts in the same animals were 0.4 and 0.5 adducts/10(8) nucleotides. Liver, brain cortex, and kidney DNA samples from the three exposed monkeys had TAM-DNA levels of 2.1-4.2 adducts/10(8) nucleotides, 0.4-5.0 adducts/10(8) nucleotides, and 0.7-2.1 adducts/10(8) nucleotides, respectively. By HPLC-ES-MS/MS, the levels of TAM-DNA adducts detected in all tissues were comparable with those observed by TAM-DNA CIA. Thus, values for uterine TAM-DNA adducts ranged from 0.5 to 1.4 adducts/10(8) nucleotides, whereas values for ovarian TAM-DNA adducts, measurable in two monkeys, were 0.2 and 0.3 adducts/10(8) nucleotides. Liver DNA contained the highest TAM-DNA adduct levels (7.0-11.1 adducts/10(8) nucleotides

  16. Characterization of plasma labile heme in hemolytic conditions

    PubMed Central

    Gouveia, Zélia; Carlos, Ana R.; Yuan, Xiaojing; Aires-da-Silva, Frederico; Stocker, Roland; Maghzal, Ghassan J.; Leal, Sónia S.; Gomes, Cláudio M.; Todorovic, Smilja; Iranzo, Olga; Ramos, Susana; Santos, Ana C.; Hamza, Iqbal; Gonçalves, João; Soares, Miguel P.

    2018-01-01

    Extracellular hemoglobin, a byproduct of hemolysis, can release its prosthetic heme groups upon oxidation. This produces metabolically active heme that is exchangeable between acceptor proteins, macromolecules and low molecular weight ligands, termed here labile heme. As it accumulates in plasma labile heme acts in a pro-oxidant manner and regulates cellular metabolism while exerting pro-inflammatory and cytotoxic effects that foster the pathogenesis of hemolytic diseases. Here, we developed and characterized a panel of heme-specific single domain antibodies (sdAbs) that together with a cellular-based heme reporter assay, allow for quantification and characterization of labile heme in plasma during hemolytic conditions. Using these approaches, we demonstrate that when generated during hemolytic conditions labile heme is bound to plasma molecules with an affinity higher than 10−7 m and that 2–8% (∼ 2–5 μm) of the total amount of heme detected in plasma can be internalized by bystander cells, termed here bioavailable heme. Acute, but not chronic, hemolysis is associated with transient reduction of plasma heme-binding capacity, that is, the ability of plasma molecules to bind labile heme with an affinity higher than 10−7 m. The heme-specific sdAbs neutralize the pro-oxidant activity of soluble heme in vitro, suggesting that these maybe used to counter the pathologic effects of labile heme during hemolytic conditions. Finally, we show that heme-specific sdAbs can be used to visualize cellular heme. In conclusion, we describe a panel of heme-specific sdAbs that when used with other approaches provide novel insights to the pathophysiology of heme. PMID:28783254

  17. Isocyanides inhibit human heme oxygenases at the verdoheme stage.

    PubMed

    Evans, John P; Kandel, Sylvie; Ortiz de Montellano, Paul R

    2009-09-22

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides, isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 microM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design.

  18. Isocyanides Inhibit Human Heme Oxygenases at the Verdoheme Stage†

    PubMed Central

    Evans, John P.; Kandel, Sylvie; Ortiz de Montellano, Paul R.

    2010-01-01

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides; isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides, and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 μM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design. PMID:19694439

  19. Data-Independent Mass Spectrometry Approach for Screening and Identification of DNA Adducts.

    PubMed

    Guo, Jingshu; Villalta, Peter W; Turesky, Robert J

    2017-11-07

    Long-term exposures to environmental toxicants and endogenous electrophiles are causative factors for human diseases including cancer. DNA adducts reflect the internal exposure to genotoxicants and can serve as biomarkers for risk assessment. Liquid chromatography-multistage mass spectrometry (LC-MS n ) is the most common method for biomonitoring DNA adducts, generally targeting single exposures and measuring up to several adducts. However, the data often provide limited evidence for a role of a chemical in the etiology of cancer. An "untargeted" method is required that captures global exposures to chemicals, by simultaneously detecting their DNA adducts in the genome; some of which may induce cancer-causing mutations. We established a wide selected ion monitoring tandem mass spectrometry (wide-SIM/MS 2 ) screening method utilizing ultraperformance-LC nanoelectrospray ionization Orbitrap MS n with online trapping to enrich bulky, nonpolar adducts. Wide-SIM scan events are followed by MS 2 scans to screen for modified nucleosides by coeluting peaks containing precursor and fragment ions differing by -116.0473 Da, attributed to the neutral loss of deoxyribose. Wide-SIM/MS 2 was shown to be superior in sensitivity, specificity, and breadth of adduct coverage to other tested adductomic methods with detection possible at adduct levels as low as 4 per 10 9 nucleotides. Wide-SIM/MS 2 data can be analyzed in a "targeted" fashion by generation of extracted ion chromatograms or in an "untargeted" fashion where a chromatographic peak-picking algorithm can be used to detect putative DNA adducts. Wide-SIM/MS 2 successfully detected DNA adducts, derived from chemicals in the diet and traditional medicines and from lipid peroxidation products, in human prostate and renal specimens.

  20. BF3·Et2O-promoted cleavage of the Csp-Csp2 bond of 2-propynolphenols/anilines: route to C2-alkenylated benzoxazoles and benzimidazoles.

    PubMed

    Song, Xian-Rong; Qiu, Yi-Feng; Song, Bo; Hao, Xin-Hua; Han, Ya-Ping; Gao, Pin; Liu, Xue-Yuan; Liang, Yong-Min

    2015-02-20

    A novel BF3·Et2O-promoted tandem reaction of easily prepared 2-propynolphenols/anilines and trimethylsilyl azide is developed to give C2-alkenylated benzoxazoles and benzimidazoles in moderate to good yields. Most reactions could be accomplished in 30 min at room temperature. This tandem process involves a Csp-Csp2 bond cleavage and a C-N bond formation. Moreover, both tertiary and secondary propargylic alcohols with diverse functional groups were tolerated under the mild conditions.

  1. The fate of H atom adducts to 3'-uridine monophosphate.

    PubMed

    Wang, Ran; Zhang, Ru Bo; Eriksson, Leif A

    2010-07-29

    The stabilities of the adducts deriving from H free radical addition to the O2, O4, and C5 positions of 3'-uridine monophosphate (3'UMP) are studied by the hybrid density functional B3LYP approach. Upon H atom addition at the O2 position, a concerted low-barrier proton-transfer process will initially occur, followed by the potential ruptures of the N-glycosidic or beta-phosphate bonds. The rupture barriers are strongly influenced by the rotational configuration of the phosphate group at the 3' terminal, and are influenced by bulk solvation effects. The O4-H adduct has the highest thermal stability, as the localization of the unpaired electron does not enable cleavage of either the C1'-N1 or the C3'-O(P) bonds. For the most stable adduct, with H atom added to the C5 position, the rate-controlled step is the H2'a abstraction by the C6 radical site, after which the subsequent strand rupture reactions proceed with low barriers. The main unpaired electron densities are presented for the transient species. Combined with previous results, it is concluded that the H atom adducts are more facile to drive the strand scission rather than N-glycosidic bond ruptures within the nucleic acid bases.

  2. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parhad, Swapnil S.; Jaiswal, Deepa; TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show thatmore » DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in L-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. - Highlights: • The effect of interaction of nNOS with DLC1 has been debatable with contradicting reports in literature. • Purified DLC1 has no effect on electron transport between reductase and oxygenase domain of purified nNOS-CaM. • The NO release activity of nNOS was not altered by DLC1, supporting that DLC1 does not inhibit the enzyme. • These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell.« less

  3. Insulin enhances the peroxidase activity of heme by forming heme-insulin complex: Relevance to type 2 diabetes mellitus.

    PubMed

    Huang, Yi; Yang, Zhen; Xu, Huan; Zhang, Pengfei; Gao, Zhonghong; Li, Hailing

    2017-09-01

    Evidences have implicated the involvement of heme in the type 2 diabetes mellitus (T2Dm) pathogenesis, but possible mediators linking between heme and diabetes are still poorly understood. Here, we explored a potential mechanism that linked heme, insulin and diabetes. Our results demonstrated the formation of heme-insulin complex by two classical methods, i.e. UV-vis and capillary electrophoresis-frontal analysis (CE-FA). UV-vis results implied heme binding insulin via bis-histidine sites, and CE-FA further revealed that, when insulin uses two sites binding with heme, this interaction occurs at high affinity (K d =3.13×10 -6 M). Molecule docking supported that histidine-B5 of insulin binds with heme-Fe. In addition to that, tyrosine-B26, phenylalanine-B1 and valine-B2 are also contributed to binding heme. The binding amplified the peroxidase activity of heme itself. Under oxidative and nitrative stress, it affects pathogenesis of diabetes from two aspects: promoting insulin cross-linking that leads to permanent loss of insulin functionality on one hand, and enhancing protein tyrosine nitration that may result in inactivation of proteins associated with diabetes on the other hand. This study suggested that the enhanced peroxidase activity of heme through binding with insulin might be a previously unrecognized contributor to the pathogenesis of T2Dm in some heme-associated disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Improved strategies for postoligomerization synthesis of oligodeoxynucleotides bearing structurally defined adducts at the N2 position of deoxyguanosine.

    PubMed

    DeCorte, B L; Tsarouhtsis, D; Kuchimanchi, S; Cooper, M D; Horton, P; Harris, C M; Harris, T M

    1996-01-01

    Improved methodology has been developed for preparation of oligodeoxynucleotides bearing adducts on the N2 position of guanine in which the adduction reaction is carried out in homogeneous solution rather than while the oligonucleotide is immobilized on a solid matrix. The methodology utilizes a new synthon, 2-fluoro-O6-(trimethylsilylethyl)-2'-deoxyinosine (3). Nucleoside 3 is stable to the conditions of oligonucleotide synthesis, but the O6 protection is eliminated under very mild conditions following displacement of the 2-fluoro group by amine nucleophiles. Oligonucleotides containing 3 could be removed from the solid support by treatment with 0.1 M NaOH (8 h, rt) without disruption of 3. Reaction of the crude, partially deprotected oligonucleotide with (R)-2-amino-2-phenylethanol in homogeneous solution, followed by removal of the remaining protective groups with NH4OH (60 degrees C, 8 h) and then 0.1% acetic acid, gave the adducted oligonucleotide in good purity and yield. Alternatively, fully deprotected oligonucleotide containing 3 could be prepared by use of labile phenoxyacetyl-type protecting groups on the exocyclic amino groups.

  5. Heme Catabolism by Heme Oxygenase-1 Confers Host Resistance to Mycobacterium Infection

    PubMed Central

    Silva-Gomes, Sandro; Appelberg, Rui; Larsen, Rasmus; Soares, Miguel Parreira

    2013-01-01

    Heme oxygenases (HO) catalyze the rate-limiting step of heme degradation. The cytoprotective action of the inducible HO-1 isoform, encoded by the Hmox1 gene, is required for host protection against systemic infections. Here we report that upregulation of HO-1 expression in macrophages (Mϕ) is strictly required for protection against mycobacterial infection in mice. HO-1-deficient (Hmox1−/−) mice are more susceptible to intravenous Mycobacterium avium infection, failing to mount a protective granulomatous response and developing higher pathogen loads, than infected wild-type (Hmox1+/+) controls. Furthermore, Hmox1−/− mice also develop higher pathogen loads and ultimately succumb when challenged with a low-dose aerosol infection with Mycobacterium tuberculosis. The protective effect of HO-1 acts independently of adaptive immunity, as revealed in M. avium-infected Hmox1−/− versus Hmox1+/+ SCID mice lacking mature B and T cells. In the absence of HO-1, heme accumulation acts as a cytotoxic pro-oxidant in infected Mϕ, an effect mimicked by exogenous heme administration to M. avium-infected wild-type Mϕ in vitro or to mice in vivo. In conclusion, HO-1 prevents the cytotoxic effect of heme in Mϕ, contributing critically to host resistance to Mycobacterium infection. PMID:23630967

  6. Accurate characterization of carcinogenic DNA adducts using MALDI tandem time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Charles A.; Chiu, Norman H. L.

    2009-01-01

    Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.

  7. Heme Distortions in Sperm-Whale Carbonmonoxy Myoglobin: Correlations between Rotational Strengths and Heme Distortions in MD-Generated Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KIEFL,CHRISTOPH; SCREERAMA,NARASIMHA; LU,YI

    2000-07-13

    The authors have investigated the effects of heme rotational isomerism in sperm-whale carbonmonoxy myoglobin using computational techniques. Several molecular dynamics simulations have been performed for the two rotational isomers A and B, which are related by a 180{degree} rotation around the {alpha}-{gamma} axis of the heme, of sperm-whale carbonmonoxy myoglobin in water. Both neutron diffraction and NMR structures were used as starting structures. In the absence of an experimental structure, the structure of isomer B was generated by rotating the heme in the structure of isomer A. Distortions of the heme from planarity were characterized by normal coordinate structural decompositionmore » and by the angle of twist of the pyrrole rings from the heme plane. The heme distortions of the neutron diffraction structure were conserved in the MD trajectories, but in the NMR-based trajectories, where the heme distortions are less well defined, they differ from the original heme deformations. The protein matrix induced similar distortions on the heroes in orientations A and B. The results suggest that the binding site prefers a particular macrocycle conformation, and a 180{degree} rotation of the heme does not significantly alter the protein's preference for this conformation. The intrinsic rotational strengths of the two Soret transitions, separated according to their polarization in the heme plane, show strong correlations with the ruf-deformation and the average twist angle of the pyrrole rings. The total rotational strength, which includes contributions from the chromophores in the protein, shows a weaker correlation with heme distortions.« less

  8. Determination of isocyanate specific albumin-adducts in workers exposed to toluene diisocyanates.

    PubMed

    Sabbioni, Gabriele; Gu, Qi; Vanimireddy, Lakshiminiranjan Reddy

    2012-03-01

    Toluene diisocyanates (2,4-TDI and 2,6-TDI) are important intermediates in the chemical industry. Among the main damages after low levels of TDI exposure are lung sensitization and asthma. It is therefore necessary to have sensitive and specific methods to monitor isocyanate exposure of workers. Urinary metabolites or protein adducts have been used as biomarkers in workers exposed to TDI. However, with these methods it was not possible to determine if the biomarkers result from exposure to TDI or to the corresponding toluene diamines (TDA). This work presents a new procedure for the determination of isocyanate-specific albumin adducts. Isotope dilution mass spectrometry was used to measure the adducts in albumin present in workers exposed to TDI. 2,4-TDI and 2,6-TDI formed adducts with lysine: N(ϵ)-[({3-amino-4-methylphenyl}amino)carbonyl]-lysine, N(ϵ)-[({5-amino-2-methylphenyl}amino)carbonyl]-lysine, and N(ϵ)- [({3-amino-2-methylphenyl}amino)carbonyl]-lysine. In future studies, this new method can be applied to measure TDI-exposures in workers.

  9. Giardia intestinalis incorporates heme into cytosolic cytochrome b₅.

    PubMed

    Pyrih, Jan; Harant, Karel; Martincová, Eva; Sutak, Robert; Lesuisse, Emmanuel; Hrdý, Ivan; Tachezy, Jan

    2014-02-01

    The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.

  10. Activation of aminoimidazole carcinogens by nitrosation: mutagenicity and nucleotide adducts

    PubMed Central

    Zenser, Terry V.; Lakshmi, Vijaya M.; Schut, Herman A. J.; Zhou, Hui-jia; Josephy, P. David

    2009-01-01

    2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are heterocyclic amines (HCA) derived from high temperature cooking of meat and thought to cause colon cancer in humans. Reactive nitrogen oxygen species, which are mediators of the inflammatory response, can convert these amines to the corresponding N-nitrosamines, N-NO-IQ and N-NO-MeIQx. This study was designed to evaluate whether these N-nitrosamines are genotoxic and could be responsible, in part, for the high incidence of colon cancer in individuals with colitis. Such an association would counsel reduced intake of well-done red meat by colitis patients. Mutagenicity was evaluated by reversion of a lacZ frameshift allele in three different E. coli strains. Strains DJ701 and DJ702 express recombinant (S. typhimurium) aromatic amine N-acetyltransferase; DJ702 also expresses recombinant human cytochrome P450 1A2 and NADPH-P450 reductase; and DJ2002 served as an N-acetyltransferase-negative control. In strain DJ701, N-NO-IQ and N-NO-MeIQx elicited dose-dependent mutagenicity, which was not further increased in DJ702. Neither nitrosamine was mutagenic in strain DJ2002. While both N-nitrosamines are stable for >4 hours (pH 7.4, 37°C), they react with DNA or 2′-deoxyguanosine 3′-monophosphate at lower pH (5.5) to form adducts. HOCl, a component of the inflammatory response, increased adduct formation, as measured by 32P-postlabeling. Following treatment with nuclease P1 and separation by two-dimensional thin-layer chromatography and then HPLC, N-NO-IQ and N-NO-MeIQx were shown to form the same adducts as those formed by N-OH-MeIQx or N-OH-IQ, namely N-(deoxyguanosin-8-yl) adducts. In summary, these N-nitrosamines are genotoxic and might be alternatives to their hydroxylamine analogues as activated intermediates leading to initiation of colon cancer in individuals with colitis. PMID:19449459

  11. Bypass of Aflatoxin B[subscript 1] Adducts by the Sulfolobus solfataricus DNA Polymerase IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Surajit; Brown, Kyle L.; Egli, Martin

    Aflatoxin B{sub 1} (AFB{sub 1}) is oxidized to an epoxide in vivo, which forms an N7-dG DNA adduct (AFB{sub 1}-N7-dG). The AFB{sub 1}-N7-dG can rearrange to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative. Both AFB{sub 1}-N7-dG and the {beta}-anomer of the AFB{sub 1}-FAPY adduct yield G {yields} T transversions in Escherichia coli, but the latter is more mutagenic. We show that the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) bypasses AFB{sub 1}-N7-dG in an error-free manner but conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including misinsertion of dATP, consistent with the G {yields} T mutations observed in E. coli. Three ternarymore » (Dpo4-DNA-dNTP) structures with AFB{sub 1}-N7-dG adducted template:primers have been solved. These demonstrate insertion of dCTP opposite the AFB{sub 1}-N7-dG adduct, and correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB{sub 1}-N7-dG:dC pair. The insertion of dTTP reveals hydrogen bonding between the template N3 imino proton and the O{sup 2} oxygen of dTTP, and between the template T O{sup 4} oxygen and the N3 imino proton of dTTP, perhaps explaining why this polymerase does not efficiently catalyze phosphodiester bond formation from this mispair. The AFB{sub 1}-N7-dG maintains the 5'-intercalation of the AFB{sub 1} moiety observed in DNA. The bond between N7-dG and C8 of the AFB{sub 1} moiety remains in plane with the alkylated guanine, creating a 16{sup o} inclination of the AFB{sub 1} moiety with respect to the guanine. A binary (Dpo4-DNA) structure with an AFB{sub 1}-FAPY adducted template:primer also maintains 5'-intercalation of the AFB{sub 1} moiety. The {beta}-deoxyribose anomer is observed. Rotation about the FAPY C5-N{sup 5} bond orients the bond between N{sup 5} and C8 of the AFB{sub 1} moiety out of plane in the 5'-direction, with respect to the FAPY base. The formamide group extends in the 3'-direction. This improves stacking of the AFB

  12. Heme-Coordinating Inhibitors of Neuronal Nitric Oxide Synthase. Iron-Thioether Coordination is Stabilized by Hydrophobic Contacts Without Increased Inhibitor Potency

    PubMed Central

    Martell, Jeffrey D.; Li, Huiying; Doukov, Tzanko; Martásek, Pavel; Roman, Linda J.; Soltis, Michael; Poulos, Thomas L.; Silverman, Richard B.

    2010-01-01

    The heme-thioether ligand interaction often occurs between heme iron and native methionine ligands, but thioether-based heme-coordinating (type II) inhibitors are uncommon due to the difficulty in stabilizing the Fe-S bond. Here, a thioether-based inhibitor (3) of neuronal nitric oxide synthase (nNOS) was designed, and its binding was characterized by spectrophotometry and crystallography. A crystal structure of inhibitor 3 coordinated to heme iron was obtained, representing, to our knowledge, the first crystal structure of a thioether inhibitor complexed to any heme enzyme. A series of related potential inhibitors (4-8) also were evaluated. Compounds 4-8 were all found to be type I (non-heme-coordinating) inhibitors of ferric nNOS, but 4 and 6-8 were found to switch to type II upon heme reduction to the ferrous state, reflecting the higher affinity of thioethers for ferrous heme than for ferric heme. Contrary to what has been widely thought, thioether-heme ligation was found not to increase inhibitor potency, illustrating the intrinsic weakness of the thioether-ferric heme linkage. Subtle changes in the alkyl groups attached to the thioether sulfur caused drastic changes in binding conformation, indicating that hydrophobic contacts play a crucial role in stabilizing the thioether-heme coordination. PMID:20014790

  13. Toxicokinetic study of pyrrole adducts and its potential application for biological monitoring of 2,5-hexanedione subacute exposure.

    PubMed

    Yin, Hong-Yin; Guo, Ying; Song, Fu-Yong; Zeng, Tao; Xie, Ke-Qin

    2014-08-01

    The formation of pyrrole adducts might be responsible for peripheral nerve injury caused by n-hexane, but there is not an effective biomarker for monitoring occupational exposure of n-hexane. The current study was designed to investigate the changes of pyrrole adducts in serum and urine of rats exposed to 2,5-hexanedione (2,5-HD) and analyze the correlation between pyrrole adducts and 2,5-HD. Two groups of male Wistar rats (n = 8) were administered a single dose of 200 and 400 mg/kg 2,5-HD (i.p.), and another two groups (n = 8) were given daily dose of 200 and 400 mg/kg 2,5-HD (i.p.) for 5 days. Pyrrole adducts and 2,5-HD in serum and urine were determined, at different time points after dosing, using Ehrlich’s reagent and gas chromatography, respectively. The levels of pyrrole adducts in serum accumulated in a time-dependant manner after repeated exposure to 2,5-HD, while pyrrole adducts in urine, and 2,5-HD in serum and urine were kept stable. The half-life times (t1/2) of 2,5-HD and pyrrole adducts in serum were 2.27 ± 0.28 and 25.3 ± 3.34 h, respectively. Furthermore, the levels of pyrrole adducts in urine were significantly correlated with the levels of 2,5-HD in serum (r = 0.736, P < 0.001) and urine (r = 0.730, P < 0.001), and the levels of pyrrole adducts in serum were correlated with the cumulative dosage of 2,5-HD (r = 0.965, P < 0.001). The results suggested that pyrrole adducts in serum and urine might be markers of chronic exposure to n-hexane or 2,5-HD.

  14. Redox proteomic profiling of neuroketal-adducted proteins in human brain: Regional vulnerability at middle age increases in the elderly.

    PubMed

    Domínguez, Mayelín; de Oliveira, Eliandre; Odena, María Antonia; Portero, Manuel; Pamplona, Reinald; Ferrer, Isidro

    2016-06-01

    Protein lipoxidation was assessed in the parietal cortex (PC), frontal cortex (FC), and cingulate gyrus (CG) in middle-aged and old-aged individuals with no clinical manifestations of cognitive impairment, in order to increase understanding of regional brain vulnerability to oxidative damage during aging. Twenty-five lipoxidized proteins were identified in all the three regions although with regional specificities, by using redox proteomics to detect target proteins of neuroketals (NKT) adduction. The number of cases with NKT-adducted proteins was higher in old-aged individuals but most oxidized proteins were already present in middle-aged individuals. Differences in vulnerability to oxidation were dependent on the sub-cellular localization, secondary structure, and external exposition of certain amino acids. Lipoxidized proteins included those involved in energy metabolism, cytoskeleton, proteostasis, neurotransmission and O2/CO2, and heme metabolism. Total NKT and soluble oligomer levels were estimated employing slot-blot, and these were compared between age groups. Oligomers increased with age in PC and FC; NKT significantly increased with age in FC, whereas total NKT and oligomer levels were not modified in CG, thus highlighting differences in brain regional vulnerability with age. Oligomers significantly correlated with NKT levels in the three cortical regions, suggesting that protein NKT adduction parallels soluble oligomer formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging

    PubMed Central

    Atamna, Hani; Killilea, David W.; Killilea, Alison Nisbet; Ames, Bruce N.

    2002-01-01

    Heme, a major functional form of iron in the cell, is synthesized in the mitochondria by ferrochelatase inserting ferrous iron into protoporphyrin IX. Heme deficiency was induced with N-methylprotoporphyrin IX, a selective inhibitor of ferrochelatase, in two human brain cell lines, SHSY5Y (neuroblastoma) and U373 (astrocytoma), as well as in rat primary hippocampal neurons. Heme deficiency in brain cells decreases mitochondrial complex IV, activates nitric oxide synthase, alters amyloid precursor protein, and corrupts iron and zinc homeostasis. The metabolic consequences resulting from heme deficiency seem similar to dysfunctional neurons in patients with Alzheimer's disease. Heme-deficient SHSY5Y or U373 cells die when induced to differentiate or to proliferate, respectively. The role of heme in these observations could result from its interaction with heme regulatory motifs in specific proteins or secondary to the compromised mitochondria. Common causes of heme deficiency include aging, deficiency of iron and vitamin B6, and exposure to toxic metals such as aluminum. Iron and B6 deficiencies are especially important because they are widespread, but they are also preventable with supplementation. Thus, heme deficiency or dysregulation may be an important and preventable component of the neurodegenerative process. PMID:12417755

  16. Resonance Raman detection of the heme Fe(II)-NO/2-nitrovinyl species in myoglobin

    NASA Astrophysics Data System (ADS)

    Ioannou, Androulla; Pinakoulaki, Eftychia

    2018-01-01

    The six-coordinate heme Fe(II)-NO/2-nitrovinyl species in myoglobin has been detected and characterized by resonance Raman spectroscopy. The Fe(II)-14NO and 15N-O stretching frequencies of the ferrous heme nitrosyl/2-nitrovinyl species are detected at 560 and 1587 cm-1, frequencies that are similar to those observed in the Mb heme Fe(II)-NO species. For the 2-nitrovinyl (Ca=CbNO2) moiety, which is formed upon H-abstraction from the -CbH2 group, the νs(NO2) is observed at 1322 cm-1, the νas(NO2) at 1516 cm-1 and the ν(Ca=Cb14NO2)/ ν(Ca=Cb15NO2) at 1623/1615 cm-1. The frequencies of the 2-nitrovinyl are largely unaffected by NO2-/NO binding to the heme Fe(II)/(III). The properties of the six-coordinate heme Fe(II)-NO/2-nitrovinyl species are compared to those of six-coordinate heme Fe(II)-NO and the five-coordinate heme Fe(II)-NO species isolated from meat products.

  17. Hepatic DNA adduct dosimetry in rats fed tamoxifen: a comparison of methods.

    PubMed

    Schild, Laura J; Phillips, David H; Osborne, Martin R; Hewer, Alan; Beland, Frederick A; Churchwell, Mona I; Brown, Karen; Gaskell, Margaret; Wright, Elizabeth; Poirier, Miriam C

    2005-03-01

    Liver homogenates from rats fed tamoxifen (TAM) in the diet were shared among four different laboratories. TAM-DNA adducts were assayed by high pressure liquid chromatography-electrospray tandem mass spectrometry (HPLC-ES-MS/MS), TAM-DNA chemiluminescence immunoassay (TAM-DNA CIA), and (32)P-postlabeling with either thin layer ((32)P-P-TLC) or liquid chromatography ((32)P-P-HPLC) separation. In the first study, rats were fed a diet containing 500 p.p.m. TAM for 2 months, and the values for measurements of the (E)-alpha-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-N(2)-TAM) adduct in replicate rat livers varied by 3.5-fold when quantified using 'in house' TAM-DNA standards, or other approaches where appropriate. In the second study, rats were fed 0, 50, 250 or 500 p.p.m. TAM for 2 months, and TAM-DNA values were quantified using both 'in house' approaches as well as a newly synthesized [N-methyl-(3)H]TAM-DNA standard that was shared among all the participating groups. In the second study, the total TAM-DNA adduct values varied by 2-fold, while values for the dG-N(2)-TAM varied by 2.5-fold. Ratios of dG-N(2)-TAM:(E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-N(2)-N-desmethyl-TAM) in the second study were approximately 1:1 over the range of doses examined. The study demonstrated a remarkably good agreement for TAM-DNA adduct measurements among the diverse methods employed.

  18. Catalytic reduction of NO to N2O by a designed heme copper center in myoglobin: implications for the role of metal ions.

    PubMed

    Zhao, Xuan; Yeung, Natasha; Russell, Brandy S; Garner, Dewain K; Lu, Yi

    2006-05-31

    The effects of metal ions on the reduction of nitric oxide (NO) with a designed heme copper center in myoglobin (F43H/L29H sperm whale Mb, CuBMb) were investigated under reducing anaerobic conditions using UV-vis and EPR spectroscopic techniques as well as GC/MS. In the presence of Cu(I), catalytic reduction of NO to N2O by CuBMb was observed with turnover number of 2 mol NO.mol CuBMb-1.min-1, close to 3 mol NO.mol enzyme-1.min-1 reported for the ba3 oxidases from T. thermophilus. Formation of a His-heme-NO species was detected by UV-vis and EPR spectroscopy. In comparison to the EPR spectra of ferrous-CuBMb-NO in the absence of metal ions, the EPR spectra of ferrous-CuBMb-NO in the presence of Cu(I) showed less-resolved hyperfine splitting from the proximal histidine, probably due to weakening of the proximal His-heme bond. In the presence of Zn(II), formation of a five-coordinate ferrous-CuBMb-NO species, resulting from cleavage of the proximal heme Fe-His bond, was shown by UV-vis and EPR spectroscopic studies. The reduction of NO to N2O was not observed in the presence of Zn(II). Control experiments using wild-type myoglobin indicated no reduction of NO in the presence of either Cu(I) or Zn(II). These results suggest that both the identity and the oxidation state of the metal ion in the CuB center are important for NO reduction. A redox-active metal ion is required to deliver electrons, and a higher oxidation state is preferred to weaken the heme iron-proximal histidine toward a five-coordinate key intermediate in NO reduction.

  19. Hemoglobin binding and catalytic heme extraction by IsdB near iron transporter domains.

    PubMed

    Bowden, Catherine F M; Verstraete, Meghan M; Eltis, Lindsay D; Murphy, Michael E P

    2014-04-15

    The Isd (iron-regulated surface determinant) system is a multiprotein transporter that allows bacterium Staphylococcus aureus to take up iron from hemoglobin (Hb) during human infection. In this system, IsdB is a cell wall-anchored surface protein that contains two near iron transporter (NEAT) domains, one of which binds heme. IsdB rapidly extracts heme from Hb and transfers it to IsdA for relay into the bacterial cell. Using a series of recombinant IsdB constructs that included at least one NEAT domain, we demonstrated that both domains are required to bind Hb with high affinity (KD = 0.42 ± 0.05 μM) and to extract heme from Hb. Moreover, IsdB extracted heme only from oxidized metHb, although it also bound oxyHb and the Hb-CO complex. In a reconstituted model of the biological heme relay pathway, IsdB catalyzed the transfer of heme from metHb to IsdA with a Km for metHb of 0.75 ± 0.07 μN and a kcat of 0.22 ± 0.01 s(-1). The latter is consistent with the transfer of heme from metHb to IsdB being the rate-limiting step. With both NEAT domains and the linker region present in a single contiguous polypeptide, high-affinity Hb binding was achieved, rapid heme uptake was observed, and multiple turnovers of heme extraction from metHb and transfer to IsdA were conducted, representing all known Hb-heme uptake functions of the full-length IsdB protein.

  20. Ultrafast dynamics of the photo-excited hemes b and cn in the cytochrome b6f complex.

    PubMed

    Agarwal, Rachna; Chauvet, Adrien A P

    2017-01-25

    The dynamics of hemes b and c n within the cytochrome b 6 f complex are investigated by means of ultrafast broad-band transient absorption spectroscopy. On the one hand, the data reveal that, subsequent to visible light excitation, part of the b hemes undergoes pulse-limited photo-oxidation, with the liberated electron supposedly being transferred to one of the adjacent aromatic amino acids. Photo-oxidation is followed by charge recombination in about 8.2 ps. Subsequent to charge recombination, heme b is promoted to a vibrationally excited ground state that relaxes in about 4.6 ps. On the other hand, heme c n undergoes ultrafast ground state recovery in about 140 fs. Interestingly, the data also show that, in contrast to previous beliefs, Chl a is involved in the photochemistry of hemes. Indeed, subsequent to heme excitation, Chl a bleaches and recovers to its ground state in 90 fs and 650 fs, respectively. Chl a bleaching allegedly corresponds to the formation of a short lived Chl a anion. Beyond the previously suggested structural role, this study provides unique evidence that Chl a is directly involved in the photochemistry of the hemes.

  1. Synthesis and spectroscopy of micro-oxo (O(2)(-))-bridged heme/non-heme diiron complexes: models for the active site of nitric oxide reductase.

    PubMed

    Wasser, Ian M; Martens, Constantinus F; Verani, Claudio N; Rentschler, Eva; Huang, Hong-Wei; Moënne-Loccoz, Pierre; Zakharov, Lev N; Rheingold, Arnold L; Karlin, Kenneth D

    2004-01-26

    In this paper, we describe the synthesis and study of a series of heme/non-heme Fe-O-Fe' complexes supported by a porphyrin and the tripodal nitrogen ligand TMPA [TMPA = tris(2-pyridylmethyl)amine]. The complete synthesis of [((6)L)Fe-O-Fe(X)](+) (1) (X = OMe(-) or Cl(-), 69:31 ratio), where (6)L is the dianion of 5-(o-O-[(N,N-bis(2-pyridylmethyl)-2-(6-methoxyl)pyridinemethanamine)phenyl]-10,15,20-tris(2,6-difluorophenyl)porphine, is reported. The crystal structure for 1.PF(6) reveals an intramolecular heme/non-heme diferric complex bridged by an Fe-O-Fe' moiety; 90 degree angle (Fe-O-Fe') = 166.7(3) degrees, and d(Fe.Fe') = 3.556 A. Crystal data for C(70)H(57)ClF(12)Fe(2)N(8)O(3)P (1.PF(6)): triclinic, Ponemacr;, a = 13.185(3) A, b = 14.590 (3) A, c = 16.885(4) A, alpha = 104.219(4) degrees, beta = 91.572(4) degrees, gamma = 107.907(4) degrees, V = 2977.3(11) A(3), Z = 2, T = 150(2) K. Complex 1 (where X = Cl(-)) is further characterized by UV-vis (lambda(max) = 328, 416 (Soret), 569 nm), (1)H NMR (delta 27-24 [TMPA -CH(2)-], 16.1 [pyrrole-H], 15.2-10.5 [PY-3H, PY-5H], 7.9-7.2 [m- and p-phenyl-H], 6.9-5.8 [PY-4H] ppm), resonance Raman (nu(as)(Fe-O-Fe') 844 cm(-)(1)), and Mössbauer (delta(Fe) = 0.47, 0.41 mm/s; deltaE(A) = 1.59, 0.55 mm/s; 80 K) spectroscopies, MALDI-TOF mass spectrometry (m/z 1202), and SQUID susceptometry (J = - 114.82 cm(-)(1), S = 0). We have also synthesized a series of 3-, 4-, and 5-methyl-substituted as well as selectively deuterated TMPA(Fe') complexes and condensed these with the hydroxo complex (F(8))FeOH or (F(8)-d(8))FeOH to yield "untethered" Fe-O-Fe' analogues. Along with selective deuteration of the methylene hydrogens in TMPA, complete (1)H NMR spectroscopic assignments for 1 have been accomplished. The magnetic properties of several of the untethered complexes and a comparison to those of 1 are also presented. Complex 1 and related species represent good structural and spectroscopic models for the heme/non-heme diiron active site

  2. Single or functionalized fullerenes interacting with heme group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groupsmore » (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.« less

  3. DNA Adduct Formation from Metabolic 5'-Hydroxylation of the Tobacco-Specific Carcinogen N'-Nitrosonornicotine in Human Enzyme Systems and in Rats.

    PubMed

    Zarth, Adam T; Upadhyaya, Pramod; Yang, Jing; Hecht, Stephen S

    2016-03-21

    N'-Nitrosonornicotine (NNN) is carcinogenic in multiple animal models and has been evaluated as a human carcinogen. NNN can be metabolized by cytochrome P450s through two activation pathways: 2'-hydroxylation and 5'-hydroxylation. While most previous studies have focused on 2'-hydroxylation in target tissues of rats, available evidence suggests that 5'-hydroxylation is a major activation pathway in human enzyme systems, in nonhuman primates, and in target tissues of some other rodent carcinogenicity models. In the study reported here, we investigated DNA damage resulting from NNN 5'-hydroxylation by quantifying the adduct 2-(2-(3-pyridyl)-N-pyrrolidinyl)-2'-deoxyinosine (py-py-dI). In rats treated with NNN in the drinking water (7-500 ppm), py-py-dI was the major DNA adduct resulting from 5'-hydroxylation of NNN in vivo. Levels of py-py-dI in the lung and nasal cavity were the highest, consistent with the tissue distribution of CYP2A3. In rats treated with (S)-NNN or (R)-NNN, the ratios of formation of (R)-py-py-dI to (S)-py-py-dI were not the expected mirror image, suggesting that there may be a carrier for one of the unstable intermediates formed upon 5'-hydroxylation of NNN. Rat hepatocytes treated with (S)- or (R)-NNN or (2'S)- or (2'R)-5'-acetoxyNNN exhibited a pattern of adduct formation similar to that of live rats. In vitro studies with human liver S9 fraction or human hepatocytes incubated with NNN (2-500 μM) demonstrated that py-py-dI formation was greater than the formation of pyridyloxobutyl-DNA adducts resulting from 2'-hydroxylation of NNN. (S)-NNN formed more total py-py-dI adducts than (R)-NNN in human liver enzyme systems, which is consistent with the critical role of CYP2A6 in the 5'-hydroxylation of NNN in human liver. The results of this study demonstrate that the major DNA adduct resulting from NNN metabolism by human enzymes is py-py-dI and provide potentially important new insights into the metabolic activation of NNN in rodents and humans.

  4. Introduction of a covalent histidine-heme linkage in a hemoglobin: a promising tool for heme protein engineering.

    PubMed

    Rice, Selena L; Preimesberger, Matthew R; Johnson, Eric A; Lecomte, Juliette T J

    2014-12-01

    The hemoglobins of the cyanobacteria Synechococcus and Synechocystis (GlbNs) are capable of spontaneous and irreversible attachment of the b heme to the protein matrix. The reaction, which saturates the heme 2-vinyl by addition of a histidine residue, is reproduced in vitro by preparing the recombinant apoprotein, adding ferric heme, and reducing the iron to the ferrous state. Spontaneous covalent attachment of the heme is potentially useful for protein engineering purposes. Thus, to explore whether the histidine-heme linkage can serve in such applications, we attempted to introduce it in a test protein. We selected as our target the heme domain of Chlamydomonas eugametos LI637 (CtrHb), a eukaryotic globin that exhibits less than 50% sequence identity with the cyanobacterial GlbNs. We chose two positions, 75 in the FG corner and 111 in the H helix, to situate a histidine near a vinyl group. We characterized the proteins with gel electrophoresis, absorbance spectroscopy, and NMR analysis. Both T111H and L75H CtrHbs reacted upon reduction of the ferric starting material containing cyanide as the distal ligand to the iron. With L75H CtrHb, nearly complete (>90%) crosslinking was observed to the 4-vinyl as expected from the X-ray structure of wild-type CtrHb. Reaction of T111H CtrHb also occurred at the 4-vinyl, in a 60% yield indicating a preference for the flipped heme orientation in the starting material. The work suggests that the His-heme modification will be applicable to the design of proteins with a non-dissociable heme group. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of n-Heptane and n-Decane.

    PubMed

    Rodriguez, Anne; Herbinet, Olivier; Meng, Xiangzan; Fittschen, Christa; Wang, Zhandong; Xing, Lili; Zhang, Lidong; Battin-Leclerc, Frédérique

    2017-03-09

    A wide range of hydroperoxides (C 1 -C 3 alkyl hydroperoxides, C 3 -C 7 alkenyl hydroperoxides, C 7 ketohydroperoxides, and hydrogen peroxide (H 2 O 2 )), as well as ketene and diones, have been quantified during the gas-phase oxidation of n-heptane. Some of these species, as well as C 10 alkenyl hydroperoxides and ketohydroperoxides, were also measured during the oxidation of n-decane. These experiments were performed using an atmospheric-pressure jet-stirred reactor at temperatures from 500 to 1100 K and one of three analytical methods, time-of-flight mass spectrometry combined with tunable synchrotron photoionization with a molecular beam sampling: time-of-flight mass spectrometry combined with laser photoionization with a capillary tube sampling, continuous wave cavity ring-down spectroscopy with sonic probe sampling. The experimental temperature at which the maximum mole fraction is observed increases significantly for alkyl hydroperoxides, alkenyl hydroperoxides, and then more so again for hydrogen peroxide, compared to ketohydroperoxides. The influence of the equivalence ratio from 0.25 to 4 on the formation of these peroxides has been studied during n-heptane oxidation. The up-to-date detailed kinetic oxidation models for n-heptane and for n-decane found in the literature have been used to discuss the possible pathways by which these peroxides, ketene, and diones are formed. In general, the model predicts well the reactivity of the two fuels, as well as the formation of major intermediates.

  6. Identification of the Mitochondrial Heme Metabolism Complex

    PubMed Central

    Medlock, Amy E.; Shiferaw, Mesafint T.; Marcero, Jason R.; Vashisht, Ajay A.; Wohlschlegel, James A.; Phillips, John D.; Dailey, Harry A.

    2015-01-01

    Heme is an essential cofactor for most organisms and all metazoans. While the individual enzymes involved in synthesis and utilization of heme are fairly well known, less is known about the intracellular trafficking of porphyrins and heme, or regulation of heme biosynthesis via protein complexes. To better understand this process we have undertaken a study of macromolecular assemblies associated with heme synthesis. Herein we have utilized mass spectrometry with coimmunoprecipitation of tagged enzymes of the heme biosynthetic pathway in a developing erythroid cell culture model to identify putative protein partners. The validity of these data obtained in the tagged protein system is confirmed by normal porphyrin/heme production by the engineered cells. Data obtained are consistent with the presence of a mitochondrial heme metabolism complex which minimally consists of ferrochelatase, protoporphyrinogen oxidase and aminolevulinic acid synthase-2. Additional proteins involved in iron and intermediary metabolism as well as mitochondrial transporters were identified as potential partners in this complex. The data are consistent with the known location of protein components and support a model of transient protein-protein interactions within a dynamic protein complex. PMID:26287972

  7. Characterization of SiaA, a streptococcal heme-binding protein associated with a heme ABC transport system.

    PubMed

    Sook, Brian R; Block, Darci R; Sumithran, Suganya; Montañez, Griselle E; Rodgers, Kenton R; Dawson, John H; Eichenbaum, Zehava; Dixon, Dabney W

    2008-02-26

    Many pathogenic bacteria require heme and obtain it from their environment. Heme transverses the cytoplasmic membrane via an ATP binding cassette (ABC) pathway. Although a number of heme ABC transport systems have been described in pathogenic bacteria, there is as yet little biophysical characterization of the proteins in these systems. The sia (hts) gene cluster encodes a heme ABC transporter in the Gram positive Streptococcus pyogenes. The lipoprotein-anchored heme binding protein (HBP) of this transporter is SiaA (HtsA). In the current study, resonance Raman (rR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopies were used to determine the coordination state and spin state of both the ferric and ferrous forms of this protein. Identifiers from these techniques suggest that the heme is six-coordinate and low-spin in both oxidation states of the protein, with methionine and histidine as axial ligands. SiaA has a pKa of 9.7 +/- 0.1, attributed to deprotonation of the axial histidine. Guanidinium titration studies show that the ferric state is less stable than the ferrous state, with DeltaG(H2O) values for the oxidized and reduced proteins of 7.3 +/- 0.8 and 16.0 +/- 3.6 kcal mol-1, respectively. The reductive and oxidative midpoint potentials determined via spectroelectrochemistry are 83 +/- 3 and 64 +/- 3 mV, respectively; the irreversibility of heme reduction suggests that redox cycling of the heme is coupled to a kinetically sluggish change in structure or conformation. The biophysical characterization described herein will significantly advance our understanding of structure-function relationships in HBP.

  8. Free heme and sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Uzunova, Veselina V.

    This work investigates further the mechanism of one of the most interesting of the protein self-assembly systems---the polymerization of sickle hemoglobin and the role of free heme in it. Polymerization of sickle hemoglobin is the primary event in the pathology of a chronic hemolytic condition called sickle cell anemia with complex pathogenesis, unexplained variability and symptomatic treatment. Auto-oxidation develops in hemoglobin solutions exposed to room temperature and causes release of ferriheme. The composition of such solutions is investigated by mass spectrometry. Heme dimers whose amount corresponds to the initial amounts of heme released from the protein are followed. Differences in the dimer peak height are established for hemoglobin variants A, S and C and depending on the exposure duration. The effects of free heme on polymerization kinetics are studied. Growth rates and two characteristic parameters of nucleation are measured for stored Hb S. After dialysis of polymerizing solutions, no spherulites are detected at moderately high supersaturation and prolonged exposure times. The addition of 0.16-0.26 mM amounts of heme to dialyzed solutions leads to restoration of polymerization. The measured kinetic parameters have higher values compared to the ones before dialysis. The amount of heme in non-dialyzed aged solution is characterized using spectrophotometry. Three methods are used: difference in absorbance of dialyzed and non-dialyzed solutions, characteristic absorbance of heme-albumin complex and absorbance of non-dialyzed solutions with added potassium cyanide. The various approaches suggest the presence of 0.12 to 0.18 mM of free ferriheme in such solutions. Open questions are whether the same amounts of free heme are present in vivo and whether the same mechanism operates intracellulary. If the answer to those questions is positive, then removal of free heme from erythrocytes can influence their readiness to sickle.

  9. DNA adducts: Mass spectrometry methods and future prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, P.B.; Brown, K.; Tompkins, E.

    2005-09-01

    Detection of DNA adducts is widely used for the monitoring of exposure to genotoxic carcinogens. Knowledge of the nature and amounts of DNA adducts formed in vivo also gives valuable information regarding the mutational effects that may result from particular exposures. The power of mass spectrometry (MS) to achieve qualitative and quantitative analyses of human DNA adducts has increased greatly in recent years with the development of improved chromatographic interfaces and ionisation sources. Adducts have been detected on nucleic acid bases, 2'-deoxynucleosides or 2'-deoxynucleotides, with LC-MS/MS being the favoured technique for many of these analyses. Our current applications of thismore » technique include the determination of N7-(2-carbamoyl-2-hydroxyethyl)-guanine, which was postulated to be found as a DNA repair product in urine following exposure to acrylamide, and of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-2'-deoxyadenosine, as markers of oxidative damage in human lymphocyte DNA. Higher sensitivity (with a detection limit of 1-10 adducts/10{sup 12} nucleotides) may be achieved by the use of accelerator mass spectrometry (AMS), although this requires the presence of certain isotopes, such as [{sup 14}C], in the material being analysed. In order to make this technique more amenable for studies of human exposure to environmental carcinogens, new postlabelling techniques, incorporating [{sup 14}C] into specific DNA adducts after formation, are being developed. It is expected that combining the use of advanced MS techniques with existing {sup 32}P-postlabelling and immunochemical methodologies will contribute greatly to the understanding of the burden of human exposure to environmental carcinogens.« less

  10. Quantification of tamoxifen DNA adducts using on-line sample preparation and HPLC-electrospray ionization tandem mass spectrometry.

    PubMed

    Gamboa da Costa, Gonçalo; Marques, M Matilde; Beland, Frederick A; Freeman, James P; Churchwell, Mona I; Doerge, Daniel R

    2003-03-01

    The nonsteroidal antiestrogen tamoxifen is used as an adjuvant chemotherapeutic agent for the treatment of all stages of hormone-dependent breast cancer and more recently as a chemopreventive agent in women with elevated risk of developing the disease. While clearly beneficial for the treatment of breast cancer, tamoxifen has been reported to increase the risk of endometrial cancer in women. Furthermore, it has been shown to be hepatocarcinogenic in rats. Tamoxifen is clearly genotoxic in rat liver, as indicated by the formation of DNA adducts; the occurrence of tamoxifen DNA adducts in human endometrial tissue is more controversial. The detection and quantitation of tamoxifen DNA adducts have relied primarily upon (32)P-postlabeling, with other techniques, such as immunoassays and accelerator mass spectrometry, being used to a much lesser extent. To expand the range of available analytical methodologies for quantifying tamoxifen DNA adducts, we have developed an assay using on-line sample preparation, coupled with HPLC and electrospray ionization tandem mass spectrometry (ES-MS/MS). alpha-Acetoxytamoxifen was reacted with salmon testis DNA at ratios between 0.1 ng and 1 mg alpha-acetoxytamoxifen per mg DNA. After enzymatic hydrolysis to nucleosides, the most highly modified DNA samples were analyzed by HPLC-UV, which indicated the presence of two adduct peaks in approximately a 1:4 ratio. The major adduct was isolated, rigorously characterized as (E)-alpha-(deoxyguanosin-N(2)-yl)tamoxifen, and quantified on the basis of its molar extinction coefficient. A similar reaction was conducted with [N(CD(3))(2)]-alpha-acetoxytamoxifen to prepare a deuterated adduct that could serve as an internal standard for ES-MS/MS. The limit of detection for the HPLC-ES-MS/MS method was approximately 5 adducts/10(9) nucleotides, with an intra- and interassay precision of 3% relative standard deviation. The method was validated over the range of 8-1 520,000 adducts/10(8) nucleotides

  11. DNA adducts of ethylene dibromide: Aspects of formation and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cmarik, J.L.

    1,2-Dibromoethane (ethylene dibromide, EDB), a potential human carcinogen, undergoes bioactivation by the pathway of glutathione (GSH) conjugation, which generates a reactive intermediate capable of alkylating DNA. The major DNA adduct formed is S-[2-(N[sup 7]-guanyl)ethyl]GSH. This dissertation examined the bioactivation of EDB and the formation of DNA adducts. The selectivity of purified rat and human GSH S-transferases for EDB was examined in vitro. An assay was developed to measure the formation of S,S[prime]-ethylene-bis(GSH). The [alpha] class of the GSH S-transferases was responsible for the majority of EDB-GSH conjugation with both the rat and human enzymes. Human tissue samples for a victimmore » of EDB poisoning were analyzed for S-[2-(N[sup 7]-guanyl)ethyl]GSH utilizing electrochemical detection. No adducts were detected in samples of brain, heart, or kidney. The pattern of alkylation of guanines in fragments of plasmid pBR322 DNA by S-(2-chloroethyl)GSH and related compounds was determined. Alkylation varied approximately ten-fold in intensity and was strongest in runs of guanines. Few differences were observed in the alkylation patterns generated by the different compounds tested. The spectrum of mutations caused by S-(2-chloroethyl)GSH was determined using an M13 bacteriophage forward mutation assay. The majority of mutations (70%) were G:C to A:T transitions. Participation of the N[sup 7]-guanyl adduct in the mutagenic process is strongly implicated. The sequence selectivity of alkylation in the region of M13 sequenced in the mutation assay was determined. Comparison of the sequence selectivity with the mutation spectrum revealed no obligate relationship between the extent of adduct formation and the number of mutations which resulted at different sites. Sequence context appears to exert a strong influence on the processing of lesions. These studies strongly implicate S-[2-(N[sup 7]-guanyl)-ethyl]GSH as a mutagenic lesion formed by EDB.« less

  12. Evaluation of polycyclic aromatic hydrocarbon-DNA adducts in exfoliated oral cells by an immunohistochemical assay.

    PubMed

    Romano, G; Sgambato, A; Boninsegna, A; Flamini, G; Curigliano, G; Yang, Q; La Gioia, V; Signorelli, C; Ferro, A; Capelli, G; Santella, R M; Cittadini, A

    1999-01-01

    Polycyclic aromatic hydrocarbon-DNA adducts were evaluated in oral cells from 98 healthy volunteers by an immunohistochemical method using a specific antiserum against benzo(a)pyrene-DNA adducts revealed by the immunoperoxidase reaction. Mean adduct content, determined as relative staining intensity by absorbance image analyzer, was significantly higher in the cells from tobacco smokers compared with nonsmokers (330 +/- 98, n = 33 versus 286 +/- 83, n = 64, respectively) with a P = 0.013 obtained by two-sample t test with equal variances. We found that in the smoker group, the PAH-DNA adduct content increases with the number of cigarettes. Thus, the relative staining intensity was 305 +/- 105 in the group smoking 1-10 cigarettes/day (n = 16), 347 +/- 77 in the 11-20 group (n = 14), and 386 +/- 112 in the group smoking more than 20 cigarettes/day (n = 3; P = 0.03 by nonparametric test for trend). No significant association was detected between PAH-DNA adducts in oral cells and variables such as residential area, oral infections, alcohol or vitamin intake, grilled food consumption, and professional activity. This work confirms and extends previous data suggesting that this immunohistochemical method might be used as a valuable dosimeter of genotoxic damage in a carcinogen-exposed population, although further studies are needed to verify the applicability of the test in high-risk populations other than smokers.

  13. Detection of Adriamycin–DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations

    PubMed Central

    Coldwell, Kate E.; Cutts, Suzanne M.; Ognibene, Ted J.; Henderson, Paul T.; Phillips, Don R.

    2008-01-01

    Limited sensitivity of existing assays has prevented investigation of whether Adriamycin–DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin–DNA adducts/104 bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin–DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [14C]Adriamycin–DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin–DNA adducts at clinically-relevant Adriamycin concentrations. [14C]Adriamycin treatment (25 nM) resulted in 4.4 ± 1.0 adducts/107 bp (∼1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin–DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin–DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues. PMID:18632763

  14. Capturing Labile Sulfenamide and Sulfinamide Serum Albumin Adducts of Carcinogenic Arylamines by Chemical Oxidation

    PubMed Central

    Peng, Lijuan; Turesky, Robert J.

    2013-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are a class of structurally related carcinogens that are formed during the combustion of tobacco or during the high temperature cooking of meats. These procarcinogens undergo metabolic activation by N-oxidation of the exocyclic amine group to produce N-hydroxylated metabolites, which are critical intermediates implicated in toxicity and DNA damage. The arylhydroxylamines and their oxidized arylnitroso derivatives can also react with cysteine (Cys) residues of glutathione or proteins to form, respectively, sulfenamide and sulfinamide adducts. However, sulfur-nitrogen linked adducted proteins are often difficult to detect because they are unstable and undergo hydrolysis during proteolytic digestion. Synthetic N-oxidized intermediates of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic HAA produced in cooked meats, and 4-aminobiphenyl, a carcinogenic aromatic amine present in tobacco smoke were reacted with human serum albumin (SA) and formed labile sulfenamide or sulfinamide adducts at the Cys34 residue. Oxidation of the carcinogen-modified SA with m-chloroperoxybenzoic acid (m-CPBA) produced the arylsulfonamide adducts, which were stable to heat and the chemical reduction conditions employed to denature SA. The sulfonamide adducts of PhIP and 4-ABP were identified, by liquid chromatography/mass spectrometry, in proteolytic digests of denatured SA. Thus, selective oxidation of arylamine-modified SA produces stable arylsulfonamide-SA adducts, which may serve as biomarkers of these tobacco and dietary carcinogens. PMID:23240913

  15. Heme oxygenase-1: a metabolic nike.

    PubMed

    Wegiel, Barbara; Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C; Otterbein, Leo E

    2014-04-10

    Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.

  16. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    NASA Astrophysics Data System (ADS)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-09-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag+ and the reaction partners (X) including [Ag n X m - ( n + 1)H]- ( n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag( a + 1)GSH a - ( a + 3)H]2- ( a = 5-7) and [Ag b GSH b - ( b + 2)H]2- ( b = 4-8) ions. 1H NMR data of free GSH compared to that after treatment with Ag+ confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  17. Use of LC-MS/MS and Stable Isotopes to Differentiate Hydroxymethyl and Methyl DNA Adducts from Formaldehyde and Nitrosodimethylamine

    PubMed Central

    Lu, Kun; Craft, Sessaly; Nakamura, Jun; Moeller, Benjamin C.; Swenberg, James A.

    2012-01-01

    Formaldehyde is a known human and animal carcinogen that forms DNA adducts, and causes mutations. While there is widespread exposure to formaldehyde in the environment, formaldehyde is also an essential biochemical in all living cells. The presence of both endogenous and exogenous sources of formaldehyde makes it difficult to develop exposure-specific DNA biomarkers. Furthermore, chemicals such as nitrosodimethylamine form one mole of formaldehyde for every mole of methylating agent, raising questions about potential co-carcinogenesis. Formaldehyde-induced hydroxymethyl DNA adducts are not stable and need to be reduced to stable methyl adducts for detection, which adds another layer of complexity to identifying the origins of these adducts. In this study, highly sensitive mass spectrometry methods and isotope labeled compounds were used to differentiate between endogenous and exogenous hydroxymethyl and methyl DNA adducts. We demonstrate that N2-hydroxymethyl-dG is the primary DNA adduct formed in cells following formaldehyde exposure. In addition, we show that alkylating agents induce methyl adducts at N2-dG and N6-dA positions, which are identical to the reduced forms of hydroxymethyl adducts arising from formaldehyde. The use of highly sensitive LC-MS/MS and isotope labeled compounds for exposure solves these challenges and provides mechanistic insights on the formation and role of these DNA adducts. PMID:22148432

  18. Base-Displaced Intercalated Conformation of the 2-Amino-3-methylimidazo[4,5-f]quinoline N2-dG DNA Adduct Positioned at the Nonreiterated G1 in the NarI Restriction Site

    PubMed Central

    2016-01-01

    The conformation of an N2-dG adduct arising from the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a potent food mutagen, was determined in 5′-d(C1T2C3X4G5C6G7C8C9A10T11C12)-3′:5′-d(G13A14T15G16G17C18G19C20C21G22A23G24)-3′; X = N2-dG-IQ, in which the modified nucleotide X4 corresponds to G1 in the 5′-d(G1G2CG3CC)-3′ NarI restriction endonuclease site. Circular dichroism (CD) revealed blue shifts relative to the unmodified duplex, consistent with adduct-induced twisting, and a hypochromic effect for the IQ absorbance in the near UV region. NMR revealed that the N2-dG-IQ adduct adopted a base-displaced intercalated conformation in which the modified guanine remained in the anti conformation about the glycosidic bond, the IQ moiety intercalated into the duplex, and the complementary base C21 was displaced into the major groove. The processing of the N2-dG-IQ lesion by hpol η is sequence-dependent; when placed at the reiterated G3 position, but not at the G1 position, this lesion exhibits a propensity for frameshift replication [Choi, J. Y., et al. (2006) J. Biol. Chem., 281, 25297–25306]. The structure of the N2-dG-IQ adduct at the nonreiterated G1 position was compared to that of the same adduct placed at the G3 position [Stavros, K. M., et al. (2014) Nucleic Acids Res., 42, 3450–3463]. CD indicted minimal spectral differences between the G1 vs G3N2-dG-IQ adducts. NMR indicated that the N2-dG-IQ adduct exhibited similar base-displaced intercalated conformations at both the G1 and G3 positions. This result differed as compared to the corresponding C8-dG-IQ adducts placed at the same positions. The C8-dG-IQ adduct adopted a minor groove conformation when placed at position G1 but a base-displaced intercalated conformation when placed at position G3 in the NarI sequence. The present studies suggest that differences in lesion bypass by hpol η may be mediated by differences in the 3′-flanking sequences, perhaps modulating the ability

  19. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  20. Structures of exocyclic R,R- and S,S-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine adducts induced by 1,2,3,4-diepoxybutane.

    PubMed

    Kowal, Ewa A; Seneviratne, Uthpala; Wickramaratne, Susith; Doherty, Kathleen E; Cao, Xiangkun; Tretyakova, Natalia; Stone, Michael P

    2014-05-19

    1,3-Butadiene (BD) is an industrial and environmental chemical present in urban air and cigarette smoke, and is classified as a human carcinogen. It is oxidized by cytochrome P450 to form 1,2,3,4-diepoxybutane (DEB); DEB bis-alkylates the N(6) position of adenine in DNA. Two enantiomers of bis-N(6)-dA adducts of DEB have been identified: R,R-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (R,R-DHB-dA), and S,S-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (S,S-DHB-dA) [ Seneviratne , U. , Antsypovich , S. , Dorr , D. Q. , Dissanayake , T. , Kotapati , S. , and Tretyakova , N. ( 2010 ) Chem. Res. Toxicol. 23 , 1556 -1567 ]. Herein, the R,R-DHB-dA and S,S-DHB-dA adducts have been incorporated into the 5'-d(C(1)G(2)G(3)A(4)C(5)X(6)A(7)G(8)A(9)A(10)G(11))-3':5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19)C(20)C(21)G(22))-3' duplex [X(6) = R,R-DHB-dA (R(6)) or S,S-DHB-dA (S(6))]. The structures of the duplexes were determined by molecular dynamics calculations, which were restrained by experimental distances obtained from NMR data. Both the R,R- and S,S-DHB-dA adducts are positioned in the major groove of DNA. In both instances, the bulky 3,4-dihydroxypyrrolidine rings are accommodated by an out-of-plane rotation about the C6-N(6) bond of the bis-alkylated adenine. In both instances, the directionality of the dihydroxypyrrolidine ring is evidenced by the pattern of NOEs between the 3,4-dihydroxypyrrolidine protons and DNA. Also in both instances, the anti conformation of the glycosyl bond is maintained, which combined with the out-of-plane rotation about the C6-N(6) bond, allows the complementary thymine, T(17), to remain stacked within the duplex, and form one hydrogen bond with the modified base, between the imine nitrogen of the modified base and the T(17) N3H imino proton. The loss of the second Watson-Crick hydrogen bonding interaction at the lesion sites correlates with the lower thermal stabilities of the R,R- and S,S-DHB-dA duplexes, as

  1. Use of Heme Compounds as Iron Sources by Pathogenic Neisseriae Requires the Product of the hemO Gene

    PubMed Central

    Zhu, Wenming; Hunt, Desiree J.; Richardson, Anthony R.; Stojiljkovic, Igor

    2000-01-01

    Heme compounds are an important source of iron for neisseriae. We have identified a neisserial gene, hemO, that is essential for heme, hemoglobin (Hb), and haptoglobin-Hb utilization. The hemO gene is located 178 bp upstream of the hmbR Hb receptor gene in Neisseria meningitidis isolates. The product of the hemO gene is homologous to enzymes that degrade heme; 21% of its amino acid residues are identical, and 44% are similar, to those of the human heme oxygenase-1. DNA sequences homologous to hemO were ubiquitous in commensal and pathogenic neisseriae. HemO genetic knockout strains of Neisseria gonorrhoeae and N. meningitidis were unable to use any heme source, while the assimilation of transferrin-iron and iron-citrate complexes was unaffected. A phenotypic characterization of a conditional hemO mutant, constructed by inserting an isopropyl-β-d-thiogalactopyranoside (IPTG)-regulated promoter upstream of the ribosomal binding site of hemO, confirmed the indispensability of the HemO protein in heme utilization. The expression of HemO also protected N. meningitidis cells against heme toxicity. hemO mutants were still able to transport heme into the cell, since both heme and Hb could complement an N. meningitidis hemA hemO double mutant for growth. The expression of the HmbR receptor was reduced significantly by the inactivation of the hemO gene, suggesting that hemO and hmbR are transcriptionally linked. The expression of the unlinked Hb receptor, HpuAB, was not altered. Comparison of the polypeptide patterns of the wild type and the hemO mutant led to detection of six protein spots with an altered expression pattern, suggesting a more general role of HemO in the regulation of gene expression in Neisseriae. PMID:10629191

  2. Relationship between natural and heme-mediated antibody polyreactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadzhieva, Maya; Vassilev, Tchavdar; Bayry, Jagadeesh

    Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivitymore » of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. - Highlights: • Exposure of certain monoclonal IgE antibodies to heme results in gain of antigen binding polyreactivity. • Natural polyreactivity of antibodies is dispensable for acquisition of polyreactivity through interaction with heme. • Heme-induced monoclonal IgE antibodies differ in their thermodynamic mechanisms of antigen recognition.« less

  3. Mass spectrometric analysis of sulfur mustard-induced biomolecular adducts: Are DNA adducts suitable biomarkers of exposure?

    PubMed

    Zubel, Tabea; Bürkle, Alexander; Mangerich, Aswin

    2018-09-01

    The bi-functional chemical warfare agent sulfur mustard (SM), whose release in asymmetric conflicts or terrorist attacks represents a realistic threat, induces several kinds of biomolecular adducts, including highly toxic DNA adducts. Isotope dilution liquid chromatographic tandem mass spectrometry (ID-LC-MS/MS) is considered the gold standard for highly accurate, precise, specific and sensitive quantification of DNA adducts in general. Recently, a number of LC-MS/MS approaches have been established to analyze SM-induced protein and DNA adducts in cell culture and rodent animal models. As DNA adducts are mechanism-based biomarkers for SM exposure, results from such studies provide a deeper understanding of the etiology of SM-induced pathologies, especially of long-term effects such as cancer formation. As a result, medical treatment of SM-exposed individuals might be improved. Yet, despite the progress that has been made during the last years, there is still a need for advanced methods of ID-LC-MS/MS for the detection and quantitation of SM adducts. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Heme Oxygenase-1: A Metabolic Nike

    PubMed Central

    Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C.; Otterbein, Leo E.

    2014-01-01

    Abstract Significance: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. Recent Advances: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. Critical Issues: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. Future Directions: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer. Antioxid. Redox Signal. 20, 1709–1722. PMID:24180257

  5. Mutagenic Spectra Arising from Replication Bypass of the 2,6-diamino-4-hydroxy-N5-methyl Formamidopyrimidine Adduct in Primate Cells

    PubMed Central

    Earley, Lauriel F.; Minko, Irina G.; Christov, Plamen P.; Rizzo, Carmelo J.; Lloyd, R. Stephen

    2013-01-01

    DNA exposures to electrophilic methylating agents that are commonly used during chemotherapeutic treatments cause diverse chemical modifications of nucleobases, with reaction at N7-dG being the most abundant. Although this base modification frequently results in destabilization of the glycosyl bond and spontaneous depurination, the adduct can react with hydroxide ion to yield a stable, ring-opened MeFapy-dG and this lesion has been reported to persist in animal tissues. Results from prior in vitro replication bypass investigations of the MeFapy-dG adduct had revealed complex spectra of replication errors that differed depending on the identity of DNA polymerase and the local sequence context. In this study, a series of nine site-specifically modified MeFapy-dG-containing oligodeoxynucleotides were engineered into a shuttle vector and subjected to replication in primate cells. In all nine sequence contexts examined, MeFapy-dG was shown to be associated with a strong mutator phenotype, predominantly causing base substitutions, with G to T transversions being most common. Single and dinucleotide deletions were also found in a subset of the sequence contexts. Interestingly, single-nucleotide deletions occurred not only at the adducted site, but also one nucleotide downstream of the adduct. Standard models for primer-template misalignment could account for some, but not all mutations observed. These data demonstrate that in addition to mutagenesis predicted from replication of DNAs containing O6-Me-dG and O4-Me-dT, the MeFapy-dG adduct likely contributes to mutagenic events following chemotherapeutic treatments. PMID:23763662

  6. Dissociation of heme from gaseous myoglobin ions studied by infrared multiphoton dissociation spectroscopy and Fourier-transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Sheng; Sabu, Sahadevan; Wei, Shih-Chia; Josh Kao, C.-M.; Kong, Xianglei; Liau, Shing-Chih; Han, Chau-Chung; Chang, Huan-Cheng; Tu, Shih-Yu; Kung, A. H.; Zhang, John Z. H.

    2006-10-01

    Detachment of heme prosthetic groups from gaseous myoglobin ions has been studied by collision-induced dissociation and infrared multiphoton dissociation in combination with Fourier-transform ion cyclotron resonance mass spectrometry. Multiply charged holomyoglobin ions (hMbn +) were generated by electrospray ionization and transferred to an ion cyclotron resonance cell, where the ions of interest were isolated and fragmented by either collision with Ar atoms or irradiation with 3μm photons, producing apomyoglobin ions (aMbn +). Both charged heme loss (with [Fe(III)-heme]+ and aMb(n-1)+ as the products) and neutral heme loss (with [Fe(II)-heme] and aMbn + as the products) were detected concurrently for hMbn + produced from a myoglobin solution pretreated with reducing reagents. By reference to Ea=0.9eV determined by blackbody infrared radiative dissociation for charged heme loss of ferric hMbn +, an activation energy of 1.1eV was deduced for neutral heme loss of ferrous hMbn + with n =9 and 10.

  7. Identification of Rosmarinic Acid-Adducted Sites in Meat Proteins in a Gel Model under Oxidative Stress by Triple TOF MS/MS.

    PubMed

    Tang, Chang-Bo; Zhang, Wan-Gang; Wang, Yao-Song; Xing, Lu-Juan; Xu, Xing-Lian; Zhou, Guang-Hong

    2016-08-24

    Triple TOF MS/MS was used to identify adducts between rosmarinic acid (RosA)-derived quinones and meat proteins in a gel model under oxidative stress. Seventy-five RosA-modified peptides responded to 67 proteins with adduction of RosA. RosA conjugated with different amino acids in proteins, and His, Arg, and Lys adducts with RosA were identified for the first time in meat. A total of 8 peptides containing Cys, 14 peptides containing His, 48 peptides containing Arg, 64 peptides containing Lys, and 5 peptides containing N-termini that which participated in adduction reaction with RosA were identified, respectively. Seventy-seven adduction sites were subdivided into all adducted proteins including 2 N-terminal adduction sites, 3 Cys adduction sites, 4 His adduction sites, 29 Arg adduction sites, and 39 Lys adduction sites. Site occupancy analyses showed that approximately 80.597% of the proteins carried a single RosA-modified site, 14.925% retained two sites, 1.492% contained three sites, and the rest 2.985% had four or more sites. Large-scale triple TOF MS/MS mapping of RosA-adducted sites reveals the adduction regulations of quinone and different amino acids as well as the adduction ratios, which clarify phenol-protein adductions and pave the way for industrial meat processing and preservation.

  8. Hemolysis-induced lethality involves inflammasome activation by heme.

    PubMed

    Dutra, Fabianno F; Alves, Letícia S; Rodrigues, Danielle; Fernandez, Patricia L; de Oliveira, Rosane B; Golenbock, Douglas T; Zamboni, Dario S; Bozza, Marcelo T

    2014-09-30

    The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K(+) efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release.

  9. The crimson conundrum: heme toxicity and tolerance in GAS

    PubMed Central

    Sachla, Ankita J.; Le Breton, Yoann; Akhter, Fahmina; McIver, Kevin S.; Eichenbaum, Zehava

    2014-01-01

    The massive erythrocyte lysis caused by the Group A Streptococcus (GAS) suggests that the β-hemolytic pathogen is likely to encounter free heme during the course of infection. In this study, we investigated GAS mechanisms for heme sensing and tolerance. We compared the minimal inhibitory concentration of heme among several isolates and established that excess heme is bacteriostatic and exposure to sub-lethal concentrations of heme resulted in noticeable damage to membrane lipids and proteins. Pre-exposure of the bacteria to 0.1 μM heme shortened the extended lag period that is otherwise observed when naive cells are inoculated into heme-containing medium, implying that GAS is able to adapt. The global response to heme exposure was determined using microarray analysis revealing a significant transcriptome shift that included 79 up regulated and 84 down regulated genes. Among other changes, the induction of stress-related chaperones and proteases, including groEL/ES (8x), the stress regulators spxA2 (5x) and ctsR (3x), as well as redox active enzymes were prominent. The heme stimulon also encompassed a number of regulatory proteins and two-component systems that are important for virulence. A three-gene cluster that is homologous to the pefRCD system of the Group B Streptococcus was also induced by heme. PefR, a MarR-like regulator, specifically binds heme with stoichiometry of 1:2 and protoporphyrin IX (PPIX) with stoichiometry of 1:1, implicating it is one of the GAS mediators to heme response. In summary, here we provide evidence that heme induces a broad stress response in GAS, and that its success as a pathogen relies on mechanisms for heme sensing, detoxification, and repair. PMID:25414836

  10. Hemolysis-induced lethality involves inflammasome activation by heme

    PubMed Central

    Dutra, Fabianno F.; Alves, Letícia S.; Rodrigues, Danielle; Fernandez, Patricia L.; de Oliveira, Rosane B.; Golenbock, Douglas T.; Zamboni, Dario S.; Bozza, Marcelo T.

    2014-01-01

    The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K+ efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release. PMID:25225402

  11. Major Groove Orientation of the (2S)-N6-(2-Hydroxy-3-buten-1-yl)-2′-deoxyadenosine DNA Adduct Induced by 1,2-Epoxy-3-butene

    PubMed Central

    2015-01-01

    1,3-Butadiene (BD) is an environmental and occupational toxicant classified as a human carcinogen. It is oxidized by cytochrome P450 monooxygenases to 1,2-epoxy-3-butene (EB), which alkylates DNA. BD exposures lead to large numbers of mutations at A:T base pairs even though alkylation of guanines is more prevalent, suggesting that one or more adenine adducts of BD play a role in BD-mediated genotoxicity. However, the etiology of BD-mediated genotoxicity at adenine remains poorly understood. EB alkylates the N6 exocyclic nitrogen of adenine to form N6-(hydroxy-3-buten-1-yl)-2′-dA ((2S)-N6-HB-dA) adducts (TretyakovaN., LinY., SangaiahR., UptonP. B., and SwenbergJ. A. (1997) Carcinogenesis18, 137−1479054600). The structure of the (2S)-N6-HB-dA adduct has been determined in the 5′-d(C1G2G3A4C5Y6A7G8A9A10G11)-3′:5′-d(C12T13T14C15T16T17G18T19 C20C21G22)-3′ duplex [Y = (2S)-N6-HB-dA] containing codon 61 (underlined) of the human N-ras protooncogene, from NMR spectroscopy. The (2S)-N6-HB-dA adduct was positioned in the major groove, such that the butadiene moiety was oriented in the 3′ direction. At the Cα carbon, the methylene protons of the modified nucleobase Y6 faced the 5′ direction, which placed the Cβ carbon in the 3′ direction. The Cβ hydroxyl group faced toward the solvent, as did carbons Cγ and Cδ. The Cβ hydroxyl group did not form hydrogen bonds with either T16O4 or T17O4. The (2S)-N6-HB-dA nucleoside maintained the anti conformation about the glycosyl bond, and the modified base retained Watson–Crick base pairing with the complementary base (T17). The adduct perturbed stacking interactions at base pairs C5:G18, Y6:T17, and A7:T16 such that the Y6 base did not stack with its 5′ neighbor C5, but it did with its 3′ neighbor A7. The complementary thymine T17 stacked well with both 5′ and 3′ neighbors T16 and G18. The presence of the (2S)-N6-HB-dA resulted in a 5 °C reduction in the Tm of the duplex, which is attributed to less

  12. Structures of Exocyclic R,R- and S,S-N6,N6-(2,3-Dihydroxybutan-1,4-diyl)-2′-Deoxyadenosine Adducts Induced by 1,2,3,4-Diepoxybutane

    PubMed Central

    2015-01-01

    1,3-Butadiene (BD) is an industrial and environmental chemical present in urban air and cigarette smoke, and is classified as a human carcinogen. It is oxidized by cytochrome P450 to form 1,2,3,4-diepoxybutane (DEB); DEB bis-alkylates the N6 position of adenine in DNA. Two enantiomers of bis-N6-dA adducts of DEB have been identified: R,R-N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (R,R-DHB-dA), and S,S-N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (S,S-DHB-dA) [SeneviratneU., AntsypovichS., DorrD. Q., DissanayakeT., KotapatiS., and TretyakovaN. (2010) Chem. Res. Toxicol.23, 1556−156720873715]. Herein, the R,R-DHB-dA and S,S-DHB-dA adducts have been incorporated into the 5′-d(C1G2G3A4C5X6A7G8A9A10G11)-3′:5′-d(C12T13T14C15T16T17G18T19C20C21G22)-3′ duplex [X6 = R,R-DHB-dA (R6) or S,S-DHB-dA (S6)]. The structures of the duplexes were determined by molecular dynamics calculations, which were restrained by experimental distances obtained from NMR data. Both the R,R- and S,S-DHB-dA adducts are positioned in the major groove of DNA. In both instances, the bulky 3,4-dihydroxypyrrolidine rings are accommodated by an out-of-plane rotation about the C6-N6 bond of the bis-alkylated adenine. In both instances, the directionality of the dihydroxypyrrolidine ring is evidenced by the pattern of NOEs between the 3,4-dihydroxypyrrolidine protons and DNA. Also in both instances, the anti conformation of the glycosyl bond is maintained, which combined with the out-of-plane rotation about the C6-N6 bond, allows the complementary thymine, T17, to remain stacked within the duplex, and form one hydrogen bond with the modified base, between the imine nitrogen of the modified base and the T17 N3H imino proton. The loss of the second Watson–Crick hydrogen bonding interaction at the lesion sites correlates with the lower thermal stabilities of the R,R- and S,S-DHB-dA duplexes, as compared to the corresponding unmodified duplex. The reduced base stacking at the

  13. Infrared spectra of some acetone—magnesium adducts

    NASA Astrophysics Data System (ADS)

    Hisatsune, I. C.

    Co-deposition of atomic magnesium with excess acetone at liquid-nitrogen temperature produces an unstable charge-transfer complex with a characteristic carbonyl infrared band at 1595 cm -1 and stable acetone adducts in which the metal atom bridges the carbonyl bond (π-complex) or coordinates to the oxygen atom (σ-complex). Infrared spectra of these complexes with (CH 3) 2CO and (CD 3) 2CO have been obtained. Corroborations for these adducts were obtained from infrared studies of acetone matrices with atomic copper and acetaldehyde matrices with atomic magnesium and with atomic copper. Infrared spectra of an acetone adduct and a dimethyl ether adduct of the Grignard reagent CH 3MgI have also been obtained. Hydrolysis of a σ-adduct gives acetone but isopropyl alcohol is obtained from hydrolysis of the π-adduct.

  14. Chemistry and Chemical Equilibrium Dynamics of BMAA and Its Carbamate Adducts

    PubMed Central

    Diaz-parga, Pedro

    2018-01-01

    Beta-N-methylamino-L-alanine (BMAA) has been demonstrated to contribute to the onset of the ALS/Parkinsonism-dementia complex (ALS/PDC) and is implicated in the progression of other neurodegenerative diseases. While the role of BMAA in these diseases is still debated, one of the suggested mechanisms involves the activation of excitatory glutamate receptors. In particular, the excitatory effects of BMAA are shown to be dependent on the presence of bicarbonate ions, which in turn forms carbamate adducts in physiological conditions. The formation of carbamate adducts from BMAA and bicarbonate is similar to the formation of carbamate adducts from non-proteinogenic amino acids. Structural, chemical, and biological information related to non-proteinogenic amino acids provide insight into the formation of and possible neurological action of BMAA. This article reviews the carbamate formation of BMAA in the presence of bicarbonate ions, with a particular focus on how the chemical equilibrium of BMAA carbamate adducts may affect the molecular mechanism of its function. Highlights of nuclear magnetic resonance (NMR)-based studies on the equilibrium process between free BMAA and its adducts are presented. The role of divalent metals on the equilibrium process is also explored. The formation and the equilibrium process of carbamate adducts of BMAA may answer questions on their neuroactive potency and provide strong motivation for further investigations into other toxic mechanisms. PMID:28921378

  15. Chemistry and Chemical Equilibrium Dynamics of BMAA and Its Carbamate Adducts.

    PubMed

    Diaz-Parga, Pedro; Goto, Joy J; Krishnan, V V

    2018-01-01

    Beta-N-methylamino-L-alanine (BMAA) has been demonstrated to contribute to the onset of the ALS/Parkinsonism-dementia complex (ALS/PDC) and is implicated in the progression of other neurodegenerative diseases. While the role of BMAA in these diseases is still debated, one of the suggested mechanisms involves the activation of excitatory glutamate receptors. In particular, the excitatory effects of BMAA are shown to be dependent on the presence of bicarbonate ions, which in turn forms carbamate adducts in physiological conditions. The formation of carbamate adducts from BMAA and bicarbonate is similar to the formation of carbamate adducts from non-proteinogenic amino acids. Structural, chemical, and biological information related to non-proteinogenic amino acids provide insight into the formation of and possible neurological action of BMAA. This article reviews the carbamate formation of BMAA in the presence of bicarbonate ions, with a particular focus on how the chemical equilibrium of BMAA carbamate adducts may affect the molecular mechanism of its function. Highlights of nuclear magnetic resonance (NMR)-based studies on the equilibrium process between free BMAA and its adducts are presented. The role of divalent metals on the equilibrium process is also explored. The formation and the equilibrium process of carbamate adducts of BMAA may answer questions on their neuroactive potency and provide strong motivation for further investigations into other toxic mechanisms.

  16. Relative to Quinine and Quinidine, Their 9-Epimers Exhibit Decreased Cytostatic Activity and Altered Heme Binding but Similar Cytocidal Activity versus Plasmodium falciparum

    PubMed Central

    Gorka, Alexander P.; Sherlach, Katy S.; de Dios, Angel C.

    2013-01-01

    The 9-epimers of quinine (QN) and quinidine (QD) are known to exhibit poor cytostatic potency against P. falciparum (Karle JM, Karle IL, Gerena L, Milhous WK, Antimicrob. Agents Chemother. 36:1538–1544, 1992). We synthesized 9-epi-QN (eQN) and 9-epi-QD (eQD) via Mitsunobu esterification-saponification and evaluated both cytostatic and cytocidal antimalarial activities. Relative to the cytostatic activity of QN and QD, we observed a large decrease in cytostatic activity (higher 50% inhibitory concentration [IC50s]) against QN-sensitive strain HB3, QN-resistant strain Dd2, and QN-hypersensitive strain K76I, consistent with previous work. However, we observed relatively small changes in cytocidal activity (the 50% lethal dose), similar to observations with chloroquine (CQ) analogues with a wide range of IC50s (see the accompanying paper [A. P. Gorka, J. N. Alumasa, K. S. Sherlach, L. M. Jacobs, K. B. Nickley, J. P. Brower, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:356–364, 2013]). Compared to QN and QD, the 9-epimers had significantly reduced hemozoin inhibition efficiency and did not affect pH-dependent aggregation of ferriprotoporphyrin IX (FPIX) heme. Magnetic susceptibility measurements showed that the 9-epimers perturb FPIX monomer-dimer equilibrium in favor of monomer, and UV-visible (VIS) titrations showed that eQN and eQD bind monomer with similar affinity relative to QN and QD. However, unique ring proton shifts in the presence of zinc(II) protoporphyrin IX (ZnPIX) indicate that binding of the 9-epimers to monomeric heme is via a distinct geometry. We isolated eQN- and eQD-FPIX complexes formed under aqueous conditions and analyzed them by mass, fluorescence, and UV-VIS spectroscopies. The 9-epimers produced low-fluorescent adducts with a 2:1 stoichiometry (drug to FPIX) which did not survive electrospray ionization, in contrast to QN and QD complexes. The data offer important insight into the relevance of heme interactions as a

  17. The radical SAM protein HemW is a heme chaperone.

    PubMed

    Haskamp, Vera; Karrie, Simone; Mingers, Toni; Barthels, Stefan; Alberge, François; Magalon, Axel; Müller, Katrin; Bill, Eckhard; Lubitz, Wolfgang; Kleeberg, Kirstin; Schweyen, Peter; Bröring, Martin; Jahn, Martina; Jahn, Dieter

    2018-02-16

    Radical S -adenosylmethionine (SAM) enzymes exist in organisms from all kingdoms of life, and all of these proteins generate an adenosyl radical via the homolytic cleavage of the S-C(5') bond of SAM. Of particular interest are radical SAM enzymes, such as heme chaperones, that insert heme into respiratory enzymes. For example, heme chaperones insert heme into target proteins but have been studied only for the formation of cytochrome c -type hemoproteins. Here, we report that a radical SAM protein, the heme chaperone HemW from bacteria, is required for the insertion of heme b into respiratory chain enzymes. As other radical SAM proteins, HemW contains three cysteines and one SAM coordinating an [4Fe-4S] cluster, and we observed one heme per subunit of HemW. We found that an intact iron-sulfur cluster was required for HemW dimerization and HemW-catalyzed heme transfer but not for stable heme binding. A bacterial two-hybrid system screen identified bacterioferritins and the heme-containing subunit NarI of the respiratory nitrate reductase NarGHI as proteins that interact with HemW. We also noted that the bacterioferritins potentially serve as heme donors for HemW. Of note, heme that was covalently bound to HemW was actively transferred to a heme-depleted, catalytically inactive nitrate reductase, restoring its nitrate-reducing enzyme activity. Finally, the human HemW orthologue radical SAM domain-containing 1 (RSAD1) stably bound heme. In conclusion, our findings indicate that the radical SAM protein family HemW/RSAD1 is a heme chaperone catalyzing the insertion of heme into hemoproteins. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    PubMed

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells.

    PubMed

    Lee, Jin-Wook; Kim, Hui-Seon; Park, Nam-Gyu

    2016-02-16

    Since the first report on the long-term durable 9.7% solid-state perovskite solar cell employing methylammonium lead iodide (CH3NH3PbI3), mesoporous TiO2, and 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-MeOTAD) in 2012, following the seed technologies on perovskite-sensitized liquid junction solar cells in 2009 and 2011, a surge of interest has been focused on perovskite solar cells due to superb photovoltaic performance and extremely facile fabrication processes. The power conversion efficiency (PCE) of perovskite solar cells reached 21% in a very short period of time. Such an unprecedentedly high photovoltaic performance is due to the intrinsic optoelectronic property of organolead iodide perovskite material. Moreover, a high dielectric constant, sub-millimeter scale carrier diffusion length, an underlying ferroelectric property, and ion migration behavior can make organolead halide perovskites suitable for multifunctionality. Thus, besides solar cell applications, perovskite material has recently been applied to a variety fields of materials science such as photodetectors, light emitting diodes, lasing, X-ray imaging, resistive memory, and water splitting. Regardless of application areas, the growth of a well-defined perovskite layer with high crystallinity is essential for effective utilization of its excellent physicochemical properties. Therefore, an effective methodology for preparation of high quality perovskite layers is required. In this Account, an effective methodology for production of high quality perovskite layers is described, which is the Lewis acid-base adduct approach. In the solution process to form the perovskite layer, the key chemicals of CH3NH3I (or HC(NH2)2I) and PbI2 are used by dissolving them in polar aprotic solvents. Since polar aprotic solvents bear oxygen, sulfur, or nitrogen, they can act as a Lewis base. In addition, the main group compound PbI2 is known to be a Lewis acid. Thus, PbI2 has a chance

  20. O 2 Activation by Non-Heme Iron Enzymes

    DOE PAGES

    Solomon, Edward I.; Goudarzi, Serra; Sutherlin, Kyle D.

    2016-10-28

    The non-heme Fe enzymes are ubiquitous in nature and perform a wide range of functions involving O 2 activation. These had been difficult to study relative to heme enzymes; however, spectroscopic methods have now been developed that provide significant insight into the correlation of structure with function. This Current Topics article summarizes both the molecular mechanism these enzymes use to control O 2 activation in the presence of cosubstrates and the oxygen intermediates these reactions generate. Three types of O 2 activation are observed. First, non-heme reactivity is shown to be different from heme chemistry where a low-spin Fe III-OOHmore » non-heme intermediate directly reacts with substrate. Also, two subclasses of non-heme Fe enzymes generate high-spin Fe IV=O intermediates that provide both σ and π frontier molecular orbitals that can control selectivity. Lastly, for several subclasses of non-heme Fe enzymes, substrate binding to the Fe II site leads to the one electron reductive activation of O 2 to an Fe III-superoxide capable of H-atom abstraction and electrophilic attack.« less

  1. Structure and function of enzymes in heme biosynthesis.

    PubMed

    Layer, Gunhild; Reichelt, Joachim; Jahn, Dieter; Heinz, Dirk W

    2010-06-01

    Tetrapyrroles like hemes, chlorophylls, and cobalamin are complex macrocycles which play essential roles in almost all living organisms. Heme serves as prosthetic group of many proteins involved in fundamental biological processes like respiration, photosynthesis, and the metabolism and transport of oxygen. Further, enzymes such as catalases, peroxidases, or cytochromes P450 rely on heme as essential cofactors. Heme is synthesized in most organisms via a highly conserved biosynthetic route. In humans, defects in heme biosynthesis lead to severe metabolic disorders called porphyrias. The elucidation of the 3D structures for all heme biosynthetic enzymes over the last decade provided new insights into their function and elucidated the structural basis of many known diseases. In terms of structure and function several rather unique proteins were revealed such as the V-shaped glutamyl-tRNA reductase, the dipyrromethane cofactor containing porphobilinogen deaminase, or the "Radical SAM enzyme" coproporphyrinogen III dehydrogenase. This review summarizes the current understanding of the structure-function relationship for all heme biosynthetic enzymes and their potential interactions in the cell.

  2. O 2 Activation by Non-Heme Iron Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Edward I.; Goudarzi, Serra; Sutherlin, Kyle D.

    The non-heme Fe enzymes are ubiquitous in nature and perform a wide range of functions involving O 2 activation. These had been difficult to study relative to heme enzymes; however, spectroscopic methods have now been developed that provide significant insight into the correlation of structure with function. This Current Topics article summarizes both the molecular mechanism these enzymes use to control O 2 activation in the presence of cosubstrates and the oxygen intermediates these reactions generate. Three types of O 2 activation are observed. First, non-heme reactivity is shown to be different from heme chemistry where a low-spin Fe III-OOHmore » non-heme intermediate directly reacts with substrate. Also, two subclasses of non-heme Fe enzymes generate high-spin Fe IV=O intermediates that provide both σ and π frontier molecular orbitals that can control selectivity. Lastly, for several subclasses of non-heme Fe enzymes, substrate binding to the Fe II site leads to the one electron reductive activation of O 2 to an Fe III-superoxide capable of H-atom abstraction and electrophilic attack.« less

  3. Molecular Phylogeny of Heme Peroxidases

    NASA Astrophysics Data System (ADS)

    Zámocký, Marcel; Obinger, Christian

    All currently available gene sequences of heme peroxidases can be phylogenetically divided in two superfamilies and three families. In this chapter, the phylogenetics and genomic distribution of each group are presented. Within the peroxidase-cyclooxygenase superfamily, the main evolutionary direction developed peroxidatic heme proteins involved in the innate immune defense system and in biosynthesis of (iodinated) hormones. The peroxidase-catalase superfamily is widely spread mainly among bacteria, fungi, and plants, and particularly in Class I led to the evolution of bifunctional catalase-peroxidases. Its numerous fungal representatives of Class II are involved in carbon recycling via lignin degradation, whereas Class III secretory peroxidases from algae and plants are included in various forms of secondary metabolism. The family of di-heme peroxidases are predominantly bacteria-inducible enzymes; however, a few corresponding genes were also detected in archaeal genomes. Four subfamilies of dyp-type peroxidases capable of degradation of various xenobiotics are abundant mainly among bacteria and fungi. Heme-haloperoxidase genes are widely spread among sac and club fungi, but corresponding genes were recently found also among oomycetes. All described families herein represent heme peroxidases of broad diversity in structure and function. Our accumulating knowledge about the evolution of various enzymatic functions and physiological roles can be exploited in future directed evolution approaches for engineering peroxidase genes de novo for various demands.

  4. Cyanide binding to human plasma heme-hemopexin: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it; Istituto Nazionale di Biostrutture e Biosistemi, Roma; Leboffe, Loris

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C,more » are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.« less

  5. Suicidal inactivation of methemoglobin by generation of thiyl radical: insight into NAC mediated protection in RBC.

    PubMed

    Balaji, S N; Trivedi, V

    2013-07-01

    N-acetyl-L-cysteine (NAC) improves antioxidant potentials of RBCs to provide protection against oxidative stress induced hemolysis. The antioxidant mechanism of NAC to reduce oxidative stress in RBC, studied through inactivation of pro-oxidant MetHb. NAC causes irreversible inactivation of the MetHb in an H2O2 dependent manner, and the inactivation follows the pseudo- first- order kinetics. The kinetic constants are ki = 8.5μM, kinact = 0.706 min(-1) and t1/2 = 0.9 min. Spectroscopic studies indicate that MetHb accepts NAC as a substrate and oxidizes through a single electron transfer mechanism to the NACox. The single e- oxidation product of NAC has been identified as the 5, 5'- dimethyl-1- pyrroline N- oxide (DMPO) adduct of the sulfur centered radical (a(N) = 15.2 G and a(H)=16.78 G). Binding studies indicate that NACox interacts at the heme moiety and NAC oxidation through MetHb is essential for NAC binding. Heme-NAC adduct dissociated from MetHb and identified (m/z 1011.19) as 2:1 ratio of NAC/heme in the adduct. TEMPO and PBN treatment reduces NAC binding to MetHb and protects against inactivation confirms the role of thiyl radical in the inactivation process. Furthermore, scavenging thiyl radicals by TEMPO abolish the protective effect of NAC in hemolysis. Current work highlights antioxidant mechanism of NAC through NAC thiyl radical generation, and MetHb inactivation to exhibit protection in RBC against oxidative stress induced hemolysis.

  6. DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes

    PubMed Central

    Nauwelaers, Gwendoline; Bessette, Erin E.; Gu, Dan; Tang, Yijin; Rageul, Julie; Fessard, Valérie; Yuan, Jian-Min; Yu, Mimi C.; Langouët, Sophie; Turesky, Robert J.

    2011-01-01

    DNA adduct formation of the aromatic amine, 4-aminobiphenyl (4-ABP), a known human carcinogen present in tobacco smoke, and the heterocyclic aromatic amines (HAAs), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), potential human carcinogens, which are also present in tobacco smoke or formed during the high-temperature cooking of meats, was investigated in freshly cultured human hepatocytes. The carcinogens (10 μM) were incubated with hepatocytes derived from eight different donors for time periods up to 24 h. The DNA adducts were quantified by liquid chromatography-electrospray ionization mass spectrometry with a linear quadrupole ion trap mass spectrometer. The principal DNA adducts formed for all of the carcinogens were N-(deoxyguanosin-8-yl) (dG-C8) adducts. The levels of adducts ranged from 3.4 to 140 adducts per 107 DNA bases. The highest level of adduct formation occurred with AαC, followed by 4-ABP, then by PhIP, MeIQx, and IQ. Human hepatocytes formed dG-C8-HAA-adducts at levels that were up to 100-fold greater than the amounts of adducts produced in rat hepatocytes. In contrast to HAA adducts, the levels of dG-C8-4-ABP adduct formation were similar in human and rat hepatocytes. These DNA binding data demonstrate that the rat, an animal model that is used for carcinogenesis bioassays, significantly underestimates the potential hepatic genotoxicity of HAAs in humans. The high level of DNA adducts formed by AαC, a carcinogen produced in tobacco smoke at levels that are up to 100-fold higher than the amounts of 4-ABP, is noteworthy. The possible causal role of AαC in tobacco-associated cancers warrants investigation. PMID:21456541

  7. The Legend of Sally Hemings

    ERIC Educational Resources Information Center

    Belz, Herman

    2012-01-01

    The part played by Sally Hemings in the life of Thomas Jefferson has been regarded as provocatively dubious since political enemy James Callender claimed in 1802 that Jefferson was the father of several of Hemings's children. Historian Merrill Peterson, observing that paternity is hard to prove, wrote in 1960 that no concrete evidence was ever…

  8. Human DNA adduct measurements: State of the art

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.C.; Weston, A.

    1996-10-01

    Human DNA adduct formation (covalent modification of DNA with chemical carcinogens) is a promising biomarker for elucidating the molecular epidemiology of cancer. Classes of compounds for which human DNA adducts have been observed include polycyclic aromatic hydrocarbons (PAHs), nitrosamines, mycotoxins, aromatic amines, heterocyclic amines, ultraviolet light, and alkylating cancer chemotherapeutic agents. Most human DNA adduct exposure monitoring has been performed with either {sup 32}P-postlabeling or immunoassays, neither of which is able to chemically characterize specific DNA adducts. Recently developed combinations of methods with chemical and physical end points have allowed identification of specific adducts in human tissues. Studies are presentedmore » that demonstrate that high ambient levels of benzo[a]pyrene are associated with high levels of DNA adducts in human blood cell DNA and that the same DNA adduct levels drop when the ambient PAH levels decrease significantly. DNA adduct dosimetry, which has been achieved with some dietary carcinogens and cancer chemotherapeutic agents, is described, as well as studies correlating DNA adducts with other biomarkers. It is likely that some toxic, noncarcinogenic compounds may have genotoxic effects, including oxidative damage, and that adverse health outcomes other than cancer may be correlated with DNA adduct formation. The studies presented here may serve as useful prototypes for exploration of other toxicological end points. 156 refs., 1 fig., 3 tabs.« less

  9. Room temperature rechargeable magnesium batteries with sulfur-containing composite cathodes prepared from elemental sulfur and bis(alkenyl) compound having a cyclic or linear ether unit

    NASA Astrophysics Data System (ADS)

    Itaoka, Kanae; Kim, In-Tae; Yamabuki, Kazuhiro; Yoshimoto, Nobuko; Tsutsumi, Hiromori

    2015-11-01

    Room temperature rechargeable magnesium (Mg) batteries are constructed from Mg as a negative material, sulfur (S)-containing composite prepared from elemental sulfur and the bis(alkenyl) compound having a crown ether unit (BUMB18C6) or linear ether unit (UOEE) as a positive material and the simple electrolyte (0.7 mol dm-3 Mg[N(SO2CF3)2]2-triglyme (G3) solution). The reaction between molten S and the bis(alkenyl) compound (BUMB18C6 or UOEE) provides the sulfur-containing composite, S-BUMB18C6 or S-UOEE. Both of the sulfur-containing composites are electrochemically active in the Mg salt-based electrolyte, acetonitrile- or G3- Mg[N(SO2CF3)2]2 electrolyte. The first discharge capacity of the test cells with the sulfur-containing composite is 460 Ah kg-1 (per the weight of sulfur in the composite) with the S-BUMB18C6 electrode and 495 Ah kg-1 with the S-UOEE electrode. According to the continuous charge-discharge cycle tests (at 10th cycle), the discharge capacity of the test cell with the S-BUMB18C6 electrode (68.1 Ah kg-1) is higher than that with the S-UOEE electrode (0.18 Ah kg-1). The crown ether units in the S-BUMB18C6 composite may create ion-conducting paths in the cathode, prevent rise in the internal resistance of the cathode, and provide better cycle performance of the test cells with the S-BUMB18C6 composite electrode than that with the S-UOEE electrode.

  10. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts and breast cancer: modification by gene promoter methylation in a population-based study.

    PubMed

    White, Alexandra J; Chen, Jia; McCullough, Lauren E; Xu, Xinran; Cho, Yoon Hee; Teitelbaum, Susan L; Neugut, Alfred I; Terry, Mary Beth; Hibshoosh, Hanina; Santella, Regina M; Gammon, Marilie D

    2015-12-01

    Polycyclic aromatic hydrocarbon (PAH)-DNA adducts have been associated with breast cancer incidence. Aberrant changes in DNA methylation may be an early event in carcinogenesis. However, possible relations between PAH-DNA adducts, methylation, and breast cancer are unknown. The objectives of this study were to (1) assess associations between PAH-DNA adducts, and breast cancer, stratified by DNA methylation markers and (2) examine interactions between adducts and DNA methylation in association with breast cancer and tumor subtype. In a population-based case-control study, promoter methylation of 13 breast cancer-related genes was measured in tumor tissue (n = 765-851 cases). Blood DNA from breast cancer cases (n = 873) and controls (n = 941) was used to assess PAH-DNA adducts and global methylation. Logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CI); and the ratio of the OR (ROR) was used to assess heterogeneity. Women with detectable PAH-DNA adducts and methylated RARβ (ROR 2.69, 95% CI 1.02-7.12; p for interaction = 0.03) or APC (ROR 1.76, 95% CI 0.87-3.58; p for interaction = 0.09) genes were more likely to have hormone receptor-positive tumors than other subtypes. Interactions with other methylation markers were not apparent (p ≥ 0.10). The association between adducts and breast cancer did not vary by methylation status of the tumor nor did adducts associate with global methylation in the controls. Gene-specific methylation of RARβ, and perhaps APC, may interact with PAH-DNA adducts to increase risk of hormone receptor-positive breast cancer. There was little evidence that adducts were associated with or interacted with other methylation markers of interest.

  11. Mini Heme-Proteins: Designability of Structure and Diversity of Functions.

    PubMed

    Rai, Jagdish

    2017-08-30

    Natural heme proteins may have heme bound to poly-peptide chain as a cofactor via noncovalent forces or heme as a prosthetic group may be covalently bound to the proteins. Nature has used porphyrins in diverse functions like electron transfer, oxidation, reduction, ligand binding, photosynthesis, signaling, etc. by modulating its properties through diverse protein matrices. Synthetic chemists have tried to utilize these molecules in equally diverse industrial and medical applications due to their versatile electro-chemical and optical properties. The heme iron has catalytic activity which can be modulated and enhanced for specific applications by protein matrix around it. Heme proteins can be designed into novel enzymes for sterio specific catalysis ranging from oxidation to reduction. These designed heme-proteins can have applications in industrial catalysis and biosensing. A peptide folds around heme easily due to hydrophobic effect of the large aromatic ring of heme. The directional property of co-ordinate bonding between peptide and metal ion in heme further specifies the structure. Therefore heme proteins can be easily designed for targeted structure and catalytic activity. The central aromatic chemical entity in heme viz. porphyrin is a very ancient molecule. Its presence in the prebiotic soup and in all forms of life suggests that it has played a vital role in the origin and progressive evolution of living organisms. Porphyrin macrocycles are highly conjugated systems composed of four modified pyrrole subunits interconnected at their α -carbon atoms via methine (=CH-) bridges. Initial minimalist models of hemoproteins focused on effect of heme-ligand co-ordinate bonding on chemical reactivity, spectroscopy, electrochemistry and magnetic properties of heme. The great sensitivity of these spectroscopic features of heme to its surrounding makes them extremely useful in structural elucidation of designed heme-peptide complexes. Therefore heme proteins are

  12. Protein/Protein Interactions in the Mammalian Heme Degradation Pathway

    PubMed Central

    Spencer, Andrea L. M.; Bagai, Ireena; Becker, Donald F.; Zuiderweg, Erik R. P.; Ragsdale, Stephen W.

    2014-01-01

    Heme oxygenase (HO) catalyzes the rate-limiting step in the O2-dependent degradation of heme to biliverdin, CO, and iron with electrons delivered from NADPH via cytochrome P450 reductase (CPR). Biliverdin reductase (BVR) then catalyzes conversion of biliverdin to bilirubin. We describe mutagenesis combined with kinetic, spectroscopic (fluorescence and NMR), surface plasmon resonance, cross-linking, gel filtration, and analytical ultracentrifugation studies aimed at evaluating interactions of HO-2 with CPR and BVR. Based on these results, we propose a model in which HO-2 and CPR form a dynamic ensemble of complex(es) that precede formation of the productive electron transfer complex. The 1H-15N TROSY NMR spectrum of HO-2 reveals specific residues, including Leu-201, near the heme face of HO-2 that are affected by the addition of CPR, implicating these residues at the HO/CPR interface. Alanine substitutions at HO-2 residues Leu-201 and Lys-169 cause a respective 3- and 22-fold increase in Km values for CPR, consistent with a role for these residues in CPR binding. Sedimentation velocity experiments confirm the transient nature of the HO-2·CPR complex (Kd = 15.1 μm). Our results also indicate that HO-2 and BVR form a very weak complex that is only captured by cross-linking. For example, under conditions where CPR affects the 1H-15N TROSY NMR spectrum of HO-2, BVR has no effect. Fluorescence quenching experiments also suggest that BVR binds HO-2 weakly, if at all, and that the previously reported high affinity of BVR for HO is artifactual, resulting from the effects of free heme (dissociated from HO) on BVR fluorescence. PMID:25196843

  13. Hemoglobin adducts in workers exposed to 1,6-hexamethylene diisocyanate.

    PubMed

    Flack, Sheila L; Fent, Kenneth W; Gaines, Linda G T; Thomasen, Jennifer M; Whittaker, Stephen G; Ball, Louise M; Nylander-French, Leena A

    2011-05-01

    We investigated the utility of 1,6-hexamethylene diamine (HDA) hemoglobin adducts as biomarkers of exposure to 1,6-hexamethylene diisocyanate (HDI) monomer. Blood samples from 15 spray painters applying HDI-containing paint were analyzed for hemoglobin HDA (HDA-Hb) and N-acetyl-1,6-hexamethylene diamine (monoacetyl-HDA-Hb) by GC-MS. HDA-Hb was detected in the majority of workers (≤1.2-37 ng/g Hb), whereas monoacetyl-HDA-Hb was detected in one worker (0.06 ng/g Hb). The stronger, positive association between HDA-Hb and cumulative HDI exposure (r(2) = 0.3, p < 0.06) than same day exposure (p ≥ 0.13) indicates long-term elimination kinetics for HDA-Hb adducts. This association demonstrates the suitability of HDA-Hb adducts for further validation as a biomarker of HDI exposure.

  14. Hemoglobin adducts in workers exposed to 1,6-hexamethylene diisocyanate

    PubMed Central

    Flack, Sheila L.; Fent, Kenneth W.; Gaines, Linda G. T.; Thomasen, Jennifer M.; Whittaker, Stephen G.; Ball, Louise M.; Nylander-French, Leena A.

    2014-01-01

    We investigated the utility of 1,6-hexamethylene diamine (HDA) hemoglobin adducts as biomarkers of exposure to 1,6-hexamethylene diisocyanate (HDI) monomer. Blood samples from 15 spray painters applying HDI-containing paint were analyzed for hemoglobin HDA (HDA-Hb) and N-acetyl-1,6-hexamethylene diamine (monoacetyl-HDA-Hb) by GC-MS. HDA-Hb was detected in the majority of workers (≤1.2–37 ng/g Hb), whereas monoacetyl-HDA-Hb was detected in one worker (0.06 ng/g Hb). The stronger, positive association between HDA-Hb and cumulative HDI exposure (r2 = 0.3, p < 0.06) than same day exposure (p ≥ 0.13) indicates long-term elimination kinetics for HDA-Hb adducts. This association demonstrates the suitability of HDA-Hb adducts for further validation as a biomarker of HDI exposure. PMID:21506697

  15. Alteration of the Regiospecificity of Human Heme Oxygenase-1 by Unseating of the Heme but not Disruption of the Distal Hydrogen Bonding Network†

    PubMed Central

    Wang, Jinling; Evans, John P.; Ogura, Hiroshi; La Mar, Gerd N.; Ortiz de Montellano, Paul R.

    2008-01-01

    Heme oxygenase regiospecifically oxidizes heme at the α-meso position to give biliverdin IXα, CO, and iron. The heme orientation within the active site, which is thought to determine the oxidation regiospecificity, is shown here for the human enzyme (hHO1) to be largely determined by interactions between the heme carboxylic acid groups and residues Arg183 and Lys18 but not Tyr134. Mutation of either Arg183 or Lys18 individually does not significantly alter the NADPH-cytochrome P450 reductase-dependent reaction regiochemistry, but partially shifts the oxidation to the β/δ-meso positions in the reaction supported by ascorbic acid. Mutation of Glu29 to a lysine, which places a positive charge where it can interact with a heme carboxyl if the heme rotates by ~90°, causes a slight loss of regiospecificity, but combined with the R183E and K18E mutations results primarily in β/δ-meso oxidation of the heme under all conditions. NMR analysis of heme binding to the triple K18E/E29K/R183E mutant confirms rotation of the heme in the active site. Kinetic studies demonstrate that mutations of Arg183 greatly impair the rate of the P450 reductase-dependent reaction, in accord with the earlier finding that Arg183 is involved in binding of the reductase to hHO1, but have little effect on the ascorbate reaction. Mutations of Asp140 and Tyr58 that disrupt the active site hydrogen bonding network, impair catalytic rates but do not influence the oxidation regiochemistry. The results indicate both that the oxidation regiochemistry is largely controlled by ionic interactions of the heme propionic acid groups with the protein and that shifts in regiospecificity involve rotation of the heme about an axis perpendicular to the heme plane. PMID:16388581

  16. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability

    PubMed Central

    Kořený, Luděk; Sobotka, Roman; Kovářová, Julie; Gnipová, Anna; Flegontov, Pavel; Horváth, Anton; Oborník, Miroslav; Ayala, Francisco J.; Lukeš, Julius

    2012-01-01

    Heme is an iron-coordinated porphyrin that is universally essential as a protein cofactor for fundamental cellular processes, such as electron transport in the respiratory chain, oxidative stress response, or redox reactions in various metabolic pathways. Parasitic kinetoplastid flagellates represent a rare example of organisms that depend on oxidative metabolism but are heme auxotrophs. Here, we show that heme is fully dispensable for the survival of Phytomonas serpens, a plant parasite. Seeking to understand the metabolism of this heme-free eukaryote, we searched for heme-containing proteins in its de novo sequenced genome and examined several cellular processes for which heme has so far been considered indispensable. We found that P. serpens lacks most of the known hemoproteins and does not require heme for electron transport in the respiratory chain, protection against oxidative stress, or desaturation of fatty acids. Although heme is still required for the synthesis of ergosterol, its precursor, lanosterol, is instead incorporated into the membranes of P. serpens grown in the absence of heme. In conclusion, P. serpens is a flagellate with unique metabolic adaptations that allow it to bypass all requirements for heme. PMID:22355128

  17. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability.

    PubMed

    Kořený, Luděk; Sobotka, Roman; Kovářová, Julie; Gnipová, Anna; Flegontov, Pavel; Horváth, Anton; Oborník, Miroslav; Ayala, Francisco J; Lukeš, Julius

    2012-03-06

    Heme is an iron-coordinated porphyrin that is universally essential as a protein cofactor for fundamental cellular processes, such as electron transport in the respiratory chain, oxidative stress response, or redox reactions in various metabolic pathways. Parasitic kinetoplastid flagellates represent a rare example of organisms that depend on oxidative metabolism but are heme auxotrophs. Here, we show that heme is fully dispensable for the survival of Phytomonas serpens, a plant parasite. Seeking to understand the metabolism of this heme-free eukaryote, we searched for heme-containing proteins in its de novo sequenced genome and examined several cellular processes for which heme has so far been considered indispensable. We found that P. serpens lacks most of the known hemoproteins and does not require heme for electron transport in the respiratory chain, protection against oxidative stress, or desaturation of fatty acids. Although heme is still required for the synthesis of ergosterol, its precursor, lanosterol, is instead incorporated into the membranes of P. serpens grown in the absence of heme. In conclusion, P. serpens is a flagellate with unique metabolic adaptations that allow it to bypass all requirements for heme.

  18. N-terminal valine adduct from the anti-HIV drug abacavir in rat haemoglobin as evidence for abacavir metabolism to a reactive aldehyde in vivo

    PubMed Central

    Charneira, C; Grilo, NM; Pereira, SA; Godinho, ALA; Monteiro, EC; Marques, MM; Antunes, AMM

    2012-01-01

    BACKGROUND AND PURPOSE The aim of this study was to obtain evidence for the activation of the nucleoside reverse transcriptase inhibitor abacavir to reactive aldehyde metabolites in vivo. Protein haptenation by these reactive metabolites may be a factor in abacavir-induced toxic events. EXPERIMENTAL APPROACH The formation of N-terminal valine adducts from the abacavir-derived aldehydes was investigated in the haemoglobin of Wistar rats treated with eight daily doses (120 mg·kg−1) of abacavir. The analyses were conducted by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry upon comparison with synthetic standards. KEY RESULTS An N-terminal valine haemoglobin adduct derived from an α,β-unsaturated aldehyde metabolite of abacavir was identified in vivo for the first time. CONCLUSIONS AND IMPLICATIONS This preliminary work on abacavir metabolism provides the first unequivocal evidence for the formation of an α,β-unsaturated aldehyde metabolite in vivo and of its ability to form haptens with proteins. The methodology described herein can be used to assess the formation of this metabolite in human samples and has the potential to become a valuable pharmacological tool for mechanistic studies of abacavir toxicity. In fact, the simplicity of the method suggests that the abacavir adduct with the N-terminal valine of haemoglobin could be used to investigate abacavir-induced toxicity for accurate risk/benefit estimations. PMID:22725138

  19. N-terminal valine adduct from the anti-HIV drug abacavir in rat haemoglobin as evidence for abacavir metabolism to a reactive aldehyde in vivo.

    PubMed

    Charneira, C; Grilo, N M; Pereira, S A; Godinho, A L A; Monteiro, E C; Marques, M M; Antunes, A M M

    2012-11-01

    The aim of this study was to obtain evidence for the activation of the nucleoside reverse transcriptase inhibitor abacavir to reactive aldehyde metabolites in vivo. Protein haptenation by these reactive metabolites may be a factor in abacavir-induced toxic events. The formation of N-terminal valine adducts from the abacavir-derived aldehydes was investigated in the haemoglobin of Wistar rats treated with eight daily doses (120 mg·kg(-1)) of abacavir. The analyses were conducted by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry upon comparison with synthetic standards. An N-terminal valine haemoglobin adduct derived from an α,β-unsaturated aldehyde metabolite of abacavir was identified in vivo for the first time. This preliminary work on abacavir metabolism provides the first unequivocal evidence for the formation of an α,β-unsaturated aldehyde metabolite in vivo and of its ability to form haptens with proteins. The methodology described herein can be used to assess the formation of this metabolite in human samples and has the potential to become a valuable pharmacological tool for mechanistic studies of abacavir toxicity. In fact, the simplicity of the method suggests that the abacavir adduct with the N-terminal valine of haemoglobin could be used to investigate abacavir-induced toxicity for accurate risk/benefit estimations. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  20. High-Molecular-Mass Multi-c-Heme Cytochromes from Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; DiSpirito, Alan A.

    1999-01-01

    The polypeptide and structural gene for a high-molecular-mass c-type cytochrome, cytochrome c553O, was isolated from the methanotroph Methylococcus capsulatus Bath. Cytochrome c553O is a homodimer with a subunit molecular mass of 124,350 Da and an isoelectric point of 6.0. The heme c concentration was estimated to be 8.2 ± 0.4 mol of heme c per subunit. The electron paramagnetic resonance spectrum showed the presence of multiple low spin, S = 1/2, hemes. A degenerate oligonucleotide probe synthesized based on the N-terminal amino acid sequence of cytochrome c553O was used to identify a DNA fragment from M. capsulatus Bath that contains occ, the gene encoding cytochrome c553O. occ is part of a gene cluster which contains three other open reading frames (ORFs). ORF1 encodes a putative periplasmic c-type cytochrome with a molecular mass of 118,620 Da that shows approximately 40% amino acid sequence identity with occ and contains nine c-heme-binding motifs. ORF3 encodes a putative periplasmic c-type cytochrome with a molecular mass of 94,000 Da and contains seven c-heme-binding motifs but shows no sequence homology to occ or ORF1. ORF4 encodes a putative 11,100-Da protein. The four ORFs have no apparent similarity to any proteins in the GenBank database. The subunit molecular masses, arrangement and number of hemes, and amino acid sequences demonstrate that cytochrome c553O and the gene products of ORF1 and ORF3 constitute a new class of c-type cytochrome. PMID:9922265

  1. A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins.

    PubMed

    Soriano, Brian D; Tam, Lei-Ting T; Lu, Hsieng S; Valladares, Violeta G

    2012-01-01

    Recombinant proteins expressed in Escherichia coli are often produced as unfolded, inactive forms accumulated in inclusion bodies. Redox-coupled thiols are typically employed in the refolding process in order to catalyze the formation of correct disulfide bonds at maximal folding efficiency. These thiols and the recombinant proteins can form mixed disulfide bonds to generate thiol-protein adducts. In this work, we apply a fluorescent-based assay for the quantification of cysteine and cysteamine adducts as observed in E. coli-derived proteins. The thiols are released by reduction of the adducted protein, collected and labeled with a fluorescent reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The derivatized thiols are separated by reversed-phase HPLC and can be accurately quantified after method optimization. The estimated thiol content represents total amount of adducted forms present in the analyzed samples. The limit of quantification (LOQ) was established; specifically, the lowest amount of quantifiable cysteine adduction is 30 picograms and the lowest amount of quantifiable cysteamine adduction is 60 picograms. The assay is useful for quantification of adducts in final purified products as well as in-process samples from various purification steps. The assay indicates that the purification process accomplishes a decrease in cysteine adduction from 0.19 nmol adduct/nmol protein to 0.03 nmol adduct/nmol protein as well as a decrease in cysteamine adduction from 0.24 nmol adduct/nmol protein to 0.14 nmol adduct/nmol protein. Copyright © 2011. Published by Elsevier B.V.

  2. Base-displaced intercalation of the 2-amino-3-methylimidazo[4,5-f]quinolone N2-dG adduct in the NarI DNA recognition sequence

    PubMed Central

    Stavros, Kallie M.; Hawkins, Edward K.; Rizzo, Carmelo J.; Stone, Michael P.

    2014-01-01

    2-Amino-3-methylimidazo[4,5-f]quinolone (IQ), a heterocyclic amine found in cooked meats, undergoes bioactivation to a nitrenium ion, which alkylates guanines at both the C8-dG and N2-dG positions. The conformation of a site-specific N2-dG-IQ adduct in an oligodeoxynucleotide duplex containing the iterated CG repeat restriction site of the NarI endonuclease has been determined. The IQ moiety intercalates, with the IQ H4a and CH3 protons facing the minor groove, and the IQ H7a, H8a and H9a protons facing the major groove. The adducted dG maintains the anti-conformation about the glycosyl bond. The complementary dC is extruded into the major groove. The duplex maintains its thermal stability, which is attributed to stacking between the IQ moiety and the 5′- and 3′-neighboring base pairs. This conformation is compared to that of the C8-dG-IQ adduct in the same sequence, which also formed a ‘base-displaced intercalated’ conformation. However, the C8-dG-IQ adopted the syn conformation placing the Watson−Crick edge of the modified dG into the major groove. In addition, the C8-dG-IQ adduct was oriented with the IQ CH3 group and H4a and H5a facing the major groove. These differences may lead to differential processing during DNA repair and replication. PMID:24366876

  3. Role of the Iron Axial Ligands of Heme Carrier HasA in Heme Uptake and Release*

    PubMed Central

    Caillet-Saguy, Célia; Piccioli, Mario; Turano, Paola; Lukat-Rodgers, Gudrun; Wolff, Nicolas; Rodgers, Kenton R.; Izadi-Pruneyre, Nadia; Delepierre, Muriel; Lecroisey, Anne

    2012-01-01

    The hemophore protein HasA from Serratia marcescens cycles between two states as follows: the heme-bound holoprotein, which functions as a carrier of the metal cofactor toward the membrane receptor HasR, and the heme-free apoprotein fishing for new porphyrin to be taken up after the heme has been delivered to HasR. Holo- and apo-forms differ for the conformation of the two loops L1 and L2, which provide the axial ligands of the iron through His32 and Tyr75, respectively. In the apo-form, loop L1 protrudes toward the solvent far away from loop L2; in the holoprotein, closing of the loops on the heme occurs upon establishment of the two axial coordination bonds. We have established that the two variants obtained via single point mutations of either axial ligand (namely H32A and Y75A) are both in the closed conformation. The presence of the heme and one out of two axial ligands is sufficient to establish a link between L1 and L2, thanks to the presence of coordinating solvent molecules. The latter are stabilized in the iron coordination environment by H-bond interactions with surrounding protein residues. The presence of such a water molecule in both variants is revealed here through a set of different spectroscopic techniques. Previous studies had shown that heme release and uptake processes occur via intermediate states characterized by a Tyr75-iron-bound form with open conformation of loop L1. Here, we demonstrate that these states do not naturally occur in the free protein but can only be driven by the interaction with the partner proteins. PMID:22700962

  4. Electrospray ionization-tandem mass spectrometry and 32P-postlabeling analyses of tamoxifen-DNA adducts in humans.

    PubMed

    Beland, Frederick A; Churchwell, Mona I; Doerge, Daniel R; Parkin, Daniel R; Malejka-Giganti, Danuta; Hewer, Alan; Phillips, David H; Carmichael, Paul L; Gamboa da Costa, Gonçalo; Marques, M Matilde

    2004-07-21

    Although the nonsteroidal antiestrogen tamoxifen is used as an adjuvant chemotherapeutic agent to treat hormone-dependent breast cancer and as a chemopreventive agent in women with elevated risk of breast cancer, it has also been reported to increase the risk of endometrial cancer. Reports of low levels of tamoxifen-DNA adducts in human endometrial tissue have suggested that tamoxifen induces endometrial cancer by a genotoxic mechanism. However, these findings have been controversial. We used electrospray ionization-tandem mass spectrometry (ES-MS/MS) and 32P-postlabeling analyses to investigate the presence of tamoxifen-DNA adducts in human endometrial tissue. Endometrial DNA from eight tamoxifen-treated women and eight untreated women was hydrolyzed to nucleosides and assayed for (E)-alpha-(deoxyguanosin-N2-yl)-tamoxifen (dG-Tam) and (E)-alpha-(deoxyguanosin-N2-yl)-N-desmethyltamoxifen (dG-desMeTam), the two major tamoxifen-DNA adducts that have been reported to be present in humans and/or experimental animals treated with tamoxifen, using on-line sample preparation coupled with high-performance liquid chromatography (HPLC) and ES-MS/MS. The same DNA samples were assayed for the presence of dG-Tam and dG-desMeTam by (32)P-postlabeling methodology, using two different DNA digestion and labeling protocols, followed by both thin-layer chromatography and HPLC. We did not detect either tamoxifen-DNA adduct by HPLC-ES-MS/MS analyses (limits of detection for dG-Tam and dG-desMeTam were two adducts per 10(9) nucleotides and two adducts per 10(8) nucleotides, respectively) or by 32P-postlabeling analyses (limit of detection for both adducts was one adduct per 10(9) nucleotides) in any of the endometrial DNA samples. The initiation of endometrial cancer by tamoxifen is probably not due to a genotoxic mechanism involving the formation of dG-Tam or dG-desMeTam.

  5. Transmutation of a heme protein.

    PubMed Central

    Barker, P D; Ferrer, J C; Mylrajan, M; Loehr, T M; Feng, R; Konishi, Y; Funk, W D; MacGillivray, R T; Mauk, A G

    1993-01-01

    Residue Asn57 of bovine liver cytochrome b5 has been replaced with a cysteine residue, and the resulting variant has been isolated from recombinant Escherichia coli as a mixture of four major species: A, BI, BII, and C. A combination of electronic spectroscopy, 1H NMR spectroscopy, resonance Raman spectroscopy, electrospray mass spectrometry, and direct electrochemistry has been used to characterize these four major cytochrome derivatives. The red form A (E(m) = -19 mV) is found to possess a heme group bound covalently through a thioether linkage involving Cys57 and the alpha carbon of the heme 4-vinyl group. Form BI has a covalently bound heme group coupled through a thioether linkage involving the beta carbon of the heme 4-vinyl group. Form BII is similar to BI except that the sulfur involved in the thioether linkage is oxidized to a sulfoxide. The green form C (E(m) = 175 mV) possesses a noncovalently bound prosthetic group with spectroscopic properties characteristic of a chlorin. A mechanism is proposed for the generation of these derivatives, and the implications of these observations for the biosynthesis of cytochrome c and naturally occurring chlorin prosthetic groups are discussed. PMID:8341666

  6. A Critical Evaluation of Studies Employing Alkenyl Halide ’Mechanistic Probe’ as Indicators of Single Electron Transfer Processes.

    DTIC Science & Technology

    1987-07-07

    College Station, TX 77843 Pittsburgh, PA 15260 Introduction: Chemical reactions come about through the reorganization of valence electrons. The notion...Contmnue on reverie of necessary and odentify 0)’ Wooc ,7umor r) Recently it has been suggested that many reaction traditionally classed in polar terms may...evaluates the utility of these alkenyl halide probes as mechanistic probes for SET. Reactions which interfere with the standard analysis ~ include the

  7. Multi-heme Cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen

    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances inmore » bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.« less

  8. Influence of heme-thiolate in shaping the catalytic properties of a bacterial nitric-oxide synthase.

    PubMed

    Hannibal, Luciana; Somasundaram, Ramasamy; Tejero, Jesús; Wilson, Adjele; Stuehr, Dennis J

    2011-11-11

    Nitric-oxide synthases (NOS) are heme-thiolate enzymes that generate nitric oxide (NO) from L-arginine. Mammalian and bacterial NOSs contain a conserved tryptophan (Trp) that hydrogen bonds with the heme-thiolate ligand. We mutated Trp(66) to His and Phe (W66H, W66F) in B. subtilis NOS to investigate how heme-thiolate electronic properties control enzyme catalysis. The mutations had opposite effects on heme midpoint potential (-302, -361, and -427 mV for W66H, wild-type (WT), and W66F, respectively). These changes were associated with rank order (W66H < WT < W66F) changes in the rates of oxygen activation and product formation in Arg hydroxylation and N-hydroxyarginine (NOHA) oxidation single turnover reactions, and in the O(2) reactivity of the ferrous heme-NO product complex. However, enzyme ferrous heme-O(2) autoxidation showed an opposite rank order. Tetrahydrofolate supported NO synthesis by WT and the mutant NOS. All three proteins showed similar extents of product formation (L-Arg → NOHA or NOHA → citrulline) in single turnover studies, but the W66F mutant showed a 2.5 times lower activity when the reactions were supported by flavoproteins and NADPH. We conclude that Trp(66) controls several catalytic parameters by tuning the electron density of the heme-thiolate bond. A greater electron density (as in W66F) improves oxygen activation and reactivity toward substrate, but decreases heme-dioxy stability and lowers the driving force for heme reduction. In the WT enzyme the Trp(66) residue balances these opposing effects for optimal catalysis.

  9. Analyses of (1-chloroethenyl)oxirane headspace and hemoglobin N-valine adducts in erythrocytes indicate selective detoxification of (1-chloroethenyl)oxirane enantiomers.

    PubMed

    Hurst, Harrell E; Ali, Md Yeakub

    2007-03-20

    Chloroprene (2-chloro-1,3-butadiene, CAS 126-99-8, CP) is a colorless volatile liquid used in manufacture of polychloroprene, a synthetic rubber polymer. National Toxicology Program inhalation studies of CP in rats and mice gave clear evidence of carcinogenic activity. CP is metabolized by CYP2E1 to electrophilic epoxides, including R- and S-(1-chloroethenyl)oxirane (CEO), which form adducts with nucleic acids and other nucleophiles including glutathione and hemoglobin. As detection of these epoxide metabolites in vivo is technically challenging, measurements of CEO-Hb adducts may provide biomarkers of exposure to bioactivated metabolites of CP. The present studies involved exposure of C57BL/6 mouse erythrocytes (RBC) in vitro to pure enantiomers of CEO. Headspace analysis of CEO using Cyclodex-B capillary GC/MS with selected ion monitoring enabled separation, specific detection, and quantification of CEO enantiomers as reactions proceeded in vitro with RBC. These analyses indicated that R-CEO was much more persistent when incubated in vitro with RBC, while S-CEO disappeared rapidly. After periods of exposure of RBC to various concentrations of R- or S-CEO, erythrocytes were lysed and globin isolated. Covalent adducts, formed by reaction of CEO with N-terminal valine in Hb, were analyzed following Edman cleavage and trimethylsilylation. SIM-GC/MS analyses using a 5%-phenyl-dimethylsiloxane capillary column enabled quantification of CEO-Hb adducts. These analyses produced two chromatographic peaks of CEO-valine adduct derivatives, which were tentatively identified from mass spectra, reaction, and abundance data to be 1-(3-chloro-2-trimethylsilyloxybut-3-en-1-yl)-5-isopropyl-3-phenyl-2-thiohydantoin and 1-[2-chloro-1-(trimethylsilyloxymethyl)prop-2-en-1-yl]-5-isopropyl-3-phenyl-2-thiohydantoin. Analyses quantified significantly greater levels of adducts formed from R-CEO than from S-CEO. Studies involving pretreatment of RBC with glutathione-depleting diethyl maleate

  10. Differences in micronucleus frequency and acrylamide adduct levels with hemoglobin between vegetarians and non-vegetarians.

    PubMed

    Kotova, Natalia; Frostne, Cecilia; Abramsson-Zetterberg, Lilianne; Tareke, Eden; Bergman, Rolf; Haghdoost, Siamak; Paulsson, Birgit; Törnqvist, Margareta; Segerbäck, Dan; Jenssen, Dag; Grawé, Jan

    2015-10-01

    Nutrients and food constituents can prevent or contribute to genotoxicity. In this study, the possible influence of a vegetarian/non-vegetarian diet on genotoxic effects was investigated in 58 non-smoking healthy vegetarians (V) and non-vegetarians (NV), age 21-37 years from the Stockholm area in Sweden. Physical activity and dietary habits were similar in both groups, with the exception of the intake of meat and fish. Using flow cytometry, we determined the formation of micronuclei (MN) in transferrin-positive immature peripheral blood reticulocytes (Trf-Ret) (Total: n = 53; V: n = 27; NV: n = 26). Dietary exposure to acrylamide was measured through hemoglobin (Hb) adducts in peripheral erythrocytes (Total: n = 53; V: n = 29; NV: n = 24). Hb adducts of both acrylamide and its genotoxic metabolite glycidamide were monitored as a measure of the corresponding in vivo doses. Our data demonstrated that compared with the non-vegetarians, the vegetarians exhibited lower frequencies of MN (fMN) in the Trf-Ret (p < 0.01, Student's t test). A multivariate analysis demonstrated that there was no association between the fMN and factors such as age, sex, intake of vitamins/minerals, serum folic acid and vitamin B12 levels, physical activity, and body mass index. The mean Hb adduct levels of acrylamide and glycidamide showed no significant differences between vegetarians and non-vegetarians. Furthermore, there were no significant relationships between the adduct levels and fMN in the individuals. The ratio of the Hb adduct levels from glycidamide and acrylamide, however, showed a significant difference (p < 0.04) between the two groups. These data suggest that the vegetarian diet might be beneficial in lowering genomic instability in healthy individuals. The measured Hb adduct levels indicate that the total intake of acrylamide does not differ between the two studied groups and does not contribute to the observed difference in fMN, although an influence of the diet on the

  11. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain.

    PubMed

    Alexandropoulos, Ioannis I; Argyriou, Aikaterini I; Marousis, Kostas D; Topouzis, Stavros; Papapetropoulos, Andreas; Spyroulias, Georgios A

    2016-10-01

    The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate). Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 183-residue H-NOX domain from Nostoc sp. through solution NMR.

  12. DevS, a heme-containing two-component oxygen sensor of Mycobacterium tuberculosis.

    PubMed

    Ioanoviciu, Alexandra; Yukl, Erik T; Moënne-Loccoz, Pierre; de Montellano, Paul R Ortiz

    2007-04-10

    Mycobacterium tuberculosis can exist in the actively growing state of the overt disease or in a latent quiescent state that can be induced, among other things, by anaerobiosis. Eradication of the latent state is particularly difficult with the available drugs and requires prolonged treatment. DevS is a member of the DevS-DevR two-component regulatory system that is thought to mediate the cellular response to anaerobiosis. Here we report the cloning, expression, and initial characterization of a truncated version of DevS (DevS642) containing only the N-terminal GAF sensor domain (GAF-A) and of the full-length protein DevS. The DevS truncated construct quantitatively binds heme in a 1:1 stoichiometry, and the complex of the protein with ferrous heme reversibly binds O2, NO, and CO. UV-vis and resonance Raman spectroscopy of the wild-type protein and the H149A mutant confirm that His149 is the proximal ligand to the heme iron atom. While the heme-CO complex is present as two conformers in the GAF-A domain, a single set of [Fe-C-O] vibrations is observed with the full-length protein, suggesting that interactions between domains within DevS influence the distal pocket environment of the heme in the GAF-A domain.

  13. Delineating distinct heme-scavenging and -binding functions of domains in MF6p/helminth defense molecule (HDM) proteins from parasitic flatworms.

    PubMed

    Martínez-Sernández, Victoria; Mezo, Mercedes; González-Warleta, Marta; Perteguer, María J; Gárate, Teresa; Romarís, Fernanda; Ubeira, Florencio M

    2017-05-26

    MF6p/FhHDM-1 is a small protein secreted by the parasitic flatworm (trematode) Fasciola hepatica that belongs to a broad family of heme-binding proteins (MF6p/helminth defense molecules (HDMs)). MF6p/HDMs are of interest for understanding heme homeostasis in trematodes and as potential targets for the development of new flukicides. Moreover, interest in these molecules has also increased because of their immunomodulatory properties. Here we have extended our previous findings on the mechanism of MF6p/HDM-heme interactions and mapped the protein regions required for heme binding and for other biological functions. Our data revealed that MF6p/FhHDM-1 forms high-molecular-weight complexes when associated with heme and that these complexes are reorganized by a stacking procedure to form fibril-like and granular nanostructures. Furthermore, we showed that MF6p/FhHDM-1 is a transitory heme-binding protein as protein·heme complexes can be disrupted by contact with an apoprotein ( e.g. apomyoglobin) with higher affinity for heme. We also demonstrated that (i) the heme-binding region is located in the MF6p/FhHDM-1 C-terminal moiety, which also inhibits the peroxidase-like activity of heme, and (ii) MF6p/HDMs from other trematodes, such as Opisthorchis viverrini and Paragonimus westermani , also bind heme. Finally, we observed that the N-terminal, but not the C-terminal, moiety of MF6p/HDMs has a predicted structural analogy with cell-penetrating peptides and that both the entire protein and the peptide corresponding to the N-terminal moiety of MF6p/FhHDM-1 interact in vitro with cell membranes in hemin-preconditioned erythrocytes. Our findings suggest that MF6p/HDMs can transport heme in trematodes and thereby shield the parasite from the harmful effects of heme. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. 1H NMR study of the effect of heme insertion on the folding of apomyoglobin

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yasuhiko; Takemoto, Kenji; Matsuo, Hitomi

    2002-01-01

    NMR signals arising from His EF5 and His GH1 N ɛH protons of sperm whale myoglobin and apomyoglobin have been assigned, and the protein folding has been studied through the analysis of these signals. His EF5 and His GH1 N ɛH protons participate in the internal hydrogen bonds at the B-GH and EF-H interfaces, respectively, and their signals are remarkably sensitive to local structural alterations at these sites. The shifts of these signals in alkaline pH condition were only slightly affected by the removal of heme, indicating that the overall protein folding is essentially retained in apoprotein. The line width of His EF5 proton signal, however, increased largely in the spectra of apomyoglobin and this result suggests a conformational lability of the EF-H interface in the absence of heme. Furthermore, the His EF5 proton signal was found to be influenced by not only the orientation of heme relative to the protein, but also by the type of hemin used to reconstitute apomyoglobin. These results clearly demonstrate the presence of a long-range structural correlation between the heme active site and the EF-H interface.

  15. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex.

    PubMed

    Girvan, Hazel M; Bradley, Justin M; Cheesman, Myles R; Kincaid, James R; Liu, Yilin; Czarnecki, Kazimierz; Fisher, Karl; Leys, David; Rigby, Stephen E J; Munro, Andrew W

    2016-09-13

    DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.

  16. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    PubMed

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  17. Hal Is a Bacillus anthracis Heme Acquisition Protein

    PubMed Central

    Balderas, Miriam A.; Nobles, Christopher L.; Honsa, Erin S.; Alicki, Embriette R.

    2012-01-01

    The metal iron is a limiting nutrient for bacteria during infection. Bacillus anthracis, the causative agent of anthrax and a potential weapon of bioterrorism, grows rapidly in mammalian hosts, which suggests that it efficiently attains iron during infection. Recent studies have uncovered both heme (isd) and siderophore-mediated (asb) iron transport pathways in this pathogen. Whereas deletion of the asb genes results in reduced virulence, the loss of three surface components from isd had no effect, thereby leaving open the question of what additional factors in B. anthracis are responsible for iron uptake from the most abundant iron source for mammals, heme. Here, we describe the first functional characterization of bas0520, a gene recently implicated in anthrax disease progression. bas0520 encodes a single near-iron transporter (NEAT) domain and several leucine-rich repeats. The NEAT domain binds heme, despite lacking a stabilizing tyrosine common to the NEAT superfamily of hemoproteins. The NEAT domain also binds hemoglobin and can acquire heme from hemoglobin in solution. Finally, deletion of bas0520 resulted in bacilli unable to grow efficiently on heme or hemoglobin as an iron source and yielded the most significant phenotype relative to that for other putative heme uptake systems, a result that suggests that this protein plays a prominent role in the replication of B. anthracis in hematogenous environments. Thus, we have assigned the name of Hal (heme-acquisition leucine-rich repeat protein) to BAS0520. These studies advance our understanding of heme acquisition by this dangerous pathogen and justify efforts to determine the mechanistic function of this novel protein for vaccine or inhibitor development. PMID:22865843

  18. Heme oxygenase activity increases after exercise in healthy volunteers

    EPA Science Inventory

    AbstractHeme oxygenase (HO) is an essential, rate-limiting protein which participates in the catabolism of heme to iron, carbon monoxide (CO), and biliverdin. The alpha methene bridge carbon of the heme is eliminated as CO which can be measured as blood carboxyhemoglobin (COHb)....

  19. Preferential role of iron in heme degradation of hemoglobin upon gamma irradiation.

    PubMed

    Rafiei, Javad; Yavari, Kamal; Moosavi-Movahedi, Ali A

    2017-10-01

    It is usually believed that γ-ray interaction with biomolecules is intermediately performed by reactive oxygen species (ROS) produced from radiolysis of water. Hemoglobin (Hb) as one of the most abundant biomolecule in blood and well-studied endogenously affected by ROS, was a good candidate for study. Adult human Hb was extracted and irradiated using four distinct 20, 60, 90 and 170Gy doses from Co-60 γ-ray source. UV-vis, fluorescence and FT-IR spectroscopies were used to study the whole conformational changes and partial degradation of heme. Hb species calculated using Benesch equations indicated that the concentration of oxy-Hb was decreased from 9.97μM to 6.56μM, while the total metastable met and deoxy-Hb concentration were just increased 2.39μM and about 8.4% of total heme was diminished. Heme degradation was studied using fluorescence spectra at two 321 and 460nm excitation wavelengths as fully and partially degradation of heme respectively. Inverse behavior of these two fluorescence spectra suggested a new mechanism of heme degradation in which γ-ray preferably absorbed by heme without any intermediary effects of water. It was confirmed by FT-IR spectra at 900-1000cm -1 where the FeN and NH of porphyrin indicate their own stretching vibrational bands. Thermal stability justified that the gamma radiation induced the conformational changes of Hb which is appeared during thermal unfolding. First derivative of thermal spectra indicated that the Tm of 170Gy dose irradiated sample is 2°C lowered and total concentration of Hb was decreased 14%. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Molecular structures of five adducts assembled from p-dimethylaminobenzaldehyde and organic acids

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Lanqing; Liu, Hui; Liu, Li; Zhang, Huan; Wang, Daqi; Li, Minghui; Guo, Jianzhong; Guo, Ming

    2016-07-01

    Five adducts 1-5 derived from p-dimethylaminobenzaldehyde have been prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the five adducts two are organic salts (1, and 2) and the other three (3-5) are cocrystals. In salts 1, and 2, the L molecules are protonated. The supramolecular architectures of the adducts 1-5 involve extensive intermolecular N-H⋯O, O-H⋯O, O-H⋯S, and C-H⋯O hydrogen bonds as well as other non-covalent interactions. The role of weak and strong non-covalent interactions in the crystal packing is ascertained. The complexes displayed 2D/3D framework structure for the synergistic effect of the various non-covalent interactions. The results presented herein tell that the strength and directionality of the N-H⋯O, O-H⋯O, and O-H⋯S hydrogen bonds between organic acids and p-dimethylaminobenzaldehyde are sufficient to bring about the formation of binary cocrystals or organic salts.

  1. Serum resistance, gallium nitrate tolerance and extrapulmonary dissemination are linked to heme consumption in a bacteremic strain of Acinetobacter baumannii.

    PubMed

    de Léséleuc, Louis; Harris, Greg; KuoLee, Rhonda; Xu, H Howard; Chen, Wangxue

    2014-05-01

    Bacteremia caused by Acinetobacter baumannii is a highly lethal complication of hospital-acquired pneumonia. In the present study, we investigated the serum resistance, gallium nitrate tolerance and heme consumption of A. baumannii strain LAC-4 which was recently reported to display high virulence in a mouse pneumonia model with extrapulmonary dissemination leading to fatal bacteremia. This strain showed enhanced growth in mouse and fetal bovine serum that was independent of complement and was not observed with regular growth media. The LAC-4 strain was found to possess a high tolerance to gallium nitrate (GaN), whereas serum synergized with GaN in inhibiting A. baumannii strain ATCC 17978. We found that LAC-4 contains a heme oxygenase gene and expresses a highly efficient heme consumption system. This system can be fully blocked in vitro and in vivo by gallium protoporphyrin IX (GaPPIX). Inhibition of heme consumption by GaPPIX completely abrogated the growth advantage of LAC-4 in serum as well as its tolerance to GaN. More importantly, GaPPIX treatment of mice intranasally infected with LAC-4 prevented extrapulmonary dissemination and death. Thus, we propose that heme provides an additional source of iron for LAC-4 to bypass iron restriction caused by serum transferrin, lactoferrin or free gallium salts. Heme consumption systems in A. baumannii may constitute major virulence factors for lethal bacteremic isolates. Copyright © 2014 Crown Copyright and Elsevier Inc. Published by Elsevier GmbH.. All rights reserved.

  2. Simultaneous detection of five different 2-hydroxyethyl-DNA adducts formed by ethylene oxide exposure, using a high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry assay.

    PubMed

    Tompkins, Elaine M; Jones, Donald J L; Lamb, John H; Marsden, Debbie A; Farmer, Peter B; Brown, Karen

    2008-01-01

    A method has been developed for the simultaneous detection and quantitation of five different 2-hydroxyethyl-DNA (HE-DNA) adducts that could be formed as a result of exposure to ethylene oxide (EO). In addition to the major N7-HE-guanine (N7-HEG) adducts this assay can also measure the less prevalent but potentially more biologically significant N1-HE-2'-deoxyadenosine (N1-HEdA), O(6)-HE-2'-deoxyguanosine (O(6)-HEdG), N(6)-HE-2'-deoxyadenosine (N(6)-HEdA) and N3-HE-2'-deoxyuridine adducts (N3-HEdU). The method involves the isolation of HE adducts from the unmodified nucleosides by either neutral thermal hydrolysis or enzymatic digestion, followed by high-performance liquid chromatographic (HPLC) purification, before detection and quantification by liquid chromatography tandem mass spectrometry (LC/MS/MS) using selective reaction monitoring (SRM). The limits of detection were in the range 0.5-25 fmol for each individual adduct, making this one of the most sensitive assays available for the detection of N7-HEG. To illustrate the possible applications of the assay, it has been employed in the measurement of endogenous/background and EO-induced HE adducts in a variety of DNA samples.

  3. Spectroscopic characterization of mononitrosyl complexes in heme-nonheme diiron centers within the myoglobin scaffold (FeBMbs): relevance to denitrifying NO reductase†

    PubMed Central

    Hayashi, Takahiro; Miner, Kyle D.; Yeung, Natasha; Lin, Ying-Wu; Lu, Yi; Moënne-Loccoz, Pierre

    2011-01-01

    Denitrifying NO reductases are evolutionarily related to the superfamily of heme-copper terminal oxidases. These transmembrane protein complexes utilize a heme-nonheme diiron center to reduce two NO molecules to N2O. To understand this reaction, the diiron site has been modeled using sperm whale myoglobin as a scaffold and mutating distal residues Leu-29 and Phe-43 to histidines, and Val-68 to a glutamic acid to create a nonheme FeB site. The impact of incorporation of metal ions at this engineered site on the reaction of the ferrous heme with one NO was examined by UV-vis absorption, EPR, resonance Raman, and FTIR spectroscopies. UV-vis absorption and resonance Raman spectra demonstrate that the first NO molecule binds to the ferrous heme, but while the apoproteins and CuI- or ZnII-loaded proteins show characteristic EPR signatures of S = 1/2 six-coordinate heme {FeNO}7 species observable at liquid nitrogen temperature, the FeII-loaded proteins are EPR silent at ≥ 30 K. Vibrational modes from the heme [Fe-N-O] unit are identified in the RR and FTIR spectra using 15NO and 15N18O. The apo- and CuI-bound proteins exhibit ν(FeNO) and ν(NO) that are only marginally distinct from those reported for native myoglobin. However, binding of FeII at the FeB site shifts the heme ν(FeNO) by +17 cm-1 and the ν(NO) by -50 cm-1 to 1549 cm-1. This low ν(NO) is without precedent for a six-coordinate heme {FeNO}7 species and suggests that the NO group adopts a strong nitroxyl character stabilized by electrostatic interaction with the nearby nonheme FeII. Detection of a similarly low ν(NO) in the ZnII-loaded protein supports this interpretation. PMID:21634416

  4. Mimicking Heme Enzymes in the Solid State: Metal-Organic Materials with Selectively Encapsulated Heme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason

    2011-06-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal–organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a “ship-in-a-bottle” fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levelsmore » of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.« less

  5. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme.

    PubMed

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M

    2011-07-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal-organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a "ship-in-a-bottle" fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  6. Cloning and Expression of cDNA for Rat Heme Oxygenase

    NASA Astrophysics Data System (ADS)

    Shibahara, Shigeki; Muller, Rita; Taguchi, Hayao; Yoshida, Tadashi

    1985-12-01

    Two cDNA clones for rat heme oxygenase have been isolated from a rat spleen cDNA library in λ gt11 by immunological screening using a specific polyclonal antibody. One of these clones has an insert of 1530 nucleotides that contains the entire protein-coding region. To confirm that the isolated cDNA encodes heme oxygenase, we transfected monkey kidney cells (COS-7) with the cDNA carried in a simian virus 40 vector. The heme oxygenase was highly expressed in endoplasmic reticulum of transfected cells. The nucleotide sequence of the cloned cDNA was determined and the primary structure of heme oxygenase was deduced. Heme oxygenase is composed of 289 amino acids and has one hydrophobic segment at its carboxyl terminus, which is probably important for the insertion of heme oxygenase into endoplasmic reticulum. The cloned cDNA was used to analyze the induction of heme oxygenase in rat liver by treatment with CoCl2 or with hemin. RNA blot analysis showed that both CoCl2 and hemin increased the amount of hybridizable mRNA, suggesting that these substances may act at the transcriptional level to increase the amount of heme oxygenase.

  7. NMR solution structure of an N2-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: Intercalation from the minor groove with ruptured Watson-Crick base pairing

    PubMed Central

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H.; Cai, Yuqin; Rodriguez, Fabian A.; Sayer, Jane M.; Jerina, Donald M.; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2012-01-01

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the non-planar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely-studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14-position with the exocyclic amino group of guanine. Here, we present the first NMR solution structure of a DB[a,l]P-derived adduct, the 14R (+)-trans-anti-DB[a,l]P–N2-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N2-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3’-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3’-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE - DNA adduct conformation differs from: (1) the classical intercalation motif where Watson-Crick base-pairing is intact at the lesion site, and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix . The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed. PMID:23121427

  8. Heme compounds as iron sources for nonpathogenic Rhizobium bacteria.

    PubMed

    Noya, F; Arias, A; Fabiano, E

    1997-05-01

    Many animal-pathogenic bacteria can use heme compounds as iron sources. Like these microorganisms, rhizobium strains interact with host organisms where heme compounds are available. Results presented in this paper indicate that the use of hemoglobin as an iron source is not restricted to animal-pathogenic microorganisms. We also demonstrate that heme, hemoglobin, and leghemoglobin can act as iron sources under iron-depleted conditions for Rhizobium meliloti 242. Analysis of iron acquisition mutant strains indicates that siderophore-, heme-, hemoglobin-, and leghemoglobin-mediated iron transport systems expressed by R. meliloti 242 share at least one component.

  9. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device...

  10. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device...

  11. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device...

  12. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device...

  13. Revisiting the putative role of heme as a trigger of inflammation.

    PubMed

    Vallelian, Florence; Schaer, Christian A; Deuel, Jeremy W; Ingoglia, Giada; Humar, Rok; Buehler, Paul W; Schaer, Dominik J

    2018-04-01

    Activation of the innate immune system by free heme has been proposed as one of the principal consequences of cell-free hemoglobin (Hb) exposure. Nonetheless, in the absence of infection, heme exposures within a hematoma, during hemolysis, or upon systemic administration of Hb (eg, as a Hb-based oxygen carrier) are typically not accompanied by uncontrolled inflammation, challenging the assumption that heme is a major proinflammatory mediator in vivo. Because of its hydrophobic nature, heme liberated from oxidized hemoglobin is rapidly transferred to alternative protein-binding sites (eg, albumin) or to hydrophobic lipid compartments minimizing protein-free heme under in vivo equilibrium conditions. We demonstrate that the capacity of heme to activate human neutrophil granulocytes strictly depends on the availability of non protein-associated heme. In human endothelial cells as well as in mouse macrophage cell cultures and in mouse models of local and systemic heme exposure, protein-associated heme or Hb do not induce inflammatory gene expression over a broad range of exposure conditions. Only experiments in protein-free culture medium demonstrated a weak capacity of heme-solutions to induce toll-like receptor-(TLR4) dependent TNF-alpha expression in macrophages. Our data suggests that the equilibrium-state of free and protein-associated heme critically determines the proinflammatory capacity of the metallo-porphyrin. Based on these data it appears unlikely that inflammation-promoting equilibrium conditions could ever occur in vivo.

  14. Detection of benzo[a]pyrene diol epoxide-DNA adducts in peripheral blood lymphocytes and antibodies to the adducts in serum from coke oven workers.

    PubMed Central

    Harris, C C; Vahakangas, K; Newman, M J; Trivers, G E; Shamsuddin, A; Sinopoli, N; Mann, D L; Wright, W E

    1985-01-01

    Coke oven workers are exposed to high levels of carcinogenic polycyclic aromatic hydrocarbons, including benzo[a]pyrene (B[a]P), and are at increased risk of lung cancer. Since B[a]P is enzymatically activated to 7 beta,8 alpha-dihydroxy(9 alpha, 10 alpha)epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]PDE) that forms adducts with DNA, the presence of these adducts was measured in DNA from peripheral blood lymphocytes by synchronous fluorescence spectrophotometry and enzyme radioimmunoassay. Approximately two-thirds of the workers had detectable levels of B[a]PDE-DNA adducts. Antibodies to the DNA adducts were also found in the serum of 27% of the workers. B[a]PDE-DNA adducts were not detectable in lymphocytes and antibodies to the adducts were not detected in sera from a control group of nonsmoking laboratory workers. DNA adducts and/or antibodies to the adducts indicate exposure to B[a]P and its metabolic activation to the carcinogenic metabolite that covalently binds to and damages DNA. Detection of adducts and antibodies to them may also be useful as internal dosimeters of the pathobiological effective doses of chemical carcinogens. PMID:2413443

  15. Chlamydomonas reinhardtii LFO1 Is an IsdG Family Heme Oxygenase

    DOE PAGES

    Lojek, Lisa J.; Farrand, Allison J.; Wisecaver, Jennifer H.; ...

    2017-08-16

    Heme is essential for respiration across all domains of life. However, heme accumulation can lead to toxicity if cells are unable to either degrade or export heme or its toxic by-products. Under aerobic conditions, heme degradation is performed by heme oxygenases, enzymes which utilize oxygen to cleave the tetrapyrrole ring of heme. The HO-1 family of heme oxygenases has been identified in both bacterial and eukaryotic cells, whereas the IsdG family has thus far been described only in bacteria. We identified a hypothetical protein in the eukaryotic green alga Chlamydomonas reinhardtii, which encodes a protein containing an antibiotic biosynthesis monooxygenasemore » (ABM) domain consistent with those associated with IsdG family members. This protein, which we have named LFO1, degrades heme, contains similarities in predicted secondary structures to IsdG family members, and retains the functionally conserved catalytic residues found in all IsdG family heme oxygenases. These data establish LFO1 as an IsdG family member and extend our knowledge of the distribution of IsdG family members beyond bacteria. To gain further insight into the distribution of the IsdG family, we used the LFO1 sequence to identify 866 IsdG family members, including representatives from all domains of life. These results indicate that the distribution of IsdG family heme oxygenases is more expansive than previously appreciated, underscoring the broad relevance of this enzyme family. This work establishes a protein in the freshwater alga Chlamydomonas reinhardtii as an IsdG family heme oxygenase. This protein, LFO1, exhibits predicted secondary structure and catalytic residues conserved in IsdG family members, in addition to a chloroplast localization sequence. Additionally, the catabolite that results from the degradation of heme by LFO1 is distinct from that of other heme degradation products. Using LFO1 as a seed, we performed phylogenetic analysis, revealing that the IsdG family is

  16. Chlamydomonas reinhardtii LFO1 Is an IsdG Family Heme Oxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lojek, Lisa J.; Farrand, Allison J.; Wisecaver, Jennifer H.

    Heme is essential for respiration across all domains of life. However, heme accumulation can lead to toxicity if cells are unable to either degrade or export heme or its toxic by-products. Under aerobic conditions, heme degradation is performed by heme oxygenases, enzymes which utilize oxygen to cleave the tetrapyrrole ring of heme. The HO-1 family of heme oxygenases has been identified in both bacterial and eukaryotic cells, whereas the IsdG family has thus far been described only in bacteria. We identified a hypothetical protein in the eukaryotic green alga Chlamydomonas reinhardtii, which encodes a protein containing an antibiotic biosynthesis monooxygenasemore » (ABM) domain consistent with those associated with IsdG family members. This protein, which we have named LFO1, degrades heme, contains similarities in predicted secondary structures to IsdG family members, and retains the functionally conserved catalytic residues found in all IsdG family heme oxygenases. These data establish LFO1 as an IsdG family member and extend our knowledge of the distribution of IsdG family members beyond bacteria. To gain further insight into the distribution of the IsdG family, we used the LFO1 sequence to identify 866 IsdG family members, including representatives from all domains of life. These results indicate that the distribution of IsdG family heme oxygenases is more expansive than previously appreciated, underscoring the broad relevance of this enzyme family. This work establishes a protein in the freshwater alga Chlamydomonas reinhardtii as an IsdG family heme oxygenase. This protein, LFO1, exhibits predicted secondary structure and catalytic residues conserved in IsdG family members, in addition to a chloroplast localization sequence. Additionally, the catabolite that results from the degradation of heme by LFO1 is distinct from that of other heme degradation products. Using LFO1 as a seed, we performed phylogenetic analysis, revealing that the IsdG family is

  17. Environmental chemical exposures and disturbances of heme synthesis.

    PubMed Central

    Daniell, W E; Stockbridge, H L; Labbe, R F; Woods, J S; Anderson, K E; Bissell, D M; Bloomer, J R; Ellefson, R D; Moore, M R; Pierach, C A; Schreiber, W E; Tefferi, A; Franklin, G M

    1997-01-01

    Porphyrias are relatively uncommon inherited or acquired disorders in which clinical manifestations are attributable to a disturbance of heme synthesis (porphyrin metabolism), usually in association with endogenous or exogenous stressors. Porphyrias are characterized by elevations of heme precursors in blood, urine, and/or stool. A number of chemicals, particularly metals and halogenated hydrocarbons, induce disturbances of heme synthesis in experimental animals. Certain chemicals have also been linked to porphyria or porphyrinuria in humans, generally involving chronic industrial exposures or environmental exposures much higher than those usually encountered. A noteworthy example is the Turkish epidemic of porphyria cutanea tarda produced by accidental ingestion of wheat treated with the fungicide hexachlorobenzene. Measurements of excreted heme precursors have the potential to serve as biological markers for harmful but preclinical effects of certain chemical exposures; this potential warrants further research and applied field studies. It has been hypothesized that several otherwise unexplained chemical-associated illnesses, such as multiple chemical sensitivity syndrome, may represent mild chronic cases of porphyria or other acquired abnormalities in heme synthesis. This review concludes that, although it is reasonable to consider such hypotheses, there is currently no convincing evidence that these illnesses are mediated by a disturbance of heme synthesis; it is premature or unfounded to base clinical management on such explanations unless laboratory data are diagnostic for porphyria. This review discusses the limitations of laboratory measures of heme synthesis, and diagnostic guidelines are provided to assist in evaluating the symptomatic individual suspected of having a porphyria. PMID:9114276

  18. Heme Oxygenases in Cardiovascular Health and Disease

    PubMed Central

    Ayer, Anita; Zarjou, Abolfazl; Agarwal, Anupam; Stocker, Roland

    2016-01-01

    Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies. PMID:27604527

  19. Deconvoluting heme biosynthesis to target blood-stage malaria parasites

    PubMed Central

    Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E

    2015-01-01

    Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. DOI: http://dx.doi.org/10.7554/eLife.09143.001 PMID:26173178

  20. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury.

    PubMed

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A; Traylor, Amie; Agarwal, Anupam; Matalon, Sadis

    2016-01-10

    Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1-/-) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. This is the first study delineating the role of heme in ALI caused by Br2. The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI.

  1. Tissue factor-dependent coagulation activation by heme: A thromboelastometry study.

    PubMed

    de Souza, Gleice Regina; Hounkpe, Bidossessi Wilfried; Fiusa, Maiara Marx Luz; Colella, Marina Pereira; Annichino-Bizzacchi, Joyce M; Traina, Fabiola; Costa, Fernando Ferreira; De Paula, Erich Vinicius

    2017-01-01

    Heme has been characterized as potent trigger of inflammation. In hemostasis, although heme has been shown to both induce and inhibit different compartments of hemostasis, its net effect on the hemostatic balance, and the biological relevance of these effects remain to be determined. Herein we evaluated the effect of heme on hemostasis using a global assay able to generate clinically relevant data in several other complex hemostatic diseases. Citrated whole blood samples from healthy participants were stimulated by heme or vehicle and incubated for 4h at 37°C. Rotational thromboelastometry was immediately performed. The participation of tissue factor in coagulation activation was evaluated using inhibitory antibody. Heme was able of inducing ex vivo coagulation activation in whole blood, affecting predominantly parameters associated with the initial phases of clot formation. This activation effect was at least partially dependent on hematopoietic tissue factor, since the effects of heme were partially abrogated by the inhibition of human tissue factor. In conclusion, using a global hemostasis assay, our study confirmed that heme is able to activate coagulation in whole blood, in a tissue factor-dependent way. These findings could explain the disturbance in hemostatic balance observed in conditions associated with the release of heme such as sickle cell disease.

  2. Heme compounds as iron sources for nonpathogenic Rhizobium bacteria.

    PubMed Central

    Noya, F; Arias, A; Fabiano, E

    1997-01-01

    Many animal-pathogenic bacteria can use heme compounds as iron sources. Like these microorganisms, rhizobium strains interact with host organisms where heme compounds are available. Results presented in this paper indicate that the use of hemoglobin as an iron source is not restricted to animal-pathogenic microorganisms. We also demonstrate that heme, hemoglobin, and leghemoglobin can act as iron sources under iron-depleted conditions for Rhizobium meliloti 242. Analysis of iron acquisition mutant strains indicates that siderophore-, heme-, hemoglobin-, and leghemoglobin-mediated iron transport systems expressed by R. meliloti 242 share at least one component. PMID:9139934

  3. Adducts of nitrogenous ligands with rhodium(II) tetracarboxylates and tetraformamidinate: NMR spectroscopy and density functional theory calculations.

    PubMed

    Cmoch, Piotr; Głaszczka, Rafał; Jaźwiński, Jarosław; Kamieński, Bohdan; Senkara, Elżbieta

    2014-03-01

    Complexation of tetrakis(μ2-N,N'-diphenylformamidinato-N,N')-di-rhodium(II) with ligands containing nitrile, isonitrile, amine, hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups has been studied in liquid and solid phases using (1)H, (13)C and (15)N NMR, (13)C and (15)N cross polarisation-magic angle spinning NMR, and absorption spectroscopy in the visible range. The complexation was monitored using various NMR physicochemical parameters, such as chemical shifts, longitudinal relaxation times T1 , and NOE enhancements. Rhodium(II) tetraformamidinate selectively bonded only unbranched amine (propan-1-amine), pentanenitrile, and (1-isocyanoethyl)benzene. No complexation occurred in the case of ligands having hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups, and more expanded amine molecules such as butan-2-amine and 1-azabicyclo[2.2.2]octane. Such features were opposite to those observed in rhodium(II) tetracarboxylates, forming adducts with all kind of ligands. Special attention was focused on the analysis of Δδ parameters, defined as a chemical shift difference between signal in adduct and corresponding signal in free ligand. In the case of (1)H NMR, Δδ values were either negative in adducts of rhodium(II) tetraformamidinate or positive in adducts of rhodium(II) tetracarboxylates. Experimental findings were supported by density functional theory molecular modelling and gauge independent atomic orbitals chemical shift calculations. The calculation of chemical shifts combined with scaling procedure allowed to reproduce qualitatively Δδ parameters. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Cresyl saligenin phosphate makes multiple adducts on free histidine, but does not form an adduct on histidine 438 of human butyrylcholinesterase.

    PubMed

    Liyasova, Mariya S; Schopfer, Lawrence M; Lockridge, Oksana

    2013-03-25

    Cresyl saligenin phosphate (CBDP) is a suspected causative agent of "aerotoxic syndrome", affecting pilots, crew members and passengers. CBDP is produced in vivo from ortho-containing isomers of tricresyl phosphate (TCP), a component of jet engine lubricants and hydraulic fluids. CBDP irreversibly inhibits butyrylcholinesterase (BChE) in human plasma by forming adducts on the active site serine (Ser-198). Inhibited BChE undergoes aging to release saligenin and o-cresol. The active site histidine (His-438) was hypothesized to abstract o-hydroxybenzyl moiety from the initial adduct on Ser-198. Our goal was to test this hypothesis. Mass spectral analysis of CBDP-inhibited BChE digested with Glu-C showed an o-hydroxybenzyl adduct (+106 amu) on lysine 499, a residue far from the active site, but not on His-438. Nevertheless, the nitrogen of the imidazole ring of free L-histidine formed a variety of adducts upon reaction with CBDP, including the o-hydroxybenzyl adduct, suggesting that histidine-CBDP adducts may form on other proteins. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Cresyl saligenin phosphate makes multiple adducts on free histidine, but does not form an adduct on histidine 438 of human butyrylcholinesterase

    PubMed Central

    Liyasova, Mariya S.; Schopfer, Lawrence M.; Lockridge, Oksana

    2012-01-01

    Cresyl saligenin phosphate (CBDP) is a suspected causative agent of “aerotoxic syndrome”, affecting pilots, crew members and passengers. CBDP is produced in vivo from ortho-containing isomers of tricresyl phosphate (TCP), a component of jet engine lubricants and hydraulic fluids. CBDP irreversibly inhibits butyrylcholinesterase (BChE) in human plasma by forming adducts on the active site serine (Ser-198). Inhibited BChE undergoes aging to release saligenin and o-cresol. The active site histidine (His-438) was hypothesized to abstract o-hydroxybenzyl moiety from the initial adduct on Ser-198. Our goal was to test this hypothesis. Mass spectral analysis of CBDP-inhibited BChE digested with Glu-C showed an o-hydroxybenzyl adduct (+106 amu) on lysine 499, a residue far from the active site, but not on His-438. Nevertheless, the nitrogen of the imidazole ring of free L-histidine formed a variety of adducts upon reaction with CBDP, including the o-hydroxybenzyl adduct, suggesting that histidine-CBDP adducts may form on other proteins. PMID:22898212

  6. Nitric oxide mediates the lipopolysaccharide dependent upregulation of the heme oxygenase-1 gene expression in cultured rat Kupffer cells.

    PubMed

    Immenschuh, S; Tan, M; Ramadori, G

    1999-01-01

    Heme oxygenase catalyzes the rate-limiting enzymatic step of heme degradation. The inducible isoform of heme oxygenase, heme oxygenase-1, is expressed at a low level in most tissues and is upregulated by its substrate heme and various stress stimuli. Kupffer cells which represent the largest population of the body's tissue macrophages serve physiological functions in the defense against various pathogens such as lipopolysaccharide. The goal of the present study was to investigate the heme oxygenase-1 gene expression in Kupffer cells of rat liver and in isolated Kupffer cell cultures during treatment with lipopolysaccharide. Cryostat sections of normal rat liver were investigated by immunofluorescence double-staining using specific antibodies for rat heme oxygenase-1 and ED2. Isolation and cell culture of Kupffer cells and primary hepatocytes from rat liver, as well as Northern and Western blot analysis, were performed with standard protocols. Heme oxygenase-1 protein was highly expressed in large sinusoidal cells of normal rat liver, which were identified as Kupffer cells by staining with the macrophage surface marker ED2. By contrast, no expression of heme oxygenase-1 was detected in liver parenchymal cells. High expression of heme oxygenase-1 was also found in isolated Kupffer cells in culture by immunocytochemical staining as well as by Western and Northern blot analysis. After treatment of Kupffer cells cultures with lipopolysaccharide, heme oxygenase-1 was upregulated on the protein and mRNA level in a time- and dose-dependent manner. This increase in heme oxygenase-1 expression by lipopolysaccharide was prevented by the nitric oxide inhibitor N(G)-monomethyl-L-arginine which was reversed by an excess of L-arginine. Various nitric oxide donors up-regulated heme oxygenase-1 mRNA expression in Kupffer cells. The lipopolysaccharide-dependent upregulation of the heme oxygenase-1 gene which is highly expressed in Kupffer cells is mediated by a nitric oxide

  7. Malondialdehyde-acetaldehyde adducts (MAA) and anti-MAA antibody in rheumatoid arthritis

    PubMed Central

    Thiele, Geoffrey M.; Duryee, Michael J.; Anderson, Daniel R.; Klassen, Lynell W.; Mohring, Stephen M.; Young, Kathleen A.; Benissan-Messan, Dathe; Sayles, Harlan; Dusad, Anand; Hunter, Carlos D.; Sokolove, Jeremy; Robinson, William; O’Dell, James R.; Nicholas, Anthony P.; Tuma, Dean; Mikuls, Ted R.

    2017-01-01

    Objective As a product of oxidative stress associated with tolerance loss in other disease states, we investigated the presence of malondialdehyde-acetaldehyde (MAA) adducts and circulating anti-MAA antibody in rheumatoid arthritis (RA). Methods Synovial tissues from RA and osteoarthritis patients were examined for the presence of MAA-modified and citrullinated proteins. Anti-MAA antibody isotypes were measured in RA cases (n = 1720) and healthy controls (n = 80) by ELISA. Antigen-specific anti-citrullinated protein antibody (ACPA) was measured in RA cases using a multiplex antigen array. Anti-MAA isotype concentrations were compared in a subset of cases (n = 80) and matched controls (n = 80). Associations of anti-MAA antibody isotypes with disease characteristics, including ACPA, were examined in all RA cases. Results MAA adducts were increased in RA synovial tissues relative to osteoarthritis and co-localized with citrullinated protein. Anti-MAA antibody isotypes were increased in RA cases vs. controls (p < 0.001). Among RA cases, anti-MAA antibody isotypes were associated with ACPA and RF positivity (p < 0.001) in addition to select measures of disease activity. Higher anti-MAA antibody concentrations were associated with a higher number of positive antigen-specific ACPA analytes in high titer (p < 0.001) and a higher ACPA score (p < 0.001) independent of other covariates. Conclusion MAA adduct formation is increased in RA and appears to result in robust antibody responses that are strongly associated with ACPA. These results support speculation that MAA formation may be a co-factor that drives tolerance loss resulting in the autoimmune responses characteristic of RA. PMID:25417811

  8. Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function.

    PubMed

    Suh, Kwang Sik; Chon, Suk; Choi, Eun Mi

    2017-12-25

    Methylglyoxal (MG) is a potent protein glycating agent and an important precursor of advanced glycation end products, which are involved in the pathogenesis of diabetic osteopathy. In this study, we investigated the effects of limonene on MG-induced damage in osteoblastic MC3T3-E1 cells. Pretreating cells with limonene prevented MG-induced protein adduct formation, tumor necrosis factor alpha and interleukin-6 release, mitochondrial superoxide production, and cardiolipin peroxidation. In addition, limonene increased glyoxalase I activity, and glutathione and heme oxygenase-1 levels in the presence of MG. Pretreatment with limonene prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate loss, and reduced the levels of adenosine monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ coactivator 1α, and nitric oxide. These results demonstrate that limonene may prevent the development of diabetic osteopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Analysis of 4-aminobiphenyl-DNA adducts in human urinary bladder and lung by alkaline hydrolysis and negative ion gas chromatography-mass spectrometry.

    PubMed Central

    Lin, D; Lay, J O; Bryant, M S; Malaveille, C; Friesen, M; Bartsch, H; Lang, N P; Kadlubar, F F

    1994-01-01

    Analysis of carcinogen-DNA adducts has been regarded as a useful means of assessing human exposure to chemical carcinogens. We have established a method for quantitation of 4-aminobiphenyl (4-ABP)-DNA adducts by alkaline hydrolysis and gas chromatography with negative ion chemical ionization mass spectrometry (GC-NICI-MS). Aliquots of DNA (typically 100 micrograms/ml) were spiked with an internal standard, d9-4-ABP, and were hydrolyzed in 0.05 N NaOH at 130 degrees C overnight. The liberated 4-ABP was extracted with hexane and derivatized using pentafluoropropionic anhydride in trimethylamine for 30 min at room temperature prior to GC-NICI-MS. With in vitro [3H]N-hydroxy-4-ABP modified DNA standards, we observed 59 +/- 7% (n = 9) recovery of the 4-ABP and a linear correlation between hydrolyzed 4-ABP and the adduct levels ranging from about 1 in 10(8) to 1 in 10(4) nucleotides (r = 0.999, n = 9). The method was further validated by comparison of the results with that obtained by the 32P-postlabeling method. There was excellent agreement (r = 0.994, p < 0.001) between the two methods for quantitation of the adduct in eight samples of Salmonella typhimurium DNA treated with 4-ABP and rat liver S9, although the 32P-postlabeling method gave slightly higher values. The DNA adducts in 11 human lung and 8 urinary bladder mucosa specimens were then determined by our GC-NICI-MS method. The adduct levels were found to be < 0.32 to 49.5 adducts per 10(8) nucleotides in the lungs and < 0.32 to 3.94 adducts per 10(8) nucleotides in the bladder samples.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4. A Figure 4. B PMID:7889831

  10. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury

    PubMed Central

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A.; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Abstract Aims: Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. Results: C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1−/−) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. Innovation: This is the first study delineating the role of heme in ALI caused by Br2. Conclusion: The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI. Antioxid. Redox Signal. 24, 99–112. PMID:26376667

  11. Some reactions of the hydroxyl adduct of adenine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhemmen, J.J.

    1975-01-01

    The chemical reactions of purine derivatives resulting from pulse radiolysis were studied. Some reactions of the hydroxyl adduct of adenine are described and one of these reactions was compared with similar reactions of hydroxyl adducts of other purine derivatives. Evidence is given that in various purines opening of the imidazole ring is due to unimolecular rearrangements of the hydroxyl adducts. (GRA)

  12. Heme compounds in dinosaur trabecular bone.

    PubMed

    Schweitzer, M H; Marshall, M; Carron, K; Bohle, D S; Busse, S C; Arnold, E V; Barnard, D; Horner, J R; Starkey, J R

    1997-06-10

    Six independent lines of evidence point to the existence of heme-containing compounds and/or hemoglobin breakdown products in extracts of trabecular tissues of the large theropod dinosaur Tyrannosaurus rex. These include signatures from nuclear magnetic resonance and electron spin resonance that indicate the presence of a paramagnetic compound consistent with heme. In addition, UV/visible spectroscopy and high performance liquid chromatography data are consistent with the Soret absorbance characteristic of this molecule. Resonance Raman profiles are also consistent with a modified heme structure. Finally, when dinosaurian tissues were extracted for protein fragments and were used to immunize rats, the resulting antisera reacted positively with purified avian and mammalian hemoglobins. The most parsimonious explanation of this evidence is the presence of blood-derived hemoglobin compounds preserved in the dinosaurian tissues.

  13. Heme and blood-feeding parasites: friends or foes?

    PubMed Central

    2010-01-01

    Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification. PMID:21087517

  14. Heme modulates Trypanosoma cruzi bioenergetics inducing mitochondrial ROS production.

    PubMed

    Nogueira, Natália P; Saraiva, Francis M S; Oliveira, Matheus P; Mendonça, Ana Paula M; Inacio, Job D F; Almeida-Amaral, Elmo E; Menna-Barreto, Rubem F; Laranja, Gustavo A T; Torres, Eduardo J Lopes; Oliveira, Marcus F; Paes, Marcia C

    2017-07-01

    Trypanosoma cruzi is the causative agent of Chagas disease and has a single mitochondrion, an organelle responsible for ATP production and the main site for the formation of reactive oxygen species (ROS). T. cruzi is an obligate intracellular parasite with a complex life cycle that alternates between vertebrate and invertebrate hosts, therefore the development of survival strategies and morphogenetic adaptations to deal with the various environments is mandatory. Over the years our group has been studying the vector-parasite interactions using heme as a physiological oxidant molecule that triggered epimastigote proliferation however, the source of ROS induced by heme remained unknown. In the present study we demonstrate the involvement of heme in the parasite mitochondrial metabolism, decreasing oxygen consumption leading to increased mitochondrial ROS and membrane potential. First, we incubated epimastigotes with carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), an uncoupler of oxidative phosphorylation, which led to decreased ROS formation and parasite proliferation, even in the presence of heme, correlating mitochondrial ROS and T. cruzi survival. This hypothesis was confirmed after the mitochondria-targeted antioxidant ((2-(2,2,6,6 Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) decreased both heme-induced ROS and epimastigote proliferation. Furthermore, heme increased the percentage of tetramethylrhodamine methyl ester (TMRM) positive parasites tremendously-indicating the hyperpolarization and increase of potential of the mitochondrial membrane (ΔΨm). Assessing the mitochondrial functional metabolism, we observed that in comparison to untreated parasites, heme-treated epimastigotes decreased their oxygen consumption, and increased the complex II-III activity. These changes allowed the electron flow into the electron transport system, even though the complex IV (cytochrome c oxidase) activity decreased

  15. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.

    PubMed

    Ewa, Błaszczyk; Danuta, Mielżyńska-Švach

    2017-08-01

    Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.

  16. Stereospecific Formation of Interstrand Carbinolamine DNA Crosslinks by Crotonaldehyde- and Acetaldehyde-Derived α-CH3-γ-OH-1,N2-Propano-2’-deoxyguanosine Adducts in the 5′-CpG-3′ Sequence

    PubMed Central

    Cho, Young-Jin; Wang, Hao; Kozekov, Ivan D.; Kurtz, Andrew J.; Jacob, Jaison; Voehler, Markus; Smith, Jarrod; Harris, Thomas M.; Lloyd, R. Stephen; Rizzo, Carmelo J.; Stone, Michael P.

    2008-01-01

    The crotonaldehyde- and acetaldehyde-derived R- and S-α-CH3-γ-OH-1,N2-propanodeoxyguanosine adducts were monitored in single-stranded and duplex oligodeoxynucleotides using NMR spectroscopy. In both instances the cis and trans diastereomers of the α-CH3 and γ-OH groups underwent slow exchange, with the trans diastereomers being favored. In single-stranded oligodeoxynucleotides, the aldehyde intermediates were not detected spectroscopically, but their presence was revealed through the formation of N-terminal conjugates with the tetrapeptide KWKK. When annealed into 5′-d(GCTAGCXAGTCC)-3′•5′-d(GGACTCYCTAGC)-3′ containing the 5′-CpG-3′ sequence context (X=R- or S-α-CH3-γ-13C-OH-PdG; Y=15N2-dG), at pH 7, partial opening of the R- or S-α-CH3-γ-13C-OH-PdG adducts to the corresponding N2-(3-oxo-1-methyl-propyl)-dG aldehydes was observed at temperatures below the Tm of the duplexes. These aldehydes equilibrated with their geminal diol hydrates; higher temperatures favored the aldehydes. When annealed opposite to T, the S-α-CH3-γ-13C-OH-PdG adduct was stable. At 37 °C, an interstrand DNA crosslink was observed spectroscopically only for the R-α-CH3-γ-OH-PdG adduct. Molecular modeling predicted that the interstrand crosslink formed by the R-α-CH3-γ-OH-PdG adduct introduced less disruption into the duplex structure than did the crosslink arising from the S-α-CH3-γ-OH-PdG adduct, due to differing orientations of the R- and S-CH3 groups. Modeling also predicted that the α-methyl group of the aldehyde arising from the R-α-CH3-γ-OH-PdG adduct oriented in the 3′ direction in the minor groove, facilitating crosslinking. In contrast, the α-methyl group of the aldehyde arising from the S-α-CH3-γ-OH-PdG adduct oriented in the 5′ direction within the minor groove potentially hindering crosslinking. NMR revealed that for the R-α-CH3-γ-OH-PdG adduct, the carbinolamine form of the crosslink was favored in duplex DNA, in situ, with the imine or

  17. Genome-based analysis of heme biosynthesis and uptake in prokaryotic systems.

    PubMed

    Cavallaro, Gabriele; Decaria, Leonardo; Rosato, Antonio

    2008-11-01

    Heme is the prosthetic group of many proteins that carry out a variety of key biological functions. In addition, for many pathogenic organisms, heme (acquired from the host) may constitute a very important source of iron. Organisms can meet their heme demands by taking it up from external sources, by producing the cofactor through a dedicated biosynthetic pathway, or both. Here we analyzed the distribution of proteins specifically involved in the processes of heme biosynthesis and heme uptake in 474 prokaryotic organisms. These data allowed us to identify which organisms are capable of performing none, one, or both processes, based on the similarity to known systems. Some specific instances where one or more proteins along the pathways had unusual modifications were singled out. For two key protein domains involved in heme uptake, we could build a series of structural models, which suggested possible alternative modes of heme binding. Future directions for experimental work are given.

  18. Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication.

    PubMed

    Lu, Naihao; Chen, Wei; Zhu, Jingjie; Peng, Yi-Yuan

    2012-02-01

    Evidence to support the role of heme as major inducers of oxidative damage is increasingly present. Nitrite (NO(2)(-)) is one of the major end products of NO metabolism. Although the biological significance of heme/NO(2)(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO(2)(-) on heme-dependent redox reaction have been greatly underestimated. In this study, we investigated the influence of NO(2)(-) on heme -dependent oxidative reactions. It was found that NO(2)(-) had the capacity to act as a reducing agent to remove high oxidation states of heme iron. In the reduction of ferryl heme to ferric heme, NO(2)(-) was oxidized to a nitrating agent NO(2), and subsequently, tyrosine residues in bovine serum albumin (BSA) were nitrated. However, the presence of NO(2)(-) surprisingly exerted pro-oxidant effect on heme-H(2)O(2)-induced formation of BSA carbonyls at lower concentrations and enhanced the loss of HepG2 cell viability dose-dependently, which was probably due to the ability of this inorganic compound to efficiently enhance the peroxidase activity and oxidative degradation of heme. These data provide novel evidence that the dietary intake and experimental use of NO(2)(-) in vivo and in vitro would possess the pro-oxidant activity through interfering in heme-dependent oxidative reactions. Besides the classic role in protein tyrosine nitration, the deleterious effects on heme redox reactions may provide new insights into the toxicological implications of NO(2)(-) with cellular heme proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Genetic Variability of the Heme Uptake System among Different Strains of the Fish Pathogen Vibrio anguillarum: Identification of a New Heme Receptor

    PubMed Central

    Mouriño, Susana; Rodríguez-Ares, Isabel; Osorio, Carlos R.; Lemos, Manuel L.

    2005-01-01

    The ability to utilize heme compounds as iron sources was investigated in Vibrio anguillarum strains belonging to serotypes O1 to O10. All strains, regardless of their serotype or isolation origin could utilize hemin and hemoglobin as sole iron sources. Similarly, all of the isolates could bind hemin and Congo red, and this binding was mediated by cell envelope proteins. PCR and Southern hybridization were used to assay the occurrence of heme transport genes huvABCD, which have been previously described in serotype O1. Of 23 strains studied, two serotype O3 isolates proved negative for all huvABCD genes, whereas nine strains included in serotypes O2, O3, O4, O6, O7, and O10 tested negative for the outer membrane heme receptor gene huvA. A gene coding for a novel outer membrane heme receptor was cloned and characterized in a V. anguillarum serotype O3 strain lacking huvA. The new heme receptor, named HuvS, showed significant similarity to other outer membrane heme receptors described in Vibrionaceae, but little homology (39%) to HuvA. This heme receptor was present in 9 out of 11 of the V. anguillarum strains that tested negative for HuvA. Furthermore, complementation experiments demonstrated that HuvS could substitute for the HuvA function in Escherichia coli and V. anguillarum mutants. The huvS and huvA sequences alignment, as well as the analysis of their respective upstream and downstream DNA sequences, suggest that horizontal transfer and recombination might be responsible for generating this genetic diversity. PMID:16332832

  20. Induction of heme oxygenase 1 by nitrosative stress. A role for nitroxyl anion.

    PubMed

    Naughton, Patrick; Foresti, Roberta; Bains, Sandip K; Hoque, Martha; Green, Colin J; Motterlini, Roberto

    2002-10-25

    Nitric oxide and S-nitrosothiols modulate a variety of important physiological activities. In vascular cells, agents that release NO and donate nitrosonium cation (NO(+)), such as S-nitrosoglutathione, are potent inducers of the antioxidant protein heme oxygenase 1 (HO-1) (Foresti, R., Clark, J. E., Green, C. J., and Motterlini, R. (1997) J. Biol. Chem. 272, 18411-18417; Motterlini, R., Foresti, R., Bassi, R., Calabrese, V., Clark, J. E., and Green, C. J. (2000) J. Biol. Chem. 275, 13613-13620). Here, we report that Angeli's salt (AS) (0.25-2 mm), a compound that releases nitroxyl anion (NO(-)) at physiological pH, induces HO-1 mRNA and protein expression in a concentration- and time-dependent manner, resulting in increased heme oxygenase activity in rat H9c2 cells. A time course analysis revealed that NO(-)-mediated HO-1 expression is transient and gradually disappears within 24 h, in accordance with the short half-life of AS at 37 degrees C (t(12) = 2.3 min). Interestingly, multiple additions of AS at lower concentrations (50 or 100 microm) over a period of time still promoted a significant increase in heme oxygenase activity. Experiments performed using a NO scavenger and the NO electrode confirmed that NO(-), not NO, is the species involved in HO-1 induction by AS; however, the effect on heme oxygenase activity can be amplified by accelerating the rate of NO(-) oxidation. N-Acetylcysteine almost completely abolished AS-mediated induction of HO-1, whereas a glutathione synthesis inhibitor (buthionine sulfoximine) significantly decreased heme oxygenase activation by AS, indicating that sulfydryl groups are crucial targets in the regulation of HO-1 expression by NO(-). We conclude that NO(-), in analogy with other reactive nitrogen species, is a potent inducer of heme oxygenase activity and HO-1 protein expression. These findings indicate that heme oxygenase can act both as a sensor to and target of redox-based mechanisms involving NO and extend our knowledge on

  1. Accommodation of an N-(deoxyguanosin-8-yl)-2-acetylaminofluorene adduct in the active site of human DNA polymerase iota: Hoogsteen or Watson-Crick base pairing?

    PubMed

    Donny-Clark, Kerry; Shapiro, Robert; Broyde, Suse

    2009-01-13

    Bypass across DNA lesions by specialized polymerases is essential for maintenance of genomic stability. Human DNA polymerase iota (poliota) is a bypass polymerase of the Y family. Crystal structures of poliota suggest that Hoogsteen base pairing is employed to bypass minor groove DNA lesions, placing them on the spacious major groove side of the enzyme. Primer extension studies have shown that poliota is also capable of error-free nucleotide incorporation opposite the bulky major groove adduct N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF). We present molecular dynamics simulations and free energy calculations suggesting that Watson-Crick base pairing could be employed in poliota for bypass of dG-AAF. In poliota with Hoogsteen-paired dG-AAF the bulky AAF moiety would reside on the cramped minor groove side of the template. The Hoogsteen-capable conformation distorts the active site, disrupting interactions necessary for error-free incorporation of dC opposite the lesion. Watson-Crick pairing places the AAF rings on the spacious major groove side, similar to the position of minor groove adducts observed with Hoogsteen pairing. Watson-Crick-paired structures show a well-ordered active site, with a near reaction-ready ternary complex. Thus our results suggest that poliota would utilize the same spacious region for lesion bypass of both major and minor groove adducts. Therefore, purine adducts with bulk on the minor groove side would use Hoogsteen pairing, while adducts with the bulky lesion on the major groove side would utilize Watson-Crick base pairing as indicated by our MD simulations for dG-AAF. This suggests the possibility of an expanded role for poliota in lesion bypass.

  2. Staphylococcus aureus HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis

    PubMed Central

    Choby, Jacob E.; Grunenwald, Caroline M.; Celis, Arianna I.; Gerdes, Svetlana Y.; DuBois, Jennifer L.

    2018-01-01

    ABSTRACT Staphylococcus aureus is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized de novo from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also toxic in high concentrations, requiring that organisms encode regulatory processes to control heme homeostasis. In this work, we describe a posttranscriptional regulatory strategy in S. aureus heme biosynthesis. The first committed enzyme in the S. aureus heme biosynthetic pathway, glutamyl-tRNA reductase (GtrR), is regulated by heme abundance and the integral membrane protein HemX. GtrR abundance increases dramatically in response to heme deficiency, suggesting a mechanism by which S. aureus responds to the need to increase heme synthesis. Additionally, HemX is required to maintain low levels of GtrR in heme-proficient cells, and inactivation of hemX leads to increased heme synthesis. Excess heme synthesis in a ΔhemX mutant activates the staphylococcal heme stress response, suggesting that regulation of heme synthesis is critical to reduce self-imposed heme toxicity. Analysis of diverse organisms indicates that HemX is widely conserved among heme-synthesizing bacteria, suggesting that HemX is a common factor involved in the regulation of GtrR abundance. Together, this work demonstrates that S. aureus regulates heme synthesis by modulating GtrR abundance in response to heme deficiency and through the activity of the broadly conserved HemX. PMID:29437922

  3. Analysis of tamoxifen-DNA adducts in endometrial explants by MS and 32P-postlabeling.

    PubMed

    Beland, Frederick A; Churchwell, Mona I; Hewer, Alan; Phillips, David H; Gamboa da Costa, Gonçalo; Marques, M Matilde

    2004-07-23

    The nonsteroidal antiestrogen tamoxifen increases the risk of endometrial cancer; however, the mechanism for the induction of these tumors is not known. Recently, Sharma et al. [Biochem. Biophys. Res. Commun. 307 (2003) 157], using high performance liquid chromatography (HPLC) with online postcolumn photochemical activation and fluorescence detection, reported the presence of (E)-alpha-(deoxyguanosin- N2-yl)tamoxifen in DNA from human endometrial explants incubated with tamoxifen. Inasmuch as the methodology used by these investigators does not allow unambiguous characterization of tamoxifen-DNA adducts, we have used two additional techniques (HPLC coupled with electrospray ionization tandem mass spectrometry and 32P-postlabeling analyses) to assay for the presence of tamoxifen-DNA adducts in the human endometrial explant DNA. Tamoxifen-DNA adducts were not detected by either method.

  4. Environmental, Dietary, Maternal, and Fetal Predictors of Bulky DNA Adducts in Cord Blood: A European Mother–Child Study (NewGeneris)

    PubMed Central

    Mendez, Michelle A.; Schoket, Bernadette; Godschalk, Roger W.; Espinosa, Ana; Landström, Anette; Villanueva, Cristina M.; Merlo, Domenico F.; Fthenou, Eleni; Gracia-Lavedan, Esther; van Schooten, Frederik-J.; Hoek, Gerard; Brunborg, Gunnar; Meltzer, Helle M.; Alexander, Jan; Nielsen, Jeanette K.; Sunyer, Jordi; Wright, John; Kovács, Katalin; de Hoogh, Kees; Gutzkow, Kristine B.; Hardie, Laura J.; Chatzi, Leda; Knudsen, Lisbeth E.; Anna, Lívia; Ketzel, Matthias; Haugen, Margaretha; Botsivali, Maria; Nieuwenhuijsen, Mark J.; Cirach, Marta; Toledano, Mireille B.; Smith, Rachel B.; Fleming, Sarah; Agramunt, Silvia; Kyrtopoulos, Soterios A.; Lukács, Viktória; Kleinjans, Jos C.; Segerbäck, Dan; Kogevinas, Manolis

    2015-01-01

    Background: Bulky DNA adducts reflect genotoxic exposures, have been associated with lower birth weight, and may predict cancer risk. Objective: We selected factors known or hypothesized to affect in utero adduct formation and repair and examined their associations with adduct levels in neonates. Methods: Pregnant women from Greece, Spain, England, Denmark, and Norway were recruited in 2006–2010. Cord blood bulky DNA adduct levels were measured by the 32P-postlabeling technique (n = 511). Diet and maternal characteristics were assessed via questionnaires. Modeled exposures to air pollutants and drinking-water disinfection by-products, mainly trihalomethanes (THMs), were available for a large proportion of the study population. Results: Greek and Spanish neonates had higher adduct levels than the northern European neonates [median, 12.1 (n = 179) vs. 6.8 (n = 332) adducts per 108 nucleotides, p < 0.001]. Residence in southern European countries, higher maternal body mass index, delivery by cesarean section, male infant sex, low maternal intake of fruits rich in vitamin C, high intake of dairy products, and low adherence to healthy diet score were statistically significantly associated with higher adduct levels in adjusted models. Exposure to fine particulate matter and nitrogen dioxide was associated with significantly higher adducts in the Danish subsample only. Overall, the pooled results for THMs in water show no evidence of association with adduct levels; however, there are country-specific differences in results with a suggestion of an association in England. Conclusion: These findings suggest that a combination of factors, including unknown country-specific factors, influence the bulky DNA adduct levels in neonates. Citation: Pedersen M, Mendez MA, Schoket B, Godschalk RW, Espinosa A, Landström A, Villanueva CM, Merlo DF, Fthenou E, Gracia-Lavedan E, van Schooten FJ, Hoek G, Brunborg G, Meltzer HM, Alexander J, Nielsen JK, Sunyer J, Wright J, Kovács K, de

  5. The hmuQ and hmuD Genes from Bradyrhizobium japonicum Encode Heme-Degrading Enzymes

    PubMed Central

    Puri, Sumant; O'Brian, Mark R.

    2006-01-01

    Utilization of heme by bacteria as a nutritional iron source involves the transport of exogenous heme, followed by cleavage of the heme macrocycle to release iron. Bradyrhizobium japonicum can use heme as an iron source, but no heme-degrading oxygenase has been described. Here, bioinformatics analyses of the B. japonicum genome identified two paralogous genes renamed hmuQ (bll7075) and hmuD (bll7423) that encode proteins with weak similarity to the heme-degrading monooxygenase IsdG from Staphylococcus aureus. The hmuQ gene is clustered with known heme transport genes in the genome. Recombinant HmuQ bound heme with a Kd value of 0.8 μM and showed spectral properties consistent with a heme oxygenase. In the presence of a reductant, HmuQ catalyzed the degradation of heme and the formation of biliverdin. The hmuQ and hmuD genes complemented a Corynebacterium ulcerans heme oxygenase mutant in trans for utilization of heme as the sole iron source for growth. Furthermore, homologs of hmuQ and hmuD were identified in many bacterial genera, and the recombinant homolog from Brucella melitensis bound heme and catalyzed its degradation. The findings show that hmuQ and hmuD encode heme oxygenases and indicate that the IsdG family of heme-degrading monooxygenases is not restricted to gram-positive pathogenic bacteria. PMID:16952937

  6. Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing.

    PubMed

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H; Cai, Yuqin; Rodriguez, Fabian A; Sayer, Jane M; Jerina, Donald M; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E

    2012-12-04

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.

  7. NITRO MUSK ADDUCTS OF RAINBOW TROUT ...

    EPA Pesticide Factsheets

    Rainbow trout and other fish species can serve as 'sentinel' species for the assessment of ecological status and the presence of certain environmental contaminants. As such they act as bioindicators of exposure. Here we present seminal data regarding dose-response and toxicokinetics of trout hemoglobin adduct formation from exposure to nitro musks that are frequently used as fragrance ingredients in formulations of personal care products. Hemoglobin adducts serve as biomarkers of exposure of the sentinel species as we have shown in previous studies of hemoglobin adducts formed in trout and environmental carp exposed to musk xylene (MX) and musk ketone (MK). Gas chromatography-electron capture negative ion chemical ionization-mass spectrometry (GC-NICI-MS) employing selected ion monitoring is used to measure 4-amino-MX (4-AMX), 2-amino-MX (2-AMX), and 2-amino-MK (2-AMK) released by alkaline hydrolysis from the sulfinamide adducts of hemoglobin. Dose-response and toxicokinetics were investigated using this sensitive method for analysis of these metabolites. In the dose-response investigation, the concentrations of 4-AMX and 2-2AMX are observed to pass through a maximum at 0.10 mg/g. In the case of 2-AMK, the adduct concentration is almost the same at dosages in the range of 0.030 to 0.10 mg/g. For toxicokinetics, the concentration of the metabolites in the Hb reaches a maximum in the 3-day sample after administration of MX or MK. Further elimination of the metabo

  8. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    PubMed Central

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  9. Structure-Activity Relationships of 1,2-Disubstituted Benzimidazoles: Selective Inhibition of Heme Oxygenase-2 Activity.

    PubMed

    Kong, Xianqi; Vukomanovic, Dragic; Nakatsu, Kanji; Szarek, Walter A

    2015-08-01

    Devising ways to up- or down-regulate heme oxygenase activity is attracting much interest as a strategy for the treatment of a variety of disorders. With a view of obtaining compounds that exhibit high potency and selectivity as inhibitors of the heme oxygenase-2 (HO-2) isozyme (constitutive) relative to the heme oxygenase-1 (HO-1) isozyme (inducible), several 1,2-disubstituted 1H-benzimidazoles were designed and synthesized. Specifically, analogues were synthesized in which the C2 substituent was the following: (1H-imidazol-1-yl)methyl, (N-morpholinyl)methyl, cyclopentylmethyl, cyclohexylmethyl, or (norborn-2-yl)methyl. Compounds with the cyclic system in the C2 substituent being a carbocyclic ring, especially cyclohexyl or norborn-2-yl, and the N1 substituent being a ring-substituted benzyl group, especially 4-chlorobenzyl or 4-bromobenzyl, best exhibited the target criteria of high potency and selectivity toward inhibition of HO-2. The new candidates should be useful pharmacological tools and may have therapeutic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Including the Copenhagen Adduction Exercise in the FIFA 11+ Provides Missing Eccentric Hip Adduction Strength Effect in Male Soccer Players: A Randomized Controlled Trial.

    PubMed

    Harøy, Joar; Thorborg, Kristian; Serner, Andreas; Bjørkheim, André; Rolstad, Linn E; Hölmich, Per; Bahr, Roald; Andersen, Thor Einar

    2017-11-01

    The FIFA 11+ was developed as a complete warm-up program to prevent injuries in soccer players. Although reduced hip adduction strength is associated with groin injuries, none of the exercises included in the FIFA 11+ seem to specifically target hip adduction strength. To investigate the effect on eccentric hip adduction strength of the FIFA 11+ warm-up program with or without the Copenhagen adduction exercise. Randomized controlled trial; Level of evidence, 1. We recruited 45 eligible players from 2 U19 elite male soccer teams. Players were randomized into 2 groups; 1 group carried out the standard FIFA 11+ program, while the other carried out the FIFA 11+ but replaced the Nordic hamstring exercise with the Copenhagen adduction exercise. Both groups performed the intervention 3 times weekly for 8 weeks. Players completed eccentric strength and sprint testing before and after the intervention. Per-protocol analyses were performed, and 12 players were excluded due to low compliance (<67% of sessions completed). The main outcome was eccentric hip adduction strength (N·m/kg). Between-group analyses revealed a significantly greater increase in eccentric hip adduction strength of 0.29 Nm/kg (8.9%; P = .01) in favor of the group performing the Copenhagen adduction exercise, whereas no within-group change was noted in the group that used the standard FIFA 11+ program (-0.02 N·m/kg [-0.7%]; P = .69). Including the Copenhagen adduction exercise in the FIFA 11+ program increases eccentric hip adduction strength, while the standard FIFA 11+ program does not. Registration: Registration: ISRCTN13731446 (International Standard Randomised Controlled Trial Number registry).

  11. CYP1A2 and NAT2 phenotyping and 3-aminobiphenyl and 4-aminobiphenyl hemoglobin adduct levels in smokers and non-smokers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Mohamadi; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298; Stabbert, Regina

    Some aromatic amines are considered to be putative bladder carcinogens. Hemoglobin (Hb) adducts of 3-aminobiphenyl (3-ABP) and 4-aminobiphenyl (4-ABP) have been used as biomarkers of exposure to aromatic amines from cigarette smoke. One of the goals of this study was to determine intra- and inter-individual variability in 3-ABP and 4-ABP Hb adducts and to explore the predictability of ABP Hb adduct levels based on caffeine phenotyping. The study was conducted in adult smokers (S, n = 65) and non-smokers (NS, n 65). The subjects were phenotyped for CYP1A2 and NAT2 using urinary caffeine metabolites. Blood samples were collected twice withinmore » 6 weeks and adducts measured by GC/MS. The levels of 4-ABP Hb adducts were significantly (p < 0.0001) greater in S (34.5 {+-} 21.06 pg/g Hb) compared to NS (6.3 {+-} 3.02 pg/g Hb). The levels of 3-ABP Hb adducts were below the limit of quantification (BLOQ) in most (82%) of the NS and about 10-fold lower in S (3.6 {+-} 3.29 pg/g Hb) compared to 4-ABP Hb adducts. No differences were observed in the adduct levels between weeks 1 and 6 in the smokers, suggesting that a single sample would be adequate to monitor cigarette smoke exposure. The regression model developed with CYP1A2, NAT2 phenotype and number of cigarettes smoked (NCIG) accounted for 47% of the variability in 3-ABP adducts, whereas 32% variability in 4-ABP adducts was accounted by CYP1A2 and NCIG. The ratio of 4-ABP Hb adducts in adult S:NS was {approx} 5:1, whereas 3-ABP Hb adducts levels were BLOQ in some S, exhibited large interindividual variability ({approx} 91% compared to 57% for 4-ABP Hb) and poor dose response relationship. Therefore, 4-ABP Hb adduct levels may be a more useful biomarker of aminobiphenyl exposure from cigarette smoke.« less

  12. Photochemical organic oxidations and dechlorinations with a mu-oxo bridged heme/non-heme diiron complex.

    PubMed

    Wasser, Ian M; Fry, H Christopher; Hoertz, Paul G; Meyer, Gerald J; Karlin, Kenneth D

    2004-12-27

    Steady state and laser flash photolysis studies of the heme/non-heme mu-oxo diiron complex [((6)L)Fe(III)-O-Fe(III)-Cl](+) (1) have been undertaken. The anaerobic photolysis of benzene solutions of 1 did not result in the buildup of any photoproduct. However, the addition of excess triphenylphosphine resulted in the quantitative photoreduction of 1 to [((6)L)Fe(II)...Fe(II)-Cl](+) (2), with concomitant production by oxo-transfer of 1 equiv of triphenylphosphine oxide. Under aerobic conditions and excess triphenylphosphine, the reaction produces multiple turnovers (approximately 28) before the diiron complex is degraded. The anaerobic photolysis of tetrahydrofuran (THF) or toluene solutions of 1 likewise results in the buildup of 2. The oxidation products from these reactions included gamma-butyrolactone (approximately 15%) for the reaction in THF and benzaldehyde (approximately 23%) from the reaction in toluene. In either case, the O-atom which is incorporated into the carbonyl product is derived from dioxygen present under workup or under aerobic photolysis conditions. Transient absorption measurements of low-temperature THF solutions of 1 revealed the presence of an (P)Fe(II)-like [P = tetraaryl porphyrinate dianion] species suggesting that the reactive species is a formal (heme)Fe(II)/Fe(IV)=O(non-heme) pair. The non-heme Fe(IV)=O is thus most likely responsible for C-H bond cleavage and subsequent radical chemistry. The photolysis of 1 in chlorobenzene or 1,2-dichlorobenzene resulted in C-Cl cleavage reactions and the formation of [[((6)L)Fe(III)-Cl...Fe(III)-Cl](2)O](2+) (3), with chloride ligands that are derived from solvent dehalogenation chemistry. The resulting organic products are biphenyl trichlorides or biphenyl monochlorides, derived from dichlorobenzene and chlorobenzene, respectively. Similarly, product 3 is obtained by the photolysis of benzene-benzyl chloride solutions of 1; the organic product is benzaldehyde (approximately 70%). A brief

  13. Comprehensive Fe-ligand vibration identification in {FeNO} 6 Hemes

    DOE PAGES

    Li, Jianfeng; Peng, Qian; Oliver, Allen G.; ...

    2014-12-09

    Oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS) has been used to obtain all iron vibrations in two {FeNO} 6 porphyrinate complexes, five-coordinate [Fe(OEP)(NO)]ClO 4 and six-coordinate [Fe(OEP)(2-MeHIm)(NO)]ClO 4. A new crystal structure was required for measurements of [Fe(OEP)(2-MeHIm)(NO)]ClO 4, and the new structure is reported herein. Single crystals of both complexes were oriented to be either parallel or perpendicular to the porphyrin plane and/or axial imidazole ligand plane. Thus, the FeNO bending and stretching modes can now be unambiguously assigned; the pattern of shifts in frequency as a function of coordination number can also be determined. The pattern is quitemore » distinct from those found for CO or {FeNO} 7 heme species. This is the result of unchanging Fe–N NO bonding interactions in the {FeNO} 6 species, in distinct contrast to the other diatomic ligand species. DFT calculations were also used to obtain detailed predictions of vibrational modes. Predictions were consistent with the intensity and character found in the experimental spectra. The NRVS data allow the assignment and observation of the challenging to obtain Fe–Im stretch in six-coordinate heme derivatives. Furthermore, NRVS data for this and related six-coordinate hemes with the diatomic ligands CO, NO, and O 2 reveal a strong correlation between the Fe–Im stretch and Fe–N Im bond distance that is detailed for the first time.« less

  14. Isolevuglandin adducts in disease.

    PubMed

    Salomon, Robert G; Bi, Wenzhao

    2015-06-20

    A diverse family of lipid-derived levulinaldehydes, isolevuglandins (isoLGs), is produced by rearrangement of endoperoxide intermediates generated through both cyclooxygenase (COX) and free radical-induced cyclooxygenation of polyunsaturated fatty acids and their phospholipid esters. The formation and reactions of isoLGs with other biomolecules has been linked to alcoholic liver disease, Alzheimer's disease, age-related macular degeneration, atherosclerosis, cardiac arythmias, cancer, end-stage renal disease, glaucoma, inflammation of allergies and infection, mitochondrial dysfunction, multiple sclerosis, and thrombosis. This review chronicles progress in understanding the chemistry of isoLGs, detecting their production in vivo and understanding their biological consequences. IsoLGs have never been isolated from biological sources, because they form adducts with primary amino groups of other biomolecules within seconds. Chemical synthesis enabled investigation of isoLG chemistry and detection of isoLG adducts present in vivo. The first peptide mapping and sequencing of an isoLG-modified protein present in human retina identified the modification of a specific lysyl residue of the sterol C27-hydroxylase Cyp27A1. This residue is preferentially modified by iso[4]LGE2 in vitro, causing loss of function. Adduction of less than one equivalent of isoLG can induce COX-associated oligomerization of the amyloid peptide Aβ1-42. Adduction of isoLGE2 to phosphatidylethanolamines causes gain of function, converting them into proinflammatory isoLGE2-PE agonists that foster monocyte adhesion to endothelial cells. Among the remaining questions on the biochemistry of isoLGs are the dependence of biological activity on isoLG isomer structure, the structures and mechanism of isoLG-derived protein-protein and DNA-protein cross-link formation, and its biological consequences.

  15. [Formation of pyrrole adducts in 2,5-hexanedione-containing human serum cultured in vitro].

    PubMed

    Zhu, Ming-xing; Yin, Hong-yin; Xie, Ke-qin

    2013-08-01

    To investigate the relationship between formation of pyrrole adducts and concentration of 2, 5-hexanedione (2, 5-HD) and to provide an experimental basis for the study on toxicity of n-hexane. Serum samples were collected from normal persons and were then filtered and sterilized. They were mixed with 2,5-HD to obtain sera with final 2, 5-HD concentrations of 10, 25, 50, 100, and 200 mg/L, and blank serum was also prepared. The sera were cultured at 37°C and taken at different time points. Colorimetry was used to quantify the pyrrole adducts formed in sera, and gas chromatography was used to measure the remaining 2, 5-HD levels in sera. The content of pyrrole adducts increased as the culture proceeded and was dependent on the dose of 2, 5-HD; at the end of the experiment, the content of pyrrole adducts differed significantly across all concentration groups (P < 0.5). The concentrations of 2,5-HD decreased as the culture proceeded; at the end of the experiment, the concentrations of 2, 5-HD, from the highest to the lowest, decreased by 29%, 55%, 22%, 44%, and 40%, respectively. The decrease in 2, 5-HD had a positive correlation with the increase in pyrrole adducts, and the correlation coefficients for 200∼10 mg/L 2, 5-HD were 0.865, 0.697, 0.835, 0.823, and 0.814, respectively. The content of formed pyrrole adducts increases as the concentration of 2,5-HD rises; there is a positive correlation between the decrease in 2, 5-HD and the increase in pyrrole adducts in human serum.

  16. Heme Mediates Cytotoxicity from Artemisinin and Serves as a General Anti-Proliferation Target

    PubMed Central

    Zhang, Shiming; Gerhard, Glenn S.

    2009-01-01

    Heme (Fe2+ protoporphyrin IX) is an essential molecule that has been implicated the potent antimalarial action of artemisinin and its derivatives, although the source and nature of the heme remain controversial. Artemisinins also exhibit selective cytotoxicity against cancer cells in vitro and in vivo. We demonstrate that intracellular heme is the physiologically relevant mediator of the cytotoxic effects of artemisinins. Increasing intracellular heme synthesis through the addition of aminolevulinic acid, protoporphyrin IX, or transferrin-bound iron increased the cytotoxicity of dihydroartemisinin, while decreasing heme synthesis through the addition of succinyl acetone decreased its cytotoxic activity. A simple and robust high throughput assay was developed to screen chemical compounds that were capable of interacting with heme. A natural products library was screened which identified the compound coralyne, in addition to artemisinin, as a heme interacting compound with heme synthesis dependent cytotoxic activity. These results indicate that cellular heme may serve a general target for the development of both anti-parasitic and anti-cancer therapeutics. PMID:19862332

  17. ARSENITE INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    EPA Science Inventory

    ARSENITE INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    Useful biomarkers of arsenic effects in both experimental animals and humans are needed. Arsenate and arsenite are good inducers of rat hepatic and renal heme oxygenase (HO); monomethylarsonic acid (MMA) and dimethylarsi...

  18. Structure and Reactivity of a Thermostable Prokaryotic Nitric-oxide Synthase That Forms a Long-lived Oxy-Heme Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhamsu,J.; Crane, B.

    2006-01-01

    In an effort to generate more stable reaction intermediates involved in substrate oxidation by nitric-oxide synthases (NOSs), we have cloned, expressed, and characterized a thermostable NOS homolog from the thermophilic bacterium Geobacillus stearothermophilus (gsNOS). As expected, gsNOS forms nitric oxide (NO) from L-arginine via the stable intermediate N-hydroxy L-arginine (NOHA). The addition of oxygen to ferrous gsNOS results in long-lived heme-oxy complexes in the presence (Soret peak 427 nm) and absence (Soret peak 413 nm) of substrates L-arginine and NOHA. The substrate-induced red shift correlates with hydrogen bonding between substrate and heme-bound oxygen resulting in conversion to a ferric heme-superoxymore » species. In single turnover experiments with NOHA, NO forms only in the presence of H4B. The crystal structure of gsNOS at 3.2 A Angstroms of resolution reveals great similarity to other known bacterial NOS structures, with the exception of differences in the distal heme pocket, close to the oxygen binding site. In particular, a Lys-356 (Bacillus subtilis NOS) to Arg-365 (gsNOS) substitution alters the conformation of a conserved Asp carboxylate, resulting in movement of an Ile residue toward the heme. Thus, a more constrained heme pocket may slow ligand dissociation and increase the lifetime of heme-bound oxygen to seconds at 4 degC. Similarly, the ferric-heme NO complex is also stabilized in gsNOS. The slow kinetics of gsNOS offer promise for studying downstream intermediates involved in substrate oxidation.« less

  19. Linking the generation of DNA adducts to lung cancer.

    PubMed

    Ceppi, Marcello; Munnia, Armelle; Cellai, Filippo; Bruzzone, Marco; Peluso, Marco E M

    2017-09-01

    Worldwide, lung cancer is the leading cause of cancer death. DNA adducts are considered a reliable biomarker that reflects carcinogen exposure to tobacco smoke, but the central question is what is the relationship of DNA adducts and cancer? Therefore, we investigated this relationship by a meta-analysis of twenty-two studies with bronchial adducts for a total of 1091 subjects, 887 lung cancer cases and 204 apparently healthy individuals with no evidence of lung cancer. Our study shows that these adducts are significantly associated to increase lung cancer risk. The value of Mean Ratio lung-cancer (MR) of bronchial adducts resulting from the random effects model was 2.64, 95% C.I. 2.00-3.50, in overall lung cancer cases as compared to controls. The significant difference, with lung cancer patients having significant higher levels of bronchial adducts than controls, persisted after stratification for smoking habits. The MR lung-cancer value between lung cancer patients and controls for smokers was 2.03, 95% C.I. 1.42-2.91, for ex-smokers 3.27, 95% C.I. 1.49-7.18, and for non-smokers was 3.81, 95% C.I. 1.85-7.85. Next, we found that the generation of bronchial adducts is significantly related to inhalation exposure to tobacco smoke carcinogens confirming its association with volatile carcinogens. The MR smoking estimate of bronchial adducts resulting from meta-regression was 2.28, 95% Confidence Interval (C.I.) 1.10-4.73, in overall smokers in respect to non-smokers. The present work provides strengthening of the hypothesis that bronchial adducts are not simply relate to exposure, but are a cause of chemical-induced lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Diacyl, alkenyl, and alkyl ether phospholipids in ejaculated, in utero-, and in vitro-incubated porcine spermatozoa.

    PubMed

    Evans, R W; Weaver, D E; Clegg, E D

    1980-02-01

    The phospholipids of porcine spermatozoa were analyzed by a hydrolytic procedure directly after ejaculation, and after incubation for 120 min in vitro or in ligated uterine segments of females with induced estrus. Total phospholipid content of ejaculated sperm was 65.7 micro g lipid P per 10(9) sperm, of which 41% was alkyl ether and 23% was alkenyl ether glycerophospholipid. All of the ether phospholipids were choline and ethanolamine glycerophospholipids. In order of decreasing amount (% of total phospholipid), the phospholipids were choline and ethanolamine glycerophospholipids (49.9 and 28.2), sphingolipid (10.6), cardiolipin (5.5), phosphatidylinositol (2.3), phosphatidic acid (1.5), phosphatidylserine (1.2), and phosphatidylglycerol (0.8). Phosphorus-containing sphingolipid separated into two components during thin-layer chromatography. Sphingosine was the only long-chain base identified in either band. Major fatty acids in the band with lower R(f) were 16:0 (56%), 20:0 (23%), and 18:0 (11%) plus smaller amounts of 14:0, 18:1, and 22:0, while those in the band with higher R(f) were 14:0 (30%), 16:0 (45%), and 18:1 (12%) plus smaller amounts of 18:0, 20:0, and 22:0. Choline was the only water-soluble base present in the lower R(f) sphingomyelin while ethanolamine was prevalent in the higher R(f) component. Incubation of washed spermatozoa in Ca(2+)-free Ringer-fructose at 37 degrees C for 2 hr produced no significant change in the level of any of the phospholipids. Incubation of washed sperm in the uterus for 2 hr, in the presence of oviductal secretions, produced an increase in phosphatidylcholine from 7.2 to 10.2 micro g lipid P per 10(9) sperm.-Evans, R. W., D. E. Weaver, and E. D. Clegg. Diacyl, alkenyl, and alkyl ether phospholipids in ejaculated, in utero-, and in vitro-incubated porcine spermatozoa.

  1. NATb/NAT1*4 promotes greater arylamine N-acetyltransferase 1 mediated DNA adducts and mutations than NATa/NAT1*4 following exposure to 4-aminobiphenyl

    PubMed Central

    Millner, Lori M.; Doll, Mark A.; Cai, Jian; States, J. Christopher; Hein, David W.

    2011-01-01

    N -acetyltransferase 1 (NAT1) is a phase II metabolic enzyme responsible for the biotransformation of aromatic and heterocyclic amine carcinogens such as 4-aminobiphenyl (ABP). NAT1 catalyzes N-acetylation of arylamines as well as the O-acetylation of N-hydroxylated arylamines. O-acetylation leads to the formation of electrophilic intermediates that result in DNA adducts and mutations. NAT1 is transcribed from a major promoter, NATb, and an alternative promoter, NATa, resulting in mRNAs with distinct 5′-untranslated regions (UTR). NATa mRNA is expressed primarily in the kidney, liver, trachea and lung while NATb mRNA has been detected in all tissues studied. To determine if differences in 5′-UTR have functional effect upon NAT1 activity and DNA adducts or mutations following exposure to ABP, pcDNA5/FRT plasmid constructs were prepared for transfection of full length human mRNAs including the 5′-UTR derived from NATa or NATb, the open reading frame, and 888 nucleotides of the 3′-UTR. Following stable transfection of NATb/NAT1*4 or NATa/NAT1*4 into nucleotide excision repair (NER) deficient Chinese hamster ovary cells, N-acetyltransferase activity (in vitro and in situ), mRNA, and protein expression were higher in NATb/NAT1*4 than NATa/NAT1*4 transfected cells (p<0.05). Consistent with NAT1 expression and activity, ABP-induced DNA adducts and hypoxanthine phosphoribosyl transferase mutants were significantly higher (p<0.05) in NATb/NAT1*4 than in NATa/NAT1*4 transfected cells following exposure to ABP. These differences observed between NATa and NATb suggest that the 5′-UTRs are differentially regulated. PMID:21837760

  2. Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya.

    PubMed

    Fortunato, Antonio Emidio; Sordino, Paolo; Andreakis, Nikos

    2016-06-01

    SOUL homologs constitute a heme-binding protein superfamily putatively involved in heme and tetrapyrrole metabolisms associated with a number of physiological processes. Despite their omnipresence across the tree of life and the biochemical characterization of many SOUL members, their functional role and the evolutionary events leading to such remarkable protein repertoire still remain cryptic. To explore SOUL evolution, we apply a computational phylogenetic approach, including a relevant number of SOUL homologs, to identify paralog forms and reconstruct their genealogy across the tree of life and within species. In animal lineages, multiple gene duplication or loss events and paralog functional specializations underlie SOUL evolution from the dawn of ancestral echinoderm and mollusc SOUL forms. In photosynthetic organisms, SOUL evolution is linked to the endosymbiosis events leading to plastid acquisition in eukaryotes. Derivative features, such as the F2L peptide and BH3 domain, evolved in vertebrates and provided innovative functionality to support immune response and apoptosis. The evolution of elements such as the N-terminal protein domain DUF2358, the His42 residue, or the tetrapyrrole heme-binding site is modern, and their functional implications still unresolved. This study represents the first in-depth analysis of SOUL protein evolution and provides novel insights in the understanding of their obscure physiological role.

  3. The effect of proteins from animal source foods on heme iron bioavailability in humans.

    PubMed

    Pizarro, Fernando; Olivares, Manuel; Valenzuela, Carolina; Brito, Alex; Weinborn, Valerie; Flores, Sebastián; Arredondo, Miguel

    2016-04-01

    Forty-five women (35-45 year) were randomly assigned to three iron (Fe) absorption sub-studies, which measured the effects of dietary animal proteins on the absorption of heme Fe. Study 1 was focused on heme, red blood cell concentrate (RBCC), hemoglobin (Hb), RBCC+beef meat; study 2 on heme, heme+fish, chicken, and beef; and study 3 on heme and heme+purified animal protein (casein, collagen, albumin). Study 1: the bioavailability of heme Fe from Hb was similar to heme only (∼13.0%). RBCC (25.0%) and RBCC+beef (21.3%) were found to be increased 2- and 1.6-fold, respectively, when compared with heme alone (p<0.05). Study 2: the bioavailability from heme alone (10.3%) was reduced (p<0.05) when it was blended with fish (7.1%) and chicken (4.9%), however it was unaffected by beef. Study 3: casein, collagen, and albumin did not affect the bioavailability of Fe. Proteins from animal source foods and their digestion products did not enhance heme Fe absorption. Copyright © 2015. Published by Elsevier Ltd.

  4. Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein.

    PubMed Central

    Requena, J R; Fu, M X; Ahmed, M U; Jenkins, A J; Lyons, T J; Baynes, J W; Thorpe, S R

    1997-01-01

    Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(N epsilon-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(N epsilon-lysino)propane (LML)] and lysine-HNE [3-(N epsilon-lysino)-4-hydroxynonan-l-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70-80% of total lysine loss during the reaction with MDA. LM and LML (0.002-0.12 mmol/ mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of < 1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo. PMID:9078279

  5. Measurements of heme relaxation and ligand recombination in strong magnetic fields.

    PubMed

    Zhang, Zhenyu; Benabbas, Abdelkrim; Ye, Xiong; Yu, Anchi; Champion, Paul M

    2009-08-06

    Heme cooling signals and diatomic ligand recombination kinetics are measured in strong magnetic fields (up to 10 T). We examined diatomic ligand recombination to heme model compounds (NO and CO), myoglobin (NO and O(2)), and horseradish peroxidase (NO). No magnetic field induced rate changes in any of the samples were observed within the experimental detection limit. However, in the case of CO binding to heme in glycerol and O(2) binding to myoglobin, we observe a small magnetic field dependent change in the early time amplitude of the optical response that is assigned to heme cooling. One possibility, consistent with this observation, is that there is a weak magnetic field dependence of the nonradiative branching ratio into the vibrationally hot electronic ground state during CO photolysis. Ancillary studies of the "spin-forbidden" CO binding reaction in a variety of heme compounds in the absence of magnetic field demonstrate a surprisingly wide range for the Arrhenius prefactor. We conclude that CO binding to heme is not always retarded by unfavorable spin selection rules involving a double spin-flip superexchange mechanism. In fact, it appears that the small prefactor ( approximately 10(9) s(-1)) found for CO rebinding to Mb may be anomalous, rather than the general rule for heme-CO rebinding. These results point to unresolved fundamental issues that underlie the theory of heme-ligand photolysis and rebinding.

  6. Heme Regulates Allosteric Activation of the Slo1 BK Channel

    PubMed Central

    Horrigan, Frank T.; Heinemann, Stefan H.; Hoshi, Toshinori

    2005-01-01

    Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531–535). Here we investigated the mechanism of the regulatory action of heme on heterologously expressed Slo1 BK channels by separating the influences of voltage and divalent cations. In the absence of divalent cations, heme generally decreased ionic currents by shifting the channel's G–V curve toward more depolarized voltages and by rendering the curve less steep. In contrast, gating currents remained largely unaffected by heme. Simulations suggest that a decrease in the strength of allosteric coupling between the voltage sensor and the activation gate and a concomitant stabilization of the open state account for the essential features of the heme action in the absence of divalent ions. At saturating levels of divalent cations, heme remained similarly effective with its influence on the G–V simulated by weakening the coupling of both Ca2+ binding and voltage sensor activation to channel opening. The results thus show that heme dampens the influence of allosteric activators on the activation gate of the Slo1 BK channel. To account for these effects, we consider the possibility that heme binding alters the structure of the RCK gating ring and thereby disrupts both Ca2+- and voltage-dependent gating as well as intrinsic stability of the open state. PMID:15955873

  7. The Elusive Palladium-Diazo Adduct Captured: Synthesis, Isolation and Structural Characterization of [(ArNHC-PPh2 )Pd(η2 -N2 C(Ph)CO2 Et)].

    PubMed

    Rull, Silvia G; Álvarez, Eleuterio; Fructos, Manuel R; Belderrain, Tomás R; Pérez, Pedro J

    2017-06-07

    The first example of a diazo palladium adduct is reported. The complexes [(ArNHC-PPh 2 )M(η 2 -N 2 C(Ph)CO 2 Et)] (M=Ni, 3; M=Pd, 4; ArNHC-PPh 2 =3-(2,6-diisopropylphenyl)-1-[(diphenylphosphino)ethyl]imidazol-2-ylidene) were prepared by ligand exchange with styrene-coordinated precursors [(ArNHC-PPh 2 )M(styrene)] (M=Ni, 1; M=Pd, 2). Complex 4 was fully characterized, including X-ray analyses; this constitutes the first example of a diazo adduct compound with palladium, thereby closing the gap between Groups 8 and 10 regarding this type of compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Acetaminophen Adducts Detected in Serum of Pediatric Patients With Acute Liver Failure.

    PubMed

    Alonso, Estella M; James, Laura P; Zhang, Song; Squires, Robert H

    2015-07-01

    Previous studies in patients with acute liver failure identified acetaminophen (APAP) protein adducts in the serum of 12% and 19% of children and adults, respectively, with acute liver failure of indeterminate etiology. This article details the testing of APAP adducts in a subset (n = 393) of patients with varied diagnoses in the Pediatric Acute Liver Failure Study Group (PALFSG). Serum samples were available from 393 participants included in the PALFSG registry. Adduct measurement was performed using validated methods. Participants were grouped by diagnostic category as known APAP overdose, known other diagnosis, and indeterminate etiology. Demographic and clinical characteristics and participant outcomes were compared by adduct status (positive or negative) within each group. APAP adduct testing was positive in 86% of participants with known APAP overdose, 6% with other known diagnoses, and 11% with an indeterminate cause of liver failure. Adduct-positive participants were noted to have marked elevation of serum alanine aminotransferase and aspartate aminotransferase coupled with total serum bilirubin that was significantly lower than adduct-negative patients. In the indeterminate group, adduct-positive patients had different outcomes than adduct-negative patients (P = 0.03); spontaneous survival was 16 of 21 (76%) in adduct-positive patients versus 75 of 169 (44%) in adduct-negative patients. Prognosis did not vary by adduct status in patients with known diagnoses. Furthermore, study is needed to understand the relation of APAP exposure, as determined by the presence of APAP adducts, to the clinical phenotype and outcomes of children with acute liver failure.

  9. Micronuclei related to anti-B[a]PDE-DNA adduct in peripheral blood lymphocytes of heavily polycyclic aromatic hydrocarbon-exposed nonsmoking coke-oven workers and controls.

    PubMed

    Pavanello, Sofia; Kapka, Lucyna; Siwinska, Ewa; Mielzyñska, Danuta; Bolognesi, Claudia; Clonfero, Erminio

    2008-10-01

    Micronuclei (MN) frequency associated to biologically effective dose of polycyclic aromatic hydrocarbons [PAH; anti-benzo[a]pyrene diolepoxide (B[a]PDE)-DNA] within the same subjects' peripheral blood lymphocytes (PBL) was evaluated. Study subjects were nonsmoking male Polish coke-oven workers (n=49) and matched controls (n=45) verified for PAH exposure by urinary 1-pyrenol. We found that coke-oven workers, heavily exposed to PAHs (80% workers exceeded the urinary 1-pyrenol biological exposure index value), presented significantly higher MN frequency in PBLs than controls (P<0.01). Substantial difference was also found for adduct levels in PBLs (P<0.01). Increase in MN levels was significantly related to anti-B[a]PDE-DNA formation, key adduct of the ultimate carcinogenic metabolite of B[a]P (n=94; r=0.47; P<0.001). The dose-response relationship was improved when subjects with adduct levels above the 3rd tertile (>or=4.35 adducts/10(8) nucleotides) were excluded (n=61; r=0.69; P<0.001). Saturation of adduct/MN formation at high levels may disturb the underlying relationship. Linear multiple regression analysis, without subjects of 3rd tertile adduct level (n=61), revealed that adduct formation (t=4.61; P<0.001), but not 1-pyrenol, was the significant determinant in increasing MN. In conclusion, the increase in MN frequency is mainly related to the specific anti-B[a]PDE-DNA formation within PBLs of the same subject. Our results substantiate, with the use of an early indicator of biological effect as well, that workers are at higher cancer risk than controls.

  10. Heme-mediated cell activation: the inflammatory puzzle of sickle cell anemia.

    PubMed

    Guarda, Caroline Conceição da; Santiago, Rayra Pereira; Fiuza, Luciana Magalhães; Aleluia, Milena Magalhães; Ferreira, Júnia Raquel Dutra; Figueiredo, Camylla Vilas Boas; Yahouedehou, Setondji Cocou Modeste Alexandre; Oliveira, Rodrigo Mota de; Lyra, Isa Menezes; Gonçalves, Marilda de Souza

    2017-06-01

    Hemolysis triggers the onset of several clinical manifestations of sickle cell anemia (SCA). During hemolysis, heme, which is derived from hemoglobin (Hb), accumulates due to the inability of detoxification systems to scavenge sufficiently. Heme exerts multiple harmful effects, including leukocyte activation and migration, enhanced adhesion molecule expression by endothelial cells and the production of pro-oxidant molecules. Area covered: In this review, we describe the effects of heme on leukocytes and endothelial cells, as well as the features of vascular endothelial cells related to vaso-occlusion in SCA. Expert commentary: Free Hb, heme and iron, potent cytotoxic intravascular molecules released during hemolysis, can exacerbate, modulate and maintain the inflammatory response, a main feature of SCA. Endothelial cells in the vascular environment, as well as leukocytes, can become activated via the molecular signaling effects of heme. Due to the hemolytic nature of SCA, hemolysis represents an interesting therapeutic target for heme-scavenging purposes.

  11. Control of metazoan heme homeostasis by a conserved multidrug resistance protein

    PubMed Central

    Korolnek, Tamara; Zhang, Jianbing; Beardsley, Simon; Scheffer, George L; Hamza, Iqbal

    2014-01-01

    Several lines of evidence predict that specific pathways must exist in metazoans for the escorted movement of heme, an essential but cytotoxic iron-containing organic ring, within and between cells and tissues, but these pathways remain obscure. In Caenorhabditis elegans, embryonic development is inextricably dependent on both maternally-derived heme and environmentally-acquired heme. Here, we show that the multidrug resistance protein, MRP-5/ABCC5, likely acts as a heme exporter and targeted depletion of mrp-5 in the intestine causes embryonic lethality. Transient knockdown of mrp5 in zebrafish leads to morphological defects and failure to hemoglobinize red blood cells. MRP5 resides on the plasma membrane and endosomal compartments and regulates export of cytosolic heme. Together, our genetic studies in worms, yeast, zebrafish, and mammalian cells identify a conserved, physiological role for a multidrug resistance protein in regulating systemic heme homeostasis. We envision other MRP family members may play similar unanticipated physiological roles in animal development. PMID:24836561

  12. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    DOE PAGES

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; ...

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 10 8 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 10 8 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid reportmore » provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.« less

  13. Biotin deficiency inhibits heme synthesis and impairs mitochondria in human lung fibroblasts.

    PubMed

    Atamna, Hani; Newberry, Justin; Erlitzki, Ronit; Schultz, Carla S; Ames, Bruce N

    2007-01-01

    Four of the 5 biotin-dependent carboxylases (BDC) are in the mitochondria. BDC replace intermediates in the Krebs [tricarboxylic acid (TCA)] cycle that are regularly removed for the synthesis of key metabolites such as heme or amino acids. Heme, unlike amino acids, is not recycled to regenerate these intermediates, is not utilized from the diet, and must be synthesized in situ. We studied whether biotin deficiency (BD) lowers heme synthesis and whether mitochondria would be disrupted. Biotin-deficient medium was prepared by using bovine serum stripped of biotin with charcoal/dextran or avidin. Biotin-deficient primary human lung fibroblasts (IMR90) lost their BDC and senesced before biotin-sufficient cells. BD caused heme deficiency; there was a decrease in heme content and heme synthesis, and biotin-deficient cells selectively lost mitochondrial complex IV, which contains heme-a. Loss of complex IV, which is part of the electron transport chain, triggered oxidant release and oxidative damage, hallmarks of heme deficiency. Restoring biotin to the biotin-deficient medium prevented the above changes. Old cells were more susceptible to biotin shortage than young cells. These findings highlight the biochemical connection among biotin, heme, and iron metabolism, and the mitochondria, due to the role of biotin in maintaining the biochemical integrity of the TCA cycle. The findings are discussed in relation to aging and birth defects in humans.

  14. Nitrosoamphetamine binding to myoglobin and hemoglobin: Crystal structure of the H64A myoglobin-nitrosoamphetamine adduct

    PubMed Central

    Wang, Bing; Powell, Samantha M.; Guan, Ye; Xu, Nan; Thomas, Leonard M.; Richter-Addo, George B.

    2017-01-01

    N-hydroxyamphetamine (AmphNHOH) is an oxidative metabolite of amphetamine and methamphetamine. It is known to form inhibitory complexes upon binding to heme proteins. However, its interactions with myoglobin (Mb) and hemoglobin (Hb) have not been reported. We demonstrate that the reactions of AmphNHOH with ferric Mb and Hb generate the respective heme-nitrosoamphetamine derivatives characterized by UV-vis spectroscopy. We have determined the X-ray crystal structure of the H64A Mb-nitrosoamphetamine complex to 1.73 Å resolution. The structure reveals the N-binding of the nitroso-d-amphetamine isomer, with no significant H-bonding interactions between the ligand and the distal pocket amino acid residues. PMID:28450187

  15. Spectroscopic studies on peptides and proteins with cysteine-containing heme regulatory motifs (HRM).

    PubMed

    Schubert, Erik; Florin, Nicole; Duthie, Fraser; Henning Brewitz, H; Kühl, Toni; Imhof, Diana; Hagelueken, Gregor; Schiemann, Olav

    2015-07-01

    The role of heme as a cofactor in enzymatic reactions has been studied for a long time and in great detail. Recently it was discovered that heme can also serve as a signalling molecule in cells but so far only few examples of this regulation have been studied. In order to discover new potentially heme-regulated proteins, we screened protein sequence databases for bacterial proteins that contain sequence features like a Cysteine-Proline (CP) motif, which is known for its heme-binding propensity. Based on this search we synthesized a series of these potential heme regulatory motifs (HRMs). We used cw EPR spectroscopy to investigate whether these sequences do indeed bind to heme and if the spin state of heme is changed upon interaction with the peptides. The corresponding proteins of two potential HRMs, FeoB and GlpF, were expressed and purified and their interaction with heme was studied by cw EPR and UV-Visible (UV-Vis) spectroscopy. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Analysis of the electrochemistry of hemes with Ems spanning 800 mV

    PubMed Central

    Zheng, Zhong; Gunner, M. R.

    2009-01-01

    The free energy of heme reduction in different proteins is found to vary over more than 18 kcal/mol. It is a challenge to determine how proteins manage to achieve this enormous range of Ems with a single type of redox cofactor. Proteins containing 141 unique hemes of a-, b-, and c-type, with bis-His, His-Met, and aquo-His ligation were calculated using Multi-Conformation Continuum Electrostatics (MCCE). The experimental Ems range over 800 mV from −350 mV in cytochrome c3 to 450 mV in cytochrome c peroxidase (vs. SHE). The quantitative analysis of the factors that modulate heme electrochemistry includes the interactions of the heme with its ligands, the solvent, the protein backbone, and sidechains. MCCE calculated Ems are in good agreement with measured values. Using no free parameters the slope of the line comparing calculated and experimental Ems is 0.73 (R2 = 0.90), showing the method accounts for 73% of the observed Em range. Adding a +160 mV correction to the His-Met c-type hemes yields a slope of 0.97 (R2 = 0.93). With the correction 65% of the hemes have an absolute error smaller than 60 mV and 92% are within 120 mV. The overview of heme proteins with known structures and Ems shows both the lowest and highest potential hemes are c-type, whereas the b-type hemes are found in the middle Em range. In solution, bis-His ligation lowers the Em by ≈205 mV relative to hemes with His-Met ligands. The bis-His, aquo-His, and His-Met ligated b-type hemes all cluster about Ems which are ≈200 mV more positive in protein than in water. In contrast, the low potential bis-His c-type hemes are shifted little from in solution, whereas the high potential His-Met c-type hemes are raised by ≈300 mV from solution. The analysis shows that no single type of interaction can be identified as the most important in setting heme electrochemistry in proteins. For example, the loss of solvation (reaction field) energy, which raises the Em, has been suggested to be a major factor in

  17. Heme inhibition of ferrisiderophore reductase in Bacillus subtilis.

    PubMed

    Lodge, J S; Gaines, C G; Arceneaux, J E; Byers, B R

    1982-11-01

    Heme was a noncompetitive inhibitor (apparent K(i) and K'(i) = 0.043 mM) of a ferrisiderophore reductase purified from Bacillus subtilis; protoporphyrin IX had no effect. The cellular level of heme may partly regulate the function of this reductase to yield a controlled flow of iron into metabolism.

  18. The Bordetella bhu Locus Is Required for Heme Iron Utilization

    PubMed Central

    Vanderpool, Carin K.; Armstrong, Sandra K.

    2001-01-01

    Bordetella pertussis and Bordetella bronchiseptica are capable of obtaining iron from hemin and hemoglobin. Genes encoding a putative bacterial heme iron acquisition system (bhu, for Bordetella heme utilization) were identified in a B. pertussis genomic sequence database, and the corresponding DNA was isolated from a virulent strain of B. pertussis. A B. pertussis bhuR mutant, predicted to lack the heme outer membrane receptor, was generated by allelic exchange. In contrast to the wild-type strain, bhuR mutant PM5 was incapable of acquiring iron from hemin and hemoglobin; genetic complementation of PM5 with the cloned bhuRSTUV genes restored heme utilization to wild-type levels. In parallel studies, B. bronchiseptica bhu sequences were also identified and a B. bronchiseptica bhuR mutant was constructed and confirmed to be defective in heme iron acquisition. The wild-type B. bronchiseptica parent strain grown under low-iron conditions produced the presumptive BhuR protein, which was absent in the bhuR mutant. Furthermore, production of BhuR by iron-starved B. bronchiseptica was markedly enhanced by culture in hemin-supplemented medium, suggesting that these organisms sense and respond to heme in the environment. Analysis of the genetic region upstream of the bhu cluster identified open reading frames predicted to encode homologs of the Escherichia coli ferric citrate uptake regulators FecI and FecR. These putative Bordetella regulators may mediate heme-responsive positive transcriptional control of the bhu genes. PMID:11418569

  19. Intramolecular and intermolecular N-H...C(5)H(5)(-) hydrogen bonding in magnesocene adducts of alkylamines. Implications for chemical vapor deposition using cyclopentadienyl source compounds.

    PubMed

    Xia, Aibing; Heeg, Mary Jane; Winter, Charles H

    2002-09-25

    Magnesocene adducts of alkylamines were prepared and characterized. Treatment of 3-amino-2,4-dimethylpentane, isopropylamine, tert-butylamine, benzylamine, or N-isopropylbenzylamine with magnesocene at ambient temperature in toluene afforded the amine adducts Cp2Mg(NH2CH(CH(CH3)2)2) (91%), Cp2Mg(NH2iPr) (80%), Cp2Mg(NH2tBu) (67%), Cp2Mg(NH2CH2Ph) (80%), and Cp2Mg(NH(CH(CH3)2)(CH2C6H5)) (91%). These adducts are stable at ambient temperature, and Cp2Mg(NH2CH(CH(CH3)2)2) can be sublimed at 60 degrees C/0.05 Torr without any evidence for reversion to magnesocene. The solid-state structure of Cp2Mg(NH2CH(CH(CH3)2)2) contains eta5- and eta2-cyclopentadienyl ligands, and the hydrogen atoms on the coordinated amine nitrogen atom participate in intramolecular and intermolecular hydrogen bonding to the eta2-cyclopentadienyl ligand. The observed hydrogen bonding is relevant to the path by which cyclopentadiene is eliminated from metal cyclopentadienyl CVD source compounds during film growth employing acidic element hydrides as co-reactants.

  20. Malondialdehyde-acetaldehyde (MAA) adducted protein inhalation causes lung injury

    PubMed Central

    Wyatt, T. A.; Kharbanda, K. K.; McCaskill, M. L.; Tuma, D. J.; Yanov, D.; DeVasure, J.; Sisson, J. H.

    2011-01-01

    In addition to cigarette smoking, alcohol exposure is also associated with increased lung infections and decreased mucociliary clearance. However, little research has been conducted on the combination effects of alcohol and cigarette smoke on lungs. Previously, we have demonstrated in a mouse model that the combination of cigarette smoke and alcohol exposure results in the formation of a very stable hybrid malondialdehyde-acetaldehyde (MAA)-adducted protein in the lung. In in vitro studies, MAA-adducted protein stimulates bronchial epithelial cell interleukin-8 via the activation of protein kinase C epsilon (PKCε). We hypothesized that direct MAA-adducted protein exposure in the lungs would mimic such a combination of smoke and alcohol exposure leading to airway inflammation. To test this hypothesis, C57BL/6J female mice were intranasally instilled with either saline, 30 µL of 50 µg/mL BSA-MAA, or unadducted BSA for up to 3 wk. Likewise, human lung surfactant proteins A and D (SPA, SPD) were purified from human pulmonary proteinosis lung lavage fluid and successfully MAA-adducted in vitro. Similar to BSA-MAA, SPD-MAA was instilled into mouse lungs. Lungs were necropsied and assayed for histopathology, PKCε activation, and lung lavage chemokines. In control mice instilled with saline, normal lungs had few inflammatory cells. No significant effects were observed in un-adducted BSA- or SPD-instilled mice. However, when mice were instilled with BSA-MAA or SPD-MAA for 3 wk, a significant peribronchiolar localization of inflammatory cells was observed. Both BSA-MAA and SPD-MAA stimulated increased lung lavage neutrophils and caused a significant elevation in the chemokine, KC, which is a functional homologue to human interleukin-8. Likewise, MAA-adducted protein stimulated the activation of airway and lung slice PKCε. These data support that MAA-adducted protein induces a pro-inflammatory response in the lungs and that lung surfactant protein is a biologically

  1. INVESTIGATION OF THE USE OF ISOCYANATE ADDUCTS IN URETHANE FOAM

    DTIC Science & Technology

    The fea ibility of a one-can, delayed action foaming system was successfully d monstra e . A literary arch revealed that y co poun s po e ing...ctive ydrogens may react with organic isocyanates to produce heat-s nsitive adducts. T HESE D UCT YI LD BACK THE ORIGINAL ISOCY N TE AND THE

  2. Hemoglobin adducts as biomarkers of 1,3-butadiene in occupationally low exposed Italian workers and a few diesel-exposed miners.

    PubMed

    Begemann, P; Upton, P B; Ranasinghe, A; Swenberg, J A; Soleo, L; Vimercati, L; Gelormini, A; Fustinoni, S; Zwirner-Baier, I; Neumann, H G

    2001-06-01

    Hemoglobin adducts were determined as biomarkers of 1,3-butadiene (BD) in 30 workers and 10 controls from an Italian BD plant and in 14 diesel-exposed miners. N-(2,3,4-trihydroxybutyl)valine (THBVal), an N-terminal valine globin adduct of reactive butadiene metabolites, was analyzed by gas chromatography/high resolution mass spectrometry after a modified Edman degradation and further acetylation. The BD exposure for the plant workers was 31 microg/m(3) (personal sampling). Whereas there was no detectable difference in hemoglobin adduct levels (range 17.7-61.4 pmol/g globin) between the total group of exposed and controls, slight but significant differences could be found between two subgroups of workers from different production units as well as one subgroup and controls (P<0.05), between smoking (n=13) and non-smoking exposed workers (n=17; P=0.066) as well as between smoking exposed workers and controls (P=0.055). Adduct levels of the miners (all non-smokers) were in the same range as those of the Italian BD-workers and controls. The internal exposure and strain measured by THBVal levels resulting from a very low occupational BD exposure was in the range of the contribution of moderate smoking.

  3. A Sandwich ELISA for Adducts of Polycyclic Aromatic Hydrocarbons with Human Serum Albumin1

    PubMed Central

    Chung, Ming Kei; Riby, Jacques; Li, He; Iavarone, Anthony T.; Williams, Evan R.; Zheng, Yuxin; Rappaport, Stephen M.

    2010-01-01

    Adducts of benzo[α]pyrene-diolepoxide (BPDE)2 with blood nucleophiles have been used as biomarkers of exposure to polycyclic aromatic hydrocarbons (PAHs). The most popular such assay is a competitive ELISA which employs monoclonal antibody 8E11 to detect benzo[α]pyrene tetrols following hydrolysis of BPDE adducts from lymphocyte DNA or human serum albumin (HSA). Here we use 8E11 as the capture antibody in a sandwich ELISA to detect BPDE-HSA adducts directly in 1 mg samples of HSA or 20 μL of serum/plasma. The assay employs an anti-HSA antibody for detection, which is amplified by an avidin/biotinylated horseradish peroxidase complex. The sandwich ELISA has advantages of specificity and simplicity and is about 10 times more sensitive than the competitive ELISA. To validate the assay, HSA samples were assayed from three populations with known high (coke-oven workers), medium (steel-factory control workers), and low (volunteer subjects) PAH exposures (n = 30). The respective geometric mean levels of BPDE-HSA adducts, i.e., 67.8, 14.7 and 1.93 ng/mg HSA (1,010, 220 and 28.9 fmol BPDE equivalents/mg HSA), were significantly different (p < 0.05). The sandwich ELISA will be useful for screening PAH exposures in large epidemiologic studies and can be extended to other adducts for which capture antibodies are available. PMID:20083082

  4. Investigations of ultrafast ligand rebinding to heme and heme proteins using temperature and strong magnetic field perturbations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu

    This thesis is written to summarize investigations of the mechanisms that underlie the kinetics of diatomic ligand rebinding to the iron atom of the heme group, which is chelated inside heme proteins. The family of heme proteins is a major object of studies for several branches of scientific research activity. Understanding the ligand binding mechanisms and pathways is one of the major goals for biophysics. My interests mainly focus on the physics of this ligand binding process. Therefore, to investigate the problem, isolated from the influence of the protein matrix, Fe-protophorphyrin IX is chosen as the prototype system in my studies. Myoglobin, the most extensively and intensively studied protein, is another ideal system that allows coupling the protein polypeptide matrix into the investigation. A technique to synchro-lock two laser pulse trains electronically is applied to our pump-probe spectroscopic studies. Based on this technique, a two color, fs/ps pump-probe system is developed which extends the temporal window for our investigation to 13ns and fills a gap existing in previous pump-probe investigations. In order to apply this newly-developed pump-probe laser system to implement systematic studies on the kinetics of diatomic ligand (NO, CO, O2) rebinding to heme and heme proteins, several experimental setups are utilized. In Chapter 1, the essential background knowledge, which helps to understand the iron-ligand interaction, is briefly described. In Chapter 2, in addition to a description of the preparation protocols of protein samples and details of the method for data analysis, three home-made setups are described, which include: a picosecond laser regenerative amplifier, a pump-probe application along the bore (2-inch in diameter) of a superconducting magnet and a temperature-controllable cryostat for spinning sample cell. Chapter 3 presents high magnetic field studies of several heme-ligand or protein-ligand systems. Pump-probe spectroscopy is used to

  5. Effect of combined actions of hip adduction/abduction on the force generation and maintenance of pelvic floor muscles in healthy women

    PubMed Central

    Amorim, Amanda C.; Cacciari, Licia P.; Passaro, Anice C.; Silveira, Simone R. B.; Amorim, Cesar F.; Loss, Jefferson F.

    2017-01-01

    Pelvic floor muscle (PFM) force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs) while performing three different tasks: (a) isolated PFM contraction; (b) PFM contraction combined with hip adduction (30% and 50% maximum hip force); and (c) PFM contraction combined with hip abduction (30% and 50% maximum hip force). Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Δ Adduction and Δ Abduction) for all variables: Maximum force (N), instant of maximum-force occurrence (s), mean force in an 8-second window (N), and PFM force loss (N.s). We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p>.05). PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance. PMID:28542276

  6. Effect of combined actions of hip adduction/abduction on the force generation and maintenance of pelvic floor muscles in healthy women.

    PubMed

    Amorim, Amanda C; Cacciari, Licia P; Passaro, Anice C; Silveira, Simone R B; Amorim, Cesar F; Loss, Jefferson F; Sacco, Isabel C N

    2017-01-01

    Pelvic floor muscle (PFM) force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs) while performing three different tasks: (a) isolated PFM contraction; (b) PFM contraction combined with hip adduction (30% and 50% maximum hip force); and (c) PFM contraction combined with hip abduction (30% and 50% maximum hip force). Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Δ Adduction and Δ Abduction) for all variables: Maximum force (N), instant of maximum-force occurrence (s), mean force in an 8-second window (N), and PFM force loss (N.s). We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p>.05). PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance.

  7. In vitro screening of 50 highly prescribed drugs for thiol adduct formation--comparison of potential for drug-induced toxicity and extent of adduct formation.

    PubMed

    Gan, Jinping; Ruan, Qian; He, Bing; Zhu, Mingshe; Shyu, Wen C; Humphreys, W Griffith

    2009-04-01

    Reactive metabolite formation has been associated with drug-induced liver, skin, and hematopoietic toxicity of many drugs that has resulted in serious clinical toxicity, leading to clinical development failure, black box warnings, or, in some cases, withdrawal from the market. In vitro and in vivo screening for reactive metabolite formation has been proposed and widely adopted in the pharmaceutical industry with the aim of minimizing the property and thus the risk of drug-induced toxicity (DIT). One of the most common screening methods is in vitro thiol trapping of reactive metabolites. Although it is well-documented that many hepatotoxins form thiol adducts, there is no literature describing the adduct formation potential of safer drugs that are widely used. The objective of this study was to quantitatively assess the thiol adduct formation potential of 50 drugs (10 associated with DIT and 40 not associated) and document apparent differences in adduct formation between toxic and safer drugs. Dansyl glutathione was used as a trapping agent to aid the quantitation of adducts following in vitro incubation of drugs with human liver microsomes in the presence and absence of NADPH. Metabolic turnover of these drugs was also monitored by LC/UV. Overall, 15 out of the 50 drugs screened formed detectable levels of thiol adducts. There were general trends toward more positive findings in the DIT group vs the non-DIT group. These trends became more marked when the relative amount of thiol adducts was taken into account and improved further when dose and total daily reactive metabolite burdens were considered. In conclusion, there appears to be a general trend between the extent of thiol adduct formation and the potential for DIT, which would support the preclinical measurement and minimization of the property through screening of thiol adduct formation as part of an overall discovery optimization paradigm.

  8. Effects of alkyl chain length and substituent pattern of fullerene bis-adducts on film structures and photovoltaic properties of bulk heterojunction solar cells.

    PubMed

    Tao, Ran; Umeyama, Tomokazu; Kurotobi, Kei; Imahori, Hiroshi

    2014-10-08

    A series of alkoxycarbonyl-substituted dihydronaphthyl-based [60]fullerene bis-adduct derivatives (denoted as C2BA, C4BA, and C6BA with the alkyl chain of ethyl, n-butyl, and n-hexyl, respectively) have been synthesized to investigate the effects of alkyl chain length and substituent pattern of fullerene bis-adducts on the film structures and photovoltaic properties of bulk heterojunction polymer solar cells. The shorter alkyl chain length caused lower solubility of the fullerene bis-adducts (C6BA > C4BA > C2BA), thereby resulting in the increased separation difficulty of respective bis-adduct isomers. The device performance based on poly(3-hexylthiophene) (P3HT) and the fullerene bis-adduct regioisomer mixtures was enhanced by shortening the alkyl chain length. When using the regioisomerically separated fullerene bis-adducts, the devices based on trans-2 and a mixture of trans-4 and e of C4BA exhibited the highest power conversion efficiencies of ca. 2.4%, which are considerably higher than those of the C6BA counterparts (ca. 1.4%) and the C4BA regioisomer mixture (1.10%). The film morphologies as well as electron mobilities of the P3HT:bis-adduct blend films were found to affect the photovoltaic properties considerably. These results reveal that the alkyl chain length and substituent pattern of fullerene bis-adducts significantly influence the photovoltaic properties as well as the film structures of bulk heterojunction solar cells.

  9. The interaction of heme with plakortin and a synthetic endoperoxide analogue: new insights into the heme-activated antimalarial mechanism

    NASA Astrophysics Data System (ADS)

    Persico, Marco; Fattorusso, Roberto; Taglialatela-Scafati, Orazio; Chianese, Giuseppina; de Paola, Ivan; Zaccaro, Laura; Rondinelli, Francesca; Lombardo, Marco; Quintavalla, Arianna; Trombini, Claudio; Fattorusso, Ernesto; Fattorusso, Caterina; Farina, Biancamaria

    2017-04-01

    In the present work we performed a combined experimental and computational study on the interaction of the natural antimalarial endoperoxide plakortin and its synthetic analogue 4a with heme. Obtained results indicate that the studied compounds produce reactive carbon radical species after being reductively activated by heme. In particular, similarly to artemisinin, the formation of radicals prone to inter-molecular reactions should represent the key event responsible for Plasmodium death. To our knowledge this is the first experimental investigation on the reductive activation of simple antimalarial endoperoxides (1,2-dioxanes) by heme and results were compared to the ones previously obtained from the reaction with FeCl2. The obtained experimental data and the calculated molecular interaction models represent crucial tools for the rational optimization of our promising class of low-cost synthetic antimalarial endoperoxides.

  10. A novel synthesis of malondialdehyde adducts of deoxyguanosine, deoxyadenosine, and deoxycytidine.

    PubMed

    Wang, Hao; Marnett, Lawrence J; Harris, Thomas M; Rizzo, Carmelo J

    2004-02-01

    Malondialdehyde (MDA) is a mutagenic product of lipid peroxidation and prostaglandin biosynthesis. MDA reacts with DNA bases to produce adducts of deoxyguanosine (M1G), deoxyadenosine (M1A), and deoxycytidine (M1C). A novel synthesis of these MDA nucleoside adducts has been developed, which significantly improves their availability. For the deoxyguanosine adduct, M1G, an amine equivalent to MDA, 4-amino-3-(phenylselenyl)butane-1,2-diol, was reacted with 2-fluoro-O6-(2-(trimethylsilyl)ethyl)-2'-deoxyinosine via a nucleophilic aromatic substitution reaction followed by acid hydrolysis of the O6-protecting group to give an N2-modified deoxyguanosine intermediate. Periodate oxidation of this intermediate under slightly acidic conditions gave M1G in good overall yield via cleavage of the vicinal diol unit and concomitant oxidation of the phenylselenide group to the corresponding selenoxide and syn beta-elimination. M1A and M1C were synthesized by the same strategy starting from 6-chloropurine 2'-deoxyriboside and 1-(2-deoxy-beta-d-erythro-pentofuranosyl)-4-(1H-1,2,4-triazol-1-yl)-2-(1H)pyrimidinone, respectively. An advantage of this approach is that similar chemistry has been shown to be directly applicable to the synthesis of site specifically adducted oligonucleotides containing activated nucleobases such as those used in this study. This strategy may offer an improved synthesis to oligonucleotides containing M1G and a feasible approach to M1A and M1C containing oligonucleotides.

  11. Nuclear magnetic resonance at the picomole level of a DNA adduct.

    PubMed

    Kautz, Roger; Wang, Poguang; Giese, Roger W

    2013-10-21

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the picomole level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene 5'-monophosphate (AAF-dGMP), in 1.5 μL of D₂O with 10% methanol-d₄, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a severalfold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample to the observed volume produce the full theoretical mass sensitivity of a microcoil, comparable to that of a microcryo probe. With 80 ng, an NMR spectrum acquired over 40 h showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a signal-to-noise ratio of at least 10, despite broadening due to previously noted effects of conformational exchange. Even with this broadening to 5 Hz, a two-dimensional total correlation spectroscopy spectrum was acquired on 1.6 μg in 18 h. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct.

  12. Diet-related DNA adduct formation in relation to carcinogenesis.

    PubMed

    Hemeryck, Lieselot Y; Vanhaecke, Lynn

    2016-08-01

    The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Urinary Metabolites of the Dietary Carcinogen PhIP are Predictive of Colon DNA Adducts After a Low Dose Exposure in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malfatti, M; Dingley, K; Nowell, S

    2006-04-28

    Epidemiologic evidence indicates that exposure to heterocyclic amines (HAs) in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of HAs which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of HA bioactivation in humans, the most mass abundant HA, 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers were administered a dietary relevant dose of [{sup 14}C]PhIP 48-72 h prior to surgery to remove colon tumors. Urine was collected for 24 h after dosingmore » for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All ten subjects were phenotyped for CYP1A2, NAT2, and SULT1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N{sup 2}-glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide, had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group.« less

  14. Accommodation of an N-(deoxyguanosin-8-yl)-2-acetylaminofluorene adduct in the active site of human DNA polymerase ι: Hoogsteen or Watson-Crick base pairing?†

    PubMed Central

    Donny-Clark, Kerry; Shapiro, Robert; Broyde, Suse

    2009-01-01

    Bypass across DNA lesions by specialized polymerases is essential for maintenance of genomic stability. Human DNA polymerase ι (polι) is a bypass polymerase of the Y family. Crystal structures of polι suggest that Hoogsteen base pairing is employed to bypass minor groove DNA lesions, placing them on the spacious major groove side of the enzyme. Primer extension studies have shown that polι is also capable of error-free nucleotide incorporation opposite the bulky major groove adduct N-(deoxyguanosin-8-yl)-2-acetyl-aminofluorene (dG-AAF). We present molecular dynamics simulations and free energy calculations suggesting that Watson-Crick base pairing could be employed in polι for bypass of dG-AAF. In polι with Hoogsteen paired dG-AAF the bulky AAF moiety would reside on the cramped minor groove side of the template. The Hoogsteen-capable conformation distorts the active site, disrupting interactions necessary for error-free incorporation of dC opposite the lesion. Watson-Crick pairing places the AAF rings on the spacious major groove side, similar to the position of minor groove adducts observed with Hoogsteen pairing. Watson-Crick paired structures show a well-ordered active site, with a near reaction-ready ternary complex. Thus our results suggest that polι would utilize the same spacious region for lesion bypass of both major and minor groove adducts. Therefore, purine adducts with bulk on the minor groove side would use Hoogsteen pairing, while adducts with the bulky lesion on the major groove side would utilize Watson-Crick base pairing as indicated by our MD simulations for dG-AAF. This suggests the possibility of an expanded role for polι in lesion bypass. PMID:19072536

  15. TMEM14C is required for erythroid mitochondrial heme metabolism

    PubMed Central

    Yien, Yvette Y.; Robledo, Raymond F.; Schultz, Iman J.; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel E.; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J.; Cooney, Jeffrey D.; Pierce, Eric L.; Mohler, Kyla; Dailey, Tamara A.; Miyata, Non; Kingsley, Paul D.; Garone, Caterina; Hattangadi, Shilpa M.; Huang, Hui; Chen, Wen; Keenan, Ellen M.; Shah, Dhvanit I.; Schlaeger, Thorsten M.; DiMauro, Salvatore; Orkin, Stuart H.; Cantor, Alan B.; Palis, James; Koehler, Carla M.; Lodish, Harvey F.; Kaplan, Jerry; Ward, Diane M.; Dailey, Harry A.; Phillips, John D.; Peters, Luanne L.; Paw, Barry H.

    2014-01-01

    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias. PMID:25157825

  16. Sampangine inhibits heme biosynthesis in both yeast and human

    USDA-ARS?s Scientific Manuscript database

    The azaoxoaporphine alkaloid sampangine exhibits strong antiproliferation activity in various organisms. Previous studies suggested that it somehow affects heme metabolism and stimulates production of reactive oxygen species (ROS). In this study, we show that inhibition of heme biosynthesis is the p...

  17. The Effect of Plant Proteins Derived from Cereals and Legumes on Heme Iron Absorption.

    PubMed

    Weinborn, Valerie; Pizarro, Fernando; Olivares, Manuel; Brito, Alex; Arredondo, Miguel; Flores, Sebastián; Valenzuela, Carolina

    2015-10-30

    The aim of this study is to determine the effect of proteins from cereals and legumes on heme iron (Fe) absorption. The absorption of heme Fe without its native globin was measured. Thirty adult females participated in two experimental studies (15 per study). Study I focused on the effects of cereal proteins (zein, gliadin and glutelin) and study II on the effects of legume proteins (soy, pea and lentil) on heme Fe absorption. When heme was given alone (as a control), study I and II yielded 6.2% and 11.0% heme absorption (p > 0.05). In study I, heme Fe absorption was 7.2%, 7.5% and 5.9% when zein, gliadin and glutelin were added, respectively. From this, it was concluded that cereal proteins did not affect heme Fe absorption. In study II, heme Fe absorption was 7.3%, 8.1% and 9.1% with the addition of soy, pea and lentil proteins, respectively. Only soy proteins decreased heme Fe absorption (p < 0.05). These results suggest that with the exception of soy proteins, which decreased absorption, proteins derived from cereals and legumes do not affect heme Fe absorption.

  18. Regulation of a glutamyl-tRNA synthetase by the heme status

    PubMed Central

    Levicán, Gloria; Katz, Assaf; de Armas, Merly; Núñez, Harold; Orellana, Omar

    2007-01-01

    Glutamyl-tRNA (Glu-tRNA), formed by Glu-tRNA synthetase (GluRS), is a substrate for protein biosynthesis and tetrapyrrole formation by the C5 pathway. In this route Glu-tRNA is transformed to δ-aminolevulinic acid, the universal precursor of tetrapyrroles (e.g., heme and chlorophyll) by the action of Glu-tRNA reductase (GluTR) and glutamate semialdehyde aminotransferase. GluTR is a target of feedback regulation by heme. In Acidithiobacillus ferrooxidans, an acidophilic bacterium that expresses two GluRSs (GluRS1 and GluRS2) with different tRNA specificity, the intracellular heme level varies depending on growth conditions. Under high heme requirement for respiration increased levels of GluRS and GluTR are observed. Strikingly, when intracellular heme is in excess, the cells respond by a dramatic decrease of GluRS activity and the level of GluTR. The recombinant GluRS1 enzyme is inhibited in vitro by hemin, but NADPH restores its activity. These results suggest that GluRS plays a major role in regulating the cellular level of heme. PMID:17360620

  19. [Determination of normal reference value of pyrrole adducts in urine in young people in a university in Shandong, China].

    PubMed

    Wang, Hui; Wang, Yiping; Zhou, Zhenwei; Wang, Shuo; Yin, Hongyin; Xie, Keqin

    2015-06-01

    To determine the normal reference value of pyrrole adducts in urine in young people in a university in Shandong, China, and to provide a reliable basis for the clinical diagnosis of n-hexane poisoning. A total of 240 college students were randomly selected. After excluding 32 ineligible students, 208 subjects were included in this study, consisting of 104 males and 104 females, with a mean age of 21?3 years (range: 18 to 24 years). Morning urine was collected from each subject. The content of pyrrole adducts was determined by chromatometry. The content of pyrrole adducts in both male and female obeyed a positively skewed distribution. The median level of pyrrole adducts in male subjects was 0.88 nmol/ml, and the reference value was 0.14-3.92 nmol/ml. The median level of pyrrole adducts in female subjects was 0.93 nmol/ ml, and the reference value was 0.09-3.27 nmol/ml. Student's t test identified no statistical difference in pyrrole adduct level between male and female subjects (t=0.15, P>0.05). The median level of pyrrole adducts in normal young people is 0.91 nmol/ml, and the reference value is 0.11-3.95 nmol/ml.

  20. Excess Substrate is a Spectator Ligand in a Rhodium-Catalyzed Asymmetric [2+2+2] Cycloaddition of Alkenyl Isocyanates with Tolanes

    PubMed Central

    Oinen, Mark Emil; Yu, Robert T.; Rovis, Tomislav

    2009-01-01

    Excess substrate has been identified as an unintended spectator ligand affecting enantioselectivity in the [2+2+2] cycloaddition of alkenyl isocyanates with tolanes. Replacement of excess substrate with an exogenous additive affords products with consistent and higher ee’s. The increase in enantioselectivity is the result of a change in composition of a proposed rhodium(III) intermediate on the catalytic cycle. The net result is a rational probe of a short-lived rhodium(III) intermediate, and gives insight that may have applications in many rhodium catalyzed reactions. PMID:19803471

  1. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders

    PubMed Central

    Smith, Ann; McCulloh, Russell J.

    2015-01-01

    The goal here is to describe our current understanding of heme metabolism and the deleterious effects of “free” heme on immunological processes, endothelial function, systemic inflammation, and various end-organ tissues (e.g., kidney, lung, liver, etc.), with particular attention paid to the role of hemopexin (HPX). Because heme toxicity is the impetus for much of the pathology in sepsis, sickle cell disease (SCD), and other hemolytic conditions, the biological importance and clinical relevance of HPX, the predominant heme binding protein, is reinforced. A perspective on the function of HPX and haptoglobin (Hp) is presented, updating how these two proteins and their respective receptors act simultaneously to protect the body in clinical conditions that entail hemolysis and/or systemic intravascular (IVH) inflammation. Evidence from longitudinal studies in patients supports that HPX plays a Hp-independent role in genetic and non-genetic hemolytic diseases without the need for global Hp depletion. Evidence also supports that HPX has an important role in the prognosis of complex illnesses characterized predominantly by the presence of hemolysis, such as SCD, sepsis, hemolytic-uremic syndrome, and conditions involving IVH and extravascular hemolysis (EVH), such as that generated by extracorporeal circulation during cardiopulmonary bypass (CPB) and from blood transfusions. We propose that quantitating the amounts of plasma heme, HPX, Hb-Hp, heme-HPX, and heme-albumin levels in various disease states may aid in the diagnosis and treatment of the above-mentioned conditions, which is crucial to developing targeted plasma protein supplementation (i.e., “replenishment”) therapies for patients with heme toxicity due to HPX depletion. PMID:26175690

  2. Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment.

    PubMed

    van Sittert, N J; Boogaard, P J; Natarajan, A T; Tates, A D; Ehrenberg, L G; Törnqvist, M A

    2000-01-17

    Ethylene oxide (EO) is mutagenic in various in vitro and in vivo test systems and carcinogenic in rodents. EO forms different adducts upon reaction with DNA, N7-(2-hydroxyethyl)guanine (N7-HEG) being the main adduct. The major objectives of this study were: (a) to determine the formation and persistence of N7-HEG adducts in liver DNA of adult male rats exposed to 0, 50, 100 and 200 ppm by inhalation (4 weeks, 5 days/week, 6 h/day) and (b) to assess dose-response relationships for Hprt gene mutations and various types of chromosomal changes in splenic lymphocytes.N7-HEG adducts were measured 5, 21, 35 and 49 days after cessation of exposure. By extrapolation, the mean concentrations of N7-HEG immediately after cessation of exposure ('day 0') to 50, 100 and 200 ppm were calculated as 310, 558 and 1202 adducts/10(8) nucleotides, respectively, while the mean concentration in control rats was 2.6 adducts/10(8) nucleotides. At 49 days, N7-HEG values had returned close to background levels. The mean levels of N-(2-hydroxyethylvaline) adducts in haemoglobin were also determined and amounted 61.7, 114 and 247 nmol/g globin, respectively. Statistically significant linear relationships were found between mean N7-HEG levels ('day 0') and Hprt mutant frequencies at expression times 21/22 and 49/50 days and between mean N7-HEG ('day 0') and sister-chromatid exchanges (SCEs) or high frequency cells (HFC) measured 5 days post-exposure. At day 21 post-exposure, SCEs and HFCs in-part persisted and were significantly correlated with persistent N7-HEG adducts. No statistically significant dose effect relationships were observed for induction of micronuclei, nor for chromosome breaks or translocations. In conclusion, this study indicates that following sub-chronic exposure, EO is only weakly mutagenic in adult rats. Using the data of this study to predict cancer risk in man resulting from low level EO exposures in conjunction with other published data, i.e., those on (a) genotoxic

  3. Characterization of the Heme Environment in Arabidopsis thaliana Fatty Acid α-Dioxygenase-1*

    PubMed Central

    Liu, Wen; Rogge, Corina E.; Bambai, Bijan; Palmer, Graham; Tsai, Ah-Lim; Kulmacz, Richard J.

    2010-01-01

    Plant α-dioxygenases (PADOX) are hemoproteins in the myeloperoxidase family. We have used a variety of spectroscopic, mutagenic, and kinetic approaches to characterize the heme environment in Arabidopsis thaliana PADOX-1. Recombinant PADOX-1 purified to homogeneity contained 1 mol of heme bound tightly but noncovalently per protein monomer. Electronic absorbance, electron paramagnetic resonance, and magnetic circular dichroism spectra showed a high spin ferric heme that could be reduced to the ferrous state by dithionite. Cyanide bound relatively weakly in the ferric PADOX-1 heme vicinity (Kd ~10 mm) but did not shift the heme to the low spin state. Cyanide was a very strong inhibitor of the fatty acid oxygenase activity (Ki ~5 µm) and increased the Km value for oxygen but not that for fatty acid. Spectroscopic analyses indicated that carbon monoxide, azide, imidazole, and a variety of substituted imidazoles did not bind appreciably in the ferric PADOX-1 heme vicinity. Substitution of His-163 and His-389 with cysteine, glutamine, tyrosine, or methionine resulted in variable degrees of perturbation of the heme absorbance spectrum and oxygenase activity, consistent with His-389 serving as the proximal heme ligand and indicating that the heme has a functional role in catalysis. Overall, A. thaliana PADOX-1 resembles a b-type cytochrome, although with much more restricted access to the distal face of the heme than seen in most other myeloperoxidase family members, explaining the previously puzzling lack of peroxidase activity in the plant protein. PADOX-1 is unusual in that it has a high affinity, inhibitory cyanide-binding site distinct from the distal heme face and the fatty acid site. PMID:15100225

  4. Ethanol and 4-methylpyrazole increase DNA adduct formation of furfuryl alcohol in FVB/N wild-type mice and in mice expressing human sulfotransferases 1A1/1A2.

    PubMed

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-03-01

    Furfuryl alcohol (FFA) is a carcinogenic food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. The activation by sulfotransferases (SULTs) yields a DNA reactive and mutagenic sulfate ester. The most prominent DNA adduct, N(2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N(2)-MF-dG), was detected in FFA-treated mice and also in human tissue samples. The dominant pathway of FFA detoxification is the oxidation via alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The activity of these enzymes may be greatly altered in the presence of inhibitors or competitive substrates. Here, we investigated the impact of ethanol and the ADH inhibitor 4-methylpyrazole (4MP) on the DNA adduct formation by FFA in wild-type and in humanized mice that were transgenic for human SULT1A1/1A2 and deficient in the mouse (m) Sult1a1 and Sult1d1 genes (h1A1/1A2/1a1(-)/1d1(-)). The administration of FFA alone led to hepatic adduct levels of 4.5 N(2)-MF-dG/10(8) nucleosides and 33.6 N(2)-MF-dG/10(8) nucleosides in male and female wild-type mice, respectively, and of 19.6 N(2)-MF-dG/10(8) nucleosides and 95.4 N(2)-MF-dG/10(8) nucleosides in male and female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 1.6g ethanol/kg body weight increased N(2)-MF-dG levels by 2.3-fold in male and by 1.7-fold in female wild-type mice and by 2.5-fold in male and by 1.5-fold in female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 100mg 4MP/kg body weight had a similar effect on the adduct levels. These findings indicate that modulators of the oxidative metabolism, e.g. the drug 4MP or consumption of alcoholic beverages, may increase the genotoxic effects of FFA also in humans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The Catalase Activity of Catalase-Peroxidases Is Modulated by Changes in the pKa of the Distal Histidine.

    PubMed

    Machuqueiro, Miguel; Victor, Bruno; Switala, Jacek; Villanueva, Jacylyn; Rovira, Carme; Fita, Ignacio; Loewen, Peter C

    2017-05-02

    The unusual Met-Tyr-Trp adduct composed of cross-linked side chains along with an associated mobile Arg is essential for catalase activity in catalase-peroxidases. In addition, acidic residues in the entrance channel, in particular an Asp and a Glu ∼7 and ∼15 Å, respectively, from the heme, significantly enhance catalase activity. The mechanism by which these channel carboxylates influence catalase activity is the focus of this work. Seventeen new variants with fewer and additional acidic residues have been constructed and characterized structurally and for enzymatic activity, revealing that their effect on activity is roughly inversely proportional to their distance from the heme and adduct, suggesting that the electrostatic potential of the heme cavity may be affected. A discrete group of protonable residues are contained within a 15 Å sphere surrounding the heme iron, and a computational analysis reveals that the pK a of the distal His 112 , alone, is modulated within the pH range of catalase activity by the remote acidic residues in a pattern consistent with its protonated form having a key role in the catalase reaction cycle. The electrostatic potential also impacts the catalatic reaction through its influence on the charged status of the Met-Tyr-Trp adduct.

  6. Formation mechanism of glyoxal-DNA adduct, a DNA cross-link precursor.

    PubMed

    Vilanova, B; Fernández, D; Casasnovas, R; Pomar, A M; Alvarez-Idaboy, J R; Hernández-Haro, N; Grand, A; Adrover, M; Donoso, J; Frau, J; Muñoz, F; Ortega-Castro, J

    2017-05-01

    DNA nucleobases undergo non-enzymatic glycation to nucleobase adducts which can play important roles in vivo. In this work, we conducted a comprehensive experimental and theoretical kinetic study of the mechanisms of formation of glyoxal-guanine adducts over a wide pH range in order to elucidate the molecular basis for the glycation process. Also, we performed molecular dynamics simulations to investigate how open or cyclic glyoxal-guanine adducts can cause structural changes in an oligonucleotide model. A thermodynamic study of other glycating agents including methylglyoxal, acrolein, crotonaldehyde, 4-hydroxynonenal and 3-deoxyglucosone revealed that, at neutral pH, cyclic adducts were more stable than open adducts; at basic pH, however, the open adducts of 3-deoxyglucosone, methylglyoxal and glyoxal were more stable than their cyclic counterparts. This result can be ascribed to the ability of the adducts to cross-link DNA. The new insights may contribute to improve our understanding of the connection between glycation and DNA cross-linking. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Heme-based sensors in biological systems.

    PubMed

    Rodgers, K R

    1999-04-01

    The past several years have been witness to a staggering rate of advancement in the understanding of how organisms respond to changes in the availability of diatomic molecules that are toxic and/or crucial to survival. Heme-based sensors presently constitute the majority of the proteins known to sense NO, O2 and CO and to initiate the chemistry required to adapt to changes in their availabilities. Knowledge of the three characterized members of this class, soluble guanylate cyclase, FixL and CooA, has grown substantially during the past year. The major advances have resulted from a broad range of approaches to elucidation of both function and mechanism. They include growth in the understanding of the interplay between the heme and protein in soluble guanylate cyclase, as well as alternate means for its stimulation. Insight into the O2-induced structural changes in FixL has been supplied by the single crystal structure of the heme domain of Bradyrhizobium japonicum. Finally, the ligation environment and ligand interchange that facilitates CO sensing by CooA has been established by spectroscopic and mutagenesis techniques.

  8. Factorization of the association rate coefficient in ligand rebinding to heme proteins

    NASA Astrophysics Data System (ADS)

    Young, Robert D.

    1984-01-01

    A stochastic theory of ligand migration in biomolecules is used to analyze the recombination of small ligands to heme proteins after flash photolysis. The stochastic theory is based on a generalized sequential barrier model in which a ligand binds by overcoming a series of barriers formed by the solvent protein interface, the protein matrix, and the heme distal histidine system. The stochastic theory shows that the association rate coefficient λon factorizes into three terms λon =γ12Nout, where γ12 is the rate coefficient from the heme pocket to the heme binding site, is the equilibrium pocket occupation factor, and Nout is the fraction of heme proteins which do not undergo geminate recombination of a flashed-off ligand. The factorization of λon holds for any number of barriers and with no assumptions regarding the various rate coefficients so long as the exponential solvent process occurs. Transitions of a single ligand are allowed between any two sites with two crucial exceptions: (i) the heme binding site acts as a trap so that thermal dissociation of a bound ligand does not occur within the time of the measurement; (ii) the final step in the rebinding process always has a ligand in the heme pocket from where the ligand binds to the heme iron.

  9. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    NASA Astrophysics Data System (ADS)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  10. Condensed tannin-resorcinol adducts in laminating adhesives

    Treesearch

    Richard W. Hemingway; Roland E. Kreibich

    1985-01-01

    A condensed tannin-resorcinol adduct made by co-reaction of an extract from southern pine bark with resorcinol at a 2 to 1 weight ratio was used to prepare a laminating resin in which the entire amount of resorcinol normally used was replaced by this adduct. The resin was formulated into a room temperature setting adhesive that meets the basic criteria of product...

  11. PURIFICATION AND RECOVERY OF BULKY HYDROPHOBIC DNA ADDUCTS

    EPA Science Inventory

    For many years 32P postlabeling has detected DNA adducts at very low levels and yet has not been able to identify unknown adducts. Mass spectrometry offers substantially improved identification powers, albeit at some loss in detection limits. With this ultimate utilization of ma...

  12. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions

    NASA Astrophysics Data System (ADS)

    Nguyen, John D.; D'Amato, Erica M.; Narayanam, Jagan M. R.; Stephenson, Corey R. J.

    2012-10-01

    Radical reactions are a powerful class of chemical transformations. However, the formation of radical species to initiate these reactions has often required the use of stoichiometric amounts of toxic reagents, such as tributyltin hydride. Recently, the use of visible-light-mediated photoredox catalysis to generate radical species has become popular, but the scope of these radical precursors has been limited. Here, we describe the identification of reaction conditions under which photocatalysts such as fac-Ir(ppy)3 can be utilized to form radicals from unactivated alkyl, alkenyl and aryl iodides. The generated radicals undergo reduction via hydrogen atom abstraction or reductive cyclization. The reaction protocol utilizes only inexpensive reagents, occurs under mild reaction conditions, and shows exceptional functional group tolerance. Reaction efficiency is maintained upon scale-up and decreased catalyst loading, and the reaction time can be significantly shortened when the reaction is performed in a flow reactor.

  13. Characterization of Nitrogen Mustard Formamidopyrimidine Adduct Formation of bis-(2-Chloroethyl)ethylamine with Calf Thymus DNA and a Human Mammary Cancer Cell Line

    PubMed Central

    Gruppi, Francesca; Hejazi, Leila; Christov, Plamen P.; Krishnamachari, Sesha; Turesky, Robert J.; Rizzo, Carmelo J.

    2015-01-01

    A robust, quantitative ultraperformance liquid chromatography ion trap multistage scanning mass spectrometric (UPLC/MS3) method was established to characterize and measure five deoxyguanosine (dG) adducts formed by reaction of the chemotherapeutic nitrogen mustard (NM) bis-(2-chloroethyl)ethylamine with calf thymus (CT) DNA. In addition to the known N7-guanine (NM-G) adduct and its crosslink (G-NM-G), the ring-opened formamidopyrimidine (FapyG) mono-adduct (NM-FapyG) and cross-links in which one (FapyG-NM-G) or both (FapyG-NM-FapyG) guanines underwent ring-opening to FapyG units were identified. Authentic standards of all adducts were synthesized and characterized by NMR and mass spectrometry. These adducts were quantified in CT DNA treated with NM (1 μM) as their deglycosylated bases. A two-stage neutral thermal hydrolysis was developed to mitigate the artifactual formation of ring-opened FapyG adducts involving hydrolysis of the cationic adduct at 37 °C, followed by hydrolysis of the FapyG adducts at 95 °C. The limit of quantification values ranged between 0.3 and 1.6 adducts per 107 DNA bases, when the equivalent of 5 μg DNA hydrolysate was assayed on column. The principal adduct formed was the G-NM-G cross-link, followed by the NM-G mono-adduct; the FapyG-NM-FapyG adduct was at the limit of detection. The NM-FapyG adducts formed in CT DNA at a level of ~20% that of the NM-G adduct. NM-FapyG has not been previously quanitified and the FapyG-NM-G and FapyG-NM-FapyG adducts have not be previously characterized. Our validated analytical method was then applied to measure DNA adduct formation in the MDA-MB-231 mammary tumor cell line exposed to NM (100 μM) for 24 h. The major adduct formed was NM-G (970 adducts per 107 bases), followed by G-NM-G (240 adducts per 107 bases) and NM-FapyG (180 adducts per 107 bases), and lastly the FapyG-NM-G cross-link adduct (6.0 adducts per 107 bases). These lesions are expected to contribute to the NM-mediated toxicity and

  14. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha.

    PubMed

    Handschin, Christoph; Lin, Jiandie; Rhee, James; Peyer, Anne-Kathrin; Chin, Sherry; Wu, Pei-Hsuan; Meyer, Urs A; Spiegelman, Bruce M

    2005-08-26

    Inducible hepatic porphyrias are inherited genetic disorders of enzymes of heme biosynthesis. The main clinical manifestations are acute attacks of neuropsychiatric symptoms frequently precipitated by drugs, hormones, or fasting, associated with increased urinary excretion of delta-aminolevulinic acid (ALA). Acute attacks are treated by heme infusion and glucose administration, but the mechanisms underlying the precipitating effects of fasting and the beneficial effects of glucose are unknown. We show that the rate-limiting enzyme in hepatic heme biosynthesis, 5-aminolevulinate synthase (ALAS-1), is regulated by the peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha). Elevation of PGC-1alpha in mice via adenoviral vectors increases the levels of heme precursors in vivo as observed in acute attacks. The induction of ALAS-1 by fasting is lost in liver-specific PGC-1alpha knockout animals, as is the ability of porphyrogenic drugs to dysregulate heme biosynthesis. These data show that PGC-1alpha links nutritional status to heme biosynthesis and acute hepatic porphyria.

  15. An isotope-dilution UPLC-MS/MS technique for the human biomonitoring of the internal exposure to glycidol via a valine adduct at the N-terminus of hemoglobin.

    PubMed

    Hielscher, Jan; Monien, Bernhard H; Abraham, Klaus; Jessel, Sönke; Seidel, Albrecht; Lampen, Alfonso

    2017-08-01

    Fatty acid esters of glycidol (glycidyl esters) are processing contaminants generated as a byproduct of the industrial deodorization of vegetable oils and fats. Oral intake of glycidyl esters leads to the release of glycidol in the gastrointestinal tract. Glycidol is carcinogenic, genotoxic and teratogenic in rodents. It is rated as probably carcinogenic to humans (IARC group 2A). The determination of internal exposure of glycidol may support the assessment of the possible human health risks related to glycidyl ester intake. For this purpose, hemoglobin adducts of glycidol may be suitable biomarkers reflecting the cumulative exposure of up to four months. We applied a modified Edman degradation to assess the glycidol adduct at the N-terminal valine, N-(2,3-dihydroxypropyl)-valine (2,3-diHOPr-Val), of hemoglobin. The modified valine was cleaved with fluorescein-5-isothiocyanate (FITC), resulting in the formation of N-(2,3-dihydroxypropyl)-valine fluorescein thiohydantoin (DHP-Val-FTH). An isotope-dilution technique was developed for the quantification of the thiohydantoin analyte by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and DHP-Val-d 7 -FTH as reference standard. The limit of detection was 4 fmol DHP-Val-FTH per injection corresponding to 0.7pmol 2,3-diHOPr-Val/g hemoglobin. The adduct levels in blood samples of 12 non-smoking participants were in the range of 2.2-4.9pmol 2,3-diHOPr-Val/g hemoglobin. The current work presents the first isotope-dilution technique using UPLC-MS/MS for the quantification of 2,3-diHOPr-Val at the N-terminus of hemoglobin as a sensitive and convenient alternative to earlier GC-MS methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Influence of GSTM1 and NAT2 genotypes on placental DNA adducts in an environmentally exposed population.

    PubMed

    Topinka, J; Binková, B; Mracková, G; Stávková, Z; Peterka, V; Benes, I; Dejmek, J; Lenícek, J; Pilcík, T; Srám, R J

    1997-01-01

    The placenta bulky DNA adducts have been studied in relation to metabolic genotypes for glutathione S-transferase M1 (GSTM1) and N-acetyl transferase 2 (NAT2) in 158 mothers (113 nonsmokers and 45 smokers) living in two regions with different annual average air pollution levels of sulphur dioxide, nitrogen oxides, particulate matter < 10 microns, and polycyclic aromatic hydrocarbons. One region was the district of Teplice as the polluted industrial region with mines and brown coal power plants, and the other was the district of Prachatice, an agricultural region without heavy industry. DNA adduct levels were determined by using a butanol extraction enrichment procedure of 32P-postlabeling. GSTM1 and NAT2 genotypes were studied by using polymerase chain reaction. The total DNA adduct levels included a diagonal radioactive zone (DRZ) and one distinct spot outside DRZ (termed X), which was detected in almost all placenta samples and correlated with DRZ (r = .682; P < .001). We found the total DNA adduct levels 2.12 +/- 1.46 (0.04-7.70) and 1.48 +/- 1.09 (0.11-4.98) adducts per 10(8) nucleotides for Teplice and Prachatice districts, respectively, indicating significant differences between both regions studied (P = .004). Elevated DNA adduct levels were found in smoking mothers (10 or more cigarettes per day) by comparison with nonsmoking mothers (3.21 +/- 1.39 versus 1.32 +/- 0.88 adducts per 10(8) nucleotides; P < .001). Placental DNA adduct levels in smokers correlated with cotinine measured in plasma (r = .432; P = .003). This relation indicates that cigarette smoking could be predominantly responsible for DNA adduct formation in placentas of smoking mothers. DNA adduct levels were evaluated separately for non-smokers (1.50 +/- 1.00 vs. 1.09 +/- 0.66 adducts/10(8) nucleotides for the Teplice and Prachatice districts, respectively; P = .046) and smokers (3.35 +/- 1.47 vs. 2.91 +/- 1.20 adducts/10(8) nucleotides for Teplice and Prachatice districts, respectively; P

  17. Raman spectroscopic evaluation of DNA adducts of a platinum containing anticancer drug.

    PubMed

    Jangir, Deepak K; Mehrotra, Ranjana

    2014-09-15

    Mechanistic understanding of the interaction of drugs with their target molecules is important for better understanding of their mode of action and to improve their efficacy. Carboplatin is a platinum containing anticancer drug, used to treat different type of tumors. In the present work, we applied Raman spectroscopy to study the interaction of carboplatin with DNA at molecular level using different carboplatin-DNA molar ratios. These Raman spectroscopic results provide comprehensive understanding on the carboplatin-DNA interactions and indicate that DNA cross-linked adducts formed by carboplatin are similar to cisplatin adducts. The results indicate that guanine N7 and adenine N7 are the putative sites for carboplatin interaction. It is observed that carboplatin has some affinity toward cytosine in DNA. Phosphate sugar backbone of DNA showed conformation perturbation in DNA which were easily sensible at higher concentrations of carboplatin. Most importantly, carboplatin interaction induces intermediate A- and B-DNA conformations at the cross-linking sites. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice

    PubMed Central

    Constante, Marco; Fragoso, Gabriela; Calvé, Annie; Samba-Mondonga, Macha; Santos, Manuela M.

    2017-01-01

    Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD), where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS)-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC) mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis. Thus, luminal

  19. Reaction of glyoxal with 2'-deoxyguanosine, 2'-deoxyadenosine, 2'-deoxycytidine, cytidine, thymidine, and calf thymus DNA: identification of DNA adducts.

    PubMed

    Olsen, Raymond; Molander, Paal; Øvrebø, Steinar; Ellingsen, Dag G; Thorud, Syvert; Thomassen, Yngvar; Lundanes, Elsa; Greibrokk, Tyge; Backman, Josefin; Sjöholm, Rainer; Kronberg, Leif

    2005-04-01

    Glyoxal (ethanedial) is an increasingly used industrial chemical that has been found to be mutagenic in bacteria and mammalian cells. In this study, the reactions of glyoxal with 2'-deoxyguanosine, 2'-deoxyadenosine, 2'-deoxycytidine, cytidine, thymidine, and calf thymus DNA have been studied in aqueous buffered solutions. The nucleoside adducts were isolated by reversed-phase liquid chromatography and characterized by their UV absorbance and 1H and 13C NMR spectroscopic and mass spectrometric features. The reaction with 2'-deoxyguanosine gave one adduct, the previously known 3-(2'-deoxy-beta-D-erythro-pentofuranosyl)-5,6,7-trihydro-6,7-dihydroxyimidazo[1,2-a]purine-9-one adduct. The reaction of 2'-deoxyadenosine with glyoxal resulted in the formation of a previously not reported N6-(hydroxyacetyl)-2'-deoxyadenosine adduct. In the reaction of glyoxal with 2'-deoxycytidine and cytidine at neutral conditions and 37 degrees C, 5-hydroxyacetyl pyrimidine derivatives were obtained. When the cytidine reaction was performed at pH 4.5 and 50 degrees C, the 5-hydroxyacetyl derivative of uridine was formed through deamination of cytidine-glyoxal. Adducts in the thymidine reaction could not be detected. In the reaction of glyoxal with calf thymus DNA, the 2'-deoxyguanosine-glyoxal and 2'-deoxyadenosine-glyoxal adducts were obtained, the former being the major adduct.

  20. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    PubMed

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.

  1. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li+-stabilized zwitterionic adduct formation

    PubMed Central

    Yang, Zhen-Zhen

    2014-01-01

    Summary Highly efficient CO2 absorption was realized through formation of zwitterionic adducts, combining synthetic strategies to ionic liquids (ILs) and coordination. The essence of our strategy is to make use of multidentate cation coordination between Li+ and an organic base. Also PEG-functionalized organic bases were employed to enhance the CO2-philicity. The ILs were reacted with CO2 to form the zwitterionic adduct. Coordination effects between various lithium salts and neutral ligands, as well as the CO2 capacity of the chelated ILs obtained were investigated. For example, the CO2 capacity of PEG150MeBu2N increased steadily from 0.10 to 0.66 (mol CO2 absorbed per mol of base) through the formation of zwitterionic adducts being stabilized by Li+. PMID:25246955

  2. Rapid, convenient method for screening imidazole-containing compounds for heme oxygenase inhibition.

    PubMed

    Vlahakis, Jason Z; Rahman, Mona N; Roman, Gheorghe; Jia, Zongchao; Nakatsu, Kanji; Szarek, Walter A

    2011-01-01

    Sensitive assays for measuring heme oxygenase activity have been based on the gas-chromatographic detection of carbon monoxide using elaborate, expensive equipment. The present study describes a rapid and convenient method for screening imidazole-containing candidates for inhibitory activity against heme oxygenase using a plate reader, based on the spectroscopic evaluation of heme degradation. A PowerWave XS plate reader was used to monitor the absorbance (as a function of time) of heme bound to purified truncated human heme oxygenase-1 (hHO-1) in the individual wells of a standard 96-well plate (with or without the addition of a test compound). The degradation of heme by heme oxygenase-1 was initiated using l-ascorbic acid, and the collected relevant absorbance data were analyzed by three different methods to calculate the percent control activity occurring in wells containing test compounds relative to that occurring in control wells with no test compound present. In the cases of wells containing inhibitory compounds, significant shifts in λ(max) from 404 to near 412 nm were observed as well as a decrease in the rate of heme degradation relative to that of the control. Each of the three methods of data processing (overall percent drop in absorbance over 1.5h, initial rate of reaction determined over the first 5 min, and estimated pseudo first-order reaction rate constant determined over 1.5h) gave similar and reproducible results for percent control activity. The fastest and easiest method of data analysis was determined to be that using initial rates, involving data acquisition for only 5 min once reactions have been initiated using l-ascorbic acid. The results of the study demonstrate that this simple assay based on the spectroscopic detection of heme represents a rapid, convenient method to determine the relative inhibitory activity of candidate compounds, and is useful in quickly screening a series or library of compounds for heme oxygenase inhibition

  3. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  4. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coelho, Pedro S.; Brustad, Eric M.; Arnold, Frances H.

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cellsmore » expressing the heme enzymes are also provided by the present invention.« less

  5. Heme, an Essential Nutrient from Dietary Proteins, Critically Impacts Diverse Physiological and Pathological Processes

    PubMed Central

    Hooda, Jagmohan; Shah, Ajit; Zhang, Li

    2014-01-01

    Heme constitutes 95% of functional iron in the human body, as well as two-thirds of the average person’s iron intake in developed countries. Hence, a wide range of epidemiological studies have focused on examining the association of dietary heme intake, mainly from red meat, with the risks of common diseases. High heme intake is associated with increased risk of several cancers, including colorectal cancer, pancreatic cancer and lung cancer. Likewise, the evidence for increased risks of type-2 diabetes and coronary heart disease associated with high heme intake is compelling. Furthermore, recent comparative metabolic and molecular studies of lung cancer cells showed that cancer cells require increased intracellular heme biosynthesis and uptake to meet the increased demand for oxygen-utilizing hemoproteins. Increased levels of hemoproteins in turn lead to intensified oxygen consumption and cellular energy generation, thereby fueling cancer cell progression. Together, both epidemiological and molecular studies support the idea that heme positively impacts cancer progression. However, it is also worth noting that heme deficiency can cause serious diseases in humans, such as anemia, porphyrias, and Alzheimer’s disease. This review attempts to summarize the latest literature in understanding the role of dietary heme intake and heme function in diverse diseases. PMID:24633395

  6. The Alternative Route to Heme in the Methanogenic Archaeon Methanosarcina barkeri

    PubMed Central

    Haufschildt, Kristin; Neumann, Alexander; Storbeck, Sonja; Streif, Judith

    2014-01-01

    In living organisms heme is formed from the common precursor uroporphyrinogen III by either one of two substantially different pathways. In contrast to eukaryotes and most bacteria which employ the so-called “classical” heme biosynthesis pathway, the archaea use an alternative route. In this pathway, heme is formed from uroporphyrinogen III via the intermediates precorrin-2, sirohydrochlorin, siroheme, 12,18-didecarboxysiroheme, and iron-coproporphyrin III. In this study the heme biosynthesis proteins AhbAB, AhbC, and AhbD from Methanosarcina barkeri were functionally characterized. Using an in vivo enzyme activity assay it was shown that AhbA and AhbB (Mbar_A1459 and Mbar_A1460) together catalyze the conversion of siroheme into 12,18-didecarboxysiroheme. The two proteins form a heterodimeric complex which might be subject to feedback regulation by the pathway end-product heme. Further, AhbC (Mbar_A1793) was shown to catalyze the formation of iron-coproporphyrin III in vivo. Finally, recombinant AhbD (Mbar_A1458) was produced in E. coli and purified indicating that this protein most likely contains two [4Fe-4S] clusters. Using an in vitro enzyme activity assay it was demonstrated that AhbD catalyzes the conversion of iron-coproporphyrin III into heme. PMID:24669201

  7. Organocatalytic Removal of Formaldehyde Adducts from RNA and DNA Bases

    PubMed Central

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-01-01

    Formaldehyde is universally employed to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, and avoiding high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5–2.4 fold using a catalyst under optimized conditions, and by 7–25 fold compared to a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens. PMID:26291948

  8. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases.

    PubMed

    Karmakar, Saswata; Harcourt, Emily M; Hewings, David S; Scherer, Florian; Lovejoy, Alexander F; Kurtz, David M; Ehrenschwender, Thomas; Barandun, Luzi J; Roost, Caroline; Alizadeh, Ash A; Kool, Eric T

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  9. In vitro Activation of heme oxygenase-2 by menadione and its analogs.

    PubMed

    Vukomanovic, Dragic; Rahman, Mona N; Bilokin, Yaroslav; Golub, Andriy G; Brien, James F; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2014-02-18

    Previously, we reported that menadione activated rat, native heme oxygenase-2 (HO-2) and human recombinant heme oxygenase-2 selectively; it did not activate spleen, microsomal heme oxygenase-1. The purpose of this study was to explore some structure-activity relationships of this activation and the idea that redox properties may be an important aspect of menadione efficacy. Heme oxygenase activity was determined in vitro using rat spleen and brain microsomes as the sources of heme oxygenase-1 and -2, respectively, as well as recombinant, human heme oxygenase-2. Menadione analogs with bulky aliphatic groups at position-3, namely vitamins K1 and K2, were not able to activate HO-2. In contrast, several compounds with similar bulky but less lipophilic moieties at position-2 (and -3) were able to activate HO-2 many fold; these compounds included polar, rigid, furan-containing naphthoquinones, furan-benzoxazine naphthoquinones, 2-(aminophenylphenyl)-3-piperidin-1-yl naphthoquinones. To explore the idea that redox properties might be involved in menadione efficacy, we tested analogs such as 1,4-dimethoxy-2-methylnaphthalene, pentafluoromenadione, monohalogenated naphthoquinones, α-tetralone and 1,4-naphthoquinone. All of these compounds were inactive except for 1,4-naphthoquinone. Menadione activated full-length recombinant human heme oxygenase-2 (FL-hHO-2) as effectively as rat brain enzyme, but it did not activate rat spleen heme oxygenase. These observations are consistent with the idea that naphthoquinones such as menadione bind to a receptor in HO-2 and activate the enzyme through a mechanism that may involve redox properties.

  10. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    PubMed Central

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  11. Development of an ultra performance LC/MS method to quantify cisplatin 1,2 intrastrand guanine-guanine adducts

    PubMed Central

    Baskerville-Abraham, Irene M.; Boysen, Gunnar; Troutman, J. Mitchell; Mutlu, Esra; Collins, Leonard; deKrafft, Kathryn E.; Lin, Wenbin; King, Candice; Chaney, Stephen G.; Swenberg, James A.

    2009-01-01

    Platinum chemotherapeutic agents have been widely used in the treatment of cancer. Cisplatin was the first of the platinum based chemotherapeutic agents and therefore has been extensively studied as an anti-tumor agent since the late 1960s. Because this agent forms several DNA adducts, a highly sensitive and specific quantitative assay is needed to correlate the molecular dose of individual adducts with the effects of treatment. An ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for quantification of 1,2 guanine-guanine intrastrand cisplatin adducts [CP-d(GpG)], using 15N10 CP-d(GpG) as an internal standard, was developed. The internal standard was characterized by MS/MS and its concentration was validated by ICP-MS. Samples containing CP-d(GpG) in DNA were purified by enzyme hydrolysis , centrifugal filtration and HPLC with fraction collection prior to quantification by UPLC-MS/MS in the selective reaction monitoring (SRM) mode (m/z 412.5→248.1 for CP-d(GpG); m/z 417.5→253.1 for [15N10] CP-d(GpG)). Recovery of standards was >90% and quantification was unaffected by increasing concentrations of calf thymus DNA. This method utilizes 25 μg of DNA per injection. The limit of quantification was 3 fmol or 3.7 adducts per 108 nucleotides, which approaches the sensitivity of the 32P postlabeling method for this adduct. These data suggested that this method is suitable for in vitro and in vivo assessment of CP-d(GpG) adducts formed by cisplatin and carboplatin. Subsequently the method was applied to studies using ovarian carcinoma cell lines and C57/BL6 mice to illustrate that this method is capable of quantifying CP-d(GpG) adducts using biologically relevant systems and doses. The development of biomarkers to determine tissue-specific molecular dosimetry during treatment will lead to a more complete understanding of both therapeutic and adverse effects of cisplatin and carboplatin. This will support the refinement of therapeutic

  12. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays.

    PubMed

    Paini, Alicia; Scholz, Gabriele; Marin-Kuan, Maricel; Schilter, Benoît; O'Brien, John; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2011-09-01

    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD(10) values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD(10) were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicity.

  13. Human heme oxygenase oxidation of 5- and 15-phenylhemes.

    PubMed

    Wang, Jinling; Niemevz, Fernando; Lad, Latesh; Huang, Liusheng; Alvarez, Diego E; Buldain, Graciela; Poulos, Thomas L; de Montellano, Paul R Ortiz

    2004-10-08

    Human heme oxygenase-1 (hHO-1) catalyzes the O2-dependent oxidation of heme to biliverdin, CO, and free iron. Previous work indicated that electrophilic addition of the terminal oxygen of the ferric hydroperoxo complex to the alpha-meso-carbon gives 5-hydroxyheme. Earlier efforts to block this reaction with a 5-methyl substituent failed, as the reaction still gave biliverdin IXalpha. Surprisingly, a 15-methyl substituent caused exclusive cleavage at the gamma-meso-rather than at the normal, unsubstituted alpha-meso-carbon. No CO was formed in these reactions, but the fragment cleaved from the porphyrin eluded identification. We report here that hHO-1 cleaves 5-phenylheme to biliverdin IXalpha and oxidizes 15-phenylheme at the alpha-meso position to give 10-phenylbiliverdin IXalpha. The fragment extruded in the oxidation of 5-phenylheme is benzoic acid, one oxygen of which comes from O2 and the other from water. The 2.29- and 2.11-A crystal structures of the hHO-1 complexes with 1- and 15-phenylheme, respectively, show clear electron density for both the 5- and 15-phenyl rings in both molecules of the asymmetric unit. The overall structure of 15-phenylheme-hHO-1 is similar to that of heme-hHO-1 except for small changes in distal residues 141-150 and in the proximal Lys18 and Lys22. In the 5-phenylheme-hHO-1 structure, the phenyl-substituted heme occupies the same position as heme in the heme-HO-1 complex but the 5-phenyl substituent disrupts the rigid hydrophobic wall of residues Met34, Phe214, and residues 26-42 near the alpha-meso carbon. The results provide independent support for an electrophilic oxidation mechanism and support a role for stereochemical control of the reaction regiospecificity.

  14. Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target

    PubMed Central

    Owens, Cedric P; Chim, Nicholas; Goulding, Celia W

    2013-01-01

    Mycobacterium tuberculosis (Mtb) acquires non-heme iron through salicylate-derived siderophores termed mycobactins whereas heme iron is obtained through a cascade of heme uptake proteins. Three proteins are proposed to mediate Mtb heme iron uptake, a secreted heme transporter (Rv0203), and MmpL3 and MmpL11, which are potential transmembrane heme transfer proteins. Furthermore, MhuD, a cytoplasmic heme-degrading enzyme, has been identified. Rv0203, MmpL3 and MmpL11 are mycobacteria-specific proteins, making them excellent drug targets. Importantly, MmpL3, a necessary protein, has also been implicated in trehalose monomycolate export. Recent drug-discovery efforts revealed that MmpL3 is the target of several compounds with antimycobacterial activity. Inhibition of the Mtb heme uptake pathway has yet to be explored. We propose that inhibitor design could focus on heme analogs, with the goal of blocking specific steps of this pathway. In addition, heme uptake could be hijacked as a method of importing drugs into the mycobacterial cytosol. PMID:23919550

  15. Characterization of glycidol-hemoglobin adducts as biomarkers of exposure and in vivo dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, Hiroshi, E-mail: honda.hiroshi@kao.co.jp; Törnqvist, Margareta; Nishiyama, Naohiro

    2014-03-15

    Hemoglobin adducts have been used as biomarkers of exposure to reactive chemicals. Glycidol, an animal carcinogen, has been reported to form N-(2,3-dihydroxy-propyl)valine adducts to hemoglobin (diHOPrVal). To support the use of these adducts as markers of glycidol exposure, we investigated the kinetics of diHOPrVal formation and its elimination in vitro and in vivo. Five groups of rats were orally administered a single dose of glycidol ranging from 0 to 75 mg/kg bw, and diHOPrVal levels were measured 24 h after administration. A dose-dependent increase in diHOPrVal levels was observed with high linearity (R{sup 2} = 0.943). Blood sampling at differentmore » time points (1, 10, 20, or 40 days) from four groups administered glycidol at 12 mg/kg bw suggested a linear decrease in diHOPrVal levels compatible with the normal turnover of rat erythrocytes (life span, 61 days), with the calculated first-order elimination rate constant (k{sub el}) indicating that the diHOPrVal adduct was chemically stable. Then, we measured the second-order rate constant (k{sub val}) for the reaction of glycidol with N-terminal valine in rat and human hemoglobin in in vitro experiments with whole blood. The k{sub val} was 6.7 ± 1.1 and 5.6 ± 1.3 (pmol/g globin per μMh) in rat and human blood, respectively, indicating no species differences. In vivo doses estimated from k{sub val} and diHOPrVal levels were in agreement with the area under the (concentration–time) curve values determined in our earlier toxicokinetic study in rats. Our results indicate that diHOPrVal is a useful biomarker for quantification of glycidol exposure and for risk assessment. - Highlight: • Glycidol-hemoglobin adduct (diHOPrVal) was characterized for exposure evaluation. • We studied the kinetics of diHOPrVal formation and elimination in vitro and in vivo. • Dose dependent formation and chemical stability were confirmed in the rat study. • In vivo dose (AUC) of glycidol could be estimated from di

  16. Possible Dynamically Gated Conductance along Heme Wires in Bacterial Multiheme Cytochromes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Rosso, Kevin M.

    2014-07-24

    The staggered cross decaheme configuration of electron transfer co-factors in the outer-membrane cytochrome MtrF may serve as a prototype for conformationally-gated multi-heme electron transport. Derived from the bacterium Shewanella oneidensis, the staggered cross configuration reveals intersecting c-type octaheme and tetraheme “wires” containing thermodynamic “hills” and “valleys”, suggesting that the protein structure may include a dynamical mechanism for conductance and pathway switching depending on enzymatic functional need. Recent molecular simulations have established the pair-wise electronic couplings, redox potentials, and reorganization energies to predict the maximum conductance along the various heme wire pathways by sequential hopping of a single electron (PNAS (2014)more » 11,611-616). Here, we expand this information with classical molecular and statistical mechanics calculations of large-amplitude protein dynamics in MtrF, to address its potential to modulate pathway conductance, including assessment of the effect of the total charge state. Explicit solvent molecular dynamics simulations of fully oxidized and fully reduced MtrF employing ten independent 50-ns simulations at 300 K and 1 atm showed that reduced MtrF is more expanded and explores more conformational space than oxidized MtrF, and that heme reduction leads to increased heme solvent exposure. The slowest mode of collective decaheme motion is 90% similar between the oxidized and reduced states, and consists primarily of inter-heme separation with minor rotational contributions. The frequency of this motion is 1.7×107 s 1 for fully-oxidized and fully-reduced MtrF, respectively, slower than the downhill electron transfer rates between stacked heme pairs at the octaheme termini and faster than the electron transfer rates between parallel hemes in the tetraheme chain. This implies that MtrF uses slow conformational fluctuations to modulate electron flow along the octaheme

  17. Cysteine-independent activation/inhibition of heme oxygenase-2

    PubMed Central

    Vukomanovic, Dragic; Rahman, Mona N.; Maines, Mahin D.; Ozolinš, Terence RS; Szarek, Walter A.; Jia, Zongchao; Nakatsu, Kanji

    2016-01-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282. PMID:27826418

  18. Cysteine-independent activation/inhibition of heme oxygenase-2.

    PubMed

    Vukomanovic, Dragic; Rahman, Mona N; Maines, Mahin D; Ozolinš, Terence Rs; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2016-03-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  19. Comparison of the Heme Iron Utilization Systems of Pathogenic Vibrios

    PubMed Central

    O’Malley, S. M.; Mouton, S. L.; Occhino, D. A.; Deanda, M. T.; Rashidi, J. R.; Fuson, K. L.; Rashidi, C. E.; Mora, M. Y.; Payne, S. M.; Henderson, D. P.

    1999-01-01

    Vibrio alginolyticus, Vibrio fluvialis, and Vibrio parahaemolyticus utilized heme and hemoglobin as iron sources and contained chromosomal DNA similar to several Vibrio cholerae heme iron utilization genes. A V. parahaemolyticus gene that performed the function of V. cholerae hutA was isolated. A portion of the tonB1 locus of V. parahaemolyticus was sequenced and found to encode proteins similar in amino acid sequence to V. cholerae HutW, TonB1, and ExbB1. A recombinant plasmid containing the V. cholerae tonB1 and exbB1D1 genes complemented a V. alginolyticus heme utilization mutant. These data suggest that the heme iron utilization systems of the pathogenic vibrios tested, particularly V. parahaemolyticus and V. alginolyticus, are similar at the DNA level, the functional level, and, in the case of V. parahaemolyticus, the amino acid sequence or protein level to that of V. cholerae. PMID:10348876

  20. Recognition of platinum-DNA adducts by HMGB1a.

    PubMed

    Ramachandran, Srinivas; Temple, Brenda; Alexandrova, Anastassia N; Chaney, Stephen G; Dokholyan, Nikolay V

    2012-09-25

    Cisplatin (CP) and oxaliplatin (OX), platinum-based drugs used widely in chemotherapy, form adducts on intrastrand guanines (5'GG) in genomic DNA. DNA damage recognition proteins, transcription factors, mismatch repair proteins, and DNA polymerases discriminate between CP- and OX-GG DNA adducts, which could partly account for differences in the efficacy, toxicity, and mutagenicity of CP and OX. In addition, differential recognition of CP- and OX-GG adducts is highly dependent on the sequence context of the Pt-GG adduct. In particular, DNA binding protein domain HMGB1a binds to CP-GG DNA adducts with up to 53-fold greater affinity than to OX-GG adducts in the TGGA sequence context but shows much smaller differences in binding in the AGGC or TGGT sequence contexts. Here, simulations of the HMGB1a-Pt-DNA complex in the three sequence contexts revealed a higher number of interface contacts for the CP-DNA complex in the TGGA sequence context than in the OX-DNA complex. However, the number of interface contacts was similar in the TGGT and AGGC sequence contexts. The higher number of interface contacts in the CP-TGGA sequence context corresponded to a larger roll of the Pt-GG base pair step. Furthermore, geometric analysis of stacking of phenylalanine 37 in HMGB1a (Phe37) with the platinated guanines revealed more favorable stacking modes correlated with a larger roll of the Pt-GG base pair step in the TGGA sequence context. These data are consistent with our previous molecular dynamics simulations showing that the CP-TGGA complex was able to sample larger roll angles than the OX-TGGA complex or either CP- or OX-DNA complexes in the AGGC or TGGT sequences. We infer that the high binding affinity of HMGB1a for CP-TGGA is due to the greater flexibility of CP-TGGA compared to OX-TGGA and other Pt-DNA adducts. This increased flexibility is reflected in the ability of CP-TGGA to sample larger roll angles, which allows for a higher number of interface contacts between the Pt

  1. Detection and quantification of 4-ABP adducts in DNA from bladder cancer patients.

    PubMed

    Zayas, Beatriz; Stillwell, Sara W; Wishnok, John S; Trudel, Laura J; Skipper, Paul; Yu, Mimi C; Tannenbaum, Steven R; Wogan, Gerald N

    2007-02-01

    We analyzed bladder DNA from 27 cancer patients for dG-C8-4-aminobiphenyl (dG-C8-ABP) adducts using the liquid chromatography tandem mass spectrometry method with a 700 attomol (1 adduct in 10(9) bases) detection limit. Hemoglobin (Hb) 4-aminobiphenyl (4-ABP) adduct levels were measured by gas chromatography-mass spectrometry. After isolation of dG-C8-ABP by immunoaffinity chromatography and further purification, deuterated (d9) dG-C8-ABP (MW=443 Da) was added to each sample. Structural evidence and adduct quantification were determined by selected reaction monitoring, based on the expected adduct ion [M+H+]+1, at m/z 435 with fragmentation to the product ion at m/z 319, and monitoring of the transition for the internal standard, m/z 444-->328. The method was validated by analysis of DNA (100 microg each) from calf thymus; livers from ABP-treated and untreated rats; human placentas; and TK6 lymphoblastoid cells. Adduct was detected at femtomol levels in DNA from livers of ABP-treated rats and calf thymus, but not in other controls. The method was applied to 41 DNA samples (200 microg each) from 27 human bladders; 28 from tumor and 14 from surrounding non-tumor tissue. Of 27 tissues analyzed, 44% (12) contained 5-80 dG-C8-ABP adducts per 10(9) bases; only 1 out of 27 (4%) contained adduct in both tumor and surrounding tissues. The Hb adduct was detected in samples from all patients, at levels of 12-1960 pg per gram Hb. There was no correlation between levels of DNA and Hb adducts. The presence of DNA adducts in 44% of the subjects and high levels of Hb adducts in these non-smokers indicate environmental sources of exposure to 4-ABP.

  2. Heterogeneous electron transfer of a two-centered heme protein: redox and electrocatalytic properties of surface-immobilized cytochrome C(4).

    PubMed

    Monari, Stefano; Battistuzzi, Gianantonio; Borsari, Marco; Di Rocco, Giulia; Martini, Laura; Ranieri, Antonio; Sola, Marco

    2009-10-15

    The recombinant diheme cytochrome c(4) from the psycrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 and its Met64Ala and Met164Ala variants, which feature a hydroxide ion axially bound to the heme iron at the N- and C-terminal domains, respectively, were found to exchange electrons efficiently with a gold electrode coated with a SAM of 11-mercapto-1-undecanoic acid. The mutation-induced removal of the redox equivalence of the two heme groups and changes in the net charge of the protein lobes yield two-centered protein systems with unprecedented properties in the electrode-immobilized state. The heterogeneous and intraheme electron transfer processes were characterized for these species in which the high- and low-potential heme groups are swapped over in the bilobal protein framework and experience a constrained (M64A) and unconstrained (M164A) orientation toward the electrode. The reduction thermodynamics for the native and mutated hemes were measured for the first time for a diheme cytochrome c. In the diffusing regime, they reproduce closely those for the corresponding centers in single-heme class-I cytochromes c, despite the low sequence identity. Larger differences are observed in the thermodynamics of the immobilized species and in the heterogeneous electron transfer rate constants. T-dependent kinetic measurements show that the proteins are positioned approximately 7 A from the HOOC-terminated SAM-coated electrode. Protein-electrode orientation and efficient intraheme ET enable the His,OH(-)-ligated heme A of the immobilized Met64Ala variant to carry out the reductive electrocatalysis of molecular oxygen. This system therefore constitutes a novel two-centered heme-based biocatalytic interface to be exploited for "third-generation" amperometric biosensing.

  3. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    PubMed

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease.

    PubMed

    Camus, Stéphane M; De Moraes, João A; Bonnin, Philippe; Abbyad, Paul; Le Jeune, Sylvain; Lionnet, François; Loufrani, Laurent; Grimaud, Linda; Lambry, Jean-Christophe; Charue, Dominique; Kiger, Laurent; Renard, Jean-Marie; Larroque, Claire; Le Clésiau, Hervé; Tedgui, Alain; Bruneval, Patrick; Barja-Fidalgo, Christina; Alexandrou, Antigoni; Tharaux, Pierre-Louis; Boulanger, Chantal M; Blanc-Brude, Olivier P

    2015-06-11

    Intravascular hemolysis describes the relocalization of heme and hemoglobin (Hb) from erythrocytes to plasma. We investigated the concept that erythrocyte membrane microparticles (MPs) concentrate cell-free heme in human hemolytic diseases, and that heme-laden MPs have a physiopathological impact. Up to one-third of cell-free heme in plasma from 47 patients with sickle cell disease (SCD) was sequestered in circulating MPs. Erythrocyte vesiculation in vitro produced MPs loaded with heme. In silico analysis predicted that externalized phosphatidylserine (PS) in MPs may associate with and help retain heme at the cell surface. Immunohistology identified Hb-laden MPs adherent to capillary endothelium in kidney biopsies from hyperalbuminuric SCD patients. In addition, heme-laden erythrocyte MPs adhered and transferred heme to cultured endothelial cells, inducing oxidative stress and apoptosis. In transgenic SAD mice, infusion of heme-laden MPs triggered rapid vasoocclusions in kidneys and compromised microvascular dilation ex vivo. These vascular effects were largely blocked by heme-scavenging hemopexin and by the PS antagonist annexin-a5, in vitro and in vivo. Adversely remodeled MPs carrying heme may thus be a source of oxidant stress for the endothelium, linking hemolysis to vascular injury. This pathway might provide new targets for the therapeutic preservation of vascular function in SCD. © 2015 by The American Society of Hematology.

  5. Biomonitoring of Aristolactam-DNA Adducts in Human Tissues using Ultra-Performance Liquid Chromatography/Ion-Trap Mass Spectrometry

    PubMed Central

    Yun, Byeong Hwa; Rosenquist, Thomas; Sidorenko, Viktoriya; Iden, Charles; Chung-Hsin, Chen; Pu, Yeong-Shiau; Bonala, Radha; Johnson, Francis; Dickman, Kathleen G.; Grollman, Arthur P.; Turesky, Robert J.

    2012-01-01

    Aristolochic acids (AAs) are a structurally-related family of nephrotoxic and carcinogenic nitrophenanthrene compounds found in Aristolochia herbaceous plants, many of which have been used worldwide for medicinal purposes. AAs have been implicated in the etiology of so-called Chinese herbs nephropathy and of Balkan endemic nephropathy. Both of these disease syndromes are associated with carcinomas of the upper urinary tract (UUC). 8-Methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-I) is a principal component of Aristolochia herbs. Following metabolic activation, AA-I reacts with DNA to form aristolactam (AL-I)-DNA adducts. We have developed a sensitive analytical method, using ultra-performance liquid chromatography-electrospray ionization/multistage mass spectrometry (UPLC-ESI/MSn) with a linear quadrupole ion-trap mass spectrometer, to measure 7-(deoxyadenosin-N6-yl) aristolactam I (dA-AL-I) and 7-(deoxyguanosin-N2-yl) aristolactam I (dG-AL-I) adducts. Using 10 μg of DNA for measurements, the lower limits of quantitation of dA-AL-I and dG-AL-I are, respectively, 0.3 and 1.0 adducts per 108 DNA bases. We have used UPLC-ESI/MSn to quantify AL-DNA adducts in tissues of rodents exposed to AA, and in the renal cortex of patients with UUC who reside in Taiwan, where the incidence of this uncommon cancer is the highest reported for any country in the world. In human tissues, dA-AL-I was detected at levels ranging from 9 to 338 adducts per 108 DNA bases, whereas dG-AL-I was not found. We conclude that UPLC-ESI/MSn is a highly sensitive, specific and robust analytical method, positioned to supplant 32P-postlabeling techniques currently used for biomonitoring of DNA adducts in human tissues. Importantly, UPLC-ESI/MSn could be used to document exposure to AA, the toxicant responsible for AA nephropathy and its associated UUC. PMID:22515372

  6. In vitro Activation of heme oxygenase-2 by menadione and its analogs

    PubMed Central

    2014-01-01

    Background Previously, we reported that menadione activated rat, native heme oxygenase-2 (HO-2) and human recombinant heme oxygenase-2 selectively; it did not activate spleen, microsomal heme oxygenase-1. The purpose of this study was to explore some structure–activity relationships of this activation and the idea that redox properties may be an important aspect of menadione efficacy. Methods Heme oxygenase activity was determined in vitro using rat spleen and brain microsomes as the sources of heme oxygenase-1 and −2, respectively, as well as recombinant, human heme oxygenase-2. Results Menadione analogs with bulky aliphatic groups at position-3, namely vitamins K1 and K2, were not able to activate HO-2. In contrast, several compounds with similar bulky but less lipophilic moieties at position-2 (and −3) were able to activate HO-2 many fold; these compounds included polar, rigid, furan-containing naphthoquinones, furan-benzoxazine naphthoquinones, 2-(aminophenylphenyl)-3-piperidin-1-yl naphthoquinones. To explore the idea that redox properties might be involved in menadione efficacy, we tested analogs such as 1,4-dimethoxy-2-methylnaphthalene, pentafluoromenadione, monohalogenated naphthoquinones, α-tetralone and 1,4-naphthoquinone. All of these compounds were inactive except for 1,4-naphthoquinone. Menadione activated full-length recombinant human heme oxygenase-2 (FL-hHO-2) as effectively as rat brain enzyme, but it did not activate rat spleen heme oxygenase. Conclusions These observations are consistent with the idea that naphthoquinones such as menadione bind to a receptor in HO-2 and activate the enzyme through a mechanism that may involve redox properties. PMID:24533775

  7. Regiochemically controlled synthesis of a β-4-β' [70]fullerene bis-adduct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerón, Maira R.; Castro, Edison; Neti, Venkata S. Pavan K.

    2016-12-22

    A β-4-β' C 70 bis-adduct regioisomer and an uncommon mono-adduct β-malonate C 70 derivative were synthesized by using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and a retro-Diels–Alder cycloaddition reaction. Here, we also report the regioselective synthesis and spectroscopic characterization of C s-symmetric tris- and C 2v-symmetric tetra-adducts of C 70, which are the precursors of the mono- and bis-adduct final products.

  8. Antibody recognition of melphalan adducts characterized using immobilized DNA: enhanced alkylation of G-Rich regions in cells compared to in vitro.

    PubMed

    McCartney, H; Martin, A M; Middleton, P G; Tilby, M J

    2001-01-01

    The bifunctional alkylating agent, melphalan, forms adducts on DNA that are recognized by two previously described monoclonal antibodies, MP5/73 and Amp4/42. Immunoreactivity to MP5/73 was lost when alkylated DNA was exposed to alkaline pH, while Amp4/42 only recognized the structures formed after the alkali treatment. Competitive enzyme-linked immunoadsorbent assays (ELISAs) indicated that in 0.01 and 0.1 M NaOH, loss of immunoreactivity to MP5/73 occurred with half-lives that were at least 2-fold longer than half-lives for gain of immunoreactivity to Amp4/42. This supported previously published evidence that Amp4/42 did not simply recognize all the products formed by alkali treatment of adducts that were initially recognized by MP5/73. Adducts recognized by MP5/73 on RNA were considerably more stable at 100 degrees C and pH 7 than adducts on DNA. This was consistent with the hypothesis that immunorecognition involved N7 guanine adducts and ruled out the involvement of phosphotriesters in immunoreactivity. Synthetic oligodeoxyribonucleotides, covalently immobilized onto 96-well plates, were reacted with melphalan and incubated for various periods with alkali, and then the levels of adducts recognized by each antibody in replicate wells were assayed by a direct binding ELISA. Adducts formed on oligodeoxyguanylic acid were recognized very weakly by Amp4/42, unlike other DNA sequences that were tested. Retention of immobilized DNA during alkali treatment was confirmed by immunoassay of cisplatin adducts. Poor recognition by Amp4/42 of adducts in oligodeoxyguanylic acid was confirmed by a competitive ELISA. Amp4/42, unlike MP5/73, efficiently recognized adducts resulting from alkylation of DNA with chlorambucil. It is concluded that the two antibodies recognized melphalan adducts in different DNA sequence environments and that this explains (a) the different alkali stability of immunoreactive adducts and (b) previous results which showed that, in DNA from melphalan

  9. Formation of DNA adducts from oil-derived products analyzed by 32P-HPLC.

    PubMed

    Akkineni, L K; Zeisig, M; Baranczewski, P; Ekström, L G; Möller, L

    2001-01-01

    The aim of this study was to investigate the genotoxic potential of DNA adducts and to compare DNA adduct levels and patterns in petroleum vacuum distillates, coal tar distillate, bitumen fume condensates, and related substances that have a wide range of boiling temperatures. An in vitro assay was used for DNA adduct analysis with human and rat S-9 liver extract metabolic activation followed by 32P-postlabeling and 32P-high-performance liquid chromatography (32p-HPLC). For petroleum distillates originating from one crude oil there was a correlation between in vitro DNA adduct formation and mutagenic index, which showed an increase with a distillation temperature of 250 degrees C and a peak around a distillation point of approximately 400 degrees C. At higher temperatures, the genotoxicity (DNA adducts and mutagenicity) rapidly declined to very low levels. Different petroleum products showed a more than 100-fold range in DNA adduct formation, with severely hydrotreated base oil and bitumen fume condensates being lowest. Coal tar distillates showed ten times higher levels of DNA adduct formation than the most potent petroleum distillate. A clustered DNA adduct pattern was seen over a wide distillation range after metabolic activation with liver extracts of rat or human origin. These clusters were eluted in a region where alkylated aromatic hydrocarbons could be expected. The DNA adduct patterns were similar for base oil and bitumen fume condensates, whereas coal tar distillates had a wider retention time range of the DNA adducts formed. Reference substances were tested in the same in vitro assay. Two- and three-ringed nonalkylated aromatics were rather low in genotoxicity, but some of the three- to four-ringed alkylated aromatics were very potent inducers of DNA adducts. Compounds with an amino functional group showed a 270-fold higher level of DNA adduct formation than the same structures with a nitro functional group. The most potent DNA adduct inducers of the 16

  10. A Heme-based Redox Sensor in the Methanogenic Archaeon Methanosarcina acetivorans*

    PubMed Central

    Molitor, Bastian; Stassen, Marc; Modi, Anuja; El-Mashtoly, Samir F.; Laurich, Christoph; Lubitz, Wolfgang; Dawson, John H.; Rother, Michael; Frankenberg-Dinkel, Nicole

    2013-01-01

    Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor). PMID:23661702

  11. The bhuQ Gene Encodes a Heme Oxygenase That Contributes to the Ability of Brucella abortus 2308 To Use Heme as an Iron Source and Is Regulated by Irr

    PubMed Central

    Ojeda, Jenifer F.; Martinson, David A.; Menscher, Evan A.

    2012-01-01

    The Brucella BhuQ protein is a homolog of the Bradyrhizobium japonicum heme oxygenases HmuD and HmuQ. To determine if this protein plays a role in the ability of Brucella abortus 2308 to use heme as an iron source, an isogenic bhuQ mutant was constructed and its phenotype evaluated. Although the Brucella abortus bhuQ mutant DCO1 did not exhibit a defect in its capacity to use heme as an iron source or evidence of increased heme toxicity in vitro, this mutant produced increased levels of siderophore in response to iron deprivation compared to 2308. Introduction of a bhuQ mutation into the B. abortus dhbC mutant BHB2 (which cannot produce siderophores) resulted in a severe growth defect in the dhbC bhuQ double mutant JFO1 during cultivation under iron-restricted conditions, which could be rescued by the addition of FeCl3, but not heme, to the growth medium. The bhuQ gene is cotranscribed with the gene encoding the iron-responsive regulator RirA, and both of these genes are repressed by the other major iron-responsive regulator in the alphaproteobacteria, Irr. The results of these studies suggest that B. abortus 2308 has at least one other heme oxygenase that works in concert with BhuQ to allow this strain to efficiently use heme as an iron source. The genetic organization of the rirA-bhuQ operon also provides the basis for the proposition that BhuQ may perform a previously unrecognized function by allowing the transcriptional regulator RirA to recognize heme as an iron source. PMID:22636783

  12. MUTATIONAL SPECTRUM AND RECOMBINOGENIC EFFECTS INDUCED BY AMINOFLUORENE ADDUCTS IN BACTERIOPHAGE M13 (JOURNAL VERSION)

    EPA Science Inventory

    Double stranded replicative form (RFI) DNA of bacteriophage M13mp10 has been modified in vitro to various extents with N-hydroxy-2-aminofluorene (N-OH-AF) and then transfected into E. coli cells. HPLC analysis of the modified DNA shows that only dG-C8-AF adducts are formed. Appro...

  13. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, C.F.; Carneiro, A.B.; Silveira, A.B.

    2009-12-18

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasitemore » proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.« less

  14. Reduced Heme Levels Underlie the Exponential Growth Defect of the Shewanella oneidensis hfq Mutant

    PubMed Central

    Mezoian, Taylor; Hunt, Taylor M.; Keane, Meaghan L.; Leonard, Jessica N.; Scola, Shelby E.; Beer, Emma N.; Perdue, Sarah; Pellock, Brett J.

    2014-01-01

    The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA) function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA), the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step. PMID:25356668

  15. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  16. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  17. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  18. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  19. Electrostatic environment of hemes in proteins: pK(a)s of hydroxyl ligands.

    PubMed

    Song, Yifan; Mao, Junjun; Gunner, M R

    2006-07-04

    The pK(a)s of ferric aquo-heme and aquo-heme electrochemical midpoints (E(m)s) at pH 7 in sperm whale myoglobin, Aplysia myoblogin, hemoglobin I, heme oxygenase 1, horseradish peroxidase and cytochrome c oxidase were calculated with Multi-Conformation Continuum Electrostatics (MCCE). The pK(a)s span 3.3 pH units from 7.6 in heme oxygenase 1 to 10.9 in peroxidase, and the E(m)s range from -250 mV in peroxidase to 125 mV in Aplysia myoglobin. Proteins with higher in situ ferric aquo-heme pK(a)s tend to have lower E(m)s. Both changes arise from the protein stabilizing a positively charged heme. However, compared with values in solution, the protein shifts the aquo-heme E(m)s more than the pK(a)s. Thus, the protein has a larger effective dielectric constant for the protonation reaction, showing that electron and proton transfers are coupled to different conformational changes that are captured in the MCCE analysis. The calculations reveal a breakdown in the classical continuum electrostatic analysis of pairwise interactions. Comparisons with DFT calculations show that Coulomb's law overestimates the large unfavorable interactions between the ferric water-heme and positively charged groups facing the heme plane by as much as 60%. If interactions with Cu(B) in cytochrome c oxidase and Arg 38 in horseradish peroxidase are not corrected, the pK(a) calculations are in error by as much as 6 pH units. With DFT corrected interactions calculated pK(a)s and E(m)s differ from measured values by less than 1 pH unit or 35 mV, respectively. The in situ aquo-heme pK(a) is important for the function of cytochrome c oxidase since it helps to control the stoichiometry of proton uptake coupled to electron transfer [Song, Michonova-Alexova, and Gunner (2006) Biochemistry 45, 7959-7975].

  20. Bioavailability of a heme-iron concentrate product added to chocolate biscuit filling in adolescent girls living in a rural area of Mexico.

    PubMed

    González-Rosendo, Guillermina; Polo, Javier; Rodríguez-Jerez, José Juan; Puga-Díaz, Rubén; Reyes-Navarrete, Eduardo G; Quintero-Gutiérrez, Adrián G

    2010-04-01

    A heme-iron concentrate product derived from swine hemoglobin was used to enrich the chocolate-flavored filling of biscuits and the bioavailability of this source of heme-iron was assessed in adolescent girls. The placebo control (PC) group consisted of 35 teenagers with the highest baseline hemoglobin concentrations. The supplemented groups were randomized to receive biscuits fortified with iron sulfate (IS, n = 37) or heme-iron concentrate (HIC, n = 40). Both groups were supplemented with 10.3 mg Fe/d for 7 wk. Blood chemistry and hematology analyses were performed at baseline and at the end of the study. The baseline prevalence of anemia (hemoglobin <12 g/dl) in the entire group was 3.9% and by the end of the study it had fallen to 2.3%. The hemoglobin levels in both supplemented groups increased (P < 0.05) during the study period from 13.6 and 13.5 g/dl for HIC and IS, respectively, at baseline to 14 g/dl at the end of the study. Serum ferritin concentrations decreased by the end of the study in both the PC and IS groups (P < 0.05), but not in the heme group. In conclusion, iron bioavailability from HIC-fortified biscuits was calculated to be 23.7% higher than that observed for IS, as shown by the differences observed in serum ferritin levels during the study. The iron contained in the heme-iron concentrate was well absorbed and tolerated by the adolescents included in the study.

  1. Conformations of stereoisomeric base adducts to 4-hydroxyequilenin.

    PubMed

    Ding, Shuang; Shapiro, Robert; Geacintov, Nicholas E; Broyde, Suse

    2003-06-01

    Exposure to estrogen through estrogen replacement therapy increases the risk of women developing cancer in hormone sensitive tissues. Premarin (Wyeth), which has been the most frequent choice for estrogen replacement therapy in the United States, contains the equine estrogens equilin and equilenin as major components. 4-Hydroxyequilenin (4-OHEN) is a phase I metabolite of both of these substances. This catechol estrogen autoxidizes to potent cytotoxic quinoids that can react with dG, dA, and dC to form unusual stereoisomeric cyclic adducts (Bolton, J. L., et al. (1998) Chem. Res. Toxicol. 11, 1113-1127). Like other bulky DNA adducts, these lesions may exhibit different susceptibilities to DNA repair and mutagenic potential, if not repaired in a structure-dependent manner. To ultimately gain insights into structure-function relationships, we computed conformations of stereoisomeric guanine, adenine, and cytosine base adducts using density functional theory. We find near mirror image conformations in stereoisomer adduct pairs for each modified base, suggesting opposite orientations with respect to the 5' --> 3' direction of the modified strand when the stereoisomer pairs are incorporated into duplex DNA. Such opposite orientations could cause stereoisomer pairs of lesions to respond differently to DNA replication and repair enzymes.

  2. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria

    PubMed Central

    Kathiresan, Meena; Martins, Dorival; English, Ann M.

    2014-01-01

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1’s heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification. PMID:25422453

  3. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria.

    PubMed

    Kathiresan, Meena; Martins, Dorival; English, Ann M

    2014-12-09

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1's heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼ 85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification.

  4. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    PubMed

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury.

  5. Differences in hemoglobin adduct levels of acrylamide in the general population with respect to dietary intake, smoking habits and gender.

    PubMed

    Hagmar, Lars; Wirfält, Elisabet; Paulsson, Birgit; Törnqvist, Margareta

    2005-02-07

    The variation in dietary exposure to acrylamide (AA) has been studied through measurement of hemoglobin adduct levels from AA, as a measurement of internal dose, in a sample from the blood bank of the Malmö Diet and Cancer Cohort (n=28,098). The blood donors are well characterised with regard to their food habits, and 142 individuals were selected to obtain highest possible variation in the adduct levels from AA (none, random or high intake of coffee, fried potato, crisp bread and snacks, food items estimated to have high levels of AA). Among 70 non-smokers the AA-adduct levels varied by a factor of 5, and ranged between 0.02 and 0.1 nmol/g, with considerable overlap in AA-adduct levels between the different dietary groups. There was a significant difference between men with high dietary exposure to AA compared to men with low dietary exposure (P=0.04). No such difference was found for women. As expected a higher level (range: 0.03-0.43 nmol/g) of the AA-adduct, due to AA in tobacco smoke, was found in smokers. Smoking women with high dietary exposure to AA had significantly higher AA-adduct levels compared to smoking women with low dietary exposure (P=0.01). No such significant difference was found in smoking men. The median hemoglobin (Hb) adduct level in the randomly selected group of non-smokers was compatible with earlier studies (0.031 nmol/g). The variation in the average internal dose, measured as Hb adducts, was somewhat smaller than estimated for daily intake by food consumption questionnaires in other studies. Thus, the observed relatively narrow inter-individual variation in AA-adduct levels means that estimates of individual dietary AA intake have to be very precise if they should be useful in future cancer epidemiology.

  6. PPE Surface Proteins Are Required for Heme Utilization by Mycobacterium tuberculosis

    PubMed Central

    Mitra, Avishek; Speer, Alexander; Lin, Kan; Ehrt, Sabine

    2017-01-01

    ABSTRACT Iron is essential for replication of Mycobacterium tuberculosis, but iron is efficiently sequestered in the human host during infection. Heme constitutes the largest iron reservoir in the human body and is utilized by many bacterial pathogens as an iron source. While heme acquisition is well studied in other bacterial pathogens, little is known in M. tuberculosis. To identify proteins involved in heme utilization by M. tuberculosis, a transposon mutant library was screened for resistance to the toxic heme analog gallium(III)-porphyrin (Ga-PIX). Inactivation of the ppe36, ppe62, and rv0265c genes resulted in resistance to Ga-PIX. Growth experiments using isogenic M. tuberculosis deletion mutants showed that PPE36 is essential for heme utilization by M. tuberculosis, while the functions of PPE62 and Rv0265c are partially redundant. None of the genes restored growth of the heterologous M. tuberculosis mutants, indicating that the proteins encoded by the genes have separate functions. PPE36, PPE62, and Rv0265c bind heme as shown by surface plasmon resonance spectroscopy and are associated with membranes. Both PPE36 and PPE62 proteins are cell surface accessible, while the Rv0265c protein is probably located in the periplasm. PPE36 and PPE62 are, to our knowledge, the first proline-proline-glutamate (PPE) proteins of M. tuberculosis that bind small molecules and are involved in nutrient acquisition. The absence of a virulence defect of the ppe36 deletion mutant indicates that the different iron acquisition pathways of M. tuberculosis may substitute for each other during growth and persistence in mice. The emerging model of heme utilization by M. tuberculosis as derived from this study is substantially different from those of other bacteria. PMID:28119467

  7. Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast.

    PubMed

    Crisp, Robert J; Pollington, Annette; Galea, Charles; Jaron, Shulamit; Yamaguchi-Iwai, Yuko; Kaplan, Jerry

    2003-11-14

    Yeast are capable of modifying their metabolism in response to environmental changes. We investigated the activity of the oxygen-dependent high-affinity iron uptake system of Saccharomyces cerevisiae under conditions of heme depletion. We found that the absence of heme, due to a deletion in the gene that encodes delta-aminolevulinic acid synthase (HEM1), resulted in decreased transcription of genes belonging to both the iron and copper regulons, but not the zinc regulon. Decreased transcription of the iron regulon was not due to decreased expression of the iron sensitive transcriptional activator Aft1p. Expression of the constitutively active allele AFT1-1up was unable to induce transcription of the high affinity iron uptake system in heme-depleted cells. We demonstrated that under heme-depleted conditions, Aft1p-GFP was able to cycle normally between the nucleus and cytosol in response to cytosolic iron. Despite the inability to induce transcription under low iron conditions, chromatin immunoprecipitation demonstrated that Aft1p binds to the FET3 promoter in the absence of heme. Finally, we provide evidence that under heme-depleted conditions, yeast are able to regulate mitochondrial iron uptake and do not accumulate pathologic iron concentrations, as is seen when iron-sulfur cluster synthesis is disrupted.

  8. Effect of scapular stabilization during horizontal adduction stretching on passive internal rotation and posterior shoulder tightness in young women volleyball athletes: a randomized controlled trial.

    PubMed

    Salamh, Paul A; Kolber, Morey J; Hanney, William J

    2015-02-01

    To evaluate the effect of scapular stabilization during horizontal adduction stretching (cross-body) on posterior shoulder tightness (PST) and passive internal rotation (IR). Randomized controlled trial with single blinding. Athletic club. Asymptomatic volleyball players who are women with glenohumeral internal rotation deficit (N=60). Subjects were randomly assigned to either horizontal adduction stretching with manual scapular stabilization (n=30) or horizontal adduction stretching without stabilization (n=30). Passive stretching was performed for 3- to 30-second holds in both groups. Range of motion measurements of PST and IR were performed on the athlete's dominant shoulder prior to and immediately after the intervention. Baseline mean angular measurements of PST and IR for all athletes involved in the study were 62°±14° and 40°±10°, respectively, with no significant difference between groups (P=.598 and P=.734, respectively). Mean PST measurements were significantly different between groups after the horizontal adduction stretch, with a mean angle of 83°±17° among the scapular stabilization group and 65°±13° among the nonstabilization group (P<.001). Measurements of IR were also significantly different between groups, with a mean angle of 51°±14° among the scapular stabilization group and 43°±9° among the nonstabilization group (P=.006). Horizontal adduction stretches performed with scapular stabilization produced significantly greater improvements in IR and PST than horizontal adduction stretching without scapular stabilization. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Impairment of heme biosynthesis induces short circadian period in body temperature rhythms in mice.

    PubMed

    Iwadate, Reiko; Satoh, Yoko; Watanabe, Yukino; Kawai, Hiroshi; Kudo, Naomi; Kawashima, Yoichi; Mashino, Tadahiko; Mitsumoto, Atsushi

    2012-07-01

    It has been demonstrated that the function of mammalian clock gene transcripts is controlled by the binding of heme in vitro. To examine the effects of heme on biological rhythms in vivo, we measured locomotor activity (LA) and core body temperature (T(b)) in a mouse model of porphyria with impaired heme biosynthesis by feeding mice a griseofulvin (GF)-containing diet. Mice fed with a 2.0% GF-containing diet (GF2.0) transiently exhibited phase advance or phase advance-like phenomenon by 1-3 h in terms of the biological rhythms of T(b) or LA, respectively (both, P < 0.05) while mice were kept under conditions of a light/dark cycle (12 h:12 h). We also observed a transient, ~0.3 h shortening of the period of circadian T(b) rhythms in mice kept under conditions of constant darkness (P < 0.01). Interestingly, the observed duration of abnormal circadian rhythms in GF2.0 mice lasted between 1 and 3 wk after the onset of GF ingestion; this finding correlated well with the extent of impairment of heme biosynthesis. When we examined the effects of therapeutic agents for acute porphyria, heme, and hypertonic glucose on the pathological status of GF2.0 mice, it was found that the intraperitoneal administration of heme (10 mg·kg(-1)·day(-1)) or glucose (9 g·kg(-1)·day(-1)) for 7 days partially reversed (50%) increases in urinary δ-aminolevulinic acids levels associated with acute porphyria. Treatment with heme, but not with glucose, suppressed the phase advance (-like phenomenon) in the diurnal rhythms (P < 0.05) and restored the decrease of heme (P < 0.01) in GF2.0 mice. These results suggest that impairments of heme biosynthesis, in particular a decrease in heme, may affect phase and period of circadian rhythms in animals.

  10. 1,2,3-Triazole-Heme Interactions in Cytochrome P450: Functionally Competent Triazole-Water- Heme Complexes

    PubMed Central

    Conner, Kip P.; Vennam, Preethi; Woods, Caleb M.; Krzyaniak, Matthew D.; Bowman, Michael K.; Atkins, William M.

    2012-01-01

    In comparison to imidazole (IMZ) and 1,2,4-triazole (1,2,4-TRZ) the isosteric 1,2,3-triazole (1,2,3-TRZ) is unrepresented among CYP inhibitors. This is surprising because 1,2,3-TRZs are easily obtained via ‘click’ chemistry. To understand this underrepresentation of 1,2,3-TRZs among CYP inhibitors, thermodynamic and DFT computational studies were performed with unsusbstituted IMZ, 1,2,4-TRZ, and 1,2,3-TRZ. The results indicate that the lower affinity of 1,2,3-TRZ for the heme iron includes a large unfavorable entropy term likely originating in solvent – 1,2,3-TRZ interactions; the difference is not solely due to differences in the enthalpy of heme – ligand interactions. In addition, the 1,2,3-TRZ fragment was incorporated into a well-established CYP3A4 substrate and mechanism based inactivator, 17-α-ethynylestradiol (17EE), via click chemistry. This derivative, 17-click, yielded optical spectra consistent with low spin ferric heme iron (type II) in contrast to 17EE, which yields a high spin complex (type I). Furthermore, the rate of CYP3A4-mediated metabolism of 17-click was comparable to 17EE, and with different regioselectivity. Surprisingly, CW EPR and HYSCORE EPR spectroscopy indicate that the 17-click does not displace water from the 6th axial ligand position of CYP3A4 as expected for a type II ligand. We propose a binding model where 17-click pendant 1,2,3-TRZ hydrogen bonds with the 6th axial water ligand. The results demonstrate the potential for 1,2,3-TRZ to form metabolically labile water-bridged low spin heme complexes, consistent with recent evidence that nitrogenous type II ligands of CYPs can be efficiently metabolized. The specific case of [CYP3A4•17-click] highlights the risk of interpreting CYP-ligand complex structure on the basis of optical spectra. PMID:22809252

  11. Pixantrone can be activated by formaldehyde to generate a potent DNA adduct forming agent

    PubMed Central

    Evison, Ben J.; Mansour, Oula C.; Menta, Ernesto; Phillips, Don R.; Cutts, Suzanne M.

    2007-01-01

    Mitoxantrone is an anti-cancer agent used in the treatment of breast and prostate cancers. It is classified as a topoisomerase II poison, however can also be activated by formaldehyde to generate drug–DNA adducts. Despite identification of this novel form of mitoxantrone–DNA interaction, excessively high, biologically irrelevant drug concentrations are necessary to generate adducts. A search for mitoxantrone analogues that could potentially undergo this reaction with DNA more efficiently identified Pixantrone as an ideal candidate. An in vitro crosslinking assay demonstrated that Pixantrone is efficiently activated by formaldehyde to generate covalent drug–DNA adducts capable of stabilizing double-stranded DNA in denaturing conditions. Pixantrone–DNA adduct formation is both concentration and time dependent and the reaction exhibits an absolute requirement for formaldehyde. In a direct comparison with mitoxantrone–DNA adduct formation, Pixantrone exhibited a 10- to 100-fold greater propensity to generate adducts at equimolar formaldehyde and drug concentrations. Pixantrone–DNA adducts are thermally and temporally labile, yet they exhibit a greater thermal midpoint temperature and an extended half-life at 37°C when compared to mitoxantrone–DNA adducts. Unlike mitoxantrone, this enhanced stability, coupled with a greater propensity to form covalent drug–DNA adducts, may endow formaldehyde-activated Pixantrone with the attributes required for Pixantrone–DNA adducts to be biologically active. PMID:17483512

  12. Translesion Synthesis of the N(2)-2'-Deoxyguanosine Adduct of the Dietary Mutagen IQ in Human Cells: Error-Free Replication by DNA Polymerase κ and Mutagenic Bypass by DNA Polymerases η, ζ, and Rev1.

    PubMed

    Bose, Arindam; Millsap, Amy D; DeLeon, Arnie; Rizzo, Carmelo J; Basu, Ashis K

    2016-09-19

    Translesion synthesis (TLS) of the N(2)-2'-deoxyguanosine (dG-N(2)-IQ) adduct of the carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was investigated in human embryonic kidney 293T cells by replicating plasmid constructs in which the adduct was individually placed at each guanine (G1, G2, or G3) of the NarI sequence (5'-CG1G2CG3CC-3'). TLS efficiency was 38%, 29%, and 25% for the dG-N(2)-IQ located at G1, G2, and G3, respectively, which suggests that dG-N(2)-IQ is bypassed more efficiently by one or more DNA polymerases at G1 than at either G2 or G3. TLS efficiency was decreased 8-35% in cells with knockdown of pol η, pol κ, pol ι, pol ζ, or Rev1. Up to 75% reduction in TLS occurred when pol η, pol ζ, and Rev1 were simultaneously knocked down, suggesting that these three polymerases play important roles in dG-N(2)-IQ bypass. Mutation frequencies (MFs) of dG-N(2)-IQ at G1, G2, and G3 were 23%, 17%, and 11%, respectively, exhibiting a completely reverse trend of the previously reported MF of the C8-dG adduct of IQ (dG-C8-IQ), which is most mutagenic at G3 ( ( 2015 ) Nucleic Acids Res. 43 , 8340 - 8351 ). The major type of mutation induced by dG-N(2)-IQ was targeted G → T, as was reported for dG-C8-IQ. In each site, knockdown of pol κ resulted in an increase in MF, whereas MF was reduced when pol η, pol ι, pol ζ, or Rev1 was knocked down. The reduction in MF was most pronounced when pol η, pol ζ, and Rev1 were simultaneously knocked down and especially when the adduct was located at G3, where MF was reduced by 90%. We conclude that pol κ predominantly performs error-free TLS of the dG-N(2)-IQ adduct, whereas pols η, pol ζ, and Rev1 cooperatively carry out the error-prone TLS. However, in vitro experiments using yeast pol ζ and κ showed that the former was inefficient in full-length primer extension on dG-N(2)-IQ templates, whereas the latter was efficient in both error-free and error-prone extensions. We believe that the observed differences

  13. Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction.

    PubMed

    Stranava, Martin; Man, Petr; Skálová, Tereza; Kolenko, Petr; Blaha, Jan; Fojtikova, Veronika; Martínek, Václav; Dohnálek, Jan; Lengalova, Alzbeta; Rosůlek, Michal; Shimizu, Toru; Martínková, Markéta

    2017-12-22

    The heme-based oxygen sensor histidine kinase Af GcHK is part of a two-component signal transduction system in bacteria. O 2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His 183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH - and -CN - complexes of Af GcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN - and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length Af GcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of Af GcHK. We conclude that Af GcHK functions as an ensemble of molecules sampling at least two conformational states. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The Heme-Based Oxygen Sensor Rhizobium etli FixL: Influence of Auxiliary Ligands on Heme Redox Potential and Implications on the Enzyme Activity.

    PubMed

    Honorio-Felício, Nathalie; Carepo, Marta S P; de F Paulo, Tércio; de França Lopes, Luiz Gonzaga; Sousa, Eduardo H S; Diógenes, Izaura C N; Bernhardt, Paul V

    2016-11-01

    Conformational changes associated to sensing mechanisms of heme-based protein sensors are a key molecular event that seems to modulate not only the protein activity but also the potential of the Fe III/II redox couple of the heme domain. In this work, midpoint potentials (E m ) assigned to the Fe III/II redox couple of the heme domain of FixL from Rhizobium etli (ReFixL) in the unliganded and liganded states were determined by spectroelectrochemistry in the presence of inorganic mediators. In comparison to the unliganded ReFixL protein (+19mV), the binding to ligands that switch off the kinase activity induces a negative shift, i. e. E m =-51, -57 and -156mV for O 2 , imidazole and CN - , respectively. Upon binding to CO, which does not affect the kinase active, E m was observed at +21mV. The potential values observed for Fe III/II of the heme domain of ReFixL upon binding to CO and O 2 do not follow the expected trend based on thermodynamics, assuming that positive potential shift would be expected for ligands that bind to and therefore stabilize the Fe II state. Our results suggest that the conformational changes that switch off kinase activity upon O 2 binding have knock-on effects to the local environment of the heme, such as solvent rearrangement, destabilize the Fe II state and counterbalances the Fe II -stabilizing influence of the O 2 ligand. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA.

    PubMed

    Zubieta, Chloe; Joseph, Rosanne; Krishna, S Sri; McMullan, Daniel; Kapoor, Mili; Axelrod, Herbert L; Miller, Mitchell D; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C; Duan, Lian; Elias, Ylva; Elsliger, Marc-André; Feuerhelm, Julie; Grzechnik, Slawomir K; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Kumar, Abhinav; Marciano, David; Morse, Andrew T; Murphy, Kevin D; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L; Schimmel, Paul; Trout, Christina V; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2007-11-01

    TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 A. TyrA is a dimer, with each monomer exhibiting a two-domain, alpha/beta ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning, as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases. (c) 2007 Wiley-Liss, Inc.

  16. Heme oxygenase: the key to renal function regulation

    PubMed Central

    Cao, Jian; Sacerdoti, David; Li, Xiaoying; Drummond, George

    2009-01-01

    Heme oxygenase (HO) plays a critical role in attenuating the production of reactive oxygen species through its ability to degrade heme in an enzymatic process that leads to the production of equimolar amounts of carbon monoxide and biliverdin/bilirubin and the release of free iron. The present review examines the beneficial role of HO-1 (inducible form of HO) that is achieved by increased expression of this enzyme in renal tissue. The influence of the HO system on renal physiology, obesity, vascular dysfunction, and blood pressure regulation is reviewed, and the clinical potential of increased levels of HO-1 protein, HO activity, and HO-derived end products of heme degradation is discussed relative to renal disease. The use of pharmacological and genetic approaches to investigate the role of the HO system in the kidney is key to the development of therapeutic approaches to prevent the adverse effects that accrue due to an impairment in renal function. PMID:19570878

  17. Evidence for the presence of mutagenic arylamines in human breast milk and DNA adducts in exfoliated breast ductal epithelial cells.

    PubMed

    Thompson, Patricia A; DeMarini, David M; Kadlubar, Fred F; McClure, Gail Y; Brooks, Lance R; Green, Bridgett L; Fares, Manal Y; Stone, Angie; Josephy, P David; Ambrosone, Christine B

    2002-01-01

    Aromatic and heterocyclic amines are ubiquitous environmental mutagens present in combustion emissions, fried meats, and tobacco smoke, and are suspect human mammary carcinogens. To determine the presence of arylamines in breast tissue and fluid, we examined exfoliated breast ductal epithelial cells for DNA adducts and matched human milk samples for mutagenicity. Breast milk was obtained from 50 women who were 4-6 weeks postpartum, and exfoliated epithelial-cell DNA was evaluated for bulky, nonpolar DNA adducts by (32)P-postlabeling and thin-layer chromatography. Milk was processed by acid hydrolysis, and the extracted organics were examined in the standard plate-incorporation Ames Salmonella assay using primarily strain YG1024, which detects frameshift mutations and overexpresses aryl amine N-acetyltransferase. DNA adducts were identified in 66% of the specimens, and bulky adducts migrated in a pattern similar to that of 4-aminobiphenyl standards. The distribution of adducts did not vary by NAT2 genotype status. Of whole milk samples, 88% (22/25) had mutagenic activity. Among the samples for which we had both DNA adduct and mutagenicity data, 58% (14/19) of the samples with adducts were also mutagenic, and 85% (11/13) of the mutagenic samples had adducts. Quantitatively, no correlation was observed between the levels of adducts and the levels of mutagenicity. Separation of the milk showed that mutagenic activity was found in 69% of skimmed milk samples but in only 29% of the corresponding milk fat samples, suggesting that the breast milk mutagens were moderately polar molecules. Chemical fractionation showed that mutagenic activity was found in 67% (4/6) of the basic fractions but in only 33% (2/6) of acidic samples, indicating that the mutagens were primarily basic compounds, such as arylamines. Although pilot in nature, this study corroborates previous findings of significant levels of DNA adducts in breast tissue and mutagenicity in human breast milk and

  18. Role of heme in intracellular trafficking of thyroperoxidase and involvement of H2O2 generated at the apical surface of thyroid cells in autocatalytic covalent heme binding.

    PubMed

    Fayadat, L; Niccoli-Sire, P; Lanet, J; Franc, J L

    1999-04-09

    Thyroperoxidase (TPO) is a glycosylated hemoprotein that plays a key role in thyroid hormone synthesis. We previously showed that in CHO cells expressing human TPO (hTPO) only 2% of synthesized hTPO reaches the cell surface. Herein, we investigated the role of heme moiety insertion in the exit of hTPO from the endoplasmic reticulum. Peroxidase activity at the cell surface and cell surface expression of hTPO were decreased by approximately 30 and approximately 80%, respectively, with succinyl acetone, an inhibitor of heme biosynthesis, and were increased by 20% with holotransferrin and aminolevulinic acid, precursors of heme biosynthesis. Results were similar with holotransferrin plus aminolevulinic acid or hemin, but hemin increased cell surface activity more efficiently (+120%) relative to the control. It had been suggested (DePillis, G., Ozaki, S., Kuo, J. M., Maltby, D. A., and Ortiz de Montellano, P. R. (1997) J. Biol. Chem. 272, 8857-8960) that covalent attachment of heme to mammalian peroxidases could be an H2O2-dependent autocatalytic processing. In our study, heme associated intracellularly with hTPO, and we hypothesized that there was insufficient exposure to H2O2 in Chinese hamster ovary cells before hTPO reached the cell surface. After a 10-min incubation, 10 microM H2O2 led to a 65% increase in cell surface activity. In contrast, in thyroid cells, H2O2 was synthesized at the apical cell surface and allowed covalent attachment of heme. Two-day incubation of primocultures of thyroid cells with catalase led to a 30% decrease in TPO activity at the cell surface. In conclusion, we provide compelling evidence for an essential role of 1) heme incorporation in the intracellular trafficking of hTPO and of 2) H2O2 generated at the apical pole of thyroid cells in the autocatalytic covalent heme binding to the TPO molecule.

  19. 32P analysis of DNA adducts in tissues of benzene-treated rats.

    PubMed Central

    Reddy, M V; Blackburn, G R; Schreiner, C A; Mehlman, M A; Mackerer, C R

    1989-01-01

    Solid tumors have been reported in the Zymbal gland, oral and nasal cavities, liver, and mammary gland of Sprague-Dawley rats following chronic, high-dose administration of benzene. The carcinogenic activity of benzene is thought to be caused by activation to toxic metabolites that can interact with DNA, forming covalent adducts. A nuclease P1-enhanced 32P-postlabeling assay, having a sensitivity limit of 1 adduct in 10(9-10) DNA nucleotides, was found suitable for measuring aromatic DNA adducts derived in vitro from catechol, benzenetriol (BT), phenol, hydroquinone (HQ), and benzoquinone (BQ), potential metabolites of benzene. When DNA specimens isolated from tissues of female Sprague-Dawley rats at 24 hr after an oral gavage dose of 200 to 500 mg/kg, 5 days/week, in olive oil (3 mL/kg) for 1 day, 1 week, 5 weeks, and 10 weeks were analyzed by the 32P-postlabeling procedure, no aromatic adducts were detected unequivocally with DNA samples of liver, kidney, bone marrow, and mammary gland. With Zymbal gland DNA, three weak spots at levels totaling four lesions per 10(9) DNA nucleotides were seen only after 10 weeks of treatment, and these adducts did not correspond chromatographically to major adducts in vitro from the above specified compounds. Consequently, this finding requires confirmatory experiments. This distinct adduct pattern may relate to tumor induction in this organ following benzene administration. Our results also indicate that DNA adducts derived from catechol, BT, phenol, HQ, and BQ are either not formed in vivo with benzene or formed at levels below the detection limit of 1 adduct per 10(9-10) DNA nucleotides. Images FIGURE 1. FIGURE 2. FIGURE 3. PMID:2792046

  20. Loss of Dermatan-4-Sulfotransferase 1 Function Results in Adducted Thumb-Clubfoot Syndrome

    PubMed Central

    Dündar, Munis; Müller, Thomas; Zhang, Qi; Pan, Jing; Steinmann, Beat; Vodopiutz, Julia; Gruber, Robert; Sonoda, Tohru; Krabichler, Birgit; Utermann, Gerd; Baenziger, Jacques U.; Zhang, Lijuan; Janecke, Andreas R.

    2009-01-01

    Adducted thumb-clubfoot syndrome is an autosomal-recessive disorder characterized by typical facial appearance, wasted build, thin and translucent skin, congenital contractures of thumbs and feet, joint instability, facial clefting, and coagulopathy, as well as heart, kidney, or intestinal defects. We elucidated the molecular basis of the disease by using a SNP array-based genome-wide linkage approach that identified distinct homozygous nonsense and missense mutations in CHST14 in each of four consanguineous families with this disease. The CHST14 gene encodes N-acetylgalactosamine 4-O-sulfotransferase 1 (D4ST1), which catalyzes 4-O sulfation of N-acetylgalactosamine in the repeating iduronic acid-α1,3-N-acetylgalactosamine disaccharide sequence to form dermatan sulfate. Mass spectrometry of glycosaminoglycans from a patient's fibroblasts revealed absence of dermatan sulfate and excess of chondroitin sulfate, showing that 4-O sulfation by CHST14 is essential for dermatan sulfate formation in vivo. Our results indicate that adducted thumb-clubfoot syndrome is a disorder resulting from a defect specific to dermatan sulfate biosynthesis and emphasize roles for dermatan sulfate in human development and extracellular-matrix maintenance. PMID:20004762

  1. Inert Reassessment Document for Poly(oxyethylene) adducts of mixed phytosterols

    EPA Pesticide Factsheets

    Poly(oxyethy1ene) adducts of mixed phytosterols is uncategorized as to list classification status. Based upon the reasonable certainty of no harm safety finding, the List 4B classification for poly(oxyethy1ene) adducts of mixed phytosterols is affirmed.

  2. Immunohistochemical detection of a substituted 1,N(2)-ethenodeoxyguanosine adduct by omega-6 polyunsaturated fatty acid hydroperoxides in the liver of rats fed a choline-deficient, L-amino acid-defined diet.

    PubMed

    Kawai, Yoshichika; Kato, Yoji; Nakae, Dai; Kusuoka, Osamu; Konishi, Yoichi; Uchida, Koji; Osawa, Toshihiko

    2002-03-01

    Endogenous lipid peroxidation products react with DNA and form exocyclic DNA adducts. The purpose of this study was to investigate the in vivo formation of 7-(2-oxo-heptyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct (Oxo-heptyl-varepsilondG), one of the major products from the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with dG. The monoclonal antibody specific to Oxo-heptyl-varepsilondG was prepared using a chemically synthesized conjugate of Oxo-heptyl-varepsilondG and carrier protein as immunogen. The characterization showed that the obtained antibody (mAb6A3) is specific to the Oxo-heptyl-varepsilondG moiety. Using the novel antibody, the presence of the Oxo-heptyl-varepsilondG adduct in vivo was immunohistochemically revealed in the liver of rats fed a choline-deficient, L-amino acid-defined diet, an endogenous carcinogenesis model, for 3 days. In addition, the Oxo-heptyl-varepsilondG formation was confirmed in DNAs treated with peroxidized linoleic acid, arachidonic acid and gamma-linolenic acid, respectively, suggesting that the hydroperoxides of omega-6 polyunsaturated fatty acids could be the potential sources of Oxo-heptyl-varepsilondG formation in vivo. Collectively, the results in this study suggest the first evidence that the formation of Oxo-heptyl-varepsilondG, the omega-6 lipid hydroperoxide-mediated DNA adduct, may be a potential biomarker for the early phase of carcinogenesis.

  3. Thermodynamics of Electron Flow in the Bacterial Deca-heme Cytochrome MtrF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuer, Marian; Zarzycki, Piotr P.; Blumberger, Jochen

    2012-07-01

    Electron transporting multiheme cytochromes are essential to the metabolism of microbes that inhabit soils and carry out important biogeochemical processes. Recently the first crystal structure of a prototype bacterial deca-heme cytochrome (MtrF) has been resolved and its electrochemistry characterized. However, the molecular details of electron conductance along heme chains in the cytochrome are difficult to access via experiment due to the nearly identical chemical nature of the heme cofactors. Here we employ large-scale molecular dynamics simulations to compute the reduction potentials of the ten hemes of MtrF in aqueous solution. We find that as a whole they fall within amore » range of about 0.3 V in agreement with experiment. Individual reduction potentials give rise to a free energy profile for electron conduction that is approximately symmetric with respect to the center of the protein. Our calculations indicate that there is no significant potential bias along the orthogonal octa- and tetra-heme chains suggesting that under aqueous conditions MtrF is a nearly reversible two-dimensional conductor.« less

  4. Comparison of ligand migration and binding in heme proteins of the globin family

    NASA Astrophysics Data System (ADS)

    Karin, Nienhaus; Ulrich Nienhaus, G.

    2015-12-01

    The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of this process in full detail. Here, we compare ligand binding in three heme proteins of the globin family, myoglobin, a dimeric hemoglobin, and neuroglobin. The combination of structural, spectroscopic, and kinetic experiments over many years by many laboratories has revealed common properties of globins and a clear mechanistic picture of ligand binding at the molecular level. In addition to the ligand binding site at the heme iron, a primary ligand docking site exists that ensures efficient ligand binding to and release from the heme iron. Additional, secondary docking sites can greatly facilitate ligand escape after its dissociation from the heme. Although there is only indirect evidence at present, a preformed histidine gate appears to exist that allows ligand entry to and exit from the active site. The importance of these features can be assessed by studies involving modified proteins (via site-directed mutagenesis) and comparison with heme proteins not belonging to the globin family.

  5. Identification of the heme acquisition system in Vibrio vulnificus M2799.

    PubMed

    Kawano, Hiroaki; Miyamoto, Katsushiro; Yasunobe, Megumi; Murata, Masahiro; Yamahata, Eri; Yamaguchi, Ryo; Miyaki, Yuta; Tsuchiya, Takahiro; Tanabe, Tomotaka; Funahashi, Tatsuya; Tsujibo, Hiroshi

    2018-04-01

    Vibrio vulnificus, the causative agent of serious, often fatal, infections in humans, requires iron for its pathogenesis. As such, it obtains iron via both vulnibactin and heme-mediated iron-uptake systems. In this study, we identified the heme acquisition system in V. vulnificus M2799. The nucleotide sequences of the genes encoding heme receptors HupA and HvtA and the ATP-binding cassette (ABC) transport system proteins HupB, HupC, and HupD were determined, and then used in the construction of deletion mutants developed from a Δics strain, which could not synthesize vulnibactin. Growth experiments using these mutants indicated that HupA and HvtA are major and minor heme receptors, respectively. The expressions of two proteins were analyzed by the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Furthermore, complementation analyses confirmed that the HupBCD proteins are the only ABC transport system shared by both the HupA and HvtA receptors. This is the first genetic evidence that the HupBCD proteins are essential for heme acquisition by V. vulnificus. Further investigation showed that hupA, hvtA, and hupBCD are regulated by Fur. The qRT-PCR analysis of the heme receptor genes revealed that HupR, a LysR-family positive transcriptional activator, upregulates the expression of hupA, but not hvtA. In addition, ptrB was co-transcribed with hvtA, and PtrB had no influence on growth in low-iron CM9 medium supplemented with hemin, hemoglobin, or cytochrome C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    PubMed

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  7. Tyrosine-Lipid Peroxide Adducts from Radical Termination: Para-Coupling and Intramolecular Diels-Alder Cyclization

    PubMed Central

    Shchepin, Roman; Möller, Matias N.; Kim, Hye-young H.; Hatch, Duane M.; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael

    2013-01-01

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogs of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR as well as by mass spectrometry. The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic 13C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl 13C chemical shifts at ~198 ppm. All NMR HMBC and HSQC correlations support the structure assignment of the primary and Diels-Alder adducts, as does MS collision induced dissociation. Kinetic rate constants and activation parameters for the IMDA reaction were determined and the primary adducts were reduced with cuprous ion giving a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found either in the primary or the cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein crosslinks via interprotein Michael adducts. PMID:21090613

  8. In situ synthesis of alkenyl tetrazines for highly fluorogenic bioorthogonal live-cell imaging probes.

    PubMed

    Wu, Haoxing; Yang, Jun; Šečkutė, Jolita; Devaraj, Neal K

    2014-06-02

    In spite of the wide application potential of 1,2,4,5-tetrazines, particularly in live-cell and in vivo imaging, a major limitation has been the lack of practical synthetic methods. Here we report the in situ synthesis of (E)-3-substituted 6-alkenyl-1,2,4,5-tetrazine derivatives through an elimination-Heck cascade reaction. By using this strategy, we provide 24 examples of π-conjugated tetrazine derivatives that can be conveniently prepared from tetrazine building blocks and related halides. These include tetrazine analogs of biological small molecules, highly conjugated buta-1,3-diene-substituted tetrazines, and a diverse array of fluorescent probes suitable for live-cell imaging. These highly conjugated probes show very strong fluorescence turn-on (up to 400-fold) when reacted with dienophiles such as cyclopropenes and trans-cyclooctenes, and we demonstrate their application for live-cell imaging. This work provides an efficient and practical synthetic methodology for tetrazine derivatives and will facilitate the application of conjugated tetrazines, particularly as fluorogenic probes for live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin.

    PubMed

    Kuznets, Galit; Vigonsky, Elena; Weissman, Ziva; Lalli, Daniela; Gildor, Tsvia; Kauffman, Sarah J; Turano, Paola; Becker, Jeffrey; Lewinson, Oded; Kornitzer, Daniel

    2014-10-01

    Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7-/- mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.

  10. Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopy

    DOE PAGES

    Levantino, M.; Lemke, H. T.; Schirò, G.; ...

    2015-07-01

    We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM) time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (~70 fs) relaxation preceding a slower (~400 fs) one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix.

  11. Cisplatin intrastrand adducts sensitize DNA to base damage by hydrated electrons.

    PubMed

    Behmand, B; Wagner, J R; Sanche, L; Hunting, D J

    2014-05-08

    The oligonucleotide TTTTTGTGTTT with or without a cisplatin adduct was reacted with hydrated electrons generated by ionizing radiation. Hydroxyl radicals were quenched with ethylenediaminetetraacetic acid (EDTA), and the solutions were bubbled with wet nitrogen to eliminate oxygen, a scavenger of hydrated electrons. Prior to irradiation, the structure of the initial cisplatin adduct was identified by mass spectrometry as G-cisplatin-G. Radiation damage to DNA bases was quantified by high-performance liquid chromatography (HPLC), after enzymatic digestion of the TTTTTGTGTTT-cisplatin complex to deoxyribonucleosides. The masses of the platinum adducts following digestion and separation by HPLC were measured by mass spectrometry. Our results demonstrate that hydrated electrons induce damage to thymines as well as detachment of the cisplatin moiety from both guanines in the oligonucleotide. This detachment regenerates both unmodified guanine and damaged guanine, in equimolar amounts. At 1000 Gy, a net average of 2.5 thymines and 1 guanine are damaged for each platinum lost from the oligonucleotide. Given the extensive base damage that occurs for each cisplatin adduct lost, it is clear that, prior to undergoing detachment, these adducts must catalyze several cycles of reactions of hydrated electrons with DNA bases. It is likely that a single reaction leads to the loss of the cisplatin adduct and the damage observed on the guanine base; however, the damage to the thymine bases must require the continued presence of the cisplatin adduct, acting as a catalyst. To our knowledge, this is the first time that platinum-DNA adducts have been shown to have catalytic activity. We propose two pathways for the interaction of hydrated electrons with TTTTTGTGTTT-cisplatin: (1) the hydrated electron is initially captured by a thymine base and transferred by base to base electron hopping to the guanine site, where the cisplatin moiety detaches from the oligonucleotide via dissociative

  12. Cisplatin Intrastrand Adducts Sensitize DNA to Base Damage by Hydrated Electrons

    PubMed Central

    Behmand, B.; Wagner, J. R.; Sanche, L.; Hunting, D. J.

    2015-01-01

    The oligonucleotide TTTTTGTGTTT with or without a cisplatin adduct was reacted with hydrated electrons generated by ionizing radiation. Hydroxyl radicals were quenched with ethylenediaminetetraacetic acid (EDTA), and the solutions were bubbled with wet nitrogen to eliminate oxygen, a scavenger of hydrated electrons. Prior to irradiation, the structure of the initial cisplatin adduct was identified by mass spectrometry as G-cisplatin-G. Radiation damage to DNA bases was quantified by high-performance liquid chromatography (HPLC), after enzymatic digestion of the TTTTTGTGTTT-cisplatin complex to deoxyribonucleosides. The masses of the platinum adducts following digestion and separation by HPLC were measured by mass spectrometry. Our results demonstrate that hydrated electrons induce damage to thymines as well as detachment of the cisplatin moiety from both guanines in the oligonucleotide. This detachment regenerates both unmodified guanine and damaged guanine, in equimolar amounts. At 1000 Gy, a net average of 2.5 thymines and 1 guanine are damaged for each platinum lost from the oligonucleotide. Given the extensive base damage that occurs for each cisplatin adduct lost, it is clear that, prior to undergoing detachment, these adducts must catalyze several cycles of reactions of hydrated electrons with DNA bases. It is likely that a single reaction leads to the loss of the cisplatin adduct and the damage observed on the guanine base; however, the damage to the thymine bases must require the continued presence of the cisplatin adduct, acting as a catalyst. To our knowledge, this is the first time that platinum-DNA adducts have been shown to have catalytic activity. We propose two pathways for the interaction of hydrated electrons with TTTTTGTGTTT-cisplatin: (1) the hydrated electron is initially captured by a thymine base and transferred by base to base electron hopping to the guanine site, where the cisplatin moiety detaches from the oligonucleotide via dissociative

  13. Translesion Synthesis of the N2-2′-Deoxyguanosine Adduct of the Dietary Mutagen IQ in Human Cells: Error-Free Replication by DNA Polymerase κ and Mutagenic Bypass by DNA Polymerases η, ζ, and Rev1

    PubMed Central

    2016-01-01

    Translesion synthesis (TLS) of the N2-2′-deoxyguanosine (dG-N2-IQ) adduct of the carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was investigated in human embryonic kidney 293T cells by replicating plasmid constructs in which the adduct was individually placed at each guanine (G1, G2, or G3) of the NarI sequence (5′-CG1G2CG3CC-3′). TLS efficiency was 38%, 29%, and 25% for the dG-N2-IQ located at G1, G2, and G3, respectively, which suggests that dG-N2-IQ is bypassed more efficiently by one or more DNA polymerases at G1 than at either G2 or G3. TLS efficiency was decreased 8–35% in cells with knockdown of pol η, pol κ, pol ι, pol ζ, or Rev1. Up to 75% reduction in TLS occurred when pol η, pol ζ, and Rev1 were simultaneously knocked down, suggesting that these three polymerases play important roles in dG-N2-IQ bypass. Mutation frequencies (MFs) of dG-N2-IQ at G1, G2, and G3 were 23%, 17%, and 11%, respectively, exhibiting a completely reverse trend of the previously reported MF of the C8-dG adduct of IQ (dG-C8-IQ), which is most mutagenic at G3 ((2015) Nucleic Acids Res.43, 8340−835126220181). The major type of mutation induced by dG-N2-IQ was targeted G → T, as was reported for dG-C8-IQ. In each site, knockdown of pol κ resulted in an increase in MF, whereas MF was reduced when pol η, pol ι, pol ζ, or Rev1 was knocked down. The reduction in MF was most pronounced when pol η, pol ζ, and Rev1 were simultaneously knocked down and especially when the adduct was located at G3, where MF was reduced by 90%. We conclude that pol κ predominantly performs error-free TLS of the dG-N2-IQ adduct, whereas pols η, pol ζ, and Rev1 cooperatively carry out the error-prone TLS. However, in vitro experiments using yeast pol ζ and κ showed that the former was inefficient in full-length primer extension on dG-N2-IQ templates, whereas the latter was efficient in both error-free and error-prone extensions. We believe that the observed differences between

  14. PROTEIN ADDUCTS AS BIOMAKERS OF EXPOSURE TO ORGANOPHOSPHORUS COMPOUNDS

    PubMed Central

    Marsillach, Judit; Costa, Lucio G.; Furlong, Clement E.

    2013-01-01

    Exposure to organophosphorus (OP) compounds can lead to serious neurological damage or death. Following bioactivation by the liver cytochromes P450, the OP metabolites produced are potent inhibitors of serine active-site enzymes including esterases, proteases and lipases. OPs may form adducts on other cellular proteins. Blood cholinesterases (ChEs) have long served as biomarkers of OP exposure in humans. However, the enzymatic assays used for biomonitoring OP exposures have several drawbacks. A more useful approach will focus on multiple biomarkers and avoid problems with the enzymatic activity assays. OP inhibitory effects result from a covalent bond with the active-site serine of the target enzymes. The serine OP adducts become irreversible following a process referred to as aging where one alkyl group dissociates over variable lengths of time depending on the OP adduct. The OP-adducted enzyme then remains in circulation until it is degraded, allowing for a longer window of detection compared with direct analysis of OPs or their metabolites. Mass spectrometry (MS) provides a very sensitive method for identification of post-translational protein modifications. MS analyses of the percentage adduction of the active-site serine of biomarker proteins such as ChEs will eliminate the need for basal activity levels of the individual and will provide for a more accurate determination of OP exposure. MS analysis of biomarker proteins also provides information about the OP that has caused inhibition. Other useful biomarker proteins include other serine hydrolases, albumin, tubulin and transferrin. PMID:23261756

  15. Iron-heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency.

    PubMed

    Kobayashi, Masahiro; Kato, Hiroki; Hada, Hiroshi; Itoh-Nakadai, Ari; Fujiwara, Tohru; Muto, Akihiko; Inoguchi, Yukihiro; Ichiyanagi, Kenji; Hojo, Wataru; Tomosugi, Naohisa; Sasaki, Hiroyuki; Harigae, Hideo; Igarashi, Kazuhiko

    2017-03-01

    Iron plays the central role in oxygen transport by erythrocytes as a constituent of heme and hemoglobin. The importance of iron and heme is also to be found in their regulatory roles during erythroblast maturation. The transcription factor Bach1 may be involved in their regulatory roles since it is deactivated by direct binding of heme. To address whether Bach1 is involved in the responses of erythroblasts to iron status, low iron conditions that induced severe iron deficiency in mice were established. Under iron deficiency, extensive gene expression changes and mitophagy disorder were induced during maturation of erythroblasts. Bach1 -/- mice showed more severe iron deficiency anemia in the developmental phase of mice and a retarded recovery once iron was replenished when compared with wild-type mice. In the absence of Bach1, the expression of globin genes and Hmox1 (encoding heme oxygenase-1) was de-repressed in erythroblasts under iron deficiency, suggesting that Bach1 represses these genes in erythroblasts under iron deficiency to balance the levels of heme and globin. Moreover, an increase in genome-wide DNA methylation was observed in erythroblasts of Bach1 -/- mice under iron deficiency. These findings reveal the principle role of iron as a regulator of gene expression in erythroblast maturation and suggest that the iron-heme-Bach1 axis is important for a proper adaptation of erythroblast to iron deficiency to avoid toxic aggregates of non-heme globin. Copyright© Ferrata Storti Foundation.

  16. Distinct Prominent Roles for Enzymes of Plasmodium berghei Heme Biosynthesis in Sporozoite and Liver Stage Maturation

    PubMed Central

    Matuschewski, Kai; Haussig, Joana M.

    2016-01-01

    Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression. PMID:27600503

  17. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (where N = 400 ppb). (b) Specific requirements.... (1) Recordkeeping requirements. Requirements as specified in § 721.125 (a), (b), (c), (f), (g), (h... adduct (P-90-364) is subject to reporting under this section for the significant new uses described in...

  18. Methane production from wheat straw with anaerobic sludge by heme supplementation.

    PubMed

    Xi, Yonglan; Chang, Zhizhou; Ye, Xiaomei; Xu, Rong; Du, Jing; Chen, Guangyin

    2014-11-01

    Wheat straw particles were directly used as substrate for batch anaerobic digestion with anaerobic sludge under 35°C to evaluate the effects of adding heme on methane production. When 1mg/l heme was added to the fermentation process with no agitated speed, a maximum cumulative methane production of 12227.8ml was obtained with cumulative methane yield of wheat straw was 257.4ml/g-TS (total solid), which was increased by 20.6% compared with 213.5ml/g-TS of no heme was added in the reactor. Meanwhile, oxido-reduction potential (ORP) level was decreased, the activity of coenzyme F420 was significantly improved and NADH/NAD(+) ratio were the highest than other experimental groups. These results suggest that heme-supplemented anaerobic sludge with no agitated speed may be providing a more reductive environment, which is a cost-effective method of anaerobic digestion from biomass waste to produce methane with less energy consuming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Developing a heme iron database for meats according to meat type, cooking method and doneness level

    USDA-ARS?s Scientific Manuscript database

    Background: Animal studies have demonstrated that iron may be related to carcinogenesis, and human studies found that heme iron can increase the formation of N-nitroso compounds, which are known carcinogens. Objectives: One of the postulated mechanisms linking red meat intake to cancer risk involves...

  20. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future

    PubMed Central

    2016-01-01

    Serum albumin (Alb) is the most abundant protein in blood plasma. Alb reacts with many carcinogens and/or their electrophilic metabolites. Studies conducted over 20 years ago showed that Alb forms adducts with the human carcinogens aflatoxin B1 and benzene, which were successfully used as biomarkers in molecular epidemiology studies designed to address the role of these chemicals in cancer risk. Alb forms adducts with many therapeutic drugs or their reactive metabolites such as β-lactam antibiotics, acetylsalicylic acid, acetaminophen, nonsteroidal anti-inflammatory drugs, chemotherapeutic agents, and antiretroviral therapy drugs. The identification and characterization of the adduct structures formed with Alb have served to understand the generation of reactive metabolites and to predict idiosyncratic drug reactions and toxicities. The reaction of candidate drugs with Alb is now exploited as part of the battery of screening tools to assess the potential toxicities of drugs. The use of gas chromatography-mass spectrometry, liquid chromatography, or liquid chromatography-mass spectrometry (LC-MS) enabled the identification and quantification of multiple types of Alb xenobiotic adducts in animals and humans during the past three decades. In this perspective, we highlight the history of Alb as a target protein for adduction to environmental and dietary genotoxicants, pesticides, and herbicides, common classes of medicinal drugs, and endogenous electrophiles, and the emerging analytical mass spectrometry technologies to identify Alb-toxicant adducts in humans. PMID:27989119

  1. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  2. N-Alkylprotoporphyrin Formation and Hepatic Porphyria in Dogs After Administration of a New Antiepileptic Drug Candidate: Mechanism and Species Specificity

    PubMed Central

    Nicolas, Jean-Marie; Chanteux, Hugues; Mancel, Valérie; Dubin, Guy-Marie; Gerin, Brigitte; Staelens, Ludovicus; Depelchin, Olympe; Kervyn, Sophie

    2014-01-01

    A new antiepileptic synaptic vesicle 2a (SV2a) ligand drug candidate was tested in 4-week oral toxicity studies in rat and dog. Brown pigment inclusions were found in the liver of high-dose dogs. The morphology of the deposits and the accompanying liver changes (increased plasma liver enzymes, increased total hepatic porphyrin level, decreased liver ferrochelatase activity, combined induction, and inactivation of cytochrome P-450 CYP2B11) suggested disruption of the heme biosynthetic cascade. None of these changes was seen in rat although this species was exposed to higher parent drug levels. Toxicokinetic analysis and in vitro metabolism assays in hepatocytes showed that dog is more prone to oxidize the drug candidate than rat. Mass spectrometry analysis of liver samples from treated dogs revealed an N-alkylprotoporphyrin adduct. The elucidation of its chemical structure suggested that the drug transforms into a reactive metabolite which is structurally related to a known reference porphyrogenic agent allylisopropylacetamide. That particular metabolite, primarily produced in dog but neither in rat nor in human, has the potential to alkylate the prosthetic heme of CYP. Overall, the data suggested that the drug candidate should not be porphyrogenic in human. This case study further exemplifies the species variability in the susceptibility to drug-induced porphyria. PMID:24973095

  3. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Amit V., E-mail: amit@pandeylab.org; Flueck, Christa E.; Mullis, Primus E.

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare formmore » of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.« less

  4. A novel pathway for the biosynthesis of heme in Archaea: genome-based bioinformatic predictions and experimental evidence.

    PubMed

    Storbeck, Sonja; Rolfes, Sarah; Raux-Deery, Evelyne; Warren, Martin J; Jahn, Dieter; Layer, Gunhild

    2010-12-13

    Heme is an essential prosthetic group for many proteins involved in fundamental biological processes in all three domains of life. In Eukaryota and Bacteria heme is formed via a conserved and well-studied biosynthetic pathway. Surprisingly, in Archaea heme biosynthesis proceeds via an alternative route which is poorly understood. In order to formulate a working hypothesis for this novel pathway, we searched 59 completely sequenced archaeal genomes for the presence of gene clusters consisting of established heme biosynthetic genes and colocalized conserved candidate genes. Within the majority of archaeal genomes it was possible to identify such heme biosynthesis gene clusters. From this analysis we have been able to identify several novel heme biosynthesis genes that are restricted to archaea. Intriguingly, several of the encoded proteins display similarity to enzymes involved in heme d(1) biosynthesis. To initiate an experimental verification of our proposals two Methanosarcina barkeri proteins predicted to catalyze the initial steps of archaeal heme biosynthesis were recombinantly produced, purified, and their predicted enzymatic functions verified.

  5. Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.

    PubMed

    Binter, Alexandra; Goodisman, Jerry; Dabrowiak, James C

    2006-07-01

    Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism of action of cisplatin. In this report we study the binding of cisplatin to pBR322 DNA in two different buffers, using gel electrophoresis. In 23.8mM HEPES, N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, 5mM NaCl, pH 7.4 buffer, cisplatin produces aquated species, which react with DNA to unwind supercoiled Form I DNA, increasing its mobility, and reducing the binding of ethidium to DNA. This behavior is consistent with the formation of the well-known intrastrand crosslink on DNA. In 23.8mM carbonate buffer, 5mM NaCl, pH 7.4, cisplatin forms carbonato species that produce DNA-adducts which do not significantly change supercoiling but enhance binding of ethidium to DNA. This behavior is consistent with the formation of a monofunctional cisplatin adduct on DNA. These results show that aquated cisplatin and carbonato complexes of cisplatin produce different types of lesions on DNA and they underscore the importance of carrying out binding studies with cisplatin and DNA using conditions that approximate those found in the cell.

  6. A Relay Network of Extracellular Heme-Binding Proteins Drives C. albicans Iron Acquisition from Hemoglobin

    PubMed Central

    Kuznets, Galit; Vigonsky, Elena; Weissman, Ziva; Lalli, Daniela; Gildor, Tsvia; Kauffman, Sarah J.; Turano, Paola; Becker, Jeffrey; Lewinson, Oded; Kornitzer, Daniel

    2014-01-01

    Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7−/− mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope. PMID:25275454

  7. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon.

    PubMed

    Ijssennagger, Noortje; Belzer, Clara; Hooiveld, Guido J; Dekker, Jan; van Mil, Saskia W C; Müller, Michael; Kleerebezem, Michiel; van der Meer, Roelof

    2015-08-11

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function.

  8. Protein aggregation as a cellular response to oxidative stress induced by heme and iron

    PubMed Central

    Vasconcellos, Luiz R. C.; Dutra, Fabianno F.; Siqueira, Mariana S.; Paula-Neto, Heitor A.; Dahan, Jennifer; Kiarely, Ellen; Carneiro, Leticia A. M.; Bozza, Marcelo T.; Travassos, Leonardo H.

    2016-01-01

    Hemolytic diseases include a variety of conditions with diverse etiologies in which red blood cells are destroyed and large amounts of hemeproteins are released. Heme has been described as a potent proinflammatory molecule that is able to induce multiple innate immune responses, such as those triggered by TLR4 and the NLRP3 inflammasome, as well as necroptosis in macrophages. The mechanisms by which eukaryotic cells respond to the toxic effects induced by heme to maintain homeostasis are not fully understood, however. Here we describe a previously uncharacterized cellular response induced by heme: the formation of p62/SQTM1 aggregates containing ubiquitinated proteins in structures known as aggresome-like induced structures (ALIS). This action is part of a response driven by the transcription factor NRF2 to the excessive generation of reactive oxygen species induced by heme that results in the expression of genes involved in antioxidant responses, including p62/SQTM1. Furthermore, we show that heme degradation by HO-1 is required for ALIS formation, and that the free iron released on heme degradation is necessary and sufficient to induce ALIS. Moreover, ferritin, a key protein in iron metabolism, prevents excessive ALIS formation. Finally, in vivo, hemolysis promotes an increase in ALIS formation in target tissues. Our data unravel a poorly understood aspect of the cellular responses induced by heme that can be explored to better understand the effects of free heme and free iron during hemolytic diseases such as sickle cell disease, dengue fever, malaria, and sepsis. PMID:27821769

  9. Mass spectrometry of cis-diamminedichloroplatinum(II) adducts with the dinucleosidemonophosphates d(ApG), d(GpG) and d(TpC) in an ion trap.

    PubMed

    Hagemeister, Timo; Linscheid, Michael

    2002-07-01

    The detection and fragmentation behaviour of adducts of the chemotherapeutic cis-diamminedichloroplatinum(II) (cisplatin) with the dinucleosidemonophosphates d(ApG), d(GpG) and d(TpC) as model compounds for DNA adducts in an ion trap with electrospray ionization were studied. Mainly the monofunctional adduct, the bifunctional adduct and the bifunctional adduct with platinum bridging two dinucleosidemonophosphates were detected. In addition, several more complex adducts were seen resulting from reactions among these species. Adduct formation was low in the case of d(TpC). Fragmentation could be controlled strongly by varying the temperature of the transfer capillary; furthermore, tandem mass spectrometric (MS/MS) experiments on both the monofunctional and the bifunctional adducts were performed. For the adducts of d(ApG) and d(GpG) losses of NH(3) and HCl were the most dominant reactions, followed by the losses of one, then another two units of 98 amu from the sugar-phosphate backbone, whereas d(TpC)-Pt predominantly forms the dinucleosidemonophosphate. In the gas phase, the conversion of the monofunctional into the bifunctional adducts through binding to another site in the dinucleotide accompanied by loss of NH(3) or HCl could also be observed. The removal of a ligand from the coordination sphere of the square-planar platinum complexes appeared to be the crucial step for the induction of further fragmentation of the dinucleotide ligand. MS(n) experiments of the bifunctional adducts of d(ApG) and d(GpG) revealed different fragmentation pathways involving the loss of phosphoric acid, metaphosphoric acid, deoxyribose units (intact or dehydrated) and the nucleobases in different orders, leaving characteristic binding site-determining fragments. Fragmentation of these ions was also performed, mainly resulting in fragmentation of the bases. The study confirmed the remarkable stability of the platinum-guanine bond compared with other nucleobases. Copyright 2002 John

  10. Quantification of phase I / II metabolizing enzyme gene expression and polycyclic aromatic hydrocarbon-DNA adduct levels in human prostate

    PubMed Central

    John, Kaarthik; Ragavan, Narasimhan; Pratt, M. Margaret; Singh, Paras B.; Al-Buheissi, Salah; Matanhelia, Shyam S.; Phillips, David H.; Poirier, Miriam C.; Martin, Francis L.

    2008-01-01

    BACKGROUND Studies of migrant populations suggest that dietary and/or environmental factors play a crucial role in the aetiology of prostatic adenocarcinoma (CaP). The human prostate consists of the peripheral zone (PZ), transition zone (TZ) and central zone (CZ); CaP occurs most often in the PZ. METHODS To investigate the notion that an underlying differential expression of phase I/II genes, and/or the presence of polycyclic aromatic hydrocarbon (PAH)-DNA adducts might explain the elevated PZ susceptibility, we examined prostate tissues (matched tissue sets consisting of PZ and TZ) from men undergoing radical retropubic prostatectomy for CaP (n=26) or cystoprostatectomy (n=1). Quantitative gene expression analysis was employed for cytochrome P450 (CYP) isoforms CYP1A1, CYP1B1 and CYP1A2, as well as N-acetyltransferase 1 and 2 (NAT1 and NAT2) and catechol-O-methyl transferase (COMT). RESULTS CYP1B1, NAT1 and COMT were expressed in all tissue sets; levels of CYP1B1 and NAT1 were consistently higher in the PZ compared to TZ. Immunohistochemistry confirmed the presence of CYP1B1 (nuclear-associated and primarily in basal epithelial cells) and NAT1. Tissue sections from 23 of these aforementioned 27 matched tissue sets were analyzed for PAH-DNA adduct levels using antiserum elicited against DNA modified with r7, t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE). PAH-DNA adduct levels were highest in glandular epithelial cells, but a comparison of PZ and TZ showed no significant differences. CONCLUSION Although expression of activating and/or detoxifying enzymes may be higher in the PZ, PAH-DNA adduct levels appear to be similar in both zones. Therefore, factors other than PAH-DNA adducts may be responsible for promotion of tumour formation in the human prostate. PMID:19143007

  11. Heme induces IL-1β secretion through activating NLRP3 in kidney inflammation.

    PubMed

    Li, Qianwei; Fu, Weihua; Yao, Jiwei; Ji, Zheng; Wang, Yongquan; Zhou, Zhansong; Yan, Junan; Li, Weibing

    2014-07-01

    To produce proinflammatory master cytokine IL-1β in macrophages, two stimulation pathways are needed including TLRs-NF-κB axis and NLRPs/ASC-caspase-1 axis. Different signals including exogenous and endogenous trigger inflammatory response distinctly. Among them, the role of endogenous stimulators of inflammation is poorly understood. As a component of hemoglobin, free heme is released when hemolysis or extensive cell damage occur which results in inflammatory response. Here, we find that heme induces IL-1β secretion through activating NLRP3 inflammasome in macrophages. Heme activates NLRP3 through P2X receptors, especially the P2X7R and P2X4R. Most importantly, significantly enhancement of heme level and activation of NLRPs/ASC-caspase-1 axis were observed in mice kidney after unilateral ureteral obstruction which could be inhibited by enforced expression of heme oxygenase-1 (HO-1). Our study proves that heme is a potential danger activator of NLRP3 inflammasome that plays an essential role in IL-1β secretion during kidney inflammation and provides new insight into the mechanism of innate immune initiation. Further investigation will be beneficial to develop new molecular target and molecular diagnosis indicator in therapy of kidney inflammation.

  12. Abacavir and warfarin modulate allosterically kinetics of NO dissociation from ferrous nitrosylated human serum heme-albumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascenzi, Paolo; National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', Via Portuense 292, I-00149 Roma; Imperi, Francesco

    Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k{sub off}) is reported. In the absence of drugs, the value of k{sub off} is (1.3 {+-} 0.2) x 10{sup -4} s{sup -1}. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k{sub off} value increases to (8.6 {+-} 0.9) x 10{sup -4} s{sup -1}. From the dependence of k{sub off} on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NOmore » (i.e., K = (1.2 {+-} 0.2) x 10{sup -3} M and (6.2 {+-} 0.7) x 10{sup -5} M, respectively) were determined. The increase of k{sub off} values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.« less

  13. Heme exporter FLVCR is required for T cell development and peripheral survival.

    PubMed

    Philip, Mary; Funkhouser, Scott A; Chiu, Edison Y; Phelps, Susan R; Delrow, Jeffrey J; Cox, James; Fink, Pamela J; Abkowitz, Janis L

    2015-02-15

    All aerobic cells and organisms must synthesize heme from the amino acid glycine and the tricarboxylic acid cycle intermediate succinyl CoA for incorporation into hemoproteins, such as the cytochromes needed for oxidative phosphorylation. Most studies on heme regulation have been done in erythroid cells or hepatocytes; however, much less is known about heme metabolism in other cell types. The feline leukemia virus subgroup C receptor (FLVCR) is a 12-transmembrane domain surface protein that exports heme from cells, and it was shown to be required for erythroid development. In this article, we show that deletion of Flvcr in murine hematopoietic precursors caused a complete block in αβ T cell development at the CD4(+)CD8(+) double-positive stage, although other lymphoid lineages were not affected. Moreover, FLVCR was required for the proliferation and survival of peripheral CD4(+) and CD8(+) T cells. These studies identify a novel and unexpected role for FLVCR, a major facilitator superfamily metabolite transporter, in T cell development and suggest that heme metabolism is particularly important in the T lineage. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. Structure of 7,12-dimethylbenz(a)anthracene-guanosine adducts.

    PubMed

    Jeffrey, A M; Blobstein, S H; Weinstein, I B; Beland, F A; Harvey, R G; Kasai, H; Nakanishi, K

    1976-07-01

    Arene oxides have been proposed as the reactive intermediates in the process of carcinogenesis induced by polycyclic aromatic hydrocarbons. The present study defines the structures of four guanosine adducts formed by the reaction of 7,12-dimethylbenz[a]anthracene-5,6-oxide with polyguanylic acid. The modified polymer was hydrolyzed to nucleotides and the hydrophobic guanosine adducts separated from unmodified guanosine by LH-20 column chromatograhy. The adducts were further resolved into four components (I-IV) by reverse phase high pressure liquid chromatography. Analysis of the ultraviolet, circular dichroism, mass, and proton magnetic resonance spectra of these compounds, or their acetate and free base derivatives, indicates that in all four compounds the aromatic hydrocarbon is present on the 2 amino group of guanine. Compounds I and IV, and II and III constitute diastereoisomeric pairs, respectively. In the I and IV pair, the adducts result from addition at the 6 position of the original dimethylbenz[a]anthracene oxide, whereas in the II and III pair, the addition occurs at the 5 position. Indirect evidence suggests that trans opening of the oxide occurred in all cases but this remains to be established.

  15. Structure of 7,12-dimethylbenz(a)anthracene-guanosine adducts.

    PubMed Central

    Jeffrey, A M; Blobstein, S H; Weinstein, I B; Beland, F A; Harvey, R G; Kasai, H; Nakanishi, K

    1976-01-01

    Arene oxides have been proposed as the reactive intermediates in the process of carcinogenesis induced by polycyclic aromatic hydrocarbons. The present study defines the structures of four guanosine adducts formed by the reaction of 7,12-dimethylbenz[a]anthracene-5,6-oxide with polyguanylic acid. The modified polymer was hydrolyzed to nucleotides and the hydrophobic guanosine adducts separated from unmodified guanosine by LH-20 column chromatograhy. The adducts were further resolved into four components (I-IV) by reverse phase high pressure liquid chromatography. Analysis of the ultraviolet, circular dichroism, mass, and proton magnetic resonance spectra of these compounds, or their acetate and free base derivatives, indicates that in all four compounds the aromatic hydrocarbon is present on the 2 amino group of guanine. Compounds I and IV, and II and III constitute diastereoisomeric pairs, respectively. In the I and IV pair, the adducts result from addition at the 6 position of the original dimethylbenz[a]anthracene oxide, whereas in the II and III pair, the addition occurs at the 5 position. Indirect evidence suggests that trans opening of the oxide occurred in all cases but this remains to be established. PMID:821053

  16. Heme oxygenase-1 system and gastrointestinal tumors

    PubMed Central

    Zhu, Xiao; Fan, Wen-Guo; Li, Dong-Pei; Lin, Marie CM; Kung, Hsiangfu

    2010-01-01

    Heme oxygenase-1 (HO-1) system catabolizes heme into three products: carbon monoxide, biliverdin/bilirubin and free iron. It is involved in many physiological and pathophysiological processes. A great deal of data has demonstrated the roles of HO-1 in the formation, growth and metastasis of tumors. The interest in this system by investigators involved in gastrointestinal tumors is fairly recent, and few papers on HO-1 have touched upon this subject. This review focuses on the current understanding of the physiological significance of HO-1 induction and its possible roles in the gastrointestinal tumors studied to date. The implications for possible therapeutic manipulation of HO-1 in gastrointestinal tumors are also discussed. PMID:20518085

  17. AN INTEGRATED PHARMACOKINETIC AND PHARMACODYNAMIC STUDY OF ARSENITE ACTION 2. HEME OXYGENASE INDUCTION IN MICE

    EPA Science Inventory

    Heme oxygenase (HO) is the rate-limiting enzyme in heme degradation and its activity has a significant impact on intracellular heme pools. Rat studies indicate that HO induction is a sensitive, dose-dependent response to arsenite (AsIII) exposure in both liver and kidney. The o...

  18. Microdose-Induced Drug–DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice

    DOE PAGES

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; ...

    2016-11-30

    Here, we report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14C]carboplatin (1% of the therapeutic dose). Carboplatin–DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice weremore » dosed with [ 14C]carboplatin or [ 14C]gemcitabine and the resulting drug–DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug–DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug–DNA adducts as predictive biomarkers.« less

  19. Microdose-Induced Drug–DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong

    Here, we report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14C]carboplatin (1% of the therapeutic dose). Carboplatin–DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice weremore » dosed with [ 14C]carboplatin or [ 14C]gemcitabine and the resulting drug–DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug–DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug–DNA adducts as predictive biomarkers.« less

  20. Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice.

    PubMed

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; Lin, Tzu-Yin; Malfatti, Michael; Haack, Kurt; Ognibene, Ted; Yang, Hongyuan; Airhart, Susan; Turteltaub, Kenneth W; Cimino, George D; Tepper, Clifford G; Drakaki, Alexandra; Chamie, Karim; de Vere White, Ralph; Pan, Chong-Xian; Henderson, Paul T

    2017-02-01

    We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14 C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [ 14 C]carboplatin or [ 14 C]gemcitabine and the resulting drug-DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. Mol Cancer Ther; 16(2); 376-87. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Microdose-induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice

    PubMed Central

    Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; Lin, Tzu-yin; Malfatti, Michael; Haack, Kurt; Ognibene, Ted; Yang, Hongyuan; Airhart, Susan; Turteltaub, Kenneth W.; Cimino, George D.; Tepper, Clifford G.; Drakaki, Alexandra; Chamie, Karim; de Vere White, Ralph; Pan, Chong-xian; Henderson, Paul T.

    2017-01-01

    We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [14C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry (AMS) in blood and tumor samples collected within 24 hours, and compared to subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [14C]carboplatin or [14C]gemcitabine and the resulting drug-DNA adduct levels were compared to tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. PMID:27903751

  2. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  3. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  4. Structure of adducts of isoindolo[2,1-a]benzimidazole derivatives with maleimides

    NASA Astrophysics Data System (ADS)

    Korolev, Oleksandr; Yegorova, Tatyana; Levkov, Igor; Malytskyy, Volodymyr; Shishkin, Oleg; Zubatyuk, Roman; Palamarchuk, Genadiy; Vedrenne, Marc; Baltas, Michel; Voitenko, Zoia

    2015-03-01

    The selectivity of formation and some mechanistic insights during the synthesis of substituted isoindolo[2,1-a]benzimidazoles are discussed. Furthermore, the reactions of the obtained products with maleimides were carried out. Two types rearrangement adducts together with intermediate Michael type adducts were isolated. The influence of the reaction conditions and reagents ratio is discussed. Specific spectral criteria for the identification of the Michael type adducts are indicated.

  5. DNA adducts in coal miners: association with exposures to diesel engine emissions.

    PubMed

    Shu-Xin Qu James Leigh Hamilton Koelmeyer And Neill H Stacey

    1997-01-01

    The potential carcinogenic effects of exposure to diesel engine emissions (DEE) are of growing concern. Due to the use of diesel equipment in underground mines, DNA adducts in peripheral blood mononuclear cells have been measured using the (32)P-postlabelling technique in workers from two coal mines (A, B)in NSW, Australia, before and after a period of more intense exposure (long wall change out, LWCO). DNA adducts were readily detected in all workers. At Mine A, in the 89 participants before LWCO, no significant difference was found among the groups categorized by exposure levels. However, significantly higher concentrations of total DNA adducts were observed in the specific job categories, 'miners and loadmen', and 'machinemen, drivers and shiftmen' and in the smoking group. On comparing total DNA adducts before and after LWCO in a small number of workers, a significant increase was also found. At Mine B, before or after LWCO, the total DNA adduct levels showed no significant difference among groups categorized by exposure conditions, smoking status, job categories and job time length. However, the total DNA adducts for the 61 subjects were significantly increased (geometric means) from 297 to 389 amol lg(-1) DNA after LWCO (p < 0.0001, paired t test). Some individual adducts were also elevated to a greater extent (p < 0.05, paired non-parametric test, Wilcoxon signed rank test). Furthermore, using generalized estimating equations for adjusting all factors across the observation period, no particular factor showed any significant interactive effects. Given the association of exposure to DEE with lung cancer and the apparent increase in adducts during a period of intense DEE exposures it would be prudent to pay particular attention to keeping exposures as low as possible, especially during LWCO operations.

  6. Formation of diastereomeric benzo[a]pyrene diol epoxide-guanine adducts in p53 gene-derived DNA sequences.

    PubMed

    Matter, Brock; Wang, Gang; Jones, Roger; Tretyakova, Natalia

    2004-06-01

    G --> T transversion mutations in the p53 tumor suppressor gene are characteristic of smoking-related lung tumors, suggesting that these genetic changes may result from exposure to tobacco carcinogens. It has been previously demonstrated that the diol epoxide metabolites of bay region polycyclic aromatic hydrocarbons present in tobacco smoke, e.g., benzo[a]pyrene diol epoxide (BPDE), preferentially bind to the most frequently mutated guanine nucleotides within p53 codons 157, 158, 248, and 273 [Denissenko, M. F., Pao, A., Tang, M., and Pfeifer, G. P. (1996) Science 274, 430-432]. However, the methodology used in that work (ligation-mediated polymerase chain reaction in combination with the UvrABC endonuclease incision assay) cannot establish the chemical structures and stereochemical identities of BPDE-guanine lesions. In the present study, we employ a stable isotope-labeling HPLC-MS/MS approach [Tretyakova, N., Matter, B., Jones, R., and Shallop, A. (2002) Biochemistry 41, 9535-9544] to analyze the formation of diastereomeric N(2)-BPDE-dG lesions within double-stranded oligodeoxynucleotides representing p53 lung cancer mutational hotspots and their surrounding DNA sequences. (15)N-labeled dG was placed at defined positions within DNA duplexes containing 5-methylcytosine at all physiologically methylated sites, followed by (+/-)-anti-BPDE treatment and enzymatic hydrolysis of the adducted DNA to 2'-deoxynucleosides. Capillary HPLC-ESI(+)-MS/MS was used to establish the amounts of (-)-trans-N(2)-BPDE-dG, (+)-cis-N(2)-BPDE-dG, (-)-cis-N(2)-BPDE-dG, and (+)-trans-N(2)-BPDE-dG originating from the (15)N-labeled bases. We found that all four N(2)-BPDE-dG diastereomers were formed preferentially at the methylated CG dinucleotides, including the frequently mutated p53 codons 157, 158, 245, 248, and 273. The contributions of individual diastereomers to the total adducts number at a given site varied between 70.8 and 92.9% for (+)-trans-N(2)-BPDE-dG, 5.6 and 16.7% for

  7. A Novel Pathway for the Biosynthesis of Heme in Archaea: Genome-Based Bioinformatic Predictions and Experimental Evidence

    PubMed Central

    Storbeck, Sonja; Rolfes, Sarah; Raux-Deery, Evelyne; Warren, Martin J.; Jahn, Dieter; Layer, Gunhild

    2010-01-01

    Heme is an essential prosthetic group for many proteins involved in fundamental biological processes in all three domains of life. In Eukaryota and Bacteria heme is formed via a conserved and well-studied biosynthetic pathway. Surprisingly, in Archaea heme biosynthesis proceeds via an alternative route which is poorly understood. In order to formulate a working hypothesis for this novel pathway, we searched 59 completely sequenced archaeal genomes for the presence of gene clusters consisting of established heme biosynthetic genes and colocalized conserved candidate genes. Within the majority of archaeal genomes it was possible to identify such heme biosynthesis gene clusters. From this analysis we have been able to identify several novel heme biosynthesis genes that are restricted to archaea. Intriguingly, several of the encoded proteins display similarity to enzymes involved in heme d 1 biosynthesis. To initiate an experimental verification of our proposals two Methanosarcina barkeri proteins predicted to catalyze the initial steps of archaeal heme biosynthesis were recombinantly produced, purified, and their predicted enzymatic functions verified. PMID:21197080

  8. K-ras gene sequence effects on the formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-DNA adducts.

    PubMed

    Ziegel, Rebecca; Shallop, Anthony; Jones, Roger; Tretyakova, Natalia

    2003-04-01

    The tobacco specific pulmonary carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is metabolically activated to electrophilic species that form methyl and pyridyloxobutyl adducts with genomic DNA, including O(6)-methylguanine, N7-methylguanine, and O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine. If not repaired, these lesions could lead to mutations and the initiation of cancer. Previous studies used ligation-mediated polymerase chain reaction (LMPCR) in combination with PAGE to examine the distribution of NNK-induced strand breaks and alkali labile lesions (e.g., N7-methylguanine) within gene sequences. However, LMPCR cannot be used to establish the distribution patterns of highly promutagenic O(6)-methylguanine and O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine adducts of NNK. We have developed methods based on stable isotope labeling HPLC-electrospray ionization tandem mass spectrometry (HPLC-ESI MS/MS) that enable us to accurately quantify NNK-induced adducts at defined sites within DNA sequences. In the present study, the formation of N7-methylguanine, O(6)-methylguanine, and O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine adducts at specific positions within a K-ras gene-derived double-stranded DNA sequence (5'-G(1)G(2)AG(3)CTG(4)G(5)TG(6)G(7)CG(8)TA G(9)G(10)C-3') was investigated following treatment with activated NNK metabolites. All three lesions preferentially formed at the second position of codon 12 (GGT), the major mutational hotspot for G-->A and G-->T base substitutions observed in smoking-induced lung tumors. Therefore, our data support the involvement of NNK and other tobacco specific nitrosamines in mutagenesis and carcinogenesis.

  9. Theoretical characterization of stable eta1-N2O-, eta2-N2O-, eta1-N2-, and eta2-N2-bound species: intermediates in the addition reactions of nitrogen hydrides with the pentacyanonitrosylferrate(II) ion.

    PubMed

    Olabe, José A; Estiú, Guillermina L

    2003-08-11

    The addition of nitrogen hydrides (hydrazine, hydroxylamine, ammonia, azide) to the pentacyanonitrosylferrate(II) ion has been analyzed by means of density functional calculations, focusing on the identification of stable intermediates along the reaction paths. Initial reversible adduct formation and further decomposition lead to the eta(1)- and eta(2)-linkage isomers of N(2)O and N(2), depending on the nucleophile. The intermediates (adducts and gas-releasing precursors) have been characterized at the B3LYP/6-31G level of theory through the calculation of their structural and spectroscopic properties, modeling the solvent by means of a continuous approach. The eta(2)-N(2)O isomer is formed at an initial stage of adduct decompositions with the hydrazine and azide adducts. Further conversion to the eta(1)-N(2)O isomer is followed by Fe-N(2)O dissociation. Only the eta(1)-N(2)O isomer is predicted for the reaction with hydroxylamine, revealing a kinetically controlled N(2)O formation. eta(1)-N(2) and eta(2)-N(2) isomers are also predicted as stable species.

  10. Studies on the reaction mechanism of lactate oxidase. Formation of two covalent flavin-substrate adducts on reaction with glycollate.

    PubMed

    Massey, V; Ghisla, S; Kieschke, K

    1980-04-10

    L-Lactate oxidase from Mycobacterium smegmatis catalyzes the oxidative decarboxylation of glycollate, with formate, CO2, and H2O as the major products. In addition, some "uncoupling" of the normal reaction occurs, with glyoxylate and H2O adition, some "uncoupling" of the normal reaction occurs, with glyoxylate and H2O2 as products. Glyoxylate is also a substrate (presumably as its hydrate); in this case, the reaction products are oxalate and H2O2. Evidence is presented that the enzyme recognizes glycollate as a prochiral substrate, differentiating between the Re- and Si-faces of the alpha carbon atom. Two highly fluorescent species are formed concomitantly from the reaction with glycollate; they are proposed to be covalent alpha-glycollyl adducts to the reduced flavin position N(5). One of these adducts is labile and in rapid equilibrium with oxidized enzyme and glycollate, and with the complex of reduced enzyme and glyoxylate; this adduct is a catalytically competent intermediate. The other adduct is comparatively stable (t 1/2 for decay = 20 min at 25 degrees C) and does not react with O2. It is formed at a rate approximately 1% that of the catalytic adduct, but because of its lack of reaction with O2 and its stability, it gradually accumulates during catalytic turnover, resulting in catalytically incompetent enzyme. An isotope effect of approximately 4 is found in the reduction of oxidized enzyme flavin and in the formation of the labile fluorescent adduct, when alpha-2H2-glycollate or (R)-glycollate-2-d is used, but not with the (S)-glycollate-2-d enantiomer. It is concluded that the catalytic adduct is formed by hydrogen abstraction from the Re-face of glycollate.

  11. Eccentric and Isometric Hip Adduction Strength in Male Soccer Players With and Without Adductor-Related Groin Pain

    PubMed Central

    Thorborg, Kristian; Branci, Sonia; Nielsen, Martin Peter; Tang, Lars; Nielsen, Michael Bachmann; Hölmich, Per

    2014-01-01

    Background: Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been investigated. Purpose: To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction strength than players without adductor-related groin pain. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain (asymptomatic controls) were included in the study. In primary analysis, the dominant legs of 21 soccer players with adductor-related groin pain (≥4 weeks duration) were compared with the dominant legs of 16 asymptomatic controls using a cross-sectional design. The mean age of the symptomatic players was 24.5 ± 2.5 years, and the mean age of the asymptomatic controls was 22.9 ± 2.4 years. Isometric hip strength (adduction, abduction, and flexion) and eccentric hip strength (adduction) were assessed with a handheld dynamometer using reliable test procedures and a blinded assessor. Results: Eccentric hip adduction strength was lower in soccer players with adductor-related groin pain in the dominant leg (n = 21) compared with asymptomatic controls (n = 16), namely 2.47 ± 0.49 versus 3.12 ± 0.43 N·m/kg, respectively (P < .001). No other hip strength differences were observed between symptomatic players and asymptomatic controls for the dominant leg (P = .35-.84). Conclusion: Large eccentric hip adduction strength deficits were found in soccer players with adductor

  12. A heteronuclear zero quantum coherence Nz-exchange experiment that resolves resonance overlap and its application to measure the rates of heme binding to the IsdC protein.

    PubMed

    Robson, Scott A; Peterson, Robert; Bouchard, Louis-S; Villareal, Valerie A; Clubb, Robert T

    2010-07-21

    Chemical exchange phenomena in NMR spectra can be quantitatively interpreted to measure the rates of ligand binding, as well as conformational and chemical rearrangements. In macromolecules, processes that occur slowly on the chemical shift time scale are frequently studied using 2D heteronuclear ZZ or N(z)-exchange spectroscopy. However, to successfully apply this method, peaks arising from each exchanging species must have unique chemical shifts in both dimensions, a condition that is often not satisfied in protein-ligand binding equilibria for (15)N nuclei. To overcome the problem of (15)N chemical shift degeneracy we developed a heteronuclear zero-quantum (and double-quantum) coherence N(z)-exchange experiment that resolves (15)N chemical shift degeneracy in the indirect dimension. We demonstrate the utility of this new experiment by measuring the heme binding kinetics of the IsdC protein from Staphylococcus aureus. Because of peak overlap, we could not reliably analyze binding kinetics using conventional methods. However, our new experiment resulted in six well-resolved systems that yielded interpretable data. We measured a relatively slow k(off) rate of heme from IsdC (<10 s(-1)), which we interpret as necessary so heme loaded IsdC has time to encounter downstream binding partners to which it passes the heme. The utility of using this new exchange experiment can be easily expanded to (13)C nuclei. We expect our heteronuclear zero-quantum coherence N(z)-exchange experiment will expand the usefulness of exchange spectroscopy to slow chemical exchange events that involve ligand binding.

  13. Interaction of benzo[a]pyrene diol epoxide isomers with human serum albumin: Site specific characterisation of adducts and associated kinetics

    NASA Astrophysics Data System (ADS)

    Motwani, Hitesh V.; Westberg, Emelie; Törnqvist, Margareta

    2016-11-01

    Carcinogenicity of benzo[a]pyrene {B[a]P, a polycyclic aromatic hydrocarbon (PAH)} involves DNA-modification by B[a]P diol epoxide (BPDE) metabolites. Adducts to serum albumin (SA) are not repaired, unlike DNA adducts, and therefore considered advantageous in assessment of in vivo dose of BPDEs. In the present work, kinetic experiments were performed in relation to the dose (i.e. concentration over time) of different BPDE isomers, where human SA (hSA) was incubated with respective BPDEs under physiological conditions. A liquid chromatography (LC) tandem mass spectrometry methodology was employed for characterising respective BPDE-adducts at histidine and lysine. This strategy allowed to structurally distinguish between the adducts from racemic anti- and syn-BPDE and between (+)- and (-)-anti-BPDE, which has not been attained earlier. The adduct levels quantified by LC-UV and the estimated rate of disappearance of BPDEs in presence of hSA gave an insight into the reactivity of the diol epoxides towards the N-sites on SA. The structure specific method and dosimetry described in this work could be used for accurate estimation of in vivo dose of the BPDEs following exposure to B[a]P, primarily in dose response studies of genotoxicity, e.g. in mice, to aid in quantitative risk assessment of PAHs.

  14. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi.

    PubMed

    Lechuga, Guilherme Curty; Borges, Júlio Cesar; Calvet, Claudia Magalhães; de Araújo, Humberto Pinheiro; Zuma, Aline Araujo; do Nascimento, Samara Braga; Motta, Maria Cristina Machado; Bernardino, Alice Maria Rolim; Pereira, Mirian Claudia de Souza; Bourguignon, Saulo Cabral

    2016-12-01

    Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies. Copyright © 2016 The Authors. Published by Elsevier

  15. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts.

    PubMed Central

    Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C

    1988-01-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactions between the benzo[a]pyrene and the chrysene diol-epoxide adducts were present. Similar cross-reactivity between the benz[a]anthracene and the chrysene adducts was observed. Sera containing antibodies that were apparently specific for each of the three PAH-DNA adducts were also identified. The presence of antibodies to PAH-DNA adducts indicates both past exposure to these carcinogenic PAH and their metabolic activation to the DNA damaging metabolites. These antibodies may prove to be useful in both retrospective and prospective epidemiological studies of various diseases associated with PAH exposure. PMID:3392204

  16. Basis of Miscoding of the DNA Adduct N2,3-Ethenoguanine by Human Y-family DNA Polymerases*

    PubMed Central

    Zhao, Linlin; Pence, Matthew G.; Christov, Plamen P.; Wawrzak, Zdzislaw; Choi, Jeong-Yun; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter

    2012-01-01

    N2,3-Ethenoguanine (N2,3-ϵG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2′-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2′-fluoro-N2,3-ϵ-2′-deoxyarabinoguanosine to investigate the miscoding potential of N2,3-ϵG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N2,3-ϵG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N2,3-ϵG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N2,3-ϵG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N2,3-ϵG:dCTP base pair, whereas only one appears to be present in the case of the N2,3-ϵG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N2,3-ϵG. PMID:22910910

  17. Detection of Dichlorvos Adducts in a Hepatocyte Cell Line

    DTIC Science & Technology

    2014-06-30

    form adducts to DDVP.16,20−22 Two distinct DDVP adducts are formed by covalent bonding to the hydroxyl group of tyrosine, serine, and threonine ...variable modifications on methionine (oxidation) and on serine, tyrosine, or threonine (phosphorylation, O-methylphosphate, or O-dimethylphosphate). Only...modifications on tyrosine, serine, or threonine residues with a mass of 94 or 108 amu corresponding to O-methyl- or O-dimethyl-phosphate groups. We found 53

  18. Mass Spectrometric Evidence of Malonaldehyde and 4-Hydroxynonenal Adductions to Radical-Scavenging Soy Peptides

    PubMed Central

    Zhao, Jing; Chen, Jing; Zhu, Haining; Xiong, Youling L.

    2012-01-01

    Antioxidative peptides in food systems are potential targets of lipid oxidation-generated reactive aldehydes, such as malonaldehyde (MDA) and 4-hydroxynonenal (HNE). In this study, covalent modifications on radical-scavenging peptides prepared from soy protein hydrolysate by MDA and HNE were characterized by liquid chromatography–electrospray ionization-mass spectrometry (LC-ESI-MS/MS). MS/MS analyses detected the formation of Schiff base type adducts of MDA on the side chain groups of lysine, histidine, arginine, glutamine, and asparagine residues as well as the N-termini of peptides. MDA also formed a fluorescent product with lysine residues. HNE adducted on lysine residues through Schiff base formation and on histidine, arginine, glutamine, and asparagine residues mainly through Michael addition. In spite of the extensive MDA modification, peptide cross-linking by this potential mechanism was undetectable. PMID:22946674

  19. Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase.

    PubMed

    Kumar, Devesh; de Visser, Samuël P; Shaik, Sason

    2005-06-08

    The report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem. The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide. The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H(3)O(+)(H(2)O)(n)(), n = 0-2. The effect of the acid strength is tested using the H(4)N(+)(H(2)O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (>10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H(3)O(+)(H(2)O)(2) cluster. The calculated alpha-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.

  20. Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array.

    PubMed

    Bist, Itti; Bhakta, Snehasis; Jiang, Di; Keyes, Tia E; Martin, Aaron; Forster, Robert J; Rusling, James F

    2017-11-21

    Damage to DNA from the metabolites of drugs and pollutants constitutes a major human toxicity pathway known as genotoxicity. Metabolites can react with metal ions and NADPH to oxidize DNA or participate in S N 2 reactions to form covalently linked adducts with DNA bases. Guanines are the main DNA oxidation sites, and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is the initial product. Here we describe a novel electrochemiluminescent (ECL) microwell array that produces metabolites from test compounds and measures relative rates of DNA oxidation and DNA adduct damage. In this new array, films of DNA, metabolic enzymes, and an ECL metallopolymer or complex assembled in microwells on a pyrolytic graphite wafer are housed in dual microfluidic chambers. As reactant solution passes over the wells, metabolites form and can react with DNA in the films to form DNA adducts. These adducts are detected by ECL from a RuPVP polymer that uses DNA as a coreactant. Aryl amines also combine with Cu 2+ and NADPH to form reactive oxygen species (ROS) that oxidize DNA. The resulting 8-oxodG was detected selectively by ECL-generating bis(2,2'-bipyridine)-(4-(1,10-phenanthrolin-6-yl)-benzoic acid)Os(II). DNA/enzyme films on magnetic beads were oxidized similarly, and 8-oxodG determined by LC/MS/MS enabled array standardization. The array limit of detection for oxidation was 720 8-oxodG per 10 6 nucleobases. For a series of aryl amines, metabolite-generated DNA oxidation and adduct formation turnover rates from the array correlated very well with rodent 1/TD 50 and Comet assay results.

  1. Optic Nerve Sheath Tethering in Adduction Occurs in Esotropia and Hypertropia, But Not in Exotropia

    PubMed Central

    Suh, Soh Youn; Clark, Robert A.; Demer, Joseph L.

    2018-01-01

    Purpose Repetitive strain to the optic nerve (ON) due to tethering in adduction has been recently proposed as an intraocular pressure-independent mechanism of optic neuropathy in primary open-angle glaucoma. Since strabismus may alter adduction, we investigated whether gaze-related ON straightening and associated globe translation differ in horizontal and vertical strabismus. Methods High-resolution orbital magnetic resonance imaging was obtained in 2-mm thick quasi-coronal planes using surface coils in 25 subjects (49 orbits) with esotropia (ET, 19 ± 3.6Δ SEM), 11 (15 orbits) with exotropia (XT, 33.7 ± 7.3Δ), 7 (12 orbits) with hypertropia (HT, 14.6 ± 3.2Δ), and 31 normal controls (62 orbits) in target-controlled central gaze, and in maximum attainable abduction and adduction. Area centroids were used to determine ON path sinuosity and globe positions. Results Adduction angles achieved in ET (30.6° ± 0.9°) and HT (27.2° ± 2.3°) did not significantly differ from normal (28.3° ± 0.7°), but significantly less adduction was achieved in XT (19.0° ± 2.5°, P = 0.005). ON sheath tethering in adduction occurred in ET and HT similarly to normal, but did not in XT. The globe translated significantly less than normal, nasally in adduction in XT and temporally in abduction in ET and HT (P < 0.02, for all). Globe retraction did not occur during abduction or adduction in any group. Conclusions Similar to normal subjects, the ON and sheath become tethered without globe retraction in ET and HT. In XT, adduction tethering does not occur, possibly due to limited adduction angle. Thus, therapeutic limitation of adduction could be considered as a possible treatment for ON sheath tethering.

  2. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.

    PubMed

    Millen, Andrea L; Churchill, Cassandra D M; Manderville, Richard A; Wetmore, Stacey D

    2010-10-14

    Bulky DNA addition products (adducts) formed through attack at the C8 site of guanine can adopt the syn orientation about the glycosidic bond due to changes in conformational stability or hydrogen-bonding preferences directly arising from the bulky group. Indeed, the bulky substituent may improve the stability of (non-native) Hoogsteen pairs. Therefore, such adducts often result in mutations upon DNA replication. This work examines the hydrogen-bonded pairs between the Watson-Crick and Hoogsteen faces of the ortho or para C8-phenoxyl-2'-deoxyguanosine adduct and each natural (undamaged) nucleobase with the goal to clarify the conformational preference of this type of damage, as well as provide insight into the likelihood of subsequent mutation events. B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) hydrogen-bond strengths were determined using both nucleobase and nucleoside models for adduct pairs, as well as the corresponding complexes involving natural 2'-deoxyguanosine. In addition to the magnitude of the binding strengths, the R(C1'···C1') distances and ∠(N9C1'C1') angles, as well as the degree of propeller-twist and buckle distortions, were carefully compared to the values observed in natural DNA strands. Due to structural changes in the adduct monomer upon inclusion of the sugar moiety, the monomer deformation energy significantly affects the relative hydrogen-bond strengths calculated with the nucleobase and nucleoside models. Therefore, we recommend the use of at least a nucleoside model to accurately evaluate hydrogen-bond strengths of base pairs involving flexible, bulky nucleobase adducts. Our results also emphasize the importance of considering both the magnitude of the hydrogen-bond strength and the structure of the base pair when predicting the preferential binding patterns of nucleobases. Using our best models, we conclude that the Watson-Crick face of the ortho phenoxyl adduct forms significantly more stable complexes than the Hoogsteen face, which

  3. DNA adduct formation among workers in a Thai industrial estate and nearby residents.

    PubMed

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Meunier, Aurelie; Sangrajrang, Suleeporn; Piro, Sara; Ceppi, Marcello; Boffetta, Paolo

    2008-01-25

    The genotoxic effects of air pollutant exposures have been studied in people living and working in Map Ta Phut, Rayong province, Thailand, a site where is located the Map Ta Phut Industrial Estate (MIE) one of the largest steel, refinery and petrochemical complex in the South-Eastern Asia. This was done by the conduction of a transversal study aimed to compare the prevalence of bulky DNA adducts in groups of subjects experiencing various degree of air pollution. DNA adduct analysis was performed in the leukocytes of 201 volunteers by the (32)P-postlabelling assay: 79 were workers in the MIE complex, including 24 refinery workers, 40 steel workers and 15 tinplate workers, 72 were people residing downwind in the MIE area and 50 were residents in a control district of the same Rayong province but without industrial exposures. The groups of workers were analyzed separately to evaluate if DNA adduct formation differs by the type of industry. The levels of bulky DNA adducts were 1.17+/-0.17 (SE) adducts/10(8) nucleotides in refinery workers, 1.19+/-0.19 (SE) in steel workers, 0.87+/-0.17 (SE) in tinplate workers, 0.85+/-0.07 (SE) in MIE residents and 0.53+/-0.05 (SE) in district controls. No effects of smoking habits on DNA adducts was found. The multivariate regression analysis shows that the levels of DNA adducts were significantly increased among the individuals living near the MIE industrial complex in respect to those resident in a control district (p<0.05). In the groups of occupationally exposed workers, the highest levels of DNA adducts were found among the workers experiencing an occupational exposure to polycyclic aromatic hydrocarbons, e.g. the steel factory and refinery workers. When we have evaluated if the levels of DNA adducts of the PAH exposed workers were different from those of the MIE residents, a statistical significantly difference was found (p<0.05). Our present study indicates that people living near point sources of industrial air pollution can

  4. Mechanistic Investigation of the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-family DNA Polymerase

    PubMed Central

    Gadkari, Varun V.; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2014-01-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4. PMID:25048879

  5. Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload.

    PubMed Central

    Nakajima, O; Takahashi, S; Harigae, H; Furuyama, K; Hayashi, N; Sassa, S; Yamamoto, M

    1999-01-01

    Erythroid 5-aminolevulinate synthase (ALAS-E) catalyzes the first step of heme biosynthesis in erythroid cells. Mutation of human ALAS-E causes the disorder X-linked sideroblastic anemia. To examine the roles of heme during hematopoiesis, we disrupted the mouse ALAS-E gene. ALAS-E-null embryos showed no hemoglobinized cells and died by embryonic day 11.5, indicating that ALAS-E is the principal isozyme contributing to erythroid heme biosynthesis. In the ALAS-E-null mutant embryos, erythroid differentiation was arrested, and an abnormal hematopoietic cell fraction emerged that accumulated a large amount of iron diffusely in the cytoplasm. In contrast, we found typical ring sideroblasts that accumulated iron mostly in mitochondria in adult mice chimeric for ALAS-E-null mutant cells, indicating that the mode of iron accumulation caused by the lack of ALAS-E is different in primitive and definitive erythroid cells. These results demonstrate that ALAS-E, and hence heme supply, is necessary for differentiation and iron metabolism of erythroid cells. PMID:10562540

  6. Staphylococcus aureus FepA and FepB proteins drive heme iron utilization in Escherichia coli.

    PubMed

    Turlin, Evelyne; Débarbouillé, Michel; Augustyniak, Katarzyna; Gilles, Anne-Marie; Wandersman, Cécile

    2013-01-01

    EfeUOB-like tripartite systems are widespread in bacteria and in many cases they are encoded by genes organized into iron-regulated operons. They consist of: EfeU, a protein similar to the yeast iron permease Ftrp1; EfeO, an extracytoplasmic protein of unknown function and EfeB, also an extracytoplasmic protein with heme peroxidase activity, belonging to the DyP family. Many bacterial EfeUOB systems have been implicated in iron uptake, but a prefential iron source remains undetermined. Nevertheless, in the case of Escherichia coli, the EfeUOB system has been shown to recognize heme and to allow extracytoplasmic heme iron extraction via a deferrochelation reaction. Given the high level of sequence conservations between EfeUOB orthologs, we hypothesized that heme might be the physiological iron substrate for the other orthologous systems. To test this hypothesis, we undertook characterization of the Staphylococcus aureus FepABC system. Results presented here indicate: i) that the S. aureus FepB protein binds both heme and PPIX with high affinity, like EfeB, the E. coli ortholog; ii) that it has low peroxidase activity, comparable to that of EfeB; iii) that both FepA and FepB drive heme iron utilization, and both are required for this activity and iv) that the E. coli FepA ortholog (EfeO) cannot replace FepA in FepB-driven iron release from heme indicating protein specificity in these activities. Our results show that the function in heme iron extraction is conserved in the two orthologous systems.

  7. Cigarette smoke-induced DNA adducts in the respiratory and nonrespiratory tissues of rats.

    PubMed

    Gairola, C G; Gupta, R C

    1991-01-01

    Formation of DNA adducts is regarded as an essential initial step in the process of chemical carcinogenesis. To determine how chronic exposure to cigarette smoke affects the distribution of DNA adducts in selected respiratory and nonrespiratory tissues, we exposed male Sprague-Dawley rats daily to fresh mainstream smoke from the University of Kentucky reference cigarettes (2R1) in a nose-only exposure system for 32 weeks. Blood carboxyhemoglobin, total particulate matter (TPM) intake, and pulmonary aryl hydrocarbon hydroxylase values indicated effective exposure of animals to cigarette smoke. DNA was extracted from three respiratory (larynx, trachea, and lung) and three nonrespiratory (liver, heart, and bladder) tissues and analyzed for DNA adducts by the 32P-postlabeling assay under conditions capable of detecting low levels of diverse aromatic/hydrophobic adducts. Data showed that the total DNA adducts in the lung, heart, trachea, and larynx were increased by 10- to 20-fold in the smoke-exposed group. Five-fold increase was observed in the bladder tissue, but differences were not present in the liver DNA of control and smoke-exposed groups. These data suggest selective formation of DNA adducts in the tissues.

  8. Electron Flow in Multiheme Bacterial Cytochromes is a Balancing Act Between Heme Electronic Interaction and Redox Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen

    The naturally widespread process of electron transfer from metal reducing bacteria to extracellular solid metal oxides entails unique biomolecular machinery optimized for long-range electron transport. To perform this function efficiently microorganisms have adapted multi-heme c-type cytochromes to arrange heme cofactors into wires that cooperatively span the cellular envelope, transmitting electrons along distances greater than 100 Angstroms. Implications and opportunities for bionanotechnological device design are self-evident. However, at the molecular level how these proteins shuttle electrons along their heme wires, navigating intraprotein intersections and interprotein interfaces effciently, remains a mystery so far inaccessible to experiment. To shed light on this criticalmore » topic, we carried out extensive computer simulations to calculate Marcus theory quantities for electron transfer along the ten heme cofactors in the recently crystallized outer membrane cytochrome MtrF. The combination of electronic coupling matrix elements with free energy calculations of heme redox potentials and reorganization energies for heme-to-heme electron transfer allows the step-wise and overall electron transfer rate to be estimated and understood in terms of structural and dynamical characteristics of the protein. By solving a master equation for electron hopping, we estimate an intrinsic, maximum possible electron flux through solvated MtrF of 104-105 s-1, consistent with recently measured rates for the related MtrCAB protein complex. Intriguingly, this flux must navigate thermodynamically uphill steps past low potential hemes. Our calculations show that the rapid electron transport through MtrF is the result of a clear correlation between heme redox potential and the strength of electronic coupling along the wire: Thermodynamically uphill steps occur only between electronically well connected stacked heme pairs. This suggests that the protein evolved to harbor low

  9. Lack of contribution of covalent benzo[a]pyrene-7,8-quinone-DNA adducts in benzo[a]pyrene-induced mouse lung tumorigenesis.

    PubMed

    Nesnow, Stephen; Nelson, Garret; Padgett, William T; George, Michael H; Moore, Tanya; King, Leon C; Adams, Linda D; Ross, Jeffrey A

    2010-07-30

    Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-7,8-dihydroxy-7,8-dihydroB[a]P-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: (1) the induction of apurinic sites from radical cation processes, and (2) the metabolic formation of B[a]P-7,8-quinone (BPQ) that can form covalent DNA adducts or reactive oxygen species which can damage DNA. The studies presented here sought to examine the role of stable BPQ-DNA adducts in B[a]P-induced mouse lung tumorigenesis. Male strain A/J mice were injected intraperitoneally once with BPQ or trans-7,8-dihydroxy-7,8-dihydroB[a]P (BP-7,8-diol) at 30, 10, 3, or 0mg/kg. Lungs and livers were harvested after 24h, the DNA extracted and subjected to (32)P-postlabeling analysis. Additional groups of mice were dosed once with BPQ or BP-7,8-diol each at 30 mg/kg and tissues harvested 48 and 72 h later, or with B[a]P (50mg/kg, a tumorigenic dose) and tissues harvested 72 h later. No BPQ or any other DNA adducts were observed in lung or liver tissues 24, 48, or 72 h after the treatment with 30 mg/kg BPQ. BP-7,8-diol gave BPDE-DNA adducts at all time points in both tissues and B[a]P treatment gave BPDE-DNA adducts in the lung. In each case, no BPQ-DNA adducts were detected. Mouse body weights significantly decreased over time after BPQ or BP-7,8-diol treatments suggesting that systemic toxicity was induced by both agents. Model studies with BPQ and N-acetylcysteine suggested that BPQ is rapidly inactivated by sulfhydryl-containing compounds and not available for DNA adduction. We conclude that under these treatment conditions BPQ does not form stable covalent DNA adducts in the lungs or livers of strain A/J mice, suggesting that stable BPQ-covalent adducts are not a part of the complex of mechanisms involved in B[a]P-induced mouse lung tumorigenesis. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements

    PubMed Central

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-01-01

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  11. Quantitative detection of 4-hydroxyequilenin-DNA adducts in mammalian cells using an immunoassay with a novel monoclonal antibody.

    PubMed

    Okahashi, Yumiko; Iwamoto, Takaaki; Suzuki, Naomi; Shibutani, Shinya; Sugiura, Shigeki; Itoh, Shinji; Nishiwaki, Tomohisa; Ueno, Satoshi; Mori, Toshio

    2010-07-01

    Estrogen-DNA adducts are potential biomarkers for assessing the risk and development of estrogen-associated cancers. 4-Hydroxyequilenin (4-OHEN) and 4-hydroxyequilin (4-OHEQ), the metabolites of equine estrogens present in common hormone replacement therapy (HRT) formulations, are capable of producing bulky 4-OHEN-DNA adducts. Although the formation of 4-OHEN-DNA adducts has been reported, their quantitative detection in mammalian cells has not been done. To quantify such DNA adducts, we generated a novel monoclonal antibody (4OHEN-1) specific for 4-OHEN-DNA adducts. The primary epitope recognized is one type of stereoisomers of 4-OHEN-dA adducts and of 4-OHEN-dC adducts in DNA. An immunoassay with 4OHEN-1 revealed a linear dose-response between known amounts of 4-OHEN-DNA adducts and the antibody binding to those adducts, with a detection limit of approximately five adducts/10(8) bases in 1 microg DNA sample. In human breast cancer cells, the quantitative immunoassay revealed that 4-OHEN produces five times more 4-OHEN-DNA adducts than does 4-OHEQ. Moreover, in a mouse model for HRT, oral administration of Premarin increased the levels of 4-OHEN-DNA adducts in various tissues, including the uterus and ovaries, in a time-dependent manner. Thus, we succeeded in establishing a novel immunoassay for quantitative detection of 4-OHEN-DNA adducts in mammalian cells.

  12. Highly selective isolation and purification of heme proteins in biological samples using multifunctional magnetic nanospheres.

    PubMed

    Liu, Yating; Li, Yan; Wei, Yun

    2014-12-01

    Magnetic particles with suitable surface modification are capable of binding proteins selectively, and magnetic separations have advantages of rapidity, convenience, and high selectivity. In this paper, new magnetic nanoparticles modified with imidazolium ionic liquid (Fe3O4 @SiO2 @ILs) were successfully fabricated. N-Methylimidazolium was immobilized onto silica-coated magnetic nanoparticles via γ-chloropropyl modification as a magnetic nanoadsorbent for heme protein separation. The particle size was about 90 nm without significant aggregation during the preparation process. Hemoglobin as one of heme proteins used in this experiment was compared with other nonheme proteins. It has been found that the magnetic nanoparticles can be used for more rapid, efficient, and specific adsorption of hemoglobin with a binding capacity as high as 5.78 mg/mg. In comparison with other adsorption materials of proteins in the previous reports, Fe3 O4 @SiO2 @ILs magnetic nanoparticles exhibit the excellent performance in isolation of heme proteins with higher binding capacity and selectivity. In addition, a short separation time makes the functionalized nanoparticles suitable for purifying unstable proteins, as well as having other potential applications in a variety of biomedical fields. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structures of the Substrate-free and Product-bound Forms of HmuO, a Heme Oxygenase from Corynebacterium diphtheriae

    PubMed Central

    Unno, Masaki; Ardèvol, Albert; Rovira, Carme; Ikeda-Saito, Masao

    2013-01-01

    Heme oxygenase catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide. Here, we present crystal structures of the substrate-free, Fe3+-biliverdin-bound, and biliverdin-bound forms of HmuO, a heme oxygenase from Corynebacterium diphtheriae, refined to 1.80, 1.90, and 1.85 Å resolution, respectively. In the substrate-free structure, the proximal and distal helices, which tightly bracket the substrate heme in the substrate-bound heme complex, move apart, and the proximal helix is partially unwound. These features are supported by the molecular dynamic simulations. The structure implies that the heme binding fixes the enzyme active site structure, including the water hydrogen bond network critical for heme degradation. The biliverdin groups assume the helical conformation and are located in the heme pocket in the crystal structures of the Fe3+-biliverdin-bound and the biliverdin-bound HmuO, prepared by in situ heme oxygenase reaction from the heme complex crystals. The proximal His serves as the Fe3+-biliverdin axial ligand in the former complex and forms a hydrogen bond through a bridging water molecule with the biliverdin pyrrole nitrogen atoms in the latter complex. In both structures, salt bridges between one of the biliverdin propionate groups and the Arg and Lys residues further stabilize biliverdin at the HmuO heme pocket. Additionally, the crystal structure of a mixture of two intermediates between the Fe3+-biliverdin and biliverdin complexes has been determined at 1.70 Å resolution, implying a possible route for iron exit. PMID:24106279

  14. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles.

    PubMed

    Ross, Jeffrey A; Nelson, Garret B; Mutlu, Esra; Warren, Sarah H; Gilmour, M Ian; DeMarini, David M

    2015-01-01

    Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. We compared the formation of covalent DNA adducts by the in vitro metabolic activation of organic extracts of diesel-exhaust particles (DEP) from petroleum diesel and soy biodiesel and correlated DNA adduct levels and mutagenicity in Salmonella TA100. We examined two different DEP from petroleum diesel (C-DEP and B0), one from soy bean oil biodiesel (B100) and one from combustion of a blend of 20% B100 and 80% B0 (B20) for in vitro DNA adduct-forming potential under oxidative or nitroreductive conditions in the presence of calf thymus DNA as well as in vivo in Salmonella TA100. The modified DNA was hydrolyzed and analyzed by (32)P-postlabeling using either butanol extraction or nuclease P1 pre-enrichment. Multiple DNA adducts were produced with chromatographic mobilities consistent with PAH and nitro-PAH adducts. The types and quantities of DNA adducts produced by the two independent petroleum diesel DEP were similar, with both polycyclic aromatic hydrocarbon (PAH)- and nitro-PAH-derived adducts formed. Relative potencies for S9-mediated DNA adduct formation, either per mass of particulate or per MJ(th) energy consumed were B100 > B0 > B20. Soy biodiesel emissions induced DNA damage in the form of presumptive PAH and nitro-PAH DNA adducts that correlated with mutagenicity in Salmonella. B20 is the soy biodiesel used most commonly in the US, and it produced the lowest DNA adduct-emission factor, ∼50% that of petroleum diesel.

  15. Noni juice reduces lipid peroxidation-derived DNA adducts in heavy smokers.

    PubMed

    Wang, Mian-Ying; Peng, Lin; Jensen, Claude J; Deng, Shixin; West, Brett J

    2013-03-01

    Food plants provide important phytochemicals which help improve or maintain health through various biological activities, including antioxidant effects. Cigarette smoke-induced oxidative stress leads to the formation of lipid hydroperoxides (LOOHs) and their decomposition product malondialdehyde (MDA), both of which cause oxidative damage to DNA. Two hundred forty-five heavy cigarette smokers completed a randomized, double-blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on LOOH- and MDA-DNA adducts in peripheral blood lymphocytes (PBLs). Volunteers drank noni juice or a fruit juice placebo every day for 1 month. DNA adducts were measured by (32)P postlabeling analysis. Drinking 29.5-118 mL of noni juice significantly reduced adducts by 44.6-57.4%. The placebo, which was devoid of iridoid glycosides, did not significantly influence LOOH- and MDA-DNA adduct levels in current smokers. Noni juice was able to mitigate oxidative damage of DNA in current heavy smokers, an activity associated with the presence of iridoids.

  16. Noni juice reduces lipid peroxidation–derived DNA adducts in heavy smokers

    PubMed Central

    Wang, Mian-Ying; Peng, Lin; Jensen, Claude J; Deng, Shixin; West, Brett J

    2013-01-01

    Food plants provide important phytochemicals which help improve or maintain health through various biological activities, including antioxidant effects. Cigarette smoke–induced oxidative stress leads to the formation of lipid hydroperoxides (LOOHs) and their decomposition product malondialdehyde (MDA), both of which cause oxidative damage to DNA. Two hundred forty-five heavy cigarette smokers completed a randomized, double-blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on LOOH- and MDA-DNA adducts in peripheral blood lymphocytes (PBLs). Volunteers drank noni juice or a fruit juice placebo every day for 1 month. DNA adducts were measured by 32P postlabeling analysis. Drinking 29.5–118 mL of noni juice significantly reduced adducts by 44.6–57.4%. The placebo, which was devoid of iridoid glycosides, did not significantly influence LOOH- and MDA-DNA adduct levels in current smokers. Noni juice was able to mitigate oxidative damage of DNA in current heavy smokers, an activity associated with the presence of iridoids. PMID:24804023

  17. Enantioselective syntheses of carbanucleosides from the Pauson-Khand adduct of trimethylsilylacetylene and norbornadiene.

    PubMed

    Vázquez-Romero, Ana; Rodríguez, Julia; Lledó, Agustí; Verdaguer, Xavier; Riera, Antoni

    2008-10-16

    A new enantioselective approach to carbanucleosides from Pauson-Khand (PK) adduct 1 is disclosed. The chiral cyclopentenone 1 is readily accessible in enantiomerically pure form via PK reaction of trimethylsilylacetylene and norbornadiene using N-benzyl-N-diphenylphosphino-tert-butyl-sulfinamide as a chiral P,S ligand. (-)-Carbavir and (-)-Abacavir were enantioselectively synthesized starting from (-)-1. The key steps of the sequence are a photochemical conjugate addition of a hydroxymethyl radical, a retro-Diels-Alder reaction, and a palladium catalyzed allylic substitution to introduce the nucleobase.

  18. Influence of pH on EPR spectra of radical adducts with a new spin trap 1,2,2,5,5-pentamethyl-3-imidazoline 3-oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skubnevskaya, G.I.; Dul'tseva, G.G.; Shchukin, G.I.

    1987-08-10

    1,2,2,5,5-Pentamethyl-3-imidazoline 3-oxide is an effective spin trap for short-lived free radicals, forming spin adducts with life time of > 10 min. Protonation of the amine N atom of imidazoline is manifested in the EPR spectra of the spin adducts, which makes it possible to measure pH in the range of 2.5 to 4.

  19. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease.

    PubMed

    Vinchi, Francesca; Costa da Silva, Milene; Ingoglia, Giada; Petrillo, Sara; Brinkman, Nathan; Zuercher, Adrian; Cerwenka, Adelheid; Tolosano, Emanuela; Muckenthaler, Martina U

    2016-01-28

    Hemolytic diseases, such as sickle cell anemia and thalassemia, are characterized by enhanced release of hemoglobin and heme into the circulation, heme-iron loading of reticulo-endothelial system macrophages, and chronic inflammation. Here we show that in addition to activating the vascular endothelium, hemoglobin and heme excess alters the macrophage phenotype in sickle cell disease. We demonstrate that exposure of cultured macrophages to hemolytic aged red blood cells, heme, or iron causes their functional phenotypic change toward a proinflammatory state. In addition, hemolysis and macrophage heme/iron accumulation in a mouse model of sickle disease trigger similar proinflammatory phenotypic alterations in hepatic macrophages. On the mechanistic level, this critically depends on reactive oxygen species production and activation of the Toll-like receptor 4 signaling pathway. We further demonstrate that the heme scavenger hemopexin protects reticulo-endothelial macrophages from heme overload in heme-loaded Hx-null mice and reduces production of cytokines and reactive oxygen species. Importantly, in sickle mice, the administration of human exogenous hemopexin attenuates the inflammatory phenotype of macrophages. Taken together, our data suggest that therapeutic administration of hemopexin is beneficial to counteract heme-driven macrophage-mediated inflammation and its pathophysiologic consequences in sickle cell disease. © 2016 by The American Society of Hematology.

  20. DNA Polymerases η and ζ Combine to Bypass O(2)-[4-(3-Pyridyl)-4-oxobutyl]thymine, a DNA Adduct Formed from Tobacco Carcinogens.

    PubMed

    Gowda, A S Prakasha; Spratt, Thomas E

    2016-03-21

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are important human carcinogens in tobacco products. They are metabolized to produce a variety 4-(3-pyridyl)-4-oxobutyl (POB) DNA adducts including O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT), the most abundant POB adduct in NNK- and NNN-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past O(2)-POB-dT and O(2)-Me-dT by purified human DNA polymerases η, κ, ι, and yeast polymerase ζ in vitro. Under conditions of polymerase in excess, polymerase η was most effective at the insertion of dNTPs opposite O(2)-alkyl-dTs. The time courses were biphasic suggesting the formation of inactive DNA-polymerase complexes. The kpol parameter was reduced approximately 100-fold in the presence of the adduct for pol η, κ, and ι. Pol η was the most reactive polymerase for the adducts due to a higher burst amplitude. For all three polymerases, the nucleotide preference was dATP > dTTP ≫ dGTP and dCTP. Yeast pol ζ was most effective in bypassing the adducts; the kcat/Km values were reduced only 3-fold in the presence of the adducts. The identity of the nucleotide opposite the O(2)-alkyl-dT did not significantly affect the ability of pol ζ to bypass the adducts. The data support a model in which pol η inserts ATP or dTTP opposite O(2)-POB-dT, and then, pol ζ extends past the adduct.

  1. Elucidating the Key Role of a Lewis Base Solvent in the Formation of Perovskite Films Fabricated from the Lewis Adduct Approach.

    PubMed

    Cao, Xiaobing; Zhi, Lili; Li, Yahui; Fang, Fei; Cui, Xian; Yao, Youwei; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2017-09-27

    High-quality perovskite films can be fabricated from Lewis acid-base adducts through molecule exchange. Substantial work is needed to fully understand the formation mechanism of the perovskite films, which helps to further improve their quality. Here, we study the formation of CH 3 NH 3 PbI 3 perovskite films by introducing some dimethylacetamide into the PbI 2 /N,N-dimethylformamide solution. We reveal that there are three key processes during the formation of perovskite films through the Lewis acid-base adduct approach: molecule intercalation of solvent into the PbI 2 lattice, molecule exchange between the solvent and CH 3 NH 3 I, and dissolution-recrystallization of the perovskite grains during annealing. The Lewis base solvents play multiple functions in the above processes. The properties of the solvent, including Lewis basicity and boiling point, play key roles in forming smooth perovskite films with large grains. We also provide some rules for choosing Lewis base additives to prepare high-quality perovskite films through the Lewis adduct approach.

  2. Detection and simultaneous quantification of three smoking-related ethylthymidine adducts in human salivary DNA by liquid chromatography tandem mass spectrometry.

    PubMed

    Chen, Hauh-Jyun Candy; Lee, Chin-Ron

    2014-01-03

    Smoking cigarette increases levels of certain ethylated DNA adducts in certain tissues and urine. Cigarette smoking is a major risk factor of various cancers and DNA ethylation is involved in smoking-related carcinogenesis. Among the ethylated DNA adducts, O(2)-ethylthymidine (O(2)-edT) and the promutagenic O(4)-ethylthymidine (O(4)-edT) are poorly repaired and they can accumulate in vivo. Using an accurate, highly sensitive, and quantitative assay based on stable isotope dilution nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS), O(2)-edT, N(3)-edT (N(3)-ethylthymidine), and O(4)-edT adducts in human salivary DNA were simultaneous detected and quantified. Saliva is easily accessible and available and it can be a potential target in searching for noninvasive biomarkers. Under the highly selected reaction monitoring (H-SRM) mode, salivary samples from 20 smokers and 13 nonsmokers were analyzed. Starting with 50 μg of DNA isolated from about 3.5 mL of saliva, levels of O(2)-edT, N(3)-edT, and O(4)-edT in 20 smokers' salivary DNA samples were 5.3±6.2, 4.5±5.7, 4.2±8.0 in 10(8) normal nucleotides, respectively, while those in 13 nonsmokers were non-detectable. In addition, statistically significant correlations (p<0.0001) were observed between levels of O(2)-edT and N(3)-edT (γ=0.7388), between levels of O(2)-edT and O(4)-edT (γ=0.8839), and between levels of N(3)-edT, and O(4)-edT (γ=0.7835). To the best of our knowledge, this is the first report of detection and quantification of these three ethylthymidine adducts in human salivary DNA, which might be potential biomarkers for exposure to ethylating agents and possibly for cancer risk assessment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Body mass index modulates aromatic DNA adduct levels and their persistence in smokers.

    PubMed

    Godschalk, Roger W L; Feldker, Dorien E M; Borm, Paul J A; Wouters, Emiel F M; van Schooten, Frederik-Jan

    2002-08-01

    Smokers with a low body mass index (BMI; weight/height(2)) have a higher risk for developing lung malignancies as compared with smokers of average weight, but there is no mechanistic explanation for this observation. Carcinogens in cigarette smoke are thought to elicit cancer by the formation of DNA adducts, which give the opportunity to additionally investigate the biological link between BMI and lung cancer. DNA adduct levels in peripheral blood lymphocytes of 24 healthy smoking volunteers (0.76 +/- 0.41 adducts per 10(8) nucleotides) positively correlated with cigarette consumption (r = 0.51; P = 0.01) and were inversely related with BMI (r = -0.48; P = 0.02). A significant overall relationship was observed when both parameters were included in multiple regression analysis (r = 0.63; P = 0.007). Moreover, body composition may affect DNA adduct persistence, because lipophilic tobacco smoke-derived carcinogens accumulate in adipose tissue and can be mobilized once exposure ceases. Therefore, DNA adduct levels and BMI were reassessed in all of the subjects after a nonsmoking period of 22 weeks. Adduct levels declined to 0.44 +/- 0.23 per 10(8) nucleotides (P = 0.002), and the estimated half-life was 11 weeks on the basis of exponential decay to background levels in never-smoking controls (0.33 +/- 0.18 per 10(8) nucleotides). Overweight subjects (BMI >25) with little weight gain after smoking cessation (adduct levels as compared with those with lower BMI and higher weight gain (P = 0.06). Overall, these results suggest that leanness is a host susceptibility factor that affects DNA adduct formation, which could underlie the observed relationship between BMI and lung cancer risk.

  4. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    EPA Science Inventory

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  5. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations inmore » heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.« less

  6. Virucidal properties of metal oxide nanoparticles and their halogen adducts.

    PubMed

    Häggström, Johanna; Balyozova, Denitza; Klabunde, Kenneth J; Marchin, George

    2010-04-01

    Selected metal oxide nanoparticles are capable of strongly adsorbing large amounts of halogens (Cl(2), Br, I(2)) and mixed halogens. These solid adducts are relatively stable thermally, and they can be stored for long periods. However, in the open environment, they are potent biocides. Herein are described studies with a number of bacteriophage MS2, phiX174, and PRD-1 (virus examples). PRD-1 is generally more resistant to chemical disinfection, but in this paper it is shown to be very susceptible to selected interhalogen and iodine adducts of CeO(2), Al(2)O(3), and TiO(2) nanoparticles. Overall, the halogen adducts of TiO(2) and Al(2)O(3) were most effective. The mechanism of disinfection by these nanoparticles is not completely clear, but could include abrasive properties, as well as oxidative powers. A hypothesis that nanoparticles damage virons or stick to them and prevent binding to the host cell is a consideration that needs to be explored. Herein are reported comparative biocidal activities of a series of adducts and electron microscope images of before and after treatment.

  7. Heme iron uptake by Caco-2 cells is a saturable, temperature sensitive and modulated by extracellular pH and potassium.

    PubMed

    Arredondo, Miguel; Kloosterman, Janneke; Núñez, Sergio; Segovia, Fabián; Candia, Valeria; Flores, Sebastián; Le Blanc, Solange; Olivares, Manuel; Pizarro, Fernando

    2008-11-01

    It is known that heme iron and inorganic iron are absorbed differently. Heme iron is found in the diet mainly in the form of hemoglobin and myoglobin. The mechanism of iron absorption remains uncertain. This study focused on the heme iron uptake by Caco-2 cells from a hemoglobin digest and its response to different iron concentrations. We studied the intracellular Fe concentration and the effect of time, K+ depletion, and cytosol acidification on apical uptake and transepithelial transport in cells incubated with different heme Fe concentrations. Cells incubated with hemoglobin-digest showed a lower intracellular Fe concentration than cells grown with inorganic Fe. However, uptake and transepithelial transport of Fe was higher in cells incubated with heme Fe. Heme Fe uptake had a low Vmax and Km as compared to inorganic Fe uptake and did not compete with non-heme Fe uptake. Heme Fe uptake was inhibited in cells exposed to K+ depletion or cytosol acidification. Heme oxygenase 1 expression increased and DMT1 expression decreased with higher heme Fe concentrations in the media. The uptake of heme iron is a saturable and temperature-dependent process and, therefore, could occur through a mechanism involving both a receptor and the endocytic pathway.

  8. Single d(ApG)/cis-diamminedichloroplatinum(II) adduct-induced mutagenesis in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnouf, D.; Fuchs, R.P.P.; Gauthier, C.

    1990-08-01

    The mutation spectrum induced by the widely used antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP) showed that cisDDP(d(ApG)) adducts, although they account for only 25% of the lesions formed are {approx}5 times more mutagenic than the major GG adduct. The authors report the construction of vectors bearing a single cisDDP(d(ApG)) lesion and their use in mutagenesis experiments in Escherichia coli. The mutagenic processing of the lesion is found to depend strictly on induction of the SOS system of the bacterial host cells. In SOS-induced cells, mutation frequencies of 1-2% were detected. All these mutations are targeted to the 5{prime} base of the adduct.more » Single A {yields} T transversions are mainly observed (80%), whereas A {yields} G transitions account for 10% of the total mutations. Tandem base-pair substitutions involving the adenine residue and the thymine residue immediately 5{prime} to the adduct occur at a comparable frequency (10%). No selective loss of the strand bearing the platinum adduct was seen, suggesting that, in vivo, cisDDP(d(ApG)) adducts are not blocking lesions. The high mutation specificity of cisDDP-(d(ApG))-induced mutagenesis is discussed in relation to structural data.« less

  9. How Y-Family DNA polymerase IV is more accurate than Dpo4 at dCTP insertion opposite an N2-dG adduct of benzo[a]pyrene.

    PubMed

    Sholder, Gabriel; Creech, Amanda; Loechler, Edward L

    2015-11-01

    To bypass DNA damage, cells have Y-Family DNA polymerases (DNAPs). One Y-Family-class includes DNAP κ and DNAP IV, which accurately insert dCTP opposite N(2)-dG adducts, including from the carcinogen benzo[a]pyrene (BP). Another class includes DNAP η and DNAP V, which insert accurately opposite UV-damage, but inaccurately opposite BP-N(2)-dG. To investigate structural differences between Y-Family-classes, regions are swapped between DNAP IV (a κ/IV-class-member) and Dpo4 (a η/V-class-member); the kinetic consequences are evaluated via primer-extension studies with a BP-N(2)-dG-containing template. Four key structural elements are revealed. (1) Y-Family DNAPs have discreet non-covalent contacts between their little finger-domain (LF-Domain) and their catalytic core-domain (CC-Domain), which we call "non-covalent bridges" (NCBs). Arg37 and Arg38 in DNAP IV's CC-Domain near the active site form a non-covalent bridge (AS-NCB) by interacting with Glu251 and Asp252, respectively, in DNAP IV's LF-Domain. Without these interactions dATP/dGTP/dTTP misinsertions increase. DNAP IV's AS-NCB suppresses misinsertions better than Dpo4's equivalent AS-NCB. (2) DNAP IV also suppresses dATP/dGTP/dTTP misinsertions via a second non-covalent bridge, which is ∼8Å from the active site (Distal-NCB). Dpo4 has no Distal-NCB, rendering it inferior at dATP/dGTP/dTTP suppression. (3) dCTP insertion is facilitated by the larger minor groove opening near the active site in DNAP IV versus Dpo4, which is sensible given that Watson/Crick-like [dCTP:BP-N(2)-dG] pairing requires the BP-moiety to be in the minor groove. (4) Compared to Dpo4, DNAP IV has a smaller major groove opening, which suppresses dGTP misinsertion, implying BP-N(2)-dG bulk in the major groove during Hoogsteen syn-adduct-dG:dGTP pairing. In summary, DNAP IV has a large minor groove opening to enhance dCTP insertion, a plugged major groove opening to suppress dGTP misinsertion, and two non-covalent bridges (near and distal

  10. Increasing Ubiquitin Ion Resistance to Unfolding in the Gas Phase Using Chloride Adduction: Preserving More "Native-Like" Conformations Despite Collisional Activation.

    PubMed

    Wagner, Nicole D; Kim, Doyong; Russell, David H

    2016-06-07

    Electrospray ionization (ESI) of ubiquitin from acidified (0.1%) aqueous solution produces abundant ubiquitin-chloride adduct ions, [M + nH + xCl]((n - x)+), that upon mild heating react via elimination of neutral HCl. Ion mobility collision cross section (CCS) measurements show that ubiquitin ions retaining chloride adducts exhibit CCS values similar to those of the "native-state" of the protein. Coupled with results from recent molecular dynamics (MD) simulations for the evolution of a salt-containing electrospray droplet, this study provides a more complete picture for how the presence of salts affects the evolution of protein conformers in the final stages of dehydration of the ESI process and within the instrument.

  11. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts.

    PubMed

    Thompson, Charles M; Prins, John M; George, Kathleen M

    2010-01-01

    Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.

  12. Quinone-induced Enhancement of DNA Cleavage by Human Topoisomerase IIα: Adduction of Cysteine Residues 392 and 405†

    PubMed Central

    Bender, Ryan P.; Ham, Amy-Joan L.; Osheroff, Neil

    2010-01-01

    Several quinone-based metabolites of drugs and environmental toxins are potent topoisomerase II poisons. These compounds act by adducting the protein, and appear to increase levels of enzyme-DNA cleavage complexes by at least two potentially independent mechanisms. Treatment of topoisomerase IIα with quinones inhibits DNA religation, and blocks the N-terminal gate of the protein by crosslinking its two protomer subunits. It is not known whether these two effects result from quinone adduction to the same amino acid residue(s) in topoisomerase IIα or whether they are mediated by modification of separate residues. Therefore, the present study identified amino acid residues in human topoisomerase IIα that are modified by quinones and determined their role in the actions of these compounds as topoisomerase II poisons. Four cysteine residues were identified by mass spectrometry as sites of quinone adduction: cys170, cys392, cys405, and cys455. Mutations (cys–>ala) were individually generated at each position. Only mutations at cys392 or cys405 reduced sensitivity (~50% resistance) to benzoquinone. Top2αC392A and top2αC405A displayed faster rates (~2–fold) of DNA religation than wild-type topoisomerase IIα in the presence of the quinone. In contrast, as determined by DNA binding, protein clamp closing, and protomer crosslinking experiments, mutations at cys392 and cys405 did not affect the ability of benzoquinone to block the N-terminal gate of topoisomerase IIα. These findings indicate that adduction of cys392 and cys405 is important for the actions of quinones against the enzyme, and increases levels of cleavage complexes primarily by inhibiting DNA religation. PMID:17298034

  13. The 2-Cys Peroxiredoxin Alkyl Hydroperoxide Reductase C Binds Heme and Participates in Its Intracellular Availability in Streptococcus agalactiae*

    PubMed Central

    Lechardeur, Delphine; Fernandez, Annabelle; Robert, Bruno; Gaudu, Philippe; Trieu-Cuot, Patrick; Lamberet, Gilles; Gruss, Alexandra

    2010-01-01

    Heme is a redox-reactive molecule with vital and complex roles in bacterial metabolism, survival, and virulence. However, few intracellular heme partners were identified to date and are not well conserved in bacteria. The opportunistic pathogen Streptococcus agalactiae (group B Streptococcus) is a heme auxotroph, which acquires exogenous heme to activate an aerobic respiratory chain. We identified the alkyl hydroperoxide reductase AhpC, a member of the highly conserved thiol-dependent 2-Cys peroxiredoxins, as a heme-binding protein. AhpC binds hemin with a Kd of 0.5 μm and a 1:1 stoichiometry. Mutagenesis of cysteines revealed that hemin binding is dissociable from catalytic activity and multimerization. AhpC reductase activity was unchanged upon interaction with heme in vitro and in vivo. A group B Streptococcus ahpC mutant displayed attenuation of two heme-dependent functions, respiration and activity of a heterologous catalase, suggesting a role for AhpC in heme intracellular fate. In support of this hypothesis, AhpC-bound hemin was protected from chemical degradation in vitro. Our results reveal for the first time a role for AhpC as a heme-binding protein. PMID:20332091

  14. SpyB, a small heme-binding protein, affects the composition of the cell wall in Streptococcus pyogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgar, Rebecca J.; Chen, Jing; Kant, Sashi

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less

  15. SpyB, a small heme-binding protein, affects the composition of the cell wall in Streptococcus pyogenes

    DOE PAGES

    Edgar, Rebecca J.; Chen, Jing; Kant, Sashi; ...

    2016-10-13

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less

  16. SpyB, a Small Heme-Binding Protein, Affects the Composition of the Cell Wall in Streptococcus pyogenes.

    PubMed

    Edgar, Rebecca J; Chen, Jing; Kant, Sashi; Rechkina, Elena; Rush, Jeffrey S; Forsberg, Lennart S; Jaehrig, Bernhard; Azadi, Parastoo; Tchesnokova, Veronika; Sokurenko, Evgeni V; Zhu, Haining; Korotkov, Konstantin V; Pancholi, Vijay; Korotkova, Natalia

    2016-01-01

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.

  17. Splitting of the O–O bond at the heme-copper catalytic site of respiratory oxidases

    PubMed Central

    Poiana, Federica; von Ballmoos, Christoph; Gonska, Nathalie; Blomberg, Margareta R. A.; Ädelroth, Pia; Brzezinski, Peter

    2017-01-01

    Heme-copper oxidases catalyze the four-electron reduction of O2 to H2O at a catalytic site that is composed of a heme group, a copper ion (CuB), and a tyrosine residue. Results from earlier experimental studies have shown that the O–O bond is cleaved simultaneously with electron transfer from a low-spin heme (heme a/b), forming a ferryl state (PR; Fe4+=O2−, CuB2+–OH−). We show that with the Thermus thermophilus ba3 oxidase, at low temperature (10°C, pH 7), electron transfer from the low-spin heme b to the catalytic site is faster by a factor of ~10 (τ ≅ 11 μs) than the formation of the PR ferryl (τ ≅110 μs), which indicates that O2 is reduced before the splitting of the O–O bond. Application of density functional theory indicates that the electron acceptor at the catalytic site is a high-energy peroxy state [Fe3+–O−–O−(H+)], which is formed before the PR ferryl. The rates of heme b oxidation and PR ferryl formation were more similar at pH 10, indicating that the formation of the high-energy peroxy state involves proton transfer within the catalytic site, consistent with theory. The combined experimental and theoretical data suggest a general mechanism for O2 reduction by heme-copper oxidases. PMID:28630929

  18. DNA adducts and liver DNA replication in rats during chronic exposure to N-nitrosodimethylamine (NDMA) and their relationships to the dose-dependence of NDMA hepatocarcinogenesis.

    PubMed

    Souliotis, Vassilis L; Henneman, John R; Reed, Carl D; Chhabra, Saranjit K; Diwan, Bhalchandra A; Anderson, Lucy M; Kyrtopoulos, Soterios A

    2002-03-20

    Exposure of rats to the hepatocarcinogen N-nitrosodimethylamine (NDMA) (0.2-2.64 ppm in the drinking water) for up to 180 days resulted in rapid accumulation of N7- and O6-methylguanine in liver and white blood cell DNA, maximum adduct levels being reached within 1-7 days, depending on the dose. The levels of both adducts remained constant up to treatment day 28, subsequently declining slowly to about 40% of maximal levels for the liver and 60% for white blood cells by day 180. In order to elucidate the role of DNA replication in NDMA hepatocarcinogenesis, changes in liver cell labeling index (LI) were also measured on treatment days 21, 120 and 180. Although the time- and dose-dependence of the observed effects were complex, a clear trend towards increased rates of hepatocyte LI, as indicated by BrdU incorporation, with increasing NDMA doses was evident, particularly above 1 ppm, a concentration above which NDMA hepatocarcinogenicity is known to increase sharply. In contrast, no increase in Kupffer cell DNA replication was found at any of the doses employed, in accordance with the low susceptibility of these cells to NDMA-induced carcinogenesis. No significant increase in the occurrence of necrotic or apoptotic cells was noted under the treatment conditions employed. These results suggest that, in addition to the accumulation of DNA damage, alterations in hepatocyte DNA replication during the chronic NDMA exposure may influence the dose-dependence of its carcinogenic efficacy.

  19. Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF

    DOE PAGES

    Park, Kiyoung; Li, Ning; Kwak, Yeonju; ...

    2017-05-01

    Binuclear non-heme iron enzymes activate O 2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O 2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reactionmore » shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. As a result, this activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.« less

  20. Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kiyoung; Li, Ning; Kwak, Yeonju

    Binuclear non-heme iron enzymes activate O 2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O 2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reactionmore » shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. As a result, this activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.« less