Sample records for n-aryl anthranilic acid

  1. Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives

    PubMed Central

    Mei, Xuefeng; August, Adam T.; Wolf, Christian

    2008-01-01

    A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629

  2. General synthesis of 2,1-benzisoxazoles (anthranils) from nitroarenes and benzylic C-H acids in aprotic media promoted by combination of strong bases and silylating agents.

    PubMed

    Wiȩcław, Michał; Bobin, Mariusz; Kwast, Andrzej; Bujok, Robert; Wróbel, Zbigniew; Wojciechowski, Krzysztof

    2015-11-01

    Carbanions of phenylacetonitriles, benzyl sulfones, and dialkyl benzylphosphonates add nitroarenes at the ortho-position to the nitro group to form [Formula: see text]-adducts that, upon treatment with trialkylchlorosilane and additional base (t-BuOK or DBU), transform into 3-aryl-2,1-benzisoxazoles in moderate-to-good yields.

  3. The luminescent properties of polyethylene films with admixtures of luminophores based on europium compounds

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.; Karasev, V. E.

    2008-11-01

    Polyethylene films activated with europium(III) complexes with carboxylic acids and Eu(L)3 · nD · xH2O + ANT compositions, where L is the trifluoroacetic, toluyl, or cinnamic acid anion and ANT is anthranilic acid, were prepared. The intensity of luminescence of the polymeric compositions depended on the content of luminophores (molar ratio between europium compounds and anthranilic acid). An analysis of the excitation spectra showed that, in polymer—Eu(L)3 · nPhen · xH2O + ANT compositions, there was effective energy transfer from phenanthroline to anthranilic acid levels.

  4. Growth inhibitory effects of anthranilic acid and its derivatives against Legionella pneumophila.

    PubMed

    Sasaki, Takahide; Mizuguchi, Satoru; Honda, Kohsuke

    2012-06-01

    Legionella pneumophila is the principal etiologic agent of Legionnaires' disease. We found that the growth of L. pneumophila was markedly inhibited by its own cell lysate and the inhibitory effect was abolished by heat-treatment of the lysate. The genomic library of L. pneumophila was constructed in Escherichia coli and screened to determine the gene involved in the growth inhibition. A clone harboring the gene encoding anthranilate synthase (TrpE), which is involved in tryptophan biosynthesis, exhibited an inhibitory effect on the growth of L. pneumophila. Anthranilic acid exogenously added also exhibited antibacterial activity against L. pneumophila. A series of single-gene-knockout mutants of L. pneumophila lacking tryptophan synthesis genes were constructed and assessed for their susceptibility to anthranilic acid. Although the growth of mutants deficient in anthranilate phosphoribosyltransferase (TrpD) and N-(5'-phosphoribosyl)anthranilate isomerase (TrpF) was not affected by exogenous anthranilic acid, the indole-3-glycerophosphate synthase (TrpC) deficient mutant exhibited an increased susceptibility compared with the parent strain. These observations strongly indicate that 1-(2-carboxyphenylamino)-1'-deoxyribulose-5'-phosphate (CPADR-5'-P), which is an intermediate of tryptophan synthesis from anthranilic acid, is responsible for the growth inhibition of L. pneumophila. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli

    PubMed Central

    2013-01-01

    Background Oats contain hydroxycinnamoyl anthranilates, also named avenanthramides (Avn), which have beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects. The microbial production of hydroxycinnamoyl anthranilates is an eco-friendly alternative to chemical synthesis or purification from plant sources. We recently demonstrated in yeast (Saccharomyces cerevisiae) that coexpression of 4-coumarate: CoA ligase (4CL) from Arabidopsis thaliana and hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) from Dianthus caryophyllusenabled the biological production of several cinnamoyl anthranilates upon feeding with anthranilate and various cinnamates. Using engineering strategies to overproduce anthranilate and hydroxycinnamates, we describe here an entire pathway for the microbial synthesis of two Avns from glucose in Escherichia coli. Results We first showed that coexpression of HCBT and Nt4CL1 from tobacco in the E. coli anthranilate-accumulating strain W3110 trpD9923 allowed the production of Avn D [N-(4′-hydroxycinnamoyl)-anthranilic acid] and Avn F [N-(3′,4′-dihydroxycinnamoyl)-anthranilic acid] upon feeding with p-coumarate and caffeate, respectively. Moreover, additional expression in this strain of a tyrosine ammonia-lyase from Rhodotorula glutinis (RgTAL) led to the conversion of endogenous tyrosine into p-coumarate and resulted in the production of Avn D from glucose. Second, a 135-fold improvement in Avn D titer was achieved by boosting tyrosine production using two plasmids that express the eleven genes necessary for tyrosine synthesis from erythrose 4-phosphate and phosphoenolpyruvate. Finally, expression of either the p-coumarate 3-hydroxylase Sam5 from Saccharothrix espanensis or the hydroxylase complex HpaBC from E. coli resulted in the endogenous production of caffeate and biosynthesis of Avn F. Conclusion We established a biosynthetic pathway for the microbial production of valuable hydroxycinnamoyl anthranilates from an inexpensive carbon source. The proposed pathway will serve as a platform for further engineering toward economical and sustainable bioproduction of these pharmaceuticals and other related aromatic compounds. PMID:23806124

  6. Anthranilate-Activating Modules from Fungal Nonribosomal Peptide Assembly Lines†

    PubMed Central

    Ames, Brian D.; Walsh, Christopher T.

    2010-01-01

    Fungal natural products containing benzodiazepinone- and quinazolinone-fused ring systems can be assembled by nonribosomal peptide synthetases (NRPS) using the conformationally restricted β-amino acid anthranilate as one of the key building blocks. We validated that the first module of the acetylaszonalenin synthetase of Neosartorya fischeri NRRL 181 activates anthranilate to anthranilyl-AMP. With this as starting point, we then used bioinformatic predictions about fungal adenylation domain selectivities to identify and confirm an anthranilate-activating module in the fumiquinazoline A producer Aspergillus fumigatus Af293 as well as a second anthranilate-activating NRPS in N. fischeri. This establishes an anthranilate adenylation domain code for fungal NRPS and should facilitate detection and cloning of gene clusters for benzodiazepine- and quinazoline-containing polycyclic alkaloids with a wide range of biological activities. PMID:20225828

  7. Phase transition and intramolecular hydrogen bonding in nitro derivatives of ortho-hydroxy acetophenones

    NASA Astrophysics Data System (ADS)

    Filarowski, A.; Kochel, A.; Koll, A.; Bator, G.; Mukherjee, S.

    2006-03-01

    The crystal structures of two ortho-hydroxy aryl ketones (5-chloro-3-nitro-2-hydroxyacetophenone, 5-methyl-3-nitro-2-hydroxyacetophenone and the complex 5-chloro-3-nitro-2-hydroxyacetophenone with 2-aminobenzoic acid (anthranilic acid)) were determined by X-ray diffraction. The existence of an intramolecular hydrogen bond of enol character between the hydroxyl and acetyl groups was found by the X-ray method. The enol character was also confirmed by DFT (B3LYP/6-31+G(d,p)) calculations. A phase transition was found at 138 K in 5-chloro-3-nitro-2-hydroxyacetophenone. This phase transition was investigated by differential scanning calorimetry (DSC), dilatometry, and the dielectric method. A study of the nitro-group dynamics in the ortho-hydroxy acetophenones was carried out with DFT (B3LYP/6-31+G(d,p)) calculations.

  8. New pathway for the biodegradation of indole in Aspergillus niger.

    PubMed Central

    Kamath, A V; Vaidyanathan, C S

    1990-01-01

    Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid, 2,3-dihydroxybenzoic acid, and catechol, which was further degraded by ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system. PMID:2310183

  9. Synthesis of avenanthramides using engineered Escherichia coli.

    PubMed

    Lee, Su Jin; Sim, Geun Young; Kang, Hyunook; Yeo, Won Seok; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2018-03-22

    Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate:coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns, setting a foundation for exploring the biological activities of diverse avns.

  10. Kinetic and mechanism of the oxidation of chromium(III) complex with anthranil- N, N-diacetic acid by periodate ion in acidic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ali, Ismat H.

    2015-06-01

    The kinetics of oxidation of [CrIII(atda)(H2O)2] (atda = anthranil- N, N-diacetato) complex by IO{4/-} was studied spectrophotometrically in aqueous solutions with pH range 2.20-3.34, 0.30 M ionic strength and in 20.0-40.0°C temperature range. The rate law of the reaction exhibited saturation kinetics. Values of the rate constant for the electron transfer process, the equilibrium constant for dissociation of [CrIII (atda)(H2O)2] to [CrIII (atda) (H2O)OH]+ + H+ and the pre-equilibrium formation constant were calculated. The thermodynamic activation parameters are reported. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of the IVII to chromium(III).

  11. Pseudoephedrine-Directed Asymmetric α-Arylation of α-Amino Acid Derivatives.

    PubMed

    Atkinson, Rachel C; Fernández-Nieto, Fernando; Mas Roselló, Josep; Clayden, Jonathan

    2015-07-27

    Available α-amino acids undergo arylation at their α position in an enantioselective manner on treatment with base of N'-aryl urea derivatives ligated to pseudoephedrine as a chiral auxiliary. In situ silylation and enolization induces diastereoselective migration of the N'-aryl group to the α position of the amino acid, followed by ring closure to a hydantoin with concomitant explulsion of the recyclable auxiliary. The hydrolysis of the hydantoin products provides derivatives of quaternary amino acids. The arylation avoids the use of heavy-metal additives, and is successful with a range of amino acids and with aryl rings of varying electronic character. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2.

    PubMed

    Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N

    2016-06-25

    In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Facile N-Arylation of Amines and Sulfonamides and O-Arylation of Phenols and Arenecarboxylic Acids

    PubMed Central

    Liu, Zhijian; Larock, Richard C.

    2008-01-01

    An efficient, transition-metal free procedure for the N-arylation of amines, sulfonamides and carbamates and O-arylation of phenols and carboxylic acids has been achieved by allowing these substrates to react with a variety of o-silylaryl triflates in the presence of CsF. Good to excellent yields of arylated products are obtained under very mild reaction conditions. This chemistry readily tolerates a variety of functional groups. PMID:16599619

  14. Aryl triolborates: novel reagent for copper-catalyzed N arylation of amines, anilines, and imidazoles.

    PubMed

    Yu, Xiao-Qiang; Yamamoto, Yasunori; Miyaura, Norio

    2008-09-01

    The N arylation of primary and secondary aliphatic amines, anilines, and imidazoles with novel potassium aryl triolborates was carried out in the presence of a reoxidant and a catalytic amount of Cu(OAc)(2) (10 mol %). Aryl triolborates were found to be better reagents than aryl boronic acids or potassium aryl trifluoroborates as the former achieved high yields under mild conditions. Coupling of primary and secondary aliphatic amines to give N-aryl amines in excellent yields was performed under oxygen atmosphere. The reactions of anilines and imidazoles to provide N-aryl anilines and N-aryl imidazoles in good yields proceeded smoothly when trimethylamine N-oxide was used as an oxidant.

  15. Development of selective blockers for Ca2+-activated Cl- channel using Xenopus laevis oocytes with an improved drug screening strategy

    PubMed Central

    Oh, Soo-Jin; Park, Jung Hwan; Han, Sungyu; Lee, Jae Kyun; Roh, Eun Joo; Lee, C Justin

    2008-01-01

    Background Ca2+-activated Cl- channels (CaCCs) participate in many important physiological processes. However, the lack of effective and selective blockers has hindered the study of these channels, mostly due to the lack of good assay system. Here, we have developed a reliable drug screening method for better blockers of CaCCs, using the endogeneous CaCCs in Xenopus laevis oocytes and two-electrode voltage-clamp (TEVC) technique. Results Oocytes were prepared with a treatment of Ca2+ ionophore, which was followed by a treatment of thapsigargin which depletes Ca2+ stores to eliminate any contribution of Ca2+ release. TEVC was performed with micropipette containing chelerythrine to prevent PKC dependent run-up or run-down. Under these conditions, Ca2+-activated Cl- currents induced by bath application of Ca2+ to oocytes showed stable peak amplitude when repetitively activated, allowing us to test several concentrations of a test compound from one oocyte. Inhibitory activities of commercially available blockers and synthesized anthranilic acid derivatives were tested using this method. As a result, newly synthesized N-(4-trifluoromethylphenyl)anthranilic acid with trifluoromethyl group (-CF3) at para position on the benzene ring showed the lowest IC50. Conclusion Our results provide an optimal drug screening strategy suitable for high throughput screening, and propose N-(4-trifluoromethylphenyl)anthranilic acid as an improved CaCC blocker. PMID:18959787

  16. Tautomeric and Microscopic Protonation Equilibria of Anthranilic Acid and Its Derivatives.

    PubMed

    Zapała, Lidia; Woźnicka, Elżbieta; Kalembkiewicz, Jan

    2014-01-01

    The acid-base chemistry of three zwitterionic compounds, namely anthranilic (2-aminobenzoic acid), N -methylanthranilic and N -phenylanthranilic acid has been characterized in terms of the macroconstants K a1 , K a2 , the isoelectric point p H I , the tautomerization constant K z and microconstants k 11 , k 12 , k 21 , k 22 . The potentiometric titration method was used to determine the macrodissociation constants. Due to the very poor water solubility of N -phenylanthranilic acid the dissociation constants p K a1 and p K a2 were determined in MDM-water mixtures [MDM is a co-solvent mixture, consisting of equal volumes of methanol (MeOH), dioxane and acetonitrile (MeCN)]. The Yasuda-Shedlovsky extrapolation procedure has been used to obtain the values of p K a1 and p K a2 in aqueous solutions. The p K a1 and p K a2 values obtained by this method are 2.86 ± 0.01 and 4.69 ± 0.03, respectively. The tautomerization constant K z describing the equilibrium between unionized form ⇌ zwitterionic form was evaluated by the K z method based on UV-VIS spectrometry. The method uses spectral differences between the zwitterionic form (found at isoelectric pH in aqueous solution) and the unionized form (formed in an organic solvent of low dielectric constant). The highest value of the K z constant has been observed in the case of N -methylantranilic acid (log 10 K z  = 1.31 ± 0.04). The values of log 10 K z for anthranilic and N -phenylanthranilic acids are similar and have values of 0.93 ± 0.03 and 0.90 ± 0.05, respectively. The results indicate that the tested compounds, in aqueous solution around the isoelectric point pH I , occur mainly in the zwitterionic form. Moreover, the influence of the type of substituent and pH of the aqueous phase on the equilibrium were analyzed with regard to the formation and the coexistence of different forms of the acids in the examined systems.

  17. Understanding and Exploitation of Neighboring Heteroatom Effect for the Mild N-Arylation of Heterocycles with Diaryliodonium Salts under Aqueous Conditions: A Theoretical and Experimental Mechanistic Study.

    PubMed

    Bihari, Tamás; Babinszki, Bence; Gonda, Zsombor; Kovács, Szabolcs; Novák, Zoltán; Stirling, András

    2016-07-01

    The mechanism of arylation of N-heterocycles with unsymmetric diaryliodonium salts is elucidated. The fast and efficient N-arylation reaction is interpreted in terms of the bifunctionality of the substrate: The consecutive actions of properly oriented Lewis base and Brønsted acid centers in sufficient proximity result in the fast and efficient N-arylation. The mechanistic picture points to a promising synthetic strategy where suitably positioned nucleophilic and acidic centers enable functionalization, and it is tested experimentally.

  18. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    NASA Astrophysics Data System (ADS)

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-07-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h-1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles.

  19. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    PubMed Central

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-01-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h−1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles. PMID:26189944

  20. Phenanthridine synthesis through iron-catalyzed intramolecular N-arylation of O-acetyl oxime.

    PubMed

    Deb, Indubhusan; Yoshikai, Naohiko

    2013-08-16

    O-Acetyl oximes derived from 2'-arylacetophenones undergo N-O bond cleavage/intramolecular N-arylation in the presence of a catalytic amount of iron(III) acetylacetonate in acetic acid. In combination with the conventional cross-coupling or directed C-H arylation, the reaction offers a convenient route to substituted phenanthridines.

  1. Chemoselective N-arylation of aminobenzamides via copper catalysed Chan-Evans-Lam reactions.

    PubMed

    Liu, Shuai; Zu, Weisai; Zhang, Jinli; Xu, Liang

    2017-11-15

    Chemoselective N-arylation of unprotected aminobenzamides was achieved via Cu-catalysed Chan-Evans-Lam cross-coupling with aryl boronic acids for the first time. Simple copper catalysts enable the selective arylation of amino groups in ortho/meta/para-aminobenzamides under open-flask conditions. The reactions were scalable and compatible with a wide range of functional groups.

  2. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds.

    PubMed

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-06-15

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N-H groups are tolerated on the barbituric acid, with no complications arising from N-H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  3. Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling.

    PubMed

    Neville, David C A; Coquard, Virginie; Priestman, David A; te Vruchte, Danielle J M; Sillence, Daniel J; Dwek, Raymond A; Platt, Frances M; Butters, Terry D

    2004-08-15

    Interest in cellular glycosphingolipid (GSL) function has necessitated the development of a rapid and sensitive method to both analyze and characterize the full complement of structures present in various cells and tissues. An optimized method to characterize oligosaccharides released from glycosphingolipids following ceramide glycanase digestion has been developed. The procedure uses the fluorescent compound anthranilic acid (2-aminobenzoic acid; 2-AA) to label oligosaccharides prior to analysis using normal-phase high-performance liquid chromatography. The labeling procedure is rapid, selective, and easy to perform and is based on the published method of Anumula and Dhume [Glycobiology 8 (1998) 685], originally used to analyze N-linked oligosaccharides. It is less time consuming than a previously published 2-aminobenzamide labeling method [Anal. Biochem. 298 (2001) 207] for analyzing GSL-derived oligosaccharides, as the fluorescent labeling is performed on the enzyme reaction mixture. The purification of 2-AA-labeled products has been improved to ensure recovery of oligosaccharides containing one to four monosaccharide units, which was not previously possible using the Anumula and Dhume post-derivatization purification procedure. This new approach may also be used to analyze both N- and O-linked oligosaccharides.

  4. Investigating tautomeric polymorphism in crystalline anthranilic acid using terahertz spectroscopy and solid-state density functional theory.

    PubMed

    Delaney, Sean P; Witko, Ewelina M; Smith, Tiffany M; Korter, Timothy M

    2012-08-02

    Terahertz spectroscopy is sensitive to the interactions between molecules in the solid-state and recently has emerged as a new analytical tool for investigating polymorphism. Here, this technique is applied for the first time to the phenomenon of tautomeric polymorphism where the crystal structures of anthranilic acid (2-aminobenzoic acid) have been investigated. Three polymorphs of anthranilic acid (denoted Forms I, II and III) were studied using terahertz spectroscopy and the vibrational modes and relative polymorph stabilities analyzed using solid-state density functional theory calculations augmented with London dispersion force corrections. Form I consists of both neutral and zwitterionic molecules and was found to be the most stable polymorph as compared to Forms II and III (both containing only neutral molecules). The simulations suggest that a balance between steric interactions and electrostatic forces is responsible for the favoring of the mixed neutral/zwitterion solid over the all neutral or all zwitterion crystalline arrangements.

  5. Capillary electrophoresis determination of glucosamine in nutraceutical formulations after labeling with anthranilic acid and UV detection.

    PubMed

    Volpi, Nicola

    2009-04-05

    A new robust CE method for the determination of the glucosamine (GlcN) content in nutraceutical formulations is described after its derivatization with anthranilic acid (2-aminobenzoic acid, AA). The CE separation of derivatized GlcN with AA was performed on an uncoated fused-silica capillary tube (50 microm I.D.) using an operating pH 7.0 buffer of 150 mM boric acid/50 mM NaH2PO4 and UV detection at 214 nm. The method was validated for specificity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). The detector response for GlcN was linear over the selected concentration range from 240 to 2400 pg (40-400 microg/mL) with a correlation coefficient greater than 0.980. The intra- and inter-day variations (CV%) were between 0.5 and 0.9 for migration time, and between 2.8 and 4.3 for peak area, respectively. The LOD and the LOQ of the method were approximately 200 and 500 pg, respectively. The intra- and inter-day accuracy was estimated to range from 2.8% to 5.1%, while the percent recoveries of GlcN in formulations were calculated to be about 100% after simple centrifugation for 10 min, lyophilization and derivatization with AA. The CE method was applied to the determination of GlcN content, in the form of GlcN-hydrochloride or GlcN-sulfate, of several nutraceutical preparations in the presence of other ingredients, i.e. chondroitin sulfate, vitamin C and/or methylsulfonylmethane (MSM) as well as salts and other agents. The quantitative results obtained were in total conformity with the label claims.

  6. Dianthosaponins G-I, triterpene saponins, an anthranilic acid amide glucoside and a flavonoid glycoside from the aerial parts of Dianthus japonicus and their cytotoxicity.

    PubMed

    Kanehira, Yuka; Kawakami, Susumu; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki

    2016-10-01

    Extensive isolation work on the 1-BuOH-soluble fraction of a MeOH extract of the aerial parts of Dianthus japonicus afforded three further triterpene glycosyl estsers, termed dianthosaponins G-I, an anthranilic acid amide glucoside and a C-glycosyl flavonoid along with one known triterpene saponin. Their structures were elucidated from spectroscopic evidence. The cytotoxicity of the isolated compounds toward A549 cells was evaluated.

  7. Mutasynthesis of pyrrole spiroketal compound using calcimycin 3-hydroxy anthranilic acid biosynthetic mutant.

    PubMed

    Gou, Lixia; Wu, Qiulin; Lin, Shuangjun; Li, Xiangmei; Liang, Jingdan; Zhou, Xiufen; An, Derong; Deng, Zixin; Wang, Zhijun

    2013-09-01

    The five-membered aromatic nitrogen heterocyclic pyrrole ring is a building block for a wide variety of natural products. Aiming at generating new pyrrole-containing derivatives as well as to identify new candidates that may be of value in designing new anticancer, antiviral, and/or antimicrobial agents, we employed a strategy on pyrrole-containing compound mutasynthesis using the pyrrole-containing calcimycin biosynthetic gene cluster. We blocked the biosynthesis of the calcimycin precursor, 3-hydroxy anthranilic acid, by deletion of calB1-3 and found that two intermediates containing the pyrrole and the spiroketal moiety were accumulated in the culture. We then fed the mutant using the structurally similar compound of 3-hydroxy anthranilic acid. At least four additional new pyrrole spiroketal derivatives were obtained. The structures of the intermediates and the new pyrrole spiroketal derivatives were identified using LC-MS and NMR. One of them shows enhanced antibacterial activity. Our work shows a new way of pyrrole derivative biosynthetic mutasynthesis.

  8. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles.

    PubMed

    Ma, Dawei; Cai, Qian

    2008-11-18

    Copper-assisted Ullmann-type coupling reactions are valuable transformations for organic synthesis. Researchers have extensively applied these reactions in both academic and industrial settings. However, two important issues, the high reaction temperatures (normally above 150 degrees C) and the stoichiometric amounts of copper necessary, have greatly limited the reaction scope. To solve these problems, we and other groups have recently explored the use of special ligands to promote these coupling reactions. We first showed that the structure of alpha-amino acids can accelerate Cu-assisted Ullmann reactions, leading to the coupling reactions of aryl halides and alpha-amino acids at 80-90 degrees C. In response to these encouraging results, we also discovered that an l-proline ligand facilitated the following transformations: (1) coupling of aryl halides with primary amines, cyclic secondary amines, and N-containing heterocycles at 40-90 degrees C; (2) coupling of aryl halides with sulfinic acid salts at 80-95 degrees C; (3) azidation of aryl halides and vinyl halides with sodium azide at 40-95 degrees C; (4) coupling of aryl halides with activated methylene compounds at 25-50 degrees C. In addition, we found that N,N-dimethylglycine as a ligand facilitated Cu-catalyzed biaryl ether formation at 90 degrees C. Moreover, Sonogashira reactions worked in the absence of palladium and phosphine ligands, forming enamides from vinyl halides and amides at temperatures ranging from ambient temperature up to 80 degrees C. Furthermore, we discovered that an ortho-amide group can accelerate some Ullmann-type reactions. This functional group in combination with other ligand effects allowed for aryl amination or biaryl ether formation at ambient temperature. The coupling between aryl halides and activated methylene compounds even proceeded at -45 degrees C to enantioselectively form a quaternary carbon center. Taking advantage of these results, we developed several novel approaches for the synthesis of pharmaceutically important heterocycles: 1,2-disubstituted benzimidazoles, polysubstituted indoles, N-substituted 1,3-dihydrobenzimidazol-2-ones, and substituted 3-acyl oxindoles. Our results demonstrate that an l-proline or N,N-dimethylglycine ligand can facilitate most typical Ullmann-type reactions, with reactions occurring under relatively mild conditions and using only 2-20 mol % copper catalysts. These conveniently available and inexpensive catalytic systems not only accelerate the reactions but also tolerate many more functional groups. Thus, they should find considerable application in organic synthesis.

  9. A tandem conjugate addition/cyclization protocol for the asymmetric synthesis of 2-aryl-4-aminotetrahydroquinoline-3-carboxylic acid derivatives.

    PubMed

    Davies, Stephen G; Mujtaba, Nadeam; Roberts, Paul M; Smith, Andrew D; Thomson, James E

    2009-05-07

    Condensation of tert-butyl (E)-3-(2'-aminophenyl)propenoate with a range of aromatic and heteroaromatic aldehydes gives the corresponding imines as single diastereoisomers (>98% de). Addition of lithium (R)-N-benzyl-N-(alpha-methylbenzyl)amide initiates a tandem conjugate addition/cyclization reaction to generate 2-aryl-4-aminotetrahydroquinoline-3-carboxylic acid derivatives in >98% de, >98% ee and high isolated yield. Hydrogenolysis of an N(1)-Boc protected derivative allows selective cleavage of the N-benzyl-N-alpha-methylbenzyl protecting groups without compromise of the diastereo- or enantiopurity.

  10. Triphenylphosphine as Ligand for Room Temperature Ni(0)-Catalyzed Cross-Coupling Reactions of Aryl Chlorides with Arylboronic Acids

    PubMed Central

    Tang, Zhen-Yu; Hu, Qiao-Sheng

    2008-01-01

    Room temperature Ni(0)-catalyzed cross-coupling reactions of deactivated aryl chlorides with arylboronic acids with inexpensive triphenylphosphine (PPh3) as a supporting ligand have been accomplished in good to excellent yields. Air-stable Ni(PPh3)2Cl2 has also been established as catalyst precursor and highly active nickel catalysts were obtained when the reduction of Ni(PPh3)2Cl2 with n-BuLi was carried out in presence of an aryl chloride. PMID:16497011

  11. Mercury photolytic transformation affected by low-molecular-weight natural organics in water.

    PubMed

    He, Feng; Zheng, Wang; Liang, Liyuan; Gu, Baohua

    2012-02-01

    Mechanisms by which dissolved organic matter (DOM) mediates the photochemical reduction of Hg(II) in aquatic ecosystems are not fully understood, owing to the heterogeneous nature and complex structural properties of DOM. In this work, naturally occurring aromatic compounds including salicylic, 4-hydrobenzoic, anthranilic, 4-aminobenzoic, and phthalic acid were systematically studied as surrogates for DOM in order to gain an improved mechanistic understanding of these compounds in the photoreduction of Hg(II) in water. We show that the photoreduction rates of Hg(II) are influenced not only by the substituent functional groups such as -OH, -NH(2) and -COOH on the benzene ring, but also the positioning of these functional groups on the ring structure. The Hg(II) photoreduction rate decreases in the order anthranilic acid>salicylic acid>phthalic acid according to the presence of the -NH(2), -OH, -COOH functional groups on benzoic acid. The substitution position of the functional groups affects reduction rates in the order anthranilic acid>4-aminobenzoic acid and salicylic acid>4-hydroxybenzoic acid. Reduction rates correlate strongly with ultraviolet (UV) absorption of these compounds and their concentrations, suggesting that the formation of organic free radicals during photolysis of these compounds is responsible for Hg(II) photoreduction. These results provide insight into the role of low-molecular-weight organic compounds and possibly DOM in Hg photoredox transformation and may thus have important implications for understanding Hg geochemical cycling in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Anthranilate Fluorescence Marks a Calcium-Propagated Necrotic Wave That Promotes Organismal Death in C. elegans

    PubMed Central

    Coburn, Cassandra; Allman, Erik; Mahanti, Parag; Benedetto, Alexandre; Cabreiro, Filipe; Pincus, Zachary; Matthijssens, Filip; Araiz, Caroline; Mandel, Abraham; Vlachos, Manolis; Edwards, Sally-Anne; Fischer, Grahame; Davidson, Alexander; Pryor, Rosina E.; Stevens, Ailsa; Slack, Frank J.; Tavernarakis, Nektarios; Braeckman, Bart P.; Schroeder, Frank C.; Nehrke, Keith; Gems, David

    2013-01-01

    For cells the passage from life to death can involve a regulated, programmed transition. In contrast to cell death, the mechanisms of systemic collapse underlying organismal death remain poorly understood. Here we present evidence of a cascade of cell death involving the calpain-cathepsin necrosis pathway that can drive organismal death in Caenorhabditis elegans. We report that organismal death is accompanied by a burst of intense blue fluorescence, generated within intestinal cells by the necrotic cell death pathway. Such death fluorescence marks an anterior to posterior wave of intestinal cell death that is accompanied by cytosolic acidosis. This wave is propagated via the innexin INX-16, likely by calcium influx. Notably, inhibition of systemic necrosis can delay stress-induced death. We also identify the source of the blue fluorescence, initially present in intestinal lysosome-related organelles (gut granules), as anthranilic acid glucosyl esters—not, as previously surmised, the damage product lipofuscin. Anthranilic acid is derived from tryptophan by action of the kynurenine pathway. These findings reveal a central mechanism of organismal death in C. elegans that is related to necrotic propagation in mammals—e.g., in excitotoxicity and ischemia-induced neurodegeneration. Endogenous anthranilate fluorescence renders visible the spatio-temporal dynamics of C. elegans organismal death. PMID:23935448

  13. Allylic Amination and N-Arylation-Based Domino Reactions Providing Rapid Three-Component Strategies to Fused Pyrroles with Different Substituted Patterns

    PubMed Central

    Jiang, Bo; Li, Ying; Tu, Man-Su; Wang, Shu-Liang; Tu, Shu-Jiang; Li, Guigen

    2012-01-01

    New three-component domino reaction providing divergent approaches to multi-functionalized fused pyrroles with different substituted patterns have been established (40 examples). The direct C(sp3)–N bond formation was achieved through intermolecular allylic amination in a one-pot operation; and N-arylation of amines was realized by varying N-amino acid enaminones. The reaction is easy to perform simply by mixing three common reactants in acetic acid under microwave heating. The reaction proceeds at fast rates and can be finished within 30 min, which makes workup convenient to give good chemical yields. PMID:22852549

  14. Development of Novel Environmentally Sustainable Binders for Energetic Formulations

    DTIC Science & Technology

    2015-06-01

    Senenayake, C. H., Addition of Grignard reagents to aryl acid chlorides: an efficient synthesis of aryl ketones, Org. Lett. 2005, 7, 5593- 5595. (b) Gowda...M. S.; Pande, S. S.; Ramakrishna, R. A.; Prabhu, K. R., Acylation of Grignard reagents mediated by N-methylpyrrolidinone: a remarkable selectivity...acid moiety to introduce the necessary linker. Although the standard isocyanates- based reagents induce significant toxicity, the isocyanate function

  15. Mass spectrometry of analytical derivatives. 1. Cyanide cations in the spectra of N-alkyl-N-perfluoroacyl-α-amino acids and their methyl esters

    PubMed Central

    Todua, Nino G.; Tretyakov, Kirill V.; Mikaia, Anzor I.

    2016-01-01

    The central mission for the development of the National Institute of Standards and Technology/National Institutes of Health/Environmental Protection Agency Mass Spectral Library is the acquisition of reference gas chromatography–mass spectrometry data for important compounds and their chemical modification products. The addition of reliable reference data of various derivatives of amino acids to The Library, and the study of their behavior under electron ionization conditions may be useful for their identification, structure elucidation, and a better understanding of the data obtained when the same derivatives are subjected to other ionization methods. N-Alkyl-N-perfluoroacyl derivatives of amino acids readily produce previously unreported alkylnitrilium cations of composition [HC≡N-alkyl]+. Homologous [HC≡N-aryl]+ cations are typical for corresponding N-aryl analogs. The formation of other ions characteristic for these derivatives involves oxygen rearrangement giving rise to ions [CnF2n+1–C≡N+–CnH2n+1] and [CnF2n+1–C≡N+-aryl]. The introduction of an N-benzyl substituent in a molecule favors a process producing benzylidene iminium cations. l-Threonine and l-cysteine derivatives exhibit more fragmentation pathways not typical for other α-amino acids; additionally, the Nω-amino group in l-lysine directs the dissociation process and provides structural information on the substitution at the amino functions in the molecule. PMID:26307698

  16. JPRS Report, Science & Technology, USSR: Chemistry

    DTIC Science & Technology

    1989-07-20

    derivatives of arsenic, the sure to hydrochloric acid , with the latter reaction appar- authors synthesized for the first time aryl diethyinyl ently...1 Study of Methyltrichlorogermanium Chlorination Initiated With Laser Radiation [G. Ya... Acids in Esterification of Butyric Acid [N. P. Zhiltsov, N. G. Tazimova, et al.; UKRAINSKIY KHIMICHESKIY ZHURNAL, Vol 55 N o 1, Jan 89

  17. Chemical basis for the phytotoxicity of N-aryl hydroxamic acids and acetanilide analogues.

    PubMed

    Bravo, Héctor R; Villarroel, Elisa; Copaja, Sylvia V; Argandoña, Victor H

    2008-01-01

    Germination inhibition activity of N-aryl hydroxamic acids and acetanilide analogues was measured on lettuce seeds (Lactuca sativa). Lipophilicity of the compounds was determined by HPLC. A correlation between lipophilicity values and percentage of germination inhibition was established. A model mechanism of action for auxin was used for analyzing the effect of the substituent at the alpha carbon atom (Ca) on the polarization of hydroxamic and amide functions in relation to the germination inhibition activity observed. Results suggest that the lipophilic and acidic properties play an important role in the phytotoxicity of the compounds. A test with the microalga Chlorella vulgaris was used to evaluate the potential herbicide activity of the hydroxamic acids and acetanilides.

  18. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and beta-cyclodextrin.

    PubMed

    Rajendiran, N; Balasubramanian, T

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and beta-cyclodextrin (beta-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with beta-CD is analysed by UV-vis, fluorimetry, FT-IR, (1)H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with beta-CD and COOH group present in the beta-CD cavity. A mechanism is proposed to explain the inclusion process.

  19. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Balasubramanian, T.

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and β-cyclodextrin (β-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with β-CD is analysed by UV-vis, fluorimetry, FT-IR, 1H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with β-CD and COOH group present in the β-CD cavity. A mechanism is proposed to explain the inclusion process.

  20. Complex formation of vanadium(V) with resorcylalhydrazides of carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudarev, V.I.; Dolgorev, V.A.; Volkov, A.N.

    1986-08-01

    In this work, a previous investigation of hydrazine derivatives as analytical reagents for vanadium(V) was continued. The authors studied arylalhydrazones -- derivatives of resorcylalhydrazides of anisic (RHASA), anthranilic (RHANA), and benzoic (RHBA) acids. The reagents presented differ from those studied previously by the presence of a second hydroxy group in the para-position of the benzene ring -the resorcinol fragment -- and substituents in the benzoin fragment. Such changes made it possible to increase the solubility of the reagents in aqueous medium and to estimate the change in the main spectrophotometric parameters of the analytical reaction. A rapid method was developedmore » for the determination of vanadium in steels with the resorcylalhydrazide of anthranilic acid. The minimum determinable vanadium content is 0.18 micrograms/ml.« less

  1. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect.

    PubMed

    Kim, Soo-Kyoung; Park, Ha-Young; Lee, Joon-Hee

    2015-04-01

    Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. 21 CFR 1310.02 - Substances covered.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Hypophosphorous acid and its salts (Including ammonium hypophosphite, calcium hypophosphite, iron hypophosphite... Chemical Code Number set forth opposite it. (a) List I chemicals (1) Anthranilic acid, its esters, and its... acid, its esters, and its salts 8522 (7) Norpseudoephedrine, its salts, optical isomers, and salts of...

  3. 21 CFR 1310.02 - Substances covered.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Hypophosphorous acid and its salts (Including ammonium hypophosphite, calcium hypophosphite, iron hypophosphite... Chemical Code Number set forth opposite it. (a) List I chemicals (1) Anthranilic acid, its esters, and its... acid, its esters, and its salts 8522 (7) Norpseudoephedrine, its salts, optical isomers, and salts of...

  4. 21 CFR 1310.02 - Substances covered.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Hypophosphorous acid and its salts (Including ammonium hypophosphite, calcium hypophosphite, iron hypophosphite... Chemical Code Number set forth opposite it. (a) List I chemicals (1) Anthranilic acid, its esters, and its... acid, its esters, and its salts 8522 (7) Norpseudoephedrine, its salts, optical isomers, and salts of...

  5. Kynurenine pathway metabolism following prenatal KMO inhibition and in Mecp2+/- mice, using liquid chromatography-tandem mass spectrometry.

    PubMed

    Forrest, Caroline M; Kennedy, Peter G E; Rodgers, Jean; Dalton, R Neil; Turner, Charles; Darlington, L Gail; Cobb, Stuart R; Stone, Trevor W

    2016-11-01

    To quantify the full range of tryptophan metabolites along the kynurenine pathway, a liquid chromatography - tandem mass spectrometry method was developed and used to analyse brain extracts of rodents treated with the kynurenine-3-mono-oxygenase (KMO) inhibitor Ro61-8048 during pregnancy. There were significant increases in the levels of kynurenine, kynurenic acid, anthranilic acid and 3-hydroxy-kynurenine (3-HK) in the maternal brain after 5 h but not 24 h, while the embryos exhibited high levels of kynurenine, kynurenic acid and anthranilic acid after 5 h which were maintained at 24 h post-treatment. At 24 h there was also a strong trend to an increase in quinolinic acid levels (P = 0.055). No significant changes were observed in any of the other kynurenine metabolites. The results confirm the marked increase in the accumulation of some neuroactive kynurenines when KMO is inhibited, and re-emphasise the potential importance of changes in anthranilic acid. The prolonged duration of metabolite accumulation in the embryo brains indicates a trapping of compounds within the embryonic CNS independently of maternal levels. When brains were examined from young mice heterozygous for the meCP2 gene - a potential model for Rett syndrome - no differences were noted from control mice, suggesting that the proposed roles for kynurenines in autism spectrum disorder are not relevant to Rett syndrome, supporting its recognition as a distinct, independent, condition. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Ligand-Promoted Rh(III)-Catalyzed Coupling of Aryl C-H Bonds with Arylboron Reagents.

    PubMed

    Wang, Huai-Wei; Cui, Pei-Pei; Lu, Yi; Sun, Wei-Yin; Yu, Jin-Quan

    2016-04-15

    Rhodium(III)-catalyzed C-H arylation of arenes with phenylboronic acid pinacol esters has been achieved using a readily removable N-pentafluorophenylbenzamide directing group for the first time. The use of a bidentate phosphine ligand (Binap) significantly increased the yield of the cross-coupling of C-H bonds with organoboron reagents.

  7. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject to...

  8. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject to...

  9. A General Diastereoselective Catalytic Vinylogous Aldol Reaction Among Tetramic Acid-Derived Pyrroles

    PubMed Central

    2015-01-01

    A catalytic diastereoselective aldol reaction has been developed for N1-arylated/C2-O-silylated/C3-methylated and brominated/C4-O-methylated pyrroles in its reactions with various aldehydes. Syn adducts emerge with regard to the vicinal nitrogen and oxygen heteroatom substituents. The N1-aryl residue undergoes oxidative cleavage, and the C3-bromine atom undergoes palladium-mediated coupling reactions, both without disturbing the newly created stereocenters. PMID:25119431

  10. New high-performance liquid chromatography assay for glycosyltransferases based on derivatization with anthranilic acid and fluorescence detection.

    PubMed

    Anumula, Kalyan Rao

    2012-07-01

    Assays were developed using the unique labeling chemistry of 2-aminobenzoic acid (2AA; anthranilic acid, AA) for measuring activities of both β1-4 galactosyltransferase (GalT-1) and α2-6 sialyltransferase (ST-6) by high-performance liquid chromatography (HPLC) with fluorescence detection (Anumula KR. 2006. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 350:1-23). N-Acetylglucosamine (GlcNAc) and N-acetyllactosamine were used as acceptors and uridine diphosphate (UDP)-galactose and cytidine monophosphate (CMP)-N-acetylneuraminic acid (NANA) as donors for GalT-1 and ST-6, respectively. Enzymatic products were labeled in situ with AA and were separated from the substrates on TSKgel Amide 80 column using normal-phase conditions. Enzyme units were determined from the peak areas by comparison with the concomitantly derivatized standards Gal-β1-4GlcNAc and NANA-α2-6 Gal-β1-4GlcNAc. Linearity (time and enzyme concentration), precision (intra- and interassay) and reproducibility for the assays were established. The assays were found to be useful in monitoring the enzyme activities during isolation and purification. The assays were highly sensitive and performed equal to or better than the traditional radioactive sugar-based measurements. The assay format can also be used for measuring the activity of other transferases, provided that the carbohydrate acceptors contain a reducing end for labeling. An assay for glycoprotein acceptors was developed using IgG. A short HPLC profiling method was developed for the separation of IgG glycans (biantennary G0, G1, G2, mono- and disialylated), which facilitated the determination of GalT-1 and ST-6 activities in a rapid manner. Furthermore, this profiling method should prove useful for monitoring the changes in IgG glycans in clinical settings.

  11. Precursor-Directed Combinatorial Biosynthesis of Cinnamoyl, Dihydrocinnamoyl, and Benzoyl Anthranilates in Saccharomyces cerevisiae

    DOE PAGES

    Eudes, Aymerick; Teixeira Benites, Veronica; Wang, George; ...

    2015-10-02

    Biological synthesis of pharmaceuticals and biochemicals offers an environmentally friendly alternative to conventional chemical synthesis. These alternative methods require the design of metabolic pathways and the identification of enzymes exhibiting adequate activities. Cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates are natural metabolites which possess beneficial activities for human health, and the search is expanding for novel derivatives that might have enhanced biological activity. For example, biosynthesis in Dianthus caryophyllus is catalyzed by hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/ benzoyltransferase (HCBT), which couples hydroxycinnamoyl-CoAs and benzoyl-CoAs to anthranilate. We recently demonstrated the potential of using yeast (Saccharomyces cerevisiae) for the biological production of a few cinnamoyl anthranilatesmore » by heterologous co-expression of 4-coumaroyl:CoA ligase from Arabidopsis thaliana (4CL5) and HCBT. Here we report that, by exploiting the substrate flexibility of both 4CL5 and HCBT, we achieved rapid biosynthesis of more than 160 cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates in yeast upon feeding with both natural and non-natural cinnamates, dihydrocinnamates, benzoates, and anthranilates. Our results demonstrate the use of enzyme promiscuity in biological synthesis to achieve high chemical diversity within a defined class of molecules. Finally, this work also points to the potential for the combinatorial biosynthesis of diverse and valuable cinnamoylated, dihydrocinnamoylated, and benzoylated products by using the versatile biological enzyme 4CL5 along with characterized cinnamoyl-CoA- and benzoyl-CoA-utilizing transferases.« less

  12. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  13. Purification and properties of a third form of anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase from the enterobacteriaceae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Largen, M.; Mills, S.E.; Rowe, J.

    1978-01-25

    Anthranilate-5-phosphoribosypyrophosphate phosphoribosyltransferase was purified from the bacterium Erwinia carotovora, a member of the Enterobacteriaceae. The enzyme was homogeneous according to the criteria of gel electrophoresis and NH/sub 2/-terminal amino acid sequence analysis. The molecular weight of the enzyme as determined on a calibrated Sephadex G-200 column was 67,000 +- 2,000. Sodium dodecyl sulfate-polyacrylamide gels gave a subunit molecular weight of 40,000 +- 1,000, suggesting that the enzyme was a dimer. A comparison of the NH/sub 2/-terminal sequence of the enzyme with the (previously determined) homologue from Serratia marcescens, a monomer with a molecular weight of 45,000, showed that the largermore » Serratia subunit came into register with amino acid 14 of the Erwinia subunit. The register for the length of the known overlap, 26 amino acids, was highly conserved.« less

  14. Menthone aryl acid hydrazones: a new class of anticonvulsants.

    PubMed

    Jain, Jainendra; Kumar, Y; Sinha, Reema; Kumar, Rajeev; Stables, James

    2011-01-01

    A series of ten compounds (Compounds J(1)-J(10)) of (±) 3-menthone aryl acid hydrazone was synthesized and characterized by thin layer chromatography and spectral analysis. Synthesized compounds were evaluated for anticonvulsant activity after intraperitoneal (i.p) administration to mice by maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) induced seizure method and minimal clonic seizure test. Minimal motor impairment was also determined for these compounds. Results obtained showed that four compounds out of ten afforded significant protection in the minimal clonic seizure screen at 6 Hz. Compound J(6), 4-Chloro-N-(2-isopropyl-5-methylcyclohexylidene) benzohydrazide was found to be the most active compound with MES ED(50) of 16.1 mg/kg and protective index (pI) of greater than 20, indicating that (±) 3-menthone aryl acid hydrazone possesses better and safer anticonvulsant properties than other reported menthone derivatives viz. menthone Schiff bases, menthone semicarbazides and thiosemicarbazides.

  15. Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature.

    PubMed

    Liu, Wenbo; Yang, Xiaobo; Gao, Yang; Li, Chao-Jun

    2017-06-28

    Despite the wide use of aryl radicals in organic synthesis, current methods to prepare them from aryl halides, carboxylic acids, boronic acids, and diazonium salts suffer from limitations. Aryl triflates, easily obtained from phenols, are promising aryl radical progenitors but remain elusive in this regard. Inspired by the single electron transfer process for aryl halides to access aryl radicals, we developed a simple and efficient protocol to convert aryl triflates to aryl radicals. Our success lies in exploiting sodium iodide as the soft electron donor assisted by light. This strategy enables the scalable synthesis of two types of important organic molecules, i.e., aryl boronates and aryl iodides, in good to high yields, with broad functional group compatibility in a transition-metal-free manner at room temperature. This protocol is anticipated to find potential applications in other aryl-radical-involved reactions by using aryl triflates as aryl radical precursors.

  16. A direct method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels

    PubMed Central

    Jaganathan, Lakshmanan; Boopathy, Rathanam

    2000-01-01

    Background In vertebrates, two types of cholinesterases exist, acetylcholinesterase and butyrylcholinesterase. The function of acetylcholinesterase is to hydrolyse acetylcholine, thereby terminating the neurotransmission at cholinergic synapse, while the precise physiological function of butyrylcholinesterase has not been identified. The presence of cholinesterases in tissues that are not cholinergically innervated indicate that cholinesterases may have functions unrelated to neurotransmission. Furthermore, cholinesterases display a genuine aryl acylamidase activity apart from their predominant acylcholine hydrolase activity. The physiological significance of this aryl acylamidase activity is also not known. The study on the aryl acylamidase has been, in part hampered by the lack of a specific method to visualise this activity. We have developed a method to visualise the aryl acylamidase activity on cholinesterase in polyacrylamide gels. Results The o-nitroaniline liberated from o-nitroacetanilide by the action of aryl acylamidase activity on cholinesterases, in the presence of nitrous acid formed a diazonium compound. This compound gave an azo dye complex with N-(1-napthyl)-ethylenediamine, which appeared as purple bands in polyacrylamide gels. Treating the stained gels with trichloroacetic acid followed by Tris-HCl buffer helped in fixation of the stain in the gels. By using specific inhibitors for acetylcholinesterase and butyrylcholinesterase, respectively, differential staining for the aryl acylamidase activities on butyrylcholinesterase and acetylcholinesterase in a sample containing both these enzymes has been demonstrated. A linear relationship between the intensity of colour developed and activity of the enzyme was obtained. Conclusions A novel method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels has been developed. PMID:11231883

  17. A direct method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels.

    PubMed

    Jaganathan, L; Boopathy, R

    2000-01-01

    In vertebrates, two types of cholinesterases exist, acetylcholinesterase and butyrylcholinesterase. The function of acetylcholinesterase is to hydrolyse acetylcholine, thereby terminating the neurotransmission at cholinergic synapse, while the precise physiological function of butyrylcholinesterase has not been identified. The presence of cholinesterases in tissues that are not cholinergically innervated indicate that cholinesterases may have functions unrelated to neurotransmission. Furthermore, cholinesterases display a genuine aryl acylamidase activity apart from their predominant acylcholine hydrolase activity. The physiological significance of this aryl acylamidase activity is also not known. The study on the aryl acylamidase has been, in part hampered by the lack of a specific method to visualise this activity. We have developed a method to visualise the aryl acylamidase activity on cholinesterase in polyacrylamide gels. The o-nitroaniline liberated from o-nitroacetanilide by the action of aryl acylamidase activity on cholinesterases, in the presence of nitrous acid formed a diazonium compound. This compound gave an azo dye complex with N-(1-napthyl)-ethylenediamine, which appeared as purple bands in polyacrylamide gels. Treating the stained gels with trichloroacetic acid followed by Tris-HCl buffer helped in fixation of the stain in the gels. By using specific inhibitors for acetylcholinesterase and butyrylcholinesterase, respectively, differential staining for the aryl acylamidase activities on butyrylcholinesterase and acetylcholinesterase in a sample containing both these enzymes has been demonstrated. A linear relationship between the intensity of colour developed and activity of the enzyme was obtained. A novel method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels has been developed.

  18. Unique anthranilic acid chemistry facilitates profiling and characterization of Ser/Thr-linked sugar chains following hydrazinolysis.

    PubMed

    Anumula, Kalyan Rao

    2008-02-01

    A novel method for the analysis of Ser/Thr-linked sugar chains was made possible by the virtue of unique anthranilic acid (AA, 2-aminobenzoic acid [2AA]) chemistry for labeling carbohydrates in aqueous salt solutions (K. R. Anumula, Anal. Biochem. 350 (2006) 1-23). The protocol for profiling of Ser/Thr carbohydrates by hydrazinolysis was made simple by eliminating intermediary isolation steps involved in a sample preparation such as desalting and various chromatographic purification schemes. A 6-h hydrazinolysis was carried out at 60 degrees C for O-linked oligosaccharides and at 95 degrees C for total oligosaccharides (N-linked with some O-linked). Following evaporation of hydrazine (<10 min), the oligosaccharides were N-acetylated and derivatized with AA in the same reaction mixture containing salts. Presumably, the glycosyl-hydrazines/hydrazones present in the mixture did not interfere with AA labeling. Because AA is the most fluorescent and highly reactive tag for labeling carbohydrates, the procedures described are suitable for the analysis of a limited amount of samples ( approximately 5 microg) by the current high-resolution high-performance liquid chromatography (HPLC) methods. HPLC conditions developed for the separation of O-linked sugar chains based on size on an amide column were satisfactory for quantitative profiling and characterization. Common O-linked sugar chains found in fetuin, equine chorionic gonadotropin, and glycophorin can be analyzed in less than 50 min. In addition, these fast profiling methods were comparable to profiling by PNGase F (peptide N-glycosidase from Flavobacterium meningosepticum) digestion in terms of time, effort, and simplicity and also were highly reproducible for routine testing. The procedures for the release of sugar chains by hydrazinolysis at the microgram level, labeling with fluorescent tag AA, and profiling by HPLC should be useful in characterization of carbohydrates found in glycoproteins.

  19. One-pot syntheses of blue-luminescent 4-aryl-1H-benzo[f]isoindole-1,3(2H)-diones by T3P® activation of 3-arylpropiolic acids.

    PubMed

    Denißen, Melanie; Kraus, Alexander; Reiss, Guido J; Müller, Thomas J J

    2017-01-01

    In situ activation of 3-arylpropiolic acids with T3P ® ( n -propylphosphonic acid anhydride) initiates a domino reaction furnishing 4-arylnaphtho[2,3- c ]furan-1,3-diones in excellent yields. Upon employing these anhydrides as reactive intermediates blue-luminescent 4-aryl-1 H -benzo[ f ]isoindole-1,3(2 H )-diones are formed by consecutive pseudo three-component syntheses in a one-pot fashion. The Stokes shifts correlate excellently with the Hammett-Taft σ R parameter indicating an extended degree of resonance stabilization in the vibrationally relaxed excited singlet state.

  20. One-pot syntheses of blue-luminescent 4-aryl-1H-benzo[f]isoindole-1,3(2H)-diones by T3P® activation of 3-arylpropiolic acids

    PubMed Central

    Denißen, Melanie; Kraus, Alexander; Reiss, Guido J

    2017-01-01

    In situ activation of 3-arylpropiolic acids with T3P® (n-propylphosphonic acid anhydride) initiates a domino reaction furnishing 4-arylnaphtho[2,3-c]furan-1,3-diones in excellent yields. Upon employing these anhydrides as reactive intermediates blue-luminescent 4-aryl-1H-benzo[f]isoindole-1,3(2H)-diones are formed by consecutive pseudo three-component syntheses in a one-pot fashion. The Stokes shifts correlate excellently with the Hammett–Taft σR parameter indicating an extended degree of resonance stabilization in the vibrationally relaxed excited singlet state. PMID:29181114

  1. Synthesis and biological activity of a new class of insecticides: the N-(5-aryl-1,3,4-thiadiazol-2-yl)amides.

    PubMed

    Eckelbarger, Joseph D; Parker, Marshall H; Yap, Maurice Ch; Buysse, Ann M; Babcock, Jonathan M; Hunter, Ricky; Adelfinskaya, Yelena; Samaritoni, Jack G; Garizi, Negar; Trullinger, Tony K

    2017-04-01

    Optimization studies on a high-throughput screening (HTS) hit led to the discovery of a series of N-(6-arylpyridazin-3-yl)amides with insecticidal activity. It was hypothesized that the isosteric replacement of the pyridazine ring with a 1,3,4-thiadiazole ring could lead to more potent biological activity and/or a broader sap-feeding pest spectrum. The resulting N-(5-aryl-1,3,4-thiadiazol-2-yl)amides were explored as a new class of insecticides. Several methods for 2-amino-1,3,4-thiadiazole synthesis were used for the preparation of key synthetic intermediates. Subsequent coupling to variously substituted carboxylic acid building blocks furnished the final targets, which were tested for insecticidal activity against susceptible strains of Aphis gossypii (Glover) (cotton aphid), Myzus persicae (Sulzer) (green peach aphid) and Bemisia tabaci (Gennadius) (sweetpotato whitefly). Structure-activity relationship (SAR) studies on both the amide tail and the aryl A-ring of novel N-(5-aryl-1,3,4-thiadiazol-2-yl)amides led to a new class of insecticidal molecules active against sap-feeding insect pests. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Novel Scheme for Biosynthesis of Aryl Metabolites from l-Phenylalanine in the Fungus Bjerkandera adusta

    PubMed Central

    Lapadatescu, Carmen; Giniès, Christian; Le Quéré, Jean-Luc; Bonnarme, Pascal

    2000-01-01

    Aryl metabolite biosynthesis was studied in the white rot fungus Bjerkandera adusta cultivated in a liquid medium supplemented with l-phenylalanine. Aromatic compounds were analyzed by gas chromatography-mass spectrometry following addition of labelled precursors (14C- and 13C-labelled l-phenylalanine), which did not interfere with fungal metabolism. The major aromatic compounds identified were benzyl alcohol, benzaldehyde (bitter almond aroma), and benzoic acid. Hydroxy- and methoxybenzylic compounds (alcohols, aldehydes, and acids) were also found in fungal cultures. Intracellular enzymatic activities (phenylalanine ammonia lyase, aryl-alcohol oxidase, aryl-alcohol dehydrogenase, aryl-aldehyde dehydrogenase, lignin peroxidase) and extracellular enzymatic activities (aryl-alcohol oxidase, lignin peroxidase), as well as aromatic compounds, were detected in B. adusta cultures. Metabolite formation required de novo protein biosynthesis. Our results show that l-phenylalanine was deaminated to trans-cinnamic acid by a phenylalanine ammonia lyase and trans-cinnamic acid was in turn converted to aromatic acids (phenylpyruvic, phenylacetic, mandelic, and benzoylformic acids); benzaldehyde was a metabolic intermediate. These acids were transformed into benzaldehyde, benzyl alcohol, and benzoic acid. Our findings support the hypothesis that all of these compounds are intermediates in the biosynthetic pathway from l-phenylalanine to aryl metabolites. Additionally, trans-cinnamic acid can also be transformed via β-oxidation to benzoic acid. This was confirmed by the presence of acetophenone as a β-oxidation degradation intermediate. To our knowledge, this is the first time that a β-oxidation sequence leading to benzoic acid synthesis has been found in a white rot fungus. A novel metabolic scheme for biosynthesis of aryl metabolites from l-phenylalanine is proposed. PMID:10742235

  3. Copper-catalyzed direct synthesis of diaryl 1,2-diketones from aryl iodides and propiolic acids.

    PubMed

    Min, Hongkeun; Palani, Thiruvengadam; Park, Kyungho; Hwang, Jinil; Lee, Sunwoo

    2014-07-03

    Benzil derivatives such as diaryl 1,2-diketones are synthesized via the direct decarboxylative coupling reaction of aryl propiolic acids and their oxidation. The optimized conditions are that the reaction of aryl propiolic acids and aryl iodides is conducted at 140 °C for 6 h in the presence of 10 mol % CuI/Cu(OTf)2 and Cs2CO3, after which HI (aq) is added and further reacted. The method shows good functional group tolerance toward ester, aldehyde, cyano, and nitro groups. In addition, symmetrical diaryl 1,2-diketones are obtained from aryl iodides and propiolic acid in the presence of palladium and copper catalysts.

  4. LIF excitation spectra for S 0 → S 1 transition of deuterated anthranilic acid COOD, ND 2 in supersonic-jet expansion

    NASA Astrophysics Data System (ADS)

    Kolek, Przemysław; Leśniewski, Sebastian; Andrzejak, Marcin; Góra, Maciej; Cias, Pawel; Weģrzynowicz, Adam; Najbar, Jan

    2010-12-01

    Laser induced fluorescence (LIF) excitation spectrum for the S 0 → S 1 transition of anthranilic acid molecules deuterated in the substituent groups (COOD, ND 2) was investigated. Analysis of the LIF spectrum allowed for the assignment of the six most prominent fundamental in-plane modes of frequencies up to ca. 850 cm. The experimental results show good correlation with the frequency changes upon deuteration computed with CIS (CI-Singles) and TD-DFT for the S 1 state. Deuteration induced red-shifts of the identified fundamental bands are used for examination of the alternative assignments proposed in earlier studies. Potential energy distributions (PED) and overlaps of the in-plane normal modes with frequencies below 850 cm indicate that the correspondence of the respective vibrations of the deuterated and non-deuterated molecule is very good. A blue-shift of the 00 transition due to the isotopic substitution, is equal to 47 cm. This relatively large value is caused primarily by a significant decrease of the N-H stretching frequency associated with the increase of strength of the intramolecular hydrogen bond upon the electronic excitation. The deuteration shift of the 00 band was interpreted in terms of the differences of the zero point energy (ZPE) between the S 0 and S 1 electronic states, computed with DFT and TD-DFT methods, respectively.

  5. Stereospecific Palladium-Catalyzed C-H Arylation of Pyroglutamic Acid Derivatives at the C3 Position Enabled by 8-Aminoquinoline as a Directing Group.

    PubMed

    Verho, Oscar; Maetani, Micah; Melillo, Bruno; Zoller, Jochen; Schreiber, Stuart L

    2017-09-01

    An efficient and stereospecific Pd-catalyzed protocol for the C-H arylation of pyroglutamic acid derivatives that uses 8-aminoquinoline as a directing group is described. The reaction was shown to proceed efficiently with a variety of aryl and heteroaryl iodides bearing different functional groups, giving C3-arylated cis products in good to high yields. Removal of the 8-aminoquinoline unit from these C-H arylation products enables access to synthetically useful cis and trans pyroglutamic acid-based building blocks.

  6. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones via the Decarboxylative Arylation of α-Oxo Acids**

    PubMed Central

    Chu, Lingling; Lipshultz, Jeffrey M.

    2015-01-01

    The direct decarboxylative arylation of α-oxo acids has been achieved via synergistic visible light-mediated photoredox and nickel catalyses. This method offers rapid entry to aryl and alkyl ketone architectures from simple α-oxo acid precursors via an acyl radical intermediate. Significant substrate scope is observed with respect to both the oxo acid and arene coupling partners. This mild decarboxylative arylation can also be utilized to efficiently access medicinal agents, as demonstrated by the rapid synthesis of fenofibrate. PMID:26014029

  7. Evolution of glutamine amidotransferase genes. Nucleotide sequences of the pabA genes from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens.

    PubMed

    Kaplan, J B; Merkel, W K; Nichols, B P

    1985-06-05

    The amide group of glutamine is a source of nitrogen in the biosynthesis of a variety of compounds. These reactions are catalyzed by a group of enzymes known as glutamine amidotransferases; two of these, the glutamine amidotransferase subunits of p-aminobenzoate synthase and anthranilate synthase have been studied in detail and have been shown to be structurally and functionally related. In some micro-organisms, p-aminobenzoate synthase and anthranilate synthase share a common glutamine amidotransferase subunit. We report here the primary DNA and deduced amino acid sequences of the p-aminobenzoate synthase glutamine amidotransferase subunits from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. A comparison of these glutamine amidotransferase sequences to the sequences of ten others, including some that function specifically in either the p-aminobenzoate synthase or anthranilate synthase complexes and some that are shared by both synthase complexes, has revealed several interesting features of the structure and organization of these genes, and has allowed us to speculate as to the evolutionary history of this family of enzymes. We propose a model for the evolution of the p-aminobenzoate synthase and anthranilate synthase glutamine amidotransferase subunits in which the duplication and subsequent divergence of the genetic information encoding a shared glutamine amidotransferase subunit led to the evolution of two new pathway-specific enzymes.

  8. Polyimide from bis(n-isoprenyl)s of aryl diamides

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr. (Inventor); Ottenbrite, Raphael M. (Inventor)

    1993-01-01

    A process and polyimide product formed by the reaction of a bismaleimide with a bis(amidediene) is disclosed wherein the bis(amidediene) is formed by reacting an excess of an acid chloride with 1,4-N,N'-diisoprenyl 2,3,5,6-tetramethy1 benzene.

  9. QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components.

    PubMed

    Shahlaei, Mohsen; Sabet, Razieh; Ziari, Maryam Bahman; Moeinifard, Behzad; Fassihi, Afshin; Karbakhsh, Reza

    2010-10-01

    Quantitative relationships between molecular structure and methionine aminopeptidase-2 inhibitory activity of a series of cytotoxic anthranilic acid sulfonamide derivatives were discovered. We have demonstrated the detailed application of two efficient nonlinear methods for evaluation of quantitative structure-activity relationships of the studied compounds. Components produced by principal component analysis as input of developed nonlinear models were used. The performance of the developed models namely PC-GRNN and PC-LS-SVM were tested by several validation methods. The resulted PC-LS-SVM model had a high statistical quality (R(2)=0.91 and R(CV)(2)=0.81) for predicting the cytotoxic activity of the compounds. Comparison between predictability of PC-GRNN and PC-LS-SVM indicates that later method has higher ability to predict the activity of the studied molecules. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  10. Utilization of aromatic compounds by the Penicillium strain Bi 7/2.

    PubMed

    Hofrichter, M; Scheibner, K

    1993-01-01

    The Penicillium strain Bi 7/2 utilized phenol, catechol, resorcinol, hydroquinone, pyrogallol, hydroxyhydroquinone, phloroglucinol, m- and p-cresol, orcinol, 4-methylcatechol, 4-methoxyphenol, 4-aminophenol, benzyl alcohol, benzoic acid, 2-, 3- and 4-hydroxybenzoic acid, anthranilic acid, protocatechuic acid and gallic acid as sole sources of carbon and energy. The central metabolites catechol, protocatechuic acid and hydroxyquinone could be determined by HPLC with diode-array detection. Pathways for the degradation of aromatic substances were proposed.

  11. Single-step synthesis of styryl phosphonic acids via palladium-catalyzed Heck coupling of vinyl phosphonic acid with aryl halides

    DOE PAGES

    McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan

    2017-10-27

    Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).

  12. Single-step synthesis of styryl phosphonic acids via palladium-catalyzed Heck coupling of vinyl phosphonic acid with aryl halides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan

    Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).

  13. TRYPTOPHANASE-TRYPTOPHAN SYNTHETASE SYSTEMS IN ESCHERICHIA COLI I.

    PubMed Central

    Freundlich, Martin; Lichstein, Herman C.

    1962-01-01

    Freundlich, Martin (University of Minnesota, Minneapolis) and Herman C. Lichstein. Tryptophanase-tryptophan synthetase systems in Escherichia coli. I. Effect of tryptophan and related compounds. J. Bacteriol. 84:979–987. 1962.—The effect of tryptophan and related compounds on tryptophanase and tryptophan synthetase formation in Escherichia coli was determined. Several of these compounds stimulated the formation of tryptophanase while concomitantly decreasing the production of synthetase. A number of tryptophan analogues were found to inhibit growth. The possible mode of action of these substances was examined further. 5-Hydroxytryptophan greatly inhibited the formation of synthetase and also reduced growth. Its inhibitory action on growth was attributed, at least partially, to the false feedback inhibition of anthranilic acid formation. Tryptamine was found to be a potent inhibitor of the activity of synthetase, as well as of the enzyme(s) involved in the synthesis of anthranilic acid from shikimic acid. However, growth reduction was only partially reversed by tryptophan. Indole-3-acetic acid and indole-3-propionic acid decreased growth and increased the formation of synthetase six- to eightfold. The action of these compounds was ascribed to their ability to block the endogenous formation of tryptophan. PMID:13959621

  14. Boron-based dual imaging probes, compositions and methods for rapid aqueous F-18 labeling, and imaging methods using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zibo; Gabbai, Francois P.; Conti, Peter S.

    A composition useful as a PET and/or fluorescence imaging probe a compound a compound of Formula I, including salts, hydrates and solvates thereof: ##STR00001## wherein R.sub.1-R.sub.7 may be independently selected from hydrogen, halogen, hydroxy, alkoxy, nitro, substituted and unsubstituted amino, cycloalkyl, carboxy, carboxylic acids and esters thereof, cyano, haloalkyl, aryl, X is selected from the group consisting of C and N; and A is selected of hydrogen, halogen, hydroxy, alkoxy, nitro, substituted and unsubstituted amino, alkyl, cycloalkyl, carboxy, carboxylic acids and esters thereof, cyano, haloalkyl, aryl, including phenyl and aminophenyl, and heteroaryl.

  15. DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids.

    PubMed

    Essawy, Amr A; Afifi, Manal A; Moustafa, H; El-Medani, S M

    2014-10-15

    The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids

    NASA Astrophysics Data System (ADS)

    Essawy, Amr A.; Afifi, Manal A.; Moustafa, H.; El-Medani, S. M.

    2014-10-01

    The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed.

  17. 2-Aryl-2-nitroacetates as Central Precursors to Aryl Nitromethanes, α-Ketoesters, and α-Amino Acids

    PubMed Central

    Metz, Alison E.

    2013-01-01

    Nitroarylacetates are useful small molecular building blocks that act as precursors to α-ketoesters and aryl nitromethanes as well as α-amino acids. Methods were developed that produce each of these compound types in good yields. Two different conditions for decarboxylation are discussed for substrates with neutral and electron-poor aryl groups versus electron-rich aryl groups. For formation of the α-ketoesters, new mild conditions for the Nef disproportionation were identified. PMID:23245626

  18. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds**

    PubMed Central

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-01-01

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N—H groups are tolerated on the barbituric acid, with no complications arising from N—H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. PMID:25959544

  19. Evidence for the involvement of the anthranilate degradation pathway in Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Costaglioli, Patricia; Barthe, Christophe; Claverol, Stephane; Brözel, Volker S; Perrot, Michel; Crouzet, Marc; Bonneu, Marc; Garbay, Bertrand; Vilain, Sebastien

    2012-01-01

    Bacterial biofilms are complex cell communities found attached to surfaces and surrounded by an extracellular matrix composed of exopolysaccharides, DNA, and proteins. We investigated the whole-genome expression profile of Pseudomonas aeruginosa sessile cells (SCs) present in biofilms developed on a glass wool substratum. The transcriptome and proteome of SCs were compared with those of planktonic cell cultures. Principal component analysis revealed a biofilm-specific gene expression profile. Our study highlighted the overexpression of genes controlling the anthranilate degradation pathway in the SCs grown on glass wool for 24 h. In this condition, the metabolic pathway that uses anthranilate for Pseudomonas quinolone signal production was not activated, which suggested that anthranilate was primarily being consumed for energy metabolism. Transposon mutants defective for anthranilate degradation were analyzed in a simple assay of biofilm formation. The phenotypic analyses confirmed that P. aeruginosa biofilm formation partially depended on the activity of the anthranilate degradation pathway. This work points to a new feature concerning anthranilate metabolism in P. aeruginosa SCs. PMID:23170231

  20. Aryl Ketone Synthesis via Tandem Orthoplatinated Triarylphosphite-Catalyzed Addition Reactions of Arylboronic Acids with Aldehydes Followed by Oxidation

    PubMed Central

    Liao, Yuan-Xi; Hu, Qiao-Sheng

    2010-01-01

    Tandem orthoplatinated triarylphosphite-catalyzed addition reactions of arylboronic acids with aldehydes followed by oxidation to yield aryl ketones is described. 3-Pentanone was identified as a suitable oxidant for the tandem aryl ketone formation reaction. By using microwave energy, aryl ketones were obtained in high yields with the catalyst loading as low as 0.01%. PMID:20849092

  1. Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors.

    PubMed

    Pabba, Chittari; Gregg, Brian T; Kitchen, Douglas B; Chen, Zhen Jia; Judkins, Angela

    2011-01-01

    A series of novel hydroxamic acid based histone deacetylases (HDAC) inhibitors with aryl ether and aryl sulfone residues at the terminus of a substituted, unsaturated 5-carbon spacer moiety have been synthesized for the first time and evaluated. Compounds with meta- and para-substitution on the aryl ring of ether hydroxamic acids 19c, 20c, 19e, 19f and 19g are potent HDAC inhibitors with activities at low nanomolar levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Distinct Kynureninase and Hydroxykynureninase Activities in Microorganisms: Occurrence and Properties of a Single Physiologically Discrete Enzyme in Yeast

    PubMed Central

    Shetty, A. S.; Gaertner, F. H.

    1973-01-01

    (i) Saccharomyces cerevisiae grown in the presence of 1.0 mM l-tryptophan slowly excreted fluorescent material that was chromatographically identifiable as 3-hydroxyanthranilate but did not excrete detectable amounts of anthranilate nor rapidly deplete the medium of l-tryptophan. Under similar growth conditions, Neurospora crassa rapidly excretes anthranilate and rapidly depletes the medium of l-tryptophan. (ii) Chromatographic analysis of crude extracts from yeast revealed a single kynureninase-type enzyme whose synthesis was not measurably affected by the presence of tryptophan in the medium. Previous studies have provided evidence for two kynureninase-type enzymes in N. crassa, an inducible kynureninase and a constitutive hydroxykynureninase. (iii) Kinetic analysis of the partially purified yeast enzyme provided Michaelis constants for l-3-hydroxykynurenine and l-kynurenine of 6.7 × 10−6 and 5.4 × 10−4 M, respectively. This and other kinetic properties of the yeast enzyme are comparable to those reported for the constitutive enzyme from N. crassa. (iv) These findings suggest that S. cerevisiae has in common with N. crassa the biosynthetic enzyme hydroxykynureninase but lacks the catabolic enzyme kynureninase. Therefore, it can be predicted that, unlike N. crassa, S. cerevisiae does not carry out the tryptophan-anthranilate cycle. Distinct kynureninase-type enzymes may exist in other microorganisms and in mammals. PMID:4266242

  3. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate. Allyl cinnamate. Allyl...-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl isovalerate. Benzyl mercaptan; α-toluenethiol...

  4. Bio-based phenolic-branched-chain fatty acid isomers synthesized from vegetable oils and natural monophenols using modified h+-ferrierite zeolite

    USDA-ARS?s Scientific Manuscript database

    A new group of phenolic branched-chain fatty acids (n-PBC-FA), hybrid molecules of natural monophenols (i.e., thymol, carvacrol and creosote) and mixed fatty acid (i.e., derived from soybean and safflower oils), were efficiently produced through a process known as arylation. The reaction involves a...

  5. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid.

    PubMed

    Anumula, K R; Dhume, S T

    1998-07-01

    Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods combined with mass spectrometry (MALDI-TOF) can provide an effective technology for analyzing a wide repertoire of oligosaccharide structures and for determining the action of both transferases and glycosidases.

  6. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...

  7. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...

  8. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...

  9. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...

  10. Prophylactic and Treatment Drugs for Organophosphorus Poisoning

    DTIC Science & Technology

    1990-08-01

    Synthesis of e-Mercapto-a- aminocaproic Acid and Its S- Alkyl and N-Sulfanilyl Derivatives." Yuan C.E.; Shchukina, M.N. Zhur. Obshchei Khim, 1957, 27... acids , carbamates, 07 0 1,AT( Isynthes is. 19. BSTACT(Continue on rveberl of newcesary and odentify by block number) The program is directed at the...cis-4-chlorobuten-l-ol and 4-chlorobutanol, one alicylaryl disulfide, two chlo’oalky(aryl) carboxylic acids , i,3.5-tris-2’-chloroethylbernzene I and d

  11. N-Acetylanthranilate Amidase from Arthrobacter nitroguajacolicus Rü61a, an α/β-Hydrolase-Fold Protein Active towards Aryl-Acylamides and -Esters, and Properties of Its Cysteine-Deficient Variant▿ †

    PubMed Central

    Kolkenbrock, Stephan; Parschat, Katja; Beermann, Bernd; Hinz, Hans-Jürgen; Fetzner, Susanne

    2006-01-01

    N-acetylanthranilate amidase (Amq), a 32.8-kDa monomeric amide hydrolase, is involved in quinaldine degradation by Arthrobacter nitroguajacolicus Rü61a. Sequence analysis and secondary structure predictions indicated that Amq is related to carboxylesterases and belongs to the α/β-hydrolase-fold superfamily of enzymes; inactivation of (His6-tagged) Amq by phenylmethanesulfonyl fluoride and diethyl pyrocarbonate and replacement of conserved residues suggested a catalytic triad consisting of S155, E235, and H266. Amq is most active towards aryl-acetylamides and aryl-acetylesters. Remarkably, its preference for ring-substituted analogues was different for amides and esters. Among the esters tested, phenylacetate was hydrolyzed with highest catalytic efficiency (kcat/Km = 208 mM−1 s−1), while among the aryl-acetylamides, o-carboxy- or o-nitro-substituted analogues were preferred over p-substituted or unsubstituted compounds. Hydrolysis by His6Amq of primary amides, lactams, N-acetylated amino acids, azocoll, tributyrin, and the acylanilide and urethane pesticides propachlor, propham, carbaryl, and isocarb was not observed; propanil was hydrolyzed with 1% N-acetylanthranilate amidase activity. The catalytic properties of the cysteine-deficient variant His6AmqC22A/C63A markedly differed from those of His6Amq. The replacements effected some changes in Kms of the enzyme and increased kcats for most aryl-acetylesters and some aryl-acetylamides by factors of about three to eight while decreasing kcat for the formyl analogue N-formylanthranilate by several orders of magnitude. Circular dichroism studies indicated that the cysteine-to-alanine replacements resulted in significant change of the overall fold, especially an increase in α-helicity of the cysteine-deficient protein. The conformational changes may also affect the active site and may account for the observed changes in kinetic properties. PMID:17041061

  12. Iron-Catalyzed Intramolecular C(sp(2))-N Cyclization of 1-(N-Arylpyrrol-2-yl)ethanone O-Acetyl Oximes toward Pyrrolo[1,2-a]quinoxaline Derivatives.

    PubMed

    Zhang, Zhiguo; Li, Junlong; Zhang, Guisheng; Ma, Nana; Liu, Qingfeng; Liu, Tongxin

    2015-07-02

    An efficient and convenient iron-catalyzed protocol has been developed for the synthesis of substituted pyrrolo[1,2-a]quinoxalines from 1-(N-arylpyrrol-2-yl)ethanone O-acetyl oximes through N-O bond cleavage and intramolecular directed C-H arylation reactions in acetic acid.

  13. New hydrolytically stable solvent for Am/Eu separation in acidic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, I.V.; Babain, V.A.; Chirkov, A.V.

    Americium and europium extraction by synergistic mixture of 2,6-bis(1-aryl-1H-tetrazol-5-yl)pyridines (ATP) - chlorinated cobalt dicarbollide (CCD) in polar diluent s from HNO{sub 3} media was studied. Meta-nitro-benzo-trifluoride, phenyl-tri-fluoro-methyl sulfone and 1,2-dichloroethane were used as diluents. The effect of diluent, composition of aqueous phase and substituent nature in aryl ring of ATPs on the extraction efficiency and selectivity of americium and europium separation was investigated. At the optimal ratio of nATP:CCD 1:1 the Am - Eu separation factor exceeded 90. Extraction of {sup 85}Sr, {sup 137}Cs and {sup 133}Ba was investigated and it was found that the mixture nATP-CCD provided the separationmore » of Sr /Ba pair with a factor of 35. High resistance of 2,6-bisaryltetrazolyl pyridines to the action of nitric acid was demonstrated. (authors)« less

  14. Thiadiazole derivatives as New Class of β-glucuronidase inhibitors.

    PubMed

    Salar, Uzma; Taha, Muhammad; Ismail, Nor Hadiani; Khan, Khalid Mohammed; Imran, Syahrul; Perveen, Shahnaz; Wadood, Abdul; Riaz, Muhammad

    2016-04-15

    Thiadiazole derivatives 1-24 were synthesized via a single step reaction and screened for in vitro β-glucuronidase inhibitory activity. All the synthetic compounds displayed good inhibitory activity in the range of IC50=2.16 ± 0.01-58.06 ± 1.60 μM as compare to standard d-saccharic acid 1,4-lactone (IC50=48.4 ± 1.25 μM). Molecular docking study was conducted in order to establish the structure-activity relationship (SAR) which demonstrated that thiadiazole as well as both aryl moieties (aryl and N-aryl) involved to exhibit the inhibitory potential. All the synthetic compounds were characterized by spectroscopic techniques (1)H, (13)C NMR, and EIMS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Regioselective copper-catalyzed N(1)-(hetero)arylation of protected histidine.

    PubMed

    Sharma, Krishna K; Mandloi, Meenakshi; Jain, Rahul

    2016-09-26

    We report regioselective N(1)-arylation of protected histidine using copper(i) iodide as a catalyst, trans-N,N'-dimethylcyclohexane-1,2-diamine as a ligand and readily available aryl iodides as coupling partners under microwave irradiation at 130 °C for 40 min. The reaction provides rapid access to electron-donating, electron-withdrawing and bulky group substituted N-arylated histidines in high yields, including previously inaccessible N-heteroaryl histidines. These N(1)-(hetero)aryl histidines are promising building blocks in peptide-based drug design and discovery.

  16. Diisopropylfluorophosphate-sensitive aryl acylamidase activity of fatty acid free human serum albumin.

    PubMed

    Manoharan, Indumathi; Boopathy, Rathnam

    2006-08-15

    Butyrylcholinesterase in human plasma and acetylcholinesterase in human red blood cells have aryl acylamidase activity toward o-nitroacetanilide, hydrolyzing the amide bond to produce o-nitroaniline and acetate. People with a genetic variant of butyrylcholinesterase that had no detectable activity with butyrylthiocholine, nevertheless had aryl acylamidase activity in their plasma. To determine the source of this aryl acylamidase activity we tested fatty acid free human albumin for activity. We found that albumin had aryl acylacylamidase activity and that this activity was inhibited by diisopropylfluorophosphate. Since the esterase activity of albumin is also inhibited by diisopropylfluorophosphate, and since it is known that diisopropylfluorophosphate covalently binds to Tyr 411 of human albumin, we conclude that the active site for aryl acylamidase activity of albumin is Tyr 411. Albumin accounts for about 10% of the aryl acylamidase activity in human plasma.

  17. Anthranilate synthase subunit organization in Chromobacterium violaceum.

    PubMed

    Carminatti, C A; Oliveira, I L; Recouvreux, D O S; Antônio, R V; Porto, L M

    2008-09-16

    Tryptophan is an aromatic amino acid used for protein synthesis and cellular growth. Chromobacterium violaceum ATCC 12472 uses two tryptophan molecules to synthesize violacein, a secondary metabolite of pharmacological interest. The genome analysis of this bacterium revealed that the genes trpA-F and pabA-B encode the enzymes of the tryptophan pathway in which the first reaction is the conversion of chorismate to anthranilate by anthranilate synthase (AS), an enzyme complex. In the present study, the organization and structure of AS protein subunits from C. violaceum were analyzed using bioinformatics tools available on the Web. We showed by calculating molecular masses that AS in C. violaceum is composed of alpha (TrpE) and beta (PabA) subunits. This is in agreement with values determined experimentally. Catalytic and regulatory sites of the AS subunits were identified. The TrpE and PabA subunits contribute to the catalytic site while the TrpE subunit is involved in the allosteric site. Protein models for the TrpE and PabA subunits were built by restraint-based homology modeling using AS enzyme, chains A and B, from Salmonella typhimurium (PDB ID 1I1Q).

  18. Rapid and Stereoselective Conversion of a "trans"-Cinnamic Acid to a beta-Bromostyrene

    ERIC Educational Resources Information Center

    Evans, Thomas A.

    2006-01-01

    The stereoselective synthesis of an aryl vinyl bromide is accomplished in a rapid microscale reaction of "trans"-4-methoxycinnamic acid with N-bromosuccinimide in dichloromethane. The product is purified by dry column vacuum chromatography and its stereochemistry is determined by [superscript 1]H NMR. TLC, GC and GC-MSD can also be used. This…

  19. Aggregation of Thaumatomyia glabra (Diptera: Chloropidae) Males on Iris spp. Flowers Releasing Methyl Anthranilate.

    PubMed

    Ohler, Bonnie J; Guédot, Christelle; Zack, Richard S; Landolt, Peter J

    2016-12-01

    Aggregations of Thaumatomyia glabra (Diptera: Chloropidae) were observed on flowers of Iris pallida Lamarck (Asparagales: Iridaceae), whereas no T. glabra (Meigen) were observed on nearby Iris germanica L. flowers. Sampling of T. glabra on I. pallida flowers revealed the presence of males only. In a previous study, T. glabra males were attracted to methyl anthranilate. We found methyl anthranilate in extracts of I. pallida flowers on which T. glabra aggregated, but not in extracts of I. germanica flowers. Applying methyl anthranilate to I. germanica flowers elicited attraction of T. glabra to the flowers. This study suggests that I. pallida flowers may attract T. glabra males to aggregate because they release the known attractant, methyl anthranilate, whereas I. germanica flowers may not be attractive because they do not release methyl anthranilate. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  20. An efficient copper-catalyzed synthesis of anilines by employing aqueous ammonia.

    PubMed

    Zeng, Xin; Huang, Wenming; Qiu, Yatao; Jiang, Sheng

    2011-12-21

    Under the catalysis of CuI/2-carboxylic acid-quinoline-N-oxide, the cross coupling reactions between aryl iodides or bromides and aqueous ammonia proceed very well to afford N-unprotected aniline derivatives in excellent yields. This inexpensive catalytic system shows great functional group tolerance and excellent reaction selectivity.

  1. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Copper(II)-catalyzed hydroxylation of aryl halides using glycolic acid as a ligand.

    PubMed

    Xiao, Yan; Xu, Yongnan; Cheon, Hwan-Sung; Chae, Junghyun

    2013-06-07

    Copper(II)-catalyzed hydroxylation of aryl halides has been developed to afford functionalized phenols. The protocol utilizes the reagent combination of Cu(OH)2, glycolic acid, and NaOH in aqueous DMSO, all of which are cheap, readily available, and easily removable after the reaction. A broad range of aryl iodides and activated aryl bromides were transformed into the corresponding phenols in excellent yields. Moreover, it has been shown that C-O(alkyl)-coupled product, instead of phenol, can be predominantly formed under similar reaction conditions.

  3. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides

    PubMed Central

    Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.

    2009-01-01

    The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233

  4. Ultrafast endothermic transfer of non-radiative exciplex state to radiative excitons in polyfluorene random copolymer for blue electroluminescence

    NASA Astrophysics Data System (ADS)

    Moghe, Dhanashree A.; Dey, Amrita; Johnson, Kerr; Lu, L.-P.; Friend, Richard H.; Kabra, Dinesh

    2018-04-01

    We report a blue-emitting random copolymer (termed modified Aryl-F8) consisting of three repeat units of polydioctylfluorene (F8), Aryl-polydioctylfluorene (Aryl-F8), and an aromatic amine comonomer unit, poly(bis-N,Ν'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) chemically linked to get an improved charge carrier balance without compromising on the photoluminescence (PL) quantum yield with respect to the Aryl-F8 homo-polymer. The measured photoluminescence quantum efficiency (˜70%) of the blue-emitting polymer is comparable to or greater than the individual monomer units. The time resolved PL spectra from the modified Aryl-F8 are similar to those of Arylated-poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) (PFB) even at a time scale of 100-250 ps, indicating an ultrafast energy transfer from the (Aryl-F8 or F8):Arylated-PFB interface to Arylated-PFB, i.e., endothermic transfer of non-radiative exciplex to a radiative molecular exciton. Furthermore, the presence of non-radiative exciplex is confirmed by the photoluminescence decay profile and temperature dependent PL spectra. The luminance efficiency achieved for the modified Aryl-F8 polymer light-emitting diodes is ˜11 cd A-1 with an external quantum efficiency (EQE) of ˜4.5%, whereas it is 0.05 cd/A with an EQE of ˜0.025% for Aryl-F8. Almost two orders of higher efficiency is achieved due to the improved charge carrier balance from the random copolymer without compromising on the photoluminescence yield.

  5. Towards a fragment-based approach in gelator design: halogen effects leading to thixotropic, mouldable and self-healing systems in aryl-triazolyl amino acid-based gelators!

    PubMed

    Srivastava, Bhartendu K; Manheri, Muraleedharan K

    2017-04-18

    A simple replacement of a H atom by Br transformed non-gelating aryl triazolyl amino acid benzyl ester into a versatile gelator, which formed shape-persistent, self-healing and mouldable gels. The 'bromo-aryl benzyl ester' fragment was then transplanted into another framework, which resulted in similar solvent preference and gelation efficiency.

  6. Tandem SN2' nucleophilic substitution/oxidative radical cyclization of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds.

    PubMed

    Zhang, Zhen; Li, Cheng; Wang, Shao-Hua; Zhang, Fu-Min; Han, Xue; Tu, Yong-Qiang; Zhang, Xiao-Ming

    2017-04-11

    A novel and efficient tandem S N 2' nucleophilic substitution/oxidative radical cyclization reaction of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds has been developed by using Mn(OAc) 3 as an oxidant, which enables the expeditious synthesis of polysubstituted dihydrofuran (DHF) derivatives in moderate to high yields. The use of weakly acidic hexafluoroisopropanol (HFIP) as the solvent rather than AcOH has successfully improved the yields and expanded the substrate scope of this type of radical cyclization reactions. Mechanistic studies confirmed the cascade reaction process involving a final radical cyclization.

  7. Synthesis, characterization and corrosion inhibition properties of benzamide-2-chloro-4-nitrobenzoic acid and anthranilic acid-2-chloro-4-nitrobenzoic acid for mild steel corrosion in acidic medium

    NASA Astrophysics Data System (ADS)

    Pandey, Archana; Verma, Chandrabhan; Singh, B.; Ebenso, Eno E.

    2018-03-01

    The present study deals with the synthesis of two new compounds namely, benzamide - 2-chloro-4-nitrobenzoic acid (BENCNBA) and anthranilic acid-2-chloro-4-nitrobenzoic acid (AACNBA) using solid phase reactions. The phase diagram studies revealed that formation of the investigated compounds occurs in 1:1 molar ratio. The synthesized compounds were characterized using several spectral techniques such as FT-IR, 1H and 13C NMR, UV-Vis, powder X-ray diffraction (PXRD). Single crystal XRD (SCXRD) study showed that both BENCNBA and AACNBA compounds crystallize in triclinic crystal system with P-1 space group. Further, the presence of intermolecular hydrogen bonding between the constituent components was also supported by single crystal X-ray diffraction (SCXRD) method. Heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions have also been computed using the enthalpy of fusion values derived from differential scanning calorimeter (DSC) study. The inhibition effect of BENCNBA and AACNBA on the mild steel corrosion in hydrochloric acid solution was tested using electrochemical methods. Electrochemical impedance spectroscopy (EIS) study revealed that both BENCNBA and AACNBA behaved as interface corrosion inhibitors and showed maximum inhibition efficiencies of 95.71% and 96.42%, respectively at 400 ppm (1.23 × 10-3 M) concentration. Potentiodynamic polarization (PDP) measurements suggested that BENCNBA and AACNBA acted as mixed type corrosion inhibitors. EIS and PDP results showed that BENCNBA and AACNBA act as efficient corrosion inhibitors for mild steel and their inhibition efficiencies enhances on increasing their concentrations.

  8. A Structure-Activity Study with Aryl Acylamidases

    PubMed Central

    Villarreal, David T.; Turco, Ronald F.; Konopka, Allan

    1994-01-01

    We examined the relationship between chemical structure and biodegradability of acylanilide herbicides by using a set of model compounds. Four bacterial isolates (one gram-negative and three gram-positive) that grew on acetanilide were used. These soil isolates cleaved the amide bond of acetanilide via an aryl acylamidase reaction, producing aniline and the organic acid acetate. A series of acetanilide analogs with alkyl substitutions on the nitrogen atom or the aromatic ring were tested for their ability to induce aryl acylamidase activity and act as substrates for the enzyme. The substrate range, in general, was limited to those analogs not disubstituted in the ortho position of the benzene ring or which did not contain an alkyl group on the nitrogen atom. These same N-substituted compounds did not induce enzyme activity either, whereas the ortho-substituted compounds could in some cases. PMID:16349428

  9. Electronic states of aryl radical functionalized graphenes: Density functional theory study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-06-01

    Functionalized graphenes are known as a high-performance molecular device. In the present study, the structures and electronic states of the aryl radical functionalized graphene have been investigated by the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of graphene (GR). Also, the mechanism of aryl radical reaction with GR was investigated. The benzene, biphenyl, p-terphenyl, and p-quaterphenyl radicals [denoted by (Bz) n (n = 1-4), where n means numbers of benzene rings in aryl radical] were examined as aryl radicals. The DFT calculation of GR-(Bz) n (n = 1-4) showed that the aryl radical binds to the carbon atom of GR, and a C-C single bond was formed. The binding energies of aryl radicals to GR were calculated to be ca. 6.0 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists in the aryl radical addition: the barrier heights were calculated to be 10.0 kcal mol-1. The electronic states of GR-(Bz) n were examined on the basis of theoretical results.

  10. Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins.

    PubMed

    Anumula, K R; Du, P

    1999-11-15

    Application of the most sensitive fluorescent label 2-aminobenzoic acid (anthranilic acid, AA) for characterization of carbohydrates from the glycoproteins ( approximately 15 pmol) separated by polyacrylamide gel electrophoresis is described. AA label is used for the determination of both monosaccharide composition and oligosaccharide map. For the monosaccharide determination, bands containing the glycoprotein of interest are excised from the polyvinylidene fluoride (PVDF) membrane blots, hydrolyzed in 20% trifluoroacetic acid, derivatized, and analyzed by C-18 reversed-phase high-performance liquid chromatography. For the oligosaccharide mapping, bands were digested with peptide N-glycosidase F (PNGase F) in order to release the N-linked oligosaccharides, derivatized, and analyzed by normal-phase anion-exchange chromatography. For convenience, the PNGase F digestion was performed in 1:100 diluted ammonium hydroxide overnight. The oligosaccharide yield from ammonium hydroxide-PNGase F digestion was better or equal to all the other reported procedures, and the presumed "oligosaccharide-amine" product formed in the reaction mixture did not interfere with labeling of the oligosaccharides under the conditions used for derivatization. Sequencing of oligosaccharides can be performed using the same mapping method following treatment with an array of glycosidases. In addition, the mapping method is useful for determining the relative and simultaneous distribution of sialic acid and fucose. Copyright 1999 Academic Press.

  11. Decarboxylative Arylation of α-Amino Acids via Photoredox Catalysis: A One-Step Conversion of Biomass to Drug Pharmacophore

    PubMed Central

    2015-01-01

    The direct decarboxylative arylation of α-amino acids has been achieved via visible light-mediated photoredox catalysis. This method offers rapid entry to prevalent benzylic amine architectures from an abundant biomass, specifically α-amino acid precursors. Significant substrate scope is observed with respect to both the amino acid and arene components. PMID:24712922

  12. Thermometric titration of beta-aryl-alpha-mercaptopropenoic acids and determination of the stoichiometry of their metal complexes.

    PubMed

    Izquierdo, A; Carrasco, J

    1981-05-01

    Automatic thermometric titration was applied to some beta-aryl-alpha-mercaptopropenoic acids and the stoichiometry of their complexes with several metal ions was investigated. The heats of neutralization of the mercapto-acids with sodium hydroxide and the heats of their reaction with metal ions were calculated.

  13. Asymmetric synthesis of 5-arylcyclohexenones by rhodium(I)-catalyzed conjugate arylation of racemic 5-(trimethylsilyl)cyclohexenone with arylboronic acids.

    PubMed

    Chen, Qian; Kuriyama, Masami; Soeta, Takahiro; Hao, Xinyu; Yamada, Ken-ichi; Tomioka, Kiyoshi

    2005-09-29

    [reaction: see text] A catalytic asymmetric conjugate arylation of racemic 5-(trimethylsilyl)cyclohex-2-enone with arylboronic acids was catalyzed by 3 mol % chiral amidophosphane- or BINAP-Rh(I) in dioxane-water (10:1) to afford trans- and cis-3-aryl-5-(trimethylsilyl)cyclohexanones in high enantioselectivity. Dehydrosilylation of the product mixture with cupric chloride in DMF gave 5-arylcyclohex-2-enones with up to 93% ee in good yield. Enantiofacial selectivity with chiral phosphane-Rh(I) exceeds the trans-diastereoselectivity that is maintained in the achiral or racemic phosphane-Rh(I)-catalyzed conjugate arylation of 5-(trimethylsilyl)cyclohexenone.

  14. Pantothenic acid deficiency may increase the urinary excretion of 2-oxo acids and nicotinamide catabolites in rats.

    PubMed

    Shibata, Katsumi; Inomoto, Kasumi; Nakata, Chifumi; Fukuwatari, Tsutomu

    2013-01-01

    Pantothenic acid (PaA) is involved in the metabolism of amino acids as well as fatty acid. We investigated the systemic metabolism of amino acids in PaA-deficient rats. For this purpose, urine samples were collected and 2-oxo acids and L-tryptophan (L-Trp) and its metabolites including nicotinamide were measured. Group 1 was freely fed a conventional chemically-defined complete diet and used as an ad lib-fed control, which group was used for showing reference values. Group 2 was freely fed the complete diet without PaA (PaA-free diet) and used as a PaA-deficient group. Group 3 was fed the complete diet, but the daily food amount was equal to the amount of the PaA-deficient group and used as a pair-fed control group. All rats were orally administered 100 mg of L-Trp/kg body weight at 09:00 on day 34 of the experiment and the following 24-h urine samples were collected. The urinary excretion of the sum of pyruvic acid and oxaloacetic acid was higher in rats fed the PaA-free diets than in the rats fed pair-fed the complete diet. PaA deficiency elicited the increased urinary excretion of anthranilic acid and kynurenic acid, while the urinary excretion of xanthurenic acid decreased. The urinary excretion of L-Trp itself, 3-hydroxyanthranilic acid, and quinolinic acid revealed no differences between the rats fed the PaA-free and pair-fed the complete diets. PaA deficiency elicited the increased excretion of N(1)-methylnicotinamide, N(1)-methyl-2-pyridone-5-carboxamide, and N(1)-methyl-4-pyridone-3-carboxamide. These findings suggest that PaA deficiency disturbs the amino acid catabolism.

  15. TRYPTOPHAN SYNTHETASE LEVELS IN ESCHERICHIA COLI, SHIGELLA DYSENTERIAE, AND TRANSDUCTION HYBRIDS

    PubMed Central

    Eisenstein, Richard B.; Yanofsky, Charles

    1962-01-01

    Eisenstein, Richard B. (Western Reserve University, Cleveland, Ohio) and Charles Yanofsky. Tryptophan synthetase levels in Escherichia coli, Shigella dysenteriae, and transduction hybrids. J. Bacteriol. 83:193–204. 1962—Shigella dysenteriae and Escherichia coli, strains K-12 and B, were found to produce low levels of tryptophan synthetase, although some hybrids, formed by the introduction of the gene cluster concerned with tryptophan synthesis from S. dysenteriae into E. coli, produced high levels of this enzyme system. A revertant obtained from a tryptophan-requiring mutant also formed high levels of tryptophan synthetase. The gene or genes responsible for high enzyme production in these strains was shown to be linked to the cluster of genes concerned with tryptophan synthesis. The cause of high enzyme production was investigated. Various lines of evidence, including stimulation of growth by tryptophan precursors, sensitivity to inhibition by 5-methyltryptophan, absence of accumulation of tryptophan, and repression of enzyme formation by anthranilic acid and tryptophan, suggested that high enzyme production in the strains examined results from a partial block in the tryptophan pathway and not from resistance to repression by tryptophan. The conversion of shikimic acid-5-phosphate to anthranilic acid appears to be the partially blocked reaction in the strains studied. PMID:13889700

  16. Ambient Temperature Synthesis of High Enantiopurity N-Protected Peptidyl Ketones by Peptidyl Thiol Ester–Boronic Acid Cross-Coupling

    PubMed Central

    Yang, Hao; Li, Hao; Wittenberg, Rüdiger; Egi, Masahiro; Huang, Wenwei; Liebeskind, Lanny S.

    2009-01-01

    α-Amino acid thiol esters derived from N-protected mono-, di-, and tripeptides couple with aryl, π-electron-rich heteroaryl, or alkenyl boronic acids in the presence of stoichiometric Cu(I) thiophene-2-carboxylate (CuTC) and catalytic Pd2(dba)3/triethylphosphite to generate the corresponding N-protected peptidyl ketones in good to excellent yields and in high enantiopurity. Triethylphosphite plays a key role as a supporting ligand by mitigating an undesired palladium-catalyzed decarbonylation-β-elimination of the α-amino thiol esters. The peptidyl ketone synthesis proceeds at room temperature under non-basic conditions and demonstrates a high tolerance to functionality. PMID:17263394

  17. Enantioselective Rhodium Enolate Protonations. A New Methodology for the Synthesis of β2-Amino Acids

    PubMed Central

    Sibi, Mukund P.; Tatamidani, Hiroto; Patil, Kalyani

    2008-01-01

    Rhodium catalyzed conjugate addition of an aryl boronic acid to α-methylamino acrylates followed by enantioselective protonation of the oxa-π-allylrhodium intermediate provides access to aryl substituted β2-amino acids. The impact of the different variables of the reaction on the levels of enantioselectivity has been assessed. PMID:15957893

  18. An Iterative, Bimodular Nonribosomal Peptide Synthetase that Converts Anthranilate and Tryptophan into Tetracyclic Asperlicins

    PubMed Central

    Gao, Xue; Jiang, Wei; Jiménez-Osés, Gonzalo; Choi, Moon Seok; Houk, Kendall N.; Tang, Yi; Walsh, Christopher T.

    2013-01-01

    The bimodular 276 kDa nonribosomal peptide synthetase AspA from Aspergillus alliaceus, heterologously expressed in Saccharomyces cerevisiae, converts tryptophan and two molecules of the aromatic β-amino acid anthranilate (Ant) into a pair of tetracyclic peptidyl alkaloids asperlicin C and D in a ratio of 10:1. The first module of AspA activates and processes two molecules of Ant iteratively to generate a tethered Ant-Ant-Trp-S-enzyme intermediate on module two. Release is postulated to involve tandem cyclizations, in which the first step is the macrocyclization of the linear tripeptidyl-S-enzyme, by the terminal condensation (CT) domain to generate the regioisomeric tetracyclic asperlicin scaffolds. Computational analysis of the transannular cyclization of the 11-membered macrocyclic intermediate shows that asperlicin C is the kinetically favored product due to the high stability of a conformation resembling the transition state for cyclization, while asperlicin D is thermodynamically more stable. PMID:23890005

  19. Aryl imidazylates and aryl sulfates as electrophiles in metal-free ArS(N)1 reactions.

    PubMed

    Qrareya, Hisham; Protti, Stefano; Fagnoni, Maurizio

    2014-12-05

    Some oxygen-bonded substituents were investigated as leaving groups in photoinduced ArS(N)1 reactions. Irradiation of aryl imidazylates and of the corresponding imidazolium salts mainly caused homolysis of the ArO-S bond. However, previously unexplored trifluoroethoxy aryl sulfates were found to undergo efficient metal-free arylation. The sulfates were conveniently generated in situ by dissolving the corresponding imidazolium salts in basic 2,2,2-trifluoroethanol.

  20. Palladium-Catalyzed, N-(2-Aminophenyl)acetamide-Assisted Ortho-Arylation of Substituted Benzamides: Application to the Synthesis of Urolithins B, M6, and M7.

    PubMed

    Reddy, M Damoder; Blanton, Alexandra N; Watkins, E Blake

    2017-05-19

    Pd-catalyzed, selective, monoarylation of ortho-C-H bonds of various benzamides with aryl/heteroaryl iodides has been realized using N-(2-aminophenyl)acetamide (APA) as a new bidentate directing group for the first time. The reaction was tolerant of a wide range of functional groups, and a variety of biaryl amide derivatives were successfully prepared in good to moderate yield. The utilization of N-(2-aminophenyl)acetamide as a novel directing group, Mn(OAc) 2 as a co-oxidant (silver free reaction conditions), and absolute ortho-monoaryl selectivity are notable features of this reaction. In addition, the obtained monoarylated products could be further transformed into the bioactive natural products and human microflora metabolites of dietary ellagic acid derivatives, urolithin B, urolithin M6, and urolithin M7.

  1. Enantiomerically pure 3-aryl- and 3-hetaryl-2-hydroxypropanoic acids by chemoenzymatic reduction of 2-oxo acids.

    PubMed

    Sivanathan, Sivatharushan; Körber, Florian; Tent, Jannis Aron; Werner, Svenja; Scherkenbeck, Jürgen

    2015-03-06

    Phenyllactic acids are found in numerous natural products as well as in active substances used in medicine or plant protection. Enantiomerically pure phenyllactic acids are available by transition-metal-catalyzed hydrogenations or chemoenzymatic reductions of the corresponding 3-aryl-2-oxopropanoic acids. We show here that d-lactate dehydrogenase from Staphylococcus epidermidis reduces a broad spectrum of 2-oxo acids, which are difficult substrates for transition-metal-catalyzed reactions, with excellent enantioselectivities in a simple experimental setup.

  2. Palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate: A practical synthesis of unsymmetrical ureas

    PubMed Central

    Vinogradova, Ekaterina V.; Fors, Brett P.; Buchwald, Stephen L.

    2012-01-01

    An efficient method for palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate is reported. The protocol allows for the synthesis of unsymmetrical N,N'-di- and N,N,N'-trisubstituted ureas in one pot, and is tolerant of a wide range of functional groups. Insight into the mechanism of aryl isocyanate formation is gleaned through studies of the transmetallation and reductive elimination steps of the reaction, including the first demonstration of reductive elimination from an arylpalladium isocyanate complex to produce an aryl isocyanate. PMID:22716197

  3. Assembly of N,N-disubstituted hydrazines and 1-aryl-1H-indazoles via copper-catalyzed coupling reactions.

    PubMed

    Xiong, Xiaodong; Jiang, Yongwen; Ma, Dawei

    2012-05-18

    CuI-catalyzed coupling of N-acyl-N'-substituted hydrazines with aryl iodides takes place at 60-90 °C to afford N-acyl-N',N'-disubstituted hydrazines regioselectively and thereby gives a facile method for assembling N,N-diaryl hydrazines. N-Acyl-N'-substituted hydrazines can also react with 2-bromoarylcarbonylic compounds at 60-125 °C under the catalysis of CuI/4-hydroxy-l-proline to provide 1-aryl-1H-indazoles.

  4. Proline/pipecolinic acid-promoted copper-catalyzed P-arylation.

    PubMed

    Huang, Cheng; Tang, Xu; Fu, Hua; Jiang, Yuyang; Zhao, Yufen

    2006-06-23

    We have developed a convenient and efficient approach for P-arylation of organophosphorus compounds containing P-H. Using commercially available and inexpensive proline and pipecolinic acid as the ligands greatly improved the efficiency of the coupling reactions, so the method can provide an entry to arylphosphonates, arylphosphinates and arylphosphine oxides.

  5. Tryptophan biosynthetic enzymes of Staphylococcus aureus.

    PubMed

    Proctor, A R; Kloos, W E

    1973-04-01

    Tryptophan biosynthetic enzymes were assayed in various tryptophan mutants of Staphylococcus aureus strain 655 and the wild-type parent. All mutants, except trpB mutants, lacked only the activity corresponding to the particular biosynthetic block, as suggested previously by analysis of accumulated intermediates and auxonography. Tryptophan synthetase A was not detected in extracts of either trpA or trpB mutants but appeared normal in other mutants. Mutants in certain other classes exhibited partial loss of another particular tryptophan enzyme activity. Tryptophan synthetase B activity was not detected in cell extract preparations but was detected in whole cells. The original map order proposed for the S. aureus tryptophan gene cluster was clarified by the definition of trpD (phosphoribosyl transferase(-)) and trpF (phosphoribosyl anthranilate isomerase(-)) mutants. These mutants were previously unresolved and designated as trp(DF) mutants (anthranilate accumulators). Phosphoribosyl anthranilate isomerase and indole-3-glycerol phosphate synthetase enzymes were separable by molecular sieve chromatography, suggesting that these functions are coded by separate loci. Molecular sieve chromatography failed to reveal aggregates involving anthranilate synthetase, phosphoribosyl transferase, phosphoribosyl anthranilate isomerase, and indole-3-glycerol phosphate synthetase, and this procedure provided an estimate of the molecular weights of these enzymes. Tryptophan was shown to repress synthesis of all six tryptophan biosynthetic enzymes, and derepression of all six activities was incident upon tryptophan starvation. Tryptophan inhibited the activity of anthranilate synthetase, the first enzyme of the pathway.

  6. Versatile Alkylation of (Hetero)Aryl Iodides with Ketones via β-C(sp3)-H Activation.

    PubMed

    Zhu, Ru-Yi; Liu, Luo-Yan; Park, Han Seul; Hong, Kai; Wu, Yongwei; Senanayake, Chris H; Yu, Jin-Quan

    2017-11-15

    We report Pd(II)-catalyzed β-C(sp 3 )-H (hetero)arylation of a variety of ketones using a commercially available 2,2-dimethyl aminooxyacetic acid auxiliary. Facile installation and removal of the auxiliary as well as its superior scope for both ketones and (hetero)aryl iodides overcome the significant limitations of the previously reported β-C(sp 3 )-H arylation of ketones. The ready availability of ketones renders this reaction a broadly useful method for alkyl-(hetero)aryl coupling involving both primary and secondary alkyls.

  7. Synthesis and anti-inflammatory activity of some benzofuran and benzopyran-4-one derivatives.

    PubMed

    Ragab, Fatma Abd El-Fattah; Eid, Nahed Mahmoud; Hassan, Ghaneya Sayed; Nissan, Yassin Mohammed

    2012-01-01

    New series of furosalicylic acids 3a-c, furosalicylanilides 6a-n, furobenzoxazines 8a-f, 1-benzofuran-3-arylprop-2-en-1-ones 12a,b, 6-(aryl-3-oxoprop-1-enyl)-4H-chromen-4-ones 16a-c and 6-[6-aryl-2-thioxo-2,5-dihydropyrimidin-4-yl]-4H-chromen-4-ones 17a-c were synthesized. Anti-inflammatory activity evaluation was performed using carrageenan-induced paw edema model in rats and prostaglandin E(2) (PGE(2)) synthesis inhibition activity. Some of the tested compounds revealed comparable activity with less ulcerogenic effect than Diclofenac at a dose 100 mg/kg. All the synthesized compounds were docked on the active site of cyclooxygenase-2 (COX-2) enzyme and most of them showed good interactions with the amino acids of the active site comparable to the interactions exhibited by Diclofenac.

  8. Palladium- and Copper-Catalyzed Arylation of Carbon-Hydrogen Bonds

    PubMed Central

    Daugulis, Olafs; Do, Hien-Quang; Shabashov, Dmitry

    2010-01-01

    The transition-metal-catalyzed functionalization of C-H bonds is a powerful method for generating carbon-carbon bonds. Although significant advances to this field have been reported during the last decade, many challenges remain. First, most of the methods are substrate-specific and thus cannot be generalized. Second, conversions of unactivated (i.e. not benzylic or alpha to heteroatom) sp3 C–H bonds to C–C bonds are rare, with most examples limited to t-butyl groups—a conversion that is inherently simple because there are no β-hydrogens that can be eliminated. Finally, the palladium, rhodium, and ruthenium catalysts routinely used for the conversion of C–H bonds to C–C bonds are expensive. Catalytically active metals that are cheaper and less exotic (e.g. copper, iron, and manganese) are rarely used. This Account describes our attempts to provide solutions to these three problems. We have developed a general method for directing-group-containing arene arylation by aryl iodides. Using palladium acetate as the catalyst, we arylated anilides, benzamides, benzoic acids, benzylamines, and 2-substituted pyridine derivatives under nearly identical conditions. We have also developed a method for the palladium-catalyzed auxiliary-assisted arylation of unactivated sp3 C–H bonds. This procedure allows for the β-arylation of carboxylic acid derivatives and the γ-arylation of amine derivatives. Furthermore, copper catalysis can be used to mediate the arylation of acidic arene C–H bonds (i.e. those with pKa values <35 in DMSO). Using a copper iodide catalyst in combination with a base and a phenanthroline ligand, we successfully arylated electron-rich and electron-deficient heterocycles and electron-poor arenes possessing at least two electron-withdrawing groups. The reaction exhibits unusual regioselectivity: arylation occurs at the most hindered position. This copper-catalyzed method supplements the well-known C–H activation/borylation methodology, in which functionalization usually occurs at the least hindered position. We also describe preliminary investigations to determine the mechanisms of these transformations. We anticipate that other transition metals, including iron, nickel, cobalt, and silver, will also be able to facilitate deprotonation/arylation reaction sequences. PMID:19552413

  9. Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds.

    PubMed

    Daugulis, Olafs; Do, Hien-Quang; Shabashov, Dmitry

    2009-08-18

    The transition-metal-catalyzed functionalization of C-H bonds is a powerful method for generating carbon-carbon bonds. Although significant advances to this field have been reported during the past decade, many challenges remain. First, most of the methods are substrate-specific and thus cannot be generalized. Second, conversions of unactivated (i.e., not benzylic or alpha to heteroatom) sp(3) C-H bonds to C-C bonds are rare, with most examples limited to t-butyl groups, a conversion that is inherently simple because there are no beta-hydrogens that can be eliminated. Finally, the palladium, rhodium, and ruthenium catalysts routinely used for the conversion of C-H bonds to C-C bonds are expensive. Catalytically active metals that are cheaper and less exotic (e.g., copper, iron, and manganese) are rarely used. This Account describes our attempts to provide solutions to these three problems. We have developed a general method for directing-group-containing arene arylation by aryl iodides. Using palladium acetate as the catalyst, we arylated anilides, benzamides, benzoic acids, benzylamines, and 2-substituted pyridine derivatives under nearly identical conditions. We have also developed a method for the palladium-catalyzed auxiliary-assisted arylation of unactivated sp(3) C-H bonds. This procedure allows for the beta-arylation of carboxylic acid derivatives and the gamma-arylation of amine derivatives. Furthermore, copper catalysis can be used to mediate the arylation of acidic arene C-H bonds (i.e., those with pK(a) values <35 in DMSO). Using a copper iodide catalyst in combination with a base and a phenanthroline ligand, we successfully arylated electron-rich and electron-deficient heterocycles and electron-poor arenes possessing at least two electron-withdrawing groups. The reaction exhibits unusual regioselectivity: arylation occurs at the most hindered position. This copper-catalyzed method supplements the well-known C-H activation/borylation methodology, in which functionalization usually occurs at the least hindered position. We also describe preliminary investigations to determine the mechanisms of these transformations. We anticipate that other transition metals, including iron, nickel, cobalt, and silver, will also be able to facilitate deprotonation/arylation reaction sequences.

  10. Enantioseparation of racemic 4-aryl-3,4-dihydro-2(1H)-pyrimidones on chiral stationary phases based on 3,5-dimethylanilides of N-(4-alkylamino-3,5-dinitro)benzoyl L-alpha-amino acids.

    PubMed

    Kontrec, Darko; Vinković, Vladimir; Sunjić, Vitomir; Schuiki, Birgit; Fabian, Walter M F; Kappe, C Oliver

    2003-06-01

    Three novel chiral packing materials for high-performance liquid chromatography were prepared by covalently binding of (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]propan-amide (7), (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]-4-methylpentanamide (8), and (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonyl-amino]-2-phenylacetamide (9) to aminopropyl silica. The resulting chiral stationary phases (CSPs 1-3) proved effective for the resolution of racemic 4-aryl-3,4-dihydro-2(1H)-pyrimidone derivatives (TR 1-14). The mechanism of their enantioselection, supported by the elution order of (S)-TR 13 and (R)-TR 13 and molecular modeling of the complex of the slower running (S)-TR 13 with CSP 1 is discussed. Copyright 2003 Wiley-Liss, Inc.

  11. Arynes, diaryliodonium salts and azine N-oxides in transition metal-free electrophilic N-arylation

    NASA Astrophysics Data System (ADS)

    Bugaenko, D. I.; Karchava, A. V.; Yurovskaya, M. A.

    2018-03-01

    The main approach to the synthesis of aromatic and heteroaromatic amines is based on palladium- and copper-catalyzed N-arylation reactions. Although these methods are highly efficient and provide extensive opportunities for the synthesis of (het)arylamines with various structures and properties, they have some limitations related to the catalysts used and reaction conditions. This review addresses alternative approaches to N-(het)arylation that have been extensively developed in the past decade and are based on the use of arynes, diaryliodonium salts and azine N-oxides as electrophilic (het)arylating agents. Because of mild reaction conditions and no need for catalysts and strong bases, these N-(het)arylation methods are attractive for various synthetic applications and open up new possibilities for the preparation of valuable organic compounds inaccessible via traditional catalytic methods. The attention is focussed on publications of the last decade. The bibliography includes 112 references.

  12. Preparation of heterocyclic block copolymer from perfluoroalkylene oxide alpha, omega-diamidoximes

    NASA Technical Reports Server (NTRS)

    Ross, L. O.; Rosser, R. W.; Iannone, M. (Inventor)

    1979-01-01

    Diamidoxime monomers are intermolecularly and thermally condensed to form a heat and chemical resistant polymer containing 1,2,4-oxadiazole linkages with identical bivalent organic radicals or any combination of bivalent organic radicals selected from the group consisting of -(CX(sub 2))p-, wherein P ranges from 2 to 8 when X is fluorine and 2 to 18 when X is hydrogen, chlorine, nitro or aryl; arylene; and an oligometric or polymeric radical prepared by reacting a dicarboxylic acid halide with a fluorinated epoxide and having the formula: (CFY(OCF(sub 2)CFY)sub m)O(CX(sub 2))(sub p)O(CFYCF(sub 2)O)(sub n)CFY wherein Y is flourine or tryifluoromethyl, X is nitro, aryl, hydrogen, chlorine or fluorine, preferably the latter, p ranges from 1 to 18 and m+n ranges from 2 to 7.

  13. Genetic control of enzyme formation. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, S. E.

    1978-07-26

    Research progress is reported on work on tryptophan biosynthesis in Euglena gracilis and higher plants. The experimental data provide an outline of the general evolution of the pathway. Structural analyses of the pathway proteins by quantitative immunochemical methods have been completed; this was done with the anthranilate synthase-1 phosphoribosyl transferase complex in Escherichia coli. An examination of the evolution, in the Enterobacteriaceae, of the enzyme activities anthranilate synthase and anthranilate-5-1 phosphoribosyl-1-pyrophosphate phosphoribosyltransferase has been begun. (ACR)

  14. Carbon-sulfur bond formation by reductive elimination of gold(iii) thiolates.

    PubMed

    Currie, Lucy; Rocchigiani, Luca; Hughes, David L; Bochmann, Manfred

    2018-05-08

    Whereas the reaction of the gold(iii) pincer complex (C^N^C)AuCl with 1-adamantyl thiol (AdSH) in the presence of base affords (C^N^C)AuSAd, the same reaction in the absence of base leads to formation of aryl thioethers as the products of reductive elimination of the Au-C and Au-S ligands (C^N^C = dianion of 2-6-diphenylpyridine or 2-6-diphenylpyrazine). Although high chemical stability is usually taken as a characteristic of pincer complexes, results show that thiols are capable of cleaving one of the pincer Au-C bonds. This reaction is not simply a function of S-H acidity, since no cleavage takes place with other more acidic X-H compounds, such as carbazole, amides, phenols and malonates. The reductive C-S elimination follows a second-order rate law, -d[1a]/dt = k[1a][AdSH]. Reductive elimination is enabled by displacement of the N-donor by thiol; this provides the conformational flexibility necessary for C-S bond formation to occur. Alternatively, reductive C-S bond formation can be induced by reaction of pre-formed thiolates (C^N^C)AuSR with a strong Brønsted acid, followed by addition of SMe2 as base. On the other hand, treatment of (C^N^C)AuR (R = Me, aryl, alkynyl) with thiols under similar conditions leads to selective C-C rather than C-S bond formation. The reaction of (C^N^C)AuSAd with H+ in the absence of a donor ligand affords the thiolato-bridged complex [{(C^N-CH)Au(μ-SAd)}2]2+ which was crystallographically characterised.

  15. Room-temperature chromium(II)-catalyzed direct arylation of pyridines, aryl oxazolines, and imines using arylmagnesium reagents.

    PubMed

    Kuzmina, Olesya M; Knochel, Paul

    2014-10-03

    We report a CrCl2-catalyzed oxidative arylation of various pyridines, aryl oxazolines, and aryl imines using aromatic Grignard reagents in the presence of 2,3-dichlorobutane (DCB). Most of the reactions proceed rapidly at 25 °C and do not require any additional ligand. Benzo[h]quinoline, 2-arylpyridine, aryl oxazoline, and imines were successfully arylated in good yields under these conditions. A TMS-substituent was used to prevent double arylation. After oxidative cross-coupling the TMS-group was further converted to a second ortho-aryl substituent. Remarkably, inexpensive aryl N-butylimine derivatives are excellent substrates for this oxidative arylation.

  16. Simultaneous analysis and monitoring of 16 UV filters in cosmetics by high-performance liquid chromatography.

    PubMed

    Kim, Dojung; Kim, Sangseop; Kim, Seol-A; Choi, Myoengsin; Kwon, Kyoung-Jin; Kim, Mijeong; Kim, Dong-Sup; Kim, Seung-Hee; Choi, Bo-Kyung

    2012-01-01

    Sixteen UV filters were simultaneously analyzed using the high-performance liquid chromatographic method. They were drometrizole (USAN Drometrizole), 4-methylbenzylidene camphor (USAN Enzacamene), menthyl anthranilate (USAN Menthyl anthranilate), benzophenone-3 (USAN Oxybenzone), benzophenone-8 (USAN Dioxybenzone), butyl methoxydibenzoylmethane (USAN Avobenzone), ethylhexyl triazone (USAN Octyl triazone), octocrylene (USAN Octocrylene), ethylhexyl dimethyl p-aminobenzoic acid (USAN Padimate O), ethylhexyl methoxycinnamate (USAN Octinoxate), p-aminobenzoic acid (USAN Aminobenzoic acid), 2-phenylbenzimidazole-5-sulfonic acid (USAN Ensulizole), isoamyl p-methoxycinnamate (USAN Amiloxate), and recent UV filters such as diethylhexyl butamidotriazone (USAN Iscotrizinol), methylene bis-benzotriazolyl tetramethylbutylphenol (USAN Bisoctrizole), and terephthalylidene dicamphor sulfonic acid (USAN Ecamsule). Separation of the UV filters was carried out in a C(18) column with a gradient of methanol-phosphate buffer, and the UV detection was at 300, 320, or 360 nm without any interference. The limits of detection were between 0.08 and 1.94 μg/ml, and the limits of quantitation were between 0.24 and 5.89 μg/ml. The extracting solvent for the UV filters was methanol, except for ethylhexyl triazone and methylene bis-benzotriazolyl tetramethylbutylphenol, which were prepared with tetrahydrofuran. The recoveries from spiked samples were between 94.90% and 116.54%, depending on the matrixes used. The developed method was applied to 23 sunscreens obtained from local markets, and the results were acceptable to their own criteria and to maximum authorized concentrations. Consequently, these results would provide a simple extracting method and a simultaneous determination for various UV filters, which can improve the quality control process as well as the environmental monitoring of sunscreens.

  17. Synthesis of [ 18F]arenes via the copper-mediated [ 18F]fluorination of boronic acids

    DOE PAGES

    Mossine, Andrew V.; Brooks, Allen F.; Makaravage, Katarina J.; ...

    2015-11-14

    Here, a copper-mediated radiofluorination of aryl- and vinylboronic acids with K 18F is described. This method exhibits high functional group tolerance and is effective for the radiofluorination of a range of electron-deficient, -neutral, and -rich aryl-, heteroaryl-, and vinylboronic acids. This method has been applied to the synthesis of [ 18F]FPEB, a PET radiotracer for quantifying metabotropic glutamate 5 receptors.

  18. Synthesis of [ 18F]arenes via the copper-mediated [ 18F]fluorination of boronic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mossine, Andrew V.; Brooks, Allen F.; Makaravage, Katarina J.

    Here, a copper-mediated radiofluorination of aryl- and vinylboronic acids with K 18F is described. This method exhibits high functional group tolerance and is effective for the radiofluorination of a range of electron-deficient, -neutral, and -rich aryl-, heteroaryl-, and vinylboronic acids. This method has been applied to the synthesis of [ 18F]FPEB, a PET radiotracer for quantifying metabotropic glutamate 5 receptors.

  19. Isomer-sensitive deboronation in reductive aminations of aryl boronic acids

    DOE PAGES

    Jones, Brad Howard; Wheeler, David R.; Wheeler, Jill S.; ...

    2015-09-05

    Deboronation is observed during the reductive amination of formylphenylboronic acid (FPBA) to the amine termini and side chains of peptides. This deboronation is sensitive to the isomerism of the boronic acid (BA), with ortho-FPBA yielding complete deboronation in the preparation of an N-terminally-modified dipeptide. The observed behavior is also clearly mediated by the chemical identity of the amine substrate. These results reveal a previously undocumented subtlety of BA functionalization and highlight the importance of thorough spectroscopic characterization in the preparation of peptide and small molecule BAs.

  20. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins.

    PubMed

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented.

  1. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins

    PubMed Central

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented. PMID:24848368

  2. Light-Induced C-H Arylation of (Hetero)arenes by In Situ Generated Diazo Anhydrides.

    PubMed

    Cantillo, David; Mateos, Carlos; Rincon, Juan A; de Frutos, Oscar; Kappe, C Oliver

    2015-09-07

    Diazo anhydrides (Ar-N=N-O-N=N-Ar) have been known since 1896 but have rarely been used in synthesis. This communication describes the development of a photochemical catalyst-free C-H arylation methodology for the preparation of bi(hetero)aryls by the one-pot reaction of anilines with tert-butyl nitrite and (hetero)arenes under neutral conditions. The key step in this procedure is the in situ formation and subsequent photochemical (>300 nm) homolytic cleavage of a transient diazo anhydride intermediate. The generated aryl radical then efficiently reacts with a (hetero)arene to form the desired bi(hetero)aryls producing only nitrogen, water, and tert-butanol as byproducts. The scope of the reaction for several substituted anilines and (hetero)arenes was investigated. A continuous-flow protocol increasing selectivity and safety has been developed enabling the experimentally straightforward preparation of a variety of substituted bi(hetero)aryls within 45 min of reaction time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A beta-keto ester as a novel, efficient, and versatile ligand for copper(I)-catalyzed C-N, C-O, and C-S coupling reactions.

    PubMed

    Lv, Xin; Bao, Weiliang

    2007-05-11

    Employing ethyl 2-oxocyclohexanecarboxylate as a novel, efficient, and versatile ligand, the copper-catalyzed coupling reactions of various N/O/S nucleophilic reagents with aryl halides could be successfully carried out under mild conditions. A variety of products including N-arylamides, N-arylimidazoles, aryl ethers, and aryl thioethers were synthesized in good to excellent yields.

  4. Hit-to-lead optimization of pyrrolo[1,2-a]quinoxalines as novel cannabinoid type 1 receptor antagonists.

    PubMed

    Szabó, György; Kiss, Róbert; Páyer-Lengyel, Dóra; Vukics, Krisztina; Szikra, Judit; Baki, Andrea; Molnár, László; Fischer, János; Keseru, György M

    2009-07-01

    Hit-to-lead optimization of a novel series of N-alkyl-N-[2-oxo-2-(4-aryl-4H-pyrrolo[1,2-a]quinoxaline-5-yl)-ethyl]-carboxylic acid amides, derived from a high throughput screening (HTS) hit, are described. Subsequent optimization led to identification of in vitro potent cannabinoid 1 receptor (CB1R) antagonists representing a new class of compounds in this area.

  5. Synthesis of Secondary Aromatic Amides via Pd-Catalyzed Aminocarbonylation of Aryl Halides Using Carbamoylsilane as an Amide Source.

    PubMed

    Tong, Wenting; Cao, Pei; Liu, Yanhong; Chen, Jianxin

    2017-11-03

    Using N-methoxymethyl-N-organylcarbamoyl(trimethyl)silanes as secondary amides source, the direct transformation of aryl halides into the corresponding secondary aromatic amides via palladium-catalyzed aminocarbonylation is described. The reactions tolerated a broad range of functional groups on the aryl ring except big steric hindrance of substituent. The types and the relative position of substituents on the aryl ring impact the coupling efficiency.

  6. Characterization and Evolution of Anthranilate 1,2-Dioxygenase from Acinetobacter sp. Strain ADP1

    PubMed Central

    Eby, D. Matthew; Beharry, Zanna M.; Coulter, Eric D.; Kurtz, Donald M.; Neidle, Ellen L.

    2001-01-01

    The two-component anthranilate 1,2-dioxygenase of the bacterium Acinetobacter sp. strain ADP1 was expressed in Escherichia coli and purified to homogeneity. This enzyme converts anthranilate (2-aminobenzoate) to catechol with insertion of both atoms of O2 and consumption of one NADH. The terminal oxygenase component formed an α3β3 hexamer of 54- and 19-kDa subunits. Biochemical analyses demonstrated one Rieske-type [2Fe-2S] center and one mononuclear nonheme iron center in each large oxygenase subunit. The reductase component, which transfers electrons from NADH to the oxygenase component, was found to contain approximately one flavin adenine dinucleotide and one ferredoxin-type [2Fe-2S] center per 39-kDa monomer. Activities of the combined components were measured as rates and quantities of NADH oxidation, substrate disappearance, product appearance, and O2 consumption. Anthranilate conversion to catechol was stoichiometrically coupled to NADH oxidation and O2 consumption. The substrate analog benzoate was converted to a nonaromatic benzoate 1,2-diol with similarly tight coupling. This latter activity is identical to that of the related benzoate 1,2-dioxygenase. A variant anthranilate 1,2-dioxygenase, previously found to convey temperature sensitivity in vivo because of a methionine-to-lysine change in the large oxygenase subunit, was purified and characterized. The purified M43K variant, however, did not hydroxylate anthranilate or benzoate at either the permissive (23°C) or nonpermissive (39°C) growth temperatures. The wild-type anthranilate 1,2-dioxygenase did not efficiently hydroxylate methylated or halogenated benzoates, despite its sequence similarity to broad-substrate specific dioxygenases that do. Phylogenetic trees of the α and β subunits of these terminal dioxygenases that act on natural and xenobiotic substrates indicated that the subunits of each terminal oxygenase evolved from a common ancestral two-subunit component. PMID:11114907

  7. The use of the 2-aminobenzoic acid tag for oligosaccharide gel electrophoresis.

    PubMed

    Huang, Z; Prickett, T; Potts, M; Helm, R F

    2000-08-18

    Gel electrophoresis of fluorophore labeled saccharides provides a rapid and reliable method to screen enzymatic and/or chemical treatments of polysaccharides and glycoconjugates, as well as a sensitive and efficient microscale method to separate and purify oligosaccharides for further analysis. A simple and inexpensive method of derivatization and analysis using 2-aminobenzoic acid (anthranilic acid, AA) is described and applied to the extracellular polysaccharide released by the desiccation tolerant cyanobacterium Nostoc commune DRH-1. The results of these analyses suggest a possible protective functionality of two pendent groups, as well as a potential relationship between these groups and the desiccation tolerance of the organism.

  8. Synthesis, coordination and catalytic use of 1-(diphenylphosphino)-1'-carbamoylferrocenes with pyridyl-containing N-substituents.

    PubMed

    Kühnert, Janett; Dusek, Michal; Demel, Jan; Lang, Heinrich; Stepnicka, Petr

    2007-07-14

    Ferrocene phosphinocarboxamides, 1-(diphenylphosphino)-1'-{N-[(2-pyridyl)methyl]carbamoyl}ferrocene (1) and 1-(diphenylphosphino)-1'-{N-[2-(2-pyridyl)ethyl]carbamoyl}ferrocene (2) were prepared from 1-(diphenylphosphino)-1'-ferrocenecarboxylic acid and studied as ligands for palladium. Starting with [PdCl2(cod)], the reactions at a 2 : 1 ligand-to-metal ratio gave uniformly the bis-phosphine complexes [PdCl2(L-kappaP)2] (3, L = 1; 4, L = 2) whereas those performed at a 1 : 1 ratio yielded distinct products: [PdCl2(1-kappa(2)P,N)] (5) with 1 coordinating as a trans-spanning P,N-donor, and the symmetric, P,N-bridged dimer [(micro-2-N,P)2{PdCl2}2] (6), respectively. The crystal structures of 1, 2, 4.4CHCl3, 5.AcOH, and 6.8CHCl3 as determined by X-ray diffraction showed the compounds to form well defined solid-state assemblies through hydrogen bonds. Testing of the phosphinocarboxamides in the palladium-catalysed Suzuki cross-coupling reaction revealed 1 and 2, combined with Pd(OAc)2 to form efficient catalysts for the reactions of aryl bromides while aryl chlorides coupled only when activated with electron-withdrawing groups.

  9. An Efficient Process for Pd-Catalyzed C–N Cross-Coupling Reactions of Aryl Iodides: Insight Into Controlling Factors

    PubMed Central

    Fors, Brett P.; Davis, Nicole R.; Buchwald, Stephen L.

    2009-01-01

    An investigation into Pd-catalyzed C–N cross-coupling reactions of aryl iodides is described. NaI is shown to have a significant inhibitory effect on these processes. By switching to a solvent system in which the iodide byproduct was insoluble, reactions of aryl iodides were accomplished with the same efficiencies as aryl chlorides and bromides. Using catalyst systems based on certain biarylphosphine ligands, aryl iodides were successfully reacted with an array of primary and secondary amines in high yields. Lastly, reactions of heteroarylamines and heteroaryliodides were also conducted in high yields. PMID:19348431

  10. An anionic rhodium eta4-quinonoid complex as a multifunctional catalyst for the arylation of aldehydes with arylboronic acids.

    PubMed

    Son, Seung Uk; Kim, Sang Bok; Reingold, Jeffrey A; Carpenter, Gene B; Sweigart, Dwight A

    2005-09-07

    The pi-bonded rhodium quinonoid complex, K+[(1,4-benzoquinone)Rh(COD)]-, functions as a good catalyst for the coupling of arylboronic acid and aldehydes to afford diaryl alcohols. The catalysis is heterobimetallic in that both the transition metal and concomitant alkali metal counterion play an integral part in the reaction. In addition, the anionic quinonoid catalyst itself plays a bifunctional role by acting as a ligand to the boronic acid and as a Lewis acid receptor site for the transferring aryl group.

  11. Stimulation of aryl metabolite production in the basidiomycete Bjerkandera sp. strain BOS55 with biosynthetic precursors and lignin degradation products.

    PubMed Central

    Mester, T; Swarts, H J; Romero i Sole, S; de Bont, J A; Field, J A

    1997-01-01

    Aryl metabolites are known to have an important role in the ligninolytic system of white rot fungi. The addition of known precursors and aromatic acids representing lignin degradation products stimulated the production of aryl metabolites (veratryl alcohol, veratraldehyde, p-anisaldehyde, and 3-chloro-p-anisaldehyde) in the white rot fungus Bjerkandera sp. strain BOS55. The presence of manganese (Mn) is known to inhibit the biosynthesis of veratryl alcohol (T. Mester, E. de Jong, and J.A. Field, Appl. Environ. Microbiol. 61:1881-1887, 1995). A new finding of this study was that the production of the other aryl metabolites, p-anisaldehyde and 3-chloro-p-anisaldehyde, was also inhibited by Mn. We attempted to bypass the Mn-inhibited step in the biosynthesis of aryl metabolites by the addition of known and suspected precursors. Most of these compounds were not able to bypass the inhibiting effect of Mn. Only the fully methylated precursors (veratrate, p-anisate, and 3-chloro-p-anisate) provided similar concentrations of aryl metabolites in the presence and absence of Mn, indicating that Mn does not influence the reduction of the benzylic acid group. The addition of deuterated benzoate and 4-hydroxybenzoate resulted in the formation of deuterated aryl metabolites, indicating that these aromatic acids entered into the biosynthetic pathway and were common intermediates to all aryl metabolites. Only deuterated chlorinated anisyl metabolites were produced when the cultures were supplemented with deuterated 3-chloro-4-hydroxybenzoate. This observation combined with the fact that 3-chloro-4-hydroxybenzoate is a natural product of Bjerkandera spp. (H. J. Swarts, F. J. M. Verhagen, J. A. Field, and J. B. P. A. Wijnberg, Phytochemistry 42:1699-1701, 1996) suggest that it is a possible intermediate in chlorinated anisyl metabolite biosynthesis. PMID:9143129

  12. Substitution of the nitro group with Grignard reagents: facile arylation and alkenylation of pyridine N-oxides.

    PubMed

    Zhang, Fang; Zhang, Song; Duan, Xin-Fang

    2012-11-02

    The unprecedented substitution of a nitro group with aryl or alkenyl groups of Grignard reagents affords 2-aryl or alkenylpyridine N-oxides in modest to high yields with high chemoselectivity. This protocol allows a simple and clean synthesis of various 2-substituted pyridine N-oxides and the corresponding pyridine derivatives. Furthermore, straightforward one-pot iterative functionality of pyridine N-oxides could also be achieved simply by successive applications of two Grignard reagents.

  13. N,N-Diethylurea-Catalyzed Amidation between Electron-Defficient Aryl Azides and Phenylacetaldehydes

    PubMed Central

    Xie, Sheng; Ramström, Olof; Yan, Mingdi

    2015-01-01

    Urea structures, of which N,N-diethylurea (DEU) proved to be the most efficient, were discovered to catalyze amidation reactions between electron-defficient aryl azides and phenylacetaldehydes. Experimental data support 1,3-dipolar cycloaddition between DEU-activated enols and electrophilic phenyl azides, especially perfluoroaryl azides, followed by rearrangement of the triazoline intermediate. The activation of the aldehyde under near-neutral conditions was of special importance in inhibiting dehydration/aromatization of the triazoline intermediate, thus promoting the rearrangement to form aryl amides. PMID:25616121

  14. Organocatalytic asymmetric arylation of indoles enabled by azo groups

    NASA Astrophysics Data System (ADS)

    Qi, Liang-Wen; Mao, Jian-Hui; Zhang, Jian; Tan, Bin

    2018-01-01

    Arylation is a fundamental reaction that can be mostly fulfilled by electrophilic aromatic substitution and transition-metal-catalysed aryl functionalization. Although the azo group has been used as a directing group for many transformations via transition-metal-catalysed aryl carbon-hydrogen (C-H) bond activation, there remain significant unmet challenges in organocatalytic arylation. Here, we show that the azo group can effectively act as both a directing and activating group for organocatalytic asymmetric arylation of indoles via formal nucleophilic aromatic substitution of azobenzene derivatives. Thus, a wide range of axially chiral arylindoles have been achieved in good yields with excellent enantioselectivities by utilizing chiral phosphoric acid as catalyst. Furthermore, highly enantioenriched pyrroloindoles bearing two contiguous quaternary chiral centres have also been obtained via a cascade enantioselective formal nucleophilic aromatic substitution-cyclization process. This strategy should be useful in other related research fields and will open new avenues for organocatalytic asymmetric aryl functionalization.

  15. Organocatalytic asymmetric arylation of indoles enabled by azo groups.

    PubMed

    Qi, Liang-Wen; Mao, Jian-Hui; Zhang, Jian; Tan, Bin

    2018-01-01

    Arylation is a fundamental reaction that can be mostly fulfilled by electrophilic aromatic substitution and transition-metal-catalysed aryl functionalization. Although the azo group has been used as a directing group for many transformations via transition-metal-catalysed aryl carbon-hydrogen (C-H) bond activation, there remain significant unmet challenges in organocatalytic arylation. Here, we show that the azo group can effectively act as both a directing and activating group for organocatalytic asymmetric arylation of indoles via formal nucleophilic aromatic substitution of azobenzene derivatives. Thus, a wide range of axially chiral arylindoles have been achieved in good yields with excellent enantioselectivities by utilizing chiral phosphoric acid as catalyst. Furthermore, highly enantioenriched pyrroloindoles bearing two contiguous quaternary chiral centres have also been obtained via a cascade enantioselective formal nucleophilic aromatic substitution-cyclization process. This strategy should be useful in other related research fields and will open new avenues for organocatalytic asymmetric aryl functionalization.

  16. Polymers functionalized with bronsted acid groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Humbeck, Jeffrey; Long, Jeffrey R.; McDonald, Thomas M.

    Porous aromatic framework polymers functionalized with Bronsted acid moieties are prepared by polymerization of a three-dimensional organic aryl or heteroaryl monomer and its copolymerization with a second aryl or heteroaryl monomer functionalized with one or more Bronsted acid moiety. The polymers are characterized by a stable three-dimensional structure, which, in exemplary embodiments, includes interpenetrating subunits within one or more domain of the bulk polymer structure. The polymers are of use in methods of adsorbing ammonia and amines and in devices and systems configured for this purpose.

  17. Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis.

    PubMed

    Zuo, Zhiwei; Cong, Huan; Li, Wei; Choi, Junwon; Fu, Gregory C; MacMillan, David W C

    2016-02-17

    An asymmetric decarboxylative Csp(3)-Csp(2) cross-coupling has been achieved via the synergistic merger of photoredox and nickel catalysis. This mild, operationally simple protocol transforms a wide variety of naturally abundant α-amino acids and readily available aryl halides into valuable chiral benzylic amines in high enantiomeric excess, thereby producing motifs found in pharmacologically active agents.

  18. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Tomofumi; Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135; Ichinose, Hirofumi

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conservedmore » domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.« less

  19. 21 CFR 189.113 - Cinnamyl anthranilate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cinnamyl anthranilate. 189.113 Section 189.113 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES PROHIBITED FROM USE IN HUMAN FOOD Substances Generally...

  20. Baseline Susceptibilities of B- and Q-biotype Bemisia tabaci to anthranilic diamides

    USDA-ARS?s Scientific Manuscript database

    Development of pyriproxyfen and neonicotinoid resistance in the B biotype whitefly and recent introduction of the Q biotype are threatening the current whitefly management programs in Arizona. Whether the novel anthranilic diamides chlorantraniliprole and cyantraniliprole can be integrated into the ...

  1. Dianthosaponins A-F, triterpene saponins, flavonoid glycoside, aromatic amide glucoside and γ-pyrone glucoside from Dianthus japonicus.

    PubMed

    Nakano, Takahiro; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki

    2011-01-01

    From aerial parts of Dianthus japonicus, six new and seven known oleanane-type triterpene saponins were isolated. The structures of the new saponins, named dianthosaponins A-F, were elucidated by means of high resolution mass spectrometry, and extensive inspection of one- and two-dimensional NMR spectroscopic data. A new C-glycosyl flavone, a glycosidic derivative of anthranilic acid amide and a maltol glucoside were also isolated.

  2. Synthesis of aryl thioethers through the N-chlorosuccinimide-promoted cross-coupling reaction of thiols with Grignard reagents.

    PubMed

    Cheng, Jun-Hao; Ramesh, Chintakunta; Kao, Hsin-Lun; Wang, Yu-Jen; Chan, Chien-Ching; Lee, Chin-Fa

    2012-11-16

    A convenient one-pot approach for the synthesis of aryl sulfides through the coupling of thiols with Grignard reagents in the presence of N-chlorosuccinimide is described. The sulfenylchlorides were formed when thiols were treated with N-chlorosuccinimide, and the resulting sulfenylchlorides were then directly reacted with Grignard reagents to provide aryl sulfides in good to excellent yields under mild reaction conditions. Functional groups including ester, fluoro, and chloro are tolerated by the reaction conditions employed. It is important to note that this method has a short reaction time (30 min in total) and represents an alternative approach for the synthesis of aryl sulfides over the existing protocols.

  3. The tuning of P-donor ligands: the aryl and other pendent group effects (PGEs) revisited.

    PubMed

    Poë, Anthony J

    2009-03-21

    Electronic and steric effects of P-donor ligands can be modified by varying the pendent groups attached to the phosphorus atoms. However, the so-called "Aryl Effects" of phosphites and other P-donor ligands that contain no aryl groups can be shown simply to be additional examples of electronic Pendent Group Effects (PGEs) by which effects are transmitted to the phosphorus atoms or through them. These effects are quite distinct from those caused by varying sigma-donicity and pi-acidity parameters, and are strictly proportional to the number of pendent groups of a particular type. In each case, the extent of the effect is determined by the difference between the actual property observed and that predicted on the basis that the ligand behaves in the same way as alkyl phosphines after allowing for steric and pi-acidity effects. The PGEs are therefore unique to particular pendent groups and to the method of measuring their effects. They are not "parameters" in the sense of being generally applicable in Linear Free Energy Relationships. The PGEs of a variety of pendent groups are derived from the so-called "aryl effects" determined by Giering & Prock et al. for vertical ionization potentials (IPs) and some other properties of the P-donor ligands. In almost all cases the IPs are reduced by the PGEs, and the extent of the reduction (in eV) decreases in the sequence C(6)F(5) (-0.67) approximately Cl (-0.67) < Pyrr (-0.53) < Ph (-0.49) < OR (-0.19) < OCH(2)CH(2)Cl (-0.07) < etpb (-0.03) < N(C(4)H(8)) (+0.01). Different PGEs are found for other P-donor-dependent properties although they are simply related to each other.

  4. Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis

    PubMed Central

    Zuo, Zhiwei; Cong, Huan; Li, Wei; Choi, Junwon; Fu, Gregory C.; MacMillan, David W. C.

    2016-01-01

    An asymmetric decarboxylative Csp3–Csp2 cross-coupling has been achieved via the synergistic merger of photoredox and nickel catalysis. This mild, operationally simple protocol transforms a wide variety of naturally abundant α-amino acids and readily available aryl halides into valuable chiral benzylic amines in high enantiomeric excess, thereby producing motifs found in pharmacologically active agents. PMID:26849354

  5. Sulfonamidation of Aryl and Heteroaryl Halides through Photosensitized Nickel Catalysis.

    PubMed

    Kim, Taehoon; McCarver, Stefan J; Lee, Chulbom; MacMillan, David W C

    2018-03-19

    Herein we report a highly efficient method for nickel-catalyzed C-N bond formation between sulfonamides and aryl electrophiles. This technology provides generic access to a broad range of N-aryl and N-heteroaryl sulfonamide motifs, which are widely represented in drug discovery. Initial mechanistic studies suggest an energy-transfer mechanism wherein C-N bond reductive elimination occurs from a triplet excited Ni II complex. Late-stage sulfonamidation in the synthesis of a pharmacologically relevant structure is also demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis and Anticancer Activity of 2-(Alkyl-, Alkaryl-, Aryl-, Hetaryl-)-[1,2,4]triazolo[1,5-c]quinazolines

    PubMed Central

    Kovalenko, Sergiy I.; Antypenko, Lyudmyla M.; Bilyi, Andriy K.; Kholodnyak, Sergiy V.; Karpenko, Olexandr V.; Antypenko, Olexii M.; Mykhaylova, Natalya S.; Los, Tetyana I.; Kolomoets, Olexandra S.

    2013-01-01

    The combinatorial library of novel potential anticancer agents, namely, 2-(alkyl-, alkaryl-, aryl-, hetaryl-)[1,2,4]triazolo[1,5-c]quinazolines, was synthesized by the heterocyclization of the alkyl-, alkaryl-, aryl-, hetarylcarboxylic acid (3H-quinazoline-4-ylidene)hydrazides by oxidative heterocyclization of the 4-(arylidenehydrazino)quinazolines using bromine, and by the heterocyclization of N-(2-cyanophenyl)formimidic acid ethyl ester. The optimal method for synthesis of the s-triazolo[1,5-c]quinazolines appeared to be cyclocondensation of the corresponding carboxylic acid (3H-quinazoline-4-ylidene)hydrazides. The compounds’ structures were established by 1H, 13C NMR, LC- and EI-MS analysis. The in vitro screening of anticancer activity determined the most active compound to be 3,4,5-trimethoxy-N′-[quinazolin-4(3H)-ylidene]benzohydrazide (3.20) in micromolar concentrations with the GI50 level (MG_MID, GI50 is 2.29). Thus, the cancer cell lines whose growth is greatly inhibited by compound 3.20 are: non-small cell lung cancer (NCI-H522, GI50=0.34), CNS (SF-295, GI50=0.95), ovarian (OVCAR-3, GI50=0.33), prostate (PC-3, GI50=0.56), and breast cancer (MCF7, GI50=0.52), leukemia (K-562, GI50=0.41; SR, GI50=0.29), and melanoma (MDA-MB-435, GI50=0.31; SK-MEL-5, GI50=0.74; UACC-62, GI50=0.32). SAR-analysis is also discussed. PMID:23833709

  7. N-heterocycle carbene (NHC)-ligated cyclopalladated N,N-dimethylbenzylamine: a highly active, practical and versatile catalyst for the Heck-Mizoroki reaction.

    PubMed

    Peh, Guang-Rong; Kantchev, Eric Assen B; Zhang, Chi; Ying, Jackie Y

    2009-05-21

    The wide dissemination of catalytic protocols in academic and industrial laboratories is facilitated by the development of catalysts that are not only highly active but also user-friendly, stable to moisture, air and long term storage and easy to prepare on a large scale. Herein we describe a protocol for the Heck-Mizoroki reaction mediated by cyclopalladated N,N-dimethylbenzylamine (dmba) ligated with a N-heterocyclic carbene, 1,3-bis(mesityl)imidazol-2-ylidene (IMes), that fulfils these criteria. The precatalyst can be synthesized on approximately 100 g scale by a tri-component, sequential, one-pot reaction of N,N-dimethylbenzylamine, PdCl2 and IMes.HCl in refluxing acetonitrile in air in the presence of K2CO3. This single component catalyst is stable to air, moisture and long term storage and can be conveniently dispensed as a stock solution in NMP. It mediates the Heck-Mizoroki reaction of a range of aryl- and heteroaryl bromides in reagent grade NMP at the 0.1-2 mol% range without the need for rigorous anhydrous techniques or a glovebox, and is active even in air. The catalyst is capable of achieving very high levels of catalytic activity (TON of up to 5.22 x 10(5)) for the coupling of a deactivated arylbromide, p-bromoanisole, with tBu acrylate as a benchmark substrate pair. A wide range of aryl bromides, iodides and, for the first time with a NHC-Pd catalyst, a triflate was coupled with diverse acrylate derivatives (nitrile, tert-butyl ester and amides) and styrene derivatives. The use of excess (>2 equiv.) of the aryl bromide and tert-butyl acrylate leads to mixture of tert-butyl beta,beta-diarylacrylate and tert-butyl cinnamate derivatives depending on the substitution pattern of the aryl bromide. Electron rich m- and p-substituted arylbromides give the diarylated products exclusively, whereas electron-poor aryl bromides give predominantly mono-arylated products. For o-substituted aryl bromides, no doubly arylated products could be obtained under any conditions. Overall, the active catalyst (IMes-Pd) shows higher activity with electron-rich aryl halides, a marked difference compared with the more commonly used phosphane-Pd or non-ligated Pd catalysts.

  8. Synthesis of novel 16-spiro steroids: 7-(Aryl)tetrahydro-1H-pyrrolo[1,2-c][1,3]thiazolo estrone hybrid heterocycles.

    PubMed

    Jeyachandran, Veerappan; Vivek Kumar, Sundaravel; Ranjith Kumar, Raju

    2014-04-01

    The 1,3-dipolar cycloaddition of azomethine ylides generated in situ from the reaction of isatins or acenaphthylene-1,2-dione and 1,3-thiazolane-4-carboxylic acid to various exocyclic dipolarophiles synthesized from estrone afforded a library of novel C-16 spiro oxindole or acenaphthylene-1-one - 7-(aryl)tetrahydro-1H-pyrrolo[1,2-c][1,3]thiazole - estrone hybrid heterocycles. These reactions occur regio- and stereo-selectively affording a single isomer of the spiro estrones in excellent yields with the formation of two C-C and one C-N bonds along with the generation of four new contiguous stereo-centers in a single step. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Identification and characterization of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones as inhibitors of the fatty acid transporter FATP4.

    PubMed

    Blackburn, Christopher; Guan, Bing; Brown, James; Cullis, Courtney; Condon, Stephen M; Jenkins, Tracy J; Peluso, Stephane; Ye, Yingchun; Gimeno, Ruth E; Punreddy, Sandhya; Sun, Ying; Wu, Hui; Hubbard, Brian; Kaushik, Virendar; Tummino, Peter; Sanchetti, Praveen; Yu Sun, Dong; Daniels, Tom; Tozzo, Effie; Balani, Suresh K; Raman, Prakash

    2006-07-01

    Several potent, cell permeable 4-aryl-dihydropyrimidinones have been identified as inhibitors of FATP4. Lipophilic ester substituents at the 5-position and substitution at the para-position (optimal groups being -NO(2) and CF(3)) of the 4-aryl group led to active compounds. In two cases racemates were resolved and the S enantiomers shown to have higher potencies.

  10. AN EFFICIENT AQUEOUS N-HETEROCYCLIZATION OF ANILINE DERIVATIVES: MICROWAVE-ASSISTED SYNTHESIS OF N-ARYL AZACYCLOALKANES

    EPA Science Inventory

    N-aryl azacycloalkanes, an important class of building blocks in natural product and pharmaceuticals, are synthesized via an efficient and simple eco-friendly protocol that involves double N-alkylation of aniline derivatives. The reaction is accelerated by exposure to microwaves ...

  11. An efficient synthesis of bis-1,3-(3'-aryl-N-heterocycl-1'-yl)arenes as CCC-NHC pincer ligand precursors.

    PubMed

    Howell, Tyler O; Huckaba, Aron J; Hollis, T Keith

    2014-05-02

    A report that demonstrated an efficient methodology for the arylation of imidazoles has been extended to bis(N-heterocyclic) compounds. Using bis(aryl) iodonium salts provides high-yielding access to CCC-NHC ligand precursors in a single step. Examples of arylation using various iodonium salts are reported herein with an investigation into the factors governing their relative rate of reactivity. The metalation of one of these compounds using Zr(NMe2)4 and its subsequent treatment with [Pt(COD)Cl2] to yield a transmetalated product are reported.

  12. A Convenient, TiCl4/SnCl4-Mediated Synthesis of N-Phenyl or N-Aryl Benzamidines and N-Phenylpicolinamidines

    PubMed Central

    Patil, Umesh D.; Mahulikar, Pramod P.

    2012-01-01

    A new, TiCl4-or SnCl4-mediated, solvent-free method was developed for the synthesis of N-Aryl benzamidines and N-phenylpicolinamidines, in moderate-to-good yield, using suitable amines and nitriles as starting materials. PMID:24052858

  13. Selective Cleavage of the Aryl Ether Bonds in Lignin for Depolymerization by Acidic Lithium Bromide Molten Salt Hydrate under Mild Conditions.

    PubMed

    Yang, Xiaohui; Li, Ning; Lin, Xuliang; Pan, Xuejun; Zhou, Yonghong

    2016-11-09

    The present study demonstrates that the concentrated lithium bromide (LiBr) solution with acid as catalyst was able to selectively cleave the β-O-4 aryl ether bond and lead to lignin depolymerization under mild conditions (e.g., in 60% LiBr with 0.3 M HCl at 110 °C for 2 h). Four industrial lignins from different pulping and biorefining processes, including softwood kraft lignin (SKL), hardwood kraft lignin (HKL), softwood ethanol organosolv lignin (EOL), and acid corncob lignin (ACL), were treated in the LiBr solution. The molecular weight, functional group, and interunit linkages of the lignins were characterized using GPC, FTIR, and NMR. The results indicated that the β-O-4 aryl ether bonds of the lignins were selectively cleaved, and both LiBr and HCl played crucial roles in catalyzing the cleavage of the ether bonds.

  14. Copper(II)-Catalyzed Conversion of Aryl/Heteroaryl Boronic Acids, Boronates, and Trifluoroborates into the Corresponding Azides: Substrate Scope and Limitations.

    PubMed

    Grimes, Kimberly D; Gupte, Amol; Aldrich, Courtney C

    2010-05-01

    We report the copper(II)-catalyzed conversion of organoboron compounds into the corresponding azide derivatives. A systematic series of phenylboronic acid derivatives is evaluated to examine the importance of steric and electronic effects of the substituents on reaction yield as well as functional group compatibility. Heterocyclic substrates are also shown to participate in this mild reaction while compounds incorporating B-C(sp(3)) bonds are unreactive under the reaction conditions. The copper(II)-catalyzed boronic acid-azide coupling reaction is further extended to both boronate esters and potassium organotrifluoroborate salts. The method described herein complements existing procedures for the preparation of aryl azides from the respective amino, triazene, and halide derivatives and we expect that it will greatly facilitate copper- and ruthenium-catalyzed azide-alkyne cycloaddition reactions for the preparation of diversely functionalized 1-aryl- or 1-heteroaryl-1,2,3-triazoles derivatives.

  15. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity.

    PubMed

    Fattorini, L; Veloccia, A; Della Rovere, F; D'Angeli, S; Falasca, G; Altamura, M M

    2017-07-11

    Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 μM IBA is more AR-inductive than 10 μM IAA, and, in thin cell layers (TCLs), IBA induces ARs when combined with 0.1 μM kinetin (Kin). It is unknown whether arabidopsis TCLs produce ARs under IBA alone (10 μM) or IAA alone (10 μM), and whether they contain endogenous IAA/IBA at culture onset, possibly interfering with the exogenous IBA/IAA input. Moreover, it is unknown whether an IBA-to-IAA conversion is active in TCLs, and positively affects AR formation, possibly through the activity of the nitric oxide (NO) deriving from the conversion process. Revealed undetectable levels of both auxins at culture onset, showing that arabidopsis TCLs were optimal for investigating AR-formation under the total control of exogenous auxins. The AR-response of TCLs from various ecotypes, transgenic lines and knockout mutants was analyzed under different treatments. It was shown that ARs are better induced by IBA than IAA and IBA + Kin. IBA induced IAA-efflux (PIN1) and IAA-influx (AUX1/LAX3) genes, IAA-influx carriers activities, and expression of ANTHRANILATE SYNTHASE -alpha1 (ASA1), a gene involved in IAA-biosynthesis. ASA1 and ANTHRANILATE SYNTHASE -beta1 (ASB1), the other subunit of the same enzyme, positively affected AR-formation in the presence of exogenous IBA, because the AR-response in the TCLs of their mutant wei2wei7 was highly reduced. The AR-response of IBA-treated TCLs from ech2ibr10 mutant, blocked into IBA-to-IAA-conversion, was also strongly reduced. Nitric oxide, an IAA downstream signal and a by-product of IBA-to-IAA conversion, was early detected in IAA- and IBA-treated TCLs, but at higher levels in the latter explants. Altogether, results showed that IBA induced AR-formation by conversion into IAA involving NO activity, and by a positive action on IAA-transport and ASA1/ASB1-mediated IAA-biosynthesis. Results are important for applications aimed to overcome rooting recalcitrance in species of economic value, but mainly for helping to understand IBA involvement in the natural process of adventitious rooting.

  16. Polychlorinated biphenyls (PCBs) contamination and aryl hydrocarbon receptor (AhR) agonist activity of Omega-3 polyunsaturated fatty acid supplements: implications for daily intake of dioxins and PCBs.

    PubMed

    Bourdon, J A; Bazinet, T M; Arnason, T T; Kimpe, L E; Blais, J M; White, P A

    2010-11-01

    Omega-3 polyunsaturated fatty acid (n-3 PUFA) rich oils derived primarily from fish are frequently consumed as supplements. Due to the tendency of persistent organic pollutants (POPs) to accumulate in exposed organisms, n-3 PUFA supplements can contain sufficient POPs to present a risk to consumers. Here we investigated PCB concentrations and aryl hydrocarbon receptor (AhR) agonist activity in 17 n-3 PUFA supplements available in Canada. PCBs ranged from <0.8 to 793 ng g(-1) oil, with salmon- and seal-derived products yielding the highest values. AhR agonist activity from a reporter gene assay ranged from 1.3 to 72.2 pg TEQ g(-1) oil, with salmon and tuna yielding the highest values. When consumed at the recommended doses and as a supplement to the average Canadian diet, seal-derived oil can contribute to exceedance of the tolerable daily intake of 20 ng PCBs kg-BW(-1)day(-1), and salmon-, tuna-, and sea herring-derived oils can contribute to exceedance of the tolerable daily intake limit of 2.3 pg TEQ kg-BW(-1)day(-1). The beneficial properties of fish and n-3 PUFA supplements, and the results of this study suggest that it is prudent to consume supplements derived from small, cold-water fatty fish. Further research will be necessary to draw firm conclusions. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  17. Asymmetric NHC-catalyzed redox α-amination of α-aroyloxyaldehydes.

    PubMed

    Taylor, James E; Daniels, David S B; Smith, Andrew D

    2013-12-06

    Asymmetric α-amination through an N-heterocyclic carbene (NHC)-catalyzed redox reaction of α-aroyloxyaldehydes with N-aryl-N-aroyldiazenes to form α-hydrazino esters with high enantioselectivity (up to 99% ee) is reported. The hydrazide products are readily converted into enantioenriched N-aryl amino esters through samarium(II) iodide mediated N-N bond cleavage.

  18. Characterization and Engineering of the Adenylation Domain of a NRPS-Like Protein: A Potential Biocatalyst for Aldehyde Generation

    PubMed Central

    2015-01-01

    The adenylation (A) domain acts as the first “gate-keeper” to ensure the activation and thioesterification of the correct monomer to nonribosomal peptide synthetases (NRPSs). Our understanding of the specificity-conferring code and our ability to engineer A domains are critical for increasing the chemical diversity of nonribosomal peptides (NRPs). We recently discovered a novel NRPS-like protein (ATEG_03630) that can activate 5-methyl orsellinic acid (5-MOA) and reduce it to 2,4-dihydroxy-5,6-dimethyl benzaldehyde. A NRPS-like protein is much smaller than multidomain NRPSs, but it still represents the thioesterification half-reaction, which is otherwise missed from a stand-alone A domain. Therefore, a NRPS-like protein may serve as a better model system for A domain engineering. Here, we characterize the substrate specificity of ATEG_03630 and conclude that the hydrogen-bond donor at the 4-position is crucial for substrate recognition. Next, we show that the substrate specificity of ATEG_03630 can be engineered toward our target substrate anthranilate via bioinformatics analysis and mutagenesis. The resultant mutant H358A increased its activity toward anthranilate by 10.9-fold, which led to a 26-fold improvement in specificity. Finally, we demonstrate one-pot chemoenzymatic synthesis of 4-hydroxybenzaldoxime from 4-hydroxybenzoic acid with high yield. PMID:24804152

  19. Comprehensive analysis of the tryptophan metabolome in urine of patients with acute intermittent porphyria.

    PubMed

    Gomez-Gomez, Alex; Marcos, Josep; Aguilera, Paula; To-Figueras, Jordi; Pozo, Oscar J

    2017-08-15

    Acute intermittent porphyria (AIP) is a rare metabolic disorder due to a deficiency of porphobilinogen deaminase, the third enzyme of the heme biosynthetic pathway. This low enzymatic activity may predispose to the appearance of acute neurological attacks. Seminal studies suggested that AIP was associated with changes in tryptophan homeostasis with inconclusive results. Therefore, the aim of this study was to analyze the urinary metabolome of AIP patients focusing on tryptophan metabolism using state-of-the-art technology. This was a case-control study including a group of 25 AIP patients with active biochemical disease and increased excretion of heme-precursors and 25 healthy controls. Tryptophan and related compounds and metabolites including: large neutral amino acids (LNAAs), serotonin, kynurenine, kynurenic acid and anthranilic acid were quantified in urine by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Twenty-nine biological markers (including metabolic ratios and absolute concentrations) were compared between patients and controls. Significant differences were found in the tryptophan-kynurenine metabolic pathway. Compared to controls, AIP patients showed: (a) increased urinary excretion of kynurenine and anthranilic acid (P<0.005); (b): elevation of the kynurenine/tryptophan ratio (P<0.001) and (c): decrease of the kynurenic acid/kynurenine ratio (P=0.001). In contrast, no differences were found in the serotonin metabolic pathway independently of the markers and ratios used. The results of the study demonstrate that there is an imbalance in the kynurenine metabolic pathway in AIP patients, with an increase of the kynurenine/tryptophan ratio in urine and a reduction of the kynurenic acid/kynurenine ratio. The modified ratios suggest induction of indoleamine 2,3-deoxygenase and decreased activity of kynurenine aminotransferase in the liver. The results confirm that LC-MS/MS is useful for the characterization of the urinary metabolome of hepatic porphyrias. Copyright © 2017. Published by Elsevier B.V.

  20. Identification of a methyltransferase catalyzing the final step of methyl anthranilate synthesis in cultivated strawberry

    USDA-ARS?s Scientific Manuscript database

    Methyl anthranilate (MA) contributes an attractive fruity note to the complex flavor and aroma of strawberry (Fragaria spp.), yet it is rarely found in modern cultivars. The genetic basis for its biosynthesis has not been elucidated. Understanding the specific genes required for its synthesis could ...

  1. A new look at acid catalyzed deacetylation of carbohydrates: A regioselective synthesis and reactivity of 2-O-acetyl aryl glycopyranosides.

    PubMed

    Stepanova, Elena V; Nagornaya, Marina O; Filimonov, Victor D; Valiev, Rashid R; Belyanin, Maxim L; Drozdova, Anna K; Cherepanov, Victor N

    2018-03-22

    In the present work we report that acetyl groups of per - acetylated aryl glycosides have different reactivity during the acidic deacetylation using HCl/EtOH in CHCl 3, which leads to preferential deacetylation at O-3, O-4 and O-6. Thereby, the one-step preparation of 2-O-acetyl aryl glycosides with simple aglycon was accomplished for the first time. It was proved that the found reagent is to be general and unique for the preparation of series of 2-О-acetyl aryl glycosides. We have determined the influence of both carbohydrate moiety and the aglycon on the selectivity of deacetylation reaction by kinetic experiments. Using DFT/B3LYP/6-31G(d,p) and semi-empirical АМ1 methods we have found that the highest activation barrier is for 2-О-acetyl group. This completely explains the least reactivity of 2-О-acetyl group. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Single tag for total carbohydrate analysis.

    PubMed

    Anumula, Kalyan Rao

    2014-07-15

    Anthranilic acid (2-aminobenzoic acid, 2-AA) has the remarkable property of reacting rapidly with every type of reducing carbohydrate. Reactivity of 2-AA with carbohydrates in aqueous solutions surpasses all other tags reported to date. This unique capability is attributed to the strategically located -COOH which accelerates Schiff base formation. Monosaccharides, oligosaccharides (N-, O-, and lipid linked and glycans in secretory fluids), glycosaminoglycans, and polysaccharides can be easily labeled with 2-AA. With 2-AA, labeling is simple in aqueous solutions containing proteins, peptides, buffer salts, and other ingredients (e.g., PNGase F, glycosidase, and transferase reaction mixtures). In contrast, other tags require relatively pure glycans for labeling in anhydrous dimethyl sulfoxide-acetic acid medium. Acidic conditions are known to cause desialylation, thus requiring a great deal of attention to sample preparation. Simpler labeling is achieved with 2-AA within 30-60 min in mild acetate-borate buffered solution. 2-AA provides the highest sensitivity and resolution in chromatographic methods for carbohydrate analysis in a simple manner. Additionally, 2-AA is uniquely qualified for quantitative analysis by mass spectrometry in the negative mode. Analyses of 2-AA-labeled carbohydrates by electrophoresis and other techniques have been reported. Examples cited here demonstrate that 2-AA is the universal tag for total carbohydrate analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Synthesis, fluorescence properties and the promising cytotoxicity of pyrene-derived aminophosphonates.

    PubMed

    Lewkowski, Jarosław; Rodriguez Moya, Maria; Wrona-Piotrowicz, Anna; Zakrzewski, Janusz; Kontek, Renata; Gajek, Gabriela

    2016-01-01

    A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20-97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.68) in phosphate-buffered saline (PBS). The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM), simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM).

  4. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Rapid Isocratic Liquid Chromatographic Separation and Quantification of Tryptophan and Six kynurenine Metabolites in Biological Samples with Ultraviolet and Fluorimetric Detection

    PubMed Central

    Badawy, Abdulla A-B; Morgan, Christopher J

    2010-01-01

    A simple, rapid isocratic liquid chromatographic procedure with ultraviolet and fluorimetric detection is described for the separation and quantification of L-tryptophan (Trp) and six of its kynurenine metabolites (kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilic, kynurenic, xanthurenic and anthranilic acids). Using the Perkin Elmer LC 200 system, a reverse phase Synergi 4 μ fusion-RP80 A column (250 × 4.6 mm) (Phenomenex), and a mobile phase of 10 mM sodium dihydrogen phosphate: methanol (73:27, by vol) at pH 2.8 and a flow rate of 1.0–1.2 ml/min at 37 °C, a run took ∼13 min. The run took <7 min at 40 °C and a 1.4 ml/min flow rate. Limits of detection of all 7 analytes were 5–72 nM and their recoveries from human plasma and rat serum and liver varied between 62% and 111%. This simple method is suitable for high throughput work and can be further developed to include quinolinic acid and other Trp metabolites. PMID:22084598

  6. Metal and base free synthesis of primary amines via ipso amination of organoboronic acids mediated by [bis(trifluoroacetoxy)iodo]benzene (PIFA).

    PubMed

    Chatterjee, Nachiketa; Goswami, Avijit

    2015-08-07

    A metal and base free synthesis of primary amines has been developed at ambient temperature through ipso amination of diversely functionalized organoboronic acids, employing a combination of [bis(trifluoroacetoxy)iodo]benzene (PIFA)-N-bromosuccinimide (NBS) and methoxyamine hydrochloride as the aminating reagent. The amines were primarily obtained as their trifluoroacetate salts which on subsequent aqueous alkaline work up provided the corresponding free amines. The combination of PIFA-NBS is found to be the mildest choice compared to the commonly used strong bases (e.g. n-BuLi, Cs2CO3) for activating the aminating agent. The reaction is expected to proceed via activation of the aminating reagent followed by B-N 1,2-aryl migration.

  7. Modulation of the Substitution Pattern of 5-Aryl-2-Aminoimidazoles Allows Fine-Tuning of Their Antibiofilm Activity Spectrum and Toxicity

    PubMed Central

    Peeters, Elien; Hooyberghs, Geert; Robijns, Stijn; Waldrant, Kai; De Weerdt, Ami; Delattin, Nicolas; Liebens, Veerle; Kucharíková, Soňa; Tournu, Hélène; Verstraeten, Natalie; Dovgan, Barbara; Girandon, Lenart; Fröhlich, Mirjam; De Brucker, Katrijn; Michiels, Jan; Cammue, Bruno P. A.; Thevissen, Karin; Vanderleyden, Jozef; Van der Eycken, Erik

    2016-01-01

    We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity preventing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong activity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C. albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substitution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the antibiofilm activity spectrum and toxicity. PMID:27550355

  8. Electronic absorption spectral studies of Pr(III) chelates with some amino acids

    NASA Astrophysics Data System (ADS)

    Kachhawa, Chanchal; Solanki, Kanika; Bhandari, H. S.

    2018-05-01

    Investigations on Pr(III) systems with 1:1 metal-ligand stoichiometric ratio have been carried out in different solvents. β - Alanine, Taurine and anthranilic acid have been opted as ligands for the investigations. The Study is based on doped crystal phenomenon. The Slater-Condon, spin-orbit, nephelauxetic, bonding, Racah and Judd-Ofelt parameters have been explored during the study. Four bands for Pr(III) have been observed and recorded in the region 350 nm to 900nm. Partial regression method has been used for calculations. Use of computational chemistry has been explored in order to develop better and easier methods of calculations.

  9. Synthesis, structures, electrochemical studies and antioxidant activity of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids

    NASA Astrophysics Data System (ADS)

    Quiroga, Jairo; Romo, Pablo E.; Ortiz, Alejandro; Isaza, José Hipólito; Insuasty, Braulio; Abonia, Rodrigo; Nogueras, Manuel; Cobo, Justo

    2016-09-01

    The synthesis of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids 3 from the reaction of 6-aminopyrimidines 1 with arylidene derivatives of pyruvic acid 2 under microwave and ultrasound irradiation is described. The orientation of cyclization process was determined by NMR measurements. The methodology provides advantages such as high yields and friendly to the environment without the use of solvents. The antioxidant properties, DPPH free radical scavenging, ORAC, and anodic potential oxidation of the new pyridopyrimidines were studied.

  10. Targeting the UPR to Circumvent Endocrine Resistance in Breast Cancer

    DTIC Science & Technology

    2016-12-01

    chemistry Our initial synthetic efforts in the NPPTA project are to generate gram quantities of NPPTA and JS-20 as seen in Figure 1. NPPTA JS...diversity on the bi-aryl ether moiety of the target analogs. This plan requires the preparation of gram quantities of acid 2. 1 X = H, CF 3 N N NNH S O...NNH S O NH O O NH2 Scheme 3. Proposed synthesis of NPPTA Our goal in this project is to prepare five grams of NPPTA and JS20 as seen in Figure 1

  11. LC-MS/MS-based quantification of kynurenine metabolites, tryptophan, monoamines and neopterin in plasma, cerebrospinal fluid and brain.

    PubMed

    Fuertig, René; Ceci, Angelo; Camus, Sandrine M; Bezard, Erwan; Luippold, Andreas H; Hengerer, Bastian

    2016-09-01

    The kynurenine (KYN) pathway is implicated in diseases such as cancer, psychiatric, neurodegenerative and autoimmune disorders. Measurement of KYN metabolite levels will help elucidating the involvement of the KYN pathway in the disease pathology and inform drug development. Samples of plasma, cerebrospinal fluid or brain tissue were spiked with deuterated internal standards, processed and analyzed by LC-MS/MS; analytes were chromatographically separated by gradient elution on a C18 reversed phase analytical column without derivatization. We established an LC-MS/MS method to measure 11 molecules, namely tryptophan, KYN, 3-OH-KYN, 3-OH-anthranilic acid, quinolinic acid, picolinic acid, kynurenic acid, xanthurenic acid, serotonin, dopamine and neopterin within 5.5 min, with sufficient sensitivity to quantify these molecules in small sample volumes of plasma, cerebrospinal fluid and brain tissue.

  12. Changes in kynurenine pathway metabolism in Parkinson patients with L-DOPA-induced dyskinesia.

    PubMed

    Havelund, Jesper F; Andersen, Andreas D; Binzer, Michael; Blaabjerg, Morten; Heegaard, Niels H H; Stenager, Egon; Faergeman, Nils J; Gramsbergen, Jan Bert

    2017-09-01

    L-3,4-Dihydroxyphenylalanine (L-DOPA) is the most effective drug in the symptomatic treatment of Parkinson's disease, but chronic use is associated with L-DOPA-induced dyskinesia in more than half the patients after 10 years of treatment. L-DOPA treatment may affect tryptophan metabolism via the kynurenine pathway. Altered levels of kynurenine metabolites can affect glutamatergic transmission and may play a role in the development of L-DOPA-induced dyskinesia. In this study, we assessed kynurenine metabolites in plasma and cerebrospinal fluid of Parkinson's disease patients and controls. Parkinson patients (n = 26) were clinically assessed for severity of motor symptoms (UPDRS) and L-DOPA-induced dyskinesia (UDysRS). Plasma and cerebrospinal fluid samples were collected after overnight fasting and 1-2 h after intake of L-DOPA or other anti-Parkinson medication. Metabolites were analyzed in plasma and cerebrospinal fluid of controls (n = 14), Parkinson patients receiving no L-DOPA (n = 8), patients treated with L-DOPA without dyskinesia (n = 8), and patients with L-DOPA-induced dyskinesia (n = 10) using liquid chromatography-mass spectrometry. We observed approximately fourfold increase in the 3-hydroxykynurenine/kynurenic acid ratio in plasma of Parkinson's patients with L-DOPA-induced dyskinesia. Anthranilic acid levels were decreased in plasma and cerebrospinal fluid of this patient group. 5-Hydroxytryptophan levels were twofold increased in all L-DOPA-treated Parkinson's patients. We conclude that a higher 3-hydroxykynurenine/kynurenic acid ratio in plasma may serve as a biomarker for L-DOPA-induced dyskinesia. Longitudinal studies including larger patients cohorts are needed to verify whether the changes observed here may serve as a prognostic marker for L-DOPA-induced dyskinesia. © 2017 International Society for Neurochemistry.

  13. Regioselective reaction: synthesis and pharmacological study of Mannich bases containing ibuprofen moiety.

    PubMed

    Sujith, K V; Rao, Jyothi N; Shetty, Prashanth; Kalluraya, Balakrishna

    2009-09-01

    A series of 4-[(4-aryl)methylidene]amino-2-(substituted-4-ylmethyl)-5-{1-[4-(2-methylpropyl)phenyl]ethyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione (6) were synthesized from an arylpropionic acid namely, ibuprofen by a three-component Mannich reaction. Aminomethylation of 4-[(4-aryl)methylidene]amino-5-{1-[4-(2-methylpropyl)phenyl] ethyl}-4H-1,2,4-triazole-3-thiol (5) with formaldehyde and a secondary amine furnished this novel series of Mannich bases (6). Both Schiff bases (5) and Mannich bases (6) were well characterized on the basis of IR, NMR, mass spectral data and elemental analysis. They were screened for their anti-inflammatory, analgesic, antibacterial and antifungal activities. Some of the Mannich bases (6) carrying morpholino and N-methylpiperazino residues were found to be promising anti-inflammatory and analgesic agents.

  14. ¹⁹F magnetic resonance probes for live-cell detection of peroxynitrite using an oxidative decarbonylation reaction.

    PubMed

    Bruemmer, Kevin J; Merrikhihaghi, Sara; Lollar, Christina T; Morris, Siti Nur Sarah; Bauer, Johannes H; Lippert, Alexander R

    2014-10-21

    We report a newly discovered oxidative decarbonylation reaction of isatins that is selectively mediated by peroxynitrite (ONOO(-)) to provide anthranilic acid derivatives. We have harnessed this rapid and selective transformation to develop two reaction-based probes, 5-fluoroisatin and 6-fluoroisatin, for the low-background readout of ONOO(-) using (19)F magnetic resonance spectroscopy. 5-fluoroisatin was used to non-invasively detect ONOO(-) formation in living lung epithelial cells stimulated with interferon-γ (IFN-γ).

  15. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion

    PubMed Central

    Chira, Ana; Bucur, Bogdan; Radu, Gabriel-Lucian

    2017-01-01

    Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctyl)aniline, 4-aminoantipyrine, 4-(4-aminophenyl)butyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM). The electrodeposited mass varies between 26 ng/cm2 for 4-fluoroaniline formed during 30 s to 442 ng/cm2 for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN) and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenyl)butyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found. PMID:28772600

  16. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion.

    PubMed

    Chira, Ana; Bucur, Bogdan; Radu, Gabriel-Lucian

    2017-02-28

    Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctyl)aniline, 4-aminoantipyrine, 4-(4-aminophenyl)butyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM). The electrodeposited mass varies between 26 ng/cm² for 4-fluoroaniline formed during 30 s to 442 ng/cm² for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN) and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenyl)butyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.

  17. Lewis acid catalyzed [3 + 2] annulation of ketenimines with donor-acceptor cyclopropanes: an approach to 2-alkylidenepyrrolidine derivatives.

    PubMed

    Alajarin, Mateo; Egea, Adrian; Orenes, Raul-Angel; Vidal, Angel

    2016-11-02

    The [3 + 2] annulation reaction of C,C,N-trisubstituted ketenimines with donor-acceptor cyclopropanes bearing aryl, styryl and vinyl substituents at the C2 position, triggered by the Lewis acid Sc(OTf) 3 , supplies highly substituted pyrrolidines. Activated cyclopropanes fused to naphthalene and [1]benzopyrane nuclei are also suitable substrates in similar transformations, yielding partially saturated benz[g]indoles and [1]benzopyran[4,3-b]pyrroles. An intramolecular version of this ketenimine/cyclopropane [3 + 2] annulation has also been developed leading to the pyrrolo[2,1-a]isoindole framework.

  18. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO{sub 3} nanocomposites and rare earth metal complexes: Preparation and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, X. T.; Showkat, A. M.; Wang, Z.

    2015-03-30

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrenemore » grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.« less

  19. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  20. Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates

    PubMed Central

    Dooleweerdt, Karin; Fors, Brett P.; Buchwald, Stephen L.

    2010-01-01

    A catalyst, based on a biarylphosphine ligand, for the Pd-catalyzed cross-coupling reactions of amides and aryl mesylates is described. This system allows an array of aryl and heteroaryl mesylates to be transformed into the corresponding N-arylamides in moderate to excellent yields. PMID:20420379

  1. Access to 6a-Alkyl Aporphines: Synthesis of (±)-N-Methylguattescidine.

    PubMed

    Ku, Angela F; Cuny, Gregory D

    2016-10-21

    (-)-N-Methylguattescidine (3) is an alkaloid recently isolated from Fissistigma latifolium and assigned as a rare example of a 6a-alkyl aporphine. Herein, we report the synthesis of (±)-3 and the des-hydroxyl derivative 4 using our previously reported ortho-phenol arylation methodology mediated by the XPhos precatalyst as a key synthetic step. In addition, substituents on the aryl halide portion of the ortho-phenol arylation substrates significantly influenced the formation of an oxidized side product.

  2. Synthesis and antihyperlipaemic activity of some 2-aminomethyl-3-aryl-5,6,7,8-tetrahydrobenzo(b)/5,6-dimethylthieno++ +(2,3- d) -pyrimidin-4-ones.

    PubMed

    Gadad, A K; Kapsi, S G; Anegundi, R I; Pattan, S R; Mahajanshetti, C S; Shishoo, C J

    1996-10-01

    A series of 2-aminomethyl-3-aryl-5,6,7,8-tetrahydrobenzo(b)/5,6-dimethylthieno (2,3-d) pyrimidin-4-ones (IX) were prepared by the displacement reaction between various amines and 2-chloromethyl-3-aryl-5,6, 7,8-tetrahydrobenzo(b)/5, 6-dimethylthieno(2, 3-d) pyrimidin-4-ones (VIII), which are obtained by the cyclization of corresponding chloroacetylamino derivatives (VII) under acidic condition. Compounds VII were obtained by the interaction of VI and chloroacetylchloride in glacial acetic acid. Compounds VIII were converted to corresponding 2-acetoxymethyl derivatives (X) with potassium acetate in glacial acetic acid. Selected compounds were screened for antihyperlipaemic activity in albino rats, whereby most of these compounds were found to be active. The serum cholesterol and triglyceride lowering activities exhibited by compounds 1 and 3 were found to be comparable to that of gemfibrozil. Compounds 1 and 3 were also found to be safe as indicated by their acute toxicity study.

  3. Perfluoroalkylation of Aryl-N,N-dimethyl Hydrazones Using Hypervalent Iodine(III) Reagents or Perfluoroalkyl Iodides.

    PubMed

    Janhsen, Benjamin; Studer, Armido

    2017-11-17

    Radical trifluoromethylation of aryl N,N-dimethyl hydrazones using TBAI as an initiator and Togni's reagent as a trifluoromethyl radical source is described. Cascades proceed via electron-catalysis; this approach is generally more applicable to hydrazone perfluoroalkylation using perfluoroalkyl iodides as the radical precursors in combination with a base under visible-light initiation.

  4. Novel Haloperoxidase from the Agaric Basidiomycete Agrocybe aegerita Oxidizes Aryl Alcohols and Aldehydes

    PubMed Central

    Ullrich, René; Nüske, Jörg; Scheibner, Katrin; Spantzel, Jörg; Hofrichter, Martin

    2004-01-01

    Agrocybe aegerita, a bark mulch- and wood-colonizing basidiomycete, was found to produce a peroxidase (AaP) that oxidizes aryl alcohols, such as veratryl and benzyl alcohols, into the corresponding aldehydes and then into benzoic acids. The enzyme also catalyzed the oxidation of typical peroxidase substrates, such as 2,6-dimethoxyphenol (DMP) or 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS). A. aegerita peroxidase production depended on the concentration of organic nitrogen in the medium, and highest enzyme levels were detected in the presence of soybean meal. Two fractions of the enzyme, AaP I and AaP II, which had identical molecular masses (46 kDa) and isoelectric points of 4.6 to 5.4 and 4.9 to 5.6, respectively (corresponding to six different isoforms), were identified after several steps of purification, including anion- and cation-exchange chromatography. The optimum pH for the oxidation of aryl alcohols was found to be around 7, and the enzyme required relatively high concentrations of H2O2 (2 mM) for optimum activity. The apparent Km values for ABTS, DMP, benzyl alcohol, veratryl alcohol, and H2O2 were 37, 298, 1,001, 2,367 and 1,313 μM, respectively. The N-terminal amino acid sequences of the main AaP II spots blotted after two-dimensional gel electrophoresis were almost identical and exhibited almost no homology to the sequences of other peroxidases from basidiomycetes, but they shared the first three amino acids, as well as two additional amino acids, with the heme chloroperoxidase (CPO) from the ascomycete Caldariomyces fumago. This finding is consistent with the fact that AaP halogenates monochlorodimedone, the specific substrate of CPO. The existence of haloperoxidases in basidiomycetous fungi may be of general significance for the natural formation of chlorinated organic compounds in forest soils. PMID:15294788

  5. Preparation of catalytically active, covalent α-polylysine-enzyme conjugates via UV/vis-quantifiable bis-aryl hydrazone bond formation.

    PubMed

    Grotzky, Andrea; Manaka, Yuichi; Kojima, Taisuke; Walde, Peter

    2011-01-10

    Covalent UV/vis-quantifiable bis-aryl hydrazone bond formation was investigated for the preparation of conjugates between α-poly-d-lysine (PDL) and either α-chymotrypsin (α-CT) or horseradish peroxidase (HRP). PDL and the enzymes were first modified via free amino groups with the linking reagents succinimidyl 6-hydrazinonicotinate acetone hydrazone (S-HyNic, at pH 7.6) and succinimidyl 4-formylbenzoate (S-4FB, at pH 7.2), respectively. The modified PDL and enzymes were then conjugated at pH 4.7, whereby polymer chains carrying several enzymes were obtained. Kinetics of the bis-aryl hydrazone bond formation was investigated spectrophotometrically at 354 nm. Retention of the enzymatic activity after conjugate formation was confirmed by using the substrates N-succinimidyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide (for α-CT) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, for HRP). Thus, not only a mild and efficient preparation and convenient quantification of a conjugate between the polycationic α-polylysine and enzymes could be shown, but also the complete preservation of the enzymatic activity.

  6. Synthesis, fluorescence properties and the promising cytotoxicity of pyrene–derived aminophosphonates

    PubMed Central

    Rodriguez Moya, Maria; Wrona-Piotrowicz, Anna; Gajek, Gabriela

    2016-01-01

    Summary A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20–97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.68) in phosphate-buffered saline (PBS). The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM), simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM). PMID:27559373

  7. Conversion of aryl iodides into aryliodine(III) dichlorides by an oxidative halogenation strategy using 30% aqueous hydrogen peroxide in fluorinated alcohol.

    PubMed

    Podgorsek, Ajda; Iskra, Jernej

    2010-04-20

    Oxidative chlorination with HCl/H2O2 in 1,1,1-trifluoroethanol was used to transform aryl iodides into aryliodine(III) dihalides. In this instance 1,1,1-trifluoroethanol is not only the reaction medium, but is also an activator of hydrogen peroxide for the oxidation of hydrochloric acid to molecular chlorine. Aryliodine(III) dichlorides were formed in 72-91% isolated yields in the reaction of aryl iodides with 30% aqueous hydrogen peroxide and hydrochloric acid at ambient temperature. A study of the effect that substituents on the aromatic ring have on the formation and stability of aryliodine(III) dichlorides shows that the transformation is easier to achieve in the presence of the electron-donating groups (i.e. methoxy), but in this case the products rapidly decompose under the reported reaction conditions to form chlorinated arenes. The results suggest that oxidation of hydrogen chloride with hydrogen peroxide is the initial reaction step, while direct oxidation of aryl iodide with hydrogen peroxide is less likely to occur.

  8. Inhibition of Siderophore Biosynthesis in Mycobacterium tuberculosis with Nucleoside Bisubstrate Analogues: Structure–Activity Relationships of the Nucleobase Domain of 5′-O-[N-(Salicyl)sulfamoyl]adenosine

    PubMed Central

    Neres, João; Labello, Nicholas P.; Somu, Ravindranadh V.; Boshoff, Helena I.; Wilson, Daniel J.; Vannada, Jagadeshwar; Chen, Liqiang; Barry, Clifton E.; Bennett, Eric M.; Aldrich, Courtney C.

    2009-01-01

    5′-O-[N-(salicyl)sulfamoyl]adenosine (Sal-AMS) is a prototype for a new class of antitubercular agents that inhibit the aryl acid adenylating enzyme (AAAE) known as MbtA involved in biosynthesis of the mycobactins. Herein, we report the structure-based design, synthesis, biochemical, and biological evaluation of a comprehensive and systematic series of analogues, exploring the structure–activity relationship of the purine nucleobase domain of Sal-AMS. Significantly, 2-phenyl-Sal-AMS derivative 26 exhibited exceptionally potent antitubercular activity with an MIC99 under iron-deficient conditions of 0.049 µM while the N-6-cyclopropyl-Sal-AMS 16 led to improved potency and to a 64-enhancement in activity under iron-deficient conditions relative to iron-replete conditions, a phenotype concordant with the designed mechanism of action. The most potent MbtA inhibitors disclosed here display in vitro antitubercular activity superior to most current first line TB drugs, and these compounds are also expected to be useful against a wide range of pathogens that require aryl-capped siderphores for virulence. PMID:18690677

  9. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  10. N-aryl pyrrolo-tetrathiafulvalene based ligands: synthesis and metal coordination.

    PubMed

    Balandier, Jean-Yves; Chas, Marcos; Dron, Paul I; Goeb, Sébastien; Canevet, David; Belyasmine, Ahmed; Allain, Magali; Sallé, Marc

    2010-03-05

    A straightforward general synthetic access to N-aryl-1,3-dithiolo[4,5-c]pyrrole-2-thione derivatives 6 from acetylenedicarbaldehyde monoacetal is depicted. In addition to their potentiality as precursors to dithioalkyl-pyrrole derivatives, thiones 6 are key building blocks to N-aryl monopyrrolo-tetrathiafulvalene (MPTTF) derivatives 10. X-ray structures of four of these thiones intermediates, reminiscent of the corresponding MPTTF derivatives, are provided. When the aryl group is a binding pyridyl unit, the MPTTF derivative 10a can coordinate M(II) salts (M = Pt, Pd). The first examples of metal-directed orthogonal MPTTF-based dimers 11-14, obtained through coordination of 10a to cis-blocked square planar Pt or Pd complexes are described. Studies on the parameters influencing the dimer construction are presented, as well as first recognition properties of the resulting electron-rich clip for C(60).

  11. Protection against mosquito vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus using a novel insect repellent, ethyl anthranilate.

    PubMed

    Islam, Johirul; Zaman, Kamaruz; Tyagi, Varun; Duarah, Sanjukta; Dhiman, Sunil; Chattopadhyay, Pronobesh

    2017-10-01

    Growing concern on the application of synthetic mosquito repellents in the recent years has instigated the identification and development of better alternatives to control different mosquito-borne diseases. In view of above, present investigation evaluates the repellent activity of ethyl anthranilate (EA), a non-toxic, FDA approved volatile food additive against three known mosquito vectors namely, Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus under laboratory conditions following standard protocols. Three concentration levels (2%, 5% and 10% w/v) of EA were tested against all the three selected mosquito species employing K & D module and arm-in-cage method to determine the effective dose (ED 50 ) and complete protection time (CPT), respectively. The repellent activity of EA was further investigated by modified arm-in-cage method to determine the protection over extended spatial ranges against all mosquito species. All behavioural situations were compared with the well-documented repellent N,N-diethylphenyl acetamide (DEPA) as a positive control. The findings demonstrated that EA exhibited significant repellent activity against all the three mosquitoes species. The ED 50 values of EA, against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus were found to be 0.96%, 5.4% and 3.6% w/v, respectively. At the concentration of 10% w/v, it provided CPTs of 60, 60 and 30min, respectively, against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus mosquitoes. Again in spatial repellency evaluation, EA was found to be extremely effective in repelling all the three tested species of mosquitoes. Ethyl anthranilate provided comparable results to standard repellent DEPA during the study. Results have concluded that the currently evaluated chemical, EA has potential repellent activity against some well established mosquito vectors. The study emphasizes that repellent activity of EA could be exploited for developing effective, eco-friendly, acceptable and safer alternative to the existing harmful repellents for personal protection against different hematophagous mosquito species. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Systems Biology Framework for Modeling Metabolic Enzyme Inhibition of Mycobacterium Tuberculosis

    DTIC Science & Technology

    2009-09-15

    Quadri LE: Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases . Mol Microbiol 2000, 37:1-12. 51. Chou CJ...opportunities for therapeutic intervention. Results: We developed a mathematical framework to simulate the effects on the growth of a pathogen when enzymes in... on the growth of M. tuberculosis in a medium whose carbon source was restricted to fatty acids, and that of the 5’-O-(N-salicylsulfamoyl) adenosine

  13. Optimization of the biotechnological production of a novel class of anti-MRSA antibiotics from Chitinophaga sancti.

    PubMed

    Beckmann, Amelie; Hüttel, Stephan; Schmitt, Viktoria; Müller, Rolf; Stadler, Marc

    2017-08-17

    Recently, the discovery of the elansolids, a group of macrolides, was reported. The molecules show activity against methicillin-resistant Staphylococcus aureus as well as other gram-positive organisms. This fact renders those substances a promising starting point for future chemical development. The active atropisomers A1/A2 are formed by macrolactonization of the biosynthesis product A3 but are prone to ring opening and subsequent formation of several unwanted side products. Recently it could be shown that addition of different nucleophiles to culture extracts of Chitinophaga sancti enable the formation of new stable elansolid derivatives. Furthermore, addition of such a nucleophile directly into the culture led exclusively to formation of a single active elansolid derivative. Due to low product yields, methods for production of gram amounts of these molecules have to be established to enable further development of this promising compound class. Production of elansolid A2 by C. sancti was enabled using a synthetic medium with sucrose as carbon source to a final concentration of 18.9 mg L -1 . A fed-batch fermentation was ensued that resulted in an elansolid A2 concentration of 55.3 mg L -1 . When using glucose as carbon source in a fed-batch fermentation only 34.4 mg L -1 elansolid A2 but 223.1 mg L -1 elansolid C1 were produced. This finding was not unexpected since elansolids A1/A2 and A3 have been reported to easily react with nucleophiles like anthranilic acid, a precursor of tryptophan biosynthesis. Due to the fact that nucleophiles can be incorporated in vivo, a fed-batch cultivation under identical conditions, with addition of anthranilic acid was carried out and lead to almost exclusive formation of elansolid C1 (257.5 mg L -1 ). Reproducible elansolid A2 and C1 production is feasible in different synthetic media at relatively high concentrations that will allow further investigation and semi-synthetic optimization. The feeding of anthranilic acid enables the exclusive production of the stable elansolid derivative C1, which reduces product loss by unspecific reactions and eases downstream processing. This derivative shows activity in the same range as the elansolids A1/A2. Hence, the method can possibly serve as a model-process for incorporation of other nucleophiles and biotechnological production of specifically designed molecules.

  14. Novel reaction of N,N'-bisarylmethanediamines with formaldehyde. Synthesis of some new 1,3,5-triaryl-1,3,5-hexahydrotriazines.

    PubMed

    Ghandi, Mehdi; Salimi, Farshid; Olyaei, Abolfazl

    2006-07-26

    The acid-catalyzed cyclocondensation of N,N'-bisaryl (aryl = 2-pyrimidinyl, 2-pyrazinyl and 4-nitrophenyl) methanediamines 5a-c with aqueous formaldehyde in refluxing acetonitrile leads to the formation of the corresponding 1,3,5-triaryl-1,3,5-hexa-hydrotriazines 6a-c. The stoichiometric reactions of 2-aminopyrimidine and 2-amino-pyrazine with aqueous formaldehyde in acetonitrile under reflux conditions also afforded 6a and 6b, respectively. Treatment of 2-aminopyrimidine with aqueous formaldehyde in a 3:2 ratio yielded N,N',N"-tris(2-pyrimidinyl)dimethylenetriamine (7a) as a sole product, which upon subsequent reaction with formaldehyde also afforded 6a. The reaction of N,N'-biphenylmethanediamine with formaldehyde was also investigated.

  15. γ-Sultam-cored N,N-ligands in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of aryl ketones.

    PubMed

    Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara

    2016-02-14

    The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.

  16. Copper-catalyzed Green and Expeditious N-Arylation of Sulfoximines using Diaryliodonium Salts

    EPA Science Inventory

    An ultrasound-accelerated green route for an expeditious N-arylation of NH-sulfoximines is described that involves the use of benign diaryliodonium salts in aqueous polyethylene glycol-400 and copper(I) bromide as catalyst at room temperature. The high yields of the products and...

  17. Synthesis of aryl pyrazole via Suzuki coupling reaction, in vitro mushroom tyrosinase enzyme inhibition assay and in silico comparative molecular docking analysis with Kojic acid.

    PubMed

    Channar, Pervaiz Ali; Saeed, Aamer; Larik, Fayaz Ali; Batool, Bakhtawar; Kalsoom, Saima; Hasan, M M; Erben, Mauricio F; El-Seedi, Hesham R; Ali, Musrat; Ashraf, Zaman

    2018-04-30

    Aryl pyrazoles are well recognized class of heterocyclic compounds found in several commercially available drugs. Owing to their significance in medicinal chemistry, in this current account we have synthesized a series of suitably substituted aryl pyrazole by employing Suzuki cross-coupling reaction. All compounds were evaluated for inhibition of mushroom tyrosinase enzyme both in vitro and in silico. Compound 3f (IC 50  = 1.568 ± 0.01 µM) showed relatively better potential compared to reference kojic acid (IC 50  = 16.051 ± 1.27 µM). A comparative docking studies showed that compound 3f have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-6.90 kcal/mol) as compared to Kojic acid. The 4-methoxy group in compound 3f shows 100% interaction with Cu. Compound 3f displayed hydrogen binding interaction with His61 and His94 at distance of 1.71 and 1.74 Å which might be responsible for higher activity compared to Kojic acid. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A [Santa Fe, NM; Martinez, Rodolfo A [Santa Fe, NM; Unkefer, Clifford J [Los Alamos, NM

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  19. Transition Metal Free C-N Bond Forming Dearomatizations and Aryl C-H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent.

    PubMed

    Farndon, Joshua J; Ma, Xiaofeng; Bower, John F

    2017-10-11

    We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.

  20. Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice.

    PubMed

    Giles, Kurt; Berry, David B; Condello, Carlo; Dugger, Brittany N; Li, Zhe; Oehler, Abby; Bhardwaj, Sumita; Elepano, Manuel; Guan, Shenheng; Silber, B Michael; Olson, Steven H; Prusiner, Stanley B

    2016-09-01

    Developing therapeutics for neurodegenerative diseases (NDs) prevalent in the aging population remains a daunting challenge. With the growing understanding that many NDs progress by conformational self-templating of specific proteins, the prototypical prion diseases offer a platform for ND drug discovery. We evaluated high-throughput screening hits with the aryl amide scaffold and explored the structure-activity relationships around three series differing in their N-aryl core: benzoxazole, benzothiazole, and cyano. Potent anti-prion compounds were advanced to pharmacokinetic studies, and the resulting brain-penetrant leads from each series, together with a related N-aryl piperazine lead, were escalated to long-term dosing and efficacy studies. Compounds from each of the four series doubled the survival of mice infected with a mouse-passaged prion strain. Treatment with aryl amides altered prion strain properties, as evidenced by the distinct patterns of neuropathological deposition of prion protein and associated astrocytic gliosis in the brain; however, none of the aryl amide compounds resulted in drug-resistant prion strains, in contrast to previous studies on compounds with the 2-aminothiazole (2-AMT) scaffold. As seen with 2-AMTs and other effective anti-prion compounds reported to date, the novel aryl amides reported here were ineffective in prolonging the survival of transgenic mice infected with human prions. Most encouraging is our discovery that aryl amides show that the development of drug resistance is not an inevitable consequence of efficacious anti-prion therapeutics. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice

    PubMed Central

    Giles, Kurt; Berry, David B.; Condello, Carlo; Dugger, Brittany N.; Li, Zhe; Oehler, Abby; Bhardwaj, Sumita; Elepano, Manuel; Guan, Shenheng; Silber, B. Michael; Olson, Steven H.

    2016-01-01

    Developing therapeutics for neurodegenerative diseases (NDs) prevalent in the aging population remains a daunting challenge. With the growing understanding that many NDs progress by conformational self-templating of specific proteins, the prototypical prion diseases offer a platform for ND drug discovery. We evaluated high-throughput screening hits with the aryl amide scaffold and explored the structure–activity relationships around three series differing in their N-aryl core: benzoxazole, benzothiazole, and cyano. Potent anti-prion compounds were advanced to pharmacokinetic studies, and the resulting brain-penetrant leads from each series, together with a related N-aryl piperazine lead, were escalated to long-term dosing and efficacy studies. Compounds from each of the four series doubled the survival of mice infected with a mouse-passaged prion strain. Treatment with aryl amides altered prion strain properties, as evidenced by the distinct patterns of neuropathological deposition of prion protein and associated astrocytic gliosis in the brain; however, none of the aryl amide compounds resulted in drug-resistant prion strains, in contrast to previous studies on compounds with the 2-aminothiazole (2-AMT) scaffold. As seen with 2-AMTs and other effective anti-prion compounds reported to date, the novel aryl amides reported here were ineffective in prolonging the survival of transgenic mice infected with human prions. Most encouraging is our discovery that aryl amides show that the development of drug resistance is not an inevitable consequence of efficacious anti-prion therapeutics. PMID:27317802

  2. Docking of oxalyl aryl amino benzoic acid derivatives into PTP1B

    PubMed Central

    Verma, Neelam; Mittal, Minakshi; Verma, Raman kumar

    2008-01-01

    Protein Tyrosine Phosphatases (PTPs) that function as negative regulators of the insulin signaling cascade have been identified as novel targets for the therapeutic enhancement of insulin action in insulin resistant disease states. Reducing Protein Tyrosine Phosphatase1B (PTP1B) abundance not only enhances insulin sensitivity and improves glucose metabolism but also protects against obesity induced by high fat feeding. PTP1B inhibitors such as Formylchromone derivatives, 1, 2-Naphthoquinone derivatives and Oxalyl aryl amino benzoic derivatives may eventually find an important clinical role as insulin sensitizers in the management of Type-II Diabetes and metabolic syndrome. We have carried out docking of modified oxalyl aryl amino benzoic acid derivatives into three dimensional structure of PTP1B using BioMed CAChe 6.1. These compounds exhibit good selectivity for PTP1B over most of phosphatases in selectivity panel such as SHP-2, LAR, CD45 and TCPTP found in literature. This series of compounds identified the amino acid residues such as Gly220 and Arg221 are important for achieving specificity via H-bonding interactions. Lipophilic side chain of methionine in modified oxalyl aryl amino benzoic acid derivative [1b (a2, b2, c1, d)] lies in closer vicinity of hydrophobic region of protein consisted of Meth258 and Phe52 in comparison to active ligand. Docking Score in [1b (a2, b2, c1, d)] is -131.740Kcal/mol much better than active ligand score -98.584Kcal/mol. This information can be exploited to design PTP1B specific inhibitors. PMID:19238234

  3. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds.

    PubMed

    Zhang, Wei; Zhang, Jing; Fang, Leiping; Zhou, Ling; Wang, Shuai; Xiang, Zhijun; Li, Yuan; Wisely, Bruce; Zhang, Guifeng; An, Gang; Wang, Yonghui; Leung, Stewart; Zhong, Zhong

    2012-10-01

    In a screen for small-molecule inhibitors of retinoid acid-related orphan receptor γ (RORγ), we fortuitously discovered that a class of aryl amide compounds behaved as functional activators of the interleukin 17 (IL-17) reporter in Jurkat cells. Three of these compounds were selected for further analysis and found to activate the IL-17 reporter with potencies of ∼0.1 μM measured by EC₅₀. These compounds were shown to directly bind to RORγ by circular dichroism-based thermal stability experiments. Furthermore, they can enhance an in vitro Th17 differentiation process in human primary T cells. As RORγ remains an orphan nuclear receptor, discovery of these aryl amide compounds as functional agonists will now provide pharmacological tools for us to dissect functions of RORγ and facilitate drug discovery efforts for immune-modulating therapies.

  4. Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.).

    PubMed

    Landmann, Christian; Hücherig, Stefanie; Fink, Barbara; Hoffmann, Thomas; Dittlein, Daniela; Coiner, Heather A; Schwab, Wilfried

    2011-08-01

    One of the most common types of modification of secondary metabolites is the acylation of oxygen- and nitrogen-containing substrates to produce esters and amides, respectively. Among the known acyltransferases, the members of the plant BAHD family are capable of acylating a wide variety of substrates. Two full-length acyltransferase cDNAs (LaAT1 and 2) were isolated from lavender flowers (Lavandula angustifolia L.) by reverse transcriptase-PCR using degenerate primers based on BAHD sequences. Recombinant LaAT1 exhibited a broad substrate tolerance accepting (hydroxy)cinnamoyl-CoAs as acyl donors and not only tyramine, tryptamine, phenylethylamine and anthranilic acid but also shikimic acid and 4-hydroxyphenyllactic acid as acceptors. Thus, LaLT1 forms esters and amides like its phylogenetic neighbors. In planta LaAT1 might be involved in the biosynthesis of rosmarinic acid, the ester of caffeic acid and 3,4-dihydroxyphenyllactic acid, a major constituent of lavender flowers. LaAT2 is one of three members of clade VI with unknown function.

  5. Imidazoline phosphonic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redmore, D.

    1972-07-04

    Nitrogen-heterocyclic phosphonic acids and derivatives are characterized by aminomethyl (or substituted methyl) phosphonic acids or derivatives thereof bonded directly or indirectly, i.e., through a N-side chain to the nitrogen atom in the heterocyclic ring, for example those containing in the molecule at least one of the following units: ..pi..Equation/sup -/ where represents a heterocyclic ring having a nitrogen atom on the ring; -R'N- represents an amino- terminated side chain attached directly to the ring nitrogen (which side chain may or may not be present); and ..pi..Equation/sup -/ represents a methyl (or substituted methyl) phosphonic acid group where M is hydrogen,more » an alcohol or a salt moiety, and X and Y are hydrogen or a substituted group such as alkyl, aryl, etc., of which one or 2 units may be present depending on the available nitrogen bonded by hydrogens, and to uses for these compounds, for example, as scale inhibitors, corrosion inhibitors, etc. (5 claims)« less

  6. Peptide affinity labels for thrombin and other trypsin-like proteases

    DOEpatents

    Shaw, Elliott N.; Kettner, Charles A.

    1982-03-09

    A peptide affinity label of the formula (I): ##STR1## wherein X is a radical capable of acting as a leaving group in a nucleophilic substitution reaction; A is an aromatic amino acid residue; B is H, or a C.sub.1 -C.sub.4 alkyl group, or aryl; Y is selected from the group consisting of hydrogen, aroyl, C.sub.1 -C.sub.6 acyl, and Q--(A)--.sub.n, wherein Q=hydrogen, aroyl, or C.sub.1 -C.sub.6 acyl, n=1-10, A is an amino acid residue selected from the aliphatic, hydroxy-containing, carboxylic acid group, and amide-thereof-containing, aromatic, sulfur-containing and imino-containing amino acids; and wherein J is selected from the group consisting of --CH.sub.2 --, --CH.sub.2 --CH.sub.2 --,--CH.sub.2 --CH.sub.2 --CH.sub.2 --, --CH.dbd.CH-- and --CH(OH)--CH.sub.2. The affinity label is useful for irreversibly inactivating thrombin and trypsin-like enzymes and may be used as a potential anticlotting agent.

  7. Catalytic Arylation and Vinylation Reactions Directed by Anionic Oxygen Functions via Cleavage of C - H and C - C Bonds

    NASA Astrophysics Data System (ADS)

    Satoh, Tetsuya; Miura, Masahiro

    Aromatic compounds having oxygen-containing substituents such as phenols, phenyl ketones, benzyl alcohols, and benzoic acids undergo regioselective arylation and vinylation via C-H bond cleavage in the presence of transition-metal catalysts. The latter two substrates are also arylated and vinylated via C-C bond cleavage accompanied by liberation of ketones and CO2, respectively. Coordination of their anionic oxygen to the metal center is the key to activate the inert bonds effectively and regioselectively. The recent progress of these oxygen-directed reactions is summarized herein.

  8. Practical Iron- and Cobalt-Catalyzed Cross-Coupling Reactions between N-Heterocyclic Halides and Aryl or Heteroaryl Magnesium Reagents.

    PubMed

    Kuzmina, Olesya M; Steib, Andreas K; Fernandez, Sarah; Boudot, Willy; Markiewicz, John T; Knochel, Paul

    2015-05-26

    The reaction scope of iron- and cobalt-catalyzed cross-coupling reactions in the presence of isoquinoline (quinoline) in the solvent mixture tBuOMe/THF has been further investigated. Various 2-halogenated pyridine, pyrimidine, and triazine derivatives were arylated under these mild conditions in excellent yields. The presence of isoquinoline allows us to perform Fe-catalyzed cross-coupling reactions between 6-chloroquinoline and aryl magnesium reagents. Furthermore, it was found that the use of 10% N,N-dimethylquinoline-8-amine increases the yields of some Co-catalyzed cross-coupling reactions with chloropyridines bearing electron-withdrawing substituents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dual nickel and Lewis acid catalysis for cross-electrophile coupling: the allylation of aryl halides with allylic alcohols† †Electronic supplementary information (ESI) available. CCDC 1515176. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03140h

    PubMed Central

    Jia, Xue-Gong; Guo, Peng; Duan, Jicheng

    2017-01-01

    Controlling the selectivity in cross-electrophile coupling reactions is a significant challenge, particularly when one electrophile is much more reactive. We report a general and practical strategy to address this problem in the reaction between reactive and unreactive electrophiles by a combination of nickel and Lewis acid catalysis. This strategy is used for the coupling of aryl halides with allylic alcohols to form linear allylarenes selectively. The reaction tolerates a wide range of functional groups (e.g. silanes, boronates, anilines, esters, alcohols, and various heterocycles) and works with various allylic alcohols. Complementary to most current routes for the C3 allylation of an unprotected indole, this method provides access to C2 and C4–C7 allylated indoles. Preliminary mechanistic experiments reveal that the reaction might start with an aryl nickel intermediate, which then reacts with Lewis acid activated allylic alcohols in the presence of Mn. PMID:29629130

  10. A modified approach to 2-(N-aryl)-1,3-oxazoles: application to the synthesis of the IMPDH inhibitor BMS-337197 and analogues.

    PubMed

    Dhar, T G Murali; Guo, Junqing; Shen, Zhongqi; Pitts, William J; Gu, Henry H; Chen, Bang-Chi; Zhao, Rulin; Bednarz, Mark S; Iwanowicz, Edwin J

    2002-06-13

    [structure: see text] A modified approach to the synthesis of 2-(N-aryl)-1,3-oxazoles, employing an optimized iminophosphorane/heterocumulene-mediated methodology, and its application to the synthesis of BMS-337197, a potent inhibitor of IMPDH, are described.

  11. Synthesis of 3,3-disubstituted oxindoles by visible-light-mediated radical reactions of aryl diazonium salts with N-arylacrylamides.

    PubMed

    Fu, Weijun; Xu, Fengjuan; Fu, Yuqin; Zhu, Mei; Yu, Jiaqi; Xu, Chen; Zou, Dapeng

    2013-12-06

    A mild and efficient visible-light-mediated diarylation of N-arylacrylamides with aryl diazonium salts under mild conditions has been developed. This method provides convenient access to a variety of useful 3,3-disubstituted oxindoles by constructing two C-C bonds in one step.

  12. Synthesis, insecticidal activity, and structure-activity relationship (SAR) of anthranilic diamides analogs containing oxadiazole rings.

    PubMed

    Li, Yuhao; Zhu, Hongjun; Chen, Kai; Liu, Rui; Khallaf, Abdalla; Zhang, Xiangning; Ni, Jueping

    2013-06-28

    A series of anthranilic diamides analogs (3–11, 16–24) containing 1,2,4- or 1,3,4-oxadiazole rings were synthesized and characterized by (1)H NMR, MS and elemental analyses. The structure of 3-bromo-N-(2-(3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)-4-chloro-6-methylphenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (18, CCDC-) was determined by X-ray diffraction crystallography. The insecticidal activities against Plutella xylostella and Spodoptera exigua were evaluated. The results showed that most of title compounds displayed good larvicidal activities against P. xylostella, especially compound 3-bromo-N-(4-chloro-2-methyl-6-(5-(methylthio)-1,3,4-oxadiazol-2-yl)phenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (6), which displayed 71.43% activity against P. xylostella at 0.4 μg mL(-1) and 33.33% against S. exigua at 1 μg mL(-1). The structure-activity relationship showed that compounds decorated with a 1,3,4-oxadiazole were more potent than compounds decorated with a 1,2,4-oxadiazole, and different substituents attached to the oxadiazole ring also affected the insecticidal activity. This work provides some hints for further structure modification and the enhancement of insecticidal activity.

  13. Dinuclear Zinc-Prophenol-Catalyzed Enantioselective α-Hydroxyacetate Aldol Reaction with Activated Ester Equivalents

    PubMed Central

    Trost, Barry M.; Michaelis, David J.; Truica, Mihai I.

    2013-01-01

    An enantioselective α-hydroxyacetate aldol reaction that employs N-acetyl pyrroles as activated ester equivalents and generates syn 1,2-diols in good yield and diastereoselectivity is reported. This dinuclear zinc Prophenol-catalyzed transformation proceeds with high enantioselectivity with a wide variety of substrates including aryl, alyl, and alkenyl aldehydes. The resulting α,β-dihydroxy activated esters are versatile intermediates for the synthesis of a variety of carboxylic acid derivatives including amides, esters, and unsymmetrical ketones. PMID:23947595

  14. Camphyl-based α-diimine palladium complexes: highly efficient precatalysts for direct arylation of thiazoles in open-air.

    PubMed

    Chen, Fu-Min; Lu, Dong-Dong; Hu, Li-Qun; Huang, Ju; Liu, Feng-Shou

    2017-07-21

    Based on the strategy of the development of phosphine-free palladium-catalyzed direct C-H arylation, a series of camphyl-based α-diimine palladium complexes bearing sterically bulky substituents were synthesized and characterized. The palladium complexes were applied for the cross-coupling of thiazole derivatives with aryl bromides. The effect of the sterically bulky substituent on the N-aryl moiety as well as the reaction conditions was screened. Under the optimal protocols, a wide range of aryl bromides can be smoothly coupled with thiazoles in good to excellent yields in the presence of a low palladium loading of 0.2 mol% under open-air conditions.

  15. Stereoselective Vinylation of Aryl N-(2-Pyridylsulfonyl) Aldimines with 1-Alkenyl-1,1-Heterobimetallic Reagents

    PubMed Central

    Hussain, Nusrah; Hussain, Mahmud M.; Ziauddin, Muhammed; Triyawatanyu, Plengchat; Walsh, Patrick J.

    2011-01-01

    Vinylation of aryl N-(2-pyridylsulfonyl) aldimines with versatile 1-alkenyl-1,1-borozinc heterobimetallic reagents is disclosed. In situ hydroboration of air-stable B(pin)-alkynes followed by chemoselective transmetallation with dimethylzinc and addition to aldimines provides B(pin)-substituted allylic amines in 60–93% yield in a one-pot procedure. The addition step can be followed by either B–C bond oxidation to provide α-amino ketones (71–98% yield) or Suzuki cross-coupling to furnish trisubstituted 2-arylated (E)-allylic amines (51–73% yield). PMID:22085226

  16. The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway

    PubMed Central

    Comino, Cinzia; Hehn, Alain; Moglia, Andrea; Menin, Barbara; Bourgaud, Frédéric; Lanteri, Sergio; Portis, Ezio

    2009-01-01

    Background The leaves of globe artichoke and cultivated cardoon (Cynara cardunculus L.) have significant pharmaceutical properties, which mainly result from their high content of polyphenolic compounds such as monocaffeoylquinic and dicaffeoylquinic acid (DCQ), and a range of flavonoid compounds. Results Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferase (HQT) encoding genes have been isolated from both globe artichoke and cultivated cardoon (GenBank accessions DQ915589 and DQ915590, respectively) using CODEHOP and PCR-RACE. A phylogenetic analysis revealed that their sequences belong to one of the major acyltransferase groups (anthranilate N-hydroxycinnamoyl/benzoyltransferase). The heterologous expression of globe artichoke HQT in E. coli showed that this enzyme can catalyze the esterification of quinic acid with caffeoyl-CoA or p-coumaroyl-CoA to generate, respectively, chlorogenic acid (CGA) and p-coumaroyl quinate. Real time PCR experiments demonstrated an increase in the expression level of HQT in UV-C treated leaves, and established a correlation between the synthesis of phenolic acids and protection against damage due to abiotic stress. The HQT gene, together with a gene encoding hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase (HCT) previously isolated from globe artichoke, have been incorporated within the developing globe artichoke linkage maps. Conclusion A novel acyltransferase involved in the biosynthesis of CGA in globe artichoke has been isolated, characterized and mapped. This is a good basis for our effort to understand the genetic basis of phenylpropanoid (PP) biosynthesis in C. cardunculus. PMID:19292932

  17. Electronic Excited States of Tungsten(0) Arylisocyanides.

    PubMed

    Kvapilová, Hana; Sattler, Wesley; Sattler, Aaron; Sazanovich, Igor V; Clark, Ian P; Towrie, Michael; Gray, Harry B; Záliš, Stanislav; Vlček, Antonín

    2015-09-08

    W(CNAryl)6 complexes containing 2,6-diisopropylphenyl isocyanide (CNdipp) are powerful photoreductants with strongly emissive long-lived excited states. These properties are enhanced upon appending another aryl ring, e.g., W(CNdippPh(OMe2))6; CNdippPh(OMe2) = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide (Sattler et al. J. Am. Chem. Soc. 2015, 137, 1198-1205). Electronic transitions and low-lying excited states of these complexes were investigated by time-dependent density functional theory (TDDFT); the lowest triplet state was characterized by time-resolved infrared spectroscopy (TRIR) supported by density functional theory (DFT). The intense absorption band of W(CNdipp)6 at 460 nm and that of W(CNdippPh(OMe2))6 at 500 nm originate from transitions of mixed ππ*(C≡N-C)/MLCT(W → Aryl) character, whereby W is depopulated by ca. 0.4 e(-) and the electron-density changes are predominantly localized along two equatorial molecular axes. The red shift and intensity rise on going from W(CNdipp)6 to W(CNdippPh(OMe2))6 are attributable to more extensive delocalization of the MLCT component. The complexes also exhibit absorptions in the 300-320 nm region, owing to W → C≡N MLCT transitions. Electronic absorptions in the spectrum of W(CNXy)6 (Xy = 2,6-dimethylphenyl), a complex with orthogonal aryl orientation, have similar characteristics, although shifted to higher energies. The relaxed lowest W(CNAryl)6 triplet state combines ππ* excitation of a trans pair of C≡N-C moieties with MLCT (0.21 e(-)) and ligand-to-ligand charge transfer (LLCT, 0.24-0.27 e(-)) from the other four CNAryl ligands to the axial aryl and, less, to C≡N groups; the spin density is localized along a single Aryl-N≡C-W-C≡N-Aryl axis. Delocalization of excited electron density on outer aryl rings in W(CNdippPh(OMe2))6 likely promotes photoinduced electron-transfer reactions to acceptor molecules. TRIR spectra show an intense broad bleach due to ν(C≡N), a prominent transient upshifted by 60-65 cm(-1), and a weak down-shifted feature due to antisymmetric C≡N stretch along the axis of high spin density. The TRIR spectral pattern remains unchanged on the femtosecond-nanosecond time scale, indicating that intersystem crossing and electron-density localization are ultrafast (<100 fs).

  18. Synthesis and oxidation of CpIrIII compounds: functionalization of a Cp methyl group.

    PubMed

    Park-Gehrke, Lisa S; Freudenthal, John; Kaminsky, Werner; Dipasquale, Antonio G; Mayer, James M

    2009-03-21

    [CpIrCl(2)](2) () and new CpIr(III)(L-L)X complexes (L-L = N-O or C-N chelating ligands; X = Cl, I, Me) have been prepared and their reactivity with two-electron chemical oxidants explored. Reaction of with PhI(OAc)(2) in wet solvents yields a new chloro-bridged dimer in which each of the Cp ligands has been singly acetoxylated to form [Cp(OAc)Ir(III)Cl(2)](2) () (Cp(OAc) = eta(5)-C(5)Me(4)CH(2)OAc). Complex and related carboxy- and alkoxy-functionalized Cp(OR) complexes can also be prepared from plus (PhIO)(n) and ROH. [Cp(OAc)Ir(III)Cl(2)](2) () and the methoxy analogue [Cp(OMe)Ir(III)Cl(2)](2) () have been structurally characterized. Treatment of [CpIrCl(2)](2) () with 2-phenylpyridine yields CpIr(III)(ppy)Cl () (ppy = cyclometallated 2-phenylpyridyl) which is readily converted to its iodide and methyl analogues CpIr(III)(ppy)I and CpIr(III)(ppy)Me (). CpIr(III) complexes were also prepared with N-O chelating ligands derived from anthranilic acid (2-aminobenzoic acid) and alpha-aminoisobutyric acid (H(2)NCMe(2)COOH), ligands chosen to be relatively oxidation resistant. These complexes and were reacted with potential two-electron oxidants including PhI(OAc)(2), hexachlorocyclohexadienone (C(6)Cl(6)O), N-fluoro-2,4,6-trimethylpyridinium (Me(3)pyF(+)), [Me(3)O]BF(4) and MeOTf (OTf = triflate, CF(3)SO(3)). Iridium(V) complexes were not observed or implicated in these reactions, despite the similarity of the potential products to known CpIr(V) species. The carbon electrophiles [Me(3)O]BF(4) and MeOTf appear to react preferentially at the N-O ligands, to give methyl esters in some cases. Overall, the results indicate that Cp is not inert under oxidizing conditions and is therefore not a good supporting ligand for oxidizing organometallic complexes.

  19. NiXantphos: a deprotonatable ligand for room-temperature palladium-catalyzed cross-couplings of aryl chlorides.

    PubMed

    Zhang, Jiadi; Bellomo, Ana; Trongsiriwat, Nisalak; Jia, Tiezheng; Carroll, Patrick J; Dreher, Spencer D; Tudge, Matthew T; Yin, Haolin; Robinson, Jerome R; Schelter, Eric J; Walsh, Patrick J

    2014-04-30

    Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd-NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp(2))-H arylations. The advantages and importance of the Pd-NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides.

  20. NiXantphos: A Deprotonatable Ligand for Room-Temperature Palladium-Catalyzed Cross-Couplings of Aryl Chlorides

    PubMed Central

    2015-01-01

    Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd–NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp2)–H arylations. The advantages and importance of the Pd–NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides. PMID:24745758

  1. Pd-Catalyzed N-Arylation of Secondary Acyclic Amides: Catalyst Development, Scope, and Computational Study

    PubMed Central

    Hicks, Jacqueline D.; Hyde, Alan M.; Cuezva, Alberto Martinez; Buchwald, Stephen L.

    2009-01-01

    We report the efficient N-arylation of acyclic secondary amides and related nucleophiles with aryl nonaflates, triflates, and chlorides. This method allows for easy variation of the aromatic component in tertiary aryl amides. A new biaryl phosphine with P-bound 3,5-(bis)trifluoromethylphenyl groups was found to be uniquely effective for this amidation. The critical aspects of the ligand were explored through synthetic, mechanistic, and computational studies. Systematic variation of the ligand revealed the importance of (1) a methoxy group on the aromatic carbon of the “top ring” ortho to the phosphorus and (2) two highly electron-withdrawing P-bound 3,5-(bis)trifluoromethylphenyl groups. Computational studies suggest the electron-deficient nature of the ligand is important in facilitating amide binding to the LPd(II)(Ph)(X) intermediate. PMID:19886610

  2. Aryl sulfonates as neutral photoacid generators (PAGs) for EUV lithography

    NASA Astrophysics Data System (ADS)

    Sulc, Robert; Blackwell, James M.; Younkin, Todd R.; Putna, E. Steve; Esswein, Katherine; DiPasquale, Antonio G.; Callahan, Ryan; Tsubaki, Hideaki; Tsuchihashi, Tooru

    2009-03-01

    EUV lithography (EUVL) is a leading candidate for printing sub-32 nm hp patterns. In order for EUVL to be commercially viable at these dimensions, a continuous evolution of the photoresist material set is required to simultaneously meet the aggressive specifications for resolution, resist sensitivity, LWR, and outgassing rate. Alternative PAG designs, especially if tailored for EUVL, may aid in the formation of a material set that helps achieve these aggressive targets. We describe the preparation, characterization, and lithographic evaluation of aryl sulfonates as non-ionic or neutral photoacid generators (PAGs) for EUVL. Full lithographic characterization is reported for our first generation resist formulation using compound H, MAP-1H-2.5. It is benchmarked against MAP-1P-5.0, which contains the well-known sulfonium PAG, triphenylsulfonium triflate (compound P). Z-factor analysis indicates nZ32 = 81.4 and 16.8 respectively, indicating that our first generation aryl sulfonate formulations require about 4.8x improvement to match the results achieved with a model onium PAG. Improving the acid generation efficiency and use of the generated byproducts is key to the continued optimization of this class of PAGs. To that end, we believe EI-MS fragmentation patterns and molecular simulations can be used to understand and optimize the nature and efficiency of electron-induced PAG fragmentation.

  3. Can para-aryl-dithiols cross-link two plasmonic noble nanoparticles as monolayer dithiolate spacers

    USDA-ARS?s Scientific Manuscript database

    Para-aryl-dithiols (PADTs, HS-(C6H4)n-SH, n = 1, 2, and 3) have been used extensively in molecular electronics, surface-enhanced Raman spectroscopy (SERS), and quantum electron tunneling between two gold or silver nanoparticles (AuNPs and AgNPs). One popular belief is that these dithiols cross-link ...

  4. Partially oxidized iridium clusters within dendrimers: size-controlled synthesis and selective hydrogenation of 2-nitrobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Higaki, Tatsuya; Kitazawa, Hirokazu; Yamazoe, Seiji; Tsukuda, Tatsuya

    2016-06-01

    Iridium clusters nominally composed of 15, 30 or 60 atoms were size-selectively synthesized within OH-terminated poly(amidoamine) dendrimers of generation 6. Spectroscopic characterization revealed that the Ir clusters were partially oxidized. All the Ir clusters efficiently converted 2-nitrobenzaldehyde to anthranil and 2-aminobenzaldehyde under atmospheric hydrogen at room temperature in toluene via selective hydrogenation of the NO2 group. The selectivity toward 2-aminobenzaldehyde over anthranil was improved with the reduction of the cluster size. The improved selectivity is ascribed to more efficient reduction than intramolecular heterocyclization of a hydroxylamine intermediate on smaller clusters that have a higher Ir(0)-phase population on the surface.Iridium clusters nominally composed of 15, 30 or 60 atoms were size-selectively synthesized within OH-terminated poly(amidoamine) dendrimers of generation 6. Spectroscopic characterization revealed that the Ir clusters were partially oxidized. All the Ir clusters efficiently converted 2-nitrobenzaldehyde to anthranil and 2-aminobenzaldehyde under atmospheric hydrogen at room temperature in toluene via selective hydrogenation of the NO2 group. The selectivity toward 2-aminobenzaldehyde over anthranil was improved with the reduction of the cluster size. The improved selectivity is ascribed to more efficient reduction than intramolecular heterocyclization of a hydroxylamine intermediate on smaller clusters that have a higher Ir(0)-phase population on the surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01460g

  5. A new family of nucleophiles for photoinduced, copper-catalyzed cross-couplings via single-electron transfer: reactions of thiols with aryl halides under mild conditions (O °C).

    PubMed

    Uyeda, Christopher; Tan, Yichen; Fu, Gregory C; Peters, Jonas C

    2013-06-26

    Building on the known photophysical properties of well-defined copper-carbazolide complexes, we have recently described photoinduced, copper-catalyzed N-arylations and N-alkylations of carbazoles. Until now, there have been no examples of the use of other families of heteroatom nucleophiles in such photoinduced processes. Herein, we report a versatile photoinduced, copper-catalyzed method for coupling aryl thiols with aryl halides, wherein a single set of reaction conditions, using inexpensive CuI as a precatalyst without the need for an added ligand, is effective for a wide range of coupling partners. As far as we are aware, copper-catalyzed C-S cross-couplings at 0 °C have not previously been achieved, which renders our observation of efficient reaction of an unactivated aryl iodide at -40 °C especially striking. Mechanistic investigations are consistent with these photoinduced C-S cross-couplings following a SET/radical pathway for C-X bond cleavage (via a Cu(I)-thiolate), which contrasts with nonphotoinduced, copper-catalyzed processes wherein a concerted mechanism is believed to occur.

  6. General and mild Ni(0)-catalyzed α-arylation of ketones using aryl chlorides.

    PubMed

    Fernández-Salas, José A; Marelli, Enrico; Cordes, David B; Slawin, Alexandra M Z; Nolan, Steven P

    2015-03-02

    A general methodology for the α-arylation of ketones using a nickel catalyst has been developed. The new well-defined [Ni(IPr*)(cin)Cl] (1 c) pre-catalyst showed great efficiency for this transformation, allowing the coupling of a wide range of ketones, including acetophenone derivatives, with various functionalised aryl chlorides. This cinnamyl-based Ni-N-heterocyclic carbene (NHC) complex has demonstrated a different behaviour to previously reported NHC-Ni catalysts. Preliminary mechanistic studies suggest a Ni(0)/Ni(II) catalytic cycle to be at play. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Use of Aryl Chlorides as Electrophiles in Pd-Catalyzed Alkene Difunctionalization Reactions

    PubMed Central

    Rosen, Brandon R.; Ney, Joshua E.; Wolfe, John P.

    2010-01-01

    The development of conditions that allow use of inexpensive aryl chlorides as electrophiles in Pd-catalyzed alkene carboamination and carboetherification reactions is described. A catalyst composed of Pd(OAc)2 and S-Phos minimizes N-arylation of the substrate and prevents formation of mixtures of regioisomeric products. A number of heterocycles, including pyrrolidines, isoxazolidines, tetrahydrofurans, and pyrazolidines, are efficiently generated with this method. PMID:20297834

  8. A general synthesis of C8-arylpurine phosphoramidites.

    PubMed

    Vongsutilers, Vorasit; Daft, Jonathan R; Shaughnessy, Kevin H; Gannett, Peter M

    2009-09-02

    A general scheme for the synthesis of C8-arylpurine phosphoramidites has been developed. C8-Arylation of C8-bromo-2'-deoxyguanosine is the key step and has been achieved through the use of a Suzuki coupling. Since the coupling reaction is conducted under aqueous conditions, it is unnecessary to protect and then deprotect the hydroxyl groups, thus saving several steps and improving overall yields. Once the C8-arylgroup is introduced, the glycosidic bond becomes very sensitive to acid catalyzed cleavage. Protection of the amino groups as the corresponding N,N-dimethylformamidine derivative improves stability of the derivatives. Synthetic C8-arylpurines were successfully used to prepare synthetic oligonucleotides.

  9. Synthesis of oxazolines and oxazines

    DOEpatents

    Benicewicz, Brian C.; Mitchell, Michael A.

    1995-01-01

    A process of preparing an oxazoline or oxazine compound of the formula ##STR1## wherein X is an atom selected from the group of oxygen and sulfur, R is selected from the group consisting of C.sub.1-10 alkyl, C.sub.1-10 fluoroalkyl, aryl and substituted-aryl, and n is 2 or 3 comprising ring-closing a compound of the formula ##STR2## wherein X is an atom selected from the group of oxygen and sulfur, R is selected from the group consisting of C.sub.1-10 alkyl, C.sub.1-10 fluoroalkyl, aryl, and substituted aryl, n is 2 or 3, and Y is a bromine or chlorine atom in the presence of a basic reagent consisting essentially of a fluoride salt supported on an inorganic solid substrate is disclosed together with the compounds, 5-bromomethyl-2-phenyl-1,3-oxazoline, 5-methylene-2-phenyl-1,3-oxazine and 4,4-dimethyl-2-vinyl-1,3-oxazoline.

  10. Reductive Elimination Leading to C-C Bond Formation in Gold(III) Complexes: A Mechanistic and Computational Study.

    PubMed

    Rocchigiani, Luca; Fernandez-Cestau, Julio; Budzelaar, Peter H M; Bochmann, Manfred

    2018-06-21

    The factors affecting the rates of reductive C-C cross-coupling reactions in gold(III) aryls were studied by using complexes that allow easy access to a series of electronically modified aryl ligands, as well as to gold methyl and vinyl complexes, by using the pincer compounds [(C^N^C)AuR] (R=C 6 F 5 , CH=CMe 2 , Me and p-C 6 H 4 X, where X=OMe, F, H, tBu, Cl, CF 3 , or NO 2 ) as starting materials (C^N^C=2,6-(4'-tBuC 6 H 3 ) 2 pyridine dianion). Protodeauration followed by addition of one equivalent SMe 2 leads to the quantitative generation of the thioether complexes [(C^N-CH)AuR(SMe 2 )] + . Upon addition of a second SMe 2 pyridine is displaced, which triggers the reductive aryl-R elimination. The rates for these cross-couplings increase in the sequence k(vinyl)>k(aryl)≫k(C 6 F 5 )>k(Me). Vinyl-aryl coupling is particularly fast, 1.15×10 -3  L mol -1  s -1 at 221 K, whereas both C 6 F 5 and Me couplings encountered higher barriers for the C-C bond forming step. The use of P(p-tol) 3 in place of SMe 2 greatly accelerates the C-C couplings. Computational modelling shows that in the C^N-bonded compounds displacement of N by a donor L is required before the aryl ligands can adopt a conformation suitable for C-C bond formation, so that elimination takes place from a four-coordinate intermediate. The C-C bond formation is the rate-limiting step. In the non-chelating case, reductive C(sp 2 )-C(sp 2 ) elimination from three-coordinate ions [(Ar 1 )(Ar 2 )AuL] + is almost barrier-free, particularly if L=phosphine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Oxidative tandem nitrosation/cyclization of N-aryl enamines with nitromethane toward 3-(trifluoromethyl)quinoxalines.

    PubMed

    Yang, Zhi-Jun; Liu, Chuan-Zhuo; Hu, Bo-Lun; Deng, Chen-Liang; Zhang, Xing-Guo

    2014-12-04

    A novel one-pot strategy for the synthesis of 3-trifluoromethylquinoxalines from N-aryl enamines and nitromethane was developed. The tandem reaction is achieved through nitrosation of alkenes, tautomerization and cyclization, which can be applicable to a wide range of enamines with excellent functional group tolerance and afford quinoxalines in moderate to good yields.

  12. Pyrolysis of Aryl Sulfonate Esters in the Absence of Solvent: E1 or E2? A Puzzle for the Organic Laboratory

    ERIC Educational Resources Information Center

    Nash, John J.; Leininger, Marnie A.; Keyes, Kurt

    2008-01-01

    The aryl sulfonate ester, menthyl N-acetylsulfanilate, is synthesized from N-acetylsulfanilyl chloride and menthol in pyridine, then pyrolyzed (thermally decomposed) at reduced pressure. The volatile (elimination) products of the reaction are analyzed using gas chromatography, and the resulting product distribution is used to determine whether the…

  13. Synthesis of new β-amidodehydroaminobutyric acid derivatives and of new tyrosine derivatives using copper catalyzed C-N and C-O coupling reactions.

    PubMed

    Pereira, G; Vilaça, H; Ferreira, P M T

    2013-02-01

    Several β-amidodehydroaminobutyric acid derivatives were prepared from N,C-diprotected β-bromodehydroaminobutyric acids and amides by a copper catalyzed C-N coupling reaction. The best reaction conditions include the use of a catalytic amount of CuI, N,N'-dimethylethylenediamine as ligand and K(2)CO(3) as base in toluene at 110 °C. The stereochemistry of the products was determined using NOE difference experiments and the results obtained are in agreement with an E-stereochemistry. Thus, the stereochemistry is maintained in the case of the E-isomers of β-bromodehydroaminobutyric acid derivatives, but when the Z-isomers were used as substrates the reaction proceeds with inversion of configuration. The use of β-bromodehydrodipeptides as substrates was also tested. It was found that the reaction outcome depend on the stereochemistry of the β-bromodehydrodipeptide and on the nature of the first amino acid residue. The products isolated were the β-amidodehydrodipeptide derivatives and/or the corresponding dihydropyrazines. The same catalytic system (CuI/N,N'-dimethylethylene diamine) was used in the C-O coupling reactions between a tyrosine derivative and aryl bromides. The new O-aryltyrosine derivatives were isolated in moderate to good yields. The photophysical properties of two of these compounds were studied in four solvents of different polarity. The results show that these compounds after deprotection can be used as fluorescence markers.

  14. Iron-Catalyzed Enantioselective Cross-Coupling Reactions of α-Chloroesters with Aryl Grignard Reagents.

    PubMed

    Jin, Masayoshi; Adak, Laksmikanta; Nakamura, Masaharu

    2015-06-10

    The first iron-catalyzed enantioselective cross-coupling reaction between an organometallic compound and an organic electrophile is reported. Synthetically versatile racemic α-chloro- and α-bromoalkanoates were coupled with aryl Grignard reagents in the presence of catalytic amounts of an iron salt and a chiral bisphosphine ligand, giving the products in high yields with acceptable and synthetically useful enantioselectivities (er up to 91:9). The produced α-arylalkanoates were readily converted to the corresponding α-arylalkanoic acids with high optical enrichment (er up to >99:1) via simple deprotections/recrystallizations. The results of radical probe experiments are consistent with a mechanism that involves the formation of an alkyl radical intermediate, which undergoes subsequent enantioconvergent arylation in an intermolecular manner. The developed asymmetric coupling offers not only facile and practical access to various chiral α-arylalkanoic acid derivatives, which are of significant pharmaceutical importance, but also a basis of controlling enantioselectivity in an iron-catalyzed organometallic transformation.

  15. Arylation of Rhodium(II) Azavinyl Carbenes with Boronic Acids

    PubMed Central

    Selander, Nicklas; Worrell, Brady T.; Chuprakov, Stepan; Velaparthi, Subash; Fokin, Valery V.

    2013-01-01

    A highly efficient and stereoselective arylation of in situ generated azavinyl carbenes affording 2,2-diaryl enamines at ambient temperatures has been developed. These transition metal carbenes are directly produced from readily available and stable 1-sulfonyl-1,2,3-triazoles in the presence of a rhodium carboxylate catalyst. In several cases, the enamines generated in this reaction can be cyclized into substituted indoles employing copper catalysts. PMID:22913576

  16. 2-Aryl-8-aza-3-deazaadenosine Analogues of 5’-O-[N-(Salicyl)sulfamoyl]adenosine: Nucleoside Antibiotics that Block Siderophore Biosynthesis in Mycobacterium tuberculosis

    PubMed Central

    Krajczyk, Anna; Zeidler, Joanna; Januszczyk, Piotr; Dawadi, Surendra; Boshoff, Helena I.; Barry, Clifton E.; Ostrowski, Tomasz; Aldrich, Courtney C.

    2016-01-01

    A series of 5’-O-[N-(salicyl)sulfamoyl]-2-aryl-8-aza-3-deazaadenosines were designed to block mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) through inhibition of the essential adenylating enzyme MbtA. The synthesis of the 2-aryl-8-aza-3-deazaadenosine nucleosides featured sequential copper-free palladium-catalyzed Sonogashira coupling of a precursor 4-cyano-5-iodo-1,2,3-triazolonucleoside with terminal alkynes and Minakawa-Matsuda annulation reaction. These modified nucleosides were shown to inhibit MbtA with apparent Ki values ranging from 6.1 to 25 nM and to inhibit Mtb growth under iron-deficient conditions with minimum inhibitory concentrations ranging from 12.5 to >50 μM. PMID:27265685

  17. Synthesis, structure elucidation, DNA-PK and PI3K and anti-cancer activity of 8- and 6-aryl-substituted-1-3-benzoxazines.

    PubMed

    Morrison, Rick; Al-Rawi, Jasim M A; Jennings, Ian G; Thompson, Philip E; Angove, Michael J

    2016-03-03

    The synthesis of 6-aryl, 8- aryl, and 8-aryl-6-chloro-2-morpholino-1,3-benzoxazines with potent activity against PI3K and DNA-PK is described. Synthesis of thirty one analogues was facilitated by an improved synthesis of 3-bromo-2-hydroxybenzoic acid 13 by de-sulphonation of 3-bromo-2-hydroxy-5-sulfobenzoic acid 12 en route to 2-methylthio-substituted-benzoxazine intermediates 17-19. From this series, compound 20k (LTURM34) (dibenzo[b,d]thiophen-4-yl) (IC50 = 0.034 μM) was identified as a specific DNA-PK inhibitor, 170 fold more selective for DNA-PK activity compared to PI3K activity. Other compounds of the series show markedly altered selectivity for various PI3K isoforms including compound 20i (8-(naphthalen-1-yl) a potent and quite selective PI3Kδ inhibitor (IC50 = 0.64 μM). Finally, nine compounds were evaluated and showed antiproliferative activity against an NCI panel of cancer cell lines. Compound 20i (8-(naphthalen-1-yl) showed strong anti-proliferative activity against A498 renal cancer cells that warrants further investigation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Reusable copper-catalyzed cross-coupling reactions of aryl halides with organotins in inexpensive ionic liquids.

    PubMed

    Li, Jin-Heng; Tang, Bo-Xiao; Tao, Li-Ming; Xie, Ye-Xiang; Liang, Yun; Zhang, Man-Bo

    2006-09-15

    A combination of Cu2O nanoparticles with P(o-tol)3 shows highly catalytic activity for the Stille cross-coupling reaction. A series of copper catalysts and ligands were evaluated, and Cu2O nanoparticles combined with P(o-tol)3 provided the best results. In the presence of Cu2O nanoparticles and P(o-tol)3, a variety of aryl halides including aryl chlorides underwent the Stille reaction with organotins smoothly in moderate to excellent yields using inexpensive TBAB (n-Bu4NBr) as the medium. It is noteworthy that the Cu2O/P(o-tol)3/TBAB system can be recovered and reused at least three times without any loss of catalytic activity among the reactions of aryl iodides and activated aryl bromides.

  19. Ring[bond]chain tautomerism of 2-Aryl-substituted cis- and trans-decahydroquinazolines.

    PubMed

    Lázár, László; Göblyös, Anikó; Martinek, Tamás A; Fülöp, Ferenc

    2002-07-12

    In CDCl(3) at 300 K, 2-aryl-substituted cis- and trans-3-isopropyldecahydroquinazolines and trans-3-phenyldecahydroquinazolines proved to be three-component (r(1)[bond]o[bond]r(2)) ring[bond]chain tautomeric mixtures, whereas only ring-closed tautomers could be detected for the 3-methyl-substituted analogues. The proportions of the ring-chain tautomeric forms at equilibrium were strongly influenced by the N-substitutents and the cis-trans ring junction and could be described by the equation log K(X) = rho sigma(+) + log K(X=H). These are the first examples among 2-aryl-1,3-N,N-heterocycles of a three-component ring-chain tautomeric equilibrium characterized by a Hammett-type equation. The stabilities of the ring-closed forms of cis- and trans-2-aryldecahydroquinazolines and the corresponding 3,1-benzoxazines were found to increase in the following sequence of the heteroatom at position 3: NPh < N-i-Pr < O < NMe.

  20. Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural.

    PubMed

    Carro, Juan; Fernández-Fueyo, Elena; Fernández-Alonso, Carmen; Cañada, Javier; Ullrich, René; Hofrichter, Martin; Alcalde, Miguel; Ferreira, Patricia; Martínez, Angel T

    2018-01-01

    2,5-Furandicarboxylic acid is a renewable building block for the production of polyfurandicarboxylates, which are biodegradable polyesters expected to substitute their classical counterparts derived from fossil resources. It may be produced from bio-based 5-hydroxymethylfurfural or 5-methoxymethylfurfural, both obtained by the acidic dehydration of biomass-derived fructose. 5-Methoxymethylfurfural, which is produced in the presence of methanol, generates less by-products and exhibits better storage stability than 5-hydroxymethylfurfural being, therefore, the industrial substrate of choice. In this work, an enzymatic cascade involving three fungal oxidoreductases has been developed for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. Aryl-alcohol oxidase and unspecific peroxygenase act on 5-methoxymethylfurfural and its partially oxidized derivatives yielding 2,5-furandicarboxylic acid, as well as methanol as a by-product. Methanol oxidase takes advantage of the methanol released for in situ producing H 2 O 2 that, along with that produced by aryl-alcohol oxidase, fuels the peroxygenase reactions. In this way, the enzymatic cascade proceeds independently, with the only input of atmospheric O 2 , to attain a 70% conversion of initial 5-methoxymethylfurfural. The addition of some exogenous methanol to the reaction further improves the yield to attain an almost complete conversion of 5-methoxymethylfurfural into 2,5-furandicarboxylic acid. The synergistic action of aryl-alcohol oxidase and unspecific peroxygenase in the presence of 5-methoxymethylfurfural and O 2 is sufficient for the production of 2,5-furandicarboxylic acid. The addition of methanol oxidase to the enzymatic cascade increases the 2,5-furandicarboxylic acid yields by oxidizing a reaction by-product to fuel the peroxygenase reactions.

  1. Aminobenzoates as building blocks for natural product assembly lines.

    PubMed

    Walsh, Christopher T; Haynes, Stuart W; Ames, Brian D

    2012-01-01

    The ortho-, meta-, and para- regioisomers of aminobenzoate are building blocks for a wide range of microbial natural products. Both the ortho-isomer (anthranilate) and PABA derive from the central shikimate pathway metabolite chorismate while the meta-isomer is not available by that route and starts from UDP-3-aminoglucose. PABA is largely funnelled into folate biosynthesis while anthranilate is the scaffold for biosynthetic elaboration into many natural heterocycles, most notably with its role in indole formation for tryptophan biosynthesis. Anthranilate is also converted to benzodiazepinones, fumiquinazolines, quinoxalines, phenoxazines, benzoxazolinates, quinolones, and phenazines, often with redox enzyme participation. The 5-hydroxy form of 3-aminobenzaote is the starter unit for ansa-bridged rifamycins, ansamitocins, and geldanamycins, whereas regioisomers 2-hydroxy, 4-hydroxy and 2,4-dihydroxy-3-aminobenzoate are key components of antimycin, grixazone, and platencin and platensimycin biosynthesis, respectively. The enzymatic mechanisms for generation of the aminobenzoate regioisomers and their subsequent utilization for diverse heterocycle and macrocycle construction are examined.

  2. Acetylation of aromatic cysteine conjugates by recombinant human N-acetyltransferase 8.

    PubMed

    Deol, Reema; Josephy, P David

    2017-03-01

    1. The mercapturic acid (MA) pathway is a metabolic route for the processing of glutathione conjugates to MA (N-acetylcysteine conjugates). An N-acetyltransferase enzyme, NAT8, catalyzes the transfer of an acetyl group from acetyl-CoA to the cysteine amino group, producing a MA, which is excreted in the urine. We expressed human NAT8 in HEK293T cells and developed an HPLC-MS method for the quantitation of the S-aryl-substituted cysteine conjugates and their MA. 2. We measured the activity of the enzyme for acetylation of benzyl-, 4-nitrobenzyl-, and 1-menaphthylcysteine substrates. 3. NAT8 catalyzed the acetylation of all three cysteine conjugates with similar Michaelis-Menten kinetics.

  3. Enantioselective synthesis of substituted piperidines by addition of aryl Grignard reagents to pyridine N-oxides.

    PubMed

    Hussain, Munawar; Banchelin, Thomas Sainte-Luce; Andersson, Hans; Olsson, Roger; Almqvist, Fredrik

    2013-01-04

    The synthesis of optically active piperidines by enantioselective addition of aryl Grignard reagents to pyridine N-oxides and lithium binolate followed by reduction is reported for the first time. The reaction results in high yields (51-94%) in combination with good ee (54-80%). Some of these products were subsequently recrystallized, affording enhanced optical purities (>99% ee).

  4. Dual C-H functionalization of N-aryl amines: synthesis of polycyclic amines via an oxidative Povarov approach.

    PubMed

    Min, Chang; Sanchawala, Abbas; Seidel, Daniel

    2014-05-16

    Iminium ions generated in situ via copper(I) bromide catalyzed oxidation of N-aryl amines readily undergo [4 + 2] cycloadditions with a range of dienophiles. This method involves the functionalization of both a C(sp(3))-H and a C(sp(2))-H bond and enables the rapid construction of polycyclic amines under relatively mild conditions.

  5. Peptide affinity labels for thrombin and other trypsin-like proteases

    DOEpatents

    Shaw, E.N.; Kettner, C.A.

    1982-03-09

    A peptide affinity label is disclosed of the formula (I): as given in the patent wherein X is a radical capable of acting as a leaving group in a nucleophilic substitution reaction; A is an aromatic amino acid residue; B is H, or a C[sub 1]--C[sub 4] alkyl group, or aryl; Y is selected from the group consisting of hydrogen, aroyl, C[sub 1]--C[sub 6] acyl, and Q--(A)--[sub n], wherein Q = hydrogen, aroyl, or C[sub 1]--C[sub 6] acyl, n = 1--10, A is an amino acid residue selected from the aliphatic, hydroxy-containing, carboxylic acid group, and amide-thereofcontaining, aromatic, sulfur-containing and imino-containing amino acids; and wherein J is selected from the group consisting of --CH[sub 2]--, --CH[sub 2]--CH[sub 2]--, --CH[sub 2]--CH[sub 2]--CH[sub 2]--, --CH[double bond]CH-- and --CH(OH)--CH[sub 2]. The affinity label is useful for irreversibly inactivating thrombin and trypsin-like enzymes and may be used as a potential anticlotting agent. 2 figs.

  6. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells.

    PubMed

    Bagley, Mark C; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E; Kipling, David; Davis, Terence

    2015-06-03

    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells.

  7. Aryl-substituted aminobenzimidazoles targeting the hepatitis C virus internal ribosome entry site

    PubMed Central

    Ding, Kejia; Wang, Annie; Boerneke, Mark A.; Dibrov, Sergey M.; Hermann, Thomas

    2014-01-01

    We describe the exploration of N1-aryl-substituted benzimidazoles as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The design of the compounds was guided by the co-crystal structure of a benzimidazole viral translation inhibitor in complex with the RNA target. Structure-binding activity relationships of aryl-substituted benzimidazole ligands were established that were consistent with the crystal structure of the translation inhibitor complex. PMID:24856063

  8. Nucleophilic addition of nitrogen to aryl cations: mimicking Titan chemistry.

    PubMed

    Li, Anyin; Jjunju, Fred P M; Cooks, R Graham

    2013-11-01

    The reactivity of aryl cations toward molecular nitrogen is studied systematically in an ion trap mass spectrometer at 10(2) Pascal of nitrogen, the pressure of the Titan main haze layer. Nucleophilic addition of dinitrogen occurs and the nature of aryl group has a significant influence on the reactivity, through inductive effects and by changing the ground state spin multiplicity. The products of nitrogen activation, aryldiazonium ions, react with typical nitriles, aromatic amines, and alkynes (compounds that are relevant as possible Titan atmosphere constituents) to form covalently bonded heterocyclic products. Theoretical calculations at the level [DFT(B3LYP)/6-311++G(d,p)] indicate that the N2 addition reaction is exothermic for the singlet aryl cations but endothermic for their triplet spin isomers. The -OH and -NH2 substituted aryl ions are calculated to have triplet ground states, which is consistent with their decreased nitrogen addition reactivity. The energy needed for the generation of the aryl cations from their protonated precursors (ca. 340 kJ/mol starting with protonated aniline) is far less than that required to directly activate the nitrogen triple bond (the lowest energy excited state of N2 lies ca. 600 kJ/mol above the ground state). The formation of aza-aromatics via arene ionization and subsequent reactions provide a conceivable route to the genesis of nitrogen-containing organic molecules in the interstellar medium and Titan haze layers.

  9. Eco-friendly synthesis, in vitro anti-proliferative evaluation, and 3D-QSAR analysis of a novel series of monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates.

    PubMed

    Racané, Livio; Ptiček, Lucija; Sedić, Mirela; Grbčić, Petra; Kraljević Pavelić, Sandra; Bertoša, Branimir; Sović, Irena; Karminski-Zamola, Grace

    2018-04-17

    Herein, we describe the synthesis of twenty-one novel water-soluble monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates 3a-3u and present the results of their anti-proliferative assays. Efficient syntheses were achieved by three complementary simple two-step synthetic protocols based on the condensation reaction of aryl/heteroaryl carbaldehydes or carboxylic acid. We developed an eco-friendly synthetic protocol using glycerol as green solvent, particularly appropriate for the condensation of thermally and acid-sensitive heterocycles such as furan, benzofuran, pyrrole, and indole. Screening of anti-proliferative activity was performed on four human tumour cell lines in vitro including pancreatic cancer (CFPAC-1), metastatic colon cancer (SW620), hepatocellular carcinoma (HepG2), and cervical cancer (HeLa), as well as in normal human fibroblast cell lines. All tested compounds showed strong to moderate anti-proliferative activity on tested cell lines depending on the structure containing aryl/heteroaryl moiety coupled to 6-(2-imidazolinyl)benzothiazole moiety. The most potent cytostatic effects on all tested cell lines with [Formula: see text] values ranging from 0.1 to 3.70 [Formula: see text] were observed for benzothiazoles substituted with naphthalene-2-yl 3c, benzofuran-2-yl 3e, indole-3-yl 3j, indole-2-yl 3k, quinoline-2-yl 3s, and quinoline-3-yl 3t and derivatives substituted with phenyl 3a, naphthalene-1-yl 3b, benzothiazole-2-yl 3g, benzothiazole-6-yl 3h, N-methylindole-3-yl 3l, benzimidazole-2-yl 3n, benzimidazole-5(6)-yl 3o, and quinolone-4-yl 3u with [Formula: see text] values ranging from 1.1 to 29.1 [Formula: see text]. Based on obtained anti-proliferative activities, 3D-QSAR models for five cell lines were derived. Molecular volume, molecular surface, the sum of hydrophobic surface areas, molecular mass, and possibility of making dispersion forces were identified by QSAR analyses as molecular properties that are positively correlated with anti-proliferative activity, while compound's capability to accept H-bond was identified as a negatively correlated property. Comparison of molecular properties identified for different cell lines enabled assumptions about similarity of mode of action through which anti-proliferative activities against different cell lines are accomplished. Novel compounds that are predicted to have enhanced activities in comparison with herein presented ones were designed using 3D-QSAR analysis as guideline.

  10. Synthesis of 1,2-cis-2-C-branched aryl-C-glucosides via desulfurization of carbohydrate based hemithioacetals

    PubMed Central

    Mebrahtu, Fanuel M; Manana, Mandlenkosi M; Madumo, Kagiso; Sokamisa, Mokela S

    2015-01-01

    Summary 1-C and 2-C-branched carbohydrates are present as substructures in a number of biologically important compounds. Although the synthesis of such carbohydrate derivatives is extensively studied, the synthesis of 1,2-cis-2-C-branched C-, S-, and N-glycosides is less explored. In this article a synthetic strategy for the synthesis of 1,2-cis-2-C-branched-aryl-C-glucosides is reported via a hydrogenolytic desulfurization of suitably orientated carbohydrate based hemithioacetals. 1,2-cis-2-Hydroxymethyl and 2-carbaldehyde of aryl-C-glucosides have been synthesized using the current strategy in very good yields. The 2-carbaldehyde-aryl-C-glucosides have been identified as suitable substrates for the stereospecific preparation of 2,3-unsaturated-aryl-C-glycosides (Ferrier products). PMID:26124859

  11. Processable Electronically Conducting Polymers

    DTIC Science & Technology

    1991-01-01

    polyheterocycles and will be discussed in detail later. The Grignard coupling reaction of alkyl substituted 1,4- dibromobenzenes was initially employed, as...R 2 ,R 3 ) along with alkyl , aryl, benzyl, and -CH 2 CN substituents on the nitrogen (R I ). Since aniline preferentially oxidatively polymerizes at...but, in the case of N-aryl substituted anilines , an alternative mecha- nism has been proposed [171], which is outlined in Scheme 9. Both poly(N

  12. Direct sp(3)C-H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis.

    PubMed

    Feng, Zhu-Jia; Xuan, Jun; Xia, Xu-Dong; Ding, Wei; Guo, Wei; Chen, Jia-Rong; Zou, You-Quan; Lu, Liang-Qiu; Xiao, Wen-Jing

    2014-04-07

    Sequence catalysis merging photoredox catalysis (PC) and nucleophilic catalysis (NC) has been realized for the direct sp(3) C-H acroleination of N-aryl-tetrahydroisoquinoline (THIQ). The reaction was performed under very mild conditions and afforded products in 50-91% yields. A catalytic asymmetric variant was proved to be successful with moderate enantioselectivities (up to 83 : 17 er).

  13. Palladium-Catalyzed Arylation of Fluoroalkylamines

    PubMed Central

    Brusoe, Andrew T.; Hartwig, John F.

    2015-01-01

    We report the synthesis of fluorinated anilines by palladium-catalyzed coupling of fluoroalkylamines with aryl bromides and aryl chlorides. The products of these reactions are valuable because anilines typically require the presence of an electron-withdrawing substituent on nitrogen to suppress aerobic or metabolic oxidation, and the fluoroalkyl groups have steric properties and polarity distinct from those of more common electron-withdrawing amide and sulfonamide units. The fluoroalkylaniline products are unstable under typical conditions for C–N coupling reactions (heat and strong base). However, the reactions conducted with the weaker base KOPh, which has rarely been used in cross-coupling to form C–N bonds, occurred in high yield in the presence of a catalyst derived from commercially available AdBippyPhos and [Pd(allyl)Cl]2. Under these conditions, the reactions occur with low catalyst loadings (<0.50 mol % for most substrates) and tolerate the presence of various functional groups that react with the strong bases that are typically used in Pd-catalyzed C–N cross-coupling reactions of aryl halides. The resting state of the catalyst is the phenoxide complex, (BippyPhosPd(Ar)OPh); due to the electron-withdrawing property of the fluoroalkyl substituent, the turnover-limiting step of the reaction is reductive elimination to form the C–N bond. PMID:26065341

  14. Selective cyclopalladation of R3P=NCH2Aryl iminophosphoranes. Experimental and computational study.

    PubMed

    Bielsa, Raquel; Navarro, Rafael; Urriolabeitia, Esteban P; Lledós, Agustí

    2007-11-26

    The orientation of the orthopalladation of iminophosphoranes R3P=NCH2Aryl (R=Ph, Aryl=Ph (1a), C6H(4)-2-Br (1b), C6H4-Me-2 (1e), C6H3-(Me)(2)-2,5 (1f); R=p-tolyl, Aryl=Ph (1c); R=m-tolyl, Aryl=Ph (1d); R3P=MePh2P, and Aryl=Ph (1g)) has been studied. 1a reacts with Pd(OAc)2 (OAc=acetate) giving endo-[Pd(micro-Cl){C,N-C6H4(PPh2=NCH2Ph)-2}]2 (3a), while exo-[Pd(micro-Br){C,N-C6H4(CH2N=PPh3)-2}]2 (3b) could only be obtained by the oxidative addition of 1b to Pd2(dba)3. The endo form of the metalated ligand is favored kinetically and thermodynamically, as shown by the conversion of exo-[Pd(micro-OAc){C,N-C6H4(CH2N=PPh3)-2}]2 (2b) into endo-[Pd(micro-OAc){C,N-C6H4(PPh2=NCH2Ph)-2}]2 (2a) in refluxing toluene. The orientation of the reaction is not affected by the introduction of electron-releasing substituents at the Ph rings of the PR3 (1c and 1d) or the benzyl units (1e and 1f), and endo complexes (3c-3f) were obtained in all cases. The palladation of MePh2P=NCH2Ph (1g) can be regioselectively oriented as a function of the solvent. The exo isomer [Pd(micro-Cl){C6H4(CH2N=PPh2Me)-2}]2 (exo-3g) is obtained in refluxing CH2Cl2, while endo-[Pd(micro-Cl){C,N-C6H4(PPh(Me)=NCH2Ph)-2}]2 (endo-3g) can be isolated as a single isomer in refluxing toluene. In this case, the exo metalation is kinetically favored while an endo process occurs under thermodynamic control, as shown through the rearrangement of [Pd(micro-OAc){C6H4(CH2N=PPh2Me)-2}]2 (exo-2g) into [Pd(micro-OAc){C,N-C6H4(P(Ph)Me=NCH2Ph)-2}]2 (endo-2g) in refluxing toluene. The preference for the endo palladation of 1a and the kinetic versus thermodynamic control in 1g has been explained through DFT studies of the reaction mechanism.

  15. 9-Substituted acridine derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors possessing antioxidant activity for Alzheimer's disease treatment.

    PubMed

    Makhaeva, Galina F; Lushchekina, Sofya V; Boltneva, Natalia P; Serebryakova, Olga G; Rudakova, Elena V; Ustyugov, Alexey A; Bachurin, Sergey O; Shchepochkin, Alexander V; Chupakhin, Oleg N; Charushin, Valery N; Richardson, Rudy J

    2017-11-01

    We investigated the inhibitory activity of 4 groups of novel acridine derivatives against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CaE) using the methods of enzyme kinetics and molecular docking. Antioxidant activity of the compounds was determined using the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS + ) radical decolorization assay as their ability to scavenge free radicals. Analysis of the esterase profiles and antiradical activities of the acridine derivatives showed that 9-aryl(heteroaryl)-N-methyl-9,10-dihydroacridines have a high radical-scavenging activity but low potency as AChE and BChE inhibitors, whereas 9-aryl(heteroaryl)-N-methyl-acridinium tetrafluoroborates effectively inhibit cholinesterases but do not exhibit antiradical activity. In contrast, a group of derivatives of 9-heterocyclic amino-N-methyl-9,10-dihydroacridine has been found that combine effective inhibition of AChE and BChE with rather high radical-scavenging activity. The results of molecular docking well explain the observed features in the efficacy, selectivity, and mechanism of cholinesterase inhibition by the acridine derivatives. Thus, in a series of acridine derivatives we have found compounds possessing dual properties of effective and selective cholinesterase inhibition together with free radical scavenging, which makes promising the use of the acridine scaffold to create multifunctional drugs for the therapy of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

    PubMed Central

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  17. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium.

    PubMed Central

    Lochmeyer, C; Koch, J; Fuchs, G

    1992-01-01

    The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes. Images PMID:1592816

  18. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium.

    PubMed

    Lochmeyer, C; Koch, J; Fuchs, G

    1992-06-01

    The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes.

  19. New Complexity-Building Reactions of Alpha-Keto Esters

    NASA Astrophysics Data System (ADS)

    Bartlett, Samuel L.

    I. Introduction: Importance of Asymmetric Catalysis and the Reactivity Patterns of alpha-Keto Esters. II. Synthesis of Complex Tertiary Glycolates by Enantioconvergent Arylation of Stereochemically Labile alpha-Keto Esters. Enantioconvergent arylation reactions of boronic acids and racemic ?-stereogenic alpha-keto esters have been developed. The reactions are catalyzed by a chiral (diene)Rh(I) complex and provide a wide array of beta-stereogenic tertiary aryl glycolate derivatives with high levels of diastereo- and enantioselectivity. Racemization studies employing a series of sterically differentiated tertiary amines suggest that the steric nature of the amine base additive exerts a significant influence on the rate of substrate racemization. III. Palladium-Catalyzed beta-Arylation of alpha-Keto Esters . A catalyst system derived from commercially available Pd2(dba) 3 and PtBu3 has been applied to the coupling of alpha-keto ester enolates and aryl bromides. The reaction provides access to an array of beta-stereogenic alpha-keto ester derivatives. When the air stable ligand precursor PtBu 3˙HBF4 is employed, the reaction can be carried out without use of a glovebox. The derived products are of broad interest given the prevalence of the alpha-keto acid substructure in biologically important molecules. IV. Catalytic Enantioselective [3+2] Cycloaddition of alpha-Keto Ester Enolates and Nitrile Oxides. An enantioselective [3+2] cycloaddition reaction between nitrile oxides and transiently generated enolates of alpha-keto esters has been developed. The catalyst system was found to be compatible with in situ nitrile oxide generation conditions. A versatile array of nitrile oxides and alpha-keto esters could participate in the cycloaddition, providing novel 5-hydroxy-2-isoxazolines in high chemical yield with high levels of diastereo- and enantioselectivity. Notably, the optimal reaction conditions circumvented concurrent reaction via O-imidoylation and hetero-[3+2] pathways.

  20. In situ diazonium-modified flexible ITO-coated PEN substrates for the deposition of adherent silver-polypyrrole nanocomposite films.

    PubMed

    Samanta, Soumen; Bakas, Idriss; Singh, Ajay; Aswal, Dinesh K; Chehimi, Mohamed M

    2014-08-12

    In this paper, we report a simple and versatile process of electrografting the aryl multilayers onto indium tin oxide (ITO)-coated flexible poly(ethylene naphthalate) (PEN) substrates using a diazonium salt (4-pyrrolylphenyldiazonium) solution, which was generated in situ from a reaction between the 4-(1H-pyrrol-1-yl)aniline precursor and sodium nitrite in an acidic medium. The first aryl layer bonds with the ITO surface through In-O-C and Sn-O-C bonds which facilitate the formation of a uniform aryl multilayer that is ∼8 nm thick. The presence of the aryl multilayer has been confirmed by impedance spectroscopy as well as by electron-transfer blocking measurements. These in situ diazonium-modified ITO-coated PEN substrates may find applications in flexible organic electronics and sensor industries. Here we demonstrate the application of diazonium-modified flexible substrates for the growth of adherent silver/polpyrrole nanocomposite films using surface-confined UV photopolymerization. These nanocomposite films have platelet morphology owing to the template effect of the pyrrole-terminated aryl multilayers. In addition, the films are highly doped (32%). This work opens new areas in the design of flexible ITO-conductive polymer hybrids.

  1. Novel Aryne Chemistry in Organic Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhijian

    2006-12-12

    Arynes are among the most intensively studied systems in chemistry. However, many aspects of the chemistry of these reactive intermediates are not well understood yet and their use as reagents in synthetic organic chemistry has been somewhat limited, due to the harsh conditions needed to generate arynes and the often uncontrolled reactivity exhibited by these species. Recently, o-silylaryl triflates, which can generate the corresponding arynes under very mild reaction conditions, have been found very useful in organic synthesis. This thesis describes several novel and useful methodologies by employing arynes, which generate from o-silylaryl triflates, in organic synthesis. An efficient, reliablemore » method for the N-arylation of amines, sulfonamides and carbamates, and the O-arylation of phenols and carboxylic acids is described in Chapter 1. Amines, sulfonamides, phenols, and carboxylic acids are good nucleophiles, which can react with arynes generated from a-silylaryl triflates to afford the corresponding N- and O-arylated products in very high yields. The regioselectivity of unsymmetrical arynes has also been studied. A lot of useful, functional groups can tolerate our reaction conditions. Carbazoles and dibenzofurans are important heteroaromatic compounds, which have a variety of biological activities. A variety of substituted carbazoles and dibenzofwans are readily prepared in good to excellent yields starting with the corresponding o-iodoanilines or o-iodophenols and o-silylaryl triflates by a treatment with CsF, followed by a Pd-catalyzed cyclization, which overall provides a one-pot, two-step process. By using this methodology, the carbazole alkaloid mukonine has been concisely synthesized in a very good yield. Insertion of an aryne into a σ-bond between a nucleophile and an electrophile (Nu-E) should potentially be a very beneficial process from the standpoint of organic synthesis. A variety of substituted ketones and sulfoxides have been synthesized in good yields via the intermolecular C-N σ-bond addition of amides and S-N σ-bond addition of sulfinamides to arynes under mild reaction conditions. The indazole moiety is a frequently found subunit in drug substances with important biological activities. Indazole analogues have been readily synthesized under mild reaction conditions by the [3+2] cycloaddition of a variety of diazo compounds with o-silylaryl triflates in the presence of CsF or TBAF. Polycyclic aromatic and heteroaromatic hydrocarbons have been synthesized in high yields by two different processes involving the Pd-catalyzed annulation of arynes. Both processes appear to involve the catalytic, stepwise coupling of two very reactive substrates, an aryne and an organopalladium species, to generate excellent yields of cross-coupled products.« less

  2. Gold-Catalyzed Formal C-C Bond Insertion Reaction of 2-Aryl-2-diazoesters with 1,3-Diketones.

    PubMed

    Ren, Yuan-Yuan; Chen, Mo; Li, Ke; Zhu, Shou-Fei

    2018-06-29

    The transition-metal-catalyzed formal C-C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3-diketones instead gives C-H bond insertion products. Herein, we report a protocol for a gold-catalyzed formal C-C bond insertion reaction of 2-aryl-2-diazoesters with 1,3-diketones, which provides efficient access to polycarbonyl compounds with an all-carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C-C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring-opening of the resulting donor-acceptor-type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis-acid-catalyzed C-C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis, chemical characterization, and economical feasibility of poly-phenolic-branched-chain fatty acids: Synthesis of poly-phenolic-branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    New poly-phenolic branched-chain fatty acid (poly-PBC-FA) products were synthesized from a combination of soybean fatty acids and phenolic materials through a highly efficient zeolite catalyzed arylation method. These poly-PBC-FAs are liquid at room temperature and do not have the unpleasant odor li...

  4. [CNN]-pincer nickel(II) complexes of N-heterocyclic carbene (NHC): synthesis and catalysis of the Kumada reaction of unactivated C-Cl bonds.

    PubMed

    Sun, Yunqiang; Li, Xiaoyan; Sun, Hongjian

    2014-07-07

    Three novel [CNN]-pincer nickel(ii) complexes with NHC-amine arms were synthesized in three steps. Complex was proven to be an efficient catalyst for the Kumada coupling of aryl chlorides or aryl dichlorides under mild conditions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chichak, Kelly Scott; Liu, Jie Jerry; Shiang, Joseph John

    Optoelectronic devices with enhanced internal outcoupling include a substrate, an anode, a cathode, an electroluminescent layer, and electron transporting layer comprising a fluoro compound of formula I (Ar.sup.2).sub.n--Ar.sup.1--(Ar.sup.2).sub.n I wherein Ar.sup.1 is C.sub.5-C.sub.40 aryl, C.sub.5-C.sub.40 substituted aryl, C.sub.5-C.sub.40 heteroaryl, or C.sub.5-C.sub.40 substituted heteroaryl; Ar.sup.2 is, independently at each occurrence, fluoro- or fluoroalkyl-substituted C.sub.5-40 heteroaryl; and n is 1, 2, or 3.

  6. Exploration of ethyl anthranilate-loaded monolithic matrix-type prophylactic polymeric patch.

    PubMed

    Islam, Johirul; Zaman, Kamaruz; Chakrabarti, Srijita; Bora, Nilutpal Sharma; Pathak, Manash Pratim; Mandal, Santa; Junejo, Julfikar Ali; Chattopadhyay, Pronobesh

    2017-10-01

    Compromised stability of pharmaceutical formulations loaded with volatiles is a serious problem associated with devices designed to deliver volatile compounds. The present study has been focused to evaluate the stability potential of matrix-type polymeric patches composed of volatile ethyl anthranilate for prophylaxis against vector-borne diseases. Ethyl anthranilate-loaded matrix-type polymeric patches were fabricated by solvent evaporation method on an impermeable backing membrane and attached to temporary release liners. Stability testing of the polymeric patches was performed as per the International Conference on Harmonization (ICH) guidelines for 6 months under accelerated conditions. In addition, the quantification of residual solvents was also performed as per the ICH guidelines. After conducting the stability studies for 6 months, the optimized patches showed the best possible results with respect to uniformity of drug content, physical appearance, and other analytical parameters. Furthermore, the amount of residual solvent was found well below the accepted limit. Thus, the present report outlined the analytical parameters to be evaluated to ensure the stability of a certain devices consisting of volatile compounds. Copyright © 2016. Published by Elsevier B.V.

  7. Ruthenium(η⁶,η¹-arene-CH₂-NHC) Catalysts for Direct Arylation of 2-Phenylpyridine with (Hetero)Aryl Chlorides in Water.

    PubMed

    Kaloğlu, Nazan; Özdemir, İsmail; Gürbüz, Nevin; Arslan, Hakan; Dixneuf, Pierre H

    2018-03-13

    A series of new benzimidazolium halides were synthesized in good yields as unsymmetrical N -heterocyclic carbene (NHC) precursors containing the N-CH₂-arene group. The benzimidazolium halides were readily converted into ruthenium(II)-NHC complexes with the general formula [RuCl₂(η⁶,η¹-arene-CH₂-NHC)]. The structures of all new compounds were characterized by ¹H NMR (Nuclear Magnetic Resonance), 13 C NMR, FT-IR (Fourier Transform Infrared) spectroscopy and elemental analysis techniques. The single crystal structure of one benzimidazole ruthenium complex, 2b , was determined. The complex is best thought of as containing an octahedrally coordinated Ru center with the arene residue occupying three sites, the remaining sites being occupied by a (carbene)C-Ru bond and two Ru-Cl bonds. The catalytic activity of [RuCl₂(η⁶,η ¹ -arene-CH₂-NHC)] complexes was evaluated in the direct (hetero)arylation of 2-phenylpyridine with (hetero)aryl chlorides in water as the nontoxic reaction medium. These results show that catalysts 2a and 2b were the best for monoarylation with simple phenyl and tolyl chlorides. For functional aryl chlorides, 2d , 2e , and 2c appeared to be the most efficient.

  8. Amine-functionalized Zn(ii) MOF as an efficient multifunctional catalyst for CO2 utilization and sulfoxidation reaction.

    PubMed

    Patel, Parth; Parmar, Bhavesh; Kureshy, Rukhsana I; Khan, Noor-Ul H; Suresh, Eringathodi

    2018-06-19

    Herein, a zinc(ii)-based 3D mixed ligand metal organic framework (MOF) was synthesized via versatile routes including green mechanochemical synthesis. The MOF {[Zn(ATA)(L)·H2O]}n (ZnMOF-1-NH2) has been characterized by various physico-chemical techniques, including SCXRD, and composed of the bipyridyl-based Schiff base (E)-N'-(pyridin-4-ylmethylene)isonicotinohydrazide (L) and 2-aminoterephthalic acid (H2ATA) ligands as linkers. The MOF material has been explored as a multifunctional heterogeneous catalyst for the cycloaddition of alkyl and aryl epoxides with CO2 and sulfoxidation reactions of aryl sulfides. The influence of various reaction parameters is examined to optimize the performance of the catalytic reactions. It is found that solvent-free catalytic reaction conditions offer good catalytic conversion in the case of cyclic carbonates, and for sulfoxide, good conversion and selectivity are achieved in the presence of DCM as a solvent medium under ambient reaction conditions. The chemical and thermal stability of the catalyst are excellent and it is active for up to four catalytic cycles without significant loss in activity. Furthermore, based on the catalytic activity and structural evidence, a plausible mechanism for both catalytic reactions is proposed.

  9. Explorations of Substituted Urea Functionality for Discovery of New Activators of the Heme Regulated Inhibitor Kinase

    PubMed Central

    Chen, Ting; Takrouri, Khuloud; Hee-Hwang, Sung; Rana, Sandeep; Yefidoff-Freedman, Revital; Halperin, Jose; Natarajan, Amarnath; Morisseau, Christophe; Hammock, Bruce; Chorev, Michael; Aktas, Bertal H.

    2014-01-01

    Heme-regulated inhibitor kinase (HRI), an eukaryotic translation initiation factor 2 alpha (eIF2α) kinase, plays critical roles in cell proliferation, differentiation, and adaptation to cytoplasmic stress. HRI is also a critical modifier of hemoglobin disorders such as β-thalassemia. We previously identified N,N′-diarylureas as potent activators of HRI suitable for studying biology of this important kinase. To expand the repertoire of chemotypes that activate HRI we screened a ~1,900 member N,N′-disubstituted urea library in the surrogate eIF2α phosphorylation assay identifying N-aryl,N′-cyclohexylphenoxyurea as a promising scaffold. We validated hit compounds as a bona-fide HRI activators in secondary assays and explored contributions of substitutions on the N-aryl and N′-cyclohexylphenoxy groups to their activity by studying focused libraries of complementing analogs. We tested these N-aryl,N′-cyclohexylphenoxyureas in the surrogate eIF2α phosphorylation and cell proliferation assays, demonstrating significantly improved bioactivities and specificities. We consider these compounds to represent lead candidates for the development of potent and specific HRI activators. PMID:24261904

  10. Kynurenine-3-monooxygenase: a review of structure, mechanism, and inhibitors.

    PubMed

    Smith, Jason R; Jamie, Joanne F; Guillemin, Gilles J

    2016-02-01

    Kynurenine monooxygenase (KMO) is an enzyme of the kynurenine (Kyn) pathway (KP), which is the major catabolic route of tryptophan. Kyn represents a branch point of the KP, being converted into the neurotoxin 3-hydroxykynurenine via KMO, neuroprotectant kynurenic acid, and anthranilic acid. As a result of this branch point, KMO is an attractive drug target for several neurodegenerative and/or neuroinflammatory diseases, especially Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases. Although a neurological target, administration of KMO inhibitors in the periphery has demonstrated promising pharmacological results. In light of a recent crystal structure release and reports of preclinical candidates, here we provide a concise yet comprehensive update on the current state of research into the enzymology of KMO and related drug discovery efforts, highlighting areas where further work is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains.

    PubMed

    Monforte, Anna Maria; De Luca, Laura; Buemi, Maria Rosa; Agharbaoui, Fatima E; Pannecouque, Christophe; Ferro, Stefania

    2018-02-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of human immunodeficiency virus (HIV) infection. These regimens are extremely effective in suppressing virus replication. Recently, our research group identified some N 1 -aryl-2-arylthioacetamido-benzimidazoles as a novel class of NNRTIs. In this research work we report the design, the synthesis and the structure-activity relationship studies of new compounds (20-34) in which some structural modifications have been introduced in order to investigate their effects on reverse transcriptase (RT) inhibition and to better define the features needed to increase the antiviral activity. Most of the new compounds proved to be highly effective in inhibiting both RT enzyme at nanomolar concentrations and HIV-1 replication in MT4 cells with minimal cytotoxicity. Among them, the most promising N 1 -aryl-2-arylthioacetamido-benzimidazoles and N 1 -aryl-2-aryloxyacetamido-benzimidazoles were also tested toward a panel of single- and double-mutants strain responsible for resistance to NNRTIs, showing in vitro antiviral activity toward single mutants L100I, K103N, Y181C, Y188L and E138K. The best results were observed for derivatives 29 and 33 active also against the double mutants F227L and V106A. Computational approaches were applied in order to rationalize the potency of the new synthesized inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids

    NASA Astrophysics Data System (ADS)

    Sidera, Mireia; Fletcher, Stephen P.

    2015-11-01

    Csp2-Csp2 cross-coupling reactions between arylboronic acid and aryl halides are widely used in both academia and industry and are strategically important in the development of new agrochemicals and pharmaceuticals. Csp2-Csp3 cross-coupling reactions have been developed, but enantioselective variations are rare and simply retaining the stereochemistry is a problem. Here we report a highly enantioselective Csp2-Csp3 bond-forming method that couples arylboronic acids to racemic allyl chlorides. Both enantiomers of a cyclic chloride are converted into a single enantiomer of product via a dynamic kinetic asymmetric transformation. This Rh-catalysed method uses readily available and inexpensive building blocks and is mild and broadly applicable. For electron-deficient, electron-rich or ortho-substituted boronic acids better results are obtained with racemic allyl bromides. Oxygen substitution in the allyl halide is tolerated and the products can be functionalized to provide diverse building blocks. The approach fills a significant gap in the methods for catalytic asymmetric synthesis.

  13. Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts.

    PubMed

    Guino-O, Marites A; Talbot, Meghan O; Slitts, Michael M; Pham, Theresa N; Audi, Maya C; Janzen, Daron E

    2015-06-01

    The asymmetric units for the salts 4-(4-fluoro-phen-yl)-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3 (+)·I(-), (1), 1-isopropyl-4-(4-methyl-phen-yl)-1,2,4-triazol-1-ium iodide, C12H16N3 (+)·I(-), (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3 (+)·I(-), (3), and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3 (+)·I(-), (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3 (+)·Br(-)·H2O, (5), there is an additional single water mol-ecule. There is a predominant C-H⋯X(halide) inter-action for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π-anion inter-action between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π-π inter-actions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects.

  14. Probing the role of the vancomycin e-ring aryl chloride: selective divergent synthesis and evaluation of alternatively substituted E-ring analogues.

    PubMed

    Pinchman, Joseph R; Boger, Dale L

    2013-05-23

    The selective functionalization of vancomycin aglycon derivatives through conversion of the E-ring aryl chloride to a reactive boronic acid and its use in the synthesis of a systematic series of vancomycin E-ring analogues are described. The series was used to examine the E-ring chloride impact in binding d-Ala-d-Ala and on antimicrobial activity. In contrast to the reduced activity of the unsubstituted E-ring derivatives, hydrophobic and relatively nonpolar substituents approach or match the chloro-substituted vancomycin and were insensitive to the electronic character of the substituent (e.g., Cl vs CN/OMe), whereas highly polar substituents fail to provide the enhancements. Moreover, the active permethylated vancomycin aglycon derivatives exhibit VanB VRE antimicrobial activity at levels that approach (typically within 2-fold) their activity against sensitive bacteria. The robust borylation reaction also enabled the functionalization of a minimally protected vancomycin aglycon (N-Boc-vancomycin aglycon) and provides a direct method for the preparation of previously inaccessible analogues.

  15. Asymmetric 1,2-perfluoroalkyl migration: easy access to enantioenriched α-hydroxy-α-perfluoroalkyl esters.

    PubMed

    Wang, Pan; Feng, Liang-Wen; Wang, Lijia; Li, Jun-Fang; Liao, Saihu; Tang, Yong

    2015-04-15

    This study has led to the development of a novel, highly efficient, 1,2-perfluoro-alkyl/-aryl migration process in reactions of hydrate of 1-perfluoro-alkyl/-aryl-1,2-diketones with alcohols, which are promoted by a Zn(II)/bisoxazoline and form α-perfluoro-alkyl/-aryl-substituted α-hydroxy esters. With (-)-8-phenylmenthol as the alcohol, the corresponding menthol esters are generated in high yields with excellent levels of diastereoselectivity. The mechanistic studies show that the benzilic ester-type rearrangement reaction takes place via an unusual 1,2-migration of electron-deficient trifluoromethyl group rather than the phenyl group. The overall process serves as a novel, efficient, and simple approach for the synthesis of highly enantioenriched, biologically relevant α-hydroxy-α-perfluoroalkyl carboxylic acid derivatives.

  16. C-H Bond Functionalization via Hydride Transfer: Formation of α-Arylated Piperidines and 1,2,3,4-Tetrahydroisoquinolines via Stereoselective Intramolecular Amination of Benzylic C-H Bonds

    PubMed Central

    Vadola, Paul A.; Carrera, Ignacio; Sames, Dalibor

    2012-01-01

    We here report a study of the intramolecular amination of sp3 C-H bonds via the hydride transfer cyclization of N-tosylimines (HT-amination). In this transformation, 5-aryl-aldehydes are subjected to N-toluenesulfonamide in the presence of BF3•OEt2 to effect imine formation and HT-cyclization, leading to 2-aryl-piperidines and 3-aryl-1,2,3,4-tetrahydroisoquinolines in a one-pot procedure. We examined the reactivity of a range of aldehyde substrates as a function of their conformational flexibility. Substrates of higher conformational rigidity were more reactive, giving higher yields of the desired products. However, a single substituent on the alkyl chain linking the N-tosylimine and the benzylic sp3 C-H bonds was sufficient for HT-cyclization to occur. In addition, an examination of various arenes revealed that the electronic character of the hydridic C-H bonds dramatically affects the efficiency of the reaction. We also found that this transformation is highly stereoselective; 2-substituted aldehydes yield cis-2,5-disubstituted piperidines, while 3-substituted aldehydes afford trans-2,4-disubstituted piperidines. The stereoselectivity is a consequence of thermodynamic control. The pseudo-allylic strain between the arene and tosyl group on the piperidine ring is proposed to rationalize the greater stability of the isomer with the aryl ring in the axial position. This preferential placement of the arene is proposed to affect the observed stereoselectivity. PMID:22672002

  17. Highly effective copper-mediated gem-difluoromethylenation of arylboronic acids.

    PubMed

    Ma, Guobin; Wan, Wen; Hu, Qingyang; Jiang, Haizhen; Wang, Jing; Zhu, Shizheng; Hao, Jian

    2014-07-18

    A copper-mediated gem-difluoromethylenation of aryl, heteroaryl and vinyl boronic acids with bromodifluoromethylated oxazole or thiazole derivatives has been developed. This novel reaction showed an excellent functional group tolerance and wide substrate scope, providing facile access to practical application in drug discovery and development.

  18. Additive free preparative chiral SFC separations of 2,2-dimethyl-3-aryl-propanoic acids.

    PubMed

    Wu, Dauh-Rurng; Yip, Shiuhang Henry; Li, Peng; Sun, Dawn; Kempson, James; Mathur, Arvind

    2016-11-30

    A series of racemic 2,2-dimethyl-3-aryl-propanoic acids were resolved by chiral supercritical fluid chromatography (SFC) without the use of an acidic additive, trifluoroacetic acid (TFA). The use of additive-free protic methanol as co-solvent in CO 2 was expanded to successfully resolve other series of carboxylic acid containing racemates. Large-scale SFC of racemic acid 4, 3-(1-(4-fluorophenyl)-1H-indazol-5-yl)-2,2-dimethyl-3-phenylpropanoic acid, in methanol without TFA as additive on both Chiralpak AD-H and Chiralcel OJ-H will be discussed, along with impact on throughput and solvent consumption. Investigation of co-solvent effect on peak sharpening of acid racemate 20, 2-(2-chloro-9-fluoro-5H-chromeno[2,3-b]pyridin-5-yl)-2-methylpropanoic acid, without TFA further indicated that methanol in CO 2 provided improved peak shape compared with isopropanol (IPA) and acetonitrile. Finally, we discuss the resolution of basic aromatic chiral amines without the addition of basic additives such as diethylamine (DEA) and application of this protocol for the large-scale SFC separation of weakly basic indazole-containing racemate 14, methyl 3-(1H-indazol-5-yl)-2,2-dimethyl-3-phenylpropanoate, in methanol without DEA. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L

    PubMed Central

    Comino, Cinzia; Lanteri, Sergio; Portis, Ezio; Acquadro, Alberto; Romani, Annalisa; Hehn, Alain; Larbat, Romain; Bourgaud, Frédéric

    2007-01-01

    Background Cynara cardunculus L. is an edible plant of pharmaceutical interest, in particular with respect to the polyphenolic content of its leaves. It includes three taxa: globe artichoke, cultivated cardoon, and wild cardoon. The dominating phenolics are the di-caffeoylquinic acids (such as cynarin), which are largely restricted to Cynara species, along with their precursor, chlorogenic acid (CGA). The scope of this study is to better understand CGA synthesis in this plant. Results A gene sequence encoding a hydroxycinnamoyltransferase (HCT) involved in the synthesis of CGA, was identified. Isolation of the gene sequence was achieved by using a PCR strategy with degenerated primers targeted to conserved regions of orthologous HCT sequences available. We have isolated a 717 bp cDNA which shares 84% aminoacid identity and 92% similarity with a tobacco gene responsible for the biosynthesis of CGA from p-coumaroyl-CoA and quinic acid. In silico studies revealed the globe artichoke HCT sequence clustering with one of the main acyltransferase groups (i.e. anthranilate N-hydroxycinnamoyl/benzoyltransferase). Heterologous expression of the full length HCT (GenBank accession DQ104740) cDNA in E. coli demonstrated that the recombinant enzyme efficiently synthesizes both chlorogenic acid and p-coumaroyl quinate from quinic acid and caffeoyl-CoA or p-coumaroyl-CoA, respectively, confirming its identity as a hydroxycinnamoyl-CoA: quinate HCT. Variable levels of HCT expression were shown among wild and cultivated forms of C. cardunculus subspecies. The level of expression was correlated with CGA content. Conclusion The data support the predicted involvement of the Cynara cardunculus HCT in the biosynthesis of CGA before and/or after the hydroxylation step of hydroxycinnamoyl esters. PMID:17374149

  20. Antimycobacterial activity of new N(1)-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives.

    PubMed

    Zampieri, Daniele; Mamolo, Maria Grazia; Vio, Luciano; Romano, Maurizio; Skoko, Nataša; Baralle, Marco; Pau, Valentina; De Logu, Alessandro

    2016-07-15

    N(1)-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives were design, synthesized and tested for their in vitro antimycobacterial activity. The new compounds showed a moderate antimycobacterial activity against the tested strain of Mycobacterium tuberculosis H37Ra and a significant antimycobacterial activity against several mycobacteria other than tuberculosis strains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Palladium-catalyzed coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates: a general method for the preparation of primary arylamines.

    PubMed

    Vo, Giang D; Hartwig, John F

    2009-08-12

    We report that the complex generated from Pd[P(o-tol)(3)](2) and the alkylbisphosphine CyPF-t-Bu is a highly active and selective catalyst for the coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates. The couplings of ammonia with this catalyst conducted with a solution of ammonia in dioxane form primary arylamines from a variety of aryl electrophiles in high yields. Catalyst loadings as low as 0.1 mol % were sufficient for reactions of many aryl chlorides and bromides. In the presence of this catalyst, aryl sulfonates also coupled with ammonia for the first time in high yields. A comparison of reactions in the presence of this catalyst versus those in the presence of existing copper and palladium systems revealed a complementary, if not broader, substrate scope. The utility of this method to generate amides, imides, and carbamates is illustrated by a one-pot synthesis of a small library of these carbonyl compounds from aryl bromides and chlorides, ammonia, and acid chlorides or anhydrides. Mechanistic studies show that reactions conducted with the combination of Pd[P(o-tol)(3)](2) and CyPF-t-Bu as catalyst occur with faster rates and higher yields than those conducted with CyPF-t-Bu and palladiun(II) as catalyst precursors because of the low concentration of active catalyst that is generated from the combination of palladium(II), ammonia, and base.

  2. Tetrahydrofuran Calpha-tetrasubstituted amino acids: two consecutive beta-turns in a crystalline linear tripeptide.

    PubMed

    Maity, Prantik; Zabel, Manfred; König, Burkhard

    2007-10-12

    The synthesis of tetrahydrofuran Calpha-tetrasubstituted amino acids (TAAs) and their effect on the conformation in small peptides are reported. The synthesis starts from the protein amino acid methionine, which is protected at the C and N terminus and converted into the corresponding sulfonium salt by alkylation. Simple base treatment in the presence of an aryl aldehyde leads to the formation of tetrahydrofuran tetrasubstituted Calpha-amino acids in a highly diastereoselective (trans/cis ratio up to 97:3) reaction with moderate to good yields (35-78%) depending on the aldehyde used. Palladium-catalyzed coupling reactions allow a subsequent further functionalization of the TAA. The R,S,S-TAA-Ala dipeptide amide adopts a beta-turn type I conformation, whereas its S,R,S isomer does not. The R,S,S-Gly-TAA-Ala tripeptide amide shows in the solid state and in solution a conformation of two consecutive beta-turn type III structures, stabilized by i+3-->i intramolecular hydrogen bonds.

  3. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells

    PubMed Central

    Bagley, Mark C.; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E.; Kipling, David; Davis, Terence

    2015-01-01

    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells. PMID:26046488

  4. Structure of aryl O -demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Amanda C.; Mills, Matthew J. L.; Adams, Paul D.

    Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, wasmore » previously available. LigM-catalyzed demethylation enables further modification and rin g opening of the single-ring aromatics vanillate and 3-Omethylgallate, which are common byproducts of biofuel production. We characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. Our results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.« less

  5. Structure of aryl O -demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

    DOE PAGES

    Kohler, Amanda C.; Mills, Matthew J. L.; Adams, Paul D.; ...

    2017-04-03

    Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, wasmore » previously available. LigM-catalyzed demethylation enables further modification and rin g opening of the single-ring aromatics vanillate and 3-Omethylgallate, which are common byproducts of biofuel production. We characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. Our results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.« less

  6. Multiple metabolic pathways for metabolism of l-tryptophan in Fusarium graminearum.

    PubMed

    Luo, Kun; DesRoches, Caro-Lyne; Johnston, Anne; Harris, Linda J; Zhao, Hui-Yan; Ouellet, Thérèse

    2017-11-01

    Fusarium graminearum is a plant pathogen that can cause the devastating cereal grain disease fusarium head blight in temperate regions of the world. Previous studies have shown that F. graminearum can synthetize indole-3-acetic acid (auxin) using l-tryptophan (L-TRP)-dependent pathways. In the present study, we have taken a broader approach to examine the metabolism of L-TRP in F. graminearum liquid culture. Our results showed that F. graminearum was able to transiently produce the indole tryptophol when supplied with L-TRP. Comparative gene expression profiling between L-TRP-treated and control cultures showed that L-TRP treatment induced the upregulation of a series of genes with predicted function in the metabolism of L-TRP via anthranilic acid and catechol towards the tricarboxylic acid cycle. It is proposed that this metabolic activity provides extra energy for 15-acetyldeoxynivalenol production, as observed in our experiments. This is the first report of the use of L-TRP to increase energy resources in a Fusarium species.

  7. USSR and Eastern Europe Scientific Abstracts, Chemistry, Number 60

    DTIC Science & Technology

    1978-07-12

    OF AROMATIC AND HETEROCYCLIC ANALOGUES OF THE NATURAL GROWTH INHIBITOR - ABSCISIC ACID Tashkent KHIMIYA PRIRODNYKH SOYEDINENIY in Russian No 1, 1978...Chemistry of Natural Products, Academy of Sciences UzSSR, Tashkent [Abstract] Aryl analogues of abscisic acid were obtained by the Reformatskii...heterocyclic nuclei with carboethoxy-methylene- triphenylphosphorane led to the formation of furyl and hetero-cyclic analogues of abscisic acid . The

  8. Synthesis and Biological Evaluation of Novel N-Aryl-ω-(Benzoazol-2-yl)-Sulfanylalkanamides as Dual Inhibitors of α-Glucosidase and Protein Tyrosine Phosphatase 1B.

    PubMed

    Wang, Mei-Yan; Cheng, Xian-Chao; Chen, Xiu-Bo; Li, Yu; Zang, Lan-Lan; Duan, Yu-Qing; Chen, Ming-Zhu; Yu, Peng; Sun, Hua; Wang, Run-Ling

    2018-05-09

    α-Glucosidase is known to catalyze the digestion of carbohydrates and release free glucose into the digestive tract. Protein tyrosine phosphatase 1B (PTP1B) is engaged in the dephosphorylation of the insulin receptor and regulation of insulin sensitivity. Therefore, dual antagonists by targeting both α-glucosidase and PTP1B may be potential candidates for type 2 diabetes therapy. In this work, three series of novel N-aryl-ω-(benzoazol-2-yl)-sulfanylalkanamides were synthesized and assayed for their α-glucosidase and PTP1B inhibitory activities, respectively. Compound 3l, exhibiting the most effective α-glucosidase inhibitory activity (IC 50 = 10.96 μM (3l), IC 50 = 51.32 μM (Acarbose), IC 50 = 18.22 μM (Ursolic acid)) and potent PTP1B inhibitory activity (IC 50 = 13.46 μM (3l), IC 50 = 14.50 μM (Ursolic acid)), was identified as a novel dual inhibitor of α-glucosidase and PTP1B. Furthermore, 3l is a highly selective PTP1B inhibitor since no inhibition was showed by 3l at 100 μM against PTP-MEG2, TCPTP, SHP2, or SHP1. Subsequent kinetic analysis revealed 3l inhibited α-glucosidase in a reversible and mixed manner. Molecular docking study indicated that hydrogen bonds, van der Waals, charge interactions and Pi-cation interactions all contributed to interactions between 3l and α-glucosidase/PTP1B. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  10. Synthesis and evaluation of the NSCLC anti-cancer activity and physical properties of 4-aryl-N-phenylpyrimidin-2-amines.

    PubMed

    Toviwek, Borvornwat; Suphakun, Praphasri; Choowongkomon, Kiattawee; Hannongbua, Supa; Gleeson, M Paul

    2017-10-15

    Reported herein are efforts to profile 4-aryl-N-phenylpyrimidin-2-amines in terms of their anti-cancer activity towards non small-cell lung carcinoma (NSCLC) cells. We have synthesized new 4-aryl-N-phenylpyrimidin-2-amines and assessed them in terms of their cytotoxicity (A549, NCI-H187, MCF7, Vero & KB) and physicochemical properties (logD 7.4 and solubility). 13f and 13c demonstrated potent anti-cancer activity in A549 cells (0.2µM), compared to 0.4μM for the NSCLC drug Doxorubicin. 13f also displayed low experimental logD 7.4 (2.9) and the best solubility (∼40μM). Compounds 13b and 13d showed the best balance of A549 anti-cancer activity and selectivity. 13g showed good activity and selectivity comparable with the anti-cancer drug Doxorubicin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Gabapentin-base synthesis and theoretical studies of biologically active compounds: N-cyclohexyl-3-oxo-2-(3-oxo-2-azaspiro[4.5] decan-2-yl)-3-arylpropanamides and N-(tert-butyl)-2-(3-oxo-2-azaspiro[4.5]decan-2-yl)-2-arylacetamide derivatives

    NASA Astrophysics Data System (ADS)

    Amirani Poor, Mahboobe; Darehkordi, Ali; Anary-Abbasinejad, Mohammad; Mohammadi, Marziyeh

    2018-01-01

    An intermolecular Ugi reaction of 2-(1-(aminomethyl)cyclohexyl)acetic acid (gabapentin) with glyoxal and cyclohexyl isocyanide or aromatic aldehyde and tertbutyl isocyanide under mild conditions in ethanol have been developed to produce two novel class of N-cyclohexyl-3-(aryl)-3-oxo-2-(3-oxo-2-azaspiro[4.5]decan-2-yl)propanamideins and N-(tert-butyl)-2-(3-oxo-2-azaspiro[4.5]decan-2-yl)-2-arylacetamide derivatives in good to excellent yields. This presents the first report for the intermolecular Ugi three component reaction of gabapentin, glyoxal, and an isocyanide. Also according to the theoretical studies the electron-donating groups increase the strength of intramolecular hydrogen bond and electron-withdrawing groups decrease the strength of intramolecular hydrogen bond.

  12. Synthesis of 2-Ethenylcyclopropyl Aryl Ketones via Intramolecular SN2-like Displacement of an Ester.

    PubMed

    Jung, Michael E; Sun, Daniel L; Dwight, Timothy A; Yu, Peiyuan; Li, Wei; Houk, K N

    2016-10-07

    The efficient synthesis of trans-2-ethenylcyclopropyl aryl ketones via an intramolecular S N 2-like displacement of an allylic ester is reported. A novel 1,5-acyl shift process is also observed that contributes to the product mixture. Theoretical calculations provide a rationale for the observed product ratio.

  13. Metabolomic profiling in the prediction of gestational diabetes mellitus

    PubMed Central

    Huynh, Jennifer; Xiong, Grace; Lee, Hang; Wenger, Julia; Clish, Clary; Nathan, David; Thadhani, Ravi; Gerszten, Robert

    2015-01-01

    Aims/hypothesis Metabolomic profiling in populations with impaired glucose tolerance has revealed that branched chain and aromatic amino acids (BCAAs) are predictive of type 2 diabetes. Because gestational diabetes mellitus (GDM) shares pathophysiological similarities with type 2 diabetes, the metabolite profile predictive of type 2 diabetes could potentially identify women who will develop GDM. Methods We conducted a nested case–control study of 18- to 40-year-old women who participated in the Massachusetts General Hospital Obstetrical Maternal Study between 1998 and 2007. Participants were enrolled during their first trimester of a singleton pregnancy and fasting serum samples were collected. The women were followed throughout pregnancy and identified as having GDM or normal glucose tolerance (NGT) in the third trimester. Women with GDM (n=96) were matched to women with NGT (n=96) by age, BMI, gravidity and parity. Liquid chromatography–mass spectrometry was used to measure the levels of 91 metabolites. Results Data analyses revealed the following characteristics (mean±SD): age 32.8±4.4 years, BMI 28.3±5.6 kg/m2, gravidity 2±1 and parity 1±1. Six metabolites (anthranilic acid, alanine, glutamate, creatinine, allantoin and serine) were identified as having significantly different levels between the two groups in conditional logistic regression analyses (p<0.05). The levels of the BCAAs did not differ significantly between GDM and NGT. Conclusions/interpretation Metabolic markers identified as being predictive of type 2 diabetes may not have the same predictive power for GDM. However, further study in a racially/ethnically diverse population-based cohort is necessary. PMID:25748329

  14. Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts

    PubMed Central

    Guino-o, Marites A.; Talbot, Meghan O.; Slitts, Michael M.; Pham, Theresa N.; Audi, Maya C.; Janzen, Daron E.

    2015-01-01

    The asymmetric units for the salts 4-(4-fluoro­phen­yl)-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3 +·I−, (1), 1-isopropyl-4-(4-methyl­phen­yl)-1,2,4-triazol-1-ium iodide, C12H16N3 +·I−, (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3 +·I−, (3), and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3 +·I−, (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3 +·Br−·H2O, (5), there is an additional single water mol­ecule. There is a predominant C—H⋯X(halide) inter­action for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π–anion inter­action between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π–π inter­actions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects. PMID:26090137

  15. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods.more » They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. They demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, they developed conditions to directly arylate these heterocycles with aryl halides. The initial conditions that used PCy{sub 3} as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (Phoban) that also facilitated the coupling of aryl bromides. They then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, they anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C-H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations.« less

  16. A nickel catalyst for the addition of organoboronate esters to ketones and aldehydes.

    PubMed

    Bouffard, Jean; Itami, Kenichiro

    2009-10-01

    A Ni(cod)(2)/IPr catalyst promotes the intermolecular 1,2-addition of arylboronate esters to unactivated aldehydes and ketones. Diaryl, alkyl aryl, and dialkyl ketones show good reactivity under mild reaction conditions (< or = 80 degrees C, nonpolar solvents, no strong base or acid additives). A dramatic ligand effect favors either carbonyl addition (IPr) or C-OR cross-coupling (PCy(3)) with aryl ether substrates. A Ni(0)/Ni(II) catalytic cycle initiated by the oxidative cyclization of the carbonyl substrate is proposed.

  17. Rhizobium meliloti anthranilate synthase gene: cloning, sequence, and expression in Escherichia coli.

    PubMed Central

    Bae, Y M; Holmgren, E; Crawford, I P

    1989-01-01

    We determined the DNA sequence of the Rhizobium meliloti gene encoding anthranilate synthase, the first enzyme of the tryptophan pathway. Sequences similar to those seen for the two subunits of the enzyme as found in all other procaryotic species studied are present in a single open reading frame of 729 codons. This apparent gene fusion joins the C terminus of the large subunit (TrpE) to the N terminus of the small subunit (TrpG) through a short connecting segment. We designate the fused gene trpE(G). The gene is flanked by a typical rho-independent terminator at the 3' end and a complex regulatory region at the 5' end resembling those of operons under transcriptional attenuation control. The location of the promoter was determined by S1 nuclease protection, using Rhizobium mRNA. Although this promoter was inactive in Escherichia coli, mutations eliciting activity were easily obtained. One of these was a C----T change at position -9 in the -10 region. The +1 position of the mRNA is the first base of the initiation codon of the leader peptide, implying that unlike trpE(G), which has a normal Shine-Dalgarno sequence, the leader peptide gene lacks a ribosome-binding site. Images PMID:2656657

  18. Synthesis and cytotoxic evaluation of some new 4(3H)-quinazolinones on HeLa cell line

    PubMed Central

    Khodarahmi, G.A.; Shamshiri, M.; Hassanzadeh, F.

    2012-01-01

    Quinazolinone backbone is present in a large number of bioactive substances. Since remarkable cytotoxic activity is associated with some 4(3H)-quinazolinones, in this study some 4(3H)-quinazolinone were synthesized and screened against HeLa cells. The synthesis was performed via reaction of anthranilic acid with dicarboxylic anhydrides to produce carboxylic acids derivatives. The products were heated in acetic anhydride to produce benzoxazinones. Finally, 4(3H)-quinazolinones were synthesized by reaction between benzoxazinones and primary amines. The assessment of the structure of the synthesized compounds was based on spectral data (FT-IR, Mass and 1HNMR). Subsequently, cytotoxic activity of compounds 3, 6, 9 and 13 (individually and in combination with doxorubicin) was evaluated on HeLa cell line using MTT assay. The results indicated that the tested compounds did not show significant cytotoxicity alone and in combination with doxorubicin (1 and 20 μM). PMID:23181089

  19. A new inhibitor of synovial phospholipase A2 from fermentations of Penicillium sp. 62-92.

    PubMed

    Witter, L; Anke, T; Sterner, O

    1998-01-01

    Penidiamide, a new tripetide containing dehydrotryptamine, glycine and anthranilic acid linked together by two amide bonds, and oxindole were isolated from submerged cultures of Penicillium sp. 62-92. Both compounds preferentially inhibited human synovial phospholipase A2, penidiamide with an IC50 of 30 microM and oxindole of 380 microM. With the exception of U 937 cells (leukemia, human), no cytotoxic activities were detected against HL-60- (leukemia, human), HeLa S3- (epitheloid carcinoma, human), BHK 21- (kidney fibroblasts, hamster), and L1210-cells (leukemia, mouse). No antimicrobial activity was detected for oxindole, and only weak antibacterial activity for penidiamide. The structure of penidiamide was elucidated by spectroscopic methods.

  20. QSAR, docking, dynamic simulation and quantum mechanics studies to explore the recognition properties of cholinesterase binding sites.

    PubMed

    Correa-Basurto, J; Bello, M; Rosales-Hernández, M C; Hernández-Rodríguez, M; Nicolás-Vázquez, I; Rojo-Domínguez, A; Trujillo-Ferrara, J G; Miranda, René; Flores-Sandoval, C A

    2014-02-25

    A set of 84 known N-aryl-monosubstituted derivatives (42 amides: series 1 and 2, and 42 imides: series 3 an 4, from maleic and succinic anhydrides, respectively) that display inhibitory activity toward both acetylcholinesterase and butyrylcholinesterase (ChEs) was considered for Quantitative structure-activity relationship (QSAR) studies. These QSAR studies employed docking data from both ChEs that were previously submitted to molecular dynamics (MD) simulations. Donepezil and galanthamine stereoisomers were included to analyze their quantum mechanics properties and for validating the docking procedure. Quantum parameters such as frontier orbital energies, dipole moment, molecular volume, atomic charges, bond length and reactivity parameters were measured, as well as partition coefficients, molar refractivity and polarizability were also analyzed. In order to evaluate the obtained equations, four compounds: 1a (4-oxo-4-(phenylamino)butanoic acid), 2a ((2Z)-4-oxo-4-(phenylamino)but-2-enoic acid), 3a (2-phenylcyclopentane-1,3-dione) and 4a (2-phenylcyclopent-4-ene-1,3-dione) were employed as independent data set, using only equations with r(m(test))²>0.5. It was observed that residual values gave low value in almost all series, excepting in series 1 for compounds 3a and 4a, and in series 4 for compounds 1a, 2a and 3a, giving a low value for 4a. Consequently, equations seems to be specific according to the structure of the evaluated compound, that means, series 1 fits better for compound 1a, series 3 or 4 fits better for compounds 3a or 4a. Same behavior was observed in the butyrylcholinesterase (BChE). Therefore, obtained equations in this QSAR study could be employed to calculate the inhibition constant (Ki) value for compounds having a similar structure as N-aryl derivatives described here. The QSAR study showed that bond lengths, molecular electrostatic potential and frontier orbital energies are important in both ChE targets. Docking studies revealed that despite the multiple conformations obtained through MD simulations on both ChEs, the ligand recognition properties were conserved. In fact, the complex formed between ChEs and the best N-aryl compound reproduced the binding mode experimentally reported, where the ligand was coupled into the choline-binding site and stabilized through π-π interactions with Trp82 or Trp86 for BChE and AChE, respectively, suggesting that this compound could be an efficient inhibitor and supporting our model. Copyright © 2014. Published by Elsevier Ireland Ltd.

  1. A single-run liquid chromatography mass spectrometry method to quantify neuroactive kynurenine pathway metabolites in rat plasma.

    PubMed

    Orsatti, Laura; Speziale, Roberto; Orsale, Maria Vittoria; Caretti, Fulvia; Veneziano, Maria; Zini, Matteo; Monteagudo, Edith; Lyons, Kathryn; Beconi, Maria; Chan, Kelvin; Herbst, Todd; Toledo-Sherman, Leticia; Munoz-Sanjuan, Ignacio; Bonelli, Fabio; Dominguez, Celia

    2015-03-25

    Neuroactive metabolites in the kynurenine pathway of tryptophan catabolism are associated with neurodegenerative disorders. Tryptophan is transported across the blood-brain barrier and converted via the kynurenine pathway to N-formyl-L-kynurenine, which is further degraded to L-kynurenine. This metabolite can then generate a group of metabolites called kynurenines, most of which have neuroactive properties. The association of tryptophan catabolic pathway alterations with various central nervous system (CNS) pathologies has raised interest in analytical methods to accurately quantify kynurenines in body fluids. We here describe a rapid and sensitive reverse-phase HPLC-MS/MS method to quantify L-kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxy-L-kynurenine (3HK) and anthranilic acid (AA) in rat plasma. Our goal was to quantify these metabolites in a single run; given their different physico-chemical properties, major efforts were devoted to develop a chromatography suitable for all metabolites that involves plasma protein precipitation with acetonitrile followed by chromatographic separation by C18 RP chromatography, detected by electrospray mass spectrometry. Quantitation range was 0.098-100 ng/ml for 3HK, 9.8-20,000 ng/ml for KYN, 0.49-1000 ng/ml for KYNA and AA. The method was linear (r>0.9963) and validation parameters were within acceptance range (calibration standards and QC accuracy within ±30%). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions.

    PubMed

    Ruiz-Castillo, Paula; Buchwald, Stephen L

    2016-10-12

    Pd-catalyzed cross-coupling reactions that form C-N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C-N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

  3. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions

    PubMed Central

    2016-01-01

    Pd-catalyzed cross-coupling reactions that form C–N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C–N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts. PMID:27689804

  4. Crystal structure of 5-{4'-[(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl]-4-meth-oxy-[1,1'-biphen-yl]-3-yl}-3-oxo-1,2,5-thia-diazo-lidin-2-ide 1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B).

    PubMed

    Ruddraraju, Kasi Viswanatharaju; Hillebrand, Roman; Barnes, Charles L; Gates, Kent S

    2015-04-01

    The title compound, C24H32N4O8S, (I), crystallizes as a zwitterion. The terminal amine N atom of the [(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl] side chain is protonated, while the 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide N atom is deprotonated. The side chain is turned over on itself with an intra-molecular N-H⋯O hydrogen bond. The 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide ring has an envelope conformation with the aryl-substituted N atom as the flap. Its mean plane is inclined by 62.87 (8)° to the aryl ring to which it is attached, while the aryl rings of the biphenyl unit are inclined to one another by 20.81 (8)°. In the crystal, mol-ecules are linked by N-H⋯O and N-H⋯N hydrogen bonds, forming slabs lying parallel to (010). Within the slabs there are C-H⋯O and C-H⋯N hydrogen bonds and C-H⋯π inter-actions present.

  5. Conformationally constrained dipeptide surrogates with aromatic side-chains: synthesis of 4-aryl indolizidin-9-one amino acids by conjugate addition to a common alpha,omega-diaminoazelate enone intermediate.

    PubMed

    Cluzeau, Jérôme; Lubell, William D

    2004-03-05

    Four methyl 9-oxo-8-(N-(Boc)-amino)-4-phenyl-1-azabicyclo[4.3.0]nonane carboxylates (11, 4-Ph-I(9)aa-OMe) were synthesized from (2S,8S,5E)-di-tert-butyl-4-oxo-5-ene-2,8-bis[N-(PhF)amino]azelate [(5E)-7, PhF = 9-(9-phenylfluorenyl)] via a seven-step process featuring a conjugate addition/reductive amination/lactam cyclization sequence. Various nucleophiles were used in the conjugate addition reactions on enone (5E)-7 as a general route for making alpha,omega-diaminoazelates possessing different substituents in good yield albeit low diastereoselectivity except in the case of aryl Grignard reagents (9/1 to 15/1 drs). 6-Phenylazelates (6S)-8d and (6R)-8d were separated by chromatography and diastereoselective precipitation and independently transformed into 4-Ph-I(9)aa-OMe. From (6S)-8d, (2S,4R,6R,8S)-4-Ph-I(9)aa-OMe 11 was prepared selectively in 51% yield. Reductive amination of (6R)-8d provided the desired pipecolates 9 along with desamino compound 10, which was minimized by performing the hydrogenation in the presence of ammonium acetate. Subsequent ester exchange, lactam cyclization, and amine protection provided three products (2R,4S,6S,8R)-, (2R,4S,6S,8S)-, and (2S,4S,6R,8S)-4-Ph-I(9)aa-OMe 11 in 10, 6, and 6% yields, respectively, from (6R)-8d. Ester hydrolysis of (2S,4R,6R,8S)-11 furnished 4-phenyl indolizidin-9-one N-(Boc)amino acid 3 as a novel constrained Ala-Phe dipeptide surrogate for studying conformation-activity relationships of biologically active peptides.

  6. Characterization of Differential Cocaine Metabolism in Mouse and Rat through Metabolomics-Guided Metabolite Profiling

    PubMed Central

    Yao, Dan; Shi, Xiaolei; Wang, Lei; Gosnell, Blake A.

    2013-01-01

    Rodent animal models have been widely used for studying neurologic and toxicological events associated with cocaine abuse. It is known that the mouse is more susceptible to cocaine-induced hepatotoxicity (CIH) than the rat. However, the causes behind this species-dependent sensitivity to cocaine have not been elucidated. In this study, cocaine metabolism in the mouse and rat was characterized through LC-MS-based metabolomic analysis of urine samples and were further compared through calculating the relative abundance of individual cocaine metabolites. The results showed that the levels of benzoylecgonine, a major cocaine metabolite from ester hydrolysis, were comparable in the urine from the mice and rats treated with the same dose of cocaine. However, the levels of the cocaine metabolites from oxidative metabolism, such as N-hydroxybenzoylnorecgonine and hydroxybenzoylecgonine, differed dramatically between the two species, indicating species-dependent cocaine metabolism. Subsequent structural analysis through accurate mass analysis and LC-MS/MS fragmentation revealed that N-oxidation reactions, including N-demethylation and N-hydroxylation, are preferred metabolic routes in the mouse, while extensive aryl hydroxylation reactions occur in the rat. Through stable isotope tracing and in vitro enzyme reactions, a mouse-specific α-glucoside of N-hydroxybenzoylnorecgonine and a group of aryl hydroxy glucuronides high in the rat were identified and structurally elucidated. The differences in the in vivo oxidative metabolism of cocaine between the two rodent species were confirmed by the in vitro microsomal incubations. Chemical inhibition of P450 enzymes further revealed that different P450-mediated oxidative reactions in the ecgonine and benzoic acid moieties of cocaine contribute to the species-dependent biotransformation of cocaine. PMID:23034697

  7. Stable trifluorostyrene containing compounds grafted to base polymers, and their use as polymer electrolyte membranes

    DOEpatents

    Yang, Zhen-Yu; Roelofs, Mark Gerrit

    2010-11-09

    A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionally containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  8. Stable trifluorostyrene containing compounds grafted to base polymers, and their use as polymer electrolyte membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhen-Yu; Roelofs, Mark Gerrit

    2010-11-09

    A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionallymore » containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.« less

  9. A Torquoselective Extrusion of Isoxazoline N-Oxides. Application to the Synthesis of Aryl Vinyl and Divinyl Ketones for Nazarov Cyclization

    PubMed Central

    Canterbury, Daniel P.; Herrick, Ildiko R.; Um, Joann; Houk, K. N.; Frontier, Alison J.

    2009-01-01

    A mild, convenient reaction sequence for the synthesis of Nazarov cyclization substrates is described. The [3+2] dipolar cycloaddition of a nitrone and an electron-deficient alkyne gives an isolable isoxazoline intermediate, which upon oxidation undergoes stereoselective extrusion of nitrosomethane to give aryl vinyl or divinyl ketones. PMID:20161228

  10. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker.

    PubMed

    Huang, Yan-Jun; Jiang, Yun-Bao; Bull, Steven D; Fossey, John S; James, Tony D

    2010-11-21

    The exciplex formation between a pyridinium boronic acid and phenyl group connected via a propylene linker can be monitored using fluorescence. Addition of pinacol affords a cyclic boronate ester with enhanced Lewis acidity that increases the strength of its cation-π stacking interaction causing a four-fold fluorescence enhancement.

  11. CuO nanoparticles catalyzed C-N, C-O, and C-S cross-coupling reactions: scope and mechanism.

    PubMed

    Jammi, Suribabu; Sakthivel, Sekarpandi; Rout, Laxmidhar; Mukherjee, Tathagata; Mandal, Santu; Mitra, Raja; Saha, Prasenjit; Punniyamurthy, Tharmalingam

    2009-03-06

    CuO nanoparticles have been studied for C-N, C-O, and C-S bond formations via cross-coupling reactions of nitrogen, oxygen, and sulfur nucleophiles with aryl halides. Amides, amines, imidazoles, phenols, alcohols and thiols undergo reactions with aryl iodides in the presence of a base such as KOH, Cs(2)CO(3), and K(2)CO(3) at moderate temperature. The procedure is simple, general, ligand-free, and efficient to afford the cross-coupled products in high yield.

  12. Design, Synthesis, and Structure--Activity Relationship of New 2-Aryl-3,4-dihydro-β-carbolin-2-ium Salts as Antifungal Agents.

    PubMed

    Hou, Zhe; Zhu, Li-Fei; Yu, Xin-chi; Sun, Ma-Qiang; Miao, Fang; Zhou, Le

    2016-04-13

    Twenty-two 2-aryl-9-methyl-3,4-dihydro-β-carbolin-2-ium bromides along with four 9-demethylated derivatives were synthesized and characterized by spectroscopic analysis. By using the mycelium growth rate method, the compounds were evaluated for antifungal activities in vitro against six plant pathogenic fungi, and structure-activity relationships (SAR) were derived. Almost all of the compounds showed obvious inhibition activity on each of the fungi at 150 μM. For all of the fungi, 10 of the compounds showed average inhibition rates of >80% at 150 μM, and most of their EC50 values were in the range of 2.0-30.0 μM. SAR analysis showed that the substitution pattern of the N-aryl ring significantly influences the activity; N9-alkylation improves the activity, whereas aromatization of ring-C reduces the activity. It was concluded that the present research provided a series of new 2-aryl-9-alkyl-3,4-dihydro-β-carbolin-2-iums with excellent antifungal potency and structure optimization design for the development of new carboline antifungal agents.

  13. Copper-Catalyzed Domino Three-Component Approach for the Assembly of 2-Aminated Benzimidazoles and Quinazolines.

    PubMed

    Tran, Lam Quang; Li, Jihui; Neuville, Luc

    2015-06-19

    A copper-promoted three-component synthesis of 2-aminobenzimidazoles (1) or of 2-aminoquinazolines (2) involving cyanamides, arylboronic acids, and amines has been developed. The operationally simple oxidative process, performed in the presence of K2CO3, a catalytic amount of CuCl2·2H2O, 2,2'-bipyridine, and an O2 atmosphere (1 atm), allows the rapid assembly of either benzimidazoles or quinazolines starting from aryl- or benzyl-substituted cyanamides, respectively. In this process, the copper promotes the formation of three bonds, two C-N bonds, and an additional bond resulting from C-H functionalization event.

  14. The Suzuki-Miyaura Cross-Coupling Reaction of Halogenated Aminopyrazoles: Method Development, Scope, and Mechanism of Dehalogenation Side Reaction.

    PubMed

    Jedinák, Lukáš; Zátopková, Renáta; Zemánková, Hana; Šustková, Alena; Cankař, Petr

    2017-01-06

    The efficient Suzuki-Miyaura cross-coupling reaction of halogenated aminopyrazoles and their amides or ureas with a range of aryl, heteroaryl, and styryl boronic acids or esters has been developed. The method allowed incorporation of problematic substrates: aminopyrazoles bearing protected or unprotected pyrazole NH, as well as the free amino or N-amide group. Direct comparison of the chloro, bromo, and iodopyrazoles in the Suzuki-Miyaura reaction revealed that Br and Cl derivatives were superior to iodopyrazoles, as a result of reduced propensity to dehalogenation. Moreover, the mechanism and factors affecting the undesired dehalogenation side reaction were revealed.

  15. Three-Component Reactions of Diazoesters, Aldehydes, and Imines Using a Dual Catalytic System Consisting of a Rhodium(II) Complex and a Lewis Acid.

    PubMed

    Toda, Yasunori; Kaku, Wakatake; Tsuruoka, Makoto; Shinogaki, Sho; Abe, Tomoka; Kamiya, Hideaki; Kikuchi, Ayaka; Itoh, Kennosuke; Suga, Hiroyuki

    2018-05-04

    A dual catalytic system, dirhodium tetrapivalate/ytterbium(III) triflate, enables the three-component reactions of α-alkyl-α-diazoesters, aromatic aldehydes, and N-benzylidenebenzylamine derivatives to afford the corresponding β-amino alcohols in good yields after hydrolysis of the oxazolidine cycloadducts, whereas no β-amino alcohols are obtained in the absence of ytterbium(III) triflate. A similar dual catalytic system, dirhodium tetraacetate/ytterbium(III) triflate, is found to be effective in accelerating the reactions of α-aryl-α-diazoesters in high yields. Furthermore, the reactions using dimethyl diazomalonate are described.

  16. In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae-bacteria consortium.

    PubMed

    Mahdavi, Hamed; Prasad, Vinay; Liu, Yang; Ulrich, Ania C

    2015-01-01

    In this study, the biodegradation of total acid-extractable organics (TAOs), commonly called naphthenic acids (NAs), was investigated. An indigenous microbial culture containing algae and bacteria was taken from the surface of a tailings pond and incubated over the course of 120days. The influence of light, oxygen and the presence of indigenous algae and bacteria, and a diatom (Navicula pelliculosa) on the TAO removal rate were elucidated. The highest biodegradation rate was observed with bacteria growth only (without light exposure) with a half-life (t(1/2)) of 203days. The algae-bacteria consortium enhanced the detoxification process, however, bacterial biomass played the main role in toxicity reduction. Principal component analysis (PCA) conducted on FT-IR spectra, identified functional groups and bonds (representing potential markers for biotransformation of TAOs) as follows: hydroxyl, carboxyl and amide groups along with CH, arylH, arylOH and NH bonds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Process for selective production of di- and tri-alkylamines

    DOEpatents

    Klier, Kamil; Herman, Richard G.; Vedage, Gamini A.

    1984-01-01

    A primary alkyl amine and an alcohol of up to 12 carbon atoms are reacted at low temperature (50.degree.-250.degree. C.) over specific catalysts (alkali-treated catalysts generally or binary Cu/ZnO and Pd/SiO.sub.2 systems, with or without alkali treatment) to produce, with good selectivity, secondary and tertiary alkylamines of the general formula, R.sub.1 N(R.sub.2).sub.2, wherein R.sub.1 is a lower alkyl or an aryl group, and R.sub.2 is hydrogen or another lower alkyl or aryl group, with at least one of R.sub.2 's being an alkyl or aryl group.

  18. Iodine(III) Reagents in Radical Chemistry

    PubMed Central

    2017-01-01

    Conspectus The chemistry of hypervalent iodine(III) compounds has gained great interest over the past 30 years. Hypervalent iodine(III) compounds show valuable ionic reactivity due to their high electrophilicity but also express radical reactivity as single electron oxidants for carbon and heteroatom radical generation. Looking at ionic chemistry, these iodine(III) reagents can act as electrophiles to efficiently construct C–CF3, X–CF3 (X = heteroatom), C–Rf (Rf = perfluoroalkyl), X–Rf, C–N3, C–CN, S–CN, and C–X bonds. In some cases, a Lewis or a Bronsted acid is necessary to increase their electrophilicity. In these transformations, the iodine(III) compounds react as formal “CF3+”, “Rf+”, “N3+”, “Ar+”, “CN+”, and “X+” equivalents. On the other hand, one electron reduction of the I(III) reagents opens the door to the radical world, which is the topic of this Account that focuses on radical reactivity of hypervalent iodine(III) compounds such as the Togni reagent, Zhdankin reagent, diaryliodonium salts, aryliodonium ylides, aryl(cyano)iodonium triflates, and aryl(perfluoroalkyl)iodonium triflates. Radical generation starting with I(III) reagents can also occur via thermal or light mediated homolysis of the weak hypervalent bond in such reagents. This reactivity can be used for alkane C–H functionalization. We will address important pioneering work in the area but will mainly focus on studies that have been conducted by our group over the last 5 years. We entered the field by investigating transition metal free single electron reduction of Togni type reagents using the readily available sodium 2,2,6,6-tetramethylpiperidine-1-oxyl salt (TEMPONa) as an organic one electron reductant for clean generation of the trifluoromethyl radical and perfluoroalkyl radicals. That valuable approach was later successfully also applied to the generation of azidyl and aryl radicals starting with the corresponding benziodoxole (Zhdankin reagent) and iodonium salts. In the presence of alkenes as radical acceptors, vicinal trifluoromethyl-, azido-, and arylaminoxylation products result via a sequence comprising radical addition to the alkene and subsequent TEMPO trapping. Electron-rich arenes also react with I(III) reagents via single electron transfer (SET) to give arene radical cations, which can then engage in arylation reactions. We also recognized that the isonitrile functionality in aryl isonitriles is a highly efficient perfluoroalkyl radical acceptor, and reaction of Rf-benziodoxoles (Togni type reagents) in the presence of a radical initiator provides various perfluoroalkylated N-heterocycles (indoles, phenanthridines, quinolines, etc.). We further found that aryliodonium ylides, previously used as carbene precursors in metal-mediated cyclopropanation reactions, react via SET reduction with TEMPONa to the corresponding aryl radicals. As a drawback of all these transformations, we realized that only one ligand of the iodine(III) reagent gets transferred to the substrate. To further increase atom-economy of such conversions, we identified cyano or perfluoroalkyl iodonium triflate salts as valuable reagents for stereoselective vicinal alkyne difunctionalization, where two ligands from the I(III) reagent are sequentially transferred to an alkyne acceptor. Finally, we will discuss alkynyl-benziodoxoles as radical acceptors for alkynylation reactions. Similar reactivity was found for the Zhdankin reagent that has been successfully applied to azidation of C-radicals, and also cyanation is possible with a cyano I(III) reagent. To summarize, this Account focuses on the design, development, mechanistic understanding, and synthetic application of hypervalent iodine(III) reagents in radical chemistry. PMID:28636313

  19. Manipulation of a DNA aptamer-protein binding site through arylation of internal guanine residues.

    PubMed

    Van Riesen, Abigail J; Fadock, Kaila L; Deore, Prashant S; Desoky, Ahmed; Manderville, Richard A; Sowlati-Hashjin, Shahin; Wetmore, Stacey D

    2018-05-23

    Chemically modified aptamers have the opportunity to increase aptamer target binding affinity and provide structure-activity relationships to enhance our understanding of molecular target recognition by the aptamer fold. In the current study, 8-aryl-2'-deoxyguanosine nucleobases have been inserted into the G-tetrad and central TGT loop of the thrombin binding aptamer (TBA) to determine their impact on antiparallel G-quadruplex (GQ) folding and thrombin binding affinity. The aryl groups attached to the dG nucleobase vary greatly in aryl ring size and impact on GQ stability (∼20 °C change in GQ thermal melting (Tm) values) and thrombin binding affinity (17-fold variation in dissociation constant (Kd)). At G8 of the central TGT loop that is distal from the aptamer recognition site, the probes producing the most stable GQ structure exhibited the strongest thrombin binding affinity. However, within the G-tetrad, changes to the electron density of the dG component within the modified nucleobase can diminish thrombin binding affinity. Detailed molecular dynamics (MD) simulations on the modified TBA (mTBA) and mTBA-protein complexes demonstrate how the internal 8-aryl-dG modification can manipulate the interactions between the DNA nucleobases and the amino acid residues of thrombin. These results highlight the potential of internal fluorescent nuclobase analogs (FBAs) to broaden design options for aptasensor development.

  20. Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct α-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis.

    PubMed

    Twilton, Jack; Christensen, Melodie; DiRocco, Daniel A; Ruck, Rebecca T; Davies, Ian W; MacMillan, David W C

    2018-05-04

    The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α-hydroxy C-H bonds. This approach employs zinc-mediated alcohol deprotonation to activate α-hydroxy C-H bonds while simultaneously suppressing C-O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn-based Lewis acids also deactivates other hydridic bonds such as α-amino and α-oxy C-H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3-step synthesis of the drug Prozac exemplifies the utility of this new method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Alternative mechanistic explanation for ligand-dependent selectivities in copper-catalyzed N- and O-arylation reactions.

    PubMed

    Yu, Hai-Zhu; Jiang, Yuan-Ye; Fu, Yao; Liu, Lei

    2010-12-29

    The ligand-dependent selectivities in Ullmann-type reactions of amino alcohols with iodobenzene by β-diketone- and 1,10-phenanthroline-ligated Cu(I) complexes were recently explained by the single-electron transfer and iodine atom transfer mechanisms (Jones, G. O., Liu, P., Houk, K. N., and Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.). The present study shows that an alternative, oxidative addition/reductive elimination mechanism may also explain the selectivities. Calculations indicate that a Cu(I) complex with a negatively charged β-diketone ligand is electronically neutral, so that oxidative addition of ArI to a β-diketone-ligated Cu(I) prefers to occur (and occur readily) in the absence of the amino alcohol. Thus, coordination of the amino alcohol in its neutral form can only occur at the Cu(III) stage where N-coordination is favored over O-coordination. The coordination step is the rate-limiting step and the outcome is that N-arylation is favored with the β-diketone ligand. On the other hand, a Cu(I) complex with a neutral 1,10-phenanthroline ligand is positively charged, so that oxidative addition of ArI to a 1,10-phenanthroline-ligated Cu(I) has to get assistance from a deprotonated amino alcohol substrate. This causes oxidative addition to become the rate-limiting step in the 1,10-phenanthroline-mediated reaction. The immediate product of the oxidative addition step is found to undergo facile reductive elimination to provide the arylation product. Because O-coordination of a deprotonated amino alcohol is favored over N-coordination in the oxidative addition transition state, O-arylation is favored with the 1,10-phenanthroline ligand.

  2. Indolyl aryl sulfones (IASs): development of highly potent NNRTIs active against wt-HIV-1 and clinically relevant drug resistant mutants.

    PubMed

    Silvestri, Romano; Artico, Marino

    2005-01-01

    Indolyl aryl sulfones (IASs) are a potent class of NNRTIs developed from L-737,126, a lead agent discovered by Merck AG. IAS derivatives are endowed with inhibitory activities against wt HIV-1 in the low nanomolar concentration range. Introduction of two methyl groups at positions 3 and 5 of the phenyl ring of the aryl sulfonyl moiety furnished IAS derivatives such as 5-chloro- or 5-bromo-3-[(3,5-dimethylphenyl)sulfonyl]indole-2-carboxyamide, which showed very potent and selective anti-HIV-1 activity against some mutants carrying NNRTI resistant mutations at positions 103 and 181 of the reverse transcriptase. IAS derivatives bearing 2-hydroxyethylcarboxyamide or 2-hydroxyethylcarboxyhydrazide groups at position 2 of the indole nucleus were more active than L-737,126 against the K103N-Y181C double mutant. A great improvement of antiviral activity against wt HIV-1 and resistant mutants was obtained by coupling 1-3 simple amino acids, such as glycine and alanine, in sequence, with the 3-[(3,5-dimethylphenyl)sulfonyl]-1H-indole-2-carbonyl moiety. The transformation of the chain terminus into amide or hydrazide, produced short peptides with high selectivity and potent activity against wt HIV-1, and the viral mutants Y181C, K103N-Y181C and EFV(R). IAS having two halogen atoms at the indole showed potent inhibitory activity against the Y181C and the EFV(R) resistant mutant strains. In particular, the introduction of a fluorine atom at position 4 of the indole ring notably contributed to improve the antiviral activities against both wt and the related resistant mutants. 5-Nitro-IASs were highly active against wt HIV-1 and exhibited low cytotoxicity. Experimental data highlighted the class IAS derivatives as promising candidates for clinical trials.

  3. Asymmetric Catalysis with Organic Azides and Diazo Compounds Initiated by Photoinduced Electron Transfer.

    PubMed

    Huang, Xiaoqiang; Webster, Richard D; Harms, Klaus; Meggers, Eric

    2016-09-28

    Electron-acceptor-substituted aryl azides and α-diazo carboxylic esters are used as substrates for visible-light-activated asymmetric α-amination and α-alkylation, respectively, of 2-acyl imidazoles catalyzed by a chiral-at-metal rhodium-based Lewis acid in combination with a photoredox sensitizer. This novel proton- and redox-neutral method provides yields of up to 99% and excellent enantioselectivities of up to >99% ee with broad functional group compatibility. Mechanistic investigations suggest that an intermediate rhodium enolate complex acts as a reductive quencher to initiate a radical process with the aryl azides and α-diazo carboxylic esters serving as precursors for nitrogen and carbon-centered radicals, respectively. This is the first report on using aryl azides and α-diazo carboxylic esters as substrates for asymmetric catalysis under photoredox conditions. These reagents have the advantage that molecular nitrogen is the leaving group and sole byproduct in this reaction.

  4. Synthesis and conformational analysis of new arylated-diphenylurea derivatives related to sorafenib drug via Suzuki-Miyaura cross-coupling reaction

    NASA Astrophysics Data System (ADS)

    Al-Masoudi, Najim A.; Essa, Ali Hashem; Alwaaly, Ahmed A. S.; Saeed, Bahjat A.; Langer, Peter

    2017-10-01

    Sorafenib, is a relatively new cytostatic drug approved for the treatment of renal cell and hepatocellular carcinoma. The development of new sorafenib analogues offers the possibility of generating structures of increased potency. To this end, a series of arylated-diphenylurea analogues 17-31 were synthesized via Suzuki-Miyaura coupling reaction, related to sorafenib by treatment of three diarylureas 2-4 having 3-bromo, 4-chloro and 2-iodo groups with various arylboronic acids. Conformational analysis of the new arylated urea analogues has been investigated using MOPAC 2016 of semi empirical PM7 Hamiltonian computational method. Our results showed that all compounds preferred the trans-trans conformations. Compound 17 has been selected to calculate the torsional energy profiles for rotation around the urea bonds and found to be existed predominantly in the trans-trans conformation with only very minimal fluctuation in conformation.

  5. REACTIONS OF MERCAPTANS. I. FORMATION OF 2-METHYL-2-THIAZOLINE-4- CARBOXYLIC ACID FROM N-ACETYLCYSTEINE. II. A SPECTROPHOTOMETRIC METHOD FOR STUDY OF THE REACTION OF RADIATION-PROTECTIVE MERCAPTANS WITH ARYL DISULFIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.A. Jr.

    1962-08-01

    I. Methyl 2-methyl-2-thiazoline-4-carboxylate was synthesized and converted to the corresponding acid. The behavior of the carboxythiazoline in various concentrations of mineral acids was studied spectrophotometrically. The cyclization of N-acetylcysteine to form a thiazoline-ring compound in concentrated mineral acids was also studied by this means. N-Acetylcysteine in concentrated mineral acid solutions yielded 2-methyl-2-thiazoline-4-carboxylic acid, which also was obtained by controlied hydrolysis of the corresponding methyl ester. Hydrolysis of methyl 2-methyl2-thiazoline-4-carboxylate, pK 3.05, in 0.1M sodium hydroxide yielded the corresponding carboxythiazoline in solution, pK 2.20 and 4.95. The carboxythiazoline was hydrolyzed very slowly in 7M hydrochloric acid, but the velocity of reactionmore » increased with decreasing acid concentration to a maximum at about pH 1.7; the products were N- and Sacetylcysteine, as well as cysteine and acetic acid. At acid concentrations below 0.2M, the last two products were formed slowly, and a pseudo-equilibrium could be established between thiazolinium ion, N-, and S-acetylcysteine. Equilibrium constants were determined. II. 4,4'-Dithiobis (benzenesulfonic acid) (I) and 4,4'-dithiobis(1-naphthalenesulfonic acid) (II) were synthesized from sulfanilic and naphthionic acids, respectively. The absorption spectra of I and II and of the corresponding mercaptans were determined. The thiol-disuifide interchange reactions were studied by spectrophotometric means for the reactions of cysteine with I and with II, and the equilibrium constants were determined. The systems had spectra very similar to those of the respective mixed disuifides with cysteine, and it was not possible to determine the concentrations from absorbancy measurements. On the other hand, the mercaptide ions had spectra different from the other species, with maxima at 285 and 348 m mu , respectively, and the concentrations of the corresponding mercaptans could be calculated from the absorbancies at these wavelengths. By appropriate choice of the initial concentrations and of pH, the equilibrium concentrations could be made negligible, and the equilibrium constants determined.« less

  6. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: the influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents.

    PubMed

    Eibl, Christoph; Tomassoli, Isabelle; Munoz, Lenka; Stokes, Clare; Papke, Roger L; Gündisch, Daniela

    2013-12-01

    3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4β2(∗) were obtained. The nature of the HBA system (carboxamide, sulfonamide, urea) had a strong impact on nAChR interaction. High affinity ligands for α4β2(∗) possessed small alkyl chains, small un-substituted hetero-aryl groups or para-substituted phenyl ring systems along with a carboxamide group. Electrophysiological responses of selected 3,7-diazabicyclo[3.3.1]nonane derivatives to Xenopus oocytes expressing various nAChR subtypes showed diverse activation profiles. Compounds with strongest agonistic profiles were obtained with small alkyl groups whereas a shift to partial agonism/antagonism was observed for aryl substituents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Synthesis and biological evaluation of novel dioxa-bicycle C-aryl glucosides as SGLT2 inhibitors.

    PubMed

    Yan, Qi; Ding, Ning; Li, Yingxia

    2016-02-08

    A series of novel C-aryl glucosides containing dioxa-bicycle were synthesized and evaluated for inhibition activity against hSGLT2. Among the compounds tested, compound 6a showed moderate SGLT2 inhibition activities at 700 nM. The results could benefit the discovery of new SGLT2 inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Recent advances in the treatment of amyotrophic lateral sclerosis. Emphasis on kynurenine pathway inhibitors.

    PubMed

    Chen, Yiquan; Meininger, Vincent; Guillemin, Gilles J

    2009-03-01

    Amyotrophic lateral sclerosis (ALS) is an adult onset, progressive and fatal motor neuron degenerative disease [1]. The aetiology of ALS is currently unknown, though strongly suggested to be multifactorial. Recently, the kynurenine pathway (KP) has emerged as a potential contributing factor [2]. The KP is a major route for the metabolism of tryptophan, generating neuroactive intermediates in the process. These catabolites include the excitotoxic N-methyl-D-aspartate (NMDA) receptor agonist, quinolinic acid (QUIN) [3] and the neuroprotective NMDA receptor antagonist, kynurenic acid (KYNA) [4,5]. These catabolites appear to play a key role in the communication between the nervous and immune systems, and also in modulating cell proliferation and tissue function [6]. As the cause of ALS is still unknown, there is presently no efficient treatment for it. Currently, Riluzole is the drug of choice but its effect is relatively modest [7]. Targeting the KP, hence, could offer a new therapeutic option to improve ALS treatment [8]. Several drugs that block the KP are already under investigation by our laboratory and others, some of which are in or about to enter clinical trials for other diseases. For example, the KP inhibitors, Teriflunomide (Sanofi-Aventis) and Laquinimod (Teva Neuroscience). Recently, a KP inhibitor has also reached the Japan market as an immunomodulative drug [9]: Tranilast/Rizaben (Angiogen Ltd.) is an anthranilic acid derivative [8]. Finally, the 8-hydroxyquinolinine metal attenuating compounds, Clioquinol and PBT2, interestingly have close structural similarity with KYNA and QUIN. Such drugs would open a new and important therapeutic door for ALS.

  9. A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling.

    PubMed

    Chalker, Justin M; Wood, Charlotte S C; Davis, Benjamin G

    2009-11-18

    A phosphine-free palladium catalyst for aqueous Suzuki-Miyaura cross-coupling is presented. The catalyst is active enough to mediate hindered, ortho-substituted biaryl couplings but mild enough for use on peptides and proteins. The Suzuki-Miyaura couplings on protein substrates are the first to proceed in useful conversions. Notably, hydrophobic aryl and vinyl groups can be transferred to the protein surface without the aid of organic solvent since the aryl- and vinylboronic acids used in the coupling are water-soluble as borate salts. The convenience and activity of this catalyst prompts use in both general synthesis and bioconjugation.

  10. Palladium-Catalyzed, Copper(I)-Mediated Coupling of Boronic Acids and Benzylthiocyanate. A Cyanide-Free Cyanation of Boronic Acids

    PubMed Central

    Zhang, Zhihui; Liebeskind, Lanny S.

    2008-01-01

    A new method for the synthesis of nitriles is described. As a complement to the classic cyanation of aryl halides using cyanide sources and a transition metal catalyst, the palladium-catalyzed cross-coupling of thiocyanates with boronic acids in the presence of copper(I) thiophene-2-carboxylate (CuTC) affords nitriles in good to excellent yields. PMID:16956219

  11. Synthesis of functionalized chromenes from Meldrum's acid, 4-hydroxycoumarin, and ketones or aldehydes.

    PubMed

    Sabbaghan, Maryam; Yavari, Issa; Hossaini, Zinatossadat

    2010-11-01

    An efficient synthesis of 4-alkyl-4-methyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-dione or 4-aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones via reaction 4-hydroxycoumarin with Meldrum's acid and ketones or aldehydes is described.

  12. Antitumor activity of JS-K [O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] and related O2-aryl diazeniumdiolates in vitro and in vivo.

    PubMed

    Shami, Paul J; Saavedra, Joseph E; Bonifant, Challice L; Chu, Jingxi; Udupi, Vidya; Malaviya, Swati; Carr, Brian I; Kar, Siddhartha; Wang, Meifeng; Jia, Lee; Ji, Xinhua; Keefer, Larry K

    2006-07-13

    The literature provides evidence that metabolic nitric oxide (NO) release mediates the cytotoxic activities (against human leukemia and prostate cancer xenografts in mice) of JS-K, a compound of structure R(2)N-N(O)=NO-Ar for which R(2)N is 4-(ethoxycarbonyl)piperazin-1-yl and Ar is 2,4-dinitrophenyl. Here we present comparative data on the potencies of JS-K and 41 other O(2)-arylated diazeniumdiolates as inhibitors of HL-60 human leukemia cell proliferation, as well as in the NCI 51-cell-line screen for six of them. The data show JS-K to be the most potent of the 42 in both screens and suggest that other features of its structure and metabolism besides NO release may contribute importantly to its activity. Results with control compounds implicate JS-K's arylating ability, and the surprisingly low IC(50) value of the N-(ethoxycarbonyl)piperazine byproduct of NO release suggests a role for the R(2)N moiety. In addition to the above-mentioned in vivo activities, JS-K is shown here to be carcinostatic in a rat liver cancer model.

  13. Characterization of substituted aryl meroterpenoids from red seaweed Hypnea musciformis as potential antioxidants.

    PubMed

    Chakraborty, Kajal; Joseph, Deepu; Joy, Minju; Raola, Vamshi Krishna

    2016-12-01

    The ethyl acetate fraction of red seaweed Hypnea musciformis was purified to yield three substituted aryl meroterpenoids, namely, 2-(tetrahydro-5-(4-hydroxyphenyl)-4-pentylfuran-3-yl)-ethyl-4-hydroxybenzoate (1), 2-2-[(4-hydroxybenzoyl)-oxy]-ethyl-4-methoxy-4-2-[(4-methylpentyl)oxy]-3,4-dihydro-2H-6-pyranylbutanoic acid (2) and 3-((5-butyl-3-methyl-5,6-dihydro-2H-pyran-2-yl)-methyl)-4-methoxy-4-oxobutyl benzoate (3). The structures of these compounds, as well as their relative stereochemistries, were confirmed by exhaustive NMR spectroscopic data analyses. Compound 1 exhibited similar 2,2'-diphenylpicrylhydrazyl radical inhibiting and Fe(2+) ion chelating activities (IC50 25.05 and 350.7μM, respectively) as that of commercial antioxidant gallic acid (IC50 32.3 and 646.6μM, respectively), followed by 3 (IC50 231.2 and 667.9μM, respectively), and 2 (IC50 322.4 and 5115.3μM, respectively), in descending order of activities. Structure-activity relationship analysis revealed that the antioxidant activities of these compounds were directly proportional to the steric and hydrophobic parameters. The seaweed derived aryl meroterpenoids might serve as potential lead antioxidative molecules for use in pharmaceutical and food industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Efficient one-step Suzuki arylation of unprotected halonucleosides, using water-soluble palladium catalysts.

    PubMed

    Western, Elizabeth C; Daft, Jonathan R; Johnson, Edward M; Gannett, Peter M; Shaughnessy, Kevin H

    2003-08-22

    Modification of nucleosides to give pharmaceutically active compounds, mutagenesis models, and oligonucleotide structural probes continues to be of great interest. The aqueous-phase modification of unprotected halonucleosides is reported herein. Using a catalyst derived from tris(3-sulfonatophenyl)phosphine (TPPTS) and palladium acetate, 8-bromo-2'-deoxyguanosine (8-BrdG) is coupled with arylboronic acids to give 8-aryl-2'-deoxyguanosine adducts (8-ArdG) in excellent yield in a 2:1 water:acetonitrile solvent mixture. The TPPTS ligand was found to be superior to water-soluble alkylphosphines for this coupling reaction. The coupling chemistry has been extended to 8-bromo-2'-deoxyadenosine (8-BrdA) and 5-iodo-2'-deoxyuridine (5-IdU), as well as the ribonucleosides 8-bromoguanosine and 8-bromoadenosine. Good to excellent yields of arylated adducts are obtained in all cases. With use of tri(4,6-dimethyl-3-sulfonatophenyl)phosphine (TXPTS), the Suzuki coupling of 8-BrdA and 5-IdU can be accomplished in less than 1 h at room temperature. This methodology represents an efficient and general method for halonucleoside arylation that does not require prior protection of the nucleoside.

  15. Synthesis of labeled oxalic acid derivatives

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2004-06-22

    The present invention is directed to labeled compounds, specifically ##STR1## where each C* is selected from the group consisting of a carbon-12, i.e., .sup.12 C, or a carbon-13, i.e., .sup.13 C and at least one C* is .sup.13 C, R.sup.1 is selected from the group of C.sub.1 -C.sub.4 lower alkyl and aryl, and X is selected from the group of --NR.sup.2 R.sup.3 where R.sup.2 and R.sup.3 are each independently selected from the group of C.sub.1 -C.sub.4 lower alkyl, alkoxy and aryl, --SR.sup.4 where R.sup.4 is selected from the group of C.sub.1 -C.sub.4 lower alkyl, alkoxy and aryl, and --OR.sup.5 where R.sup.5 is selected from the group of C.sub.1 -C.sub.4 lower alkyl, alkoxy and aryl with the proviso that when R.sup.1 is methyl then R.sup.5 is other than methyl, when R.sup.1 is ethyl then R.sup.5 is other than ethyl, and when R.sup.1 is benzyl then R.sup.5 is other than benzyl.

  16. C-H bond functionalization via hydride transfer: formation of α-arylated piperidines and 1,2,3,4-tetrahydroisoquinolines via stereoselective intramolecular amination of benzylic C-H bonds.

    PubMed

    Vadola, Paul A; Carrera, Ignacio; Sames, Dalibor

    2012-08-17

    We here report a study of the intramolecular amination of sp(3) C-H bonds via the hydride transfer cyclization of N-tosylimines (HT-amination). In this transformation, 5-aryl aldehydes are subjected to N-toluenesulfonamide in the presence of BF(3)·OEt(2) to effect imine formation and HT-cyclization, leading to 2-arylpiperidines and 3-aryl-1,2,3,4-tetrahydroisoquinolines in a one-pot procedure. We examined the reactivity of a range of aldehyde substrates as a function of their conformational flexibility. Substrates of higher conformational rigidity were more reactive, giving higher yields of the desired products. However, a single substituent on the alkyl chain linking the N-tosylimine and the benzylic sp(3) C-H bonds was sufficient for HT-cyclization to occur. In addition, an examination of various arenes revealed that the electronic character of the hydridic C-H bonds dramatically affects the efficiency of the reaction. We also found that this transformation is highly stereoselective; 2-substituted aldehydes yield cis-2,5-disubstituted piperidines, while 3-substituted aldehydes afford trans-2,4-disubstituted piperidines. The stereoselectivity is a consequence of thermodynamic control. The pseudoallylic strain between the arene and tosyl group on the piperidine ring is proposed to rationalize the greater stability of the isomer with the aryl ring in the axial position. This preferential placement of the arene is proposed to affect the observed stereoselectivity.

  17. 6-Substituted 3,4-dihydro-naphthalene-2-carboxylic acids: synthesis and structure-activity studies in a novel class of human 5alpha reductase inhibitors.

    PubMed

    Baston, Eckhard; Salem, Ola I A; Hartmann, Rolf W

    2002-10-01

    Novel 3,4-dihydro-naphthalene-2-carboxylic acids were synthesized and evaluated for 5alpha reductase inhibitory activity. This enzyme exists in two isoforms and is a pharmacological target for the treatment of benign prostatic hyperplasia, male pattern baldness and acne. In the present study non-steroidal compounds capable of mimicking the transition state of the steroidal substrates were prepared. The synthetic strategy for the preparation of compounds 1-6 consisted of triflation followed by subsequent Heck-type carboxylation or methoxy carbonylation for 6-phenyl-3,4-dihydronaphthalen-2(1H)-one 1c. A Negishi-type coupling reaction between 6-(trifluoro-methanesulfonyloxy)-3,4-dihydro-naphthalene-2-carboxylic acid methyl ester 7b and various aryl bromides led, after further transformations, to 6-substituted 3,4-dihydro-naphthalene-2-carboxylic acids 7-15. In a similar way the corresponding naphthalene-2-carboxylic acids 16 and 17 were obtained. The DU 145 cell line and prostate homogenates served as enzyme sources for the human type 1 and type 2 isozymes, whereas ventral prostate was employed to evaluate rat isozyme inhibitory potency. The most active inhibitors identified in this study were 6-[4-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (3) (IC50 = 0.09 microM, rat type 1), 6-[3-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (13) (IC50 = 0.75 microM, human type 2; IC50 = 0.81 microM, human type 1) and 6-[4-(N,N-diisopropylamino-carbonyl)phenyl]naphthalene-2-carboxylic acid (16) (IC50 = 0.2 microM, human type 2). The latter compound was shown to deactivate the enzyme in an uncompetitive manner (Ki = 90 nM; Km, Testosterone = 0.8-1.0 microM) similar to the steroidal inhibitor Epristeride. Select inhibitors (13 and 16) were tested in vivo using testosterone propionate-treated, juvenile, orchiectomized SD-rats. None of the compounds was active at a dose of 25 mg/kg. This result might in part be ascribed to the relatively poor in vitro rat isozyme inhibitory potency.

  18. Changes in Tryptophan Catabolite (TRYCAT) Pathway Patterning Are Associated with Mild Impairments in Declarative Memory in Schizophrenia and Deficits in Semantic and Episodic Memory Coupled with Increased False-Memory Creation in Deficit Schizophrenia.

    PubMed

    Kanchanatawan, Buranee; Hemrungrojn, Solaphat; Thika, Supaksorn; Sirivichayakul, Sunee; Ruxrungtham, Kiat; Carvalho, André F; Geffard, Michel; Anderson, George; Maes, Michael

    2018-06-01

    Evidence indicates that schizophrenia and in particular negative symptoms and deficit schizophrenia are accompanied by neurocognitive impairments and changes in the patterning of the tryptophan catabolite (TRYCAT) pathway. This cross-sectional study was carried out to examine the associations between cognitive functions (as measured with Consortium to Establish a Registry for Alzheimer's disease (CERAD)) and TRYCAT pathway patterning in patients with (n = 40) and without (n = 40) deficit schizophrenia and normal controls (n = 40). Cognitive measures were assessed with the Verbal Fluency Test (VFT), Boston Naming Test (BNT), Mini-Mental State Examination (MMSE), Word List Memory (WLM), Constructional Praxis, Word List Recall (WLRecall), and Word List Recognition (WLRecognition), while TRYCAT measurements assessed the IgA/IgM responses to noxious TRYCATs, namely quinolinic acid (QA), 3-OH-kynurenine (3HK), picolinic acid (PA), and xanthurenic (XA) acid, and more protective (PRO) TRYCATs, including kynurenic acid (KA) and anthranilic acid (AA). IgA NOX/PRO, IgM KA/3HK, and IgA/IgM NOX/PRO ratios were computed. Schizophrenia was accompanied by lower VFT and WLM, while BNT (dysnomia) and MMSE are significantly lower in multiple- than first-episode schizophrenia. Deficit schizophrenia is strongly associated with worse outcomes on VFT, MMSE, WLM, WLRecall, WLRecognition, and delayed recall savings and increased false memories. Around 40-50% of the variance in negative symptoms' scores was explained by VFT, WLM, WLRecall, and MMSE. Increases in IgA NOX/PRO, IgM KA/3HK, and/or IgA/IgM NOX/PRO ratios were associated with impairments in VFT, BNT, MMSE, WLM, WLRecall, WLRecognition, and false-memory creation. In conclusion, nondeficit schizophrenia is accompanied by mild memory impairments, while disease progression is accompanied by broader cognitive impairments. Deficit schizophrenia and negative symptoms are strongly associated with deficits in working memory, delayed recall and recognition, and increased false-memory creation. These cognitive impairments and memory deficits are in part explained by increased production and/or attenuated regulation of TRYCATs with neurotoxic, excitotoxic, immune-inflammatory, oxidative, and nitrosative potential, which may contribute to neuroprogression.

  19. DEVELOPMENTAL EXPRESSION OF TWO MEMBERS OF A NEW CLASS OF TRANSCRIPTION FACTORS: II. EXPRESSION OF ARYL HYDROCARBON RECEPTOR NUCLEAR TRANSLOCATOR IN THE C57BL/6N MOUSE EMBRYO

    EPA Science Inventory

    The Aryl hydrocarbon receptor (AhR) is a ligand-activated, transcription factor with a basic region/helix (bHLH) motif. hR has been sequenced and the functional domains defined and there is information on the formation of complexes with other peptides and interactions with DNA, a...

  20. Biology-oriented drug synthesis (BIODS): In vitro β-glucuronidase inhibitory and in silico studies on 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl carboxylate derivatives.

    PubMed

    Salar, Uzma; Khan, Khalid Mohammed; Taha, Muhammad; Ismail, Nor Hadiani; Ali, Basharat; Qurat-Ul-Ain; Perveen, Shahnaz; Ghufran, Mehreen; Wadood, Abdul

    2017-01-05

    Current study is based on the biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl carboxylate derivatives 1-26, by treating metronidazole with different aryl and hetero-aryl carboxylic acids in the presence of 1,1'-carbonyl diimidazole (CDI) as a coupling agent. Structures of all synthetic derivatives were confirmed with the help of various spectroscopic techniques such as EI-MS, 1 H -NMR and 13 C NMR. CHN elemental analyses were also found in agreement with the calculated values. Synthetic derivatives were evaluated to check their β-glucuronidase inhibitory activity which revealed that except few derivatives, all demonstrated good inhibition in the range of IC 50  = 1.20 ± 0.01-60.30 ± 1.40 μM as compared to the standard d-saccharic acid 1,4-lactone (IC 50  = 48.38 ± 1.05 μM). Compounds 1, 3, 4, 6, 9-19, and 21-24 were found to be potent analogs and showed superior activity than standard. Limited structure-activity relationship is suggested that the molecules having electron withdrawing groups like NO 2 , F, Cl, and Br, were displayed better activity than the compounds with electron donating groups such as Me, OMe and BuO. To verify these interpretations, in silico study was also performed, a good correlation was observed between bioactivities and docking studies. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods

    NASA Astrophysics Data System (ADS)

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-04-01

    Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-&z.tbd;) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click-reaction strategy enabled by capitalizing on two consecutive effective ligand exchanges (i.e., inorganic ligand treatment and subsequent bifunctional ligand exchange) to yield intimately connected organic-inorganic nanocomposites provides a unique platform for developing functional optoelectronic devices.Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-&z.tbd;) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click-reaction strategy enabled by capitalizing on two consecutive effective ligand exchanges (i.e., inorganic ligand treatment and subsequent bifunctional ligand exchange) to yield intimately connected organic-inorganic nanocomposites provides a unique platform for developing functional optoelectronic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00269b

  2. Optimised deconjugation of androgenic steroid conjugates in bovine urine.

    PubMed

    Pedersen, Mikael; Frandsen, Henrik L; Andersen, Jens H

    2017-04-01

    After administration of steroids to animals the steroids are partially metabolised in the liver and kidney to phase 2 metabolites, i.e., glucuronic acid or sulphate conjugates. During analysis these conjugated metabolites are normally deconjugated enzymatically with aryl sulphatase and glucuronidase resulting in free steroids in the extract. It is well known that some sulphates are not deconjugated using aryl sulphatase; instead, for example, solvolysis can be used for deconjugation of these aliphatic sulphates. The effectiveness of solvolysis on androgenic steroid sulphates was tested with selected aliphatic steroid sulphates (boldenone sulphate, nortestosteron sulphate and testosterone sulphate), and the method was validated for analysis of androgenic steroids in bovine urine using free steroids, steroid sulphates and steroid glucuronides as standards. Glucuronidase and sulphuric acid in ethyl acetate were used for deconjugation and the extract was purified by solid-phase extraction. The final extract was evaporated to dryness, re-dissolved and analysed by LC-MS/MS.

  3. A novel aryl acylamidase from Nocardia farcinica hydrolyses polyamide.

    PubMed

    Heumann, Sonja; Eberl, Anita; Fischer-Colbrie, Gudrun; Pobeheim, Herbert; Kaufmann, Franz; Ribitsch, Doris; Cavaco-Paulo, Artur; Guebitz, Georg M

    2009-03-01

    An alkali stable polyamidase was isolated from a new strain of Nocardia farcinica. The enzyme consists of four subunits with a total molecular weight of 190 kDa. The polyamidase cleaved amide and ester bonds of water insoluble model substrates like adipic acid bishexylamide and bis(benzoyloxyethyl)terephthalate and hydrolyzed different soluble amides to the corresponding acid. Treatment of polyamide 6 with this amidase led to an increased hydrophilicity based on rising height and tensiometry measurements and evidence of surface hydrolysis of polyamide 6 is shown. In addition to amidase activity, the enzyme showed activity on p-nitrophenylbutyrate. On hexanoamide the amidase exhibited a K(m) value of 5.5 mM compared to 0.07 mM for p-nitroacetanilide. The polyamidase belongs to the amidase signature family and is closely related to aryl acylamidases from different strains/species of Nocardia and to the 6-aminohexanoate-cyclic dimer hydrolase (EI) from Arthrobacter sp. KI72.

  4. Synthesis, characterization, and reactivity of arylpalladium cyanoalkyl complexes: selection of catalysts for the alpha-arylation of nitriles.

    PubMed

    Culkin, Darcy A; Hartwig, John F

    2002-08-14

    A new coupling process, the palladium-catalyzed alpha-arylation of nitriles, was developed by exploring the structure and reactivity of arylpalladium cyanoalkyl complexes. Complexes of 1,2-bis(diphenylphosphino)benzene (DPPBz), 1,1'-bis(di-i-propylphosphino)ferrocene (D(i)()PrPF), racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), and diphenylethylphosphine (PPh(2)Et) were prepared. Coordination to palladium through the alpha-carbon was observed for DPPBz-ligated complexes and for complexes of primary and benzylic nitrile anions. However, the anion of isobutyronitrile was coordinated to palladium through the cyano-nitrogen when the complex was ligated by D(i)()PrPF. The isobutyronitrile anion displaced a phosphine ligand to form a C,N-bridged dimer when generated from PPh(2)Et-ligated palladium. These results suggest that the nitrile anion preferentially coordinates to palladium through the carbon atom in the absence of steric effects. Thermolysis of the arylpalladium cyanoalkyl complexes led to reductive elimination that formed alpha-aryl nitriles. The high yields and short reaction times observed for BINAP-ligated complexes suggested that BINAP-ligated palladium catalysts might be appropriate for the arylation of nitriles. Initial results on a palladium-catalyzed process for the direct coupling of aryl bromides and primary, benzylic, and secondary nitrile anions to form alpha-aryl nitriles in good yields are reported.

  5. Using supramolecular binding motifs to provide precise control over the ratio and distribution of species in multiple component films grafted on surfaces: demonstration using electrochemical assembly from aryl diazonium salts.

    PubMed

    Gui, Alicia L; Yau, Hon Man; Thomas, Donald S; Chockalingam, Muthukumar; Harper, Jason B; Gooding, J Justin

    2013-04-16

    Supramolecular interactions between two surface modification species are explored to control the ratio and distribution of these species on the resultant surface. A binary mixture of aryl diazonium salts bearing oppositely charged para-substituents (either -SO3(-) or -N(+)(Me)3), which also reduce at different potentials, has been examined on glassy carbon surfaces using cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Striking features were observed: (1) the two aryl diazonium salts in the mixed solution undergo reductive adsorption at the same potential which is distinctively less negative than the potential required for the reduction of either of the two aryl diazonium salts alone; (2) the surface ratio of the two phenyl derivatives is consistently 1:1 regardless of the ratio of the two aryl diazonium salts in the modification solutions. Homogeneous distribution of the two oppositely charged phenyl species on the modified surface has also been suggested by XPS survey spectra. Diffusion coefficient measurements by DOSY NMR and DFT based computation have indicated the association of the two aryl diazonium species in the solution, which has led to changes in the molecular orbital energies of the two species. This study highlights the potential of using intermolecular interactions to control the assembly of multicomponent thin layers.

  6. Modification of aniline containing proteins using an oxidative coupling strategy.

    PubMed

    Hooker, Jacob M; Esser-Kahn, Aaron P; Francis, Matthew B

    2006-12-13

    A new bioconjugation reaction has been developed based on the chemoselective modification of anilines through an oxidative coupling pathway. Aryl amines were installed on the surface of protein substrates through lysine acylation reactions or through the use of native chemical ligation techniques. Upon exposure to NaIO4 in aqueous buffer, the anilines coupled rapidly to the aromatic rings of N,N-dialkyl-N'-acyl-p-phenylenediamines. The identities of the reaction products were confirmed using ESI-MS and through comparison to small molecule analogs. Control experiments indicated that none of the native amino acids participated in the reaction. The resulting bioconjugates were found to be stable toward hydrolysis from pH 4 to pH 11 and in the presence of many commonly used oxidants, reductants, and nucleophiles. A fluorescent phenylenediamine reagent was synthesized for the selective detection of aniline labeled proteins in mixtures, and the reaction was used to append the C-terminus of the green fluorescent protein with a single PEG chain. When combined with techniques for the incorporation of unnatural amino acids into proteins, this bioorthogonal coupling method should prove useful for a number of applications requiring a high degree of labeling specificity.

  7. Synthesis, structural, optical and thermal properties of N-methyl-N-aryl benzamide organic single crystals grown by a slow evaporation technique

    NASA Astrophysics Data System (ADS)

    Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana

    2018-03-01

    The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.

  8. A robust protocol for directed aryl sulfotransferase evolution toward the carbohydrate building block GlcNAc.

    PubMed

    Islam, Shohana; Mate, Diana M; Martínez, Ronny; Jakob, Felix; Schwaneberg, Ulrich

    2018-05-01

    Bacterial aryl sulfotransferases (AST) utilize p-nitrophenylsulfate (pNPS) as a phenolic donor to sulfurylate typically a phenolic acceptor. Interest in aryl sulfotransferases is growing because of their broad variety of acceptors and cost-effective sulfuryl-donors. For instance, aryl sulfotransferase A (ASTA) from Desulfitobacterium hafniense was recently reported to sulfurylate d-glucose. In this study, a directed evolution protocol was developed and validated for aryl sulfotransferase B (ASTB). Thereby the well-known pNPS quantification system was advanced to operate efficiently as a continuous screening system in 96-well MTP format with a true coefficient of variation of 14.3%. A random mutagenesis library (SeSaM library) of ASTB was screened (1,760 clones) to improve sulfurylation of the carbohydrate building block N-acetylglucosamine (GlcNAc). The beneficial variant ASTB-V1 (Val579Asp) showed an up to 3.4-fold increased specific activity toward GlcNAc when compared to ASTB-WT. HPLC- and MS-analysis confirmed ASTB-V1's increased GlcNAc monosulfurylation (2.4-fold increased product formation) representing the validation of the first successful directed evolution round of an AST for a saccharide substrate. © 2017 Wiley Periodicals, Inc.

  9. Improved synthesis of aryltrialkoxysilanes via treatment of aryl Grignard or lithium reagents with tetraalkyl orthosilicates.

    PubMed

    Manoso, Amy S; Ahn, Chuljin; Soheili, Arash; Handy, Christopher J; Correia, Reuben; Seganish, W Michael; Deshong, Philip

    2004-11-26

    General reaction conditions for the synthesis of aryl(trialkoxy)silanes from aryl Grignard and lithium reagents and tetraalkyl orthosilicates (Si(OR)(4)) have been developed. Ortho-, meta-, and para-substituted bromoarenes underwent efficient metalation and silylation at low temperature to provide aryl siloxanes. Mixed results were obtained with heteroaromatic substrates: 3-bromothiophene, 3-bromo-4-methoxypyridine, 5-bromoindole, and N-methyl-5-bromoindole underwent silylation in good yield, whereas a low yield of siloxane was obtained from 2-bromofuran, and 2-bromopyridine failed to give silylated product. The synthesis of siloxanes via organolithium and magnesium reagents was limited by the formation of di- and triarylated silanes (Ar(2)Si(OR)(2) and Ar(3)SiOR, respectively) and dehalogenated (Ar-H) byproducts. Silylation at low temperature gave predominantly monoaryl siloxanes, without requiring a large excess of the electrophile. Optimal reaction conditions for the synthesis of siloxanes from aryl Grignard reagents entailed addition of arylmagnesium reagents to 3 equiv of tetraethyl- or tetramethyl orthosilicate at -30 degrees C in THF. Aryllithium species were silylated using 1.5 equiv of tetraethyl- or tetramethyl orthosilicate at -78 degrees C in ether.

  10. Central-to-axial chirality transfer revealed by liquid crystals: a combined experimental and computational approach for the determination of absolute configuration of carboxylic acids with an α chirality centre.

    PubMed

    Ferrarini, Alberta; Ferroni, Fiammetta; Pieraccini, Silvia; Rosini, Carlo; Superchi, Stefano; Spada, Gian Piero

    2011-10-01

    The conversion into 6,7-dihydro-5H-dibenz[c,e]azepine (DAZ) N-protected amides is a viable route for the determination of the absolute configuration of chiral 2-substituted carboxylic acids. The biphenyl moiety of DAZ, besides being a probe of chirality for the electronic circular dichroism (ECD) spectroscopy, makes these systems suitable for configuration assignment by exploiting the chirality amplification which occurs in nematic liquid crystals. To assess the reliability of the liquid crystal method in detecting the absolute stereochemistry of chiral amides bound to a biphenyl group, we measured the helical twisting power of a series of DAZ-N-protected amides and compared these data with the results obtained from ECD measurements. We will show that the liquid crystal method, corroborated by HTP predictions, is trustworthy with our biphenyl derivatives, even when ECD spectra are ambiguous for the presence of aryl moieties displaying strong UV absorptions in the same range of the biphenyl chromophore. © 2011 Wiley-Liss, Inc.

  11. Chiral Nickel(II) Complex Catalyzed Enantioselective Doyle-Kirmse Reaction of α-Diazo Pyrazoleamides.

    PubMed

    Lin, Xiaobin; Tang, Yu; Yang, Wei; Tan, Fei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2018-03-07

    Although high enantioselectivity of [2,3]-sigmatropic rearrangement of sulfonium ylides (Doyle-Kirmse reaction) has proven surprisingly elusive using classic chiral Rh(II) and Cu(I) catalysts, in principle it is due to the difficulty in fine discrimination of the heterotopic lone pairs of sulfur and chirality inversion at sulfur of sulfonium ylides. Here, we show that the synergistic merger of new α-diazo pyrazoleamides and a chiral N, N'-dioxide-nickel(II) complex catalyst enables a highly enantioselective Doyle-Kirmse reaction. The pyrazoleamide substituent serves as both an activating and a directing group for the ready formation of a metal-carbene- and Lewis-acid-bonded ylide intermediate in the assistance of a dual-tasking nickel(II) complex. An alternative chiral Lewis-acid-bonded ylide pathway greatly improves the product enantiopurity even for the reaction of a symmetric diallylsulfane. The majority of transformations over a series of aryl- or vinyl-substituted α-diazo pyrazoleamindes and sulfides proceed rapidly (within 5-20 min in most cases) with excellent results (up to 99% yield and 96% ee), providing a breakthrough in enantioselective Doyle-Kirmse reaction.

  12. Selenium-mediated synthesis of biaryls through rearrangement.

    PubMed

    Shahzad, Sohail A; Vivant, Clotilde; Wirth, Thomas

    2010-03-19

    A new cyclization of beta-keto ester substituted stilbene derivatives using selenium electrophiles in the presence of Lewis acids is described. Substituted naphthols are obtained through cyclization and subsequent 1,2-rearrangement of aryl groups under very mild reaction conditions.

  13. Synthesis of substituted isoquinolines utilizing palladium-catalyzed α-arylation of ketones

    PubMed Central

    Donohoe, Timothy J.; Pilgrim, Ben S.; Jones, Geraint R.; Bassuto, José A.

    2012-01-01

    The utilization of sequential palladium-catalyzed α-arylation and cyclization reactions provides a general approach to an array of isoquinolines and their corresponding N-oxides. This methodology allows the convergent combination of readily available precursors in a regioselective manner and in excellent overall yields. This powerful route to polysubstituted isoquinolines, which is not limited to electron rich moieties, also allows rapid access to analogues of biologically active compounds. PMID:22753504

  14. Nickel-catalyzed sp2 C-H bonds arylation of N-aromatic heterocycles with Grignard reagents at room temperature.

    PubMed

    Qu, Gui-Rong; Xin, Peng-Yang; Niu, Hong-Ying; Wang, Dong-Chao; Ding, Rui-Fang; Guo, Hai-Ming

    2011-10-21

    A novel protocol for nickel-catalyzed direct sp(2) C-H bond arylation of purines has been developed. This new reaction proceeded efficiently at room temperature using Grignard reagent as the coupling partner within 5 hours in good to high yields. This approach provides a new access to a variety of C8-arylpurines which are potentially of great importance in medicinal chemistry.

  15. Orthogonal Discrimination among Functional Groups in Ullmann-Type C-O and C-N Couplings.

    PubMed

    Rovira, Mireia; Soler, Marta; Güell, Imma; Wang, Ming-Zheng; Gómez, Laura; Ribas, Xavi

    2016-09-02

    The copper-catalyzed arylation of nucleophiles has been established as an efficient methodology for the formation of C-C and C-heteroatom bonds. Considering the advances during the last two decades, the ligand choice plays a key role in such transformations and can strongly influence the catalytic efficiency. The applicability of these Ullmann-type coupling reactions regarding the orthogonal selectivity of different functional groups constitutes a challenging subject for current synthetic strategies. Herein, we report a useful toolkit of Cu-based catalysts for the chemoselective arylation of a wide-range of nucleophiles in competitive reactions using aryl iodides and bromides. We show in this work that the arylation of all kinds of amides can be orthogonal to that of amines (aliphatic or aromatic) and phenol derivatives. This high chemoselectivity can be governed by the use of different ligands, yielding the desired coupling products under mild conditions. The selectivity trends are maintained for electronically biased iodobenzene and bromobenzene electrophiles. Radical clock experiments discard the occurrence of radical-based mechanisms.

  16. Characterization of a dual specificity aryl acid adenylation enzyme with dual function in nikkomycin biosynthesis.

    PubMed

    Moon, Mary; Van Lanen, Steven G

    2010-09-01

    Nikkomycin Z is a dipeptide antifungal antibiotic characterized by two nonproteinogenic amino acids, nikkomycin C(Z) and 4-(4'-hydroxy-2'-pyridinyl)-homothreonine (HPHT). The HPHT scaffold is assembled by an aldol reaction between 2-oxobutyrate and picolinaldehyde, the latter of which is derived from picolinic acid that is activated and loaded to coenzyme A by the aryl-activating adenylation enzyme, NikE. We now provide evidence that NikE is also involved in the activation and loading of the alpha-keto acid precursor, 4-(2'-pyridinyl)-2-oxo-4-hydroxyisovalerate (POHIV), to a phosphopantetheinyl group of an acyl carrier protein domain of NikT. POHIV was synthesized using Escherichia coli 2-dehydro-3-deoxy-phosphogluconate aldolase, and phenylalanine dehydrogenase from Bacillus sp. NRRL B-14911 was used to prepare the alpha-amino acid, 4-(2'-pyridinyl)-homothreonine (PHT). Using the carboxylic acid-dependent, ATP-[(32)P]PP(i) exchange assay, NikE is shown to activate both picolinic acid and POHIV but not PHT. Furthermore, NikE loads POHIV to holo-NikT to generate a new thioester-linked intermediate, which was not observed using a NikT(S33A) mutant. Thus, NikE activates two distinct carboxylic acids to form two new thioester intermediates, one of which is subsequently reduced to the aldehyde and the other that likely serves as a substrate for the aminotransferase domain of NikT prior to condensation with nikkomycin C(Z) to yield the dipeptide. Copyright 2010 Wiley Periodicals, Inc.

  17. Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array.

    PubMed

    Bist, Itti; Bhakta, Snehasis; Jiang, Di; Keyes, Tia E; Martin, Aaron; Forster, Robert J; Rusling, James F

    2017-11-21

    Damage to DNA from the metabolites of drugs and pollutants constitutes a major human toxicity pathway known as genotoxicity. Metabolites can react with metal ions and NADPH to oxidize DNA or participate in S N 2 reactions to form covalently linked adducts with DNA bases. Guanines are the main DNA oxidation sites, and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is the initial product. Here we describe a novel electrochemiluminescent (ECL) microwell array that produces metabolites from test compounds and measures relative rates of DNA oxidation and DNA adduct damage. In this new array, films of DNA, metabolic enzymes, and an ECL metallopolymer or complex assembled in microwells on a pyrolytic graphite wafer are housed in dual microfluidic chambers. As reactant solution passes over the wells, metabolites form and can react with DNA in the films to form DNA adducts. These adducts are detected by ECL from a RuPVP polymer that uses DNA as a coreactant. Aryl amines also combine with Cu 2+ and NADPH to form reactive oxygen species (ROS) that oxidize DNA. The resulting 8-oxodG was detected selectively by ECL-generating bis(2,2'-bipyridine)-(4-(1,10-phenanthrolin-6-yl)-benzoic acid)Os(II). DNA/enzyme films on magnetic beads were oxidized similarly, and 8-oxodG determined by LC/MS/MS enabled array standardization. The array limit of detection for oxidation was 720 8-oxodG per 10 6 nucleobases. For a series of aryl amines, metabolite-generated DNA oxidation and adduct formation turnover rates from the array correlated very well with rodent 1/TD 50 and Comet assay results.

  18. Substituted N-aryl-6-pyrimidinones: A new class of potent, selective, and orally active p38 MAP kinase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devadas, Balekudru; Selness, Shaun R.; Xing, Li

    2012-02-28

    A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-{alpha} in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.

  19. Arylation, alkenylation, and alkylation of 2-halopyridine N-oxides with grignard reagents: a solution to the problem of C2/C6 regioselective functionalization of pyridine derivatives.

    PubMed

    Zhang, Song; Liao, Lian-Yan; Zhang, Fang; Duan, Xin-Fang

    2013-03-15

    A facile arylation, alkenylation, and alkylation of functionalized 2-halopyridine N-oxides with various Grignard reagents was developed. It represented a highly efficient and selective C-H bond functionalization of pyridine derivatives in the presence of reactive C-Cl or C-Br bonds. Using Cl or Br as a blocking group, C2/C6 site-controllable functionalization of pyridine derivatives has been achieved. Various pyridine compounds can be prepared as illustrated in the total syntheses of Onychine, dielsine, and PARP-1 inhibitor GPI 16539.

  20. Synthesis of benzo-fused 1-azabicyclo[m.n.0]alkanes via the Schmidt reaction: a formal synthesis of gephyrotoxin.

    PubMed

    Pearson, W H; Fang, W

    2000-10-20

    The intramolecular capture of benzocyclobutyl, benzocyclopentyl, and benzocyclohexyl carbocations 7 by azides produces spirocyclic aminodiazonium ions 8, which undergo 1,2-C-to-N rearrangement with loss of dinitrogen to produce benzo-fused iminium ions resulting from either aryl (9) or alkyl (10) migration to the electron-deficient nitrogen atom. Reduction of the iminium ions affords regioisomeric benzo-fused 1-azabicyclo[m.n.0]alkanes, e.g., benzopyrrolizidines, benzoindolizidines, benzoquinolizidines, or perhydrobenzo[f]pyrrolo[1,2-a]azepines in two regioisomeric versions, anilines (e.g., 11-14) and benzylic amines (e.g., 15-18), the result of aryl and alkyl migrations, respectively. Generally, aryl migration is preferred, despite modeling that shows that the lowest energy aminodiazonium ions are those where the departing dinitrogen is preferentially antiperiplanar to the migrating alkyl group rather than the aryl group. The utility of this methodology was illustrated by a formal synthesis of the alkaloid gephyrotoxin 4. A dependence on the efficiency and regioselectivity of the Schmidt reaction upon subtle changes in the structure of the cation precursor was observed, necessitating the exploration of a variety of substrates. Fortunately, these materials were easily made. Ultimately, the azido-alkene 81 bearing a 2-bromoethyl side-chain was useful for the Schmidt reaction, producing the known benzo-fused indolizidine 49, which had been transformed by Ito et al. into gephyrotoxin 4. The synthesis of 49 required nine steps (five purifications) from commercially available 4-methoxy-1-indanone 60 and proceeded in 22% overall yield.

  1. Effect of the chemical modification of a macrocycle and the acidity of a medium on the spectral properties and basicity of tetraphenylporphyrin in HCl- N, N-dimethylformamide system at 298 K

    NASA Astrophysics Data System (ADS)

    Ivanova, Yu. B.; Razgonyaev, O. V.; Semeikin, A. S.; Mamardashvili, N. Zh.

    2016-05-01

    Spectrophotometric titration is used to study the basicity of tetraphenylporphine and its derivatives with electron-donor and electron-acceptor substituents in the 4-positions of meso-aryl fragments (5,10,15,20-tetra(4-R-phenyl)porphine, R:-OH,-NH2,-COOH,-Cl) in a system HCl- N, N-dimethylformamide at 298 K. An equation for calculating the dependence of the Hammett constant ( H 0) on the HCl concentration in a HCl- N, N-dimethylformamide system at 298 K is proposed. It is found that protonation of the intracycle nitrogen atoms of tetrapyrrole macrocycles of the indicated compounds occurs in two stages in this system. The corresponding ionization constants and concentration ranges of the existence of mono- and doubly-protonated dication forms of the indicated compounds are determined. It is found that both the introduction of strong substituents into the macrocycle of porphyrin and the properties of the medium facilitate the formation of mono- and doubly-protonated forms of porphyrins in solutions.

  2. Structural studies on bioactive compounds. Part 29: palladium catalysed arylations and alkynylations of sterically hindered immunomodulatory 2-amino-5-halo-4,6-(disubstituted)pyrimidines.

    PubMed

    Hannah, D R; Sherer, E C; Davies, R V; Titman, R B; Laughton, C A; Stevens, M F

    2000-04-01

    The immunological agent bropirimine 5 is a tetra-substituted pyrimidine with anticancer and interferon-inducing properties. Synthetic routes to novel 5-aryl analogues of bropirimine have been developed and their potential molecular recognition properties analysed by molecular modelling methods. Sterically challenged 2-amino-5-halo-6-phenylpyrimidin-4-ones (halo = Br or I) are poor substrates for palladium catalysed Suzuki cross-coupling reactions with benzeneboronic acid because the basic conditions of the reaction converts the amphoteric pyrimidinones to their unreactive enolic forms. Palladium-mediated reductive dehalogenation of the pyrimidinone substrates effectively competes with cross-coupling. 2-Amino-5-halo-4-methoxy-6-phenylpyrimidines can be converted to a range of 5-aryl derivatives with the 5-iodopyrimidines being the most efficient substrates. Hydrolysis of the 2-amino-5-aryl-4-methoxy-6-phenylpyrimidines affords the required pyrimidin-4-ones in high yields. Semi-empirical quantum mechanical calculations show how the nature of the 5-substituent influences the equilibrium between the 1H- and 3H-tautomeric forms, and the rotational freedom about the bond connecting the 6-phenyl group and the pyrimidine ring. Both of these factors may influence the biological properties of these compounds.

  3. Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate Esters)

    DTIC Science & Technology

    2014-10-01

    Distribution A: Approved for public release; distribution is unlimited. 1 Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate...when analogous networks containing a single methyl group ortho- to each aryl- cyanurate linkage were prepared by reduction and acid-catalyzed coupling...of salicylic acid followed by treatment with cyanogen bromide and subsequent cyclotrimerization. The differences in water uptake were observed

  4. Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones

    PubMed Central

    Malik, Muhammad; Mustaev, Arkady; Schwanz, Heidi A.; Luan, Gan; Shah, Nirali; Oppegard, Lisa M.; de Souza, Ernane C.; Hiasa, Hiroshi; Zhao, Xilin; Kerns, Robert J.; Drlica, Karl

    2016-01-01

    Fluoroquinolones form drug-topoisomerase-DNA complexes that rapidly block transcription and replication. Crystallographic and biochemical studies show that quinolone binding involves a water/metal-ion bridge between the quinolone C3-C4 keto-acid and amino acids in helix-4 of the target proteins, GyrA (gyrase) and ParC (topoisomerase IV). A recent cross-linking study revealed a second drug-binding mode in which the other end of the quinolone, the C7 ring system, interacts with GyrA. We report that addition of a dinitrophenyl (DNP) moiety to the C7 end of ciprofloxacin (Cip-DNP) reduced protection due to resistance substitutions in Escherichia coli GyrA helix-4, consistent with the existence of a second drug-binding mode not evident in X-ray structures of drug-topoisomerase-DNA complexes. Several other C7 aryl fluoroquinolones behaved in a similar manner with particular GyrA mutants. Treatment of E. coli cultures with Cip-DNP selectively enriched an uncommon variant, GyrA-A119E, a change that may impede binding of the dinitrophenyl group at or near the GyrA-GyrA interface. Collectively the data support the existence of a secondary quinolone-binding mode in which the quinolone C7 ring system interacts with GyrA; the data also identify C7 aryl derivatives as a new way to obtain fluoroquinolones that overcome existing GyrA-mediated quinolone resistance. PMID:26984528

  5. Observation of inductive effects that cause a change in the rate-determining step for the conversion of rhenium azides to imido complexes.

    PubMed

    Travia, Nicholas E; Xu, Zhenggang; Keith, Jason M; Ison, Elon A; Fanwick, Phillip E; Hall, Michael B; Abu-Omar, Mahdi M

    2011-10-17

    The cationic oxorhenium(V) complex [Re(O)(hoz)(2)(CH(3)CN)][B(C(6)F(5))(4)] [1; Hhoz = 2-(2'-hydroxyphenyl)-2-oxazoline] reacts with aryl azides (N(3)Ar) to give cationic cis-rhenium(VII) oxoimido complexes of the general formula [Re(O)(NAr)(hoz)(2)][B(C(6)F(5))(4)] [2a-2f; Ar = 4-methoxyphenyl, 4-methylphenyl, phenyl, 3-methoxyphenyl, 4-chlorophenyl, and 4-(trifluoromethyl)phenyl]. The kinetics of formation of 2 in CH(3)CN are first-order in both azide (N(3)Ar) and oxorhenium(V) complex 1, with second-order rate constants ranging from 3.5 × 10(-2) to 1.7 × 10(-1) M(-1) s(-1). A strong inductive effect is observed for electron-withdrawing substituents, leading to a negative Hammett reaction constant ρ = -1.3. However, electron-donating substituents on phenyl azide deviate significantly from this trend. Enthalpic barriers (ΔH(‡)) determined by the Eyring-Polanyi equation are in the range 14-19 kcal mol(-1) for all aryl azides studied. However, electron-donating 4-methoxyphenyl azide exhibits a large negative entropy of activation, ΔS(‡) = -21 cal mol(-1) K(-1), which is in sharp contrast to the near zero ΔS(‡) observed for phenyl azide and 4-(trifluoromethyl)phenyl azide. The Hammett linear free-energy relationship and the activation parameters support a change in the mechanism between electron-withdrawing and electron-donating aryl azides. Density functional theory predicts that the aryl azides coordinate via N(α) and extrude N(2) directly. For the electron-withdrawing substituents, N(2) extrusion is rate-determining, while for the electron-donating substituents, the rate-determining step becomes the initial attack of the azide. The barriers for these two steps are inverted in their order with respect to the Hammett σ values; thus, the Hammett plot appears with a break in its slope.

  6. Sequence-specific unusual (1-->2)-type helical turns in alpha/beta-hybrid peptides.

    PubMed

    Prabhakaran, Panchami; Kale, Sangram S; Puranik, Vedavati G; Rajamohanan, P R; Chetina, Olga; Howard, Judith A K; Hofmann, Hans-Jörg; Sanjayan, Gangadhar J

    2008-12-31

    This article describes novel conformationally ordered alpha/beta-hybrid peptides consisting of repeating l-proline-anthranilic acid building blocks. These oligomers adopt a compact, right-handed helical architecture determined by the intrinsic conformational preferences of the individual amino acid residues. The striking feature of these oligomers is their ability to display an unusual periodic pseudo beta-turn network of nine-membered hydrogen-bonded rings formed in the forward direction of the sequence by 1-->2 amino acid interactions both in solid-state and in solution. Conformational investigations of several of these oligomers by single-crystal X-ray diffraction, solution-state NMR, and ab initio MO theory suggest that the characteristic steric and dihedral angle restraints exerted by proline are essential for stabilizing the unusual pseudo beta-turn network found in these oligomers. Replacing proline by the conformationally flexible analogue alanine (Ala) or by the conformationally more constrained alpha-amino isobutyric acid (Aib) had an adverse effect on the stabilization of this structural architecture. These findings increase the potential to design novel secondary structure elements profiting from the steric and dihedral angle constraints of the amino acid constituents and help to augment the conformational space available for synthetic oligomer design with diverse backbone structures.

  7. Highly selective biaryl cross-coupling reactions between aryl halides and aryl Grignard reagents: a new catalyst combination of N-heterocyclic carbenes and iron, cobalt, and nickel fluorides.

    PubMed

    Hatakeyama, Takuji; Hashimoto, Sigma; Ishizuka, Kentaro; Nakamura, Masaharu

    2009-08-26

    Combinations of N-heterocyclic carbenes (NHCs) and fluoride salts of the iron-group metals (Fe, Co, and Ni) have been shown to be excellent catalysts for the cross-coupling reactions of aryl Grignard reagents (Ar(1)MgBr) with aryl and heteroaryl halides (Ar(2)X) to give unsymmetrical biaryls (Ar(1)-Ar(2)). Iron fluorides in combination with SIPr, a saturated NHC ligand, catalyze the biaryl cross-coupling between various aryl chlorides and aryl Grignard reagents in high yield and high selectivity. On the other hand, cobalt and nickel fluorides in combination with IPr, an unsaturated NHC ligand, exhibit interesting complementary reactivity in the coupling of aryl bromides or iodides; in contrast, with these substrates the iron catalysts show a lower selectivity. The formation of homocoupling byproducts is suppressed markedly to less than 5% in most cases by choosing the appropriate metal fluoride/NHC combination. The present catalyst combinations offer several synthetic advantages over existing methods: practical synthesis of a broad range of unsymmetrical biaryls without the use of palladium catalysts and phosphine ligands. On the basis of stoichiometric control experiments and theoretical studies, the origin of the unique catalytic effect of the fluoride counterion can be ascribed to the formation of a higher-valent heteroleptic metalate [Ar(1)MF(2)]MgBr as the key intermediate in our proposed catalytic cycle. First, stoichiometric control experiments revealed the stark differences in chemical reactivity between the metal fluorides and metal chlorides. Second, DFT calculations indicate that the initial reduction of di- or trivalent metal fluoride in the wake of transmetalation with PhMgCl is energetically unfavorable and that formation of a divalent heteroleptic metalate complex, [PhMF(2)]MgCl (M = Fe, Co, Ni), is dominant in the metal fluoride system. The heteroleptic ate-complex serves as a key reactive intermediate, which undergoes oxidative addition with PhCl and releases the biaryl cross-coupling product Ph-Ph with reasonable energy barriers. The present cross-coupling reaction catalyzed by iron-group metal fluorides and an NHC ligand provides a highly selective and practical method for the synthesis of unsymmetrical biaryls as well as the opportunity to gain new mechanistic insights into the metal-catalyzed cross-coupling reactions.

  8. Controlling the Conformational Energy of a Phenyl Group by Tuning the Strength of a Nonclassical CH···O Hydrogen Bond: The Case of 5-Phenyl-1,3-dioxane.

    PubMed

    Bailey, William F; Lambert, Kyle M; Stempel, Zachary D; Wiberg, Kenneth B; Mercado, Brandon Q

    2016-12-16

    Anancomeric 5-phenyl-1,3-dioxanes provide a unique opportunity to study factors that control conformation. Whereas one might expect an axial phenyl group at C(5) of 1,3-dioxane to adopt a conformation similar to that in axial phenylcyclohexane, a series of studies including X-ray crystallography, NOE measurements, and DFT calculations demonstrate that the phenyl prefers to lie over the dioxane ring in order to position an ortho-hydrogen to participate in a stabilizing, nonclassical CH···O hydrogen bond with a ring oxygen of the dioxane. Acid-catalyzed equilibration of a series of anancomeric 2-tert-butyl-5-aryl-1,3-dioxane isomers demonstrates that remote substituents on the phenyl ring affect the conformational energy of a 5-aryl-1,3-dioxane: electron-withdrawing substituents decrease the conformational energy of the aryl group, while electron-donating substituents increase the conformational energy of the group. This effect is correlated in a very linear way to Hammett substituent parameters. In short, the strength of the CH···O hydrogen bond may be tuned in a predictable way in response to the electron-withdrawing or electron-donating ability of substituents positioned remotely on the aryl ring. This effect may be profound: a 3,5-bis-CF 3 phenyl group at C(5) in 1,3-dioxane displays a pronounced preference for the axial orientation. The results are relevant to broader conformational issues involving heterocyclic systems bearing aryl substituents.

  9. N-(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells.

    PubMed

    Prestegui-Martel, Berenice; Bermúdez-Lugo, Jorge Antonio; Chávez-Blanco, Alma; Dueñas-González, Alfonso; García-Sánchez, José Rubén; Pérez-González, Oscar Alberto; Padilla-Martínez, Itzia Irene; Fragoso-Vázquez, Manuel Jonathan; Mendieta-Wejebe, Jessica Elena; Correa-Basurto, Ana María; Méndez-Luna, David; Trujillo-Ferrara, José; Correa-Basurto, José

    2016-01-01

    Epigenetic alterations are associated with cancer and their targeting is a promising approach for treatment of this disease. Among current epigenetic drugs, histone deacetylase (HDAC) inhibitors induce changes in gene expression that can lead to cell death in tumors. Valproic acid (VPA) is a HDAC inhibitor that has antitumor activity at mM range. However, it is known that VPA is a hepatotoxic drug. Therefore, the aim of this study was to design a set of VPA derivatives adding the arylamine core of the suberoylanilide hydroxamic acid (SAHA) with different substituents at its carboxyl group. These derivatives were submitted to docking simulations to select the most promising compound. The compound 2 (N-(2-hydroxyphenyl)-2-propylpentanamide) was the best candidate to be synthesized and evaluated in vitro as an anti-cancer agent against HeLa, rhabdomyosarcoma and breast cancer cell lines. Compound 2 showed a better IC 50 (μM range) than VPA (mM range) on these cancer cells. And also, 2 was particularly effective on triple negative breast cancer cells. In conclusion, 2 is an example of drugs designed in silico that show biological properties against human cancer difficult to treat as triple negative breast cancer.

  10. Enhanced antifouling and antibacterial properties of poly (ether sulfone) membrane modified through blending with sulfonated poly (aryl ether sulfone) and copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Xu, Ya'nan; Chen, Shouwen; Li, Jiansheng; Han, Weiqing; Sun, Xiuyun; Wu, Dihua; Hu, Zhaoxia; Wang, Lianjun

    2018-03-01

    A series of novel blend ultrafiltration (UF) membranes have been successfully prepared from commercial poly (ether sulfone), lab-synthesized sulfonated poly (aryl ether sulfone) (SPAES, 1 wt%) and copper nanoparticles (0 ∼ 0.4 wt%) via immersion precipitation phase conversion. The micro-structure and separation performance of the membranes were characterized by field emission scanning electron microscopy (SEM) and cross-flow filtration experiments, respectively. Sodium alginate, bovine serum albumin and humic acid were chosen as model organic foulants to investigate the antifouling properties, while E. coil was used to evaluate the antibacterial property of the fabricated membranes. By the incorporation with SPAES and copper nanoparticles, the hydrophilicity, antifouling and antibacterial properties of the modified UF membranes have been profoundly improved. At a copper nanoparticles content of 0.4 wt%, the PES/SPAES/nCu(0.4) membrane exhibited a high pure water flux of 193.0 kg/m2 h, reaching the smallest contact angle of 52°, highest flux recovery ratio of 79% and largest antibacterial rate of 78.9%. Furthermore, the stability of copper nanoparticles inside the membrane matrix was also considerably enhanced, the copper nanoparticles were less than 0.08 mg/L in the effluent during the whole operation.

  11. Small potent ligands to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor.

    PubMed

    Axén, Andreas; Andersson, Hanna; Lindeberg, Gunnar; Rönnholm, Harriet; Kortesmaa, Jarkko; Demaegdt, Heidi; Vauquelin, Georges; Karlén, Anders; Hallberg, Mathias

    2007-07-01

    Angiotensin IV analogs encompassing aromatic scaffolds replacing parts of the backbone of angiotensin IV have been synthesized and evaluated in biological assays. Several of the ligands displayed high affinities to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor. Displacement of the C-terminal of angiotensin IV with an o-substituted aryl acetic acid derivative delivered the ligand 4, which exhibited the highest binding affinity (K(i) = 1.9 nM). The high affinity of this ligand provides support to the hypothesis that angiotensin IV adopts a gamma-turn in the C-terminal of its bioactive conformation. Ligand (4) inhibits both human IRAP and aminopeptidase N-activity and induces proliferation of adult neural stem cells at low concentrations. Furthermore, ligand 4 is degraded considerably more slowly in membrane preparations than angiotensin IV. Hence, it might constitute a suitable research tool for biological studies of the (IRAP)/AT(4) receptor.

  12. The composition of peptidochitodextrins from sarcophagid puparial cases

    PubMed Central

    Lipke, H.; Geoghegan, T.

    1971-01-01

    1. N-Bromosuccinimide cleaved proteins and pigments from fly puparia, increasing the chitin:protein ratio from 0.5 to 1.5. The product afforded subfractions (ratio 5:1) of molecular weights of 1200 and 1600 devoid of aromatic residues and N-terminal β-alanine, direct aryl links between polysaccharide chains being discounted. 2. The chitin–protein complex decreased in molecular weight when treated with Pronase, which suggested polypeptide bridges within the native chitin micelle. The limit dextrins generated by chitinase were mixtures of unsubstituted dextrins and peptidylated oligosaccharides, with the former predominating. 3. Peptidochitodextrins of similar molecular weight but markedly different solubility were prepared, which were indistinguishable with respect to amino acid, glucosamine, acetyl, X-ray or infrared characteristics. It is suggested that physical interactions contribute to the stability of the integument in addition to the covalent bonds that form during sclerotization. PMID:5145884

  13. The sonochemical arylation of malonic esters mediated by manganese triacetate.

    PubMed

    Meciarova, M; Toma, S; Luche, J L

    2001-04-01

    The intermolecular arylation of malonate esters in acetic acid solution in the presence of manganese(III) triacetate is known to proceed via an Electron Transfer mechanism. Under sonication, this reaction undergoes only minor changes. In contrast, the intramolecular reaction of dimethyl alpha-(3-phenylpropyl)malonate provides a new case of sonochemical switching, with the formation of compounds 7-9, while conventional thermal conditions generate only the bicyclic compound 6. Reactions using the more powerful oxidant, cerium ammonium nitrate are governed by the formation of the nitrate ester 11. Compounds 7-9 are isolated in yields lower than with MnTA, and in proportions depending on the conditions, thermal or sonochemical.

  14. Copper-catalyzed C(sp3)-OH cleavage with concomitant C-C coupling: synthesis of 3-substituted isoindolinones.

    PubMed

    Rao, H Surya Prakash; Rao, A Veera Bhadra

    2015-02-06

    Copper(II) trifluoromethanesulfonate (Cu(OTf)2) efficiently catalyzes the C-C coupling of 3-hydoxyisoindolinones with a variety of aryl-, heteroaryl-, and alkenylboronic acids to furnish C(3) aryl-, heteroaryl-, and alkenyl-substituted isoindolinones. The coupling reactions work smoothly in 1,2-dicholoroethane (DCE) reflux, to effect both inter- and intramolecular versions. This is the first report on C(sp(3))-OH cleavage with concomitant C-C coupling. The photolabile 2-nitrobenzyl protecting group is most appropriate for promotion of the coupling reaction and for deprotection. The tetracyclic ring motif of the alkaloid neuvamine was prepared by applying the newly developed copper-catalyzed C-C coupling.

  15. Investigations on the synthesis and pharmacological properties of 4-alkoxy-2-[2-hydroxy-3-(4-aryl-1-piperazinyl)propyl]-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones.

    PubMed

    Sladowska, Helena; Filipek, Barbara; Szkatuła, Dominika; Sabiniarz, Aleksandra; Kardasz, Małgorzata; Potoczek, Joanna; Sieklucka-Dziuba, Maria; Rajtar, Grazyna; Kleinrok, Zdzisław; Lis, Tadeusz

    2002-11-01

    Synthesis of 2-[2-hydroxy-3-(4-aryl-1-piperazinyl)propyl] derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (8-12) is described. The chlorides used in the above synthesis can exist in two isomeric forms: chain (18-20) and cyclic (19a, 20a). The compounds 8-12 exhibited potent analgesic activity which was superior than that of acetylsalicylic acid in two different tests. Most of the investigated imides suppressed significantly spontaneous locomotor activity in mice.

  16. 5-(1-Aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles: Synthesis, structural characterization, Hirshfeld analysis, anti-inflammatory and anti-bacterial studies

    NASA Astrophysics Data System (ADS)

    Kumbar, Mahadev N.; Kamble, Ravindra R.; Dasappa, Jagadeesh Prasad; Bayannavar, Praveen K.; Khamees, Hussien Ahmed; Mahendra, M.; Joshi, Shrinivas D.; Dodamani, Suneel; Rasal, V. P.; Jalalpure, Sunil

    2018-05-01

    A series of novel 5-(1-aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles 7(h-s) were designed and synthesized. Structural characterization was done by spectral and single crystal X-ray studies. The intermolecular interactions of compound 7n were quantified and visualized using Hirshfeld surface analysis. Structures of newly synthesized compounds were docked into active site of COX-2 enzyme PDB:

  17. C-Aryl glucoside SGLT2 inhibitors containing a biphenyl motif as potential anti-diabetic agents.

    PubMed

    Ding, Yuyang; Mao, Liufeng; Xu, Dengfeng; Xie, Hui; Yang, Ling; Xu, Hongjiang; Geng, Wenjun; Gao, Yong; Xia, Chunguang; Zhang, Xiquan; Meng, Qingyi; Wu, Donghai; Zhao, Junling; Hu, Wenhui

    2015-07-15

    A series of highly active C-aryl glucoside SGLT2 inhibitors containing a biphenyl motif were designed and synthesized for biological evaluation. Among the compounds tested, compound 16l demonstrated high inhibitory activity against SGLT2 (IC50=1.9 nM) with an excellent pharmacokinetic profile. Further study indicated that the in vivo efficacy of compound 16l was comparable to that of dapagliflozin, suggesting that further development would be worthwhile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Copper-catalyzed domino cycloaddition/C-N coupling/cyclization/(C-H arylation): an efficient three-component synthesis of nitrogen polyheterocycles.

    PubMed

    Qian, Wenyuan; Wang, Hao; Allen, Jennifer

    2013-10-11

    A cat of all trades: A single copper catalyst promoted up to three reaction steps with separate catalytic cycles in a domino sequence (azide-alkyne cycloaddition/Goldberg amidation/Camps cyclization/(CH arylation)) for the rapid construction of complex heterocycles from three simple components under mild conditions. Facile cleavage of the triazole ring enables further elaboration of the condensation products. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Organocatalytic C-H bond arylation of aldehydes to bis-heteroaryl ketones.

    PubMed

    Toh, Qiao Yan; McNally, Andrew; Vera, Silvia; Erdmann, Nico; Gaunt, Matthew J

    2013-03-13

    An organocatalytic aldehyde C-H bond arylation process for the synthesis of complex heteroaryl ketones has been developed. By exploiting the inherent electrophilicity of diaryliodonium salts, we have found that a commercial N-heterocyclic carbene catalyst promotes the union of heteroaryl aldehydes and these heteroaromatic electrophile equivalents in good yields. This straightforward catalytic protocol offers access to ketones bearing a diverse array of arene and heteroarene substituents that can subsequently be converted into molecules displaying structural motifs commonly found in medicinal agents.

  20. Synthesis of N-(6-Arylbenzo[d]thiazole-2-acetamide Derivatives and Their Biological Activities: An Experimental and Computational Approach.

    PubMed

    Gull, Yasmeen; Rasool, Nasir; Noreen, Mnaza; Altaf, Ataf Ali; Musharraf, Syed Ghulam; Zubair, Muhammad; Nasim, Faiz-Ul-Hassan; Yaqoob, Asma; DeFeo, Vincenzo; Zia-Ul-Haq, Muhammad

    2016-02-25

    A new series of N-(6-arylbenzo[d]thiazol-2-yl)acetamides were synthesized by C-C coupling methodology in the presence of Pd(0) using various aryl boronic pinacol ester/acids. The newly synthesized compounds were evaluated for various biological activities like antioxidant, haemolytic, antibacterial and urease inhibition. In bioassays these compounds were found to have moderate to good activities. Among the tested biological activities screened these compounds displayed the most significant activity for urease inhibition. In urease inhibition, all compounds were found more active than the standard used. The compound N-(6-(p-tolyl)benzo[d]thiazol-2-yl)acetamide was found to be the most active. To understand this urease inhibition, molecular docking studies were performed. The in silico studies showed that these acetamide derivatives bind to the non-metallic active site of the urease enzyme. Structure-activity studies revealed that H-bonding of compounds with the enzyme is important for its inhibition.

  1. Indolyl aryl sulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: role of two halogen atoms at the indole ring in developing new analogues with improved antiviral activity.

    PubMed

    Regina, Giuseppe La; Coluccia, Antonio; Piscitelli, Francesco; Bergamini, Alberto; Sinistro, Anna; Cavazza, Antonella; Maga, Giovanni; Samuele, Alberta; Zanoli, Samantha; Novellino, Ettore; Artico, Marino; Silvestri, Romano

    2007-10-04

    Indolyl aryl sulfones bearing the 4,5-difluoro (10) or 5-chloro-4-fluoro (16) substitution pattern at the indole ring were potent inhibitors of HIV-1 WT and the NNRTI-resistant strains Y181C and K103N-Y181C. These compounds were highly effective against the 112 and the AB1 strains in lymphocytes and inhibited at nanomolar concentration the multiplication of the IIIBBa-L strain in macrophages. Compound 16 was exceptionally potent against RT WT and RTs carrying the K103N, Y181I, and L100I mutations.

  2. Design and synthesis of novel stiripentol analogues as potential anticonvulsants.

    PubMed

    Aboul-Enein, Mohamed N; El-Azzouny, Aida A; Attia, Mohamed I; Maklad, Yousreya A; Amin, Kamilia M; Abdel-Rehim, Mohamed; El-Behairy, Mohammed F

    2012-01-01

    A series of stiripentol (STP) analogues namely, 2-[(1E)-1-(1,3-benzodioxol-5-yl)-4,4-dimethylpent-1-en-3-ylidene]-N-(aryl/H)hydrazinecarboxamides 7a-h, (±)-(5RS)-N-(aryl/H)-(1,3-benzodioxol-5-yl)-3-tert-butyl-4,5-dihydro-1H-pyrazole-1-carboxamides (±)-8a-h, and (±)-[(5RS)-(1,3-benzodioxol-5-yl)-3-tert-butyl-4,5-dihydro-1H-pyrazol-1-yl](aryl)methanones (±)-13a-f was synthesized by adopting appropriate synthetic routes and was pharmacologically evaluated in the preliminary anticonvulsant screens. The selected bioactive new chemical entities were subjected to ED(50) determination and neurotoxicity evaluation. The most active congeners are 7h in MES screen and (±)-13b in scPTZ screen which displayed ED(50) values of 87 and 110 mg/kg, respectively, as compared to that of STP (ED(50) = 277.7 and 115 mg/kg in MES and scPTZ, respectively). Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  3. A homogeneous, recyclable polymer support for Rh(I)-catalyzed C-C bond formation.

    PubMed

    Jana, Ranjan; Tunge, Jon A

    2011-10-21

    A robust and practical polymer-supported, homogeneous, recyclable biphephos rhodium(I) catalyst has been developed for C-C bond formation reactions. Control of polymer molecular weight allowed tuning of the polymer solubility such that the polymer-supported catalyst is soluble in nonpolar solvents and insoluble in polar solvents. Using the supported rhodium catalysts, addition of aryl and vinylboronic acids to the electrophiles such as enones, aldehydes, N-sulfonyl aldimines, and alkynes occurs smoothly to provide products in high yields. Additions of terminal alkynes to enones and industrially relevant hydroformylation reactions have also been successfully carried out. Studies show that the leaching of Rh from the polymer support is low and catalyst recycle can be achieved by simple precipitation and filtration.

  4. A Homogeneous, Recyclable Polymer Support for Rh(I)-Catalyzed C-C Bond Formation

    PubMed Central

    Jana, Ranjan; Tunge, Jon A.

    2011-01-01

    A robust and practical polymer-supported, homogeneous, recyclable biphephos rhodium(I) catalyst has been developed for C-C bond formation reactions. Control of polymer molecular weight allowed tuning of the polymer solubility such that the polymer-supported catalyst is soluble in nonpolar solvents and insoluble in polar solvents. Using the supported rhodium catalysts, addition of aryl and vinylboronic acids to the electrophiles such as enones, aldehydes, N-sulfonyl aldimines, and alkynes occurs smoothly to provide products in high yields. Additions of terminal alkynes to enones and industrially relevant hydroformylation reactions have also been successfully carried out. Studies show that the leaching of Rh from the polymer support is low and catalyst recycle can be achieved by simple precipitation and filtration. PMID:21895010

  5. Intra- and intermolecular fluorescence quenching of N-activated 4,5-dimethoxyphthalimides by sulfides, amines, and alkyl carboxylates.

    PubMed

    Griesbeck, Axel G; Schieffer, Stefan

    2003-02-01

    The fluorescent 4,5-dimethoxyphthalimides 1-10 were applied as sensors for intra- and intermolecular photoinduced electron transfer processes. Strong intramolecular fluorescence quenching was detected for the thioether 2 and the tertiary amine 3. The fluorescence of the carboxylic acids 4-7 is pH-dependent accounting for PET-quenching of the singlet excited phthalimide at pH > pKs. At low pH, chromophore protonation might contribute to moderate fluorescence quenching. The arylated phthalimides 9 and 10 show remarkable low fluorescence independent of pH and substituent pattern. Intermolecular fluorescence quenching was detected for the combinations of 1 with dimethyl sulfide, and 1 with triethylamine but not with metal carboxylates.

  6. Crystal structures of N-(3-fluoro-benzo-yl)benzene-sulfonamide and N-(3-fluoro-benzo-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Suchetan, P A; Naveen, S; Lokanath, N K; Lakshmikantha, H N; Srivishnu, K S; Supriya, G M

    2016-04-01

    The crystal structures of two N-(aryl-sulfon-yl)aryl-amides, namely N-(3-fluoro-benzo-yl)benzene-sulfonamide, C13H10FNO3S, (I), and N-(3-fluoro-benzo-yl)-4-methyl-benzene-sulfonamide, C14H12FNO3S, (II), are described and compared with related structures. The dihedral angle between the benzene rings is 82.73 (10)° in (I) compared to 72.60 (12)° in (II). In the crystal of (I), the mol-ecules are linked by C-H⋯O and C-H⋯π inter-actions, resulting in a three-dimensional grid-like architecture, while C-H⋯O inter-actions lead to one-dimensional ribbons in (II). The crystals of both (I) and (II) feature strong but non-structure-directing N-H⋯O hydrogen bonds with R 2 (2)(8) ring motifs. The structure of (I) also features π-π stacking inter-actions.

  7. Prevention of melanin formation during aryl alcohol oxidase production under growth-limited conditions using an Aspergillus nidulans cell factory.

    PubMed

    Pardo-Planas, Oscar; Prade, Rolf A; Müller, Michael; Atiyeh, Hasan K; Wilkins, Mark R

    2017-11-01

    An Aspergillus nidulans cell factory was genetically engineered to produce an aryl alcohol oxidase (AAO). The cell factory initiated production of melanin when growth-limited conditions were established using stationary plates and shaken flasks. This phenomenon was more pronounced when the strain was cultured in a trickle bed reactor (TBR). This study investigated different approaches to reduce melanin formation in fungal mycelia and liquid medium in order to increase the enzyme production yield. Removal of copper from the medium recipe reduced melanin formation in agar cultures and increased enzyme activities by 48% in agitated liquid cultures. Copper has been reported as a key element for tyrosinase, an enzyme responsible for melanin production. Ascorbic acid (0.44g/L) stopped melanin accumulation, did not affect growth parameters and resulted in AAO activity that was more than two-fold greater than a control treatment with no ascorbic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Acid- and base-catalysis in the mononuclear rearrangement of some (Z)-arylhydrazones of 5-amino-3-benzoyl-1,2,4-oxadiazole in toluene: effect of substituents on the course of reaction.

    PubMed

    D'Anna, Francesca; Frenna, Vincenzo; Ghelfi, Franco; Marullo, Salvatore; Spinelli, Domenico

    2011-04-15

    The reaction rates for the rearrangement of eleven (Z)-arylhydrazones of 5-amino-3-benzoyl-1,2,4-oxadiazole 3a-k into the relevant (2-aryl-5-phenyl-2H-1,2,3-triazol-4-yl)ureas 4a-k in the presence of trichloroacetic acid or of piperidine have been determined in toluene at 313.1 K. The results have been related to the effect of the aryl substituent by using Hammett and/or Ingold-Yukawa-Tsuno correlations and have been compared with those previously collected in a protic polar solvent (dioxane/water) as well as with those on the analogous rearrangement of the corresponding (Z)-arylhydrazones of 3-benzoyl-5-phenyl-1,2,4-oxadiazole 1a-k in benzene. Some light can thus be shed on the general differences of chemical reactivity between protic polar (or dipolar aprotic) and apolar solvents.

  9. Aniline Is an Inducer, and Not a Precursor, for Indole Derivatives in Rubrivivax benzoatilyticus JA2

    PubMed Central

    Mohammed, Mujahid; Ch, Sasikala; Ch, Ramana V.

    2014-01-01

    Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway. PMID:24533057

  10. Aniline is an inducer, and not a precursor, for indole derivatives in Rubrivivax benzoatilyticus JA2.

    PubMed

    Mujahid, Mohammed; Sasikala, Ch; Ramana, Ch V

    2014-01-01

    Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway.

  11. Study of the Air-Tolerant 1,3-Diphosphacyclobutane-2,4-diyl through the Direct Arylation.

    PubMed

    Ito, Shigekazu

    2018-04-01

    Installing π-functional substituents on the skeletal phosphorus atoms of the air-tolerant 1,3-diphosphacyclobutane-2,4-diyl unit are promising for tuning the open-shell singlet P-heterocyclic chromophore. The sterically encumbered 1,3-diphosphaCycloButen-4-yl Anion (CBA), generated from the phosphorus-carbon triple bond, was available for the regioselective arylation via nucleophilic aromatic substitution (S N Ar) reaction, addition to arynes, and single-electron transfer (SET) process affording the corresponding P-arylated 1,3-diphosphacyclobutane-2,4-diyls. The photo-absorption and redox properties correlated with the effects of the aryl substituents on the 1,3-diphosphacyclobutane-2,4-diyl unit. The X-ray analyses enabled not only to discuss the metric parameters but also to visualize the radicalic electrons via the electron-density distribution analysis. The electron-donating character of the P-heterocyclic chromophores induced the p-type semiconductor behavior. Detection of hydrogen fluoride via formation of the 1λ 5 ,3λ 5 -diphosphete derivative was also developed. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spectroscopic Identification of the Au-C Bond Formation upon Electroreduction of an Aryl Diazonium Salt on Gold.

    PubMed

    Guo, Limin; Ma, Lipo; Zhang, Yelong; Cheng, Xun; Xu, Ye; Wang, Jin; Wang, Erkang; Peng, Zhangquan

    2016-11-08

    Electroreduction of aryl diazonium salts on gold can produce organic films that are more robust than their analogous self-assembled monolayers formed from chemical adsorption of organic thiols on gold. However, whether the enhanced stability is due to the Au-C bond formation remains debated. In this work, we report the electroreduction of an aryl diazonium salt of 4,4'-disulfanediyldibenzenediazonium on gold forming a multilayer of Au-(Ar-S-S-Ar) n , which can be further degraded to a monolayer of Au-Ar-S - by electrochemical cleavage of the S-S moieties within the multilayer. By conducting an in situ surface-enhanced Raman spectroscopic study of both the multilayer formation/degradation and the monolayer reduction/oxidation processes, coupled to density functional theory calculations, we provide compelling evidence that an Au-C bond does form upon electroreduction of aryl diazonium salts on gold and that the enhanced stability of the electrografted organic films is due to the Au-C bond being intrinsically stronger than the Au-S bond for a given phenylthiolate compound by ca. 0.4 eV.

  13. Ligand design, synthesis and biological anti-HCV evaluations for genotypes 1b and 4a of certain 4-(3- & 4-[3-(3,5-dibromo-4-hydroxyphenyl)-propylamino]phenyl) butyric acids and 3-(3,5-dibromo-4-hydroxyphenyl)-propylamino-acetamidobenzoic acid esters.

    PubMed

    Ismail, Mohamed Abdel Hamid; Abouzid, Khaled A M; Mohamed, Nasser Saad; Dokla, Eman Mahmoud Elawady

    2013-12-01

    4-(4-[N-1-carboxy-3-(3,5-dibromo-4-hydroxyphenyl)-3-oxo-propylamino]phenyl)-4-oxo-butyric acid (V), 4-(3- & 4-[N-1-carboxy-3-(3,5-dibromo-4-hydroxyphenyl)-3-oxo-propylaminophenyl]-2-aryl-4-oxo-butyric acids (Xa-e) and 4-(2-alkyl-2-[N-3-(3,5-dibromo-4-hydroxyphenyl)-1-carboxy-3-oxo-propylamino]acetamido) benzoate esters (XVa-e) were designed, synthesized and biologically evaluated as anti-HCV for genotypes 1b and 4a. The design was based on their docking scores with HCV NS3/4A protease-binding site of the genotype 1b (1W3C), which is conserved in the genotype 4a structure. The docking scores predicted that most of these molecules have higher affinity to the HCV NS3/4A enzyme more than Indoline lead. These compounds were synthesized and evaluated for their cytopathic inhibitory activity against RAW HCV cell cultures of genotype 4a and also examined against Huh 5-2 HCV cell culture of genotype 1b, utilizing Luciferase and MTS assays. Compounds Xa and Xb have 95 and 80% of the activity of Ribavirin against genotype 4a and compounds XVa, XVb and XVd exerted high percentage inhibitory activity against genotype 1b equal 87.7, 84.3 and 82.8%, respectively, with low EC50 doses.

  14. Platinum(0)-mediated C-O bond activation of ethers via an SN2 mechanism.

    PubMed

    Ortuño, Manuel A; Jasim, Nasarella A; Whitwood, Adrian C; Lledós, Agustí; Perutz, Robin N

    2016-11-29

    A computational study of the C(methyl)-O bond activation of fluorinated aryl methyl ethers by a platinum(0) complex Pt(PCyp 3 ) 2 (Cyp = cyclopentyl) (N. A. Jasim, R. N. Perutz, B. Procacci and A. C. Whitwood, Chem. Commun., 2014, 50, 3914) demonstrates that the reaction proceeds via an S N 2 mechanism. Nucleophilic attack of Pt(0) generates an ion pair consisting of a T-shaped platinum cation with an agostic interaction with a cyclopentyl group and a fluoroaryloxy anion. This ion-pair is converted to a 4-coordinate Pt(ii) product trans-[PtMe(OAr F )(PCyp 3 ) 2 ]. Structure-reactivity correlations are fully consistent with this mechanism. The Gibbs energy of activation is calculated to be substantially higher for aryl methyl ethers without fluorine substituents and higher still for alkyl methyl ethers. These conclusions are in accord with the experimental results. Further support was obtained in an experimental study of the reaction of Pt(PCy 3 ) 2 with 2,3,5,6-tetrafluoro-4-allyloxypyridine yielding the salt of the Pt(η 3 -allyl) cation and the tetrafluoropyridinolate anion [Pt(PCy 3 ) 2 (η 3 -allyl)][OC 5 NF 4 ]. The calculated activation energy for this reaction is significantly lower than that for fluorinated aryl methyl ethers.

  15. Atomically-thin molecular layers for electrode modification of organic transistors

    NASA Astrophysics Data System (ADS)

    Gim, Yuseong; Kang, Boseok; Kim, Bongsoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho

    2015-08-01

    Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03307a

  16. Kinetic analysis of butyrylcholinesterase-catalyzed hydrolysis of acetanilides.

    PubMed

    Masson, Patrick; Froment, Marie-Thérèse; Gillon, Emilie; Nachon, Florian; Darvesh, Sultan; Schopfer, Lawrence M

    2007-09-01

    The aryl-acylamidase (AAA) activity of butyrylcholinesterase (BuChE) has been known for a long time. However, the kinetic mechanism of aryl-acylamide hydrolysis by BuChE has not been investigated. Therefore, the catalytic properties of human BuChE and its peripheral site mutant (D70G) toward neutral and charged aryl-acylamides were determined. Three neutral (o-nitroacetanilide, m-nitroacetanilide, o-nitrophenyltrifluoroacetamide) and one positively charged (3-(acetamido) N,N,N-trimethylanilinium, ATMA) acetanilides were studied. Hydrolysis of ATMA by wild-type and D70G enzymes showed a long transient phase preceding the steady state. The induction phase was characterized by a hysteretic "burst". This reflects the existence of two enzyme states in slow equilibrium with different catalytic properties. Steady-state parameters for hydrolysis of the three acetanilides were compared to catalytic parameters for hydrolysis of esters giving the same acetyl intermediate. Wild-type BuChE showed substrate activation while D70G displayed a Michaelian behavior with ATMA as with positively charged esters. Owing to the low affinity of BuChE for amide substrates, the hydrolysis kinetics of neutral amides was first order. Acylation was the rate-determining step for hydrolysis of aryl-acetylamide substrates. Slow acylation of the enzyme, relative to that by esters may, in part, be due suboptimal fit of the aryl-acylamides in the active center of BuChE. The hypothesis that AAA and esterase active sites of BuChE are non-identical was tested with mutant BuChE. It was found that mutations on the catalytic serine, S198C and S198D, led to complete loss of both activities. The silent variant (FS117) had neither esterase nor AAA activity. Mutation in the peripheral site (D70G) had the same effect on esterase and AAA activities. Echothiophate inhibited both activities identically. It was concluded that the active sites for esterase and AAA activities are identical, i.e. S198. This excludes any other residue present in the gorge for being the catalytic nucleophile pole.

  17. Results of the International Validation of the in vivo rodent alkaline comet assay for the detection of genotoxic carcinogens: Individual data for 1,2-dibromoethane, p-anisidine, and o-anthranilic acid in the 2nd step of the 4th phase Validation Study under the JaCVAM initiative.

    PubMed

    Takasawa, Hironao; Takashima, Rie; Narumi, Kazunori; Kawasako, Kazufumi; Hattori, Akiko; Kawabata, Masayoshi; Hamada, Shuichi

    2015-07-01

    As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative International Validation Study of an in vivo rat alkaline comet assay, we examined 1,2-dibromoethane (DBE), p-anisidine (ASD), and o-anthranilic acid (ANT) to investigate the effectiveness of the comet assay in detecting genotoxic carcinogens. Each of the three test chemicals was administered to 5 male Sprague-Dawley rats per group by oral gavage at 48, 24, and 3h before specimen preparation. Single cells were collected from the liver and glandular stomach at 3h after the final dosing, and the specimens prepared from these two organs were subjected to electrophoresis under alkaline conditions (pH>13). The percentage of DNA intensity in the comet tail was then assessed using an image analysis system. A micronucleus (MN) assay was also conducted using these three test chemicals with the bone marrow (BM) cells collected from the same animals simultaneously used in the comet assay, i.e., combination study of the comet assay and BM MN assay. A genotoxic (Ames positive) rodent carcinogen, DBE gave a positive result in the comet assay in the present study, while a genotoxic (Ames positive) non-carcinogen, ASD and a non-genotoxic (Ames negative) non-carcinogen, ANT showed negative results in the comet assay. All three chemicals produced negative results in the BM MN assay. While the comet assay findings in the present study were consistent with those obtained from the rodent carcinogenicity studies for the three test chemicals, we consider the positive result in the comet assay for DBE to be particularly meaningful, given that this chemical produced a negative result in the BM MN assay. Therefore, the combination study of the comet assay and BM MN assay is a useful method to detect genotoxic carcinogens that are undetectable with the BM MN assay alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Identification of 1-Aryl-1H-1,2,3-triazoles as Potential New Antiretroviral Agents.

    PubMed

    Gonzaga, Daniel T G; Souza, Thiago M L; Andrade, Viviane M M; Ferreira, Vitor F; de C da Silva, Fernando

    2018-01-01

    Low molecular weight 1-Aryl-1H-1,2,3-triazoles are endowed with various types of biological activities, such as against cancer, HIV and bacteria. Despite the existence of six different classes of antiretroviral drugs in clinical use, HIV/AIDS continue to be an on growing public health problem. In the present study, we synthesized and evaluated thirty 1-Aryl-1H-1,2,3-triazoles against HIV replication. The compounds were prepared by Huisgen 1,3-dipolar cycloaddition protocol catalyzed by Cu(I) between aryl azides and propargylic alcohol followed by further esterification and etherification from a nucleophilic substitution with acid chlorides or alkyl bromides in good yields. The compounds were submitted to the inhibition of HIV replication and evaluation of their cytotoxicity. Initially, the compounds were screened at 10 µM and the most active were further evaluated in order to obtain some pharmacological parameters. Thirty molecules were evaluated, six were selected - because they inhibited more than 80% HIV replication. We further showed that two of these compounds are 8-times more potent, and less cytotoxic, than nevirapine, an antiretroviral drug in clinical use. We identified very simple triazoles with promissing antiretroviral activities that led to the development of new drugs against AIDS. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Synthesis of sulfadiazinyl acyl/aryl thiourea derivatives as calf intestinal alkaline phosphatase inhibitors, pharmacokinetic properties, lead optimization, Lineweaver-Burk plot evaluation and binding analysis.

    PubMed

    Sajid-Ur-Rehman; Saeed, Aamer; Saddique, Gufran; Ali Channar, Pervaiz; Ali Larik, Fayaz; Abbas, Qamar; Hassan, Mubashir; Raza, Hussain; Fattah, Tanzeela Abdul; Seo, Sung-Yum

    2018-06-02

    To seek the new medicinal potential of sulfadiazine drug, the free amino group of sulfadiazine was exploited to obtain acyl/aryl thioureas using simple and straightforward protocol. Acyl/aryl thioureas are well recognized bioactive pharmacophore containing moieties. A new series (4a-4j) of sulfadiazine derived acyl/aryl thioureas was synthesized and characterized through spectroscopic and elemental analysis. The synthesized derivatives 4a-4j were subjected to calf intestinal alkaline phosphatase (CIAP) activity. The derivative 4a-4j showed better inhibition potential compared to standard monopotassium phosphate (MKP). The compound 4c exhibited higher potential in the series with IC 50 0.251 ± 0.012 µM (standard KH 2 PO 4 4.317 ± 0.201 µM). Lineweaver-Burk plots revealed that most potent derivative 4c inhibition CIAP via mixed type pathway. Pharmacological investigations showed that synthesized compounds 4a-4j obey Lipinsk's rule. ADMET parameters evaluation predicted that these molecule show significant lead like properties with minimum possible toxicity and can serve as templates in drug designing. The synthetic compounds show none mutagenic and irritant behavior. Molecular docking analysis showed that compound 4c interacts with Asp273, His317 and Arg166 amino acid residues. Copyright © 2018. Published by Elsevier Ltd.

  20. [Pharmacological approaches to control of body temperature].

    PubMed

    Soto Ruiz, M Nelia; Ezquerro Rodríguez, Esther; Marín Fernández, Blanca

    2012-05-01

    The main antipyretic drugs belong to two different therapeutic groups: non-steroidal anti-inflammatory and antirheumatic; and analgesic and antipyretic. In some cases, both groups are included in the NSAID group (analgesics antipyretics and NSAID). Most of the chemical compounds included in this group have three actions, but the relative performance of each of them can be different, as well as the incidence of adverse effects. For this reason its clinical use will depend on effectiveness and relative toxicity. When there is fever, NSAID normalizes the action of the thermoregulatory center in the hypothalamus, decreasing production of prostaglandins by inhibiting enzymes cyclooxygenase. But not all are capable of controlling the temperature which increases in adaptative physiological situations, as in heat stroke, intense exercise or by increasing the temperature. The classification is based on chemical characteristics and can be grouped into nine classes: 1) Salicylates, 2) Para-aminophenol derivatives, 3) Derivatives of pyrazolone, 4) Acetic acid derivatives, 5) Derivatives propionic acid, 6) Anthranilic derivatives, 7) Oxicam derivatives, 8) COX-2 inhibitors, 9) Other NSAID. This article describes the indications, mechanism of action, clinical presentation, routes of administration, adverse reactions, contraindications, precautions and drug interactions of the most commonly used (Derivatives of Salicylic Acid, Paracetamol, Metamizole, Ibuprofen, Drantoleno).

  1. [Auxin synthesis by the higher fungus Lentinus edodes (Berk.) Sing in the presence of low concentrations of indole compounds].

    PubMed

    Tsivileva, O M; Loshchinina, E A; Makarov, O E; Nikitina, V E

    2012-01-01

    The auxin formation in a submerged culture of the xylotrophic basidiomycete Lentinus edodes (Berk.) Sing (Lentinula edodes (Berk.) Pegler) (shiitake) is studied. Biologically active substances of an indole nature are identified, "the effect of small doses" of which lies in not only the stimulation of growth of the mycelium (indole-3-acetic acid, 2 x 10(-7)-2 x 10(-4) g/l), but also in the induction of tryptophan-independent paths of auxin biosynthesis. The above-mentioned path is realized in the presence of exogenous indole (1 x 10(-3)-1 x 10(-4) g/l), as well as while inducing the biosynthesis of indole-3-acetic acid by its microadditives (1 x 10(-5)-1 x 10(-8) g/l), and is accompanied by the formation of anthranilic acid (up to 1.5 mg/l). Induction of the generative development stage ofshiitake by indole derivatives is revealed. It was found that among the studied compounds only indoleacetamide at a concentration of an order of x 10(-4) g/l in the culture fluid of L. edodes had a pronounced stimulatory effect on the formation of shiitake's brown mycelial film.

  2. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2] cycloaddition reactions and Staudinger modifications.

  3. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2]cycloaddition reactions and Staudinger modifications.

  4. The Synthesis of Tetraamino Aryl Ethers.

    DTIC Science & Technology

    1975-01-01

    FJSRL-TR-75-0001 with melting points over 500 C and solubilities restricted to strong acids such as sulfuric (H2S04) or methane sulfonic (CH3SO3H...Buchi Rotavapor. Melting points were determined on a Kofler melting point apparatus and are uncorrected. Elemefital microanalyses were per- formed by...Polymerizations in organic solvents, in melts and in polyphosphoric acid (PPA) or similar materials have been used suc- cessfully in their synthesis. The

  5. Self-assembled structures of N-alkylated bisbenzimidazolyl naphthalene in aqueous media for highly sensitive detection of picric acid.

    PubMed

    Wu, Yan-Cheng; Luo, Shi-He; Cao, Liang; Jiang, Kai; Wang, Ling-Yun; Xie, Jie-Chun; Wang, Zhao-Yang

    2017-07-11

    A 2,6-dibenzimidazole-appended naphthalene derivative flanking with two N-alkyl chains (sensor 4) was designed and applied for highly sensitive detection of picric acid (PA) in aqueous media. Driven by the hydrophobicity of alkyl chain and π-π stacking effect of aryl, sensor 4 can undergo self-assembly to form an orderly rod-like structure in H 2 O/THF (v/v, 90/10) solution, as shown by the dynamic light scattering (DLS) and scanning electron microscopy (SEM) studies. Sensor 4 shows high selectivity and sensitivity toward PA over other nitroaromatic explosives. DFT calculations and 1 H NMR, the time-correlated single photon counting (TCSPC) experiments confirm that the quenching mechanism is due to both electron and energy transfer from the electron-rich sensor 4 to the electron-deficient PA. Sensor 4 can detect as low as 0.57 ppb PA in aqueous media and 11.46 ag cm -2 PA by contact mode. Importantly, sensor 4 exhibits low interference against common solvents, metal ions and anions. Thus, it is practically applicable for sensing PA in real environmental samples and vapor phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dietary Omega-3 Polyunsaturated Fatty Acids Prevent Vascular Dysfunction and Attenuate Cytochrome P4501A1 Expression by 2,3,7,8-Tetrachlorodibenzo-P-Dioxin.

    PubMed

    Wiest, Elani F; Walsh-Wilcox, Mary T; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K

    2016-11-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) found in fish protect against cardiovascular morbidity and mortality; however, many individuals avoid fish consumption due to concerns about pollutants. We tested the hypothesis that n-3 PUFAs would prevent vascular dysfunction induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). C57Bl/6 male mice were fed a chow or n-3 PUFA diet for 10 weeks and were exposed to vehicle or 300 ng/kg/d TCDD during the final 2 weeks on each diet. Aortic vasoconstriction mediated by arachidonic acid (AA) ± SKF525 (P450 inhibitor) or SQ29548 (thromboxane/prostanoid [TP] receptor antagonist) was assessed. RBC fatty acids and expression of n-3 and n-6 PUFA metabolites were analyzed. Cytochrome P4501A1 (CYP1A1), CYP1B1, and aryl hydrocarbon receptor (AHR) expression was measured. TCDD significantly increased AA-mediated vasoconstriction on a chow diet by increasing the contribution of P450s and TP receptor to the constriction response. In contrast, the n-3 PUFA diet prevented the TCDD-induced increase in AA vasoconstriction and normalized the contribution of P450s and TP receptor. Although TCDD increased the levels of AA vasoconstrictors on the chow diet, this increase was prevent by the n-3 PUFA diet. Additionally, the n-3 PUFA diet significantly increased the levels of n-3 PUFA-derived vasodilators and TCDD increased these levels further. Interestingly, the n-3 PUFA diet significantly attenuated CYP1A1 induction by TCDD without a significant effect on AHR expression. These data suggest that n-3 PUFAs can prevent TCDD-induced vascular dysfunction by decreasing vasoconstrictors, increasing vasodilators, and attenuating CYP1A1 induction, which has been shown previously to contribute to TCDD-induced vascular dysfunction. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Highly chemoselective intermolecular cross-benzoin reactions using an ad hoc designed novel N-heterocyclic carbene catalyst.

    PubMed

    Delany, Eoghan G; Connon, Stephen J

    2018-01-31

    The design of a novel N-heterocyclic carbene catalyst incorporating a bulky yet highly electron-deficient N-aryl substituent has allowed the development of an efficient protocol for the first highly chemoselective intermolecular benzoin condensations between two non-identical aromatic aldehydes.

  8. Discovery of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as potent RORγt inverse agonists.

    PubMed

    Wang, Yonghui; Yang, Ting; Liu, Qian; Ma, Yingli; Yang, Liuqing; Zhou, Ling; Xiang, Zhijun; Cheng, Ziqiang; Lu, Sijie; Orband-Miller, Lisa A; Zhang, Wei; Wu, Qianqian; Zhang, Kathleen; Li, Yi; Xiang, Jia-Ning; Elliott, John D; Leung, Stewart; Ren, Feng; Lin, Xichen

    2015-09-01

    A novel series of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as RORγt inverse agonists was discovered. Binding mode analysis of a RORγt partial agonist (2c) revealed by co-crystal structure in RORγt LBD suggests that the inverse agonists do not directly interfere with the interaction between H12 and the RORγt LBD. Detailed SAR exploration led to identification of potent RORγt inverse agonists such as 3m with a pIC50 of 8.0. Selected compounds in the series showed reasonable activity in Th17 cell differentiation assay as well as low intrinsic clearance in mouse liver microsomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Excimer-monomer switch: a reaction-based approach for selective detection of fluoride.

    PubMed

    Song, Qiao; Bamesberger, Angela; Yang, Lingyun; Houtwed, Haley; Cao, Haishi

    2014-07-21

    A N-aryl-1,8-naphthalimide based sensor (ES-1) bearing a trimethylsilyl ether has been synthesized by a two-step reaction for quantitative detection of fluoride (F(-)). ES-1 exhibited monomer/excimer emissions at 410 and 524 nm respectively in CH2Cl2. In the presence of F(-), the desilylation of trimethylsilyl ether caused decay of the excimer emission as well as enhancement of the monomer emission to give a ratiometric signal. The fluoride-triggered desilylation showed a high reaction rate and high affinity to F(-) over nine other interfering anions. ES-1 provided a novel fluorescence assay based on excimer-monomer switch of N-aryl-1,8-naphthalimide to quantitatively measure F(-) with a detection limit of 0.133 ppm.

  10. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells

    PubMed Central

    Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S.; Song, Jia-Sheng; Zheng, Jing

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. PMID:23851185

  11. Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water.

    PubMed

    Tian, Xin-Chuan; Huang, Xing; Wang, Dan; Gao, Feng

    2014-01-01

    An efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones was developed. First, the reactions of anthranilic acid derivatives with potassium cyanate afforded the corresponding urea derivatives. Then, cyclization of the urea derivatives with NaOH afforded the monosodium salts of benzoylene urea. Finally, HCl treatment afforded the desired products in near-quantitative yields. This is an eco-efficient method because all the reactions were carried out in water, and the desired products were obtained simply by filtration. The aqueous filtrate was the only waste generated from the reaction. We scaled up the reaction to 1 kg starting material, thus establishing an alternative approach for the green synthesis of quinazoline-2,4(1H,3H)-diones in the chemical and pharmaceutical industries.

  12. Design and synthesis of N₁-aryl-benzimidazoles 2-substituted as novel HIV-1 non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Monforte, Anna-Maria; Ferro, Stefania; De Luca, Laura; Lo Surdo, Giuseppa; Morreale, Francesca; Pannecouque, Christophe; Balzarini, Jan; Chimirri, Alba

    2014-02-15

    A series of novel N1-aryl-2-arylthioacetamido-benzimidazoles were synthesized and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Some of them proved to be effective in inhibiting HIV-1 replication at submicromolar and nanomolar concentration acting as HIV-1 non-nucleoside RT inhibitors (NNRTIs), with low cytotoxicity. The preliminary structure-activity relationship (SAR) of these new derivatives was discussed and rationalized by docking studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. From ketenimines to ketenes to quinolones: two consecutive pseudopericyclic events.

    PubMed

    Alajarín, Mateo; Ortín, María-Mar; Sánchez-Andrada, Pilar; Vidal, Angel; Bautista, Delia

    2005-11-10

    [reaction: see text] N-[2-(Alkyl- or arylthio)carbonyl]phenyl ketenimines undergo cyclization under mild thermal conditions to afford 2-alkyl(aryl)thio-3H-quinolin-4-ones by means of the 1,5-migration of the alkyl(aryl)thio group from the carbonyl carbon to the central carbon atom of the ketenimine fragment followed by the 6pi-electrocyclization of the resulting vinyliminoketene. These 1,5-migration and electrocyclization processes occur via transition states whose pseudopericyclic characteristics have been established on the basis of their magnetic properties, geometries, and NBO analyses.

  14. 1,1,1-tris(hydroxymethyl)ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols.

    PubMed

    Chen, Yao-Jung; Chen, Hsin-Hung

    2006-11-23

    1,1,1-tris(hydroxymethyl)ethane was presented as a new, efficient, and versatile tridentate O-donor ligand suitable for the copper-catalyzed formation of C-N, C-S, and C-O bonds. This inexpensive and commercially available tripod ligand has been demonstrated to facilitate the copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols to afford the corresponding desired products in good to excellent yields. [reaction: see text].

  15. Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients.

    PubMed

    Midttun, Oivind; Townsend, Mary K; Nygård, Ottar; Tworoger, Shelley S; Brennan, Paul; Johansson, Mattias; Ueland, Per Magne

    2014-05-01

    Knowledge of stability during sample transportation and changes in biomarker concentrations within person over time are paramount for proper design and interpretation of epidemiologic studies based on a single measurement of biomarker status. Therefore, we investigated stability and intraindividual vs. interindividual variation in blood concentrations of biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway. Whole blood (EDTA and heparin, n = 12) was stored with an icepack for 24 or 48 h, and plasma concentrations of 38 biomarkers were determined. Stability was calculated as change per hour, intraclass correlation coefficient (ICC), and simple Spearman correlation. Within-person reproducibility of biomarkers was expressed as ICC in samples collected 1-2 y apart from 40 postmenopausal women and in samples collected up to 3 y apart from 551 patients with stable angina pectoris. Biomarker stability was similar in EDTA and heparin blood. Most biomarkers were essentially stable, except for choline and total homocysteine (tHcy), which increased markedly. Within-person reproducibility in postmenopausal women was excellent (ICC > 0.75) for cotinine, all-trans retinol, cobalamin, riboflavin, α-tocopherol, Gly, pyridoxal, methylmalonic acid, creatinine, pyridoxal 5'-phosphate, and Ser; was good to fair (ICC of 0.74-0.40) for pyridoxic acid, kynurenine, tHcy, cholecalciferol, flavin mononucleotide, kynurenic acid, xanthurenic acid, 3-hydroxykynurenine, sarcosine, anthranilic acid, cystathionine, homoarginine, 3-hydroxyanthranilic acid, betaine, Arg, folate, total cysteine, dimethylglycine, asymmetric dimethylarginine, neopterin, symmetric dimethylarginine, and Trp; and poor (ICC of 0.39-0.15) for methionine sulfoxide, Met, choline, and trimethyllysine. Similar reproducibilities were observed in patients with coronary heart disease. Thus, most biomarkers investigated were essentially stable in cooled whole blood for up to 48 h and had a sufficient within-person reproducibility to allow one-exposure assessment of biomarker status in epidemiologic studies. The Western Norway B Vitamin Intervention Trial was registered at clinicaltrials.gov as NTC00354081.

  16. Synthesis of 2-aryl and 3-aryl benzo[b]furan thioethers using aryl sulfonyl hydrazides as sulfenylation reagents.

    PubMed

    Zhao, Xia; Zhang, Lipeng; Lu, Xiaoyu; Li, Tianjiao; Lu, Kui

    2015-03-06

    An efficient, metal-free protocol used to synthesize aryl benzo[b]furan thioethers based on the I2-catalyzed cross-coupling of benzo[b]furans as well as the electrophilic cyclization of 2-alkynylphenol derivatives with aryl sulfonyl hydrazides was developed. Various 2-aryl and 3-aryl benzo[b]furan thioethers were obtained in moderate to good yields.

  17. Understanding the properties of chitosan aryl substituted thioureas in their role and potential as antibacterial agents

    NASA Astrophysics Data System (ADS)

    Khairul, Wan M.; Daud, Adibah Izzati; Ismail, Noraznawati

    2018-02-01

    In this study, the effort was to design and synthesize a series of thiourea-chitosan derivatives featuring five aryl substituted members namely N-chitosan-N'-(4-nitrobenzoyl) thiourea (1), N-chitosan-N'-(4-chlorobenzoyl) thiourea (2), N-chitosan-N'-(4-methylbenzoyl) thiourea (3), N-chitosan-N'-(2-iodobenzoyl) thiourea (4), and N-chitosan-N'-(2-methylbenzoyl) thiourea (5) via SN2 reaction pathway having different donating and withdrawing groups. Their molecular structures were then characterised by FT-IR, UV-Vis, and thermogravimetric analysis (TGA). The antimicrobial activities of these derivatives against four species bacteria Bacillus cereus, Staphylococcus aureus, Salmonella typhi, and Escherichia coli of both Gram-positive and Gram-negative type bacteria at minimum concentration 6mg/ml were carried out to investigate their potential as antibacterial agents. Compound 1 exhibited specific activity as it can only inhibit Gram-positive bacteria while other compounds 2-5 showed broad range spectrum activity as they were able to inhibit both Gram-positive and Gram-negative bacteria. Therefore, 1-5 showed good antibacterial activity and have high potential to be further developed as active materials in pharmaceutical interests.

  18. Structural changes of corn stover lignin during acid pretreatment.

    PubMed

    Moxley, Geoffrey; Gaspar, Armindo Ribeiro; Higgins, Don; Xu, Hui

    2012-09-01

    In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70 % at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by ³¹P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180 °C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.

  19. Coumaraz-2-on-4-ylidene: Ambiphilic N-heterocyclic Carbenes with a Fine-Tunable Electronic Structure.

    PubMed

    Song, Hayoung; Kim, Hyunho; Lee, Eunsung

    2018-05-16

    Herein, a coumaraz-2-on-4-ylidene (1) as a new example of ambiphilic N-heterocyclic carbenes with fine tunable electronic properties is reported. The N-carbamic and aryl groups on carbene carbon provide exceptionally high electrophilicity and nucleophilicity simultaneously to the carbene center, as evidenced by the 77Se NMR chemical shifts of their selenoketone derivatives and the CO stretching strengths of their rhodium carbonyl complexes. Since the precursors of 1 could be synthesized from various functionalized Schiff bases in a practical and scalable manner, the electronic properties of 1 can be fine-tuned in quantitative and predictable way using the Hammett σ constant of the functional groups on aryl ring. The facile electronic tuning capability of 1 may be further applicable to eliciting novel properties in main-group and transition metal chemistry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. On the molecular and supramolecular properties of N,N‧-disubstituted iminoisoindolines: Synthesis, spectroscopy, X-ray structure and Hirshfeld surface analyses, and DFT calculations of two (E)-N,N‧-bis(aryl)iminoisoindolines (aryl = 2-tert-butylphenyl or perfluorophenyl)

    NASA Astrophysics Data System (ADS)

    Bitzer, Rodrigo S.; Visentin, Lorenzo C.; Hörner, Manfredo; Nascimento, Marco A. C.; Filgueiras, Carlos A. L.

    2017-02-01

    Supramolecular studies of iminoisoindoline-derived compounds have been prompted by their biological and photophysical properties. In this article, we report the synthesis, spectroscopy, X-ray structural characterization, and DFT study of two N,N‧-(aryl)-disubstituted 1-iminoisoindolines, namely (E)-N,N‧-bis(2-tert-butylphenyl)iminoisoindoline (2-t-BuPhimiso) and (E)-N,N‧-bis(perfluorophenyl)iminoisoindoline (F5Phimiso). Our X-ray structural analyses have shown that the isoindoline N2 atom of 2-t-BuPhimiso is slightly pyramidalized whereas the respective atom of F5Phimiso displays the expected trigonal planar geometry. The supramolecular arrangement of 2-t-BuPhimiso comprises one-dimensional chains along the [101] direction formed by Csbnd H···πarene interactions, in which the isoindoline ring behaves as a hydrogen-bond donor. For 2-t-BuPhimiso, DFT calculations at the B97-D3/6-311G** level have shown that the dimer formed by this Csbnd H···πarene contact displays a binding energy of -12.83 kcal mol-1. Product F5Phimiso assembles in the crystal state through type-I F3 synthons in addition to Csbnd H⋯F, C-Fδ-···πF+, and πarene/F-πarene/F stacking interactions. Accordingly, our DFT-D3 calculations have confirmed that these interactions synergistically play a dominating role in the crystal packing of F5Phimiso. Finally, the relative stability of the (Z) and (E) isomers of each product has been evaluated at the DFT level of theory. Our calculations have shown that the (E) forms are the most stable ones.

  1. Discovery of novel 2-aryl-4-benzoyl-imidazoles targeting the colchicines binding site in tubulin as potential anticancer agents

    PubMed Central

    Chen, Jianjun; Wang, Zhao; Li, Chien-Ming; Lu, Yan; Vaddady, Pavan K.; Meibohm, Bernd; Dalton, James T.; Miller, Duane D.; Li, Wei

    2010-01-01

    A series of 2-aryl-4-benzoyl-imidazoles (ABI) was synthesized as a result of structural modifications based on the previous set of 2-aryl-imidazole-4-carboxylic amide (AICA) derivatives and 4-substituted methoxylbenzoyl-aryl-thiazoles (SMART). The average IC50 of the most active compound (5da) was 15.7 nM. ABI analogs have substantially improved aqueous solubility (48.9 μg/mL for 5ga vs. 0.909 μg/mL for SMART-1, 0.137 μg/mL for paclitaxel, and 1.04 μg/mL for Combretastatin A4). Mechanism of action studies indicate that the anticancer activity of ABI analogs is through inhibition of tubulin polymerization by interacting with the colchicine binding site. Unlike paclitaxel and colchicine, the ABI compounds were equally potent against multidrug resistant cancer cells and the sensitive parental melanoma cancer cells. In vivo results indicated that 5cb was more effective than DTIC in inhibiting melanoma xenograph tumor growth. Our results suggest that the novel ABI compounds may be developed to effectively treat drug-resistant tumors. PMID:20919720

  2. Mercury speciation by differential photochemical vapor generation at UV-B vs. UV-C wavelength

    NASA Astrophysics Data System (ADS)

    Chen, Guoying; Lai, Bunhong; Mei, Ni; Liu, Jixin; Mao, Xuefei

    2017-11-01

    Photochemical vapor generation (PVG) is an effective sample introduction scheme for volatile mercury (Hg). Speciation of Hg++ and MeHg+ was fulfilled for the first time by differential PVG under UV-B vs. UV-C wavelength and applied to fish oil supplements. After liquid-liquid extraction, the aqueous extract was mixed with 0.4% anthranilic acid (AA)-20% formic acid (FA) in a quartz coil, and exposed sequentially to 311 nm or 254 nm UV light. The resulting Hg0 vapor was detected by atomic fluorescence spectrometry (AFS). At each wavelength, the AFS intensity was a linear function of Hg++ and MeHg+ concentrations, which were solvable from a set of two equations. This method achieved ultrahigh sensitivity with 0.50 and 0.63 ng mL- 1 limits of detection for Hg++ and MeHg+, respectively, and 73% recovery for MeHg+ at 10 ng mL- 1. Validation was performed by ICP-MS on total Hg. Obviation of chemical or chromatographic separation rendered this method rapid, green, and cost-effective.

  3. Molecular Characterization and Expression of a Novel Alcohol Oxidase from Aspergillus terreus MTCC6324

    PubMed Central

    Chakraborty, Mitun; Goel, Manish; Chinnadayyala, Somasekhar R.; Dahiya, Ujjwal Ranjan; Ghosh, Siddhartha Sankar; Goswami, Pranab

    2014-01-01

    The alcohol oxidase (AOx) cDNA from Aspergillus terreus MTCC6324 with an open reading frame (ORF) of 2001 bp was constructed from n-hexadecane induced cells and expressed in Escherichia coli with a yield of ∼4.2 mg protein g−1 wet cell. The deduced amino acid sequences of recombinant rAOx showed maximum structural homology with the chain B of aryl AOx from Pleurotus eryngii. A functionally active AOx was achieved by incubating the apo-AOx with flavin adenine dinucleotide (FAD) for ∼80 h at 16°C and pH 9.0. The isoelectric point and mass of the apo-AOx were found to be 6.5±0.1 and ∼74 kDa, respectively. Circular dichroism data of the rAOx confirmed its ordered structure. Docking studies with an ab-initio protein model demonstrated the presence of a conserved FAD binding domain with an active substrate binding site. The rAOx was specific for aryl alcohols and the order of its substrate preference was 4-methoxybenzyl alcohol >3-methoxybenzyl alcohol>3, 4-dimethoxybenzyl alcohol > benzyl alcohol. A significantly high aggregation to ∼1000 nm (diameter) and catalytic efficiency (kcat/Km) of 7829.5 min−1 mM−1 for 4-methoxybenzyl alcohol was also demonstrated for rAOx. The results infer the novelty of the AOx and its potential biocatalytic application. PMID:24752075

  4. Molecular characterization and expression of a novel alcohol oxidase from Aspergillus terreus MTCC6324.

    PubMed

    Chakraborty, Mitun; Goel, Manish; Chinnadayyala, Somasekhar R; Dahiya, Ujjwal Ranjan; Ghosh, Siddhartha Sankar; Goswami, Pranab

    2014-01-01

    The alcohol oxidase (AOx) cDNA from Aspergillus terreus MTCC6324 with an open reading frame (ORF) of 2001 bp was constructed from n-hexadecane induced cells and expressed in Escherichia coli with a yield of ∼4.2 mg protein g-1 wet cell. The deduced amino acid sequences of recombinant rAOx showed maximum structural homology with the chain B of aryl AOx from Pleurotus eryngii. A functionally active AOx was achieved by incubating the apo-AOx with flavin adenine dinucleotide (FAD) for ∼80 h at 16°C and pH 9.0. The isoelectric point and mass of the apo-AOx were found to be 6.5±0.1 and ∼74 kDa, respectively. Circular dichroism data of the rAOx confirmed its ordered structure. Docking studies with an ab-initio protein model demonstrated the presence of a conserved FAD binding domain with an active substrate binding site. The rAOx was specific for aryl alcohols and the order of its substrate preference was 4-methoxybenzyl alcohol >3-methoxybenzyl alcohol>3, 4-dimethoxybenzyl alcohol > benzyl alcohol. A significantly high aggregation to ∼1000 nm (diameter) and catalytic efficiency (kcat/Km) of 7829.5 min-1 mM-1 for 4-methoxybenzyl alcohol was also demonstrated for rAOx. The results infer the novelty of the AOx and its potential biocatalytic application.

  5. Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles.

    PubMed

    Wentrup, Curt

    2017-03-08

    Flash vacuum pyrolysis (FVP) of azides is an extremely valuable method of generating nitrenes and studying their thermal rearrangements. The nitrenes can in many cases be isolated in low-temperature matrices and observed spectroscopically. NH and methyl, alkyl, aralkyl, vinyl, cyano, aryl and N-heteroaryl, acyl, carbamoyl, alkoxycarbonyl, imidoyl, boryl, silyl, phosphonyl, and sulfonyl nitrenes are included. FVP of triazoloazines generates diazomethylazines and azinylcarbenes, which often rearrange to the energetically more stable arylnitrenes. N 2 elimination from monocyclic 1,2,3-triazoles can generate iminocarbenes, 1H-azirines, ketenimines, and cyclization products, and 1,2,4-triazoles are precursors of nitrile ylides. Benzotriazoles are preparatively useful precursors of cyanocyclopentadienes, carbazoles, and aza-analogues. FVP of 5-aryltetrazoles can result in double N 2 elimination with formation of arylcarbenes or of heteroarylcarbenes, which again rearrange to arylnitrenes. Many 5-substituted and 2,5-disubstituted tetrazoles are excellent precursors of nitrile imines (propargylic, allenic, or carbenic), which are isolable at low temperatures in some cases (e.g., aryl- and silylnitrile imines) or rearrange to carbodiimides. 1,5-Disubstituted tetrazoles are precursors of imidoylnitrenes, which also rearrange to carbodiimides or add intramolecularly to aryl substituents to yield indazoles and related compounds. Where relevant for the mechanistic understanding, pyrolysis under flow conditions or in solution or the solid state will be mentioned. Results of photolysis reactions and computational chemistry complementing the FVP results will also be mentioned in several places.

  6. Copper Mediated Fluorination of Aryl Iodides

    PubMed Central

    Fier, Patrick S.; Hartwig, John F.

    2012-01-01

    The synthesis of aryl fluorides has been a topic of considerable interest because of the importance of aryl fluorides in pharmaceuticals, agrochemicals and materials. The stability, reactivity and biological properties of aryl fluorides can be distinct from those of the corresponding arenes. Methods for the synthesis of aryl fluorides, however, are limited. We report the conversion of a diverse set of aryl iodides to the corresponding aryl fluorides. This reaction occurs with a cationic copper reagent and silver fluoride. Preliminary results suggest this reaction is enabled by a facile reductive elimination from a cationic aryl copper(III) fluoride. PMID:22709145

  7. Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination

    NASA Astrophysics Data System (ADS)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin

    2016-10-01

    Herein we report a simple and facile method to delaminate MXene Ti3C2 multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti3AlC2 and the exfoliation of Ti3AlC2 into Ti3C2 multilayers, followed by Na+ intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti3C2 flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti3C2 sheets disperse well in water and the solutions obey Lambert-Beer's law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti3C2 flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti3C2via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.

  8. Aryl acylamidase activity of human serum albumin with o-nitrotrifluoroacetanilide as the substrate.

    PubMed

    Masson, Patrick; Froment, Marie-Thérèse; Darvesh, Sultan; Schopfer, Lawrence M; Lockridge, Oksana

    2007-08-01

    Albumin is generally regarded as an inert protein with no enzyme activity. However, albumin has esterase activity as well as aryl acylamidase activity. A new acetanilide substrate, o-nitrotrifluoroacetanilide (o-NTFNAC), which is more reactive than the classical o-nitroacetanilide, made it possible to determine the catalytic parameters for hydrolysis by fatty-acid free human serum albumin. Owing to the low enzymatic activity of albumin, kinetic studies were performed at high albumin concentration (0.075 mM). The albumin behavior with this substrate was Michaelis-Menten like. Kinetic analysis was performed according to the formalism used for catalysis at high enzyme concentration. This approach provided values for the turnover and dissociation constant of the albumin-substrate complex: k(cat) = 0.13 +/- 0.02 min(-1) and Ks = 0.67 +/- 0.04 mM. MALDI-TOF experiments showed that unlike the ester substrate p-nitrophenyl acetate, o-NTFNAC does not form a stable adduct (acetylated enzyme). Kinetic analysis and MALDI-TOF experiments demonstrated that hydrolysis of o-NTFNAC by albumin is fully rate-limited by the acylation step (k(cat) = k2). Though the aryl acylamidase activity of albumin is low (k(cat)/Ks = 195 M(-1)min(-1)), because of its high concentration in human plasma (0.6-1 mM), albumin may participate in hydrolysis of aryl acylamides through second-order kinetics. This suggests that albumin may have a role in the metabolism of endogenous and exogenous aromatic amides, including drugs and xenobiotics.

  9. Structural basis of stereospecificity in the bacterial enzymatic cleavage of β-aryl ether bonds in lignin

    DOE PAGES

    Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; ...

    2015-12-04

    Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less

  10. Bimetallic catalysis involving dipalladium(I) and diruthenium(I) complexes.

    PubMed

    Das, Raj K; Saha, Biswajit; Rahaman, S M Wahidur; Bera, Jitendra K

    2010-12-27

    Dipalladium(I) and diruthenium(I) compounds bridged by two [{(5,7-dimethyl-1,8-naphthyridin-2-yl)amino}carbonyl]ferrocene (L) ligands have been synthesized. The X-ray structures of [Pd(2)L(2)][BF(4)](2) (1) and [Ru(2)L(2)(CO)(4)][BF(4)](2) (2) reveal dinuclear structures with short metal-metal distances. In both of these structures, naphthyridine bridges the dimetal unit, and the site trans to the metal-metal bond is occupied by weakly coordinating oxygen from the amido fragment. The catalytic utilities of these bimetallic compounds are evaluated. Compound 1 is an excellent catalyst for phosphine-free, Suzuki cross-coupling reactions of aryl bromides with arylboronic acids and provides high yields in short reaction times. Compound 1 is also found to be catalytically active for aryl chlorides, although the corresponding yields are lower. A bimetallic mechanism is proposed, which involves the oxidative addition of aryl bromide across the Pd-Pd bond and the bimetallic reductive elimination of the product. Compound 1 is also an efficient catalyst for the Heck cross-coupling of aryl bromides with styrenes. The mechanism for aldehyde olefination with ethyl diazoacetate (EDA) and PPh(3), catalyzed by 2, has been fully elucidated. It is demonstrated that 2 catalyzes the formation of phosphorane utilizing EDA and PPh(3), which subsequently reacts with aldehyde to produce a new olefin and phosphine oxide. The efficacy of bimetallic complexes in catalytic organic transformations is illustrated in this work.

  11. Trans influence on the rate of reductive elimination. Reductive elimination of amines from isomeric arylpalladium amides with unsymmetrical coordination spheres.

    PubMed

    Yamashita, Makoto; Cuevas Vicario, Jose V; Hartwig, John F

    2003-12-31

    To determine the trans effect on the rates of reductive eliminations from arylpalladium(II) amido complexes, the reactions of arylpalladium amido complexes bearing symmetrical and unsymmetrical DPPF (DPPF = bis(diphenylphosphino)ferrocene) derivatives were studied. THF solutions of LPd(Ar)(NMeAr') (L = DPPF, DPPF-OMe, DPPF-CF3, DPPF-OMe,Ph, DPPF-Ph,CF3, and DPPF-OMe,CF3; Ar = C6H4-4-CF3; Ar' = C6H4-4-CH3, Ph, and C6H4-4-OMe) underwent C-N bond forming reductive elimination at -15 C to form the corresponding N-methyldiarylamine in high yield. Complexes ligated by symmetrical DPPF derivatives with electron-withdrawing substituents on the DPPF aryl groups underwent reductive elimination faster than complexes ligated by symmetrical DPPF derivatives with electron-donating substituents on the ligand aryl groups. Studies of arylpalladium amido complexes containing unsymmetrical DPPF ligands revealed several trends. First, the complex with the weaker donor trans to nitrogen and the stronger donor trans to the palladium-bound aryl group underwent reductive elimination faster than the regioisomeric complex with the stronger donor trans to nitrogen and the weaker donor trans to the palladium-bound aryl group. Second, the effect of varying the substituents on the phosphorus donor trans to the nitrogen was larger than the effect of varying the substituents on the phosphorus donor trans to the palladium-bound aryl group. Third, the difference in rate between the isomeric arylpalladium amido complexes was similar in magnitude to the differences in rates resulting from conventional variation of substituents on the symmetric phosphine ligands. This result suggests that the geometry of the complex is equal in importance to the donating ability of the dative ligands. The ratio of the differences in rates of reaction of the isomeric complexes was similar to the relative populations of the two geometric isomers. This result and consideration of transition state geometries suggest that the reaction rates are controlled more by substituent effects on ground state stability than on transition state energies. In addition, variation of the aryl group at the amido nitrogen showed systematically that complexes with more electron-donating groups at nitrogen undergo faster reductive elimination than those with less electron-donating groups at nitrogen.

  12. The effect of composition on stability ((14)C activity) of soil organic matter fractions from the albic and black soils.

    PubMed

    Jin, Jie; Sun, Ke; Wang, Ziying; Han, Lanfang; Wu, Fengchang; Xing, Baoshan

    2016-01-15

    The importance of the composition of soil organic matter (SOM) for carbon (C) cycling is still under debate. Here a single soil source was used to examine the specific influence of its composition on stability ((14)C activity) of SOM fractions while constraining other influential C turnover factors such as mineral, climate and plant input. The following SOM fractions were isolated from two soil samples: four humic acids, two humins, non-hydrolyzable carbon, and the demineralized fraction. We examined the isotope ratios of SOM fractions in relation to composition (such as aliphatic and aromatic C content) using solid state (13)C nuclear magnetic resonance (NMR) and thermal analysis. The Δ(14)C values of the fractions isolated from both an albic soil (SOMs-A) and a black soil (SOMs-B) correlated negatively with their peak temperature of decomposition and the temperature where half of the total heat of reaction was evolved, implying a potential link between thermal and biogeochemical stability of SOM fractions. Aryl C contents of SOMs-A determined using (13)C NMR varied inversely with δ(15)N values and directly with δ(13)C values, suggesting that part of aryl C of SOMs-A might be fire-derived. The Δ(14)C values of SOMs-A correlated positively with aliphatic C content and negatively with aromatic C content. We therefore concluded that fire-derived aromatic C in SOMs-A appeared to be more stable than microbially-derived aliphatic C. The greater decomposition of SOMs-B fractions weakened the relationship of their Δ(14)C values with alkyl and aryl C contents. Hence, the role of the composition of SOM fractions in regulating stability might be dependent on the source of specific C forms and their stage of decomposition. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Continuous aryl alcohol oxidase production under growth-limited conditions using a trickle bed reactor.

    PubMed

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Prade, Rolf A; Müller, Michael; Wilkins, Mark R

    2018-05-01

    An A. nidulans strain with a pyridoxine marker was used for continuous production of aryl alcohol oxidase (AAO) in a trickle bed reactor (TBR). Modified medium with reduced zinc, no copper, and 5 g/L ascorbic acid that reduced melanin production and increased AAO productivity under growth limited conditions was used. Two air flow rates, 0.11 L/min (0.1 vvm) and 1.1 L/min (1.0 vvm) were tested. More melanin formation and reduced protein productivity were observed with air flow rate of 1.1 L/min. Three random packings were used as support for the fungus inside the TBR column, two of which were hydrophobic and one which was hydrophilic, and three different dilution rates were tested. The use of GEA BCN 030 hydrophobic packing resulted in greater AAO yield and productivity than the other packings. Increasing dilution rates favored melanin formation and citric, lactic and succinic acid accumulation, which decreased AAO yield and productivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Bioorthogonal Diversification of Peptides through Selective Ruthenium(II)-Catalyzed C-H Activation.

    PubMed

    Schischko, Alexandra; Ren, Hongjun; Kaplaneris, Nikolaos; Ackermann, Lutz

    2017-02-01

    Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium-catalyzed cross-coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step-economical late-stage diversification of α- and β-amino acids, as well as peptides, through chemo-selective C-H arylation under racemization-free reaction conditions. The ligand-accelerated C-H activation strategy proved water-tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C-H arylations for the complexity-increasing assembly of artificial peptides within a multicatalytic C-H activation manifold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Aryl diazonium for biomolecules immobilization onto SPRi chips.

    PubMed

    Mandon, Céline A; Blum, Loïc J; Marquette, Christophe A

    2009-12-21

    A method for the immobilization of proteins at the surface of surface plasmon resonance imaging (SPRi) chips is presented. The technology, based on the electro-deposition of a 4-carboxymethyl aryl diazonium (CMA) monolayer is compared to a classical thioctic acid self-assembled monolayer. SPRi live recording experiments followed by the quantification of the diazonium surface coverage demonstrate the presence of a monolayer of electro-deposited molecules (11*10(12) molecules mm(-2)). This monolayer, when activated through a classical carbodiimide route, generates a surface suitable for the protein immobilization. In the present study, protein A and BSA are immobilized as specific and control spots (150 microm id), respectively. The AFM characterization of the spots deposited onto CMA or thioctic acid modified chips prove the presence of 4.7 nm protein monolayers. Finally, the SPRi detection capabilities of the two surface chemistries are compared according to specific signal, non-specific interaction and regeneration possibilities. Advantages are given to the CMA surface modification since no measurable non-specific signal is obtained while reaching a higher specific signal.

  16. Isovanillin derived N-(un)substituted hydroxylamines possessing an ortho-allylic group: valuable precursors to bioactive N-heterocycles.

    PubMed

    Dulla, Balakrishna; Tangellamudi, Neelima D; Balasubramanian, Sridhar; Yellanki, Swapna; Medishetti, Raghavender; Kumar Banote, Rakesh; Hari Chaudhari, Girish; Kulkarni, Pushkar; Iqbal, Javed; Reiser, Oliver; Pal, Manojit

    2014-04-28

    The intramolecular 1,3-dipolar cycloaddition of isovanillin derived N-aryl hydroxylamines possessing ortho-allylic dipolarophiles affords novel benzo analogues of tricyclic isoxazolidines that can be readily transformed into functionalized lactams, γ-aminoalcohols and oxazepines. The corresponding N-unsubstituted hydroxylamines give rise to tetrahydroisoquinolines. Anxiogenic properties of these compounds are tested in zebra fish.

  17. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    PubMed

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Palladium-Catalyzed Direct C–H Arylation of Cyclic Enaminones with Aryl Iodides

    PubMed Central

    Yu, Yi-Yun; Bi, Lei

    2013-01-01

    A ligand-free method for the Pd-catalyzed direct arylation of cyclic enaminones using aryl iodides was developed. This method can be applied to a wide range of cyclic enaminones and aryl iodides with excellent C5-regioselectivity. Using widely available aryl iodides, the generality of this transformation provides easy access to a variety of 3-arylpiperidine structural motifs. PMID:23750615

  19. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts.

    PubMed

    Hari, Durga Prasad; Schroll, Peter; König, Burkhard

    2012-02-15

    Visible light along with 1 mol % eosin Y catalyzes the direct C-H bond arylation of heteroarenes with aryl diazonium salts by a photoredox process. We have investigated the scope of the reaction for several aryl diazonium salts and heteroarenes. The general and easy procedure provides a transition-metal-free alternative for the formation of aryl-heteroaryl bonds.

  20. Liquid CO2 extraction of Jasminum grandiflorum and comparison with conventional processes.

    PubMed

    Prakash, Om; Sahoo, Deeptanjali; Rout, Prasant Kumar

    2012-01-01

    The concrete (0.35%) of Jasminum grandiflorum L. flowers was prepared by extraction in n-pentane, and the absolute (0.27%) by fractionation of the n-pentane extract (concrete) with cold methanol. Direct extraction of flowers with liquid CO2 gave a relatively fat-free product in 0.26% yield. The liquid CO2 extract was enriched with terpenoids and benzenoids, thus providing the organoleptically accepted product. The major compounds, such as benzyl acetate, (E,E)-alpha-farnesene and (Z)-3-hexenyl benzoate, along with compounds like indole, methyl anthranilate, (Z)-jasmone, (Z)-methyl jasmonoate and (Z)-methyl epi-jasmonoate, are responsible for the high diffusivity of the jasmine fragrance. These compounds have been obtained with improved recoveries in the liquid CO2 extract. On the other hand, the yield of the essential oil was poor (0.05%), and some polar compounds (oxygenated terpenoids) were recovered in less amounts in comparison with either the n-pentane or liquid CO2 extract.

  1. Chiral Brønsted Acid-Catalyzed Allylboration of Aldehydes

    PubMed Central

    Jain, Pankaj; Antilla, Jon C.

    2010-01-01

    The catalytic enantioselective allylation of aldehydes is a long-standing problem with considerable interest to the chemical community. We wish to disclose a new high yielding and highly enantioselective chiral Brønsted acid-catalyzed allylboration of aldehydes. The reaction is shown to be highly general, with broad substrate scope that covers aryl, heteroaryl, α,β-unsaturated, and aliphatic aldehydes. The reaction conditions were also shown to be effective for the catalytic enantioselective crotylation of aldehydes. We believe that the high reactivity of the allyl boronate is due to protonation of the boronate oxygen by the chiral phosphoric acid catalyst. PMID:20690662

  2. An Electron-Transporting Thiazole-Based Polymer Synthesized Through Direct (Hetero)Arylation Polymerization.

    PubMed

    Chávez, Patricia; Bulut, Ibrahim; Fall, Sadiara; Ibraikulov, Olzhas A; Chochos, Christos L; Bartringer, Jérémy; Heiser, Thomas; Lévêque, Patrick; Leclerc, Nicolas

    2018-05-25

    In this work, a new n -type polymer based on a thiazole-diketopyrrolopyrrole unit has been synthesized through direct (hetero)arylation polycondensation. The molar mass has been optimized by systematic variation of the the monomer concentration. Optical and electrochemical properties have been studied. They clearly suggested that this polymer possess a high electron affinity together with a very interesting absorption band, making it a good non-fullerene acceptor candidate. As a consequence, its charge transport and photovoltaic properties in a blend with the usual P3HT electron-donating polymer have been investigated.

  3. Room-temperature transition-metal-free one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines via iodo-hemiaminal intermediate.

    PubMed

    Lee, Seul Ki; Park, Jin Kyoon

    2015-04-03

    A mild and efficient one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines in up to 88% yield was developed. An adduct was formed after the simple mixing of 2-amino-4-methylpyridine, 2-phenylacetaldehyde, and N-iodosuccinimide in CH2Cl2, and the structure of the adduct was characterized by 2D NMR, IR, and high-resolution mass analysis. The adduct was readily cyclized by treatment with a saturated aqueous solution of NaHCO3. The reactions proceeded to completion after several hours at room temperature.

  4. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    PubMed

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles, paraformaldehyde, and anilines gave 3-[p-(dialkylamino)benzyl]indoles in up to 82% yield (conversion: up to 95%).

  5. Synthesis of 2-{(5-phenyl-1,3,4-Oxadiazol-2-yl)sulfanyl}-N-substituted acetamides as potential antimicrobial and hemolytic agents.

    PubMed

    Rehman, Aziz-ur; Abbasi, Muhammad Athar; Siddiqui, Sabahat Zahra; Ahmad, Irshad; Shahid, Muhammad; Subhani, Zinayyera

    2016-05-01

    A new series of N-substituted derivatives of 2-{(5-phenyl-1,3,4-Oxadiazol-2-yl)sulfanyl}acetamides was synthesized. The synthesis was carried out by converting benzoic acid (1) into ethyl benzoate (2), benzohydrazide (3) and then 5-pheny-1,3,4-Oxadiazol-2-thiol (4) step by st0ep. The target compounds 6a-p were synthesized by reaction of compound 4 with equimolar ratios of different N-alkyl/aryl substituted 2-bromoacetamide (5a-p) in the presence of DMF and sodium hydride (NaH). The spectral (EI-MS, IR, (1)H-NMR) characterization of all the synthesized compounds reveal their successful synthesis. The compounds were also screened for antimicrobial & hemolytic activity and most of them were found to be active against the selected microbial species at variable extent relative to reference standards. But 6h was the most active against the selected panel of microbes. This series showed less toxicity and may be considered for further biological screening and application trial except 6m, possessing higher cytotoxicity.

  6. Protein-functionalized hairy diamond nanoparticles.

    PubMed

    Dahoumane, Si Amar; Nguyen, Minh Ngoc; Thorel, Alain; Boudou, Jean-Paul; Chehimi, Mohamed M; Mangeney, Claire

    2009-09-01

    Diazonium salt chemistry and atom transfer radical polymerization (ATRP) were combined in view of preparing new bioactive hairy diamond nanoparticles containing, or potentially containing, nitrogen-vacancy (NV) fluorescent centers (fluorescent nanodiamonds, or fNDs). fNDs were modified by ATRP initiators using the electroless reduction of the diazonium salt BF(4)(-),(+)N(2)-C(6)H(4)-CH(CH(3))-Br. The strongly bound aryl groups -C(6)H(4)-CH(CH(3))-Br efficiently initiated the ATRP of tert-butyl methacrylate (tBMA) at the surface of the nanodiamonds, which resulted in obtaining ND-PtBMA hybrids. The grafted chain thickness, estimated from X-ray photoelectron spectroscopy (XPS), was found to increase linearly with respect to time before reaching a plateau value of ca. 2 nm. These nanoobjects were further hydrolyzed into ND-PMAA (where PMAA is the poly(methacrylic acid) graft) and further decorated by bovine serum albumin through the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling procedure.

  7. Electrochemical Grafting of Graphene Nano Platelets with Aryl Diazonium Salts.

    PubMed

    Qiu, Zhipeng; Yu, Jun; Yan, Peng; Wang, Zhijie; Wan, Qijin; Yang, Nianjun

    2016-10-26

    To vary interfacial properties, electrochemical grafting of graphene nano platelets (GNP) with 3,5-dichlorophenyl diazonium tetrafluoroborate (aryl-Cl) and 4-nitrobenzene diazonium tetrafluoroborate (aryl-NO 2 ) was realized in a potentiodynamic mode. The covalently bonded aryl layers on GNP were characterized using atomic force microscopy and X-ray photoelectron spectroscopy. Electrochemical conversion of aryl-NO 2 into aryl-NH 2 was conducted. The voltammetric and impedance behavior of negatively and positively charged redox probes (Fe(CN) 6 3-/4- and Ru(NH 3 ) 6 2+/3+ ) on three kinds of aryl layers grafted on GNP reveal that their interfacial properties are determined by the charge states of redox probes and reactive terminal groups (-Cl, -NO 2 , -NH 2 ) in aryl layers. On aryl-Cl and aryl-NH 2 garted GNP, selective and sensitive monitoring of positively charged lead ions as well as negatively charged nitrite and sulfite ions was achieved, respectively. Such a grafting procedure is thus a perfect way to design and control interfacial properties of graphene.

  8. Synthesis of cis-C-Iodo-N-Tosyl-Aziridines using Diiodomethyllithium: Reaction Optimization, Product Scope and Stability, and a Protocol for Selection of Stationary Phase for Chromatography

    PubMed Central

    2013-01-01

    The preparation of C-iodo-N-Ts-aziridines with excellent cis-diastereoselectivity has been achieved in high yields by the addition of diiodomethyllithium to N-tosylimines and N-tosylimine–HSO2Tol adducts. This addition-cyclization protocol successfully provided a wide range of cis-iodoaziridines, including the first examples of alkyl-substituted iodoaziridines, with the reaction tolerating both aryl imines and alkyl imines. An ortho-chlorophenyl imine afforded a β-amino gem-diiodide under the optimized reaction conditions due to a postulated coordinated intermediate preventing cyclization. An effective protocol to assess the stability of the sensitive iodoaziridine functional group to chromatography was also developed. As a result of the judicious choice of stationary phase, the iodoaziridines could be purified by column chromatography; the use of deactivated basic alumina (activity IV) afforded high yield and purity. Rearrangements of electron-rich aryl-iodoaziridines have been promoted, selectively affording either novel α-iodo-N-Ts-imines or α-iodo-aldehydes in high yield. PMID:23738857

  9. Azeotropic Preparation of a "C"-Phenyl "N"-Aryl Imine: An Introductory Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Silverberg, Lee J.; Coyle, David J.; Cannon, Kevin C.; Mathers, Robert T.; Richards, Jeffrey A.; Tierney, John

    2016-01-01

    Imines are important in biological chemistry and as intermediates in organic synthesis. An experiment for introductory undergraduate organic chemistry is presented in which benzaldehyde was condensed with "p"-methoxyaniline in toluene to give 4-methoxy-"N"-(phenylmethylene)benzenamine. Water was removed by azeotropic…

  10. Palladium-Catalyzed Indole, Pyrrole, and Furan Arylation by Aryl Chlorides

    PubMed Central

    Nadres, Enrico T.; Lazareva, Anna; Daugulis, Olafs

    2011-01-01

    The palladium-catalyzed direct arylation of indoles, pyrroles, and furans by aryl chlorides has been demonstrated. The method employs a palladium acetate catalyst, 2-(dicyclohexylphosphino)-biphenyl ligand, and an inorganic base. Electron-rich and electron-poor aryl chlorides as well as chloropyridine coupling partners can be used and arylated heterocycles are obtained in moderate to good yields. Optimization of base, ligand, and solvent is required for achieving best results. PMID:21192652

  11. Synthesis, structure, theoretical and experimental in vitro antioxidant/pharmacological properties of α-aryl, N-alkyl nitrones, as potential agents for the treatment of cerebral ischemia.

    PubMed

    Samadi, Abdelouahid; Soriano, Elena; Revuelta, Julia; Valderas, Carolina; Chioua, Mourad; Garrido, Ignacio; Bartolomé, Begoña; Tomassolli, Isabelle; Ismaili, Lhassane; González-Lafuente, Laura; Villarroya, Mercedes; García, Antonio G; Oset-Gasque, María J; Marco-Contelles, José

    2011-01-15

    The synthesis, structure, theoretical and experimental in vitro antioxidant properties using the DPPH, ORAC, and benzoic acid, as well as preliminary in vitro pharmacological activities of (Z)-α-aryl and heteroaryl N-alkyl-nitrones 6-15, 18, 19, 21, and 23, is reported. In the in vitro antioxidant activity, for the DPPH radical test, only nitrones bearing free phenol groups gave the best RSA (%) values, nitrones 13 and 14 showing the highest values in this assay. In the ORAC analysis, the most potent radical scavenger was nitrone indole 21, followed by the N-benzyl benzene-type nitrones 10 and 15. Interestingly enough, the archetypal nitrone 7 (PBN) gave a low RSA value (1.4%) in the DPPH test, or was inactive in the ORAC assay. Concerning the ability to scavenge the hydroxyl radical, all the nitrones studied proved active in this experiment, showing high values in the 94-97% range, the most potent being nitrone 14. The theoretical calculations for the prediction of the antioxidant power, and the potential of ionization confirm that nitrones 9 and 10 are among the best compounds in electron transfer processes, a result that is also in good agreement with the experimental values in the DPPH assay. The calculated energy values for the reaction of ROS (hydroxyl, peroxyl) with the nitrones predict that the most favourable adduct-spin will take place between nitrones 9, 10, and 21, a fact that would be in agreement with their experimentally observed scavenger ability. The in vitro pharmacological analysis showed that the neuroprotective profile of the target molecules was in general low, with values ranging from 0% to 18.7%, in human neuroblastoma cells stressed with a mixture of rotenone/oligomycin-A, being nitrones 18, and 6-8 the most potent, as they show values in the range 24-18.4%. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  12. Identification of Three Alcohol Dehydrogenase Genes Involved in the Stereospecific Catabolism of Arylglycerol-β-Aryl Ether by Sphingobium sp. Strain SYK-6▿ †

    PubMed Central

    Sato, Yusuke; Moriuchi, Hideki; Hishiyama, Shojiro; Otsuka, Yuichiro; Oshima, Kenji; Kasai, Daisuke; Nakamura, Masaya; Ohara, Seiji; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji

    2009-01-01

    Degradation of arylglycerol-β-aryl ether is the most important process in bacterial lignin catabolism. Sphingobium sp. strain SYK-6 degrades guaiacylglycerol-β-guaiacyl ether (GGE) to α-(2-methoxyphenoxy)-β-hydroxypropiovanillone (MPHPV), and then the ether linkage of MPHPV is cleaved to generate α-glutathionyl-β-hydroxypropiovanillone (GS-HPV) and guaiacol. We have characterized three enantioselective glutathione S-transferase genes, including two genes that are involved in the ether cleavage of two enantiomers of MPHPV and one gene that is involved in the elimination of glutathione from a GS-HPV enantiomer. However, the first step in the degradation of four different GGE stereoisomers has not been characterized. In this study, three alcohol dehydrogenase genes, ligL, ligN, and ligO, which conferred GGE transformation activity in Escherichia coli, were isolated from SYK-6 and characterized, in addition to the previously cloned ligD gene. The levels of amino acid sequence identity of the four GGE dehydrogenases, which belong to the short-chain dehydrogenase/reductase family, ranged from 32% to 39%. Each gene was expressed in E. coli, and the stereospecificities of the gene products with the four GGE stereoisomers were determined by using chiral high-performance liquid chromatography with recently synthesized authentic enantiopure GGE stereoisomers. LigD and LigO converted (αR,βS)-GGE and (αR,βR)-GGE into (βS)-MPHPV and (βR)-MPHPV, respectively, while LigL and LigN transformed (αS,βR)-GGE and (αS,βS)-GGE to (βR)-MPHPV and (βS)-MPHPV, respectively. Disruption of the genes indicated that ligD is essential for the degradation of (αR,βS)-GGE and (αR,βR)-GGE and that both ligL and ligN contribute to the degradation of the two other GGE stereoisomers. PMID:19542348

  13. α-Arylation/Heteroarylation of Chiral α-Aminomethyltrifluoroborates by Synergistic Iridium Photoredox/Nickel Cross-Coupling Catalysis.

    PubMed

    El Khatib, Mirna; Serafim, Ricardo Augusto Massarico; Molander, Gary A

    2016-01-04

    Direct access to complex, enantiopure benzylamine architectures using a synergistic iridium photoredox/nickel cross-coupling dual catalysis strategy has been developed. New C(sp(3))-C(sp(2)) bonds are forged starting from abundant and inexpensive natural amino acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Activities of five enzymes following soil disturbance and weed control in a Missouri forest

    Treesearch

    Felix, Jr. Ponder; Frieda Eivazi

    2008-01-01

    Forest disturbances associated with harvesting activities can affect soil properties including enzyme activity and overall soil quality. The activities of five enzymes (acid and alkaline phosphatases, betaglucosidase, aryl-sulfatase, and beta-glucosominidase) were measured after 8 years in soil from clearcut and uncut control plots of a Missouri oak-hickory (...

  15. Undergraduate Organic Experiment: Tetrazole Formation by Microwave Heated (3 + 2) Cycloaddition in Aqueous Solution

    ERIC Educational Resources Information Center

    DeFrancesco, Heather; Dudley, Joshua; Coca, Adiel

    2018-01-01

    An undergraduate experiment for the organic laboratory is described that utilizes microwave heating to prepare 5- substituted 1H-tetrazole derivatives through a (3 + 2) cycloaddition between aryl nitriles and sodium azide. The reaction mixture is analyzed by thin layer chromatography. The products are purified through an acid-base extraction and…

  16. Novel quinazoline ring synthesis by cycloaddition of N-arylketenimines with N,N-disubstituted cyanamides.

    PubMed

    Shimizu, Masao; Oishi, Akihiro; Taguchi, Yoichi; Gama, Yasuo; Shibuya, Isao

    2002-03-01

    The reaction of N-aryl-substituted ketenimines with N,N-disubstituted cyanamides or (MeS)2C=N-CN under high pressure afforded 4-(N,N-disubstituted amino) or 4-(MeS)2C=N-substituted quinazoline derivatives, respectively. These products were formed by [4+2] cycloaddition between the aza-diene moieties of the N-arylsubstituted ketenimines and cyano groups. A 4-(unsubstituted amino)quinazoline derivative was synthesized by hydrolysis of the latter product.

  17. Anthranilate phosphoribosyltransferase: Binding determinants for 5'-phospho-alpha-d-ribosyl-1'-pyrophosphate (PRPP) and the implications for inhibitor design.

    PubMed

    Evans, Genevieve L; Furkert, Daniel P; Abermil, Nacim; Kundu, Preeti; de Lange, Katrina M; Parker, Emily J; Brimble, Margaret A; Baker, Edward N; Lott, J Shaun

    2018-02-01

    Phosphoribosyltransferases (PRTs) bind 5'-phospho-α-d-ribosyl-1'-pyrophosphate (PRPP) and transfer its phosphoribosyl group (PRib) to specific nucleophiles. Anthranilate PRT (AnPRT) is a promiscuous PRT that can phosphoribosylate both anthranilate and alternative substrates, and is the only example of a type III PRT. Comparison of the PRPP binding mode in type I, II and III PRTs indicates that AnPRT does not bind PRPP, or nearby metals, in the same conformation as other PRTs. A structure with a stereoisomer of PRPP bound to AnPRT from Mycobacterium tuberculosis (Mtb) suggests a catalytic or post-catalytic state that links PRib movement to metal movement. Crystal structures of Mtb-AnPRT in complex with PRPP and with varying occupancies of the two metal binding sites, complemented by activity assay data, indicate that this type III PRT binds a single metal-coordinated species of PRPP, while an adjacent second metal site can be occupied due to a separate binding event. A series of compounds were synthesized that included a phosphonate group to probe PRPP binding site. Compounds containing a "bianthranilate"-like moiety are inhibitors with IC 50 values of 10-60μM, and K i values of 1.3-15μM. Structures of Mtb-AnPRT in complex with these compounds indicate that their phosphonate moieties are unable to mimic the binding modes of the PRib or pyrophosphate moieties of PRPP. The AnPRT structures presented herein indicated that PRPP binds a surface cleft and becomes enclosed due to re-positioning of two mobile loops. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction.

    PubMed

    Chen, Lin; Chen, Minliang; Ma, Chengwei; Zeng, An-Ping

    2018-05-05

    The L-tryptophan (Trp) biosynthesis pathway is highly regulated at multiple levels. The three types of regulations identified so far, namely repression, attenuation, and feedback inhibition have greatly impacted our understanding and engineering of cellular metabolism. In this study, feed-forward regulation is discovered as a novel regulation of this pathway and explored for engineering Escherichia coli for more efficient Trp biosynthesis. Specifically, indole glycerol phosphate synthase (IGPS) of the multifunctional enzyme TrpC from E. coli is found to be feed-forward inhibited by anthranilate noncompetitively. Surprisingly, IGPS of TrpC from both Saccharomyces cerevisiae and Aspergillus niger was found to be feed-forward activated, for which the glutamine aminotransferase domain is essential. The anthranilate binding site of IGPS from E. coli is identified and mutated, resulting in more tolerant variants for improved Trp biosynthesis. Furthermore, expressing the anthranilate-activated TrpC from A. niger in a previously engineered Trp producing E. coli strain S028 made the strain more robust in growth and more efficient in Trp production in bioreactor. It not only increased the Trp concentration from 19 to 29 g/L within 42 h, but also improved the maximum Trp yield from 0.15 to 0.18 g/g in simple fed-batch fermentations, setting a new level to rationally designed Trp producing strains. The findings are of fundamental interest for understanding and re-designing dynamics and control of metabolic pathways in general and provide a novel target and solution to engineering of E. coli for efficient Trp production particularly. Copyright © 2018. Published by Elsevier Inc.

  19. Evolutionary differences in chromosomal locations of four early genes of the tryptophan pathway in fluorescent pseudomonads: DNA sequences and characterization of Pseudomonas putida trpE and trpGDC.

    PubMed

    Essar, D W; Eberly, L; Crawford, I P

    1990-02-01

    Pseudomonas putida possesses seven structural genes for enzymes of the tryptophan pathway. All but one, trpG, which encodes the small (beta) subunit of anthranilate synthase, have been mapped on the circular chromosome. This report describes the cloning and sequencing of P. putida trpE, trpG, trpD, and trpC. In P. putida and Pseudomonas aeruginosa, DNA sequence analysis as well as growth and enzyme assays of insertionally inactivated strains indicated that trpG is the first gene in a three-gene operon that also contains trpD and trpC. In P. putida, trpE is 2.2 kilobases upstream from the trpGDC cluster, whereas in P. aeruginosa, they are separated by at least 25 kilobases (T. Shinomiya, S. Shiga, and M. Kageyama, Mol. Gen. Genet., 189:382-389, 1983). The DNA sequence in P. putida shows an open reading frame on the opposite strand between trpE and trpGDC; this putative gene was not characterized. Evidence is also presented for sequence similarities in the 5' untranslated regions of trpE and trpGDC in both pseudomonads; the function of these regions is unknown, but it is possible that they play some role in regulation of these genes, since all the genes respond to repression by tryptophan. The sequences of the anthranilate synthase genes in the fluorescent pseudomonads resemble those of p-aminobenzoate synthase genes of the enteric bacteria more closely than the anthranilate synthase genes of those organisms; however, no requirement for p-aminobenzoate was found in the Pseudomonas mutants created in this study.

  20. Anthranilic Diamide Insecticides Delivered via Multiple Approaches to Control Vegetable Pests: A Case Study in Snap Bean.

    PubMed

    Schmidt-Jeffris, Rebecca A; Nault, Brian A

    2016-12-01

    Many vegetable insect pests are managed using neonicotinoid and pyrethroid insecticides. Unfortunately, these insecticides are toxic to many bees and natural enemies and no longer control some pests that have developed resistance. Anthranilic diamide insecticides provide systemic control of many herbivorous arthropod pests, but exhibit low toxicity to beneficial arthropods and mammals, and may be a promising alternative to neonicotinoids and pyrethroids. Anthranilic diamides may be delivered to vegetable crops via seed, in-furrow, or foliar treatments; therefore, it would be desirable to identify which application method provides high levels of pest control while minimizing the amount of active ingredient. As a case study, chlorantraniliprole and cyantraniliprole applied via the methods listed above were evaluated for managing seedcorn maggot, Delia platura (Meigen) (Diptera: Anthomyiidae), and European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), in snap bean. Chlorantraniliprole and cyantraniliprole delivered as seed and in-furrow treatments reduced D. platura damage to the same level as the standard neonicotinoid seed treatment. Both diamides applied via all three methods significantly reduced O. nubilalis damage, but only the foliar application provided similar control as the standard pyrethroid spray. Results from laboratory bioassays revealed that both diamides applied as seed and in-furrow treatments caused high O. nubilalis neonate mortality up to 44 d after application. While the diamides provided equivalent control of these pests as the neonicotinoid and pyrethroid standards when applied in the same manner, chlorantraniliprole delivered as a seed treatment showed the most promise for managing both pests. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Electrochemical supercapacitors

    DOEpatents

    Rudge, Andrew J.; Ferraris, John P.; Gottesfeld, Shimshon

    1996-01-01

    A new class of electrochemical capacitors provides in its charged state a positive electrode including an active material of a p-doped material and a negative electrode including an active material of an n-doped conducting polymer, where the p-doped and n-doped materials are separated by an electrolyte. In a preferred embodiment, the positive and negative electrode active materials are selected from conducting polymers consisting of polythiophene, polymers having an aryl group attached in the 3-position, polymers having aryl and alkyl groups independently attached in the 3- and 4-positions, and polymers synthesized from bridged dimers having polythiophene as the backbone. A preferred electrolyte is a tetraalykyl ammonium salt, such as tetramethylammonium trifluoromethane sulphonate (TMATFMS), that provides small ions that are mobile through the active material, is soluble in acetonitrile, and can be used in a variety of capacitor configurations.

  2. Docking and 3-D QSAR studies on indolyl aryl sulfones. Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active N-(2-hydroxyethyl)carboxamide and N-(2-hydroxyethyl)carbohydrazide derivatives.

    PubMed

    Ragno, Rino; Artico, Marino; De Martino, Gabriella; La Regina, Giuseppe; Coluccia, Antonio; Di Pasquali, Alessandra; Silvestri, Romano

    2005-01-13

    Three-dimensional quantitative structure-activity relationship (3-D QSAR) studies and docking simulations were developed on indolyl aryl sulfones (IASs), a class of novel HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (Silvestri, et al. J. Med. Chem. 2003, 46, 2482-2493) highly active against wild type and some clinically relevant resistant strains (Y181C, the double mutant K103N-Y181C, and the K103R-V179D-P225H strain, highly resistant to efavirenz). Predictive 3-D QSAR models using the combination of GRID and GOLPE programs were obtained using a receptor-based alignment by means of docking IASs into the non-nucleoside binding site (NNBS) of RT. The derived 3-D QSAR models showed conventional correlation (r(2)) and cross-validated (q(2)) coefficients values ranging from 0.79 to 0.93 and from 0.59 to 0.84, respectively. All described models were validated by an external test set compiled from previously reported pyrryl aryl sulfones (Artico, et al. J. Med. Chem. 1996, 39, 522-530). The most predictive 3-D QSAR model was then used to predict the activity of novel untested IASs. The synthesis of six designed derivatives (prediction set) allowed disclosure of new IASs endowed with high anti-HIV-1 activities.

  3. [Analysis of soil humus and components after 26 years' fertilization by infrared spectroscopy method].

    PubMed

    Zhang, Yu-Lan; Sun, Cai-Xia; Chen, Zhen-Hua; Li, Dong-Po; Liu, Xing-Bin; Chen, Li-Jun; Wu, Zhi-Jie; Du, Jian-Xiong

    2010-05-01

    The infrared spectrum was used to discuss structure change of soil humus and components of chemical groups in soil humic acids (HA) and fulvic acids (FA) isolated from soils in different fertilization treatment after 26 year's fertilization. The result indicated that using the infrared spectroscopy method for the determination of humus, humus fractions (HA and FA) and their structure is feasible. Fertilization affected the structure and content of soil humus and aromatization degree. After 26 years' fertilization, the infrared spectrum shapes with different treatments are similar, but the characteristic peak intensity is obviously different, which reflects the effects of different fertilization treatments on the structure and amounts of soil humus or functional groups. Compared with no fertilization, little molecule saccharides decreased and aryl-groups increased under application of inorganic fertilizer or combined application of organic and chemical fertilizer. The effect was greater in Treatment NPK and M+NPK than in Treatment M1 N and M2 N. Organic and NPK fertilizer increased the development of soil and increased soil quality to a certain extent. Results showed that organic fertilization increased aromatization degree of soil humus and humus fractions distinctly. The authors could estimate soil humus evolvement of different fertilization with infrared spectroscopy.

  4. Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke.

    PubMed

    Gelderblom, Mathias; Melzer, Nico; Schattling, Benjamin; Göb, Eva; Hicking, Gordon; Arunachalam, Priyadharshini; Bittner, Stefan; Ufer, Friederike; Herrmann, Alexander M; Bernreuther, Christian; Glatzel, Markus; Gerloff, Christian; Kleinschnitz, Christoph; Meuth, Sven G; Friese, Manuel A; Magnus, Tim

    2014-11-01

    Brain injury during stroke results in oxidative stress and the release of factors that include extracellular Ca(2+), hydrogen peroxide, adenosine diphosphate ribose, and nicotinic acid adenine dinucleotide phosphate. These alterations of the extracellular milieu change the activity of transient receptor potential melastatin subfamily member 2 (TRPM2), a nonselective cation channel expressed in the central nervous system and the immune system. Our goal was to evaluate the contribution of TRPM2 to the tissue damage after stroke. In accordance with current quality guidelines, we independently characterized Trpm2 in a murine ischemic stroke model in 2 different laboratories. Gene deficiency of Trpm2 resulted in significantly improved neurological outcome and decreased infarct size. Besides an already known moderate neuroprotective effect of Trpm2 deficiency in vitro, ischemic brain invasion by neutrophils and macrophages was particularly reduced in Trpm2-deficient mice. Bone marrow chimeric mice revealed that Trpm2 deficiency in the peripheral immune system is responsible for the protective phenotype. Furthermore, experiments with mixed bone marrow chimeras demonstrated that Trpm2 is essential for the migration of neutrophils and, to a lesser extent, also of macrophages into ischemic hemispheres. Notably, the pharmacological TRPM2 inhibitor, N-(p-amylcinnamoyl)anthranilic acid, was equally protective in the stroke model. Although a neuroprotective effect of TRPM2 in vitro is well known, we can show for the first time that the detrimental role of TRPM2 in stroke primarily depends on its role in activating peripheral immune cells. Targeting TRPM2 systemically represents a promising therapeutic approach for ischemic stroke. © 2014 American Heart Association, Inc.

  5. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  6. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  7. Visible-Light Photocatalytic Decarboxylation of α,β-Unsaturated Carboxylic Acids: Facile Access to Stereoselective Difluoromethylated Styrenes in Batch and Flow

    PubMed Central

    2017-01-01

    The development of synthetic methodologies which provide access to both stereoisomers of α,β-disubstituted olefins is a challenging undertaking. Herein, we describe the development of an operationally simple and stereoselective synthesis of difluoromethylated styrenes via a visible-light photocatalytic decarboxylation strategy using fac-Ir(ppy)3 as the photocatalyst. Meta- and para-substituted cinnamic acids provide the expected E-isomer. In contrast, ortho-substituted cinnamic acids yield selectively the less stable Z-product, whereas the E-isomer can be obtained via continuous-flow processing through accurate control of the reaction time. Furthermore, our protocol is amenable to the decarboxylative difluoromethylation of aryl propiolic acids. PMID:29109904

  8. Palladium-Catalyzed α-Arylation of Aryl Nitromethanes

    PubMed Central

    2015-01-01

    Catalytic conditions for the α-arylation of aryl nitromethanes have been discovered using parallel microscale experimentation, despite two prior reports of the lack of reactivity of these aryl nitromethane precursors. The method efficiently provides a variety of substituted, isolable diaryl nitromethanes. In addition, it is possible to sequentially append two different aryl groups to nitromethane. Mild oxidation conditions were identified to afford the corresponding benzophenones via the Nef reaction, and reduction conditions were optimized to afford several diaryl methylamines. PMID:26584680

  9. Dose- and time-dependent expression of aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) in PCB-, B[a]P-, and TBT-exposed intertidal copepod Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Rhee, Jae-Sung; Hwang, Un-Ki; Seo, Jung Soo; Shin, Kyung-Hoon; Lee, Jae-Seong

    2015-02-01

    The aryl hydrocarbon receptor (AhR) and aryl hydrocarbon nuclear translocator (ARNT) genes from the copepod Tigriopus japonicus (Tj) were cloned to examine their potential functions in the invertebrate putative AhR-CYP signaling pathway. The amino acid sequences encoded by the Tj-AhR and Tj-ARNT genes showed high similarity to homologs of Daphnia and Drosophila, ranging from 68% and 70% similarity for the AhR genes to 56% for the ARNT genes. To determine whether Tj-AhR and Tj-ARNT are modulated by environmental pollutants, transcriptional expression of Tj-AhR and Tj-ARNT was analyzed in response to exposure to five concentrations of polychlorinated biphenyl (PCB 126) (control, 10, 50, 100, 500 μg L(-1)), benzo[a]pyrene (B[a]P) (control, 5, 10, 50, 100 μg L(-1)), and tributyltin (TBT) (control, 1, 5, 10, 20 μg L(-1)) 24h after exposure. A time-course experiment (0, 3, 6, 12, 24h) was performed to analyze mRNA expression patterns after exposure to PCB, B[a]P, and TBT. T. japonicus exhibited dose-dependent and time-dependent upregulation of Tj-AhR and Tj-ARNT in response to pollutant exposure, and the degree of expression was dependent on the pollutant, suggesting that pollutants such as PCB, B[a]P, and TBT modulate expression of Tj-AhR and Tj-ARNT genes in the putative AhR-CYP signaling pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Bis-Aryl Urea Derivatives as Potent and Selective LIM Kinase (Limk) Inhibitors

    PubMed Central

    Yin, Yan; Zheng, Ke; Eid, Nibal; Howard, Shannon; Jeong, Ji-Hak; Yi, Fei; Guo, Jia; Park, Chul M; Bibian, Mathieu; Wu, Weilin; Hernandez, Pamela; Park, HaJeung; Wu, Yuntao; Luo, Jun-Li; LoGrasso, Philip V.; Feng, Yangbo

    2015-01-01

    The discovery/optimization of bis-aryl ureas as Limk inhibitors to obtain high potency and selectivity, and appropriate pharmacokinetic properties through systematic SAR studies is reported. Docking studies supported the observed SAR. Optimized Limk inhibitors had high biochemical potency (IC50 < 25 nM), excellent selectivity against ROCK and JNK kinases (> 400-fold), potent inhibition of cofilin phosphorylation in A7r5,PC-3, and CEM-SS T cells (IC50 < 1 μM), and good in vitro and in vivo pharmacokinetic properties. In the profiling against a panel of 61 kinases, compound 18b at 1 μM inhibited only Limk1 and STK16 with ≥ 80% inhibition. Compounds 18b and 18f were highly efficient in inhibiting cell-invasion/migration in PC-3 cells. In addition, compound 18w was demonstrated to be effective on reducing intraocular pressure (IOP) on rat eyes. Taken together, these data demonstrated that we had developed a novel class of bis-aryl urea derived potent and selective Limk inhibitors. PMID:25621531

  11. The Synthesis of Methyl Salicylate: Amine Diazotization.

    ERIC Educational Resources Information Center

    Zanger, Murray; McKee, James R.

    1988-01-01

    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  12. A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers

    PubMed Central

    Yang, Youdi; Li, Shaopeng; Han, Buxing

    2018-01-01

    Ether bond activation is very interesting because the synthesis of many valuable compounds involves conversion of ethers. Moreover, C–O bond cleavage is also very important for the transformation of biomass, especially lignin, which abundantly contains ether bonds. Developing efficient methods to activate aromatic ether bonds has attracted much attention. However, this is a challenge because of the inertness of aryl ether bonds. We proposed a new route to activate aryl methyl ether bonds and synthesize aryl acetates by carbonylation of aryl methyl ethers. The reaction could proceed over RhCl3 in the presence of LiI and LiBF4, and moderate to high yields of aryl acetates could be obtained from transformation of various aryl methyl ethers with different substituents. It was found that LiBF4 could assist LiI to cleave aryl methyl ether bonds effectively. The reaction mechanism was proposed by a combination of experimental and theoretical studies. PMID:29795781

  13. Synthesis of 6-amino-1,4-dihydropyridines that prevent calcium overload and neuronal death.

    PubMed

    León, Rafael; de Los Ríos, Cristóbal; Marco-Contelles, José; López, Manuela G; García, Antonio G; Villarroya, Mercedes

    2008-03-01

    The synthesis and pharmacology of 6-amino-1,4-dihydropyridines, such as ethyl 6-amino-4-aryl-5-cyano-1,4-dihydro-2-methyl-3-pyridinecarboxylic acids (3-16) and 2-amino-4-aryl-7,7-dimethyl-5-oxo-1,4,5,6,7,8-hexahydro-3-quinolinenitriles (17-21) are described. Compounds 18 and 21, at the concentration of 0.3 microM, proved to be the best blockers of the [Ca(2+)] overload induced by depolarization with high [K(+)] of SH-SY5Y neuroblastoma cells, with values of 63.8% and 50.4%, respectively. Most of the compounds induced a remarkable neuroprotective effect against toxicity caused by high [K(+)]-elicited [Ca(2+)] overload, and against H(2)O(2)-generated free radicals, in SH-SY5Y cells.

  14. Aryl hydrocarbon receptor

    PubMed Central

    Kiss, Elina A.; Vonarbourg, Cedric

    2012-01-01

    Intestinal homeostasis results from a complex mutualism between gut microbiota and host cells. Defining the molecular network regulating such mutualism is currently of increasing interest, as its deregulation is reported to lead to increased susceptibility to infections, chronic inflammatory bowel diseases and cancer. Until now, the focus has been on the mechanism, by which the composition of indigenous microbiota shapes the immune system. In a recent study, we have shown that dietary compounds have also the ability to affect innate immune system. This regulation involves aryl hydrocarbon receptor (AhR), a sensor of plant-derived phytochemicals, which mediates the maintenance of Retinoic acid related orphan receptor γ t-expressing innate lymphoid cells (RORγt+ ILC) in the gut and consequently formation of postnatal lymphoid follicles. Thus, AhR represents the first evidence of a molecular link between diet and immunity at intestinal mucosal surfaces. PMID:22909905

  15. A comparative study of two novel unsymmetrically substituted triazacyclohexanes

    NASA Astrophysics Data System (ADS)

    Lamraoui, Hanane; Messai, Amel; Bilge, Duygu; Bilge, Metin; Bouchemma, Ahcen; Parlak, Cemal

    2017-06-01

    Novel unsymmetrically N-substituted N,N‧-R1N″-R2-1,3,5-triazacyclohexanes (1b and 2b; R1 = p-chlorophenyl or p-methoxyphenyl and R2 = butyl or cyclohexyl) have been synthesized in a good yield from condensation reaction by excess amine. Both triazacyclohexane rings have chair conformation. However, 1b adopts diaxial orientation of aryl groups and an equatorial form of alkyl group whereas 2b prefers an axial orientation of the alkyl group and diequatorial forms of aryl groups. 1b is consolidated by weak C-H⋯π interactions. Intra-molecular C-H⋯O or C-H⋯N hydrogen bonds and C-H⋯π may be effective in the stabilization of 2b. Both compounds have showed moderate antimicrobial activity, but 1b exhibits higher activity than 2b. All experimental results are found in good support to theoretical data. Findings of research may be helpful guide for the medicinal chemists and the field is further open for pharmacokinetics studies.

  16. Rapid Synthesis of Thiophene-Based, Organic Dyes for Dye-Sensitized Solar Cells (DSSCs) by a One-Pot, Four-Component Coupling Approach.

    PubMed

    Matsumura, Keisuke; Yoshizaki, Soichi; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Kaiho, Tatsuo; Fuse, Shinichiro; Tanaka, Hiroshi; Takahashi, Takashi

    2015-06-26

    This one-pot, four-component coupling approach (Suzuki-Miyaura coupling/C-H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene-based organic dyes for dye-sensitized solar cells (DSSCs). Seven thiophene-based, organic dyes of various donor structures with/without the use of a 3,4-ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one-pot, 3-step, 35-61%). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short-circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open-circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n-hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2-5.6%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and NMR Analysis of a Conformationally Controlled β-Turn Mimetic Torsion Balance.

    PubMed

    Lypson, Alyssa B; Wilcox, Craig S

    2017-01-20

    The molecular torsion balance concept was applied to a new conformationally controlled scaffold and synthesized to accurately evaluate pairwise amino acid interactions in an antiparallel β-sheet motif. The scaffold's core design combines (ortho-tolyl)amide and o,o,o'-trisubstituted biphenyl structural units to provide a geometry better-suited for intramolecular hydrogen bonding. Like the dibenzodiazocine hinge of the traditional torsion balance, the (ortho-tolyl)amide unit offers restricted rotation around an N-aryl bond. The resulting two-state folding model is a powerful template for measuring hydrogen bond stability between two competing sequences. The aim of this study was to improve the alignment between the amino acid sequences attached to the upper and lower aromatic rings in order to promote hydrogen bond formation at the correct distance and antiparallel orientation. Bromine substituents were introduced ortho to the upper side chains and compared to a control to test our hypothesis. Hydrogen bond formation has been identified between the NH amide proton of the upper side chain (proton donor) and glycine acetamide of the lower side chain (proton acceptor).

  18. Direct arylation/alkylation/magnesiation of benzyl alcohols in the presence of Grignard reagents via Ni-, Fe-, or Co-catalyzed sp3 C-O bond activation.

    PubMed

    Yu, Da-Gang; Wang, Xin; Zhu, Ru-Yi; Luo, Shuang; Zhang, Xiao-Bo; Wang, Bi-Qin; Wang, Lei; Shi, Zhang-Jie

    2012-09-12

    Direct application of benzyl alcohols (or their magnesium salts) as electrophiles in various reactions with Grignard reagents has been developed via transition metal-catalyzed sp(3) C-O bond activation. Ni complex was found to be an efficient catalyst for the first direct cross coupling of benzyl alcohols with aryl/alkyl Grignard reagents, while Fe, Co, or Ni catalysts could promote the unprecedented conversion of benzyl alcohols to benzyl Grignard reagents in the presence of (n)hexylMgCl. These methods offer straightforward pathways to transform benzyl alcohols into a variety of functionalities.

  19. Approaches to N-Methylwelwitindolinone C Isothiocyanate: Facile Synthesis of the Tetracyclic Core

    PubMed Central

    Heidebrecht, Richard W.; Gulledge, Brian; Martin, Stephen F.

    2010-01-01

    The synthesis of a functionalized, tetracyclic core of N-methylwelwitindolinone C isothiocyanate is reported. The approach features a convergent coupling between an indole iminium ion and a highly functionalized vinylogous silyl ketene acetal followed by an intramolecular palladium-catalyzed cyclization that proceeds via an enolate arylation. PMID:20446675

  20. N-heterocyclic carbene-catalyzed tandem aza-benzoin/Michael reactions: on site reversal of the reactivity of N-Boc imines.

    PubMed

    Wu, Ke-Jia; Li, Gong-Qiang; Li, Yi; Dai, Li-Xin; You, Shu-Li

    2011-01-07

    A tandem NHC-catalyzed aza-benzoin/Michael reaction has been developed as a method to efficiently produce dihydroindenones and pyrrolidinone-containing tricycles. The novel reaction pattern involves tert-butyl aryl(tosyl)methylcarbamates reacting as both electrophile and nucleophile on the same carbon.

Top