Science.gov

Sample records for n-dimensional intrinsically universal

  1. Intrinsic Changes: Energy Saving Behaviour among Resident University Students

    ERIC Educational Resources Information Center

    Black, Rosemary; Davidson, Penny; Retra, Karen

    2010-01-01

    This paper presents the results of a study that explored the effectiveness of three intervention strategies in facilitating energy saving behaviour among resident undergraduate university students. In contrast to a dominant practice of motivating with rewards or competition this study sought to appeal to students' intrinsic motivations. An…

  2. Intrinsic Changes: Energy Saving Behaviour among Resident University Students

    ERIC Educational Resources Information Center

    Black, Rosemary; Davidson, Penny; Retra, Karen

    2010-01-01

    This paper presents the results of a study that explored the effectiveness of three intervention strategies in facilitating energy saving behaviour among resident undergraduate university students. In contrast to a dominant practice of motivating with rewards or competition this study sought to appeal to students' intrinsic motivations. An…

  3. Intrinsic Periodicity of Time and Nonmaximal Entropy of Universe

    NASA Astrophysics Data System (ADS)

    Nielsen, Holger B.; Ninomiya, Masao

    The universe is certainly not yet in a total thermodynamical equilibrium. Thus some law of special initial conditions is needed. A universe or a system imposed to behave periodically will then require "initial conditions." Those initial conditions will not look like the type we already have, which have been suffered the heat death. In other words, the required initial conditions should not have been obtained the maximal entropy — like a random state. The intrinsic periodicity successfully explains why entropy is not maximal but it fails, phenomenologically, in leading to a constant entropy.

  4. The relationship between motivational structure, sense of control, intrinsic motivation and university students' alcohol consumption.

    PubMed

    Shamloo, Zohreh Sepehri; Cox, W Miles

    2010-02-01

    The aim of this study was to determine how sense of control and intrinsic motivation are related to university students' motivational structure and alcohol consumption. Participants were 94 university students who completed the Personal Concerns Inventory, Shapiro Control Inventory, Helplessness Questionnaire, Intrinsic-Extrinsic Aspirations Scale, and Alcohol Use Questionnaire. Results showed that sense of control and intrinsic motivation were positively correlated with adaptive motivation and negatively correlated with alcohol consumption. Mediational analyses indicated that adaptive motivation fully mediated the relationship between sense of control/intrinsic motivation and alcohol consumption.

  5. Large-scale analysis of intrinsic disorder flavors and associated functions in the protein sequence universe.

    PubMed

    Necci, Marco; Piovesan, Damiano; Tosatto, Silvio C E

    2016-12-01

    Intrinsic disorder (ID) in proteins has been extensively described for the last decade; a large-scale classification of ID in proteins is mostly missing. Here, we provide an extensive analysis of ID in the protein universe on the UniProt database derived from sequence-based predictions in MobiDB. Almost half the sequences contain an ID region of at least five residues. About 9% of proteins have a long ID region of over 20 residues which are more abundant in Eukaryotic organisms and most frequently cover less than 20% of the sequence. A small subset of about 67,000 (out of over 80 million) proteins is fully disordered and mostly found in Viruses. Most proteins have only one ID, with short ID evenly distributed along the sequence and long ID overrepresented in the center. The charged residue composition of Das and Pappu was used to classify ID proteins by structural propensities and corresponding functional enrichment. Swollen Coils seem to be used mainly as structural components and in biosynthesis in both Prokaryotes and Eukaryotes. In Bacteria, they are confined in the nucleoid and in Viruses provide DNA binding function. Coils & Hairpins seem to be specialized in ribosome binding and methylation activities. Globules & Tadpoles bind antigens in Eukaryotes but are involved in killing other organisms and cytolysis in Bacteria. The Undefined class is used by Bacteria to bind toxic substances and mediate transport and movement between and within organisms in Viruses. Fully disordered proteins behave similarly, but are enriched for glycine residues and extracellular structures.

  6. The Relation between Mastery Goals and Intrinsic Motivation among University Students: A Longitudinal Study

    ERIC Educational Resources Information Center

    Bieg, Sonja; Reindl, Marion; Dresel, Markus

    2017-01-01

    The present work broadens previous research on students' mastery goals and intrinsic motivation by exploring their reciprocal effects using a longitudinal approach. To this end, a study using four measurement points was conducted during 10 weeks of one semester. The sample comprised 1156 students enrolled in psychology courses at a medium-sized…

  7. Intrinsic predictive factors for ankle sprain in active university students: a prospective study.

    PubMed

    de Noronha, M; França, L C; Haupenthal, A; Nunes, G S

    2013-10-01

    The ankle is the joint most affected among the sports-related injuries. The current study investigated whether certain intrinsic factors could predict ankle sprains in active students. The 125 participants were submitted to a baseline assessment in a single session were then followed-up for 52 weeks regarding the occurrence of sprain. The baseline assessment were performed in both ankles and included the questionnaire Cumberland ankle instability tool - Portuguese, the foot lift test, dorsiflexion range of motion, Star Excursion Balance Test (SEBT), the side recognition task, body mass index, and history of previous sprain. Two groups were used for analysis: one with those who suffered an ankle sprain and the other with those who did not suffer an ankle sprain. After Cox regression analysis, participants with history of previous sprain were twice as likely to suffer subsequent sprains [hazard ratio (HR) 2.21 and 95% confidence interval (CI) 1.07-4.57] and people with better performance on the SEBT in the postero-lateral (PL) direction were less likely to suffer a sprain (HR 0.96 and 95% CI 0.92-0.99). History of previous sprain was the strongest predictive factor and a weak performance on SEBT PL was also considered a predictive factor for ankle sprains. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Testing cosmology from fundamental considerations: Is the Friedmann universe intrinsically flat

    NASA Astrophysics Data System (ADS)

    Mitra, Abhas

    2014-02-01

    Recently Melia and Shevchuk (Mon Not R Astron Soc 419:2579,2012) (MS) have proposed the so-called cosmology where the "Gravitational Horizon" of the universe is equal to the distance travelled by light since "Big Bang". Here we would like to see whether the basic claim is correct or not because MS have not given any cogent derivation for the same. Essentially we will compare the twin expressions for the Einstein energy momentum complex (EMC) of the Friedmann universe obtained by using an appropriate superpotential and also by a direct method. To enable a meaningful comparison of the twin expressions, both are computed by using the same quasi-Cartesian coordinates. We however do not claim that Einstein EMC is superior to many other routes of defining EM of a self-gravitating system. In fact, for static isolated spherical syatems, the idea of a coordinate independent field energy of Lynden-Bell and Katz (Mon Not R Astron Soc 213:21, 1985) might be quite physically significant. Yet, here, we use Einstein EMC because (i) our system is non-static and not isolated one (ii) our primary aim is not find any absolute value of EM, and, finally, (iii) only Einstein pseudo-tensor offers equivalent twin expressions for EM which one can be equated irrespective of any physical significance. Following such comparison of equivalent twin expressions of Einstein energy, we find an exact proof as to why Friedmann universe must be spatially flat even though, mathematically one can conceive of curved spaces in any dimension. Additionally, it follows that, apparently, the scale factor as insisted by proposition. Nonetheless, because of close similarity of this form, , with the (vacuum) Milne metric, and also because of implied unphysical equation of state, cosmology is unlikely to represent the physical universe.

  9. Emotional Creativity as Predictor of Intrinsic Motivation and Academic Engagement in University Students: The Mediating Role of Positive Emotions

    PubMed Central

    Oriol, Xavier; Amutio, Alberto; Mendoza, Michelle; Da Costa, Silvia; Miranda, Rafael

    2016-01-01

    Objective: Emotional creativity (EC) implies experiencing a complex emotional life, which is becoming increasingly necessary in societies that demand innovation and constant changes. This research studies the relation of EC as a dispositional trait with intrinsic motivation (IM) and academic engagement (AE). Methods: A sample of 428 university Chilean students, 36.5% men and 63.5% women, with ages from 18 to 45 years-old (M = 20.37; DT = 2.71). Additionally, the mediating function of class-related positive emotions in this relation is explored. Results: The obtained data indicate that developing high levels of dispositional EC enhances the activation of positive emotions, such as gratitude, love and hope, in the classroom. Furthermore, EC predicts IM and AE of university students by the experience of positive emotions. Conclusion: These results compel us to be aware of the importance that university students can understand the complexity of the emotional processes they undergo. A greater control of these emotions would allow students to maintain higher levels of interest in their studies at the different educational stages and to avoid the risk of school failure. PMID:27610091

  10. Emotional Creativity as Predictor of Intrinsic Motivation and Academic Engagement in University Students: The Mediating Role of Positive Emotions.

    PubMed

    Oriol, Xavier; Amutio, Alberto; Mendoza, Michelle; Da Costa, Silvia; Miranda, Rafael

    2016-01-01

    Emotional creativity (EC) implies experiencing a complex emotional life, which is becoming increasingly necessary in societies that demand innovation and constant changes. This research studies the relation of EC as a dispositional trait with intrinsic motivation (IM) and academic engagement (AE). A sample of 428 university Chilean students, 36.5% men and 63.5% women, with ages from 18 to 45 years-old (M = 20.37; DT = 2.71). Additionally, the mediating function of class-related positive emotions in this relation is explored. The obtained data indicate that developing high levels of dispositional EC enhances the activation of positive emotions, such as gratitude, love and hope, in the classroom. Furthermore, EC predicts IM and AE of university students by the experience of positive emotions. These results compel us to be aware of the importance that university students can understand the complexity of the emotional processes they undergo. A greater control of these emotions would allow students to maintain higher levels of interest in their studies at the different educational stages and to avoid the risk of school failure.

  11. Some properties of n-dimensional triangulations

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1985-01-01

    A number of mathematical results relevant to the problem of constructing a triangulation, i.e., a simplicial tessellation, of the convex hull of an arbitrary finite set of points in n-space are described. The principal results achieved are: (1) a set of n+2 points in n-space may be triangulated in at most 2 different ways; (2) the sphere test defined in this report selects a preferred one of these two triangulations; (3) a set of parameters is defined that permits the characterization and enumeration of all sets of n+2 points in n-space that are significantly different from the point of view of their possible triangulation; (4) the local sphere test induces a global sphere test property for a triangulation; and (5) a triangulation satisfying the global sphere property is dual to the n-dimensional Dirichlet tesselation, i.e., it is a Delaunay triangulation.

  12. NDF: Extensible N-dimensional Data Format Library

    NASA Astrophysics Data System (ADS)

    Warren-Smith, Rodney F.; Berry, David S.; Jenness, Tim; Draper, Peter W.

    2014-11-01

    The Extensible N-Dimensional Data Format (NDF) stores bulk data in the form of N-dimensional arrays of numbers. It is typically used for storing spectra, images and similar datasets with higher dimensionality. The NDF format is based on the Hierarchical Data System (HDS) and is extensible; not only does it provide a comprehensive set of standard ancillary items to describe the data, it can also be extended indefinitely to handle additional user-defined information of any type. The NDF library is used to read and write files in the NDF format. It is distributed with the Starlink software (ascl:1110.012).

  13. Quantum Discord of 2 n -Dimensional Bell-Diagonal States

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Karimi, N.; Amidi, D.; Zahir Olyaei, H.

    2016-03-01

    In this study, using the concept of relative entropy as a distance measure of correlations we investigate the important issue of evaluating quantum correlations such as entanglement, dissonance and classical correlations for 2 n -dimensional Bell-diagonal states. We provide an analytical technique, which describes how we find the closest classical states(CCS) and the closest separable states(CSS) for these states. Then analytical results are obtained for quantum discord of 2 n -dimensional Bell-diagonal states. As illustration, some special cases are examined. Finally, we investigate the additivity relation between the different correlations for the separable generalized Bloch sphere states.

  14. n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator

    SciTech Connect

    2012-09-12

    nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) is a comprehensive well test analysis software package. It provides a user-interface, a well test analysis model and many tools to analyze both field and simulated data. The well test analysis model simulates a single-phase, one-dimensional, radial/non-radial flow regime, with a borehole at the center of the modeled flow system. nSIGHTS solves the radially symmetric n-dimensional forward flow problem using a solver based on a graph-theoretic approach. The results of the forward simulation are pressure, and flow rate, given all the input parameters. The parameter estimation portion of nSIGHTS uses a perturbation-based approach to interpret the best-fit well and reservoir parameters, given an observed dataset of pressure and flow rate.

  15. Nondegenerate superintegrable systems in n-dimensional Euclidean spaces

    SciTech Connect

    Kalnins, E. G.; Kress, J. M. Miller, W.; Pogosyan, G. S.

    2007-03-15

    We analyze the concept of a nondegenerate superintegrable system in n-dimensional Euclidean space. Attached to this idea is the notion that every such system affords a separation of variables in one of the various types of generic elliptical coordinates that are possible in complex Euclidean space. An analysis of how these coordinates are arrived at in terms of their expression in terms of Cartesian coordinates is presented in detail. The use of well-defined limiting processes illustrates just how all these systems can be obtained from the most general nondegenerate superintegrable system in n-dimensional Euclidean space. Two examples help with the understanding of how the general results are obtained.

  16. Methods, apparatuses, and computer-readable media for projectional morphological analysis of N-dimensional signals

    DOEpatents

    Glazoff, Michael V.; Gering, Kevin L.; Garnier, John E.; Rashkeev, Sergey N.; Pyt'ev, Yuri Petrovich

    2016-05-17

    Embodiments discussed herein in the form of methods, systems, and computer-readable media deal with the application of advanced "projectional" morphological algorithms for solving a broad range of problems. In a method of performing projectional morphological analysis, an N-dimensional input signal is supplied. At least one N-dimensional form indicative of at least one feature in the N-dimensional input signal is identified. The N-dimensional input signal is filtered relative to the at least one N-dimensional form and an N-dimensional output signal is generated indicating results of the filtering at least as differences in the N-dimensional input signal relative to the at least one N-dimensional form.

  17. Ambient Metrics for n-Dimensional pp-Waves

    NASA Astrophysics Data System (ADS)

    Leistner, Thomas; Nurowski, Pawel

    2010-06-01

    We provide an explicit formula for the Fefferman-Graham ambient metric of an n-dimensional conformal pp-wave in those cases where it exists. In even dimensions we calculate the obstruction explicitly. Furthermore, we describe all 4-dimensional pp-waves that are Bach-flat, and give a large class of Bach-flat examples which are conformally Cotton-flat, but not conformally Einstein. Finally, as an application, we use the obtained ambient metric to show that even-dimensional pp-waves have vanishing critical Q-curvature.

  18. t-topology on the n-dimensional Minkowski space

    SciTech Connect

    Agrawal, Gunjan; Shrivastava, Sampada

    2009-05-15

    In this paper, a topological study of the n-dimensional Minkowski space, n>1, with t-topology, denoted by M{sup t}, has been carried out. This topology, unlike the usual Euclidean one, is more physically appealing being defined by means of the Lorentzian metric. It shares many topological properties with similar candidate topologies and it has the advantage of being first countable. Compact sets of M{sup t} and continuous maps into M{sup t} are studied using the notion of Zeno sequences besides characterizing those sets that have the same subspace topologies induced from the Euclidean and t-topologies on n-dimensional Minkowski space. A necessary and sufficient condition for a compact set in the Euclidean n-space to be compact in M{sup t} is obtained, thereby proving that the n-cube, n>1, as a subspace of M{sup t}, is not compact, while a segment on a timelike line is compact in M{sup t}. This study leads to the nonsimply connectedness of M{sup t}, for n=2. Further, Minkowski space with s-topology has also been dealt with.

  19. Secure N-dimensional simultaneous dense coding and applications

    NASA Astrophysics Data System (ADS)

    Situ, H.; Qiu, D.; Mateus, P.; Paunković, N.

    2015-12-01

    Simultaneous dense coding (SDC) guarantees that Bob and Charlie simultaneously receive their respective information from Alice in their respective processes of dense coding. The idea is to use the so-called locking operation to “lock” the entanglement channels, thus requiring a joint unlocking operation by Bob and Charlie in order to simultaneously obtain the information sent by Alice. We present some new results on SDC: (1) We propose three SDC protocols, which use different N-dimensional entanglement (Bell state, W state and GHZ state). (2) Besides the quantum Fourier transform, two new locking operators are introduced (the double controlled-NOT operator and the SWAP operator). (3) In the case that spatially distant Bob and Charlie have to finalize the protocol by implementing the unlocking operation through communication, we improve our protocol’s fairness, with respect to Bob and Charlie, by implementing the unlocking operation in series of steps. (4) We improve the security of SDC against the intercept-resend attack. (5) We show that SDC can be used to implement a fair contract signing protocol. (6) We also show that the N-dimensional quantum Fourier transform can act as the locking operator in simultaneous teleportation of N-level quantum systems.

  20. SEnD NMR: Sensitivity Enhanced n-Dimensional NMR

    NASA Astrophysics Data System (ADS)

    Gledhill, John M.; Wand, A. Joshua

    2010-02-01

    Sparse sampling offers tremendous potential for overcoming the time limitations imposed by traditional Cartesian sampling of indirectly detected dimensions of multidimensional NMR data. However, in many instances sensitivity rather than time remains of foremost importance when collecting data on protein samples. Here we explore how to optimize the collection of radial sampled multidimensional NMR data to achieve maximal signal-to-noise. A method is presented that exploits a rigorous definition of the minimal set of radial sampling angles required to resolve all peaks of interest in combination with a fundamental statistical property of radial sampled data. The approach appears general and can achieve a substantial sensitivity advantage over Cartesian sampling for the same total data acquisition time. Termed Sensitivity Enhanced n-Dimensional or SEnD NMR, the method involves three basic steps. First, data collection is optimized using routines to determine a minimal set of radial sampling angles required to resolve frequencies in the radially sampled chemical shift evolution dimensions. Second, appropriate combinations of experimental parameters (transients and increments) are defined by simple statistical considerations in order to optimize signal-to-noise in single angle frequency domain spectra. Finally, the data is processed with a direct multidimensional Fourier transform and a statistical artifact and noise removal step is employed.

  1. N-dimensional hypervolumes to study stability of complex ecosystems

    PubMed Central

    Barros, Ceres; Thuiller, Wilfried; Georges, Damien; Boulangeat, Isabelle; Münkemüller, Tamara

    2016-01-01

    Although our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional hypervolumes to define ecosystem states and assess how much they shift after environmental changes have occurred. We demonstrate the value of this framework with a study case on the effects of environmental change on Alpine ecosystems. Our results highlight the importance of a multidimensional approach when studying ecosystem stability and show that our framework is flexible enough to be applied to different types of ecosystem components, which can have important implications for the study of ecosystem stability and transient dynamics. PMID:27282314

  2. N-dimensional hypervolumes to study stability of complex ecosystems.

    PubMed

    Barros, Ceres; Thuiller, Wilfried; Georges, Damien; Boulangeat, Isabelle; Münkemüller, Tamara

    2016-07-01

    Although our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional hypervolumes to define ecosystem states and assess how much they shift after environmental changes have occurred. We demonstrate the value of this framework with a study case on the effects of environmental change on Alpine ecosystems. Our results highlight the importance of a multidimensional approach when studying ecosystem stability and show that our framework is flexible enough to be applied to different types of ecosystem components, which can have important implications for the study of ecosystem stability and transient dynamics.

  3. A Proposed Framework to Understand the Intrinsic Motivation Factors on University Students' Behavioral Intention to Use a Mobile Application for Learning

    ERIC Educational Resources Information Center

    Shroff, Ronnie H.; Keyes, Christopher J.

    2017-01-01

    Aim/Purpose: By integrating a motivational perspective into the Technology Acceptance Model, the goal of this study is to empirically test the causal relationship of intrinsic motivational factors on students' behavioral intention to use (BIU) a mobile application for learning. Background: Although the Technology Acceptance Model is a significant…

  4. A maximally superintegrable deformation of the N-dimensional quantum Kepler-Coulomb system

    NASA Astrophysics Data System (ADS)

    Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O.; Riglioni, D.

    2013-11-01

    The N-dimensional quantum Hamiltonian is shown to be exactly solvable for any real positive value of the parameter η. Algebraically, this Hamiltonian system can be regarded as a new maximally superintegrable η-deformation of the N-dimensional Kepler-Coulomb Hamiltonian while, from a geometric viewpoint, this superintegrable Hamiltonian can be interpreted as a system on an N-dimensional Riemannian space with nonconstant curvature. The eigenvalues and eigenfunctions of the model are explicitly obtained, and the spectrum presents a hydrogen-like shape for positive values of the deformation parameter η and of the coupling constant k.

  5. Intrinsic Motivation in Physical Education

    ERIC Educational Resources Information Center

    Davies, Benjamin; Nambiar, Nathan; Hemphill, Caroline; Devietti, Elizabeth; Massengale, Alexandra; McCredie, Patrick

    2015-01-01

    This article describes ways in which educators can use Harter's perceived competence motivation theory, the achievement goal theory, and self-determination theory to develop students' intrinsic motivation to maintain physical fitness, as demonstrated by the Sound Body Sound Mind curriculum and proven effective by the 2013 University of…

  6. Intrinsic Motivation in Physical Education

    ERIC Educational Resources Information Center

    Davies, Benjamin; Nambiar, Nathan; Hemphill, Caroline; Devietti, Elizabeth; Massengale, Alexandra; McCredie, Patrick

    2015-01-01

    This article describes ways in which educators can use Harter's perceived competence motivation theory, the achievement goal theory, and self-determination theory to develop students' intrinsic motivation to maintain physical fitness, as demonstrated by the Sound Body Sound Mind curriculum and proven effective by the 2013 University of…

  7. Critical probability of percolation over bounded region in N-dimensional Euclidean space

    NASA Astrophysics Data System (ADS)

    Roubin, Emmanuel; Colliat, Jean-Baptiste

    2016-03-01

    Following Tomita and Murakami (Research of Pattern Formation ed R Takaki (Tokyo: KTK Scientific Publishers) pp 197-203) we propose an analytical model to predict the critical probability of percolation. It is based on the excursion set theory which allows us to consider N-dimensional bounded regions. Details are given for the three-dimensional (3D) case and statistically representative volume elements are calculated. Finally, generalisation to the N-dimensional case is made.

  8. N-dimensional alternate coined quantum walks from a dispersion-relation perspective

    NASA Astrophysics Data System (ADS)

    Roldán, Eugenio; Di Franco, Carlo; Silva, Fernando; de Valcárcel, Germán J.

    2013-02-01

    We suggest an alternative definition of N-dimensional coined quantum walk by generalizing a recent proposal [Di Franco , Phys. Rev. Lett.0031-9007PRLTAO10.1103/PhysRevLett.106.080502 106, 080502 (2011)]. This N-dimensional alternate quantum walk, AQW(N), in contrast with the standard definition of the N-dimensional quantum walk, QW(N), requires only a coin qubit. We discuss the quantum diffusion properties of AQW(2) and AQW(3) by analyzing their dispersion relations that reveal, in particular, the existence of diabolical points. This allows us to highlight interesting similarities with other well-known physical phenomena. We also demonstrate that AQW(3) generates considerable genuine multipartite entanglement. Finally, we discuss the implementability of AQW(N).

  9. What Does it Mean to be a Christian? Exploring the Religious Identity of Intrinsically and Extrinsically Religious Black Seventh-Day Adventist University Students

    ERIC Educational Resources Information Center

    Ramirez, Octavio; Ashley, George; Cort, Malcolm

    2014-01-01

    This study explored the religious identity of Black Seventh-day Adventist University students and the elements that helped form their religious identity. The unidirectional, bidirectional and channeling models of socialization was used to describe the formation of religious identity. The data were collected in two stages. At the first stage, a…

  10. What Does it Mean to be a Christian? Exploring the Religious Identity of Intrinsically and Extrinsically Religious Black Seventh-Day Adventist University Students

    ERIC Educational Resources Information Center

    Ramirez, Octavio; Ashley, George; Cort, Malcolm

    2014-01-01

    This study explored the religious identity of Black Seventh-day Adventist University students and the elements that helped form their religious identity. The unidirectional, bidirectional and channeling models of socialization was used to describe the formation of religious identity. The data were collected in two stages. At the first stage, a…

  11. Blowup phenomena for the \\varvec{N}-dimensional compressible Euler equations with damping

    NASA Astrophysics Data System (ADS)

    Cheung, Ka Luen

    2017-02-01

    In this paper, we extend the finite propagation speed property for the compressible Euler equations with damping from the three-dimensional case to the general N-dimensional case. Subsequently, blowup results of the N-dimensional compressible Euler equations with damping are obtained. More precisely, we show that if the initial data int limits _0^∞f(r)V(0,r) {d}r are sufficiently large, then blowup phenomena occurs and the finite blowup time can be estimated, where f is a general test function with mild conditions and V represents the speed of the fluid in radial symmetry.

  12. NDF -- Routines for Accessing the Extensible N-Dimensional Data Format

    NASA Astrophysics Data System (ADS)

    Warren-Smith, R. F.; Berry, D. S.

    The Extensible N-Dimensional Data Format (NDF) is a format for storing bulk data in the form of N-dimensional arrays of numbers. It is typically used for storing spectra, images and similar datasets with higher dimensionality. The NDF format is based on the Hierarchical Data System (HDS) (SUN/92) and is extensible; not only does it provide a comprehensive set of standard ancillary items to describe the data, it can also be extended indefinitely to handle additional user-defined information of any type. This document describes the routines provided for accessing NDF data objects. It also discusses all the important NDF concepts and includes a selection of simple example applications.

  13. A non-linear piezoelectric actuator calibration using N-dimensional Lissajous figure

    NASA Astrophysics Data System (ADS)

    Albertazzi, A.; Viotti, M. R.; Veiga, C. L. N.; Fantin, A. V.

    2016-08-01

    Piezoelectric translators (PZTs) are very often used as phase shifters in interferometry. However, they typically present a non-linear behavior and strong hysteresis. The use of an additional resistive or capacitive sensor make possible to linearize the response of the PZT by feedback control. This approach works well, but makes the device more complex and expensive. A less expensive approach uses a non-linear calibration. In this paper, the authors used data from at least five interferograms to form N-dimensional Lissajous figures to establish the actual relationship between the applied voltages and the resulting phase shifts [1]. N-dimensional Lissajous figures are formed when N sinusoidal signals are combined in an N-dimensional space, where one signal is assigned to each axis. It can be verified that the resulting Ndimensional ellipsis lays in a 2D plane. By fitting an ellipsis equation to the resulting 2D ellipsis it is possible to accurately compute the resulting phase value for each interferogram. In this paper, the relationship between the resulting phase shift and the applied voltage is simultaneously established for a set of 12 increments by a fourth degree polynomial. The results in speckle interferometry show that, after two or three interactions, the calibration error is usually smaller than 1°.

  14. Intrinsic Nilpotent Approximation.

    DTIC Science & Technology

    1985-06-01

    RD-A1II58 265 INTRINSIC NILPOTENT APPROXIMATION(U) MASSACHUSETTS INST 1/2 OF TECH CAMBRIDGE LAB FOR INFORMATION AND, DECISION UMCLRSSI SYSTEMS C...TYPE OF REPORT & PERIOD COVERED Intrinsic Nilpotent Approximation Technical Report 6. PERFORMING ORG. REPORT NUMBER LIDS-R-1482 7. AUTHOR(.) S...certain infinite-dimensional filtered Lie algebras L by (finite-dimensional) graded nilpotent Lie algebras or g . where x E M, (x,,Z) E T*M/O. It

  15. INTRINSIC BISPECTRA OF COSMIC MAGNETIC FIELDS

    SciTech Connect

    Brown, Iain A.

    2011-06-01

    Forthcoming data sets from the Planck experiment and others are in a position to probe the cosmic microwave background (CMB) non-Gaussianity with higher accuracy than has yet been possible, and potentially open a new window into the physics of the very early universe. However, a signal need not necessarily be inflationary in origin, and possible contaminants should be examined in detail. One such is provided by early universe magnetic fields, which can be produced by a variety of models including during an inflationary phase, at phase transitions, or seeded by cosmic defects. Should such fields have been extant in the early universe, they would provide a natural source of CMB non-Gaussianity. Knowledge of the CMB angular bispectrum requires the complete Fourier-space (or 'intrinsic') bispectrum. In this paper, I consider in detail the intrinsic bispectra of an early-universe magnetic field for a range of power-law magnetic spectra.

  16. Possibilities of identifying cyber attack in noisy space of n-dimensional abstract system

    NASA Astrophysics Data System (ADS)

    Jašek, Roman; Dvořák, Jiří; Janková, Martina; Sedláček, Michal

    2016-06-01

    This article briefly mentions some selected options of current concept for identifying cyber attacks from the perspective of the new cyberspace of real system. In the cyberspace, there is defined n-dimensional abstract system containing elements of the spatial arrangement of partial system elements such as micro-environment of cyber systems surrounded by other suitably arranged corresponding noise space. This space is also gradually supplemented by a new image of dynamic processes in a discreet environment, and corresponding again to n-dimensional expression of time space defining existence and also the prediction for expected cyber attacksin the noise space. Noises are seen here as useful and necessary for modern information and communication technologies (e.g. in processes of applied cryptography in ICT) and then the so-called useless noises designed for initial (necessary) filtering of this highly aggressive environment and in future expectedly offensive background in cyber war (e.g. the destruction of unmanned means of an electromagnetic pulse, or for destruction of new safety barriers created on principles of electrostatic field or on other principles of modern physics, etc.). The key to these new options is the expression of abstract systems based on the models of microelements of cyber systems and their hierarchical concept in structure of n-dimensional system in given cyberspace. The aim of this article is to highlight the possible systemic expression of cyberspace of abstract system and possible identification in time-spatial expression of real environment (on microelements of cyber systems and their surroundings with noise characteristics and time dimension in dynamic of microelements' own time and externaltime defined by real environment). The article was based on a partial task of faculty specific research.

  17. Possibilities of identifying cyber attack in noisy space of n-dimensional abstract system

    SciTech Connect

    Jašek, Roman; Dvořák, Jiří; Janková, Martina; Sedláček, Michal

    2016-06-08

    This article briefly mentions some selected options of current concept for identifying cyber attacks from the perspective of the new cyberspace of real system. In the cyberspace, there is defined n-dimensional abstract system containing elements of the spatial arrangement of partial system elements such as micro-environment of cyber systems surrounded by other suitably arranged corresponding noise space. This space is also gradually supplemented by a new image of dynamic processes in a discreet environment, and corresponding again to n-dimensional expression of time space defining existence and also the prediction for expected cyber attacksin the noise space. Noises are seen here as useful and necessary for modern information and communication technologies (e.g. in processes of applied cryptography in ICT) and then the so-called useless noises designed for initial (necessary) filtering of this highly aggressive environment and in future expectedly offensive background in cyber war (e.g. the destruction of unmanned means of an electromagnetic pulse, or for destruction of new safety barriers created on principles of electrostatic field or on other principles of modern physics, etc.). The key to these new options is the expression of abstract systems based on the models of microelements of cyber systems and their hierarchical concept in structure of n-dimensional system in given cyberspace. The aim of this article is to highlight the possible systemic expression of cyberspace of abstract system and possible identification in time-spatial expression of real environment (on microelements of cyber systems and their surroundings with noise characteristics and time dimension in dynamic of microelements’ own time and externaltime defined by real environment). The article was based on a partial task of faculty specific research.

  18. Quantum geometrodynamics with intrinsic time development

    NASA Astrophysics Data System (ADS)

    Soo, Chopin

    2016-07-01

    Quantum geometrodynamics with intrinsic time development is presented. Paradigm shift from full spacetime covariance to spatial diffeomorphism invariance yields a nonvanishing Hamiltonian, a resolution of the ‘problem of time’ and gauge-invariant temporal ordering in an ever expanding universe. Einstein’s general relativity is a particular realization of a wider class of theories; and the framework prompts natural extensions and improvements with the consequent dominance of Cotton-York potential at early times when the universe was small.

  19. Genetic Algorithm for Optimization: Preprocessing with n Dimensional Bisection and Error Estimation

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam Ali

    2006-01-01

    A knowledge of the appropriate values of the parameters of a genetic algorithm (GA) such as the population size, the shrunk search space containing the solution, crossover and mutation probabilities is not available a priori for a general optimization problem. Recommended here is a polynomial-time preprocessing scheme that includes an n-dimensional bisection and that determines the foregoing parameters before deciding upon an appropriate GA for all problems of similar nature and type. Such a preprocessing is not only fast but also enables us to get the global optimal solution and its reasonably narrow error bounds with a high degree of confidence.

  20. Learning from 25 years of the extensible N-Dimensional Data Format

    NASA Astrophysics Data System (ADS)

    Jenness, T.; Berry, D. S.; Currie, M. J.; Draper, P. W.; Economou, F.; Gray, N.; McIlwrath, B.; Shortridge, K.; Taylor, M. B.; Wallace, P. T.; Warren-Smith, R. F.

    2015-09-01

    The extensible N-Dimensional Data Format (NDF) was designed and developed in the late 1980s to provide a data model suitable for use in a variety of astronomy data processing applications supported by the UK Starlink Project. Starlink applications were used extensively, primarily in the UK astronomical community, and form the basis of a number of advanced data reduction pipelines today. This paper provides an overview of the historical drivers for the development of NDF and the lessons learned from using a defined hierarchical data model for many years in data reduction software, data pipelines and in data acquisition systems.

  1. Convergence of evolutionary algorithms on the n-dimensional continuous space.

    PubMed

    Agapie, Alexandru; Agapie, Mircea; Rudolph, Gunter; Zbaganu, Gheorghita

    2013-10-01

    Evolutionary algorithms (EAs) are random optimization methods inspired by genetics and natural selection, resembling simulated annealing. We develop a method that can be used to find a meaningful tradeoff between the difficulty of the analysis and the algorithms' efficiency. Since the case of a discrete search space has been studied extensively, we develop a new stochastic model for the continuous n-dimensional case. Our model uses renewal processes to find global convergence conditions. A second goal of the paper is the analytical estimation of the computation time of EA with uniform mutation inside the (hyper)-sphere of volume 1, minimizing a quadratic function.

  2. Intrinsic Patterns of Human Activity

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Ivanov, Plamen Ch.; Chen, Zhi; Hilton, Michael; Stanley, H. Eugene; Shea, Steven

    2003-03-01

    Activity is one of the defining features of life. Control of human activity is complex, being influenced by many factors both extrinsic and intrinsic to the body. The most obvious extrinsic factors that affect activity are the daily schedule of planned events, such as work and recreation, as well as reactions to unforeseen or random events. These extrinsic factors may account for the apparently random fluctuations in human motion observed over short time scales. The most obvious intrinsic factors are the body clocks including the circadian pacemaker that influences our sleep/wake cycle and ultradian oscillators with shorter time scales [2, 3]. These intrinsic rhythms may account for the underlying regularity in average activity level over longer periods of up to 24 h. Here we ask if the known extrinsic and intrinsic factors fully account for all complex features observed in recordings of human activity. To this end, we measure activity over two weeks from forearm motion in subjects undergoing their regular daily routine. Utilizing concepts from statistical physics, we demonstrate that during wakefulness human activity possesses previously unrecognized complex dynamic patterns. These patterns of activity are characterized by robust fractal and nonlinear dynamics including a universal probability distribution and long-range power-law correlations that are stable over a wide range of time scales (from minutes to hours). Surprisingly, we find that these dynamic patterns are unaffected by changes in the average activity level that occur within individual subjects throughout the day and on different days of the week, and between subjects. Moreover, we find that these patterns persist when the same subjects undergo time-isolation laboratory experiments designed to account for the phase of the circadian pacemaker, and control the known extrinsic factors by restricting behaviors and manipulating scheduled events including the sleep/wake cycle. We attribute these newly

  3. Misner-Sharp mass in n-dimensional f(R) gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Hongsheng; Hu, Yapeng; Li, Xin-Zhou

    2014-07-01

    We study the Misner-Sharp mass for the f(R) gravity in an n-dimensional (n≥3) spacetime which permits three-type (n-2)-dimensional maximally symmetric subspace. We obtain the Misner-Sharp mass via two approaches. One is the inverse unified first law method and the other is the conserved charge method, which uses a generalized Kodama vector. In the first approach, we assume the unified first law still holds in n-dimensional f(R) gravity, which requires a quasilocal mass form (we define it as the generalized Misner-Sharp mass). In the second approach, the conserved charge corresponding to the generalized local Kodama vector is the generalized Misner-Sharp mass. The two approaches, which are bridged by a constraint, are equivalent. This constraint determines the existence of a well-defined Misner-Sharp mass. In an important special case, we present the explicit form for the static space, and we calculate the Misner-Sharp mass for the Clifton-Barrow solution as an example.

  4. Generalized Vaidya solutions and Misner-Sharp mass for n -dimensional massive gravity

    NASA Astrophysics Data System (ADS)

    Hu, Ya-Peng; Wu, Xin-Meng; Zhang, Hongsheng

    2017-04-01

    Dynamical solutions are always of interest to people in gravity theories. We derive a series of generalized Vaidya solutions in the n -dimensional de Rham-Gabadadze-Tolley massive gravity with a singular reference metric. Similar to the case of the Einstein gravity, the generalized Vaidya solution can describe shining/absorbing stars. Moreover, we also find a more general Vaidya-like solution by introducing a more generic matter field than the pure radiation in the original Vaidya spacetime. As a result, the above generalized Vaidya solution is naturally included in this Vaidya-like solution as a special case. We investigate the thermodynamics for this Vaidya-like spacetime by using the unified first law and present the generalized Misner-Sharp mass. Our results show that the generalized Minser-Sharp mass does exist in this spacetime. In addition, the usual Clausius relation δ Q =T d S holds on the apparent horizon, which implicates that the massive gravity is in a thermodynamic equilibrium state. We find that the work density vanishes for the generalized Vaidya solution, while it appears in the more general Vaidya-like solution. Furthermore, the covariant generalized Minser-Sharp mass in the n -dimensional de Rham-Gabadadze-Tolley massive gravity is also derived by taking a general metric ansatz into account.

  5. Palatalization and Intrinsic Prosodic Vowel Features in Russian

    ERIC Educational Resources Information Center

    Ordin, Mikhail

    2011-01-01

    The presented study is aimed at investigating the interaction of palatalization and intrinsic prosodic features of the vowel in CVC (consonant+vowel+consonant) syllables in Russian. The universal nature of intrinsic prosodic vowel features was confirmed with the data from the Russian language. It was found that palatalization of the consonants…

  6. Palatalization and Intrinsic Prosodic Vowel Features in Russian

    ERIC Educational Resources Information Center

    Ordin, Mikhail

    2011-01-01

    The presented study is aimed at investigating the interaction of palatalization and intrinsic prosodic features of the vowel in CVC (consonant+vowel+consonant) syllables in Russian. The universal nature of intrinsic prosodic vowel features was confirmed with the data from the Russian language. It was found that palatalization of the consonants…

  7. Intrinsic contractures of the hand.

    PubMed

    Paksima, Nader; Besh, Basil R

    2012-02-01

    Contractures of the intrinsic muscles of the fingers disrupt the delicate and complex balance of intrinsic and extrinsic muscles, which allows the hand to be so versatile and functional. The loss of muscle function primarily affects the interphalangeal joints but also may affect etacarpophalangeal joints. The resulting clinical picture is often termed, intrinsic contracture or intrinsic-plus hand. Disruption of the balance between intrinsic and extrinsic muscles has many causes and may be secondary to changes within the intrinsic musculature or the tendon unit. This article reviews diagnosis, etiology, and treatment algorithms in the management of intrinsic contractures of the fingers. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Wetting: Intrinsically robust hydrophobicity

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Jiang, Lei

    2013-04-01

    Ceramic surfaces can be rendered hydrophobic by using polymeric modifiers, but these are not robust to harsh environments. A known family of rare-earth oxide ceramics is now found to exhibit intrinsic hydrophobicity, even after exposure to high temperatures and abrasive wear.

  9. Predicting Intrinsic Motivation

    ERIC Educational Resources Information Center

    Martens, Rob; Kirschner, Paul A.

    2004-01-01

    Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the extent to…

  10. Evaluating Intrinsic Goals.

    ERIC Educational Resources Information Center

    Silberman, Harry F.

    1984-01-01

    A social learning model focusing on intrinsic outcomes of vocational programs is proposed. It would assess technical skills and knowledge, communication skills and literacy, and personal skills and attitudes. Instruments should be devised to measure characteristics of the learning setting, learner involved activities, and nature of consequences of…

  11. [Intrinsic cardiac ganglia].

    PubMed

    Birand, Ahmet

    2008-12-01

    Heart has been considered as the source and the seat of emotions, passion and love. But from the dawn of XIXth century, scientists have emphasized that the heart, though life depends on its ceaseless activity, is merely a electromechanical pump, pumping oxygenated blood. Nowadays, we all know that heart pumps blood commensurate with the needs of the body and this unending toil, and its regulation depends on the intrinsic properties of the myocardium, Frank-Starling Law and neurohumoral contribution. It has been understood, though not clearly enough, that these time-tensions may cause structural or functional cardiac impairments and arrhythmias are related to the autonomic nervous system. Less well known and less taken in account in daily cardiology practice is the fact that heart has an intrinsic cardiac nervous system, or "heart brain" consisting of complex ganglia, intrinsic cardiac ganglia containing afferent (receiving), local circuit (interneurons) and efferent (transmitting) sympathetic and parasympathetic neurons. This review enlightens structural and functional aspects of intrinsic cardiac ganglia as the very first step in the regulation of cardiac function. This issue is important for targets of pharmacological treatment and techniques of cardiac surgery interventions as repair of septal defects, valvular interventions and congenital corrections.

  12. Competition and Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Tripathi, Kailas Nath

    1992-01-01

    Reports on a study of competition, motivation, and performance among 60 adolescents in India. Finds that direct competition with another person led to higher levels of immediate performance. Also finds that indirect competition against a pre-set standard resulted in greater intrinsic motivation. (CFR)

  13. Evaluating Intrinsic Goals.

    ERIC Educational Resources Information Center

    Silberman, Harry F.

    1984-01-01

    A social learning model focusing on intrinsic outcomes of vocational programs is proposed. It would assess technical skills and knowledge, communication skills and literacy, and personal skills and attitudes. Instruments should be devised to measure characteristics of the learning setting, learner involved activities, and nature of consequences of…

  14. Palatalization and intrinsic prosodic vowel features in Russian.

    PubMed

    Ordin, Mikhail

    2011-12-01

    The presented study is aimed at investigating the interaction of palatalization and intrinsic prosodic features of the vowel in CVC (consonant+vowel+consonant) syllables in Russian. The universal nature of intrinsic prosodic vowel features was confirmed with the data from the Russian language. It was found that palatalization of the consonants affects intrinsic fundamental frequency (IFO), intensity (I), and duration of the vowels in CVC syllables by modifying the vowel articulatory parameters such as vowel height and fronting. The obtained results are discussed in the light of opposing theories: those suggesting automatic control and those suggesting active control over intrinsic vowel features.

  15. Lattice Boltzmann method for n-dimensional nonlinear hyperbolic conservation laws with the source term.

    PubMed

    Wang, Zhenghua; Shi, Baochang; Xiang, Xiuqiao; Chai, Zhenhua; Lu, Jianhua

    2011-03-01

    It is important for nonlinear hyperbolic conservation laws (NHCL) to own a simulation scheme with high order accuracy, simple computation, and non-oscillatory character. In this paper, a unified and novel lattice Boltzmann model is presented for solving n-dimensional NHCL with the source term. By introducing the high order source term of explicit lattice Boltzmann method (LBM) and the optimum dimensionless relaxation time varied with the specific issues, the effects of space and time resolutions on the accuracy and stability of the model are investigated for the different problems in one to three dimensions. Both the theoretical analysis and numerical simulation validate that the results by the proposed LBM have second-order accuracy in both space and time, which agree well with the analytical solutions.

  16. Bifurcation Analysis in an n-Dimensional Diffusive Competitive Lotka-Volterra System with Time Delay

    NASA Astrophysics Data System (ADS)

    Chang, Xiaoyuan; Wei, Junjie

    2015-06-01

    In this paper, we investigate the stability and Hopf bifurcation of an n-dimensional competitive Lotka-Volterra diffusion system with time delay and homogeneous Dirichlet boundary condition. We first show that there exists a positive nonconstant steady state solution satisfying the given asymptotic expressions and establish the stability of the positive nonconstant steady state solution. Regarding the time delay as a bifurcation parameter, we explore the system that undergoes a Hopf bifurcation near the positive nonconstant steady state solution and derive a calculation method for determining the direction of the Hopf bifurcation. Finally, we cite the stability of a three-dimensional competitive Lotka-Volterra diffusion system with time delay to illustrate our conclusions.

  17. Fractional diffusion equation for an n-dimensional correlated Lévy walk.

    PubMed

    Taylor-King, Jake P; Klages, Rainer; Fedotov, Sergei; Van Gorder, Robert A

    2016-07-01

    Lévy walks define a fundamental concept in random walk theory that allows one to model diffusive spreading faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion equation for an n-dimensional correlated Lévy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short-range auto-correlated Lévy walks in the large time limit, and we solve it. Our derivation discloses different dynamical mechanisms leading to correlated Lévy walk diffusion in terms of quantities that can be measured experimentally.

  18. Entanglement Degradation in the Presence of (4 + n)-DIMENSIONAL Schwarzschild Black Hole

    NASA Astrophysics Data System (ADS)

    Park, Daekil

    2013-04-01

    In this paper, we compute the various bipartite quantum correlations in the presence of the (4 + n)-dimensional Schwarzschild black hole. In particular, we focus on the n-dependence of various bosonic bipartite entanglements. For the case between Alice and Rob, where the former is free falling observer and the latter is at the near-horizon region, the quantum correlation is degraded compared to the case in the absence of the black hole. The degradation rate increases with decreasing n. We also compute the physically inaccessible correlations. It is found that there is no creation of quantum correlation between Alice and AntiRob. For the case between Rob and AntiRob the quantum entanglement is created although they are separated in the causally disconnected regions. It is found that contrary to the physically accessible correlation the entanglement between Rob and AntiRob decreases with increasing n.

  19. Novel design of N-dimensional CAP filters for 10  Gb/s CAP-PON system.

    PubMed

    He, Jiale; Shi, Lu; Deng, Lei; Cheng, Mengfan; Tang, Ming; Fu, Songnian; Zhang, Minming; Shum, Perry Ping; Liu, Deming

    2015-05-15

    We propose a novel method to design N-dimensional carrierless amplitude and phase modulation (CAP) filters. Theoretical analysis and experimental results show that by using the proposed method, the required iteration steps for filters design are significantly decreased, and the orthogonality between CAP filters could be maintained even with lower cutoff frequency compared with the existing methods. Furthermore, we successfully demonstrate a 10 Gb/s 4-dimensional CAP data transmission experiment over 25 km standard single mode fiber. The results show that the proposed N-dimensional CAP filter design method has potential applications in low-cost and high speed CAP-PON systems.

  20. Group-theoretical approach to the construction of bases in 2{sup n}-dimensional Hilbert space

    SciTech Connect

    Garcia, A.; Romero, J. L.; Klimov, A. B.

    2011-06-15

    We propose a systematic procedure to construct all the possible bases with definite factorization structure in 2{sup n}-dimensional Hilbert space and discuss an algorithm for the determination of basis separability. The results are applied for classification of bases for an n-qubit system.

  1. Homogeneous Lotka-Volterra Equation Possessing a Lie Symmetry: Extension to n-Dimensional Equation and Integrability

    NASA Astrophysics Data System (ADS)

    Imai, Kenji

    2014-02-01

    In this paper, a new n-dimensional homogeneous Lotka-Volterra (HLV) equation, which possesses a Lie symmetry, is derived by the extension from a three-dimensional HLV equation. Its integrability is shown from the viewpoint of Lie symmetries. Furthermore, we derive dynamical systems of higher order, which possess the Lie symmetry, using the algebraic structure of this HLV equation.

  2. Intrinsically Disordered Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Chebaro, Yassmine; Ballard, Andrew J.; Chakraborty, Debayan; Wales, David J.

    2015-05-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an -helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.

  3. Intrinsically Disordered Energy Landscapes

    PubMed Central

    Chebaro, Yassmine; Ballard, Andrew J.; Chakraborty, Debayan; Wales, David J.

    2015-01-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an -helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium. PMID:25999294

  4. Computing n-dimensional volumes of complexes: Application to constructive entropy bounds

    SciTech Connect

    Beiu, V.; Makaruk, H.E.

    1997-11-01

    The constructive bounds on the needed number-of-bits (entropy) for solving a dichotomy (i.e., classification of a given data-set into two distinct classes) can be represented by the quotient of two multidimensional solid volumes. Exact methods for the calculation of the volume of the solids lead to a tighter lower bound on the needed number-of-bits--than the ones previously known. Establishing such bounds is very important for engineering applications, as they can improve certain constructive neural learning algorithms, while also reducing the area of future VLSI implementations of neural networks. The paper will present an effective method for the exact calculation of the volume of any n-dimensional complex. The method uses a divide-and-conquer approach by: (i) partitioning (i.e., slicing) a complex into simplices; and (ii) computing the volumes of these simplices. The slicing of any complex into a sum of simplices always exists, but it is not unique. This non-uniqueness gives us the freedom to choose that specific partitioning which is convenient for a particular case. It will be shown that this optimal choice is related to the symmetries of the complex, and can significantly reduce the computations involved.

  5. Out-of-Core Compression and Decompression of Large n-Dimensional Scalar Fields

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J; Szymczak, A

    2003-05-07

    We present a simple method for compressing very large and regularly sampled scalar fields. Our method is particularly attractive when the entire data set does not fit in memory and when the sampling rate is high relative to the feature size of the scalar field in all dimensions. Although we report results for R{sup 3} and R{sup 4} data sets, the proposed approach may be applied to higher dimensions. The method is based on the new Lorenzo predictor, introduced here, which estimates the value of the scalar field at each sample from the values at processed neighbors. The predicted values are exact when the n-dimensional scalar field is an implicit polynomial of degree n-1. Surprisingly, when the residuals (differences between the actual and predicted values) are encoded using arithmetic coding, the proposed method often outperforms wavelet compression in an L{infinity} sense. The proposed approach may be used both for lossy and lossless compression and is well suited for out-of-core compression and decompression, because a trivial implementation, which sweeps through the data set reading it once, requires maintaining only a small buffer in core memory, whose size barely exceeds a single n-1 dimensional slice of the data.

  6. Out-of-core Compression and Decompression of Large n-dimensional Scalar Fields

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J; Szymczak, A

    2003-02-03

    We present a simple method for compressing very large and regularly sampled scalar fields. Our method is particularly attractive when the entire data set does not fit in memory and when the sampling rate is high relative to the feature size of the scalar field in all dimensions. Although we report results for R{sup 3} and R{sup 4} data sets, the proposed approach may be applied to higher dimensions. The method is based on the new Lorenzo predictor, introduced here, which estimates the value of the scalar field at each sample from the values at processed neighbors. The predicted values are exact when the n-dimensional scalar field is an implicit polynomial of degree n-1. Surprisingly, when the residuals (differences between the actual and predicted values) are encoded using arithmetic coding, the proposed method often outperforms wavelet compression in an L{infinity} sense. The proposed approach may be used both for lossy and lossless compression and is well suited for out-of-core compression and decompression, because a trivial implementation, which sweeps through the data set reading it once, requires maintaining only a small buffer in core memory, whose size barely exceeds a single n-1 dimensional slice of the data.

  7. Family of N-dimensional superintegrable systems and quadratic algebra structures

    NASA Astrophysics Data System (ADS)

    Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong

    2016-01-01

    Classical and quantum superintegrable systems have a long history and they possess more integrals of motion than degrees of freedom. They have many attractive properties, wide applications in modern physics and connection to many domains in pure and applied mathematics. We overview two new families of superintegrable Kepler-Coulomb systems with non-central terms and superintegrable Hamiltonians with double singular oscillators of type (n, N — n) in N-dimensional Euclidean space. We present their quadratic and polynomial algebras involving Casimir operators of so(N + 1) Lie algebras that exhibit very interesting decompositions Q(3) ⊕ so(N — 1), Q(3) ⊕ so(n) ⊕ so(N — n) and the cubic Casimir operators. The realization of these algebras in terms of deformed oscillator enables the determination of a finite dimensional unitary representation. We present algebraic derivations of the degenerate energy spectra of these systems and relate them with the physical spectra obtained from the separation of variables.

  8. Spherically symmetric solutions of a (4 + n)-dimensional Einstein Yang Mills model with cosmological constant

    NASA Astrophysics Data System (ADS)

    Brihaye, Yves; Hartmann, Betti

    2005-01-01

    We construct solutions of an Einstein Yang Mills system including a cosmological constant in 4 + n spacetime dimensions, where the n-dimensional manifold associated with the extra dimensions is taken to be Ricci flat. Assuming the matter and metric fields to be independent of the n extra coordinates, a spherical symmetric ansatz for the fields leads to a set of coupled ordinary differential equations. We find that for n > 1 only solutions with either one non-zero Higgs field or with all Higgs fields constant and zero gauge field function (corresponding to a Wu Yang-type ansatz) exist. We give the analytic solutions available in this model. These are 'embedded' Abelian solutions with a diverging size of the manifold associated with the extra n dimensions. Depending on the choice of parameters, these latter solutions either represent naked singularities or they possess a single horizon. We also present solutions of the effective four-dimensional Einstein Yang Mills Higgs-dilaton model, where the higher-dimensional cosmological constant induces a Liouville-type potential. The solutions are non-Abelian solutions with diverging Higgs fields, which exist only up to a maximal value of the cosmological constant.

  9. N-dimensional animal energetic niches clarify behavioural options in a variable marine environment.

    PubMed

    Wilson, Rory P; McMahon, Clive R; Quintana, Flavio; Frere, Esteban; Scolaro, Alejandro; Hays, Graeme C; Bradshaw, Corey J A

    2011-02-15

    Animals respond to environmental variation by exhibiting a number of different behaviours and/or rates of activity, which result in corresponding variation in energy expenditure. Successful animals generally maximize efficiency or rate of energy gain through foraging. Quantification of all features that modulate energy expenditure can theoretically be modelled as an animal energetic niche or power envelope; with total power being represented by the vertical axis and n-dimensional horizontal axes representing extents of processes that affect energy expenditure. Such an energetic niche could be used to assess the energetic consequences of animals adopting particular behaviours under various environmental conditions. This value of this approach was tested by constructing a simple mechanistic energetics model based on data collected from recording devices deployed on 41 free-living Magellanic penguins (Spheniscus magellanicus), foraging from four different colonies in Argentina and consequently catching four different types of prey. Energy expenditure was calculated as a function of total distance swum underwater (horizontal axis 1) and maximum depth reached (horizontal axis 2). The resultant power envelope was invariant, irrespective of colony location, but penguins from the different colonies tended to use different areas of the envelope. The different colony solutions appeared to represent particular behavioural options for exploiting the available prey and demonstrate how penguins respond to environmental circumstance (prey distribution), the energetic consequences that this has for them, and how this affects the balance of energy acquisition through foraging and expenditure strategy.

  10. n-dimensional non uniform rational b-splines for metamodeling

    SciTech Connect

    Turner, Cameron J; Crawford, Richard H

    2008-01-01

    Non Uniform Rational B-splines (NURBs) have unique properties that make them attractive for engineering metamodeling applications. NURBs are known to accurately model many different continuous curve and surface topologies in 1- and 2-variate spaces. However, engineering metamodels of the design space often require hypervariate representations of multidimensional outputs. In essence, design space metamodels are hyperdimensional constructs with a dimensionality determined by their input and output variables. To use NURBs as the basis for a metamodel in a hyperdimensional space, traditional geometric fitting techniques must be adapted to hypervariate and hyperdimensional spaces composed of both continuous and discontinuous variable types. In this paper, they describe the necessary adaptations for the development of a NURBs-based metamodel called a Hyperdimensional Performance Model or HyPerModel. HyPerModels are capable of accurately and reliably modeling nonlinear hyperdimensional objects defined by both continuous and discontinuous variables of a wide variety of topologies, such as those that define typical engineering design spaces. They demonstrate this ability by successfully generating accurate HyPerModels of 10 trial functions laying the foundation for future work with N-dimensional NURBs in design space applications.

  11. N-dimensional switch function for energy conservation in multiprocess reaction dynamics.

    PubMed

    Mogo, César; Brandão, João

    2016-06-15

    The MReaDy program was designed for studying Multiprocess Reactive Dynamic systems, that is, complex chemical systems involving different and concurrent reactions. It builds a global potential energy surface integrating a variety of potential energy surfaces, each one of them representing an elementary reaction expected to play a role in the chemical process. For each elementary reaction, energy continuity problems may happen in the transition between potential energy surfaces due to differences in the functional form for each of the fragments, especially if built by different authors. A N-dimensional switch function is introduced in MReaDy in order to overcome such a problem. As an example, results of a collision trajectory calculation for H2  + OH → H3 O are presented, showing smooth transition in the potential energy, leading to conservation in the total energy. Calculations for a hydrogen combustion system from 1000 K up to 4000 K shows a variation of 0.012% when compared to the total energy of the system. © 2016 Wiley Periodicals, Inc.

  12. N-dimensional non uniform rational B-splines for metamodeling

    SciTech Connect

    Turner, Cameron J; Crawford, Richard H

    2008-01-01

    Non Uniform Rational B-splines (NURBs) have unique properties that make them attractive for engineering metamodeling applications. NURBs are known to accurately model many different continuous curve and surface topologies in 1-and 2-variate spaces. However, engineering metamodels of the design space often require hypervariate representations of multidimensional outputs. In essence, design space metamodels are hyperdimensional constructs with a dimensionality determined by their input and output variables. To use NURBs as the basis for a metamodel in a hyperdimensional space, traditional geometric fitting techniques must be adapted to hypervariate and hyperdimensional spaces composed of both continuous and discontinuous variable types. In this paper, we describe the necessary adaptations for the development of a NURBs-based metamodel called a Hyperdimensional Performance Model or HyPerModel. HyPerModels are capable of accurately and reliably modeling nonlinear hyperdimensional objects defined by both continuous and discontinuous variables of a wide variety of topologies, such as those that define typical engineering design spaces. We demonstrate this ability by successfully generating accurate HyPerModels of 10 trial functions laying the foundation for future work with N-dimensional NURBs in design space applications.

  13. Gaussian Intrinsic Entanglement

    NASA Astrophysics Data System (ADS)

    Mišta, Ladislav; Tatham, Richard

    2016-12-01

    We introduce a cryptographically motivated quantifier of entanglement in bipartite Gaussian systems called Gaussian intrinsic entanglement (GIE). The GIE is defined as the optimized mutual information of a Gaussian distribution of outcomes of measurements on parts of a system, conditioned on the outcomes of a measurement on a purifying subsystem. We show that GIE vanishes only on separable states and exhibits monotonicity under Gaussian local trace-preserving operations and classical communication. In the two-mode case, we compute GIE for all pure states as well as for several important classes of symmetric and asymmetric mixed states. Surprisingly, in all of these cases, GIE is equal to Gaussian Rényi-2 entanglement. As GIE is operationally associated with the secret-key agreement protocol and can be computed for several important classes of states, it offers a compromise between computable and physically meaningful entanglement quantifiers.

  14. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  15. Intrinsic Feature Motion Tracking

    SciTech Connect

    Goddard, Jr., James S.

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over time can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.

  16. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  17. ND2 AV: N-dimensional data analysis and visualization analysis for the National Ignition Campaign

    DOE PAGES

    Bremer, Peer -Timo; Maljovec, Dan; Saha, Avishek; ...

    2015-07-01

    Here, one of the biggest challenges in high-energy physics is to analyze a complex mix of experimental and simulation data to gain new insights into the underlying physics. Currently, this analysis relies primarily on the intuition of trained experts often using nothing more sophisticated than default scatter plots. Many advanced analysis techniques are not easily accessible to scientists and not flexible enough to explore the potentially interesting hypotheses in an intuitive manner. Furthermore, results from individual techniques are often difficult to integrate, leading to a confusing patchwork of analysis snippets too cumbersome for data exploration. This paper presents a case study on how a combination of techniques from statistics, machine learning, topology, and visualization can have a significant impact in the field of inertial confinement fusion. We present themore » $$\\mathrm{ND}^2\\mathrm{AV}$$: N-dimensional data analysis and visualization framework, a user-friendly tool aimed at exploiting the intuition and current workflow of the target users. The system integrates traditional analysis approaches such as dimension reduction and clustering with state-of-the-art techniques such as neighborhood graphs and topological analysis, and custom capabilities such as defining combined metrics on the fly. All components are linked into an interactive environment that enables an intuitive exploration of a wide variety of hypotheses while relating the results to concepts familiar to the users, such as scatter plots. $$\\mathrm{ND}^2\\mathrm{AV}$$ uses a modular design providing easy extensibility and customization for different applications. $$\\mathrm{ND}^2\\mathrm{AV}$$ is being actively used in the National Ignition Campaign and has already led to a number of unexpected discoveries.« less

  18. Quantum collapse of a charged n-dimensional BTZ-like domain wall

    NASA Astrophysics Data System (ADS)

    Greenwood, Eric

    We investigate both the classical and quantum gravitational collapse of a massive, charged, nonrotating n-dimensional Bañados-Teitelboim-Zanelli (BTZ)-like domain wall in AdS space. In the classical picture, we show that, as far as the asymptotic observer is concerned, the details of the collapse depend on the amount of charge present in the domain wall; that is, if the domain wall is extremal, nonextremal or overcharged. In both the extremal and nonextremal cases, the collapse takes an infinite amount of observer time to complete. However, in the over-charged case, the collapse never actually occurs, instead one finds an oscillatory solution which prevents the formation of a naked singularity. As far as the infalling observer is concerned, in the nonextremal case, the collapse is completed within a finite amount of proper time. Thus, the gravitational collapse follows that of the typical formation of a black hole via gravitational collapse. Quantum mechanically, we take the absence of induced quasi-particle production and fluctuations of the metric geometry; that is, we ignore the effect of radiation and back-reaction. For the asymptotic observer, we find that, near the horizon, quantization of the domain wall does not allow the formation of the black hole in a finite amount of observer time. For the infalling observer, we are primarily interested in the quantum mechanical effect as the domain wall approaches the classical singularity. In this region, the main result is that the wave function exhibits nonlocal effects, demonstrated by the fact that the Hamiltonian depends on an infinite number of derivatives that cannot be truncated after a finite number of terms. Furthermore, in the large energy density limit, the wave function vanishes at the classical singularity implying that quantization does not rid the black hole of its singularity.

  19. Qutrit teleportation under intrinsic decoherence

    NASA Astrophysics Data System (ADS)

    Jafarpour, Mojtaba; Naderi, Negar

    2016-08-01

    We study qutrit teleportation and its fidelity in the presence and absence of intrinsic decoherence through a qutrit channel. The channel consists of a Heisenberg chain with xyz interaction model and the intrinsic decoherence is implemented through the Milburn model. It is shown that while the fidelity diminishes due to intrinsic decoherence, it may be enhanced if the channel is initially in an entangled state. It is also observed that, for stronger intrinsic decoherence, the initial entanglement of the channel is more effective in enhancing of fidelity.

  20. Intrinsically mixed states: an appreciation

    NASA Astrophysics Data System (ADS)

    Ruetsche, Laura

    An "intrinsically mixed" state is a mixed state of a system that is (in a sense to be elaborated) 'orthogonal' to every pure state of that system. Although the presence of such states in the quantum theories of infinite systems is well known to those who work with such theories, intrinsically mixed states are virtually unheralded in the philosophical literature. Rob Clifton was thoroughly familiar with intrinsically mixed states. I aim here to introduce them to a wider audience-and to encourage that audience to cultivate their acquaintance by suggesting that intrinsically mixed states undermine assumptions framing standard discussions of the quantum measurement problem.

  1. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  2. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  3. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  4. Intrinsic Friction Microscopy

    NASA Astrophysics Data System (ADS)

    Knorr, Daniel; Overney, Rene

    2008-03-01

    A novel scanning probe methodology based on lateral force microscopy is presented wherein kinetic friction measurements, obtained as a function of velocity for various temperatures, are used to deduce apparent Arrhenius-type activation energies for surface and subsurface molecular mobilities. Depending on the coupling strength (cooperativity) between molecular mobilities involved the dissipation energy can carry a significant entropic energy contribution, accounting for the majority of the apparent Arrhenius activation energy. The intrinsic friction methodology also provides a means of directly separating enthalpic energy contributions from entropic ones by employing absolute rate theory. As such, the degree of cooperativity in the system is readily apparent. This methodology is illustrated with nanoscale tribological experiments on two systems, (1) monodisperse, atactic polystyrene and (2) self assembling molecular glassy chromophores. In polystyrene, dissipation was found to be a discrete function of loading, where the γ-relaxation (phenyl group rotation) was recovered for ultra low loads and the β-relaxation (local backbone translation) for higher loads in the same temperature range, indicating sensitivity to surface and subsurface mobilities. For self assembling glassy chromophores, the degree of intermolecular cooperativity was deduced using the methodology, resulting in an increased understanding of the interactions between self assembling molecules.

  5. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  6. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  7. Intrinsic and extrinsic mortality reunited.

    PubMed

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P; van Bodegom, David; Westendorp, Rudi G J

    2015-07-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic stressors in the causation of aging leads to the recognition that aging is not inevitable, but malleable through the environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The intrinsic resistance of bacteria.

    PubMed

    Gang, Zhang; Jie, Feng

    2016-10-20

    Antibiotic resistance is often considered to be a trait acquired by previously susceptible bacteria, on the basis of which can be attributed to the horizontal acquisition of new genes or the occurrence of spontaneous mutation. In addition to acquired resistance, bacteria have a trait of intrinsic resistance to different classes of antibiotics. An intrinsic resistance gene is involved in intrinsic resistance, and its presence in bacterial strains is independent of previous antibiotic exposure and is not caused by horizontal gene transfer. Recently, interest in intrinsic resistance genes has increased, because these gene products not only may provide attractive therapeutic targets for development of novel drugs that rejuvenate the activity of existing antibiotics, and but also might predict future emergence of resistant pathogens if they become mobilized. In the present review, we summarize the conventional examples of intrinsic resistance, including the impermeability of cellular envelopes, the activity of multidrug efflux pumps or lack of drug targets. We also demonstrate that transferases and enzymes involved in basic bacterial metabolic processes confer intrinsic resistance in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. We present as well information on the cryptic intrinsic resistance genes that do not confer resistance to their native hosts but are capable of conferring resistance when their expression levels are increased and the activation of the cryptic genes. Finally, we discuss that intrinsic genes could be the origin of acquired resistance, especially in the genus Acinetobacter.

  9. Recent progress on intrinsic charm

    NASA Astrophysics Data System (ADS)

    Hobbs, T. J.

    2017-03-01

    Over the past ˜10 years, the topic of the nucleon's nonperturbative or intrinsic charm (IC) content has enjoyed something of a renaissance, largely motivated by theoretical developments involving quark modelers and PDF-fitters. In this talk I will briefly describe the importance of intrinsic charm to various issues in high-energy phenomenology, and survey recent progress in constraining its overall normalization and contribution to the momentum sum rule of the nucleon. I end with the conclusion that progress on the side of calculation has now placed the onus on experiment to unambiguously resolve the proton's intrinsic charm component.

  10. Intrinsic magnetization of antiferromagnetic textures

    NASA Astrophysics Data System (ADS)

    Tveten, Erlend G.; Müller, Tristan; Linder, Jacob; Brataas, Arne

    2016-03-01

    Antiferromagnets (AFMs) exhibit intrinsic magnetization when the order parameter spatially varies. This intrinsic spin is present even at equilibrium and can be interpreted as a twisting of the homogeneous AFM into a state with a finite spin. Because magnetic moments couple directly to external magnetic fields, the intrinsic magnetization can alter the dynamics of antiferromagnetic textures under such influence. Starting from the discrete Heisenberg model, we derive the continuum limit of the free energy of AFMs in the exchange approximation and explicitly rederive that the spatial variation of the antiferromagnetic order parameter is associated with an intrinsic magnetization density. We calculate the magnetization profile of a domain wall and discuss how the intrinsic magnetization reacts to external forces. We show conclusively, both analytically and numerically, that a spatially inhomogeneous magnetic field can move and control the position of domain walls in AFMs. By comparing our model to a commonly used alternative parametrization procedure for the continuum fields, we show that the physical interpretations of these fields depend critically on the choice of parametrization procedure for the discrete-to-continuous transition. This can explain why a significant amount of recent studies of the dynamics of AFMs, including effective models that describe the motion of antiferromagnetic domain walls, have neglected the intrinsic spin of the textured order parameter.

  11. Intrinsic Response of Graphene Vapor Sensors

    NASA Astrophysics Data System (ADS)

    Lu, Ye; Dan, Yaping; Kybert, Nicholas; Johnson, Charlie

    2009-03-01

    Ye Lu^1, Yaping Dan^1, Nicholas J. Kybert^2, A. T. Charlie Johnson^1, ^1University of Pennsylvania, USA ^2 University of Warwick, UK.Graphene is a purely two-dimensional material that has extremely favorable chemical sensor properties. It is known, however, that conventional nanolithographic processing typically leaves a resist residue on the graphene surface, whose impact on the sensor characteristics of the system has not yet been determined. Here we show that the contamination layer both degrades the electronic properties of the graphene and masks graphene's intrinsic sensor responses. The contamination layer chemically dopes the graphene, enhances carrier scattering, and acts as an absorbent layer that concentrates analyte molecules at the graphene surface, thereby enhancing the sensor response. We demonstrate a cleaning process that verifiably removes the contamination on the device structure and allows the intrinsic chemical responses of graphene to be measured. Additionally, methods of functionalizing clean graphene device as high quality chemical vapor sensor are explored. Funding: JSTO DTRA and the Army Research Office Grant #W911NF-06-1-0462, NSF-NSEC/NBIC DMR-0425780, REU program of the Laboratory for Research on the Structure of Matter (N.J.K.).

  12. ON THE GEOMETRY OF MEASURABLE SETS IN N-DIMENSIONAL SPACE ON WHICH GENERALIZED LOCALIZATION HOLDS FOR MULTIPLE FOURIER SERIES OF FUNCTIONS IN L_p, p>1

    NASA Astrophysics Data System (ADS)

    Bloshanskiĭ, I. L.

    1984-02-01

    The precise geometry is found of measurable sets in N-dimensional Euclidean space on which generalized localization almost everywhere holds for multiple Fourier series which are rectangularly summable.Bibliography: 14 titles.

  13. The Impact of Curiosity and External Regulation on Intrinsic Motivation: An Empirical Study in Hong Kong Education

    ERIC Educational Resources Information Center

    Hon-keung, Yau; Man-shan, Kan; Lai-fong, Cheng Alison

    2012-01-01

    The purposes of this paper are to identify: (1) the factors affecting the intrinsic motivation of university students in Hong Kong; and (2) gender differences in the perception of intrinsic motivation in Hong Kong higher education environment. The factors of curiosity and external regulation with intrinsic motivation are taken into investigation…

  14. Existence and global exponential stability of periodic solutions for n-dimensional neutral dynamic equations on time scales.

    PubMed

    Li, Bing; Li, Yongkun; Zhang, Xuemei

    2016-01-01

    In this paper, by using the existence of the exponential dichotomy of linear dynamic equations on time scales and the theory of calculus on time scales, we study the existence and global exponential stability of periodic solutions for a class of n-dimensional neutral dynamic equations on time scales. We also present an example to illustrate the feasibility of our results. The results of this paper are completely new and complementary to the previously known results even in both the case of differential equations (time scale [Formula: see text]) and the case of difference equations (time scale [Formula: see text]).

  15. Intrinsic rotation in tokamaks: theory

    NASA Astrophysics Data System (ADS)

    Parra, Felix I.; Barnes, Michael

    2015-04-01

    Self-consistent equations for intrinsic rotation in tokamaks with small poloidal magnetic field Bp compared to the total magnetic field B are derived. The model gives the momentum redistribution due to turbulence, collisional transport and energy injection. Intrinsic rotation is determined by the balance between the momentum redistribution and the turbulent diffusion and convection. Two different turbulence regimes are considered: turbulence with characteristic perpendicular lengths of the order of the ion gyroradius, ρi, and turbulence with characteristic lengths of the order of the poloidal gyroradius, (B/Bp)ρi. Intrinsic rotation driven by gyroradius scale turbulence is mainly due to the effect of neoclassical corrections and of finite orbit widths on turbulent momentum transport, whereas for the intrinsic rotation driven by poloidal gyroradius scale turbulence, the slow variation of turbulence characteristics in the radial and poloidal directions and the turbulent particle acceleration can be become as important as the neoclassical and finite orbit width effects. The magnetic drift is shown to be indispensable for the intrinsic rotation driven by the slow variation of turbulence characteristics and the turbulent particle acceleration. The equations are written in a form conducive to implementation in a flux tube code, and the effect of the radial variation of the turbulence is included in a novel way that does not require a global gyrokinetic formalism.

  16. Thermodynamic geometry and thermal stability of n -dimensional dilaton black holes in the presence of logarithmic nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.

    2015-12-01

    In this paper, we construct a new class of black hole solutions which is coupled to the logarithmic nonlinear electrodynamics in the context of dilaton gravity. We consider an n -dimensional action in which gravity is coupled to the logarithmic nonlinear electrodynamics field and a scalar dilaton field to obtain the equations of motion of the gravitational, dilaton and electromagnetic fields. This leads to finding a new class of n -dimensional static and spherically symmetric black hole solutions in the presence of two Liouville-type dilaton potentials. The asymptotic behavior of these solutions is neither flat nor (anti-)de Sitter [(A)dS], and in the limiting case where the nonlinear parameter β goes to infinity, our solutions reduce to the black holes of Einstein-Maxwell-dilaton gravity in higher dimensions. Thermodynamic quantities such as mass, temperature, electric potential and entropy are also computed, and it is shown that they agree with the first law of thermodynamics. Furthermore, we find that for small values of the electric charge parameter q , and the dilaton coupling constant α , as well as small dimension n , the solutions are thermally stable. By increasing n , the region of stability stands for smaller values of α independent of q . Finally, we use the method of thermodynamical geometry and find the phase transition points by calculating the Ricci scalar of a thermodynamic metric.

  17. Nondestructive testing of 3D disperse systems with micro- and nano-particles: N-dimensional space of optical parameters

    NASA Astrophysics Data System (ADS)

    Bezrukova, Alexandra G.

    2006-04-01

    The simultaneous analysis of 3D disperse systems (DS) with micro- and nano- particles by refractometry, absorbency, fluorescence and by different types of light scattering, can help to elaborate the sensing elements for specffic impurity control. Our research has investigated by complex of optical methods different 3D DS such as: proteins, nucleoproteids, lipoproteids, liposomes, viruses, virosomes, lipid emulsions, blood substitutes, latexes, liquid crystals, biological cells with various form and size (including bacterial cells), metallic powders, clays, kimberlites, zeolites, oils, crude oils, samples of natural and water-supply waters, etc. This experience suggests that each 3D DS can be charactensed by N-dimensional vector in N-dimensional space of optical parameters. Due to the fusion of various optical data it is possible to solve the inverse physical problem on the presence of impurity in mixtures of 3D DS by information statistical theory methods. It is important that in this case polymodality of particle size distribution is not an obstacle.

  18. Intrinsically irreversible thermoacoustic heat engine

    SciTech Connect

    Wheatley, J.; Hofler, T.; Swift, G.W.; Migliori, A.

    1983-07-01

    Certain thermoacoustic effects are described which form the basis for a heat engine that is intrinsically irreversible in the sense that it requires thermal lags for its operation. After discussing several acoustical heating and cooling effects, including the behavior of a new structure called a ''thermoacoustic couple,'' we discuss structures that can be placed in acoustically resonant tubes to produce both substantial heat pumping effects and, for restricted heat inputs, large temperature differences. The results are analyzed quantitatively using a second-order thermoacoustic theory based on the work of Rott. The qualities of the acoustic engine are generalized to describe a class of intrinsically irreversible heat engines of which the present acoustic engine is a special case. Finally the results of analysis of several idealized intrinsically irreversible engines are presented. These suggest that the efficiency of such engines may be determined primarily by geometry or configuration rather than by temperature.

  19. Ulnar intrinsic anatomy and dysfunction.

    PubMed

    Dell, Paul C; Sforzo, Christopher R

    2005-01-01

    Normal hand function is a balance between the extrinsic and intrinsic musculature. Although individually the intrinsics are small muscles in diameter, collectively they represent a large muscle that contributes approximately 50% of grip strength. Dysfunction of the intrinsics consequently leads to impaired grip and pinch strength as well recognized deformities. Low ulnar nerve palsy preserves ulnar innervated extrinsics resulting in sensory loss, digital clawing, thumb deformity, abduction of the small finger, and asynchronous finger motion. High ulnar nerve palsy is characterized by the above plus paralysis of the ulnar profundi and the flexor carpi ulnaris. Understanding the normal anatomy allows the clinician to identify the site of the lesion and plan appropriate surgical intervention. This article revisits the classic work of Richard J. Smith on ulnar nerve palsy with contemporary perspective.

  20. Perfectionism and life aspirations in intrinsically and extrinsically religious individuals.

    PubMed

    Steffen, Patrick R

    2014-08-01

    Religiosity is related to positive health and life satisfaction but the pathways through which this occurs have not been clearly delineated. The purpose of this study was to examine potential mediators of the relationships between intrinsic and extrinsic religiosity and negative affect and life satisfaction. Perfectionism and life aspirations are two possible pathways through which religious orientation is related to outcome. It was hypothesized that adaptive perfectionism and intrinsic life aspirations would act as mediators between intrinsic religiosity and negative affect and life satisfaction, and that maladaptive perfectionism and extrinsic life aspirations would act as mediators between the extrinsic religiosity and negative affect and life satisfaction. Two consecutive samples of religious college students (N = 540 and N = 485) completed measures of the Age Universal Religious Orientation Index, the Frost Multi-Dimensional Perfectionism Scale, the Aspiration Index, the Beck Depression Inventory-II, the Spielberger State-Trait Anxiety Inventory, and the Satisfaction with Life Scale. Intrinsic religiosity had a direct negative relationship with negative affect and positive relationship with life satisfaction. Contrary to the hypotheses, intrinsic religiosity had its strongest indirect effect via maladaptive perfectionism such that increased intrinsic religiosity was related to decreased maladaptive perfectionism which in turn lead to better negative affect and life satisfaction. Extrinsic religiosity was related to increased maladaptive perfectionism and thereby indirectly contributed to worse negative affect and life satisfaction. Interestingly, when the effects of maladaptive perfectionism were controlled, the direct effects of extrinsic religiosity were related to reduced negative affect and increased life satisfaction. Overall, the strongest mediator in this study of both intrinsic and extrinsic religiosity was maladaptive perfectionism, with intrinsic

  1. Individual Patterns in Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Hom, Harry L., Jr.; Maxwell, Frederick R.

    The effects of extrinsic reward on students' intrinsic interest was investigated using a single-subject design in a behavior disorders classroom. Baseline measures of the interest level of five children (ages 9-11 years) were collected for academic and non-academic tasks. Assessment was then made of each subject's response hierarchy or level of…

  2. Intrinsic Rewards in School Crime.

    ERIC Educational Resources Information Center

    Csikszentmihalyi, Mihaly; Larson, Reed

    One of 52 theoretical papers on school crime and its relation to poverty, this chapter deals with the intrinsic motivation that the systemic structure of a school provides for opportunities for both prosocial and antisocial behavior. On the basis of previous research, the authors propose that the state of enjoyment occurs when a person is…

  3. Stimuli-sensitive intrinsically disordered protein brushes

    NASA Astrophysics Data System (ADS)

    Srinivasan, Nithya; Bhagawati, Maniraj; Ananthanarayanan, Badriprasad; Kumar, Sanjay

    2014-10-01

    Grafting polymers onto surfaces at high density to yield polymer brush coatings is a widely employed strategy to reduce biofouling and interfacial friction. These brushes almost universally feature synthetic polymers, which are often heterogeneous and do not readily allow incorporation of chemical functionalities at precise sites along the constituent chains. To complement these synthetic systems, we introduce a biomimetic, recombinant intrinsically disordered protein that can assemble into an environment-sensitive brush. This macromolecule adopts an extended conformation and can be grafted to solid supports to form oriented protein brushes that swell and collapse dramatically with changes in solution pH and ionic strength. We illustrate the value of sequence specificity by using proteases with mutually orthogonal recognition sites to modulate brush height in situ to predictable values. This study demonstrates that stimuli-responsive brushes can be fabricated from proteins and introduces them as a new class of smart biomaterial building blocks.

  4. Intrinsic randomness and intrinsic irreversibility in classical dynamical systems

    PubMed Central

    Courbage, M.; Prigogine, I.

    1983-01-01

    We continue our previous work on dynamic “intrinsically random” systems for which we can derive dissipative Markov processes through a one-to-one change of representation. For these systems, the unitary group of evolution can be transformed in this way into two distinct Markov processes leading to equilibrium for either t→ + ∞ or t→ - ∞. To lift the degeneracy, we first formulate the second principle as a selection rule that is meaningful in intrinsically random systems. For these systems, this excludes a set of unrealizable states. As a result of this exclusion, permitted initial conditions correspond to a set of states that is not invariant through velocity inversion. In this way, the time-reversal symmetry of dynamics is broken and these systems acquire a new feature we may call “intrinsic irreversibility.” The set of admitted initial conditions can be characterized by an entropy displaying the amount of information necessary for their preparation. The initial conditions selected by the second law correspond to a finite amount of information, while the initial conditions that are rejected correspond to an infinite amount of information and are therefore “impossible.” We believe that our formulation permits a microscopic formulation of the second law of thermodynamics for well-defined classes of dynamical systems. PMID:16578774

  5. Quasar redshifts: the intrinsic component

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2016-09-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  6. The alphabet of intrinsic disorder

    PubMed Central

    Uversky, Vladimir N

    2013-01-01

    The ability of a protein to fold into unique functional state or to stay intrinsically disordered is encoded in its amino acid sequence. Both ordered and intrinsically disordered proteins (IDPs) are natural polypeptides that use the same arsenal of 20 proteinogenic amino acid residues as their major building blocks. The exceptional structural plasticity of IDPs, their capability to exist as heterogeneous structural ensembles and their wide array of important disorder-based biological functions that complements functional repertoire of ordered proteins are all rooted within the peculiar differential usage of these building blocks by ordered proteins and IDPs. In fact, some residues (so-called disorder-promoting residues) are noticeably more common in IDPs than in sequences of ordered proteins, which, in their turn, are enriched in several order-promoting residues. Furthermore, residues can be arranged according to their “disorder promoting potencies,” which are evaluated based on the relative abundances of various amino acids in ordered and disordered proteins. This review continues a series of publications on the roles of different amino acids in defining the phenomenon of protein intrinsic disorder and concerns glutamic acid, which is the second most disorder-promoting residue. PMID:28516010

  7. On Not Using Intrinsic Justification in Debate.

    ERIC Educational Resources Information Center

    Hill, Bill; Leeman, Richard W.

    1990-01-01

    Questions the theoretical justification for the standard of intrinsic justification. Challenges the applicability of phenomenological constructs to academic debate, demonstrates that "essences" cannot be readily located in debate resolutions, and illustrates that proponents of intrinsic justification have not adequately operationalized…

  8. Nuclear Filtering of Intrinsic Charm

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-11-12

    Nuclei are transparent for a heavy intrinsic charm (IC) component of the beam hadrons, what leads to an enhanced nuclear dependence of open charm production at large Feynman x{sub F}. Indeed, such an effect is supported by data from the SELEX experiment published recently [1]. Our calculations reproduce well the data, providing strong support for the presence of IC in hadrons in amount less than 1%. Moreover, we performed an analysis of nuclear effects in J/{Psi} production and found at large x{sub F} a similar, albeit weaker effect, which does not contradict data.

  9. Equivalent intrinsic blur in amblyopia.

    PubMed

    Levi, D M; Klein, S A

    1990-01-01

    We used Gaussian blurred stimuli to explore the effect of blur on three tasks: (i) 2-line resolution; (ii) line detection; and (iii) spatial interval discrimination, in observers with amblyopia due to anisometropia, strabismus, or both. The results of our experiments can be summarized as follows. (i) 2-Line resolution: in normal foveal vision, thresholds for unblurred stimuli are approx. 0.5 min arc in the fovea. When the standard deviation (sigma) of the stimulus blur is less than 0.5 min, it has little effect upon 2-line resolution; however, thresholds are degraded when the stimulus blur, sigma, exceeds 0.5 min. We operationally define this transition point, as the equivalent intrinsic blur, or Bi. When the stimulus blur, sigma, is greater than Bi, then the resolution threshold is approximately equal to sigma. In all of the amblyopic eyes, 2-line resolution thresholds for unblurred stimuli were elevated, and the equivalent intrinsic blur was much larger. When the stimulus blur exceeds the equivalent intrinsic blur, resolution thresholds were similar in amblyopic and nonamblyopic eyes. (ii) Line detection: in both normal and amblyopic eyes, when the stimulus blur, sigma, is less than Bi, then the line detection threshold is approximately inversely proportional to sigma; i.e. (it obeys Ricco's law). When sigma is greater than Bi, the equivalent intrinsic blur, then the detection threshold is approximately a fixed contrast. All of the amblyopic eyes showed markedly elevated thresholds for detecting thin lines, but normal or near normal thresholds for detecting very blurred lines. Consequently, Ricco's diameter is larger in amblyopic than in normal eyes. (iii) Spatial interval discrimination: thresholds are proportional to the separation of the lines (i.e. Weber's law). At the optimal separation, spatial interval discrimination thresholds represent a "hyperacuity" (i.e. they are smaller than the resolution threshold). For unblurred lines, the optimal separation is

  10. Fusion information entropy method of rolling bearing fault diagnosis based on n-dimensional characteristic parameter distance

    NASA Astrophysics Data System (ADS)

    Ai, Yan-Ting; Guan, Jiao-Yue; Fei, Cheng-Wei; Tian, Jing; Zhang, Feng-Ling

    2017-05-01

    To monitor rolling bearing operating status with casings in real time efficiently and accurately, a fusion method based on n-dimensional characteristic parameters distance (n-DCPD) was proposed for rolling bearing fault diagnosis with two types of signals including vibration signal and acoustic emission signals. The n-DCPD was investigated based on four information entropies (singular spectrum entropy in time domain, power spectrum entropy in frequency domain, wavelet space characteristic spectrum entropy and wavelet energy spectrum entropy in time-frequency domain) and the basic thought of fusion information entropy fault diagnosis method with n-DCPD was given. Through rotor simulation test rig, the vibration and acoustic emission signals of six rolling bearing faults (ball fault, inner race fault, outer race fault, inner-ball faults, inner-outer faults and normal) are collected under different operation conditions with the emphasis on the rotation speed from 800 rpm to 2000 rpm. In the light of the proposed fusion information entropy method with n-DCPD, the diagnosis of rolling bearing faults was completed. The fault diagnosis results show that the fusion entropy method holds high precision in the recognition of rolling bearing faults. The efforts of this study provide a novel and useful methodology for the fault diagnosis of an aeroengine rolling bearing.

  11. High-dimensional Controlled-phase Gate Between a 2 N -dimensional Photon and N Three-level Artificial Atoms

    NASA Astrophysics Data System (ADS)

    Ma, Yun-Ming; Wang, Tie-Jun

    2017-07-01

    Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.

  12. High-dimensional Controlled-phase Gate Between a 2 N -dimensional Photon and N Three-level Artificial Atoms

    NASA Astrophysics Data System (ADS)

    Ma, Yun-Ming; Wang, Tie-Jun

    2017-10-01

    Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.

  13. Intrinsic Photoprotective Mechanisms in Chlorophylls.

    PubMed

    Kotkowiak, Michał; Dudkowiak, Alina; Fiedor, Leszek

    2017-08-21

    Photosynthetic energy conversion competes with the formation of chlorophyll triplet states and the generation of reactive oxygen species. These may, especially under high light stress, damage the photosynthetic apparatus. Many sophisticated photoprotective mechanisms have evolved to secure a harmless flow of excitation energy through the photosynthetic complexes. Time-resolved laser-induced optoacoustic spectroscopy was used to compare the properties of the T1 states of pheophytin a and its metallocomplexes. The lowest quantum yield of the T1 state is always observed in the Mg complex, which also shows the least efficient energy transfer to O2 . Axial coordination to the central Mg further lowers the yield of both T1 and singlet oxygen. These results reveal the existence of intrinsic photoprotective mechanisms in chlorophylls, embedded in their molecular design, which substantially suppress the formation of triplet states and the efficiency of energy transfer to O2 , each by 20-25 %. Such intrinsic photoprotective effects must have created a large evolutionary advantage for the Mg complexes during their evolution as the principal photoactive cofactors of photosynthetic proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Intrinsically disordered proteins and intrinsically disordered protein regions.

    PubMed

    Oldfield, Christopher J; Dunker, A Keith

    2014-01-01

    Intrinsically disordered proteins (IDPs) and IDP regions fail to form a stable structure, yet they exhibit biological activities. Their mobile flexibility and structural instability are encoded by their amino acid sequences. They recognize proteins, nucleic acids, and other types of partners; they accelerate interactions and chemical reactions between bound partners; and they help accommodate posttranslational modifications, alternative splicing, protein fusions, and insertions or deletions. Overall, IDP-associated biological activities complement those of structured proteins. Recently, there has been an explosion of studies on IDP regions and their functions, yet the discovery and investigation of these proteins have a long, mostly ignored history. Along with recent discoveries, we present several early examples and the mechanisms by which IDPs contribute to function, which we hope will encourage comprehensive discussion of IDPs and IDP regions in biochemistry textbooks. Finally, we propose future directions for IDP research.

  15. Intrinsic ferroelectric switching from first principles.

    PubMed

    Liu, Shi; Grinberg, Ilya; Rappe, Andrew M

    2016-06-16

    The existence of domain walls, which separate regions of different polarization, can influence the dielectric, piezoelectric, pyroelectric and electronic properties of ferroelectric materials. In particular, domain-wall motion is crucial for polarization switching, which is characterized by the hysteresis loop that is a signature feature of ferroelectric materials. Experimentally, the observed dynamics of polarization switching and domain-wall motion are usually explained as the behaviour of an elastic interface pinned by a random potential that is generated by defects, which appear to be strongly sample-dependent and affected by various elastic, microstructural and other extrinsic effects. Theoretically, connecting the zero-kelvin, first-principles-based, microscopic quantities of a sample with finite-temperature, macroscopic properties such as the coercive field is critical for material design and device performance; and the lack of such a connection has prevented the use of techniques based on ab initio calculations for high-throughput computational materials discovery. Here we use molecular dynamics simulations of 90° domain walls (separating domains with orthogonal polarization directions) in the ferroelectric material PbTiO3 to provide microscopic insights that enable the construction of a simple, universal, nucleation-and-growth-based analytical model that quantifies the dynamics of many types of domain walls in various ferroelectrics. We then predict the temperature and frequency dependence of hysteresis loops and coercive fields at finite temperatures from first principles. We find that, even in the absence of defects, the intrinsic temperature and field dependence of the domain-wall velocity can be described with a nonlinear creep-like region and a depinning-like region. Our model enables quantitative estimation of coercive fields, which agree well with experimental results for ceramics and thin films. This agreement between model and experiment suggests

  16. Intrinsic ferroelectric switching from first principles

    NASA Astrophysics Data System (ADS)

    Liu, Shi; Grinberg, Ilya; Rappe, Andrew M.

    2016-06-01

    The existence of domain walls, which separate regions of different polarization, can influence the dielectric, piezoelectric, pyroelectric and electronic properties of ferroelectric materials. In particular, domain-wall motion is crucial for polarization switching, which is characterized by the hysteresis loop that is a signature feature of ferroelectric materials. Experimentally, the observed dynamics of polarization switching and domain-wall motion are usually explained as the behaviour of an elastic interface pinned by a random potential that is generated by defects, which appear to be strongly sample-dependent and affected by various elastic, microstructural and other extrinsic effects. Theoretically, connecting the zero-kelvin, first-principles-based, microscopic quantities of a sample with finite-temperature, macroscopic properties such as the coercive field is critical for material design and device performance; and the lack of such a connection has prevented the use of techniques based on ab initio calculations for high-throughput computational materials discovery. Here we use molecular dynamics simulations of 90° domain walls (separating domains with orthogonal polarization directions) in the ferroelectric material PbTiO3 to provide microscopic insights that enable the construction of a simple, universal, nucleation-and-growth-based analytical model that quantifies the dynamics of many types of domain walls in various ferroelectrics. We then predict the temperature and frequency dependence of hysteresis loops and coercive fields at finite temperatures from first principles. We find that, even in the absence of defects, the intrinsic temperature and field dependence of the domain-wall velocity can be described with a nonlinear creep-like region and a depinning-like region. Our model enables quantitative estimation of coercive fields, which agree well with experimental results for ceramics and thin films. This agreement between model and experiment suggests

  17. Mortality Anxiety as a Function of Intrinsic Religiosity and Perceived Purpose in Life

    ERIC Educational Resources Information Center

    Hui, Victoria Ka-Ying; Fung, Helene H.

    2009-01-01

    Fear of dying and death may be universal, but individuals differ in their emotional reactions to dying and death. The present study included a sample of 133 Chinese university students who were Christians. The authors tested a mediation model which posited that intrinsic religiosity, but not extrinsic religiosity, lowered anxiety toward the dying…

  18. Development and validation of the Intrinsic Religiousness Inventory (IRI).

    PubMed

    Taunay, Tauily C; Cristino, Eva D; Machado, Myrela O; Rola, Francisco H; Lima, José W O; Macêdo, Danielle S; Gondim, Francisco de Assis A; Moreira-Almeida, Alexander; Carvalho, André F

    2012-03-01

    The role of religious involvement in mental health has been increasingly investigated in psychiatric research; however, there is a shortage of scales on religiousness in Portuguese. The present study aimed to develop and validate a brief instrument to assess intrinsic religiosity (Intrinsic Religiousness Inventory - IRI) in two Brazilian samples. The initial version was based on literature review and experts' suggestions. University students (sample 1; n = 323) and psychiatric patients (sample 2; n = 102) completed the Duke Religiosity Index (DUREL), the IRI, an instrument of spirituality measurement (WHOQOL-SRPB), as well as measurements of anxiety and depressive symptoms. The IRI showed adequate internal consistence reliability in sample 1 (Cronbach's α = 0.96; 95% CI; 0.95-0.97) and sample 2 (α = 0.96; 95% CI; 0.95-0.97). The IRI main component analyses indicated a single factor, which explained 73.7% and 74.9% of variance in samples 1 and 2, respectively. Strong correlations between IRI and intrinsic subscale of the DUREL were observed (Spearman's r ranging from 0.87 to 0.73 in samples 1 and 2, respectively, p < 0.001). The IRI showed good test-retest reliability (intraclass correlation coefficients > 0.70). These data indicate that the IRI is a valid instrument and may contribute to study intrinsic religiosity in Brazilian samples.

  19. Intrinsic optimization using stochastic nanomagnets

    NASA Astrophysics Data System (ADS)

    Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo

    2017-03-01

    This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets.

  20. Intrinsic optimization using stochastic nanomagnets

    PubMed Central

    Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo

    2017-01-01

    This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets. PMID:28295053

  1. Intrinsic plasmarons in warm graphene

    NASA Astrophysics Data System (ADS)

    Liu, Daqing; Chen, Shuyue; Zhang, Shengli; Ma, Ning

    2017-10-01

    Based on a self-consistent method, we predict theoretically that there exist intrinsic plasmarons in graphene at nonzero temperature, with a well defined mode, as shown by the result of Landau damping. We find that there are sharp differences between the discussed system and the QCD/QED system. Firstly, the thermal mass is proportional to α_g3/4T but not αg T . Secondly, at 0c , the fermion channel and plasmaron channel are nearly degenerate, and furthermore the energy difference between fermion and plasmaron becomes larger and larger with increasing q in the region q>qc . Thirdly, the fermion behaves as a ‘relativistic particle’ with nonzero mass, and the plasmaron exhibits an abnormal dispersion at moderate momentum.

  2. Profibus features intrinsic safety, interoperability

    SciTech Connect

    Bryant, M.

    1996-11-01

    The newest member of the Profibus (process fieldbus) family of interoperable field-bus protocols is {open_quotes}PA{close_quotes}, an intrinsically safe (IS) standard released more than a year ago. IS and non-IS plants using PA for process chemicals, energy production, and food manufacturing are coming online. PA was developed by vendor and user members of the Profibus standards community to meet the needs of customers in the process industries. PA complies with IEC 1158-2, which, among non-IS capabilities, specifies a low-speed, intrinsically safe fieldbus for automating explosive chemical manufacturing. PA thus provides all H1, or {open_quotes}hunk{close_quotes} 1, IS and non-IS services. Importantly, it also provides all H2, or {open_quotes}hunk{close_quotes} 2, services. As the newest segment of the site-proven system of fieldbus protocols, Profibus-PA defines by example the concepts of interoperability and interchangeability. It is a field instrument network that automatically interoperates with a large installed base of fieldbus nodes. As low-speed networks, PA and its competitor, Foundation fieldbus H1 comply with the same standard. They do the same job; auxiliary power to the application, with a data rate of 31.25 kbit/sec. Similarities include a function-block-based architecture and a device description language (DDL). They use the same physical layer for digital data transfer. A casual observer would find PA and H1 virtually the same. The key differences are in the protocol implementations. Although PA and H1 could be wired together, the messages delivered by one would make no sense to the other. At least not yet. PA protocols are capable of both IS and non-IS operations. This opens the door to a wide range of interoperable process-manufacturing requirements. 1 fig., 1 tab.

  3. The Intrinsic Demographics of Blazars

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan; Mao, Peiyuan; Brandt, Timothy D.

    2017-08-01

    Blazar surveys over the past three decades have revealed a range of spectral energy distributions (SEDs), with large systematic differences depending on survey wavelength. This means blazar samples suffer from strong selection effects. To date there has been no agreement on how to infer intrinsic population demographics from these samples, with a key issue being whether blazar jet power is related to the shape of the spectral energy distribution. We investigate this issue using Monte Carlo simulations of BL Lac and flat-spectrum radio quasar populations. We rule out the hypothesis that the SED shape is not linked to luminosity, as the simulated samples in that case disagree strongly with observed surveys. This means that the low-power blazars found primarily in X-ray surveys must be more common than the high-power blazars found primarily in radio surveys. Given an intrinsic correlation between luminosity and SED shape, our simulations predict distributions of flux, redshift, luminosity, and spectral index consistent with existing surveys. We also show that the observed evolution of X-ray-selected blazars, as measured through the average V/Vmax ratio, appears to be negative even when the underlying evolution is actually mildly positive. The apparent negative evolution of X-ray bright BL Lacs is a selection effect caused by redshifting a steeply falling UV-to-X-ray spectrum out of the X-ray band. As this conclusion would suggest, our simulations also show that the deeper the X-ray flux limit and/or the lower the frequency of the synchrotron peak in the SED, the less negative the apparent evolution.

  4. ND2 AV: N-dimensional data analysis and visualization analysis for the National Ignition Campaign

    SciTech Connect

    Bremer, Peer -Timo; Maljovec, Dan; Saha, Avishek; Wang, Bei; Gaffney, Jim; Spears, Brian K.; Pascucci, Valerio

    2015-07-01

    Here, one of the biggest challenges in high-energy physics is to analyze a complex mix of experimental and simulation data to gain new insights into the underlying physics. Currently, this analysis relies primarily on the intuition of trained experts often using nothing more sophisticated than default scatter plots. Many advanced analysis techniques are not easily accessible to scientists and not flexible enough to explore the potentially interesting hypotheses in an intuitive manner. Furthermore, results from individual techniques are often difficult to integrate, leading to a confusing patchwork of analysis snippets too cumbersome for data exploration. This paper presents a case study on how a combination of techniques from statistics, machine learning, topology, and visualization can have a significant impact in the field of inertial confinement fusion. We present the $\\mathrm{ND}^2\\mathrm{AV}$: N-dimensional data analysis and visualization framework, a user-friendly tool aimed at exploiting the intuition and current workflow of the target users. The system integrates traditional analysis approaches such as dimension reduction and clustering with state-of-the-art techniques such as neighborhood graphs and topological analysis, and custom capabilities such as defining combined metrics on the fly. All components are linked into an interactive environment that enables an intuitive exploration of a wide variety of hypotheses while relating the results to concepts familiar to the users, such as scatter plots. $\\mathrm{ND}^2\\mathrm{AV}$ uses a modular design providing easy extensibility and customization for different applications. $\\mathrm{ND}^2\\mathrm{AV}$ is being actively used in the National Ignition Campaign and has already led to a number of unexpected discoveries.

  5. Back to the Definitions Themselves: The Pragmatics of Intrinsic Justification.

    ERIC Educational Resources Information Center

    Bahm, Kenneth

    Such terms as "intrinsic justification,""intrinsicness," and "intrinsicality" are increasingly being heard in academic debate circles. Intrinsic justification consists of an argument which focuses evaluation of a resolutional term on the term's definitional contours. Essential qualities are defining characteristics…

  6. Intrinsic Charge Transport in Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Podzorov, Vitaly

    2005-03-01

    Organic field-effect transistors (OFETs) are essential components of modern electronics. Despite the rapid progress of organic electronics, understanding of fundamental aspects of the charge transport in organic devices is still lacking. Recently, the OFETs based on highly ordered organic crystals have been fabricated with innovative techniques that preserve the high quality of single-crystal organic surfaces. This technological progress facilitated the study of transport mechanisms in organic semiconductors [1-4]. It has been demonstrated that the intrinsic polaronic transport, not dominated by disorder, with a remarkably high mobility of ``holes'' μ = 20 cm^2/Vs can be achieved in these devices at room temperature [4]. The signatures of the intrinsic polaronic transport are the anisotropy of the carrier mobility and an increase of μ with cooling. These and other aspects of the charge transport in organic single-crystal FETs will be discussed. Co-authors are Etienne Menard, University of Illinois at Urbana Champaign; Valery Kiryukhin, Rutgers University; John Rogers, University of Illinois at Urbana Champaign; Michael Gershenson, Rutgers University. [1] V. Podzorov et al., Appl. Phys. Lett. 82, 1739 (2003); ibid. 83, 3504 (2003). [2] V. C. Sundar et al., Science 303, 1644 (2004). [3] R. W. I. de Boer et al., Phys. Stat. Sol. (a) 201, 1302 (2004). [4] V. Podzorov et al., Phys. Rev. Lett. 93, 086602 (2004).

  7. Buying into conservation: intrinsic versus instrumental value.

    PubMed

    Justus, James; Colyvan, Mark; Regan, Helen; Maguire, Lynn

    2009-04-01

    Many conservation biologists believe the best ethical basis for conserving natural entities is their claimed intrinsic value, not their instrumental value for humans. But there is significant confusion about what intrinsic value is and how it could govern conservation decision making. After examining what intrinsic value is supposed to be, we argue that it cannot guide the decision making conservation requires. An adequate ethical basis for conservation must do this, and instrumental value does it best.

  8. Issues in Purchasing and Maintaining Intrinsic Standards

    SciTech Connect

    PETTIT,RICHARD B.; JAEGER,KLAUS; EHRLICH,CHARLES D.

    2000-09-12

    Intrinsic standards are widely used in the metrology community because they realize the best level uncertainty for many metrology parameters. For some intrinsic standards, recommended practices have been developed to assist metrologists in the selection of equipment and the development of appropriate procedures in order to realize the intrinsic standard. As with the addition of any new standard, the metrology laboratory should consider the pros and cons relative to their needs before purchasing the standard so that the laboratory obtains the maximum benefit from setting up and maintaining these standards. While the specific issues that need to be addressed depend upon the specific intrinsic standard and the level of realization, general issues that should be considered include ensuring that the intrinsic standard is compatible with the laboratory environment, that the standard is compatible with the current and future workload, and whether additional support standards will be required in order to properly maintain the intrinsic standard. When intrinsic standards are used to realize the best level of uncertainty for a specific metrology parameter, they usually require critical and important maintenance activities. These activities can including training of staff in the system operation, as well as safety procedures; performing periodic characterization measurements to ensure proper system operation; carrying out periodic intercomparisons with similar intrinsic standards so that proper operation is demonstrated; and maintaining control or trend charts of system performance. This paper has summarized many of these important issues and therefore should be beneficial to any laboratory that is considering the purchase of an intrinsic standard.

  9. A new approach to: (a) grid generation for numerical optimization, and (b) interconnect networks for beowulf clusters, leveraging n-dimensional sphere-packings

    NASA Astrophysics Data System (ADS)

    Bewley, Thomas; Cessna, Joseph; Belitz, Paul

    2008-11-01

    The abstract field of n-dimensional sphere packing theory is well developed (for a comprehensive review, see Sphere Packings, Lattices and Groups by Conway and Sloane). This theory forms the theoretical underpinning of the error-correcting codes used in both deep space communications and in computer memory. The present work extends this elegant theory to two important and immensely practical problems in computational fluid dynamics: (a) the generation of efficient grids for the coordination of grid-based derivative-free optimization algorithms in n dimensions, and (b) the effective n-dimensional interconnection of massively-parallel clusters of computational nodes. As we will illustrate and quantify, the first problem benefits tremendously from dense sphere packings with large kissing numbers >> 2n, whereas the latter problem benefits tremendously from rare sphere packings with kissing number = n+1.

  10. Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases.

    PubMed

    D'Amico, María Belén; Calandrini, Guillermo L

    2015-11-01

    Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.

  11. N-dimensional measurement-device-independent quantum key distribution with N + 1 un-characterized sources: zero quantum-bit-error-rate case

    PubMed Central

    Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo

    2016-01-01

    We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing. PMID:27452275

  12. Modeling heterogeneous responsiveness of intrinsic apoptosis pathway

    PubMed Central

    2013-01-01

    Background Apoptosis is a cell suicide mechanism that enables multicellular organisms to maintain homeostasis and to eliminate individual cells that threaten the organism’s survival. Dependent on the type of stimulus, apoptosis can be propagated by extrinsic pathway or intrinsic pathway. The comprehensive understanding of the molecular mechanism of apoptotic signaling allows for development of mathematical models, aiming to elucidate dynamical and systems properties of apoptotic signaling networks. There have been extensive efforts in modeling deterministic apoptosis network accounting for average behavior of a population of cells. Cellular networks, however, are inherently stochastic and significant cell-to-cell variability in apoptosis response has been observed at single cell level. Results To address the inevitable randomness in the intrinsic apoptosis mechanism, we develop a theoretical and computational modeling framework of intrinsic apoptosis pathway at single-cell level, accounting for both deterministic and stochastic behavior. Our deterministic model, adapted from the well-accepted Fussenegger model, shows that an additional positive feedback between the executioner caspase and the initiator caspase plays a fundamental role in yielding the desired property of bistability. We then examine the impact of intrinsic fluctuations of biochemical reactions, viewed as intrinsic noise, and natural variation of protein concentrations, viewed as extrinsic noise, on behavior of the intrinsic apoptosis network. Histograms of the steady-state output at varying input levels show that the intrinsic noise could elicit a wider region of bistability over that of the deterministic model. However, the system stochasticity due to intrinsic fluctuations, such as the noise of steady-state response and the randomness of response delay, shows that the intrinsic noise in general is insufficient to produce significant cell-to-cell variations at physiologically relevant level of

  13. Intrinsically photosensitive retinal ganglion cells.

    PubMed

    Do, Michael Tri Hoang; Yau, King-Wai

    2010-10-01

    Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors.

  14. Intrinsic Localized Modes in Proteins

    PubMed Central

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2015-01-01

    Protein dynamics is essential for proteins to function. Here we predicted the existence of rare, large nonlinear excitations, termed intrinsic localized modes (ILMs), of the main chain of proteins based on all-atom molecular dynamics simulations of two fast-folder proteins and of a rigid α/β protein at 300 K and at 380 K in solution. These nonlinear excitations arise from the anharmonicity of the protein dynamics. The ILMs were detected by computing the Shannon entropy of the protein main-chain fluctuations. In the non-native state (significantly explored at 380 K), the probability of their excitation was increased by a factor between 9 and 28 for the fast-folder proteins and by a factor 2 for the rigid protein. This enhancement in the non-native state was due to glycine, as demonstrated by simulations in which glycine was mutated to alanine. These ILMs might play a functional role in the flexible regions of proteins and in proteins in a non-native state (i.e. misfolded or unfolded states). PMID:26658321

  15. Geochemical indicators of intrinsic bioremediation

    SciTech Connect

    Borden, R.C.; Gomez, C.A.; Becker, M.T.

    1995-03-01

    A detailed field investigation has been completed at a gasoline-contaminated aquifer near Rocky Point, NC, to examine possible indicators of intrinsic bioremediation and identify factors that may significantly influence the rae and extent of bioremediation. The dissolved plume of benzene, toluene, ethylbenzene, and xylene (BTEX) in ground water is naturally degrading. Toluene and o-xylene are most rapidly degraded followed by m-, p-xylene, and benzene. Ethylbenzene appears to degrade very slowly under anaerobic conditions present in the center of the plume. The rate and extent of biodegradation appears to be strongly influenced by the type and quantity of electron acceptors present in the aquifer. At the upgradient edge of the plume, nitrate, ferric iron, and oxygen are used as terminal electron acceptors during hydrocarbon biodegradation. The equivalent of 40 to 50 mg/l of hydrocarbon is degraded based on the increase in dissolved CO{sub 2} relative to background ground water. Immediately downgradient of the source area, sulfate and iron are the dominant electron acceptors. Toluene and o-xylene are rapidly removed in this region. Once the available oxygen, nitrate, and sulfate are consumed, biodegradation is limited and appears to be controlled by mixing and aerobic biodegradation at the plume fringes.

  16. Intrinsic Tamper Indicating Device (TID) Program

    SciTech Connect

    Haag, W.E.

    1996-09-01

    The Los Alamos National Laboratory (LANL) Intrinsic Tamper Indicating Device (TID) Program has recently been developed in conjunction with the regular LANL TID Program to assist groups who perform measurements using sealed sources or store difficult-to-measure items. The program was then expanded to include other types of sealed sources and items processed for long-term storage in the Nuclear Material Packaging and Repackaging Program. The Intrinsic TID Program encompasses both Special Nuclear Material (SNM) and Nuclear Material (NM) items that have intrinsic characteristics that would immediately indicate tampering upon visual inspection. Items determined to be intrinsically sealed do not need to be sealed with authorized tamper indicating devices. Under the program, an identified intrinsic item receives the same safeguards credits as other tamper-sealed items already in the TID Program. The major benefits of the Intrinsic TID Program include reducing verification measurements on intrinsically identified inventory items and reducing exposure to operators working in highly irradiated environments. Intrinsic TIDs should be combined with other safeguards requirements, and items should have defensible measurements as well as visual inspections. Several groups at LANL are already implementing the program and providing feedback so that we can tailor it to better meet the customers` needs.

  17. Intrinsic bioremediation of landfills interim report

    SciTech Connect

    Brigmon, R.L.; Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  18. Development of Intrinsically Photoluminescent and Photostable Polylactones

    PubMed Central

    Xie, Zhiwei; Zhang, Yi; Liu, Li; Weng, Hong; Mason, Ralph P.; Tang, Liping; Nguyen, Kytai T.; Hsieh, Jer-Tsong

    2014-01-01

    A method of introducing intrinsically photoluminescent properties to biodegradable polymer was introduced, exemplified by the synthesis of intrinsically photoluminescent polylactones that enable non-invasively monitoring and tracking material degradation in vivo in real-time and the formation of theranostic nanoparticles for cancer imaging and drug delivery. PMID:24668888

  19. Intrinsic decoherence in isolated quantum systems

    NASA Astrophysics Data System (ADS)

    Wu, Yang-Le; Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-01-01

    We study the intrinsic, disorder-induced decoherence of an isolated quantum system under its own dynamics. Specifically, we investigate the characteristic time scale (i.e., the decoherence time) associated with an interacting many-body system losing the memory of its initial state. To characterize the erasure of the initial state memory, we define a time scale, the intrinsic decoherence time, by thresholding the gradual decay of the disorder-averaged return probability. We demonstrate the system-size independence of the intrinsic decoherence time in different models, and we study its dependence on the disorder strength. We find that the intrinsic decoherence time increases monotonically as the disorder strength increases in accordance with the relaxation of locally measurable quantities. We investigate several interacting spin (e.g., Ising and Heisenberg) and fermion (e.g., Anderson and Aubry-André) models to obtain the intrinsic decoherence time as a function of disorder and interaction strength.

  20. Intrinsic structure in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Albers, N.

    2015-10-01

    Saturn's rings are the most prominent in our Solar system and one example of granular matter in space. Dominated by tides and inelastic collisions the system is highly flattened being almost 300000km wide while only tens of meters thick. Individual particles are composed of primarily water ice and range from microns to few tens of meters in size. Apparent patterns comprise ringlets, gaps, kinematic wakes, propellers, bending waves, and the winding spiral arms of density waves. These large-scale structures are perturbations foremost created by external as well as embedded moons. Observations made by the Cassini spacecraft currently in orbit around Saturn show these structures in unprecedented detail. But high-resolution measurements reveal the presence of small-scale structures throughout the system. These include self-gravity wakes (50-100m), overstable waves (100-300m), subkm structure at the A and B ring edges, "straw" and "ropy" structures (1-3km), and the C ring "ghosts". Most of these had not been anticipated and are found in perturbed regions, driven by resonances with external moons, where the system undergoes periodic phases of compression and relaxation that correlate with the presence of structure. High velocity dispersion and the presence of large clumps imply structure formation on time scales as short as one orbit (about 10 hours). The presence of these intrinsic structures is seemingly the response to varying local conditions such as internal density, optical depth, underlying particle size distribution, granular temperature, and distance from the central planet. Their abundance provides evidence for an active and dynamic ring system where aggregation and fragmentation are ongoing on orbital timescales. Thus a kinetic description of the rings may be more appropriate than the fluid one. I will present Cassini Ultraviolet Spectrometer (UVIS) High Speed Photometer (HSP) occultations, Voyager 1 and 2 Imaging Science Subsystem (ISS), and high

  1. Transition Theory: A Novel Theory of the Universe Creation and Evolution

    NASA Astrophysics Data System (ADS)

    Vlachogiannis, J. G.

    2004-08-01

    This paper presents a novel theory attempting to point out the perpetual transition of Universe and natural systems progressing from Big Bang to endless Quenching. It defines the increase of speed-of-light and space-dimensions number according to Fibonacci sequence Moreover, it proofs that the Time in our Universe is composed of its changes and its representation in n-4 hidden dimensions of an n-dimensional Universe

  2. Design Space Issues for Intrinsic Evolvable Hardware

    NASA Technical Reports Server (NTRS)

    Hereford, James; Gwaltney, David

    2004-01-01

    This paper discuss the problem of increased programming time for intrinsic evolvable hardware (EHW) as the complexity of the circuit grows. We develop equations for the size of the population, n, and the number of generations required for the population to converge, ngen, based on L, the length of the programming string. We show that the processing time of the computer becomes negligible for intrinsic EHW since the selection/crossover/mutation steps are only done once per generation, suggesting there is room for use of more complex evolutionary algorithms m intrinsic EHW. F i y , we review the state of the practice and discuss the notion of a system design approach for intrinsic EHW.

  3. Intrinsic and acquired resistance mechanisms in enterococcus.

    PubMed

    Hollenbeck, Brian L; Rice, Louis B

    2012-08-15

    Enterococci have the potential for resistance to virtually all clinically useful antibiotics. Their emergence as important nosocomial pathogens has coincided with increased expression of antimicrobial resistance by members of the genus. The mechanisms underlying antibiotic resistance in enterococci may be intrinsic to the species or acquired through mutation of intrinsic genes or horizontal exchange of genetic material encoding resistance determinants. This paper reviews the antibiotic resistance mechanisms in Enterococcus faecium and Enterococcus faecalis and discusses treatment options.

  4. Recovering intrinsic fluorescence by Monte Carlo modeling.

    PubMed

    Müller, Manfred; Hendriks, Benno H W

    2013-02-01

    We present a novel way to recover intrinsic fluorescence in turbid media based on Monte Carlo generated look-up tables and making use of a diffuse reflectance measurement taken at the same location. The method has been validated on various phantoms with known intrinsic fluorescence and is benchmarked against photon-migration methods. This new method combines more flexibility in the probe design with fast reconstruction and showed similar reconstruction accuracy as found in other reconstruction methods.

  5. Emerging principles of intrinsic hippocampal organization.

    PubMed

    Amaral, D G

    1993-04-01

    The hippocampal formation has a unique and highly distributed network of intrinsic connections. What are the principles of organization that govern information flow through this system? The notion that information processing in the hippocampal formation is segregated in autonomous chips or lamellae appears to be inconsistent with the extremely divergent nature of many of the intrinsic connections. Recent neuroanatomical data suggest, however, that information may be segregated in other ways as it negotiates the links from one hippocampal region to the next.

  6. Refining the intrinsic chimera flap: a review.

    PubMed

    Agarwal, Jayant P; Agarwal, Shailesh; Adler, Neta; Gottlieb, Lawrence J

    2009-10-01

    Reconstruction of complex tissue deficiencies in which each missing component is in a different spatial relationship to each other can be particularly challenging, especially in patients with limited recipient vessels. The chimera flap design is uniquely suited to reconstruct these deformities. Chimera flaps have been previously defined in many ways with 2 main categories: prefabricated or intrinsic. Herein we attempt to clarify the definition of a true intrinsic chimeric flap and provide examples of how these constructs provide a method for reconstruction of complex defects. The versatility of the intrinsic chimera flap and its procurement from 7 different vascular systems is described. A clarification of the definition of a true intrinsic chimera flap is described. In addition, construction of flaps from the lateral femoral circumflex, deep circumflex iliac, inferior gluteal, peroneal, subscapular, thoracodorsal, and radial arterial systems is described to showcase the versatility of these chimera flaps. A true intrinsic chimera flap must consist of more than a single tissue type. Each of the tissue components receives its blood flow from separate vascular branches or perforators that are connected to a single vascular source. These vascular branches must be of appropriate length to allow for insetting with 3-dimensional spatial freedom. There are a multitude of sites from which true intrinsic chimera flaps may be harvested.

  7. Incentives and intrinsic motivation in healthcare.

    PubMed

    Berdud, Mikel; Cabasés, Juan M; Nieto, Jorge

    It has been established in the literature that workers within public organisations are intrinsically motivated. This paper is an empirical study of the healthcare sector using methods of qualitative analysis research, which aims to answer the following hypotheses: 1) doctors are intrinsically motivated; 2) economic incentives and control policies may undermine doctors' intrinsic motivation; and 3) well-designed incentives may encourage doctors' intrinsic motivation. We conducted semi-structured interviews à-la-Bewley with 16 doctors from Navarre's Healthcare Service (Servicio Navarro de Salud-Osasunbidea), Spain. The questions were based on current theories of intrinsic motivation and incentives to test the hypotheses. Interviewees were allowed to respond openly without time constraints. Relevant information was selected, quantified and analysed by using the qualitative concepts of saturation and codification. The results seem to confirm the hypotheses. Evidence supporting hypotheses 1 and 2 was gathered from all interviewees, as well as indications of the validity of hypothesis 3 based on interviewees' proposals of incentives. The conclusions could act as a guide to support the optimal design of incentive policies and schemes within health organisations when healthcare professionals are intrinsically motivated. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Intrinsic spin and orbital angular momentum Hall effect.

    PubMed

    Zhang, S; Yang, Z

    2005-02-18

    A generalized definition of intrinsic and extrinsic transport coefficients is introduced. We show that transport coefficients from the intrinsic origin are solely determined by local electronic structure, and thus the intrinsic spin Hall effect is not a transport phenomenon. The intrinsic spin Hall current is always accompanied by an equal but opposite intrinsic orbital angular momentum Hall current. We prove that the intrinsic spin Hall effect does not induce a spin accumulation at the edge of the sample or near the interface.

  9. Stimulating Students' Intrinsic Motivation for Learning Chemistry through the Use of Context-Based Learning Modules

    ERIC Educational Resources Information Center

    Vaino, Katrin; Holbrook, Jack; Rannikmae, Miia

    2012-01-01

    This paper introduces a research project in which five chemistry teachers, working in cooperation with university researchers, implemented a new teaching approach using context-based modules specially designed to stimulate the intrinsic motivation of students. The intention was to induce change in chemistry teachers' teaching approach from more…

  10. The Effects of Blended Learning on the Intrinsic Motivation of Thai EFL Students

    ERIC Educational Resources Information Center

    Sucaromana, Usaporn

    2013-01-01

    The aim of this study is to compare the results of blended learning with face-to-face learning among university students studying English as a foreign language. The participants were separated by gender, and the following variables, intrinsic motivation for learning English, attitudes towards English as a subject, and satisfaction with the…

  11. Surface brightness and intrinsic luminosity of ellipticals

    NASA Astrophysics Data System (ADS)

    Dhar, Barun Kumar; Williams, Liliya L. R.

    2012-11-01

    We show that the surface brightness profiles of elliptical galaxies can be parametrized using a linear superposition of two or three components, each of which is described by functions developed in Dhar & Williams as the 2D projections of a 3D Einasto density profile. For a sample of 23 ellipticals in and around the Virgo Cluster with total absolute V magnitude -24 < MVT < -15, our multicomponent models span a dynamic range up to 106 in surface brightness and up to 105 in radius down to the resolution limit of the Hubble Space Telescope, have a median rms of 0.032 mag arcsec-2 consistent with the rms of 0.03 from random errors of the data, and are statistically justified at >3σ. Our models indicate that (i) the central component is more concentrated than the outer component; and (ii) the central component of massive shallow-cusp ('core') galaxies is much more luminous, extended and concentrated than that of steep-cusp ('cuspy') galaxies, with their near exponential central profiles indicating disc-like systems, whose existence must be verified spectroscopically. Galaxy structure can thus be modelled extremely well with a central mass excess for all galaxies. This is not necessarily contrary to the notion of a mass deficit in 'core' galaxies, since mass ejection due to core scouring by a supermassive black hole (SMBH) binary could have affected the shape of the central components. However, we show that the existence, amount, radial extent and sign of such deficits disagree substantially in the literature, both for a given galaxy and on an average over a sample. We discuss possible implications and suggest that SMBH binaries are unlikely to be the sole mechanism for producing the large 'cores' of massive galaxies. Using results from the SAURON survey, we deduce that under certain conditions of symmetry, inclination angles and degree of triaxiality, the intrinsic (3D) density of light can be well described with a multicomponent Einasto model for both steep- and

  12. Hidden Structural Codes in Protein Intrinsic Disorder.

    PubMed

    Borkosky, Silvia S; Camporeale, Gabriela; Chemes, Lucía B; Risso, Marikena; Noval, María Gabriela; Sánchez, Ignacio E; Alonso, Leonardo G; de Prat Gay, Gonzalo

    2017-10-06

    Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.

  13. Intrinsic delay of permeable base transistor

    SciTech Connect

    Chen, Wenchao; Guo, Jing; So, Franky

    2014-07-28

    Permeable base transistors (PBTs) fabricated by vacuum deposition or solution process have the advantages of easy fabrication and low power operation and are a promising device structure for flexible electronics. Intrinsic delay of PBT, which characterizes the speed of the transistor, is investigated by solving the three-dimensional Poisson equation and drift-diffusion equation self-consistently using finite element method. Decreasing the emitter thickness lowers the intrinsic delay by improving on-current, and a thinner base is also preferred for low intrinsic delay because of fewer carriers in the base region at off-state. The intrinsic delay exponentially decreases as the emitter contact Schottky barrier height decreases, and it linearly depends on the carrier mobility. With an optimized emitter contact barrier height and device geometry, a sub-nano-second intrinsic delay can be achieved with a carrier mobility of ∼10 cm{sup 2}/V/s obtainable in solution processed indium gallium zinc oxide, which indicates the potential of solution processed PBTs for GHz operations.

  14. Intrinsic-extrinsic factors in sport motivation.

    PubMed

    Pedersen, Darhl M

    2002-10-01

    Participants were 83 students (36 men and 47 women). 10 intrinsic-extrinsic factors involved in sport motivation were obtained. The factors were generated from items obtained from the participants rather than items from the experimenter. This was done to avoid the possible influence of preconceptions on the part of the experimenter regarding what the final dimensions may be. Obtained motivational factors were Social Reinforcement, Fringe Benefits, Fame and Fortune, External Forces, Proving Oneself, Social Benefits, Mental Enrichment, Expression of Self, Sense of Accomplishment, and Self-enhancement. Each factor was referred to an intrinsic-extrinsic dimension to describe its relative position on that dimension. The order of the factors as listed indicates increasing intrinsic motivation. i.e., the first four factors were rated in the extrinsic range, whereas the remaining six were rated to be in the intrinsic range. Next, the participants rated the extent to which each of the various factors was involved in their decision to participate in sport activities. The pattern of use of the motivational factors was the same for both sexes except that men indicated greater use of the Fringe Benefits factor. Overall, the more intrinsic a sport motivation factor was rated, the more likely it was to be rated as a factor in actual sport participation.

  15. Genome-Wide Prediction of Intrinsic Disorder; Sequence Alignment of Intrinsically Disordered Proteins

    ERIC Educational Resources Information Center

    Midic, Uros

    2012-01-01

    Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…

  16. Genome-Wide Prediction of Intrinsic Disorder; Sequence Alignment of Intrinsically Disordered Proteins

    ERIC Educational Resources Information Center

    Midic, Uros

    2012-01-01

    Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…

  17. Structure and intrinsic disorder in protein autoinhibition.

    PubMed

    Trudeau, Travis; Nassar, Roy; Cumberworth, Alexander; Wong, Eric T C; Woollard, Geoffrey; Gsponer, Jörg

    2013-03-05

    Autoinhibition plays a significant role in the regulation of many proteins. By analyzing autoinhibited proteins, we demonstrate that these proteins are enriched in intrinsic disorder because of the properties of their inhibitory modules (IMs). A comparison of autoinhibited proteins with structured and intrinsically disordered IMs revealed that in the latter group (1) multiple phosphorylation sites are highly abundant; (2) splice variants occur in greater number than in their structured cousins; and (3) activation is often associated with changes in secondary structure in the IM. Analyses of families of autoinhibited proteins revealed that the levels of disorder in IMs can vary significantly throughout homologous proteins, whereas residues located at the interfaces between the IMs and inhibited domains are conserved. Our findings suggest that intrinsically disordered IMs provide advantages over structured ones that are likely to be exploited in the fine-tuning of the equilibrium between active and inactive states of autoinhibited proteins.

  18. Cell intrinsic control of axon regeneration

    PubMed Central

    Mar, Fernando M; Bonni, Azad; Sousa, Mónica M

    2014-01-01

    Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease. PMID:24531721

  19. Intrinsic Disorder in the Human Spliceosomal Proteome

    PubMed Central

    Korneta, Iga; Bujnicki, Janusz M.

    2012-01-01

    The spliceosome is a molecular machine that performs the excision of introns from eukaryotic pre-mRNAs. This macromolecular complex comprises in human cells five RNAs and over one hundred proteins. In recent years, many spliceosomal proteins have been found to exhibit intrinsic disorder, that is to lack stable native three-dimensional structure in solution. Building on the previous body of proteomic, structural and functional data, we have carried out a systematic bioinformatics analysis of intrinsic disorder in the proteome of the human spliceosome. We discovered that almost a half of the combined sequence of proteins abundant in the spliceosome is predicted to be intrinsically disordered, at least when the individual proteins are considered in isolation. The distribution of intrinsic order and disorder throughout the spliceosome is uneven, and is related to the various functions performed by the intrinsic disorder of the spliceosomal proteins in the complex. In particular, proteins involved in the secondary functions of the spliceosome, such as mRNA recognition, intron/exon definition and spliceosomal assembly and dynamics, are more disordered than proteins directly involved in assisting splicing catalysis. Conserved disordered regions in spliceosomal proteins are evolutionarily younger and less widespread than ordered domains of essential spliceosomal proteins at the core of the spliceosome, suggesting that disordered regions were added to a preexistent ordered functional core. Finally, the spliceosomal proteome contains a much higher amount of intrinsic disorder predicted to lack secondary structure than the proteome of the ribosome, another large RNP machine. This result agrees with the currently recognized different functions of proteins in these two complexes. PMID:22912569

  20. Bootstrapped models for intrinsic random functions

    SciTech Connect

    Campbell, K.

    1988-08-01

    Use of intrinsic random function stochastic models as a basis for estimation in geostatistical work requires the identification of the generalized covariance function of the underlying process. The fact that this function has to be estimated from data introduces an additional source of error into predictions based on the model. This paper develops the sample reuse procedure called the bootstrap in the context of intrinsic random functions to obtain realistic estimates of these errors. Simulation results support the conclusion that bootstrap distributions of functionals of the process, as well as their kriging variance, provide a reasonable picture of variability introduced by imperfect estimation of the generalized covariance function.

  1. Bootstrapped models for intrinsic random functions

    SciTech Connect

    Campbell, K.

    1987-01-01

    The use of intrinsic random function stochastic models as a basis for estimation in geostatistical work requires the identification of the generalized covariance function of the underlying process, and the fact that this function has to be estimated from the data introduces an additional source of error into predictions based on the model. This paper develops the sample reuse procedure called the ''bootstrap'' in the context of intrinsic random functions to obtain realistic estimates of these errors. Simulation results support the conclusion that bootstrap distributions of functionals of the process, as well as of their ''kriging variance,'' provide a reasonable picture of the variability introduced by imperfect estimation of the generalized covariance function.

  2. Intrinsic Probability of a Multifractal Set

    NASA Astrophysics Data System (ADS)

    Hosokawa, Iwao

    1991-12-01

    It is shown that a self-similar measure isotropically distributed in a d-dimensional set should have its own intermittency exponents equivalent to its own generalized dimensions (in the sense of Hentschel and Procaccia), and that the intermittency exponents are completely designated by an intrinsic probability which governs the spatial distribution of the measure. Based on this, it is proven that the intrinsic probability uniquely determines the spatial distribution of the scaling index α of the measure as well as the so-called f-α spectrum of the multifractal set.

  3. Intrinsic plasticity: an emerging player in addiction.

    PubMed

    Kourrich, Saïd; Calu, Donna J; Bonci, Antonello

    2015-03-01

    Exposure to drugs of abuse, such as cocaine, leads to plastic changes in the activity of brain circuits, and a prevailing view is that these changes play a part in drug addiction. Notably, there has been intense focus on drug-induced changes in synaptic excitability and much less attention on intrinsic excitability factors (that is, excitability factors that are remote from the synapse). Accumulating evidence now suggests that intrinsic factors such as K+ channels are not only altered by cocaine but may also contribute to the shaping of the addiction phenotype.

  4. The Universal α-Family of Maps

    NASA Astrophysics Data System (ADS)

    Edelman, Mark

    2013-03-01

    We modified the way in which the Universal Map is obtained in the regular dynamics to derive the Universal α-Family of Maps depending on a single parameter α > 0 which is the order of the fractional derivative in the nonlinear fractional differential equation describing a system experiencing periodic kicks. We show that many well-known regular maps, like integer n- dimensional (area/volume preserving for n > 1) quadratic maps (including for n = 1 the Logistic Map which is not measure preserving) and n-dimensional (volume preserving for n > 2) standard maps (including the non-measure preserving Circle Map and the area preserving Standard Map), can be considered as particular forms of the Universal α-Family of Maps. In the case of the fractional α corresponding maps, which are maps with memory, demonstrate various types of attractors including cascade of bifurcation types trajectories. Maps with memory can be applied for modeling biological systems and circuit elements with memory.

  5. Case for an open universe

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Hsieh, S.-H.

    1980-01-01

    The determination of the geometrical structure of the universe through the magnitude-vs-redshift relation in standard cosmology has not been very successful, mainly because of the intrinsic insensitivity of the m-vs-z relation to a deceleration parameter, which determines the spatial curvature and therefore the geometry. By relaxing the assumption usually made, i.e., the identity of gravitational and atomic clocks, sufficient sensitivity is achieved. Existing observational evidence then leads one to conclude that the universe is open.

  6. Sex Differences, Positive Feedback and Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Deci, Edward L.; And Others

    The paper presents two experiments which test the "change in feelings of competence and self-determination" proposition of cognitive evaluation theory. This proposition states that when a person receives feedback about his performance on an intrinsically motivated activity this information will affect his sense of competence and…

  7. Advancing polymers of intrinsic microporosity by mechanochemistry

    DOE PAGES

    Zhang, Pengfei; Jiang, Xueguang; Wan, Shun; ...

    2015-01-01

    Herein, we report a fast (15 min) and solvent-free mechanochemical approach to construct polymers of intrinsic microporosity (PIMs) with high molecular mass and low polydispersity by solid grinding. The enhanced reaction efficiency results from the instantaneous frictional heating and continuous exposure of active sites within those solid reactants.

  8. Intrinsic Motivation, Organizational Justice, and Creativity

    ERIC Educational Resources Information Center

    Hannam, Kalli; Narayan, Anupama

    2015-01-01

    For employees to generate creative ideas that are not only original, but also useful to their company, they must interact with their workplace environment to determine organizational needs. Therefore, it is important to consider aspects of the individual as well as their environment when studying creativity. Intrinsic motivation, a predictor of…

  9. Intrinsic Factors Affecting Overseas Student Teaching

    ERIC Educational Resources Information Center

    Firmin, Michael W.; MacKay, Brenda B.; Firmin, Ruth L.

    2007-01-01

    We conducted a qualitative research study involving 13 undergraduate students who completed their student-teaching in overseas contexts. Participants completed two waves of interviews immediately after returning to campus from their multicultural experiences. Three intrinsic factors were found to have the greatest impact on students' overseas…

  10. Frequent Major Changing: Extrinsic and Intrinsic Factors

    ERIC Educational Resources Information Center

    Firmin, Michael W.; MacKillop, Lisa M.

    2008-01-01

    Twenty undergraduates participated in individual, semi-structured interviews concerning their decisions to change majors. We found three common extrinsic and three intrinsic factors related to their decisions. Extrinsic factors included parents who were supportive but not meaningfully directive, lack of familial external guidance, and lack of…

  11. Intrinsic Motivation, Organizational Justice, and Creativity

    ERIC Educational Resources Information Center

    Hannam, Kalli; Narayan, Anupama

    2015-01-01

    For employees to generate creative ideas that are not only original, but also useful to their company, they must interact with their workplace environment to determine organizational needs. Therefore, it is important to consider aspects of the individual as well as their environment when studying creativity. Intrinsic motivation, a predictor of…

  12. The Intrinsic Connectome of the Rat Amygdala

    PubMed Central

    Schmitt, Oliver; Eipert, Peter; Philipp, Konstanze; Kettlitz, Richard; Fuellen, Georg; Wree, Andreas

    2012-01-01

    The connectomes of nervous systems or parts there of are becoming important subjects of study as the amount of connectivity data increases. Because most tract-tracing studies are performed on the rat, we conducted a comprehensive analysis of the amygdala connectome of this species resulting in a meta-study. The data were imported into the neuroVIISAS system, where regions of the connectome are organized in a controlled ontology and network analysis can be performed. A weighted digraph represents the bilateral intrinsic (connections of regions of the amygdala) and extrinsic (connections of regions of the amygdala to non-amygdaloid regions) connectome of the amygdala. Its structure as well as its local and global network parameters depend on the arrangement of neuronal entities in the ontology. The intrinsic amygdala connectome is a small-world and scale-free network. The anterior cortical nucleus (72 in- and out-going edges), the posterior nucleus (45), and the anterior basomedial nucleus (44) are the nuclear regions that posses most in- and outdegrees. The posterior nucleus turns out to be the most important nucleus of the intrinsic amygdala network since its Shapley rate is minimal. Within the intrinsic amygdala, regions were determined that are essential for network integrity. These regions are important for behavioral (processing of emotions and motivation) and functional (memory) performances of the amygdala as reported in other studies. PMID:23248583

  13. Intrinsic Location Parameter of a Diffusion Process

    DTIC Science & Technology

    1998-03-18

    intrins�que du filtre de Kalman , discut�e dans un autre article. Nous pr�sentons ici une simulation num�rique dÕune EDS non lin�aire, qui montre la pr...the construction of an intrinsic nonlinear analog to the Kalman Fil- ter. We present here a numerical simulation of a nonlinear SDE, showing how well

  14. Organisational Learning and Employees' Intrinsic Motivation

    ERIC Educational Resources Information Center

    Remedios, Richard; Boreham, Nick

    2004-01-01

    This study examined the effects of organisational learning initiatives on employee motivation. Four initiatives consistent with theories of organisational learning were a priori ranked in terms of concepts that underpin intrinsic-motivation theory. Eighteen employees in a UK petrochemical company were interviewed to ascertain their experiences of…

  15. Electroneutral intrinsic point defects in cadmium chalcogenides

    SciTech Connect

    Kharif, Ya.L.; Kudryashov, N.I.; Strunilina, T.A.

    1987-12-01

    Low-mobility electrically neutral intrinsic point defects were observed in cadmium chalcogenides. It was shown that the concentration of these defects is proportional to the cadmium vapor pressure to the 1/3 power at a constant temperature, and a mechanism for the formation of these defects were proposed.

  16. Intrinsic and Extrinsic Motivation among Collegiate Instrumentalists

    ERIC Educational Resources Information Center

    Diaz, Frank M.

    2010-01-01

    The purpose of this study was to gather and compare information on measures of intrinsic and extrinsic motivation among instrumentalists enrolled in collegiate ensembles. A survey instrument was developed to gather information concerning demographic data and responses to questions on motivational preference. Participants were undergraduate and…

  17. Intrinsic novobiocin resistance in Staphylococcus saprophyticus.

    PubMed

    Vickers, Anna A; Chopra, Ian; O'Neill, Alex J

    2007-12-01

    Intrinsic novobiocin resistance in Staphylococcus saprophyticus was associated with expression of a novobiocin-resistant form of the drug target protein (GyrB). Site-directed mutagenesis established that resistance depends upon the presence of two specific amino acid residues in GyrB: a glycine at position 85 and a lysine at position 140.

  18. Simple intrinsic defects in InAs :

    SciTech Connect

    Schultz, Peter Andrew

    2013-03-01

    This Report presents numerical tables summarizing properties of intrinsic defects in indium arsenide, InAs, as computed by density functional theory using semi-local density functionals, intended for use as reference tables for a defect physics package in device models.

  19. Intrinsic and Extrinsic Motivation among Collegiate Instrumentalists

    ERIC Educational Resources Information Center

    Diaz, Frank M.

    2010-01-01

    The purpose of this study was to gather and compare information on measures of intrinsic and extrinsic motivation among instrumentalists enrolled in collegiate ensembles. A survey instrument was developed to gather information concerning demographic data and responses to questions on motivational preference. Participants were undergraduate and…

  20. Organisational Learning and Employees' Intrinsic Motivation

    ERIC Educational Resources Information Center

    Remedios, Richard; Boreham, Nick

    2004-01-01

    This study examined the effects of organisational learning initiatives on employee motivation. Four initiatives consistent with theories of organisational learning were a priori ranked in terms of concepts that underpin intrinsic-motivation theory. Eighteen employees in a UK petrochemical company were interviewed to ascertain their experiences of…

  1. Visual stimuli recruit intrinsically generated cortical ensembles

    PubMed Central

    Miller, Jae-eun Kang; Ayzenshtat, Inbal; Carrillo-Reid, Luis; Yuste, Rafael

    2014-01-01

    The cortical microcircuit is built with recurrent excitatory connections, and it has long been suggested that the purpose of this design is to enable intrinsically driven reverberating activity. To understand the dynamics of neocortical intrinsic activity better, we performed two-photon calcium imaging of populations of neurons from the primary visual cortex of awake mice during visual stimulation and spontaneous activity. In both conditions, cortical activity is dominated by coactive groups of neurons, forming ensembles whose activation cannot be explained by the independent firing properties of their contributing neurons, considered in isolation. Moreover, individual neurons flexibly join multiple ensembles, vastly expanding the encoding potential of the circuit. Intriguingly, the same coactive ensembles can repeat spontaneously and in response to visual stimuli, indicating that stimulus-evoked responses arise from activating these intrinsic building blocks. Although the spatial properties of stimulus-driven and spontaneous ensembles are similar, spontaneous ensembles are active at random intervals, whereas visually evoked ensembles are time-locked to stimuli. We conclude that neuronal ensembles, built by the coactivation of flexible groups of neurons, are emergent functional units of cortical activity and propose that visual stimuli recruit intrinsically generated ensembles to represent visual attributes. PMID:25201983

  2. Intrinsic Factors Affecting Overseas Student Teaching

    ERIC Educational Resources Information Center

    Firmin, Michael W.; MacKay, Brenda B.; Firmin, Ruth L.

    2007-01-01

    We conducted a qualitative research study involving 13 undergraduate students who completed their student-teaching in overseas contexts. Participants completed two waves of interviews immediately after returning to campus from their multicultural experiences. Three intrinsic factors were found to have the greatest impact on students' overseas…

  3. Visual stimuli recruit intrinsically generated cortical ensembles.

    PubMed

    Miller, Jae-eun Kang; Ayzenshtat, Inbal; Carrillo-Reid, Luis; Yuste, Rafael

    2014-09-23

    The cortical microcircuit is built with recurrent excitatory connections, and it has long been suggested that the purpose of this design is to enable intrinsically driven reverberating activity. To understand the dynamics of neocortical intrinsic activity better, we performed two-photon calcium imaging of populations of neurons from the primary visual cortex of awake mice during visual stimulation and spontaneous activity. In both conditions, cortical activity is dominated by coactive groups of neurons, forming ensembles whose activation cannot be explained by the independent firing properties of their contributing neurons, considered in isolation. Moreover, individual neurons flexibly join multiple ensembles, vastly expanding the encoding potential of the circuit. Intriguingly, the same coactive ensembles can repeat spontaneously and in response to visual stimuli, indicating that stimulus-evoked responses arise from activating these intrinsic building blocks. Although the spatial properties of stimulus-driven and spontaneous ensembles are similar, spontaneous ensembles are active at random intervals, whereas visually evoked ensembles are time-locked to stimuli. We conclude that neuronal ensembles, built by the coactivation of flexible groups of neurons, are emergent functional units of cortical activity and propose that visual stimuli recruit intrinsically generated ensembles to represent visual attributes.

  4. High School Vocational Education: An Intrinsic Perspective.

    ERIC Educational Resources Information Center

    Silberman, Harry F.

    1979-01-01

    Presents two perspectives on the nature of vocational education: (1) that benefits are "extrinsic," that is, rewards are deferred until after graduation; and (2) that benefits are "intrinsic," that is, vocational education serves to promote full human development by exposing the learner to significant in-class experiences. (DR)

  5. Frustration-induced protein intrinsic disorder

    NASA Astrophysics Data System (ADS)

    Matsushita, Katsuyoshi; Kikuchi, Macoto

    2013-03-01

    Spontaneous folding into a specific native structure is the most important property of protein to perform their biological functions within organisms. Spontaneous folding is understood on the basis of an energy landscape picture based on the minimum frustration principle. Therefore, frustration seemingly only leads to protein functional disorder. However, frustration has recently been suggested to have a function in allosteric regulation. Functional frustration has the possibility to be a key to our deeper understanding of protein function. To explore another functional frustration, we theoretically examined structural frustration, which is designed to induce intrinsic disorder of a protein and its function through the coupled folding and binding. We extended the Wako-Saitô-Muñoz-Eaton model to take into account a frustration effect. With the model, we analyzed the binding part of neuron-restrictive silencer factor and showed that designed structural frustration in it induces intrinsic disorder. Furthermore, we showed that the folding and the binding are cooperative in interacting with a target protein. The cooperativity enables an intrinsically disordered protein to exhibit a sharp switch-like folding response to binding chemical potential change. Through this switch-like response, the structural frustration may contribute to the regulation function of interprotein interaction of the intrinsically disordered protein.

  6. High School Vocational Education: An Intrinsic Perspective.

    ERIC Educational Resources Information Center

    Silberman, Harry F.

    1979-01-01

    Presents two perspectives on the nature of vocational education: (1) that benefits are "extrinsic," that is, rewards are deferred until after graduation; and (2) that benefits are "intrinsic," that is, vocational education serves to promote full human development by exposing the learner to significant in-class experiences. (DR)

  7. Effects of Reinforcemnt Programs on Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Sushinsky, Leonard W.

    Attribution Theory has led to predictions that the use of material reward may impair intrinsic motivation in the rewarded activity (decreased play effects). A review of the pertinent literature reveals, however, (a) that attribution research has failed to reliably demonstrate that decreased play effects occur in minimal-trial studies (b) that for…

  8. The intrinsic quasar luminosity function: Accounting for accretion disk anisotropy

    SciTech Connect

    DiPompeo, M. A.; Myers, A. D.; Brotherton, M. S.; Runnoe, J. C.; Green, R. F.

    2014-05-20

    Quasar luminosity functions are a fundamental probe of the growth and evolution of supermassive black holes. Measuring the intrinsic luminosity function is difficult in practice, due to a multitude of observational and systematic effects. As sample sizes increase and measurement errors drop, characterizing the systematic effects is becoming more important. It is well known that the continuum emission from the accretion disk of quasars is anisotropic—in part due to its disk-like structure—but current luminosity function calculations effectively assume isotropy over the range of unobscured lines of sight. Here, we provide the first steps in characterizing the effect of random quasar orientations and simple models of anisotropy on observed luminosity functions. We find that the effect of orientation is not insignificant and exceeds other potential corrections such as those from gravitational lensing of foreground structures. We argue that current observational constraints may overestimate the intrinsic luminosity function by as much as a factor of ∼2 on the bright end. This has implications for models of quasars and their role in the universe, such as quasars' contribution to cosmological backgrounds.

  9. Intrinsic rotation in DIII-D

    SciTech Connect

    DeGrassie, J. S.; Rice, J. E.; Burrell, K. H.; Groebner, R. J.; Solomon, W. M.

    2007-05-15

    In the absence of any auxiliary torque input, the DIII-D plasma consists of nonzero toroidal angular momentum, in other words, it rotates. This effect is commonly observed in tokamaks, being referred to as intrinsic rotation. Measurements of intrinsic rotation profiles have been made in DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] H-mode discharges, with both Ohmic heating (OH) and electron cyclotron heating (ECH) in which there is no auxiliary torque. Recently, the H-mode data set has been extended with the newly configured DIII-D simultaneous co- and counter-directed neutral beam injection (NBI) capability resulting in control of the local torque deposition, where co and counter refer to the direction relative to the toroidal plasma current. Understanding intrinsic rotation is important for projection toward burning plasma performance where any NBI torque will be relatively small. The toroidal velocity is recognizably important regarding issues of stability and confinement. In DIII-D ECH H-modes the rotation profile is hollow, co-directed at large minor radius and depressed, or actually counter-directed, nearer the magnetic axis. This profile varies with the ECH power deposition profile to some extent. In contrast, OH H-modes have a relatively flat co-directed rotation profile. There is a scaling of the DIII-D intrinsic toroidal velocity with W/I{sub p}, as seen in intrinsic rotation in Alcator C-Mod [J. Rice, Nucl. Fusion 39, 1175 (1999)], where W is the total plasma thermal energy and I{sub p} is the magnitude of the toroidal plasma current. This common scaling resulted in a dimensionless similarity experiment between DIII-D and Alcator C-Mod on intrinsic rotation, obtaining a single spatial point match in the toroidal velocity normalized to the ion thermal velocity. The balanced NBI capability in DIII-D is a useful tool to push scaling studies to higher values of the plasma normalized energy, notwithstanding the details of torque deposition for co-NBI versus

  10. Intrinsic mode functions locate implicit turbulent attractors in time in frontal lobe MEG recordings.

    PubMed

    Huang, X; Huang, L; Jung, T-P; Cheng, C-K; Mandell, A J

    2014-05-16

    In seeking evidence for the presence and characteristic range of coupled time scale(s) of putative implicit turbulent attractors of dorsal frontal lobe magnetic fields, the recorded nonstationary, nonlinear MEG signals were non-orthogonally decomposed using Huang's Empirical Mode Decomposition, EMD, (Huang and Attoh-Okine, 2005) into 16 Intrinsic Mode Functions, EMD→IMFi, i=1…16. Measures known to be invariant in non-uniformly hyperbolic (turbulent) dynamical systems, topological entropy, hT, metric entropy, hM, non-uniform entropy, hU and power spectral scaling exponent, α, were imposed on each of the IMFi which evidenced most clearly an invariant temporal scale zone of IMFi, i=6…11, for hT, which we have found to be the most robust of invariant measures of MEG's magnetic field turbulent attractors (Mandell et al., 2011a,b; Mandell, 2013). The ergodic theory of dynamical systems (Walters, 1982; Pollicott and Yuri, 1998) allows the inference that an implicit attractor with consistently hT>0 will also evidence at least one positive Lyapounov exponent indicating the presence of a turbulent attractor with exponential separation of nearby initial conditions, exponential convergence of distant points and disordering, mixing, of orbital sequences. It appears that this approach permits the inference of the presence of chaotic, turbulent attractor and its characteristic time scales without the invocation of arbitrary n-dimensional embedding, phase space reconstructions or (inappropriate) orthogonal decompositions.

  11. The Quantum Group as a Symmetry ---The Schrödinger Equation of the N-Dimensional q-Deformed Harmonic Oscillator---

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Watamura, S.

    With the aim to construct a dynamical model with quantum group symmetry, the q-deformed Schrödinger equation of the harmonic oscillator on the N-dimensional quantum Euclidian space is investigated. After reviewing the differential calculus on the q-Euclidian space, the q-analog of the creation-annihilation operator is constructed. It is shown that it produces systematically all eigenfunctions of the Schrödinger equation and eigenvalues. We also present an alternative way to solve the Schrödinger equation which is based on the q-analysis. We represent the Schrödinger equation by the q-difference equation and solve it by using q-polynomials and q-exponential functions. The problem of the involution corresponding to the reality condition is discussed.

  12. Solving the Riddle of the Incompatibility Between Renormalizability and Unitarity in N-Dimensional Einstein Gravity Enlarged by Curvature-Squared Terms

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Helayël-Neto, José; Scatena, Eslley; Turcati, Rodrigo

    2013-09-01

    One of the puzzling aspects of N-dimensional Einstein Gravity (NDEG) augmented by curvature-squared terms is why renormalizability and unitarity, two of the most important properties of any physical theory, cannot be reconciled in its framework. Actually, the reason why these properties are mutually incompatible within the context of generic higher-derivative models, not necessarily related to gravity, is one of the unsolved mysteries of physics. Here, a simple solution to the NDEG riddle, based on the analysis of the interparticle gravitational potential, is presented. The main argument used to support our discussion is that tree-level unitarity and the existence of a singularity in the potential are intertwined.

  13. Geometric phase effects in excited state dynamics through a conical intersection in large molecules: N-dimensional linear vibronic coupling model study

    NASA Astrophysics Data System (ADS)

    Li, Jiaru; Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2017-08-01

    We investigate geometric phase (GP) effects in nonadiabatic transitions through a conical intersection (CI) in an N-dimensional linear vibronic coupling (ND-LVC) model. This model allows for the coordinate transformation encompassing all nonadiabatic effects within a two-dimensional (2D) subsystem, while the other N - 2 dimensions form a system of uncoupled harmonic oscillators identical for both electronic states and coupled bi-linearly with the subsystem coordinates. The 2D subsystem governs ultra-fast nonadiabatic dynamics through the CI and provides a convenient model for studying GP effects. Parameters of the original ND-LVC model define the Hamiltonian of the transformed 2D subsystem and thus influence GP effects directly. Our analysis reveals what values of ND-LVC parameters can introduce symmetry breaking in the 2D subsystem that diminishes GP effects.

  14. [From physics to biology: the intrinsic dynamics of the cosmos].

    PubMed

    González de Posada, Francisco

    2003-01-01

    The History of Universe is described in an extremely summarized manner through the use of graphics, from Big bang until today. This is done according to the most recent standard models of Cosmology and Physics of elementary particles; in other words, according to those fields in Physics of a presupposed universal reference. The History of Life is immersed in this universal physical context, in a frame where our knowledge from Geology and Biology can be only terrestrial. The underlying ideas we try to arise are: 1) the transition from a relatively elementary structure to a posterior and a relatively more complex one requires some very special "environmental" conditions; and 2) the new structure can not be described only through its materic constituents, because in cosmic dynamicity new structures and new relationships (of intrinsic respectivity) arise, together with new laws (of extrinsic respectivity). Consequently and as an objective, physical knowledge (for example, elementary particles or atoms) alone in no way can explain biological reality (for example, cell or man).

  15. Intrinsic motivation towards sports in Singaporean students: the role of sport ability beliefs.

    PubMed

    Wang, C K John; Biddle, Stuart J H

    2003-09-01

    This study investigated determinants of active lifestyles in Singaporean university students. Using confirmatory factor analysis, a measure of lay beliefs concerning athletic ability was confirmed. Other results confirmed hypotheses that beliefs reflecting that athletic ability can be developed over time (incremental beliefs) predict an achievement task (self-referenced) orientation, while beliefs reflecting that athletic ability is relatively stable (entity beliefs) predict an ego (other-person, comparative) orientation. Goal orientations directly affect perceived competence which, in turn, influence intrinsic motivation to be physically active. A task orientation had a direct link to intrinsic motivation. Results suggest that intrinsic motivation towards sport and physical activity might be enhanced through interventions that focus on self-referenced and self-improvement notions of ability as well as perceived competence.

  16. Identifying the neural substrates of intrinsic motivation during task performance.

    PubMed

    Lee, Woogul; Reeve, Johnmarshall

    2017-06-21

    Intrinsic motivation is the inherent tendency to seek out novelty and challenge, to explore and investigate, and to stretch and extend one's capacities. When people imagine performing intrinsically motivating tasks, they show heightened anterior insular cortex (AIC) activity. To fully explain the neural system of intrinsic motivation, however, requires assessing neural activity while people actually perform intrinsically motivating tasks (i.e., while answering curiosity-inducing questions or solving competence-enabling anagrams). Using event-related functional magnetic resonance imaging, we found that the neural system of intrinsic motivation involves not only AIC activity, but also striatum activity and, further, AIC-striatum functional interactions. These findings suggest that subjective feelings of intrinsic satisfaction (associated with AIC activations), reward processing (associated with striatum activations), and their interactions underlie the actual experience of intrinsic motivation. These neural findings are consistent with the conceptualization of intrinsic motivation as the pursuit and satisfaction of subjective feelings (interest and enjoyment) as intrinsic rewards.

  17. Cell-intrinsic drivers of dendrite morphogenesis.

    PubMed

    Puram, Sidharth V; Bonni, Azad

    2013-12-01

    The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.

  18. Intrinsic emittance reduction in transmission mode photocathodes

    NASA Astrophysics Data System (ADS)

    Lee, Hyeri; Cultrera, Luca; Bazarov, Ivan

    2016-03-01

    High quantum efficiency (QE) and low emittance electron beams provided by multi-alkali photocathodes make them of great interest for next generation high brightness photoinjectors. Spicer's three-step model well describes the photoemission process; however, some photocathode characteristics such as their thickness have not yet been completely exploited to further improve the brightness of the generated electron beams. In this work, we report on the emittance and QE of a multi-alkali photocathode grown onto a glass substrate operated in transmission and reflection modes at different photon energies. We observed a 20% reduction in the intrinsic emittance from the reflection to the transmission mode operation. This observation can be explained by inelastic electron-phonon scattering during electrons' transit towards the cathode surface. Due to this effect, we predict that thicker photocathode layers will further reduce the intrinsic emittance of electron beams generated by photocathodes operated in transmission mode.

  19. Intrinsic microwave dielectric loss of lanthanum aluminate.

    PubMed

    Shimada, Takeshi; Ichikawa, Koji; Minemura, Tetsuro; Yamauchi, Hiroki; Utsumi, Wataru; Ishii, Yoshinobu; Breeze, Jonathan; Alford, Neil McN

    2010-10-01

    The intrinsic dielectric properties of LaAlO₃ were investigated to understand the microwave properties of several materials containing LaAlO₃. In this study, LaAlO₃ single crystals were prepared by the Czochralski method. The temperature dependence of the dielectric properties and neutron inelastic scattering of the single crystals were measured. From these data, the intrinsic dielectric properties were evaluated and it was found that the dielectric loss of the LaAlO₃ includes two types of dielectric loss. One is a phonon absorption-related loss and the other is a component of the loss arising from Debye- type orientation polarization. The latter affects the room temperature dielectric loss in materials containing LaAlO₃. The present study suggests that avoiding this polarization loss is an important goal in decreasing the total dielectric loss.

  20. Intrinsic emittance reduction in transmission mode photocathodes

    SciTech Connect

    Lee, Hyeri Cultrera, Luca; Bazarov, Ivan

    2016-03-21

    High quantum efficiency (QE) and low emittance electron beams provided by multi-alkali photocathodes make them of great interest for next generation high brightness photoinjectors. Spicer's three-step model well describes the photoemission process; however, some photocathode characteristics such as their thickness have not yet been completely exploited to further improve the brightness of the generated electron beams. In this work, we report on the emittance and QE of a multi-alkali photocathode grown onto a glass substrate operated in transmission and reflection modes at different photon energies. We observed a 20% reduction in the intrinsic emittance from the reflection to the transmission mode operation. This observation can be explained by inelastic electron-phonon scattering during electrons' transit towards the cathode surface. Due to this effect, we predict that thicker photocathode layers will further reduce the intrinsic emittance of electron beams generated by photocathodes operated in transmission mode.

  1. Intrinsic conformal symmetries in Szekeres models

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, Pantelis S.

    2017-06-01

    We show that Spatially Inhomogeneous (SI) and Irrotational dust models admit a six-dimensional algebra of Intrinsic Conformal Vector Fields (ICVFs) Xα satisfying pacp bdℒ Xαpcd = 2ϕ(Xα)pab, where pab is the associated metric of the two-dimensional distribution 𝒳 normal to the fluid velocity ua and the radial unit space-like vector field xa. The Intrinsic Conformal (IC) algebra is determined for each of the curvature value 𝜖 that characterizes the structure of the screen space 𝒳. In addition the conformal flatness of the hypersurfaces u = 0 indicates the existence of a ten-dimensional algebra of ICVFs of the three-dimensional metric hab. We illustrate this expectation and propose a method to derive them by giving explicitly the seven proper ICVFs of the Lemaître-Tolman-Bondi (LTB) model which represents the simplest subclass within the Szekeres family.

  2. Effect of intrinsic curvature on semiflexible polymers

    NASA Astrophysics Data System (ADS)

    Ghosh, Surya K.; Singh, Kulveer; Sain, Anirban

    2009-11-01

    Recently many important biopolymers have been found to possess intrinsic curvature. Tubulin protofilaments in animal cells, FtsZ filaments in bacteria and double stranded DNA are examples. We examine how intrinsic curvature influences the conformational statistics of such polymers. We give exact results for the tangent-tangent spatial correlation function C(r)=⟨t̂(s).t̂(s+r)⟩ , both in two and three dimensions. Contrary to expectation, C(r) does not show any oscillatory behavior, rather decays exponentially and the effective persistence length has strong length dependence for short polymers. We also compute the distribution function P(R) of the end to end distance R and show how curved chains can be distinguished from wormlike chains using loop formation probability.

  3. The Intrinsic Shape of Galaxy Bulges

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, Jairo

    The knowledge of the intrinsic three-dimensional (3D) structure of galaxy components provides crucial information about the physical processes driving their formation and evolution. In this paper I discuss the main developments and results in the quest to better understand the 3D shape of galaxy bulges. I start by establishing the basic geometrical description of the problem. Our understanding of the intrinsic shape of elliptical galaxies and galaxy discs is then presented in a historical context, in order to place the role that the 3D structure of bulges play in the broader picture of galaxy evolution. Our current view on the 3D shape of the Milky Way bulge and future prospects in the field are also depicted.

  4. Intrinsic two-dimensional features as textons

    NASA Technical Reports Server (NTRS)

    Barth, E.; Zetzsche, C.; Rentschler, I.

    1998-01-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.

  5. Direct measurement of intrinsic atomic scale magnetostriction.

    PubMed

    Ruffoni, M P; Pascarelli, S; Grössinger, R; Turtelli, R Sato; Bormio-Nunes, C; Pettifer, R F

    2008-10-03

    Using differential x-ray absorption spectroscopy (DiffXAS) we have measured and quantified the intrinsic, atomic-scale magnetostriction of Fe81Ga19. By exploiting the chemical selectivity of DiffXAS, the Fe and Ga local environments have been assessed individually. The enhanced magnetostriction induced by the addition of Ga to Fe was found to originate from the Ga environment, where lambda;{gamma,2}( approximately (3/2)lambda_{100}) is 390+/-40 ppm. In this environment, 001 Ga-Ga pair defects were found to exist, which mediate the magnetostriction by inducing large strains in the surrounding Ga-Fe bonds. For the first time, intrinsic, chemically selective magnetostrictive strain has been measured and quantified at the atomic level, allowing true comparison with theory.

  6. Intrinsically Radiolabeled Nanoparticles: An Emerging Paradigm

    PubMed Central

    Goel, Shreya; Ehlerding, Emily B.

    2014-01-01

    Although chelator-based radiolabeling techniques have been used for decades, concerns about the complexity of coordination chemistry, possible altering of pharmacokinetics of carriers, and potential detachment of radioisotopes during imaging have driven the need for developing a simple yet better technique for future radiolabeling. Here, the emerging concept of intrinsically radiolabeled nanoparticles, which could be synthesized using methods such as hot-plus-cold precursors, specific trapping, cation exchange, and proton beam activation, is introduced. Representative examples of using these multifunctional nanoparticles for multimodality molecular imaging are highlighted together with current challenges and future research directions. Although still in the early stages, design and synthesis of intrinsically radiolabeled nanoparticles has shown attractive potential to offer easier, faster, and more specific radiolabeling possibilities for the next generation of molecular imaging. PMID:24978934

  7. Intrinsic two-dimensional features as textons

    NASA Technical Reports Server (NTRS)

    Barth, E.; Zetzsche, C.; Rentschler, I.

    1998-01-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.

  8. The intrinsic damping of the fractional oscillator

    NASA Astrophysics Data System (ADS)

    Tofighi, Ali

    2003-11-01

    We obtain analytical expressions for the time rate of change of the potential energy, the kinetic energy and the total energy of a fractional oscillator in terms of the products of Mittag-Leffler functions. We propose a definition for the intrinsic damping force of this oscillator. We obtain a general expression for this damping force. An expression for this damping force in the asymptotic limit ( ωt→0) is also obtained.

  9. Intrinsic interfacial phenomena in manganite heterostructures.

    PubMed

    Vaz, C A F; Walker, F J; Ahn, C H; Ismail-Beigi, S

    2015-04-01

    We review recent advances in our understanding of interfacial phenomena that emerge when dissimilar materials are brought together at atomically sharp and coherent interfaces. In particular, we focus on phenomena that are intrinsic to the interface and review recent work carried out on perovskite manganites interfaces, a class of complex oxides whose rich electronic properties have proven to be a useful playground for the discovery and prediction of novel phenomena.

  10. Intrinsic spin dynamics in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Valín-Rodríguez, Manuel

    2005-12-01

    We investigate the characteristic spin dynamics corresponding to semiconductor quantum dots within the multiband envelope function approximation (EFA). By numerically solving an 8 × 8 k·p Hamiltonian we treat systems based on different III-V semiconductor materials. It is shown that, even in the absence of an applied magnetic field, these systems show intrinsic spin dynamics governed by intraband and interband transitions leading to characteristic spin frequencies ranging from THz to optical frequencies.

  11. Design Space Issues for Intrinsic Evolvable Hardware

    NASA Technical Reports Server (NTRS)

    Hereford, James; Gwaltney, David

    2004-01-01

    This paper discusses the problem of increased programming time for intrinsic evolvable hardware (EM) as the complexity of the circuit grows. As the circuit becomes more complex, then more components will be required and a longer programming string, L, is required. We develop equations for the size of the population, n, and the number of generations required for the population to converge, based on L. Our analytical results show that even though the design search space grows as 2L (assuming a binary programming string), the number of circuit evaluations, n*ngen, only grows as O(Lg3), or slightly less than O(L). This makes evolvable techniques a good tool for exploring large design spaces. The major hurdle for intrinsic EHW is evaluation time for each possible circuit. The evaluation time involves downloading the bit string to the device, updating the device configuration, measuring the output and then transferring the output data to the control processor. Each of these steps must be done for each member of the population. The processing time of the computer becomes negligible since the selection/crossover/mutation steps are only done once per generation. Evaluation time presently limits intrinsic evolvable hardware techniques to designing only small or medium-sized circuits. To evolve large or complicated circuits, several researchers have proposed using hierarchical design or reuse techniques where submodules are combined together to form complex circuits. However, these practical approaches limit the search space of available designs and preclude utilizing parasitic coupling or other effects within the programmable device. The practical approaches also raise the issue of why intrinsic EHW techniques do not easily apply to large design spaces, since the analytical results show only an O(L) complexity growth.

  12. Intrinsic excitations in doubly odd nuclei

    SciTech Connect

    Sood, P.C.

    1985-01-15

    A procedure is outlined for predicting the bandhead energies of the two-particle (intrinsic) states of odd-odd deformed nuclei based on a quantitative evaluation of the zero range n-p residual interaction energy. We present our results for 250Bk, where many such levels are experimentally known, and for 236Np and 246Am, where the information is very scarce and that too uncertain, to illustrate the effectiveness of this approach.

  13. Moral Distress, Workplace Health, and Intrinsic Harm.

    PubMed

    Weber, Elijah

    2016-05-01

    Moral distress is now being recognized as a frequent experience for many health care providers, and there's good evidence that it has a negative impact on the health care work environment. However, contemporary discussions of moral distress have several problems. First, they tend to rely on inadequate characterizations of moral distress. As a result, subsequent investigations regarding the frequency and consequences of moral distress often proceed without a clear understanding of the phenomenon being discussed, and thereby risk substantially misrepresenting the nature, frequency, and possible consequences of moral distress. These discussions also minimize the intrinsically harmful aspects of moral distress. This is a serious omission. Moral distress doesn't just have a negative impact on the health care work environment; it also directly harms the one who experiences it. In this paper, I claim that these problems can be addressed by first clarifying our understanding of moral distress, and then identifying what makes moral distress intrinsically harmful. I begin by identifying three common mistakes that characterizations of moral distress tend to make, and explaining why these mistakes are problematic. Next, I offer an account of moral distress that avoids these mistakes. Then, I defend the claim that moral distress is intrinsically harmful to the subject who experiences it. I conclude by explaining how acknowledging this aspect of moral distress should reshape our discussions about how best to deal with this phenomenon. © 2015 John Wiley & Sons Ltd.

  14. Intrinsic determinants of optic nerve regeneration.

    PubMed

    Zhu, Rui-lin; Cho, Kin-sang; Guo, Chen-ying; Chew, Justin; Chen, Dong-feng; Yang, Liu

    2013-07-01

    To review the functions of these intracellular signals in their regulation of retinal ganglion cell (RGC) axon regeneration. Relevant articles published in English or Chinese from 1970 to present were selected from PubMed. Searches were made using the terms "intrinsic determinants, axon regeneration, RGC, optic nerve regeneration, and central nervous system axon regeneration." Articles studying the mechanisms controlling RGC and central nervous system (CNS) axon regeneration were reviewed. Articles focusing on the intrinsic determinants of axon regeneration were selected. Like other CNS neurons of mammals, RGCs undergo a developmental loss in their ability to grow axons as they mature, which is a critical contributing factor to the failure of nerve regeneration and repair after injury. This growth failure can be attributed, at least in part, by the induction of molecular programs preventing cellular overgrowth and termination of axonal growth upon maturation. Key intracellular signals and transcription factors, including B cell lymphoma/leukemia 2, cyclic adenine monophosphate, mammalian target of rapamycin, and Krüppel-like transcription factors, have been identified to play central roles in this process. Intense effort and substantial progress have been made to identify the various intrinsic growth pathways that regulate RGC axon regeneration. More work is needed to elucidate the mechanisms of and the interrelationship between the actions of these factors and to successfully achieve regeneration and repair of the severed RGC axons.

  15. Inhibitory control of intrinsic hippocampal oscillations?

    PubMed

    Fischer, Yacov; Dürr, Roland

    2003-08-22

    An oscillatory mode of activity is a basic operational mode of the hippocampus. Such activity involves the concurrent expression of several rhythmic processes, of which theta (4-15 Hz) and gamma (20-80 Hz) oscillations are prominent and considered to be important for cognitive processing. In an experimental model that preserves the intrinsic network oscillator, exhibiting the dependency on cholinergic inputs and consequent expression of concurrent theta and gamma oscillations, we investigate the intrinsic mechanisms underlying such integrated hippocampal network responses. This experimental framework is used here to examine the currently prevailing dogma, that interneurons control hippocampal oscillations. The spontaneous response of individual pyramidal cells (in areas CA3 and CA1) and interneurons (area CA3), during oscillatory activity, was monitored intracellularly. Particular attention was given to the initiation of interneuron discharge during oscillations, to the impact of the synaptic output of discharging interneurons on the oscillatory activity, and to the time at which interneurons discharge in relation to the oscillatory cycles. Analysis of the spontaneous patterns of activity in individual interneurons and their outcome, during the oscillatory activity, revealed that interneuron activity is incompatible with initiating, pacing or determining the oscillatory frequencies, although contributing to the apparent rhythmic patterns. Moreover, our results show that non-interneuronal members of the network control interneuron activity. We therefore suggest that the activity of the excitatory cells, i.e., principle cells, is critical toward the initiation, pacing and synchronization of intrinsic hippocampal network oscillations.

  16. Intrinsic Mean Square Displacement in Proteins

    NASA Astrophysics Data System (ADS)

    Vural, Derya; Glyde, Henry R.

    2012-02-01

    The dynamics of biological molecules is investigated in neutron scattering experiments, in molecular dynamics simulations, and using analytical theory. Specifically, the mean square displacement (MSD), exp, of hydrogen in proteins is determined from measurements of the incoherent elastic neutron scattering intensity (ENSI). The MSD, exp, is usually obtained from the dependence of the ENSI on the scattering wave vector Q. The MSD increases with increasing temperature reaching large values at room temperature. Large MSD is often associated with and used as an indicator of protein function. The observed MSD, however, depends on the energy resolution of the neutron spectrometer employed. We present a method, a first attempt, to extract the intrinsic MSD of hydrogen in protein from measurements, one that is independent of the instrument resolution. The method consists of a model of the ENSI that contains (1) the intrinsic MSD, (2) the instrument resolution width and (3) a parameter describing the motional processes that contribute to the MSD. Several examples of intrinsic MSDs in proteins obtained from fitting to data in the existing literature will be presented.

  17. Intermediate intrinsic diversity enhances neural population coding.

    PubMed

    Tripathy, Shreejoy J; Padmanabhan, Krishnan; Gerkin, Richard C; Urban, Nathaniel N

    2013-05-14

    Cell-to-cell variability in molecular, genetic, and physiological features is increasingly recognized as a critical feature of complex biological systems, including the brain. Although such variability has potential advantages in robustness and reliability, how and why biological circuits assemble heterogeneous cells into functional groups is poorly understood. Here, we develop analytic approaches toward answering how neuron-level variation in intrinsic biophysical properties of olfactory bulb mitral cells influences population coding of fluctuating stimuli. We capture the intrinsic diversity of recorded populations of neurons through a statistical approach based on generalized linear models. These models are flexible enough to predict the diverse responses of individual neurons yet provide a common reference frame for comparing one neuron to the next. We then use Bayesian stimulus decoding to ask how effectively different populations of mitral cells, varying in their diversity, encode a common stimulus. We show that a key advantage provided by physiological levels of intrinsic diversity is more efficient and more robust encoding of stimuli by the population as a whole. However, we find that the populations that best encode stimulus features are not simply the most heterogeneous, but those that balance diversity with the benefits of neural similarity.

  18. Intermediate intrinsic diversity enhances neural population coding

    PubMed Central

    Tripathy, Shreejoy J.; Padmanabhan, Krishnan; Gerkin, Richard C.; Urban, Nathaniel N.

    2013-01-01

    Cell-to-cell variability in molecular, genetic, and physiological features is increasingly recognized as a critical feature of complex biological systems, including the brain. Although such variability has potential advantages in robustness and reliability, how and why biological circuits assemble heterogeneous cells into functional groups is poorly understood. Here, we develop analytic approaches toward answering how neuron-level variation in intrinsic biophysical properties of olfactory bulb mitral cells influences population coding of fluctuating stimuli. We capture the intrinsic diversity of recorded populations of neurons through a statistical approach based on generalized linear models. These models are flexible enough to predict the diverse responses of individual neurons yet provide a common reference frame for comparing one neuron to the next. We then use Bayesian stimulus decoding to ask how effectively different populations of mitral cells, varying in their diversity, encode a common stimulus. We show that a key advantage provided by physiological levels of intrinsic diversity is more efficient and more robust encoding of stimuli by the population as a whole. However, we find that the populations that best encode stimulus features are not simply the most heterogeneous, but those that balance diversity with the benefits of neural similarity. PMID:23630284

  19. Intrinsic and extrinsic effects on image memorability.

    PubMed

    Bylinskii, Zoya; Isola, Phillip; Bainbridge, Constance; Torralba, Antonio; Oliva, Aude

    2015-11-01

    Previous studies have identified that images carry the attribute of memorability, a predictive value of whether a novel image will be later remembered or forgotten. Here we investigate the interplay between intrinsic and extrinsic factors that affect image memorability. First, we find that intrinsic differences in memorability exist at a finer-grained scale than previously documented. Second, we test two extrinsic factors: image context and observer behavior. Building on prior findings that images that are distinct with respect to their context are better remembered, we propose an information-theoretic model of image distinctiveness. Our model can automatically predict how changes in context change the memorability of natural images. In addition to context, we study a second extrinsic factor: where an observer looks while memorizing an image. It turns out that eye movements provide additional information that can predict whether or not an image will be remembered, on a trial-by-trial basis. Together, by considering both intrinsic and extrinsic effects on memorability, we arrive at a more complete and fine-grained model of image memorability than previously available. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Correlation between Intrinsic Patellofemoral Pain Syndrome in Young Adults and Lower Extremity Biomechanics.

    PubMed

    Kwon, Ohjeoung; Yun, Mijung; Lee, Wanhee

    2014-07-01

    [Purpose] The purpose of this study was to evaluate the correlation between intrinsic patellofemoral pain syndrome (PFPS) in young adults and lower extremity biomechanics. [Subjects] This experiment was carried out with sixty (24 men and 32 women), who are normal university students as subjects. [Methods] All subjects underwent 3 clinical evaluations. For distinguishing the intrinsic PFPS from controls, we used the Modified Functional Index Questionnaire (MFIQ), Clarke's test and the Eccentric step test. Based on the results of the tests, subjects who were classified as positive for 2 more tests were allocated to the bilateral or unilateral intrinsic PFPS group (n=14), and the others were allocated to the control group (n=42). These two groups were tested for hamstring tightness, foot overpronation, and static Q-angle and dynamic Q-angle. These are the four lower extremity biomechanic, cited as risk factors of patellofemoral pain syndrome. [Results] The over pronation, static Q-angle and the dynamic Q-angle were not significantly different between the two groups. However, the hamstring tightness of the PFPS group was significantly greater than that of the controls. [Conclusion] We examined individuals for intrinsic patellofemoral pain syndrome in young adults and lower extremity biomechanics. We found a strong correlation between intrinsic PFPS and hamstring tightness.

  1. Equivalent intrinsic blur in spatial vision.

    PubMed

    Levi, D M; Klein, S A

    1990-01-01

    We used Gaussian blurred stimuli to explore the effect of blur on three tasks: (i) 2-line "resolution"; (ii) line detection; and (iii) spatial interval discrimination, in both central and peripheral vision. The results of our experiments can be summarized as follows. (i) 2-Line "resolution": thresholds for pairs of unblurred, low contrast, stimuli are approx. 0.5 min arc in the fovea. When the stimulus blur is small, it has little effect upon 2-line "resolution"; however, when the stimulus blur, sigma, exceeds 0.5 min, thresholds are degraded. We operationally define this transition point as the equivalent intrinsic blur or Bi. When the standard deviation of the stimulus blur, sigma, is greater than Bi, then the "resolution" threshold is approximately equal to sigma. Both the unblurred "resolution" threshold, and the equivalent intrinsic blur, Bi, vary with eccentricity in a manner consistent with the variation of cone separation within the central 10 deg. When the stimulus blur exceeds the equivalent intrinsic blur, "resolution" in the periphery is the same as in the fovea. (ii) Line detection: when the standard deviation of the stimulus blur, sigma, is less than Bi, then the line detection threshold is approximately inversely proportional to sigma (it is approximately TdBi/sigma) i.e. it obeys Ricco's law. When the standard deviation of the stimulus blur, sigma, is greater than Bi, then the "resolution" threshold is approximately equal to sigma and the detection threshold is approximately a fixed contrast (to be referred to as Td). According to (i) and (ii), the equivalent intrinsic blur, Bi, plays a dual role in determining both the "resolution" threshold and the detection threshold, Bi corresponds to the "Ricco's diameter" for spatial summation in a detection task, and it also corresponds to the "resolution" threshold for thin lines. This connection between detection and "resolution" is somewhat surprising. (iii) Spatial interval discrimination: thresholds are

  2. Effects of Extrinsic Rewards on Intrinsic Motivation in the Classroom.

    ERIC Educational Resources Information Center

    Workman, Edward A.; Williams, Robert L.

    1980-01-01

    Reviews classroom behavior management studies to see if extrinsic rewards affect intrinsic reinforcement value of appropriate classroom behaviors. Conclusion indicates extrinsic rewards are useful. Teachers need not avoid the use of rewards in fear of undermining intrinsic interest. (LAB)

  3. Effects of Extrinsic Rewards on Intrinsic Motivation in the Classroom.

    ERIC Educational Resources Information Center

    Workman, Edward A.; Williams, Robert L.

    1980-01-01

    Reviews classroom behavior management studies to see if extrinsic rewards affect intrinsic reinforcement value of appropriate classroom behaviors. Conclusion indicates extrinsic rewards are useful. Teachers need not avoid the use of rewards in fear of undermining intrinsic interest. (LAB)

  4. Importance and challenges of measuring intrinsic foot muscle strength

    PubMed Central

    2012-01-01

    Background Intrinsic foot muscle weakness has been implicated in a range of foot deformities and disorders. However, to establish a relationship between intrinsic muscle weakness and foot pathology, an objective measure of intrinsic muscle strength is needed. The aim of this review was to provide an overview of the anatomy and role of intrinsic foot muscles, implications of intrinsic weakness and evaluate the different methods used to measure intrinsic foot muscle strength. Method Literature was sourced from database searches of MEDLINE, PubMed, SCOPUS, Cochrane Library, PEDro and CINAHL up to June 2012. Results There is no widely accepted method of measuring intrinsic foot muscle strength. Methods to estimate toe flexor muscle strength include the paper grip test, plantar pressure, toe dynamometry, and the intrinsic positive test. Hand-held dynamometry has excellent interrater and intrarater reliability and limits toe curling, which is an action hypothesised to activate extrinsic toe flexor muscles. However, it is unclear whether any method can actually isolate intrinsic muscle strength. Also most methods measure only toe flexor strength and other actions such as toe extension and abduction have not been adequately assessed. Indirect methods to investigate intrinsic muscle structure and performance include CT, ultrasonography, MRI, EMG, and muscle biopsy. Indirect methods often discriminate between intrinsic and extrinsic muscles, but lack the ability to measure muscle force. Conclusions There are many challenges to accurately measure intrinsic muscle strength in isolation. Most studies have measured toe flexor strength as a surrogate measure of intrinsic muscle strength. Hand-held dynamometry appears to be a promising method of estimating intrinsic muscle strength. However, the contribution of extrinsic muscles cannot be excluded from toe flexor strength measurement. Future research should clarify the relative contribution of intrinsic and extrinsic muscles

  5. Intrinsic Motivation: An Overlooked Component for Student Success

    ERIC Educational Resources Information Center

    Augustyniak, Robert A.; Ables, Adrienne Z.; Guilford, Philip; Lujan, Heidi L.; Cortright, Ronald N.; DiCarlo, Stephen E.

    2016-01-01

    Intrinsic motivation to learn involves engaging in learning opportunities because they are seen as enjoyable, interesting, or relevant to meeting one's core psychological needs. As a result, intrinsic motivation is associated with high levels of effort and task performance. Students with greater levels of intrinsic motivation demonstrate strong…

  6. Personalizing Sample Databases with Facebook Information to Increase Intrinsic Motivation

    ERIC Educational Resources Information Center

    Marzo, Asier; Ardaiz, Oscar; Sanz de Acedo, María Teresa; Sanz de Acedo, María Luisa

    2017-01-01

    Motivation is fundamental for students to achieve successful and complete learning. Motivation can be extrinsic, i.e., driven by external rewards, or intrinsic, i.e., driven by internal factors. Intrinsic motivation is the most effective and must be inspired by the task at hand. Here, a novel strategy is presented to increase intrinsic motivation…

  7. Intrinsic Motivation: An Overlooked Component for Student Success

    ERIC Educational Resources Information Center

    Augustyniak, Robert A.; Ables, Adrienne Z.; Guilford, Philip; Lujan, Heidi L.; Cortright, Ronald N.; DiCarlo, Stephen E.

    2016-01-01

    Intrinsic motivation to learn involves engaging in learning opportunities because they are seen as enjoyable, interesting, or relevant to meeting one's core psychological needs. As a result, intrinsic motivation is associated with high levels of effort and task performance. Students with greater levels of intrinsic motivation demonstrate strong…

  8. Fundamental Advances in Inverse Mechanics Towards Self-Aware and Intrinsically Adaptable Structural Systems

    DTIC Science & Technology

    2014-11-30

    AFRL-OSR-VA-TR-2015-0007 FUNDAMENTAL ADVANCES IN INVERSE MECHANICS TOWARDS SELF-AWARE JOHN BRIGHAM UNIVERSITY OF PITTSBURGH Final Report 12/04/2014...TITLE AND SUBTITLE Fundamental Advances in Inverse Mechanics Towards Self-Aware and Intrinsically Adaptable Structural Systems 5a. CONTRACT NUMBER...methods for solving inverse problems related to smart morphable structures that can evaluate their current environment and then adapt accordingly to

  9. Intrinsic and extrinsic mechanisms of dendritic morphogenesis.

    PubMed

    Dong, Xintong; Shen, Kang; Bülow, Hannes E

    2015-01-01

    The complex, branched morphology of dendrites is a cardinal feature of neurons and has been used as a criterion for cell type identification since the beginning of neurobiology. Regulated dendritic outgrowth and branching during development form the basis of receptive fields for neurons and are essential for the wiring of the nervous system. The cellular and molecular mechanisms of dendritic morphogenesis have been an intensely studied area. In this review, we summarize the major experimental systems that have contributed to our understandings of dendritic development as well as the intrinsic and extrinsic mechanisms that instruct the neurons to form cell type-specific dendritic arbors.

  10. Intrinsically disordered proteins and multicellular organisms.

    PubMed

    Dunker, A Keith; Bondos, Sarah E; Huang, Fei; Oldfield, Christopher J

    2015-01-01

    Intrinsically disordered proteins (IDPs) and IDP regions lack stable tertiary structure yet carry out numerous biological functions, especially those associated with signaling, transcription regulation, DNA condensation, cell division, and cellular differentiation. Both post-translational modifications (PTMs) and alternative splicing (AS) expand the functional repertoire of IDPs. Here we propose that an "IDP-based developmental toolkit," which is comprised of IDP regions, PTMs, especially multiple PTMs, within these IDP regions, and AS events within segments of pre-mRNA that code for these same IDP regions, allows functional diversification and environmental responsiveness for molecules that direct the development of complex metazoans.

  11. Metacognitive mastery and intrinsic motivation in schizophrenia.

    PubMed

    Vohs, Jenifer L; Lysaker, Paul H

    2014-01-01

    Deficits in intrinsic motivation (IM) have been linked to poorer outcome in schizophrenia, but its proximal mechanisms remain poorly understood. This study examined whether metacognitive mastery, or the capacity to use knowledge of self, others, and context to identify and cope with psychological difficulties, predicted levels of IM for 6 months among 75 participants with prolonged schizophrenia. Repeated-measures analysis of variance revealed that high metacognitive mastery predicted consistently higher levels of IM; however, intermediate and low mastery did not produce unique IM profiles. The findings suggest that metacognitive mastery may have an important role in IM over time and could be a meaningful treatment target.

  12. Ambipolar quantum dots in intrinsic silicon

    SciTech Connect

    Betz, A. C. Gonzalez-Zalba, M. F.; Podd, G.; Ferguson, A. J.

    2014-10-13

    We electrically measure intrinsic silicon quantum dots with electrostatically defined tunnel barriers. The presence of both p- and n-type ohmic contacts enables the accumulation of either electrons or holes. Thus, we are able to study both transport regimes within the same device. We investigate the effect of the tunnel barriers and the electrostatically defined quantum dots. There is greater localisation of charge states under the tunnel barriers in the case of hole conduction, leading to higher charge noise in the p-type regime.

  13. Intrinsic Differences between Oral and Skin Keratinocytes

    PubMed Central

    Turabelidze, Anna; Guo, Shujuan; Chung, Allison Yen; Chen, Lin; Dai, Yang; Marucha, Phillip T.; DiPietro, Luisa A.

    2014-01-01

    Keratinocytes cover both the skin and some oral mucosa, but the morphology of each tissue and the behavior of the keratinocytes from these two sites are different. One significant dissimilarity between the two sites is the response to injury. Oral mucosal wounds heal faster and with less inflammation than equivalent cutaneous wounds. We hypothesized that oral and skin keratinocytes might have intrinsic differences at baseline as well as in the response to injury, and that such differences would be reflected in gene expression profiles. PMID:25198578

  14. A method to compute the n-dimensional solid spectral angle between vectors and its use for band selection in hyperspectral data

    NASA Astrophysics Data System (ADS)

    Tian, M.; Feng, J.; Rivard, B.; Zhao, C.

    2016-08-01

    This study presents the calculation of spectral angle beyond two endmember vectors to the n-dimensional solid spectral angle (NSSA). The calculation of the NSSA is used to characterize the local spectral shape difference among a set of endmembers, leading to a methodology for band selection based on spectral shape variations of more than two spectra. Equidistributed sequences used in the quasi-Monte Carlo method (ESMC) for numerical simulations are shown to expedite the calculation of the NSSA. We develop a band selection method using the computation of NSSA(ϑn) in the context of a sliding window. By sliding the window over all bands available for varying band intervals, the calculated solid spectral angle values can capture the similarity of the endmembers over all spectral regions available and for spectral features of varying widths. By selecting a subset of spectral bands with largest solid spectral angles, a methodology can be developed to capture the most important spectral information for the separation or mapping of endmembers. We provide an example of the merits of the NSSA-ESMC method for band selection as applied to linear spectral unmixing. Specifically, we examine the endmember abundance errors resulting from the NSSA band selection method as opposed to using the full spectral dimensionality available.

  15. Thin film solar cell including a spatially modulated intrinsic layer

    DOEpatents

    Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  16. Intrinsic adaptation in autonomous recurrent neural networks.

    PubMed

    Marković, Dimitrije; Gros, Claudius

    2012-02-01

    A massively recurrent neural network responds on one side to input stimuli and is autonomously active, on the other side, in the absence of sensory inputs. Stimuli and information processing depend crucially on the quality of the autonomous-state dynamics of the ongoing neural activity. This default neural activity may be dynamically structured in time and space, showing regular, synchronized, bursting, or chaotic activity patterns. We study the influence of nonsynaptic plasticity on the default dynamical state of recurrent neural networks. The nonsynaptic adaption considered acts on intrinsic neural parameters, such as the threshold and the gain, and is driven by the optimization of the information entropy. We observe, in the presence of the intrinsic adaptation processes, three distinct and globally attracting dynamical regimes: a regular synchronized, an overall chaotic, and an intermittent bursting regime. The intermittent bursting regime is characterized by intervals of regular flows, which are quite insensitive to external stimuli, interceded by chaotic bursts that respond sensitively to input signals. We discuss these findings in the context of self-organized information processing and critical brain dynamics.

  17. Intrinsically disordered proteins drive membrane curvature

    PubMed Central

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-01-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. PMID:26204806

  18. A tonoplast intrinsic protein in Gardenia jasminoides

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Li, Hao-Ming

    2017-08-01

    Physiological and molecular studies proved that plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) subfamily of aquaporins play key functions in plant water homeostasis. Five specialized subgroups (TIP1-5) of TIPs have been found in higher plants, in which the TIP1 and TIP2 isoforms are the largest arbitrary groups. TIPs have high water-transport activity than PIPs, some TIPs can transport other small molecule such as urea, ammonia, hydrogen peroxide, and carbon dioxide. In this work, the structure of the putative tonoplast aquaporin from Gardenia jasminoides (GjTIP) was analyzed. Its transcript level has increased during fruit maturation. A phylogenetic analysis indicates that the protein belongs to TIP1 subfamily. A three-dimensional model structure of GjTIP was built based on crystal structure of an ammonia-permeable AtTIP2-1 from Arabidopsis thaliana. The model structure displayed as a homo-tetramer, each monomer has six trans-membrane and two half-membrane-spanning α helices. The data suggests that the GjTIP has tendency to be a mixed function aquaporin, might involve in water, urea and hydrogen peroxide transport, and the gating machanism founded in some AQPs involving pH and phosphorylation response have not been proved in GjTIP.

  19. Human dignity: intrinsic or relative value?

    PubMed

    Thiel, Marie-Jo

    2010-09-01

    Is human dignity an intrinsic value? Or is it a relative value, depending on the perception or assessment of quality of life? History had delineated some of its key features, but the advent of human rights and the Holocaust put special emphasis on this notion, particularly in the field of bioethics. But if modern medicine regards human dignity as crucial, it tends to support this notion while assessing and measuring it. The quality of life becomes the gauge for measuring human dignity, starting from a distinction between a viable and a non-viable existence, which may eventually lead to assisted death, or to letting die. This article argues that the concept of quality of life is of great relevant for medical practice, but on the condition of not being used as a standard to measure the dignity of the individual. Rather, the quality of life should be regarded as an imperative posed by human dignity, which is necessarily intrinsic. If the quality of life measures dignity, humankind is divided into two categories: lives worthy of living, and lives unworthy of living, and society becomes a jungle. Raising the quality of life as a requirement of the inherent human dignity does not solve automatically all problems and does not eliminate a feeling of unworthiness. But it ensures its 'human' value: the equal respect for every human being.

  20. Characterization of Intrinsic Properties of Promoters.

    PubMed

    Rudge, Timothy J; Brown, James R; Federici, Fernan; Dalchau, Neil; Phillips, Andrew; Ajioka, James W; Haseloff, Jim

    2016-01-15

    Accurate characterization of promoter behavior is essential for the rational design of functional synthetic transcription networks such as logic gates and oscillators. However, transcription rates observed from promoters can vary significantly depending on the growth rate of host cells and the experimental and genetic contexts of the measurement. Furthermore, in vivo measurement methods must accommodate variation in translation, protein folding, and maturation rates of reporter proteins, as well as metabolic load. The external factors affecting transcription activity may be considered to be extrinsic, and the goal of characterization should be to obtain quantitative measures of the intrinsic characteristics of promoters. We have developed a promoter characterization method that is based on a mathematical model for cell growth and reporter gene expression and exploits multiple in vivo measurements to compensate for variation due to extrinsic factors. First, we used optical density and fluorescent reporter gene measurements to account for the effect of differing cell growth rates. Second, we compared the output of reporter genes to that of a control promoter using concurrent dual-channel fluorescence measurements. This allowed us to derive a quantitative promoter characteristic (ρ) that provides a robust measure of the intrinsic properties of a promoter, relative to the control. We imposed different extrinsic factors on growing cells, altering carbon source and adding bacteriostatic agents, and demonstrated that the use of ρ values reduced the fraction of variance due to extrinsic factors from 78% to less than 4%. This is a simple and reliable method to quantitatively describe promoter properties.

  1. Intrinsically disordered proteins drive membrane curvature

    NASA Astrophysics Data System (ADS)

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-07-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  2. NdN: An intrinsic ferromagnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Anton, E.-M.; McNulty, J. F.; Ruck, B. J.; Suzuki, M.; Mizumaki, M.; Antonov, V. N.; Quilty, J. W.; Strickland, N.; Trodahl, H. J.

    2016-02-01

    The rare-earth nitrides have recently regained attention due to findings that most members of the series are intrinsic ferromagnetic semiconductors, a class of materials that is crucial for the development of spintronics devices. Here we present a study of NdN thin films, with films grown via molecular beam epitaxy. Optical transmission measurements revealed a band gap of about 0.9 eV, while resistivity measurements confirmed semiconducting behavior with a negative temperature coefficient of resistance, though semimetallic behavior could not be ruled out. The room temperature resistivity of 0.6 m Ω cm indicates strong doping by nitrogen vacancies. Magnetization measurements show a ferromagnetic moment of 1.0 ±0.2 μB below the Curie temperature TC of 43 ±1 K, strongly suppressed from the Hund's rules value of 3.27 μB per ion. The ferromagnetic moment is strongly quenched and the TC is enhanced compared to previously studied bulk NdN, and crystal field calculations reveal that the quenched moment is likely due to lattice strain. X-ray magnetic circular dichroism measurements show that the magnetic moment is orbital dominant, placing NdN in the same category as SmN, an intrinsic ferromagnetic semiconductor with an orbital-dominant ferromagnetic moment.

  3. The Neglected Intrinsic Resistome of Bacterial Pathogens

    PubMed Central

    Fajardo, Alicia; Martínez-Martín, Nadia; Mercadillo, María; Galán, Juan C.; Ghysels, Bart; Matthijs, Sandra; Cornelis, Pierre; Wiehlmann, Lutz; Tümmler, Burkhard; Baquero, Fernando; Martínez, José L.

    2008-01-01

    Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature. PMID:18286176

  4. Intrinsic graph structure estimation using graph Laplacian.

    PubMed

    Noda, Atsushi; Hino, Hideitsu; Tatsuno, Masami; Akaho, Shotaro; Murata, Noboru

    2014-07-01

    A graph is a mathematical representation of a set of variables where some pairs of the variables are connected by edges. Common examples of graphs are railroads, the Internet, and neural networks. It is both theoretically and practically important to estimate the intensity of direct connections between variables. In this study, a problem of estimating the intrinsic graph structure from observed data is considered. The observed data in this study are a matrix with elements representing dependency between nodes in the graph. The dependency represents more than direct connections because it includes influences of various paths. For example, each element of the observed matrix represents a co-occurrence of events at two nodes or a correlation of variables corresponding to two nodes. In this setting, spurious correlations make the estimation of direct connection difficult. To alleviate this difficulty, a digraph Laplacian is used for characterizing a graph. A generative model of this observed matrix is proposed, and a parameter estimation algorithm for the model is also introduced. The notable advantage of the proposed method is its ability to deal with directed graphs, while conventional graph structure estimation methods such as covariance selections are applicable only to undirected graphs. The algorithm is experimentally shown to be able to identify the intrinsic graph structure.

  5. Rotating pigment cells exhibit an intrinsic chirality.

    PubMed

    Yamanaka, Hiroaki; Kondo, Shigeru

    2015-01-01

    In multicellular organisms, cell properties, such as shape, size and function are important in morphogenesis and physiological functions. Recently, 'cellular chirality' has attracted attention as a cellular property because it can cause asymmetry in the bodies of animals. In recent in vitro studies, the left-right bias of cellular migration and of autonomous arrangement of cells under some specific culture conditions were discovered. However, it is difficult to identify the molecular mechanism underlying their intrinsic chirality because the left-right bias observed to date is subtle or is manifested in the stable orientation of cells. Here, we report that zebrafish (Danio rerio) melanophores exhibit clear cellular chirality by unidirectional counterclockwise rotational movement under isolated conditions without any special settings. The chirality is intrinsic to melanophores because the direction of the cellular rotation was not affected by the type of extracellular matrix. We further found that the cellular rotation was generated as a counter action of the clockwise movement of actin cytoskeleton. It suggested that the mechanism that directs actin cytoskeleton in the clockwise direction is pivotal for determining cellular chirality.

  6. Extrinsic and intrinsic fiberoptic Sagnac ultrasound sensors

    NASA Astrophysics Data System (ADS)

    Fomitchov, Pavel A.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    2000-07-01

    A compact, dual-probe, fiberized Sagnac ultrasound sensor (SUS) capable of detecting ultrasonic waves of various types is described. The main advantages of the proposed device are (1) the ability to detect ultrasonic waves on the surface (extrinsic mode) as well as in the interior of structures (intrinsic mode); (2) improved SNR, which has been achieved using an optical frequency shifting technique for biasing to quadrature and for elimination of parasitic interference between the desired sampling beams and other nonessential beams in the interferometer; (3) the ability to detect ultrasonic signals on rough surfaces by the use of an electromechanical speckle-hunting technique (in the extrinsic mode); (4) dual-probe configuration; and (5) directional sensitivity to ultrasound when the system is operated in the intrinsic mode or on a polished surface in the extrinsic mode. Several applications of the SUS for nondestructive characterization of material properties and testing of structures for flaws are presented. Bulk longitudinal waves, Rayleigh waves and Lamb waves are measured using the SUS to (1) characterize piezoelectric ultrasonic transducer beam profiles, (2) study the scattering of ultrasonic waves by flaws, (3) identify and size surface breaking flaws in aircraft wheel components, and (4) monitor in real time the cure process of an epoxy resin.

  7. MRI endoscopy using intrinsically localized probes

    PubMed Central

    Sathyanarayana, Shashank; Bottomley, Paul A.

    2009-01-01

    Magnetic resonance imaging (MRI) is traditionally performed with fixed externally applied gradient magnetic fields and is hence intrinsically locked to the laboratory frame of reference (FoR). Here a method for high-resolution MRI that employs active, catheter-based, tiny internal probes that utilize the spatial properties of the probe itself for localization is proposed and demonstrated at 3 T. Because these properties are intrinsic to the probe, they move with it, transforming MRI from the laboratory FoR to the FoR of the device itself, analogous to an endoscope. The “MRI endoscope” can utilize loop coils and loopless antennas with modified sensitivity, in combination with adiabatic excitation by the device itself, to restrict the MRI sensitivity to a disk-shaped plane a few mm thick. Excitation with the MRI endoscope limits the eddy currents induced in the sample to an excited volume whose size is orders of magnitude below that excited by a conventional body MRI coil. Heat testing shows maximum local temperature increases of <1 °C during MRI, within regulatory guidelines. The method is demonstrated in a kiwifruit, in intact porcine and rabbit aortas, and in an atherosclerotic human iliac artery specimen, with in-plane resolution as small as 80 μm and 1.5–5 mm slice thickness. PMID:19378751

  8. Intrinsic position uncertainty impairs overt search performance.

    PubMed

    Semizer, Yelda; Michel, Melchi M

    2017-08-01

    Uncertainty regarding the position of the search target is a fundamental component of visual search. However, due to perceptual limitations of the human visual system, this uncertainty can arise from intrinsic, as well as extrinsic, sources. The current study sought to characterize the role of intrinsic position uncertainty (IPU) in overt visual search and to determine whether it significantly limits human search performance. After completing a preliminary detection experiment to characterize sensitivity as a function of visual field position, observers completed a search task that required localizing a Gabor target within a field of synthetic luminance noise. The search experiment included two clutter conditions designed to modulate the effect of IPU across search displays of varying set size. In the Cluttered condition, the display was tiled uniformly with feature clutter to maximize the effects of IPU. In the Uncluttered condition, the clutter at irrelevant locations was removed to attenuate the effects of IPU. Finally, we derived an IPU-constrained ideal searcher model, limited by the IPU measured in human observers. Ideal searchers were simulated based on the detection sensitivity and fixation sequences measured for individual human observers. The IPU-constrained ideal searcher predicted performance trends similar to those exhibited by the human observers. In the Uncluttered condition, performance decreased steeply as a function of increasing set size. However, in the Cluttered condition, the effect of IPU dominated and performance was approximately constant as a function of set size. Our findings suggest that IPU substantially limits overt search performance, especially in crowded displays.

  9. Intrinsically disordered proteins drive membrane curvature.

    PubMed

    Busch, David J; Houser, Justin R; Hayden, Carl C; Sherman, Michael B; Lafer, Eileen M; Stachowiak, Jeanne C

    2015-07-24

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  10. Contact lens wear is intrinsically inflammatory.

    PubMed

    Efron, Nathan

    2017-01-01

    Eye-care practitioners typically associate ocular inflammation during contact lens wear with serious complications such as microbial keratitis; however, more subtle mechanisms may be at play. This paper tests the notion that contact lens wear is intrinsically inflammatory by exploring whether uncomplicated contact lens wear meets the classical, clinical definition of inflammation - rubor (redness), calor (heat), tumor (swelling), dolor (pain) and functio laesa (loss of function) - as well as the contemporary, sub-clinical definition of inflammation (cellular and biochemical reactions). It is demonstrated that all of these clinical and sub-clinical criteria are met with hydrogel lens wear and most are met with silicone hydrogel lens wear, indicating that uncomplicated contact lens wear is intrinsically inflammatory. Consideration of both traditional and contemporary thinking about the role of inflammation in the human body leads to the perhaps surprising conclusion that the chronic, low grade, sub-clinical inflammatory status of the anterior eye during contact lens wear, which may be termed 'para-inflammation', is a positive, protective phenomenon, whereby up-regulation of the immune system, in a non-damaging way, maintains the eye in a state of 'heightened alert', ready to ward off any extrinsic noxious challenge. Characterisation of this inflammatory status may lead to the development of lens engineering or pharmacological strategies to modulate contact lens-induced inflammation, so as to render lens wear more safe and comfortable. © 2016 Optometry Australia.

  11. Intrinsic radiation resistance in human chondrosarcoma cells

    SciTech Connect

    Moussavi-Harami, Farid; Mollano, Anthony; Martin, James A.; Ayoob, Andrew; Domann, Frederick E.; Gitelis, Steven; Buckwalter, Joseph A. . E-mail: joseph-buckwalter@uiowa.edu

    2006-07-28

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16{sup ink4a}, one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16{sup ink4a} contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16{sup ink4a} expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16{sup ink4a} expression on chondrosarcoma cell resistance to low-dose {gamma}-irradiation (1-5 Gy). p16{sup ink4a} expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16{sup ink4a} transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16{sup ink4a} plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas.

  12. The X-ray continuum time-lags and intrinsic coherence in AGN

    NASA Astrophysics Data System (ADS)

    Epitropakis, A.; Papadakis, I. E.

    2017-07-01

    We present the results from a systematic analysis of the X-ray continuum ('hard') time-lags and intrinsic coherence between the 2-4 keV and various energy bands in the 0.3-10 keV range, for 10 X-ray bright and highly variable active galactic nuclei (AGN). We used all available archival XMM-Newton data, and estimated the time-lags following Epitropakis & Papadakis. By performing extensive numerical simulations, we arrived at useful guidelines for computing intrinsic-coherence estimates that are minimally biased, have known errors and are (approximately) Gaussian distributed. Owing to the way we estimated the time-lags and intrinsic coherence, we were able to do a proper model fitting to the data. Regarding the continuum time-lags, we are able to demonstrate that they have a power-law dependence on frequency, with a slope of -1, and that their amplitude scales with the logarithm of the light-curve mean-energy ratio. We also find that their amplitude increases with the square root of the X-ray Eddington ratio. Regarding the intrinsic coherence, we found that it is approximately constant at low frequencies. It then decreases exponentially at frequencies higher than a characteristic 'break frequency'. Both the low-frequency constant intrinsic-coherence value and the break frequency have a logarithmic dependence on the light-curve mean-energy ratio. Neither the low-frequency constant intrinsic-coherence value nor the break frequency exhibits a universal scaling with either the central black hole mass or the X-ray Eddington ratio. Our results could constrain various theoretical models of AGN X-ray variability.

  13. The Mediation Role of Intrinsic and Extrinsic Motivation in the Relationship between Creative Educational Environment and Metacognitive Self-Regulation

    ERIC Educational Resources Information Center

    Maralani, Farnaz Mehdipour

    2016-01-01

    This study investigated the mediation role of intrinsic and extrinsic motivation in the relationship between creative educational environment and metacognitive self-regulation. Participants were 300 girls, selected randomly from the girl hostel in university of Tehran. Participants completed Akoal's creative educational environment questionnaire,…

  14. Intrinsic galaxy shapes and alignments - II. Modelling the intrinsic alignment contamination of weak lensing surveys

    NASA Astrophysics Data System (ADS)

    Joachimi, B.; Semboloni, E.; Hilbert, S.; Bett, P. E.; Hartlap, J.; Hoekstra, H.; Schneider, P.

    2013-11-01

    Intrinsic galaxy alignments constitute the major astrophysical systematic of forthcoming weak gravitational lensing surveys but also yield unique insights into galaxy formation and evolution. We build analytic models for the distribution of galaxy shapes based on halo properties extracted from the Millennium Simulation, differentiating between early- and late-type galaxies as well as central galaxies and satellites. The resulting ellipticity correlations are investigated for their physical properties and compared to a suite of current observations. The best-faring model is then used to predict the intrinsic alignment contamination of planned weak lensing surveys. We find that late-type galaxy models generally have weak intrinsic ellipticity correlations, marginally increasing towards smaller galaxy separation and higher redshift. The signal for early-type models at fixed halo mass strongly increases by three orders of magnitude over two decades in galaxy separation, and by one order of magnitude from z = 0 to z = 2. The intrinsic alignment strength also depends strongly on halo mass, but not on galaxy luminosity at fixed mass, or galaxy number density in the environment. We identify models that are in good agreement with all observational data, except that all models overpredict alignments of faint early-type galaxies. The best model yields an intrinsic alignment contamination of a Euclid-like survey between 0.5 and 10 per cent at z > 0.6 and on angular scales larger than a few arcminutes. Cutting 20 per cent of red foreground galaxies using observer-frame colours can suppress this contamination by up to a factor of 2.

  15. Intrinsically disordered proteins as molecular shields†

    PubMed Central

    Chakrabortee, Sohini; Tripathi, Rashmi; Watson, Matthew; Kaminski Schierle, Gabriele S.; Kurniawan, Davy P.; Kaminski, Clemens F.; Wise, Michael J.; Tunnacliffe, Alan

    2017-01-01

    The broad family of LEA proteins are intrinsically disordered proteins (IDPs) with several potential roles in desiccation tolerance, or anhydrobiosis, one of which is to limit desiccation-induced aggregation of cellular proteins. We show here that this activity, termed molecular shield function, is distinct from that of a classical molecular chaperone, such as HSP70 – while HSP70 reduces aggregation of citrate synthase (CS) on heating, two LEA proteins, a nematode group 3 protein, AavLEA1, and a plant group 1 protein, Em, do not; conversely, the LEA proteins reduce CS aggregation on desiccation, while HSP70 lacks this ability. There are also differences in interaction with client proteins – HSP70 can be co-immunoprecipitated with a polyglutamine-containing client, consistent with tight complex formation, whereas the LEA proteins can not, although a loose interaction is observed by Förster resonance energy transfer. In a further exploration of molecular shield function, we demonstrate that synthetic polysaccharides, like LEA proteins, are able to reduce desiccation-induced aggregation of a water-soluble proteome, consistent with a steric interference model of anti-aggregation activity. If molecular shields operate by reducing intermolecular cohesion rates, they should not protect against intramolecular protein damage. This was tested using the monomeric red fluorescent protein, mCherry, which does not undergo aggregation on drying, but the absorbance and emission spectra of its intrinsic fluorophore are dramatically reduced, indicative of intramolecular conformational changes. As expected, these changes are not prevented by AavLEA1, except for a slight protection at high molar ratios, and an AavLEA1-mCherry fusion protein is damaged to the same extent as mCherry alone. A recent hypothesis proposed that proteomes from desiccation-tolerant species contain a higher degree of disorder than intolerant examples, and that this might provide greater intrinsic stability

  16. Ab initio study of intrinsic profiles of liquid metals and their reflectivity

    NASA Astrophysics Data System (ADS)

    del Rio, B. G.; Souto, J.; Alemany, M. M. G.; González, L. E.

    2017-08-01

    The free surfaces of liquid metals are known to exhibit a stratified profile that, in favourable cases, shows up in experiments as a peak in the ratio between the reflectivity function and that of an ideal step-like profile. This peak is located at a wave-vector related to the distance between the layers of the profile. In fact the surface roughness produced by thermally induced capillary waves causes a depletion of the previous so called intrinsic reflectivity by a damping factor that may hinder the observation of the peak. The behaviour of the intrinsic reflectivity below the layering peak is however far from being universal, with systems as Ga or In where the reflectiviy falls uniformly towards the q → 0 value, others like Sn or Bi where a shoulder appears at intermediate wavevectors, and others like Hg which show a minimum. We have performed extensive ab initio simulations of the free liquid surfaces of Bi, Pb and Hg, that yield direct information on the structure of the profiles and found that the macroscopic capillary wave theory usually employed in order to remove the capillary wave components fails badly in some cases for the typical sample sizes affordable in ab initio simulations. However, a microscopic method for the determination of the intrinsic profile is shown to be succesful in obtaining meaningful intrinsic profiles and corresponding reflectivities which reproduce correctly the qualitative behaviour observed experimentally.

  17. Intrinsic noise in systems with switching environments

    NASA Astrophysics Data System (ADS)

    Hufton, Peter G.; Lin, Yen Ting; Galla, Tobias; McKane, Alan J.

    2016-05-01

    We study individual-based dynamics in finite populations, subject to randomly switching environmental conditions. These are inspired by models in which genes transition between on and off states, regulating underlying protein dynamics. Similarly, switches between environmental states are relevant in bacterial populations and in models of epidemic spread. Existing piecewise-deterministic Markov process approaches focus on the deterministic limit of the population dynamics while retaining the randomness of the switching. Here we go beyond this approximation and explicitly include effects of intrinsic stochasticity at the level of the linear-noise approximation. Specifically, we derive the stationary distributions of a number of model systems, in good agreement with simulations. This improves existing approaches which are limited to the regimes of fast and slow switching.

  18. Optical coherence tractography using intrinsic contrast

    PubMed Central

    Goergen, Craig J.; Radhakrishnan, Harsha; Sakadžić, Sava; Mandeville, Emiri T.; Lo, Eng H.; Sosnovik, David E.; Srinivasan, Vivek J.

    2013-01-01

    Organs such as the heart and brain possess intricate fiber structures that are best characterized with threedimensional imaging. For instance, diffusion-based, magnetic resonance tractography (MRT) enables studies of connectivity and remodeling during development and disease macroscopically on the millimeter scale. Here we present complementary, high-resolution microscopic optical coherence imaging and analysis methods that, when used in conjunction with clearing techniques, can characterize fiber architecture in intact organs at tissue depths exceeding 1 mm. We anticipate that these techniques can be used to study fiber architecture in situ at microscopic scales not currently accessible to diffusion magentic resonance (MR), and thus, to validate and complement macroscopic structural imaging techniques. Moreover, as these techniques use intrinsic signals and do not require tissue slicing and staining, they can be used for high-throughput, nondestructive evaluation of fiber architecture across large tissue volumes. PMID:23041891

  19. Turbulent diffusion with memories and intrinsic shear

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1974-01-01

    The first part of the present theory is devoted to the derivation of a Fokker-Planck equation. The eddies smaller than the hydrodynamic scale of the diffusion cloud form a diffusivity, while the inhomogeneous, bigger eddies give rise to a nonuniform migratory drift. This introduces an eddy-induced shear which reflects on the large-scale diffusion. The eddy-induced shear does not require the presence of a permanent wind shear and is intrinsic to the diffusion. Secondly, a transport theory of diffusivity is developed by the method of repeated-cascade and is based upon a relaxation of a chain of memories with decreasing information. The full range of diffusion consists of inertia, composite, and shear subranges, for which variance and eddy diffusivities are predicted. The coefficients are evaluated. Comparison with experiments in the upper atmosphere and oceans is made.

  20. Computer Simulations of Intrinsically Disordered Proteins

    NASA Astrophysics Data System (ADS)

    Chong, Song-Ho; Chatterjee, Prathit; Ham, Sihyun

    2017-05-01

    The investigation of intrinsically disordered proteins (IDPs) is a new frontier in structural and molecular biology that requires a new paradigm to connect structural disorder to function. Molecular dynamics simulations and statistical thermodynamics potentially offer ideal tools for atomic-level characterizations and thermodynamic descriptions of this fascinating class of proteins that will complement experimental studies. However, IDPs display sensitivity to inaccuracies in the underlying molecular mechanics force fields. Thus, achieving an accurate structural characterization of IDPs via simulations is a challenge. It is also daunting to perform a configuration-space integration over heterogeneous structural ensembles sampled by IDPs to extract, in particular, protein configurational entropy. In this review, we summarize recent efforts devoted to the development of force fields and the critical evaluations of their performance when applied to IDPs. We also survey recent advances in computational methods for protein configurational entropy that aim to provide a thermodynamic link between structural disorder and protein activity.

  1. Intrinsic Peroxidase-like Activity of Ficin

    NASA Astrophysics Data System (ADS)

    Yang, Yufang; Shen, Dongjun; Long, Yijuan; Xie, Zhixiong; Zheng, Huzhi

    2017-02-01

    Ficin is classified as a sulfhydryl protease isolated from the latex of fig trees. In most cases, a particular enzyme fits a few types of substrate and catalyzes one type of reaction. In this investigation, we found sufficient proofs for the intrinsic peroxidase-like activity of ficin and designed experiments to examine its effectiveness in a variety of scenarios. Ficin can transform peroxidase substrates to colored products in the existence of H2O2. Our results also indicate that the active sites of peroxidase-like activity of ficin are different from that of protease, which reveals that one enzyme may catalyze more than one kind of substrate to perform different types of reactions. On the basis of these findings, H2O2 releasing from MCF-7 cells was detected successfully. Our findings support a wider application of ficin in biochemistry and open up the possibility of utilizing ficin as enzymatic mimics in biotechnology and environmental monitoring.

  2. Impact of baryonic physics on intrinsic alignments

    DOE PAGES

    Tenneti, Ananth; Gnedin, Nickolay Y.; Feng, Yu

    2017-01-11

    We explore the effects of specific assumptions in the subgrid models of star formation and stellar and AGN feedback on intrinsic alignments of galaxies in cosmological simulations of "MassiveBlack-II" family. Using smaller volume simulations, we explored the parameter space of the subgrid star formation and feedback model and found remarkable robustness of the observable statistical measures to the details of subgrid physics. The one observational probe most sensitive to modeling details is the distribution of misalignment angles. We hypothesize that the amount of angular momentum carried away by the galactic wind is the primary physical quantity that controls the orientationmore » of the stellar distribution. Finally, our results are also consistent with a similar study by the EAGLE simulation team.« less

  3. Intrinsic Noise in Game Dynamical Learning

    NASA Astrophysics Data System (ADS)

    Galla, Tobias

    2009-11-01

    Demographic noise has profound effects on evolutionary and population dynamics, as well as on chemical reaction systems and models of epidemiology. Such noise is intrinsic and due to the discreteness of the dynamics in finite populations. We here show that similar noise-sustained trajectories arise in game dynamical learning, where the stochasticity has a different origin: agents sample a finite number of moves of their opponents in between adaptation events. The limit of infinite batches results in deterministic modified replicator equations, whereas finite sampling leads to a stochastic dynamics. The characteristics of these fluctuations can be computed analytically using methods from statistical physics, and such noise can affect the attractors significantly, leading to noise-sustained cycling or removing periodic orbits of the standard replicator dynamics.

  4. Tropical cyclone recurvature: An intrinsic property?

    NASA Astrophysics Data System (ADS)

    Chan, Kelvin T. F.; Chan, Johnny C. L.

    2016-08-01

    The typical track of a tropical cyclone (TC) in the Northern Hemisphere is an initial northwestward movement followed by an eventual turning toward the east. Such turning is referred to as recurvature and often explained by the change of the environmental flow that steers the TC. Here we show that even in the absence of background flow, a TC initiated at a high enough latitude can recurve itself. Differential horizontal advection of the planetary vorticity by the TC circulation at different vertical levels leads to the development of vertical wind shear, upper tropospheric anticyclone, and asymmetric distribution of convection. The flow associated with the upper tropospheric anticyclone on the equatorward side of the TC and the diabatic heating associated with the asymmetric convection combine to cause the TC to recurve. Such knowledge, an intrinsic recurvature property of the TC is important in forecasting the TC track when the environmental flow is weak.

  5. Intrinsic Peroxidase-like Activity of Ficin

    PubMed Central

    Yang, Yufang; Shen, Dongjun; Long, Yijuan; Xie, Zhixiong; Zheng, Huzhi

    2017-01-01

    Ficin is classified as a sulfhydryl protease isolated from the latex of fig trees. In most cases, a particular enzyme fits a few types of substrate and catalyzes one type of reaction. In this investigation, we found sufficient proofs for the intrinsic peroxidase-like activity of ficin and designed experiments to examine its effectiveness in a variety of scenarios. Ficin can transform peroxidase substrates to colored products in the existence of H2O2. Our results also indicate that the active sites of peroxidase-like activity of ficin are different from that of protease, which reveals that one enzyme may catalyze more than one kind of substrate to perform different types of reactions. On the basis of these findings, H2O2 releasing from MCF-7 cells was detected successfully. Our findings support a wider application of ficin in biochemistry and open up the possibility of utilizing ficin as enzymatic mimics in biotechnology and environmental monitoring. PMID:28224979

  6. Intrinsic DX Centers in Ternary Chalcopyrite Semiconductors

    SciTech Connect

    Lany, S.; Zunger, A.

    2008-01-01

    In III-V and II-VI semiconductors, certain nominally electron-donating impurities do not release electrons but instead form deep electron-traps known as 'DX centers.' While in these compounds, such traps occur only after the introduction of foreign impurity atoms, we find from first-principles calculations that in ternary I-III-VI{sub 2} chalcopyrites like CuInSe{sub 2} and CuGaSe{sub 2}, DX-like centers can develop without the presence of any extrinsic impurities. These intrinsic DX centers are suggested as a cause of the difficulties to maintain high efficiencies in CuInSe{sub 2}-based thin-film solar-cells when the band gap is increased by addition of Ga.

  7. Helical Microfilaments with Alternating Imprinted Intrinsic Curvatures.

    PubMed

    Silva, Pedro Emanuel Santos; Godinho, Maria Helena

    2017-03-01

    There has been an intense research for developing techniques that can produce filaments with helical shapes, given the widespread of potential applications. In this work, how helices with different curvatures can be precisely imprinted in microfilaments is shown. It is also shown that using this technique, it is possible to produce, in a single fiber, helices with different curvatures. This striking and innovative behavior is observed when one side of the stretched filaments is irradiated with UV light, modifying the mechanical properties at surface. Upon release, the regions with higher curvature start to curl first, while regions with lower intrinsic curvature remain stretched until start to curl later. The results presented here can be important to understand why structures adopt a helical shape in general, which can be of interest in nanotechnology, biomolecular science, or even to understand why plant filaments curl. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Impact of Baryonic Physics on Intrinsic Alignments

    SciTech Connect

    Tenneti, Ananth; Gnedin, Nickolay Y.; Feng, Yu

    2016-07-24

    We explore the effects of specific assumptions in the subgrid models of star formation and stellar and AGN feedback on intrinsic alignments of galaxies in cosmological simulations of "MassiveBlack-II" family. Using smaller volume simulations, we explored the parameter space of the subgrid star formation and feedback model and found remarkable robustness of the observable statistical measures to the details of subgrid physics. The one observational probe most sensitive to modeling details is the distribution of misalignment angles. We hypothesize that the amount of angular momentum carried away by the galactic wind is the primary physical quantity that controls the orientation of the stellar distribution. Our results are also consistent with a similar study by the EAGLE simulation team.

  9. Impact of Baryonic Physics on Intrinsic Alignments

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Gnedin, Nickolay Y.; Feng, Yu

    2017-01-01

    We explore the effects of specific assumptions in the subgrid models of star formation and stellar and active galactic nucleus feedback on intrinsic alignments of galaxies in cosmological simulations of the “MassiveBlack-II” family. Using smaller-volume simulations, we explore the parameter space of the subgrid star formation and feedback model and find remarkable robustness of the observable statistical measures to the details of subgrid physics. The one observational probe most sensitive to modeling details is the distribution of misalignment angles. We hypothesize that the amount of angular momentum carried away by the galactic wind is the primary physical quantity that controls the orientation of the stellar distribution. Our results are also consistent with a similar study by the EAGLE simulation team.

  10. Unraveling the intrinsic color of chlorophyll.

    PubMed

    Milne, Bruce F; Toker, Yoni; Rubio, Angel; Nielsen, Steen Brøndsted

    2015-02-09

    The exact color of light absorbed by chlorophyll (Chl) pigments, the light-harvesters in photosynthesis, is tuned by the protein microenvironment, but without knowledge of the intrinsic color of Chl it remains unclear how large this effect is. Experimental first absorption energies of Chl a and b isolated in vacuo and tagged with quaternary ammonium cations are reported. The energies are largely insensitive to details of the tag structure, a finding supported by first-principles calculations using time-dependent density functional theory. Absorption is significantly blue-shifted compared to that of Chl-containing proteins (by 30-70 nm). A single red-shifting perturbation, such as axial ligation or the protein medium, is insufficient to account even for the smallest shift; the largest requires pigment-pigment interactions.

  11. Measuring Intrinsic Curvature of Space with Electromagnetism

    NASA Astrophysics Data System (ADS)

    Mabin, Mason; Becker, Maria; Batelaan, Herman

    2016-10-01

    The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface, the 2-sphere, is curved. The behavior of an electric field, placed on a spherical surface, is shown to be related to the intrinsic Gaussian curvature. This approach allows students to gain some understanding of Einstein's theory of general relativity, which relates the curvature of spacetime to the presence of mass and energy. Additionally, an opportunity is provided to investigate the dimensionality of Gauss's law.

  12. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma.

    PubMed

    Bredlau, Amy Lee; Dixit, Suraj; Chen, Chao; Broome, Ann-Marie

    2017-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are invariably fatal tumors found in the pons of elementary school aged children. These tumors are grade II-IV gliomas, with a median survival of less than 1 year from diagnosis when treated with standard of care (SOC) therapy. Nanotechnology may offer therapeutic options for the treatment of DIPGs. Multiple nanoparticle formulations are currently being investigated for the treatment of DIPGs. Nanoparticles based upon stable elements, polymer nanoparticles, and organic nanoparticles are under development for the treatment of brain tumors, including DIPGs. Targeting of nanoparticles is now possible as delivery techniques that address the difficulty in crossing the blood brain barrier (BBB) are developed. Theranostic nanoparticles, a combination of therapeutics and diagnostic nanoparticles, improve imaging of the cancerous tissue while delivering therapy to the local region. However, additional time and attention should be directed to developing a nanoparticle delivery system for treatment of the uniformly fatal pediatric disease of DIPG.

  13. Bifid Shape Is Intrinsic to Bifidobacterium adolescentis

    PubMed Central

    Dhanashree; Rajashekharan, Sharika; Krishnaswamy, Balamurugan; Kammara, Rajagopal

    2017-01-01

    Although the genus Bifidobacterium was originally named for its bifid morphology, not all bifidobacterial species have a similar structure, and very few of them adopt a bifid shape under stress conditions. The exposure of respective bifidobacterial species to various conditions, such as different pH, temperatures, medium components, in vivo growth in Caenorhabditis elegans, and subculture, did not affect their diverse morphologies. Extensive scanning electron microscopy studies suggested that the bifid shape of B. adolescentis are maintained irrespective of the conditions. Hence, we conclude that the bifid morphology is intrinsic to B. adolescentis. Most bifidobacterial species are anaerobic and rod-shaped, whereas, after the first generation, they become microaerophilic or aerophilic. CaCl2 (treatment of B. animalis) signaling triggered a change from the rod shape to the bifid shape and vice versa in B. adolescentis. PMID:28377762

  14. Intrinsic surface dipole in topological insulators.

    PubMed

    Fregoso, Benjamin M; Coh, Sinisa

    2015-10-28

    We calculate the local density of states of two prototypical topological insulators (Bi2Se3 and Bi2Te2Se) as a function of distance from the surface within density functional theory. We find that, in the absence of disorder or doping, there is a 2 nm thick surface dipole the origin of which is the occupation of the topological surface states above the Dirac point. As a consequence, the bottom of the conduction band is bent upward by about 75 meV near the surface, and there is a hump-like feature associated with the top of the valence band. We expect that band bending will occur in all pristine topological insulators as long as the Fermi level does not cross the Dirac point. Our results show that topological insulators are intrinsic Schottky barrier solar cells.

  15. Intrinsic superstatistical components of financial time series

    NASA Astrophysics Data System (ADS)

    Vamoş, Călin; Crăciun, Maria

    2014-12-01

    Time series generated by a complex hierarchical system exhibit various types of dynamics at different time scales. A financial time series is an example of such a multiscale structure with time scales ranging from minutes to several years. In this paper we decompose the volatility of financial indices into five intrinsic components and we show that it has a heterogeneous scale structure. The small-scale components have a stochastic nature and they are independent 99% of the time, becoming synchronized during financial crashes and enhancing the heavy tails of the volatility distribution. The deterministic behavior of the large-scale components is related to the nonstationarity of the financial markets evolution. Our decomposition of the financial volatility is a superstatistical model more complex than those usually limited to a superposition of two independent statistics at well-separated time scales.

  16. Intrinsic-surface-tag image authentication

    SciTech Connect

    Palm, R.G.; DeVolpi, A.

    1991-12-01

    The objective of this work is to further the development of a unique treaty limited item (TLI) intrinsic surface tag for arms control applications. This tag's unique feature is the ability to capture the sub-micron scale topography of the TLI surface. The surface topography is captured by plastic castings of the surface as digitally imaged by an electron microscope. Tag authentication is accomplished by comparing digital castings images obtained in two different inspections. Surface replication experiments are described, as these experiments from the basis for the authentication algorithm. Both the experiments and the authentication algorithm are analyzed using the modulation transfer function. Recommendations for future improvements in tag authentication are also suggested by the modulation transfer function analysis. 4 refs.

  17. Intrinsic-surface-tag image authentication

    SciTech Connect

    Palm, R.G.; DeVolpi, A.

    1991-12-01

    The objective of this work is to further the development of a unique treaty limited item (TLI) intrinsic surface tag for arms control applications. This tag`s unique feature is the ability to capture the sub-micron scale topography of the TLI surface. The surface topography is captured by plastic castings of the surface as digitally imaged by an electron microscope. Tag authentication is accomplished by comparing digital castings images obtained in two different inspections. Surface replication experiments are described, as these experiments from the basis for the authentication algorithm. Both the experiments and the authentication algorithm are analyzed using the modulation transfer function. Recommendations for future improvements in tag authentication are also suggested by the modulation transfer function analysis. 4 refs.

  18. Intrinsic Chirality Origination in Carbon Nanotubes.

    PubMed

    Pierce, Neal; Chen, Gugang; P Rajukumar, Lakshmy; Chou, Nam Hawn; Koh, Ai Leen; Sinclair, Robert; Maruyama, Shigeo; Terrones, Mauricio; Harutyunyan, Avetik R

    2017-10-02

    Elucidating the origin of carbon nanotube chirality is key for realizing their untapped potential. Currently, prevalent theories suggest that catalyst structure originates chirality via an epitaxial relationship. Here we studied chirality abundances of carbon nanotubes grown on floating liquid Ga droplets, which excludes the influence of catalyst features, and compared them with abundances grown on solid Ru nanoparticles. Results of growth on liquid droplets bolsters the intrinsic preference of carbon nuclei toward certain chiralities. Specifically, the abundance of the (11,1)/χ = 4.31° tube can reach up to 95% relative to (9,4)/χ = 17.48°, although they have exactly the same diameter, (9.156 Å). However, the comparative abundances for the pair, (19,3)/χ = 7.2° and (17,6)/χ = 14.5°, with bigger diameter, (16.405 Å), fluctuate depending on synthesis temperature. The abundances of the same pairs of tubes grown on floating solid polyhedral Ru nanoparticles show completely different trends. Analysis of abundances in relation to nucleation probability, represented by a product of the Zeldovich factor and the deviation interval of a growing nuclei from equilibrium critical size, explain the findings. We suggest that the chirality in the nanotube in general is a result of interplay between intrinsic preference of carbon cluster and induction by catalyst structure. This finding can help to build the comprehensive theory of nanotube growth and offers a prospect for chirality-preferential synthesis of carbon nanotubes by the exploitation of liquid catalyst droplets.

  19. Diverse precerebellar neurons share similar intrinsic excitability

    PubMed Central

    Kolkman, Kristine E.; McElvain, Lauren E.; du Lac, Sascha

    2011-01-01

    The cerebellum dedicates a majority of the brain’s neurons to processing a wide range of sensory, motor, and cognitive signals. Stereotyped circuitry within the cerebellar cortex suggests that similar computations are performed throughout the cerebellum, but little is known about whether diverse precerebellar neurons are specialized for the nature of the information they convey. In vivo recordings indicate that firing responses to sensory or motor stimuli vary dramatically across different precerebellar nuclei, but whether this reflects diverse synaptic inputs or differentially tuned intrinsic excitability has not been determined. We targeted whole-cell patch clamp recordings to neurons in 8 precerebellar nuclei which were retrogradely labeled from different regions of the cerebellum in mice. Intrinsic physiology was compared across neurons in the medial vestibular, external cuneate, lateral reticular, prepositus hypoglossi, supragenual, Roller/intercalatus, reticularis tegmenti pontis (NRTP), and pontine nuclei. Within the firing domain, precerebellar neurons were remarkably similar. Firing faithfully followed temporally modulated inputs, could be sustained at high rates, and was a linear function of input current over a wide range of inputs and firing rates. Pharmacological analyses revealed common expression of Kv3 currents, which were essential for a wide linear firing range, and of SK currents, which were essential for a wide linear input range. In contrast, membrane properties below spike threshold varied considerably within and across precerebellar nuclei, as evidenced by variability in postinhibitory rebound firing. Our findings indicate that diverse precerebellar neurons perfom similar scaling computations on their inputs but may be differentially tuned to synaptic inhibition. PMID:22090493

  20. Job characteristic perception and intrinsic motivation in medical record department staff.

    PubMed

    Isfahani, Sakineh Saghaeiannejad; Bahrami, Soosan; Torki, Sedighe

    2013-01-01

    Human resources are key factors in service organizations like hospitals. Therefore, motivating human recourses to achieve the objectives of an organization is important. Job enrichment is a strategy used to increase job motivation in staffs. The goal of the current study is to determine the relationship between job characteristics and intrinsic motivation in medical record staff in hospitals related to Medical Science University in Isfahan in 2011-2012 academic year. The type of the study is descriptive and corelational of multi variables. The population of the study includes all the medical record staffs of medical record department working in Medical Science hospitals of Isfahan. One hundred twentyseven subjects were selected by conducting a census. In the present study, data collected by using two questionnaires of job characteristics devised by Hackman and Oldeham, and of intrinsic motivation. Content validity was confirmed by experts and its reliability was calculated through coefficient of Cronbach's alpha (r1 = 0.84- r2 = 0.94). The questionnaires completed were entered into SPSS(18) software; furthermore, statistical analysis done descriptively (frequency percent, mean, standard deviation, Pierson correlation coefficient,...) and inferentially (multiple regression, MANOVA, LSD). A significant relationship between job characteristics as well as its elements (skill variety, task identity, task significance, autonomy and feedback) and intrinsic motivation was noticed. (p < or = 0.05). Also the results of multivariable regression showed that the relationship between job characteristic and intrinsic motivation was significant and job feedback had the most impact upon the intrinsic motivation. No significant difference was noticed among the mean amounts of job characteristic perception according to age, gender, level of education, and the kind of educational degree in hospitals. However, there was a significant difference among the mean amounts of job

  1. Universal Usability

    NASA Astrophysics Data System (ADS)

    Horton, Sarah; Leventhal, Laura

    Universal usability of World Wide Web (Web) environments—that is, having 90% of households as successful users—requires universal access, usability, and universal design. Factors such as Web technology and user-centered design contribute to universal access and usability, but key to universal usability is a universal design methodology. Universal design principles for the Web follow from universal design principles for the built environment, and emphasize perceptibility, self-explanation, and tailorability for the user. Universally usable Web environments offer the benefit of expanded participation, as well as the unanticipated benefits that generally follow from innovative design initiatives. However, to achieve Web universal usability, Web designers need tools that facilitate the design of intuitive interfaces without sacrificing universal access.

  2. Intrinsic radioactivity of KSr2I5:Eu2+

    NASA Astrophysics Data System (ADS)

    Rust, M.; Melcher, C.; Lukosi, E.

    2016-10-01

    A current need in nuclear security is an economical, yet high energy resolution (near 2%), scintillation detector suitable for gamma-ray spectroscopy. For current scintillators on the market, there is an inverse relationship between scintillator energy resolution and cost of production. A new promising scintillator, KSr2I5:Eu2+, under development at the University of Tennessee, has achieved an energy resolution of 2.4% at 662 keV at room temperature, with potential growth rates exceeding several millimeters per hour. However, the internal background due to the 40K content could present a hurdle for effective source detection/identification in nuclear security applications. As a first step in addressing this question, this paper reports on a computational investigation of the intrinsic differential pulse height spectrum (DPHS) generated by 40K within the KSr2I5:Eu2+ scintillator as a function of crystal geometry. It was found that the DPHS remains relatively equal to a constant multiplicative factor of the negatron emission spectrum with a direct increase of the 1.46 MeV photopeak relative height to the negatron spectrum with volume. Further, peak pileup does not readily manifest itself for practical KSr2I5:Eu2+ volumes.

  3. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma.

    PubMed

    Taylor, Kathryn R; Mackay, Alan; Truffaux, Nathalène; Butterfield, Yaron S; Morozova, Olena; Philippe, Cathy; Castel, David; Grasso, Catherine S; Vinci, Maria; Carvalho, Diana; Carcaboso, Angel M; de Torres, Carmen; Cruz, Ofelia; Mora, Jaume; Entz-Werle, Natacha; Ingram, Wendy J; Monje, Michelle; Hargrave, Darren; Bullock, Alex N; Puget, Stéphanie; Yip, Stephen; Jones, Chris; Grill, Jacques

    2014-05-01

    Diffuse intrinsic pontine gliomas (DIPGs) are highly infiltrative malignant glial neoplasms of the ventral pons that, due to their location within the brain, are unsuitable for surgical resection and consequently have a universally dismal clinical outcome. The median survival time is 9-12 months, with neither chemotherapeutic nor targeted agents showing substantial survival benefit in clinical trials in children with these tumors. We report the identification of recurrent activating mutations in the ACVR1 gene, which encodes a type I activin receptor serine/threonine kinase, in 21% of DIPG samples. Strikingly, these somatic mutations (encoding p.Arg206His, p.Arg258Gly, p.Gly328Glu, p.Gly328Val, p.Gly328Trp and p.Gly356Asp substitutions) have not been reported previously in cancer but are identical to mutations found in the germ line of individuals with the congenital childhood developmental disorder fibrodysplasia ossificans progressiva (FOP) and have been shown to constitutively activate the BMP-TGF-β signaling pathway. These mutations represent new targets for therapeutic intervention in this otherwise incurable disease.

  4. Proximity to Intrinsic Depolarizing Resonances with a Partial Siberian Snake

    NASA Astrophysics Data System (ADS)

    Crandell, D. A.; Alexeeva, L. V.; Anferov, V. A.; Blinov, B. B.; Chu, C. M.; Caussyn, D. D.; Courant, E. D.; Gladycheva, S. E.; Hu, S.; Krisch, A. D.; Nurushev, T. S.; Phelps, R. A.; Ratner, L. G.; Varzar, S. M.; Wong, V. K.; Derbenev, Ya. S.; Lee, S. Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E. J.; von Przewoski, B.; Baiod, R.; Russell, A. D.; Ohmori, C.; Sato, H.

    1996-05-01

    Partial Siberian snakes are effective in overcoming imperfection depolarizing resonances, but they may also change the crossing energy for intrinsic depolarizing resonances. We experimentally investigated the effect of a partial Siberian snake near intrinsic depolarizing resonances with stored 140 MeV and 160 MeV polarized proton beams. Using various partial Siberian snake strengths up to 30%, depolarization was observed; this may be due to a change in the spin precession frequency which moves the energy of nearby intrinsic depolarizing resonances.

  5. Status report on the NCSL Intrinsic/Derived Standards Committee

    SciTech Connect

    Pettit, R.B.

    1994-05-01

    The history and present status of the NCSL intrinsic/Derived Standards Committee is presented, including a review of the current published Recommended Intrinsic/Derived Standard Practices (RISPs) and the four Working Groups that are in the process of developing new RISPs. One of the documents under development is a Reference Catalogue that documents important information associated with over forty intrinsic/derived standards. The generic information on each standard in the Catalogue, as well as its Table of contents, are presented.

  6. Intrinsic α helix propensities compact hydrodynamic radii in intrinsically disordered proteins.

    PubMed

    English, Lance R; Tilton, Erin C; Ricard, Benjamin J; Whitten, Steven T

    2017-02-01

    Proteins that lack tertiary stability under normal conditions, known as intrinsically disordered, exhibit a wide range of biological activities. Molecular descriptions for the biology of intrinsically disordered proteins (IDPs) consequently rely on disordered structural models, which in turn require experiments that assess the origins to structural features observed. For example, while hydrodynamic size is mostly insensitive to sequence composition in chemically denatured proteins, IDPs show strong sequence-specific effects in the hydrodynamic radius (Rh ) when measured under normal conditions. To investigate sequence-modulation of IDP Rh , disordered ensembles generated by a hard sphere collision model modified with a structure-based parameterization of the solution energetics were used to parse the contributions of net charge, main chain dihedral angle bias, and excluded volume on hydrodynamic size. Ensembles for polypeptides 10-35 residues in length were then used to establish power-law scaling relationships for comparison to experimental Rh from 26 IDPs. Results showed the expected outcomes of increased hydrodynamic size from increases in excluded volume and net charge, and compaction from chain-solvent interactions. Chain bias representing intrinsic preferences for α helix and polyproline II (PPII ), however, modulated Rh with intricate dependence on the simulated propensities. PPII propensities at levels expected in IDPs correlated with heightened Rh sensitivity to even weak α helix propensities, indicating bias for common (φ, ψ) are important determinants of hydrodynamic size. Moreover, data show that IDP Rh can be predicted from sequence with good accuracy from a small set of physicochemical properties, namely intrinsic conformational propensities and net charge. Proteins 2017; 85:296-311. © 2016 Wiley Periodicals, Inc.

  7. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions.

    PubMed

    Cox, Georgina; Wright, Gerard D

    2013-08-01

    The intrinsic antibiotic resistome is a naturally occurring phenomenon that predates antibiotic chemotherapy and is present in all bacterial species. In addition to the intrinsic resistance mediated by the bacterial outer membrane and active efflux, studies have shown that a surprising number of additional genes and genetic loci also contribute to this phenotype. Antibiotic resistance is rife in both the clinic and the environment; novel therapeutic strategies need to be developed in order to prevent a major global clinical threat. The possibility of inhibiting elements comprising the intrinsic resistome in bacterial pathogens offers the promise for repurposing existing antibiotics against intrinsically resistant bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Intrinsic galaxy shapes and alignments - I. Measuring and modelling COSMOS intrinsic galaxy ellipticities

    NASA Astrophysics Data System (ADS)

    Joachimi, B.; Semboloni, E.; Bett, P. E.; Hartlap, J.; Hilbert, S.; Hoekstra, H.; Schneider, P.; Schrabback, T.

    2013-05-01

    The statistical properties of the ellipticities of galaxy images depend on how galaxies form and evolve, and therefore constrain models of galaxy morphology, which are key to the removal of the intrinsic alignment contamination of cosmological weak lensing surveys, as well as to the calibration of weak lensing shape measurements. We construct such models based on the halo properties of the Millennium Simulation and confront them with a sample of 90 000 galaxies from the COSMOS Survey, covering three decades in luminosity and redshifts out to z = 2. The ellipticity measurements are corrected for effects of point spread function smearing, spurious image distortions and measurement noise. Dividing galaxies into early, late and irregular types, we find that early-type galaxies have up to a factor of 2 lower intrinsic ellipticity dispersion than late-type galaxies. None of the samples shows evidence for redshift evolution, while the ellipticity dispersion for late-type galaxies scales strongly with absolute magnitude at the bright end. The simulation-based models reproduce the main characteristics of the intrinsic ellipticity distributions although which model fares best depends on the selection criteria of the galaxy sample. We observe fewer close-to-circular late-type galaxy images in COSMOS than expected for a sample of randomly oriented circular thick discs and discuss possible explanations for this deficit.

  9. [Intrinsic sphincter deficiency and female urinary incontinence].

    PubMed

    Cour, F; Le Normand, L; Lapray, J-F; Hermieu, J-F; Peyrat, L; Yiou, R; Donon, L; Wagner, L; Vidart, A

    2015-06-01

    Stress urinary female incontinence (SUI) is primary due to intrinsic sphincter deficiency (ISD) and urethral hypermobility. Despite a lack of standardised international definition, ISD needs to be clearly diagnosed in order to be correctly treated. This work is an update about the female ISD produced from a review of a published article. This review of article published on this subject in the Medline (Pubmed database), selected according to their scientific relevants, of consensus conferences and published guidelines, has been performed by the committee for women pelvic floor surgery of the French Urological Association. Although there is no international consensus definition, we can consider that the ISD is a composite concept combining urodynamic data (MUCP < 20 or 30 cmH20) and one or more clinical information (no urethral mobility, negative urethral support test, failure of a first surgery, leakage during abdominal straining, high stress incontinence scores). Imaging can provide additional evidence for intrinsic sphincter deficiency diagnosis, but the correlation between imaging and function remains low. By standardizing methodology and interpretations to better diagnose women with ISD, it may be possible to improve preoperative planning and outcomes for these patients. A retropubic midurethral sling can be performed as a first surgery. In case of a lack of urethral mobility, the artificial urinary sphincter (AUS) remains the gold standard. Adjustable continence therapy (ACT(®)) can be proposed as an alternative option. The efficacy and safety of muscle-derived cell therapy in ISD needs more studies. Injection of bulking agents may be an option according to the severity and the expectations of the patient. Bladder overactivity needs to be treated as first-line in case of mixed urinary incontinence. In elderly women, a careful evaluation of the bladder contractility and comorbidity must be performed. A geriatric evaluation can be necessary. Clinical and

  10. Intrinsic motivation, extrinsic motivation, and learning English as a foreign language.

    PubMed

    Shaikholeslami, Razieh; Khayyer, Mohammad

    2006-12-01

    The objective of this study was to examine the relationships of amotivation, extrinsic motivation, and intrinsic motivation with learning the English language. The 230 Iranian students at Shiraz University were tested using the Language Learning Orientations Scales to measure Amotivation, Extrinsic Motivation, and Intrinsic Motivation as explanatory variables. Grade point average in English exams was selected as a measure of English learning Achievement. Multiple regression analysis revealed that learning Achievement scores were predicted by scores on the Amotivation subscale, Introjected Regulation subscale, Knowledge subscale, and Stimulation subscale, whereas, the External and Identified Regulation and Accomplishment subscales did not have a significant relationship with Achievement. The results are discussed in terms of differences in Iranian context and culture.

  11. Intrinsic foot muscle and plantar tissue changes in type 2 diabetes mellitus.

    PubMed

    Kumar, C G Shashi; Rajagopal, K V; Hande, H Manjunath; Maiya, Arun G; Mayya, Shreemathi S

    2015-11-01

    Diabetes mellitus is a metabolic disorder with involvement of the neurovascular and muscular system. Peripheral neuropathy (PN) is thought to be the principal cause of foot complications in type 2 diabetes mellitus (T2DM). However, foot evaluation using ultrasonography early in the course of diabetes has not gained due importance. The aim of the present study was to evaluate the thickness of intrinsic foot muscles, plantar skin, plantar fascia, and plantar fat pad in T2DM subjects with and without PN using musculoskeletal ultrasonography. This study was conducted in 30 T2DM subjects with and without PN and 30 age-matched non-diabetes mellitus (NDM) subjects. After detailed clinical evaluation, high-frequency musculoskeletal ultrasonography was used to measure the thickness of the intrinsic foot muscles and plantar tissue thickness under the metatarsals. Data were analyzed using independent t-tests to compare T2DM groups with NDM subjects, and one-way ANOVA followed by Tukey's honestly significant difference test for between- and within-group analyses. There was a significant reduction in the thickness of the intrinsic foot muscles and plantar tissue in T2DM compared with NDM subjects (P < 0.05). However, there were differences in intrinsic foot muscle and plantar tissue thickness between T2DM subjects with and without PN. There was a substantial decrease in intrinsic foot muscle and plantar tissue thickness in T2DM compared with NDM subjects, indicating that structural changes appear in the foot before PN develops. The techniques used in this study cannot exclude the possibility that neuropathic changes that are clinically undetectable may develop in parallel with changes in plantar tissues. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  12. Surgical Treatment Guidelines for Digital Deformity Associated With Intrinsic Muscle Spasticity (Intrinsic Plus Foot) in Adults With Cerebral Palsy.

    PubMed

    Boffeli, Troy J; Collier, Rachel C

    2015-01-01

    Intrinsic plus foot deformity has primarily been associated with cerebral palsy and involves spastic contracture of the intrinsic musculature with resultant toe deformities. Digital deformity is caused by a dynamic imbalance between the intrinsic muscles in the foot and extrinsic muscles in the lower leg. Spastic contracture of the toes frequently involves curling under of the lesser digits or contracture of the hallux into valgus or plantarflexion deformity. Patients often present with associated pressure ulcers, deformed toenails, shoe or brace fitting challenges, and pain with ambulation or transfers. Four different patterns of intrinsic plus foot deformity have been observed by the authors that likely relate to the different patterns of muscle involvement. Case examples are provided of the 4 patterns of intrinsic plus foot deformity observed, including global intrinsic plus lesser toe deformity, isolated intrinsic plus lesser toe deformity, intrinsic plus hallux valgus deformity, and intrinsic plus hallux flexus deformity. These case examples are presented to demonstrate each type of deformity and our approach for surgical management according to the contracture pattern. The surgical approach has typically involved tenotomy, capsulotomy, or isolated joint fusion. The main goals of surgical treatment are to relieve pain and reduce pressure points through digital realignment in an effort to decrease the risk of pressure sores and allow more effective bracing to ultimately improve the patient's mobility.

  13. Functional Anthology of Intrinsic Disorder. III. Ligands, Postranslational Modifications and Diseases Associated with Intrinsically Disordered Proteins

    PubMed Central

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Currently, the understanding of the relationships between function, amino acid sequence and protein structure continues to represent one of the major challenges of the modern protein science. As much as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bioinformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200,000 proteins from Swiss-Prot database, each annotated with at least one of the 875 functional keywords was described in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Using this tool, we have found that out of the 711 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic

  14. Contrast Enhancement Based on Intrinsic Image Decomposition.

    PubMed

    Yue, Huanjing; Yang, Jingyu; Sun, Xiaoyan; Wu, Feng; Hou, Chunping

    2017-05-10

    In this paper, we propose to introduce intrinsic image decomposition priors into decomposition models for contrast enhancement. Since image decomposition is a highly ill-posed problem, we introduce constraints on both reflectance and illumination layers to yield a highly reliable solution. We regularize the reflectance layer to be piecewise constant by introducing a weighted `1 norm constraint on neighboring pixels according to the color similarity, so that the decomposed reflectance would not be affected much by the illumination information. The illumination layer is regularized by a piecewise smoothness constraint. The proposed model is effectively solved by the Split Bregman algorithm. Then, by adjusting the illumination layer, we obtain the enhancement result. To avoid potential color artifacts introduced by illumination adjusting and reduce computing complexity, the proposed decomposition model is performed on the value channel in HSV space. Experiment results demonstrate that the proposed method performs well for a wide variety of images, and achieves better or comparable subjective and objective quality compared with state-of-the-art methods.

  15. Intrinsic Turbulence Stabilization in a Stellarator

    NASA Astrophysics Data System (ADS)

    Xanthopoulos, P.; Plunk, G. G.; Zocco, A.; Helander, P.

    2016-04-01

    The magnetic surfaces of modern stellarators are characterized by complex, carefully optimized shaping and exhibit locally compressed regions of strong turbulence drive. Massively parallel computer simulations of plasma turbulence reveal, however, that stellarators also possess two intrinsic mechanisms to mitigate the effect of this drive. In the regime where the length scale of the turbulence is very small compared to the equilibrium scale set by the variation of the magnetic field, the strongest fluctuations form narrow bandlike structures on the magnetic surfaces. Thanks to this localization, the average transport through the surface is significantly smaller than that predicted at locations of peak turbulence. This feature results in a numerically observed upshift of the onset of turbulence on the surface towards higher ion temperature gradients as compared with the prediction from the most unstable regions. In a second regime lacking scale separation, the localization is lost and the fluctuations spread out on the magnetic surface. Nonetheless, stabilization persists through the suppression of the large eddies (relative to the equilibrium scale), leading to a reduced stiffness for the heat flux dependence on the ion temperature gradient. These fundamental differences with tokamak turbulence are exemplified for the QUASAR stellarator [G. H. Neilson et al., IEEE Trans. Plasma Sci. 42, 489 (2014)].

  16. Trees, bialgebras and intrinsic numerical algorithms

    NASA Technical Reports Server (NTRS)

    Crouch, Peter; Grossman, Robert; Larson, Richard

    1990-01-01

    Preliminary work about intrinsic numerical integrators evolving on groups is described. Fix a finite dimensional Lie group G; let g denote its Lie algebra, and let Y(sub 1),...,Y(sub N) denote a basis of g. A class of numerical algorithms is presented that approximate solutions to differential equations evolving on G of the form: dot-x(t) = F(x(t)), x(0) = p is an element of G. The algorithms depend upon constants c(sub i) and c(sub ij), for i = 1,...,k and j is less than i. The algorithms have the property that if the algorithm starts on the group, then it remains on the group. In addition, they also have the property that if G is the abelian group R(N), then the algorithm becomes the classical Runge-Kutta algorithm. The Cayley algebra generated by labeled, ordered trees is used to generate the equations that the coefficients c(sub i) and c(sub ij) must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.

  17. Intrinsic and extrinsic mechanisms of oocyte loss.

    PubMed

    Thomson, Travis C; Fitzpatrick, Katherine E; Johnson, Joshua

    2010-12-01

    A great deal of evolutionary conservation has been found in the control of oocyte development, from invertebrates to women. However, little is known of mechanisms that control oocyte loss over time. Oocyte loss is often assumed to be a result of oocyte-intrinsic deficiencies or damage. In fruit flies, starvation results in halted oocyte production by germline stem cells and induces oocyte loss midway through development. When we fed wild-type flies the bacterial compound Rapamycin (RAP) to mimic starvation, production of new oocytes continued, but mid-stage loss sterilized the animals. Surprisingly, follicle cell invasion and phagocytosis of the oocyte preceded any signs of germ cell death. RAP-induced egg chamber loss was prevented when RAP receptor FKBP12 was knocked down specifically in follicle cells. Oogenesis continued past the mid-stages, and these mutants continued to lay embryos that could develop into normal adults. Hence, intact healthy oocytes can be destroyed by somatic cells responding to extrinsic stimuli. We termed this process inducible somatic oocyte destruction. RAP treatment of mouse follicles in vitro resulted in phagocytic uptake of the oocyte by granulosa cells as seen in flies. We hypothesize that extrinsic modes of oocyte loss occur in mammals.

  18. Intrinsic Photosensitivity Enhances Motility of T Lymphocytes

    PubMed Central

    Phan, Thieu X.; Jaruga, Barbara; Pingle, Sandeep C.; Bandyopadhyay, Bidhan C.; Ahern, Gerard P.

    2016-01-01

    Sunlight has important biological effects in human skin. Ultraviolet (UV) light striking the epidermis catalyzes the synthesis of Vitamin D and triggers melanin production. Although a causative element in skin cancers, sunlight is also associated with positive health outcomes including reduced incidences of autoimmune diseases and cancers. The mechanisms, however, by which light affects immune function remain unclear. Here we describe direct photon sensing in human and mouse T lymphocytes, a cell-type highly abundant in skin. Blue light irradiation at low doses (<300 mJ cm−2) triggers synthesis of hydrogen peroxide (H2O2) in T cells revealed by the genetically encoded reporter HyPerRed. In turn, H2O2 activates a Src kinase/phospholipase C-γ1 (PLC-γ1) signaling pathway and Ca2+ mobilization. Pharmacologic inhibition or genetic disruption of Lck kinase, PLC-γ1 or the T cell receptor complex inhibits light-evoked Ca2+ transients. Notably, both light and H2O2 enhance T-cell motility in a Lck-dependent manner. Thus, T lymphocytes possess intrinsic photosensitivity and this property may enhance their motility in skin. PMID:27995987

  19. Adaptive Responses Limited by Intrinsic Noise

    PubMed Central

    Shankar, Prabhat; Nishikawa, Masatoshi; Shibata, Tatsuo

    2015-01-01

    Sensory systems have mechanisms to respond to the external environment and adapt to them. Such adaptive responses are effective for a wide dynamic range of sensing and perception of temporal change in stimulus. However, noise generated by the adaptation system itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of adaptation systems. The relation between response and noise is well understood for equilibrium systems in the form of fluctuation response relation. However, the relation for nonequilibrium systems, including adaptive systems, are poorly understood. Here, we systematically explore such a relation between response and fluctuation in adaptation systems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative feedback loops (nFBL), that can achieve perfect adaptation. We find that the response magnitude in adaption systems is limited by its intrinsic noise, implying that higher response would have higher noise component as well. Comparing the relation of response and noise in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition that yields the upper limit of response for both network motifs. These results may explain the reason of why nFBL seems to be more abundant in nature for the implementation of adaption systems. PMID:26305221

  20. Toward a tripartite model of intrinsic motivation.

    PubMed

    Carbonneau, Noémie; Vallerand, Robert J; Lafrenière, Marc-André K

    2012-10-01

    Intrinsic motivation (IM) refers to engaging in an activity for the pleasure inherent in the activity. The present article presents a tripartite model of IM consisting of IM to know (i.e., engaging in an activity to experience pleasure while learning and trying to understand something new), IM toward accomplishment (i.e., engaging in an activity for the pleasure experienced when attempting task mastery), and IM to experience stimulation (i.e., engaging in an activity for feelings of sensory pleasure). The tripartite model of IM posits that each type of IM can result from task, situational, and personality determinants and can lead to specific types of cognitive, affective, and behavioral outcomes. The purpose of this research was to test some predictions derived from this model. Across 4 studies (Study 1: N = 331; Study 2: N = 113; Study 3: N = 58; Study 4: N = 135), the 3 types of IM as well as potential determinants and consequences were assessed. Results revealed that experiencing one type of IM over the others depends in part on people's personality styles. Also, each type of IM was found to predict specific outcomes (i.e., affective states and behavioral choices). The implications of the tripartite model of IM for motivation research are discussed.

  1. Understanding Oceanic Migrations with Intrinsic Biogeochemical Markers

    PubMed Central

    Ramos, Raül; González-Solís, Jacob; Croxall, John P.; Oro, Daniel

    2009-01-01

    Migratory marine vertebrates move annually across remote oceanic water masses crossing international borders. Many anthropogenic threats such as overfishing, bycatch, pollution or global warming put millions of marine migrants at risk especially during their long-distance movements. Therefore, precise knowledge about these migratory movements to understand where and when these animals are more exposed to human impacts is vital for addressing marine conservation issues. Because electronic tracking devices suffer from several constraints, mainly logistical and financial, there is emerging interest in finding appropriate intrinsic markers, such as the chemical composition of inert tissues, to study long-distance migrations and identify wintering sites. Here, using tracked pelagic seabirds and some of their own feathers which were known to be grown at different places and times within the annual cycle, we proved the value of biogeochemical analyses of inert tissue as tracers of marine movements and habitat use. Analyses of feathers grown in summer showed that both stable isotope signatures and element concentrations can signal the origin of breeding birds feeding in distinct water masses. However, only stable isotopes signalled water masses used during winter because elements mainly accumulated during the long breeding period are incorporated into feathers grown in both summer and winter. Our findings shed new light on the simple and effective assignment of marine organisms to distinct oceanic areas, providing new opportunities to study unknown migration patterns of secretive species, including in relation to human-induced mortality on specific populations in the marine environment. PMID:19623244

  2. Visualization of Turbulence-Generated Intrinsic Rotation

    NASA Astrophysics Data System (ADS)

    Feibush, Eliot; Ethier, Stephane; Wang, Weixing; Tang, William

    2012-10-01

    A new visualization has been developed of the 3D vector field of plasma flow computed by global gyrokinetic simulations using the GTS code. The visualization shows the direction, magnitude, and structure of turbulence-generated intrinsic rotation in a tokamak. Vectors indicate the clockwise and counter-clockwise flows around the torus. Color-coded vectors are drawn at each grid point on the poloidal planes. A color scale was developed to maximize contrast within the most heavily populated range of data while preserving visibility of the global minimum and maximum values. Technical highlights include transferring large amounts of simulation data from NERSC to PPPL using multiple streams, parallel rendering by the VisIt software, and multiple nx client sessions connecting to a persistent server session. Each of the 1,000 time steps is rendered to a high definition image. The images are assembled into an animated movie that is compressed for efficient, high quality playback. A workflow is in place for producing visualizations of new simulations.

  3. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    SciTech Connect

    Si, M. S.; Gao, Daqiang E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng E-mail: xueds@lzu.edu.cn; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  4. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets.

    PubMed

    Si, M S; Gao, Daqiang; Yang, Dezheng; Peng, Yong; Zhang, Z Y; Xue, Desheng; Liu, Yushen; Deng, Xiaohui; Zhang, G P

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  5. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Si, M. S.; Gao, Daqiang; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.

    2014-05-01

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  6. Exploiting intrinsic fluctuations to identify model parameters.

    PubMed

    Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen

    2015-04-01

    Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.

  7. Rapid identification of microorganisms by intrinsic fluorescence

    NASA Astrophysics Data System (ADS)

    Bhatta, Hemant; Goldys, Ewa M.; Learmonth, Robert

    2005-03-01

    Microbial contamination has serious consequences for the industries that use fermentation processes. Common contaminants such as faster growing lactic acid bacteria or wild yeast can rapidly outnumber inoculated culture yeast and produce undesirable end products. Our study focuses on a rapid method of identification of such contaminants based on autofluorescence spectroscopy of bacterial and yeast species. Lactic acid bacteria (Lac-tobacillus casei), and yeast (Saccharomyces cerevisiae) were cultured under controlled conditions and studied for variations in their autofluorescence. We observed spectral differences in the spectral range representative of tryptophan residues of proteins, with excitation at 290 nm and emission scanned in the 300 nm - 440 nm range. Excitation scans between 240 nm and 310 nm were also performed for the emission at 340 nm. Moreover, we observed clearly pronounced differences in the excitation and emission in the visible range, with 410 nm excitation. These results demonstrate that bacterial and yeast species can be differentiated using their intrinsic fluorescence both in UV and in the visible region. The comparative spectroscopic study of selected strains of Saccharomyces yeast showed clear differences between strains. Spectrally-resolved laser scanning microscopy was carried out to link the results obtained using ensembles of cells with spectral properties of individual cells. Strongly fluorescent subpopulation were observed for all yeast strains with excitation at 405 nm. The fluorescence spectra showed variations correlated with cell brightness. The presented results demonstrate that using autofluorescence, it is possible to differentiate between yeast and lactic acid bacteria and between different yeast species.

  8. Dynamic Neural Fields with Intrinsic Plasticity

    PubMed Central

    Strub, Claudius; Schöner, Gregor; Wörgötter, Florentin; Sandamirskaya, Yulia

    2017-01-01

    Dynamic neural fields (DNFs) are dynamical systems models that approximate the activity of large, homogeneous, and recurrently connected neural networks based on a mean field approach. Within dynamic field theory, the DNFs have been used as building blocks in architectures to model sensorimotor embedding of cognitive processes. Typically, the parameters of a DNF in an architecture are manually tuned in order to achieve a specific dynamic behavior (e.g., decision making, selection, or working memory) for a given input pattern. This manual parameters search requires expert knowledge and time to find and verify a suited set of parameters. The DNF parametrization may be particular challenging if the input distribution is not known in advance, e.g., when processing sensory information. In this paper, we propose the autonomous adaptation of the DNF resting level and gain by a learning mechanism of intrinsic plasticity (IP). To enable this adaptation, an input and output measure for the DNF are introduced, together with a hyper parameter to define the desired output distribution. The online adaptation by IP gives the possibility to pre-define the DNF output statistics without knowledge of the input distribution and thus, also to compensate for changes in it. The capabilities and limitations of this approach are evaluated in a number of experiments. PMID:28912706

  9. Adaptive Responses Limited by Intrinsic Noise.

    PubMed

    Shankar, Prabhat; Nishikawa, Masatoshi; Shibata, Tatsuo

    2015-01-01

    Sensory systems have mechanisms to respond to the external environment and adapt to them. Such adaptive responses are effective for a wide dynamic range of sensing and perception of temporal change in stimulus. However, noise generated by the adaptation system itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of adaptation systems. The relation between response and noise is well understood for equilibrium systems in the form of fluctuation response relation. However, the relation for nonequilibrium systems, including adaptive systems, are poorly understood. Here, we systematically explore such a relation between response and fluctuation in adaptation systems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative feedback loops (nFBL), that can achieve perfect adaptation. We find that the response magnitude in adaption systems is limited by its intrinsic noise, implying that higher response would have higher noise component as well. Comparing the relation of response and noise in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition that yields the upper limit of response for both network motifs. These results may explain the reason of why nFBL seems to be more abundant in nature for the implementation of adaption systems.

  10. Does intrinsic motivation enhance motor cortex excitability?

    PubMed

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research.

  11. Intrinsic and extrinsic measurement for Brownian motion

    NASA Astrophysics Data System (ADS)

    Castro-Villarreal, Pavel

    2014-05-01

    Based upon the Smoluchowski equation on curved manifolds, three physical observables are considered for Brownian displacement, namely geodesic displacement s, Euclidean displacement δR, and projected displacement δR⊥. The Weingarten-Gauss equations are used to calculate the mean-square Euclidean displacements in the short-time regime. Our findings show that from an extrinsic point of view the geometry of the space affects the Brownian motion in such a way that the particle’s diffusion is decelerated, contrasting with the intrinsic point of view where dynamics is controlled by the sign of the Gaussian curvature (Castro-Villarreal, 2010 J. Stat. Mech. P08006). Furthermore, it is possible to give exact formulas for <δR> and <δR2> on spheres and minimal surfaces, which are valid for all values of time. In the latter case, surprisingly, Brownian motion corresponds to the usual diffusion in flat geometries, albeit minimal surfaces have non-zero Gaussian curvature. Finally, the two-dimensional case is emphasized due to its close relation to surface self-diffusion in fluid membranes.

  12. Exploiting protein intrinsic flexibility in drug design.

    PubMed

    Lukman, Suryani; Verma, Chandra S; Fuentes, Gloria

    2014-01-01

    Molecular recognition in biological systems relies on the existence of specific attractive interactions between two partner molecules. Structure-based drug design seeks to identify and optimize such interactions between ligands and their protein targets. The approach followed in medicinal chemistry follows a combination of careful analysis of structural data together with experimental and/or theoretical studies on the system. This chapter focuses on the fact that a protein is not fully characterized by a single structure, but by an ensemble of states, some of them represent "hidden conformations" with cryptic binding sites. We highlight case studies where both experimental and computational methods have been used to mutually drive each other in an attempt to improve the success of the drug design approaches.Advances in both experimental techniques and computational methods have greatly improved our physico-chemical understanding of the functional mechanisms in biomolecules and opened a debate about the interplay between molecular structure and biomolecular function. The beautiful static pictures of protein structures may have led to neglecting the intrinsic protein flexibility, however we are entering a new era where more sophisticated methods are used to exploit this ability of macromolecules, and this will definitely lead to the inclusion of the notion in the pharmaceutical field of drug design.

  13. Dynamic Neural Fields with Intrinsic Plasticity.

    PubMed

    Strub, Claudius; Schöner, Gregor; Wörgötter, Florentin; Sandamirskaya, Yulia

    2017-01-01

    Dynamic neural fields (DNFs) are dynamical systems models that approximate the activity of large, homogeneous, and recurrently connected neural networks based on a mean field approach. Within dynamic field theory, the DNFs have been used as building blocks in architectures to model sensorimotor embedding of cognitive processes. Typically, the parameters of a DNF in an architecture are manually tuned in order to achieve a specific dynamic behavior (e.g., decision making, selection, or working memory) for a given input pattern. This manual parameters search requires expert knowledge and time to find and verify a suited set of parameters. The DNF parametrization may be particular challenging if the input distribution is not known in advance, e.g., when processing sensory information. In this paper, we propose the autonomous adaptation of the DNF resting level and gain by a learning mechanism of intrinsic plasticity (IP). To enable this adaptation, an input and output measure for the DNF are introduced, together with a hyper parameter to define the desired output distribution. The online adaptation by IP gives the possibility to pre-define the DNF output statistics without knowledge of the input distribution and thus, also to compensate for changes in it. The capabilities and limitations of this approach are evaluated in a number of experiments.

  14. Intrinsic Circuits in the Lateral Central Amygdala

    PubMed Central

    Hunt, Sarah; Sun, Yajie; Klein, Rüdiger

    2017-01-01

    Abstract Network activity in the lateral central amygdala (CeL) plays a crucial role in fear learning and emotional processing. However, the local circuits of the CeL are not fully understood and have only recently begun to be explored in detail. Here, we characterized the intrinsic circuits in the CeL using paired whole-call patch-clamp recordings, immunohistochemistry, and optogenetics in C57BL/6J wild-type and somatostatin-cre (SOM-Cre) mice. Our results revealed that throughout the rostrocaudal extent of the CeL, neurons form inhibitory connections at a rate of ∼29% with an average amplitude of 20 ± 3 pA (at −40 mV). Inhibitory input from a single neuron is sufficient to halt firing in the postsynaptic neuron. Post hoc immunostaining for protein kinase Cδ (PKCδ) in wild-type mice and paired recordings in SOM-Cre mice demonstrated that the most common local connections were PKCδ(−) → PKCδ(−) and SOM(+) → SOM(+). Finally, by optogenetically activating either SOM(+) or SOM(−) neurons, we found that almost all neurons in the CeL were innervated by these neuronal populations and that connections between like neurons were stronger than those between different neuronal types. These findings reveal a complex network of connections within the CeL and provide the foundations for future behavior-specific circuit analysis of this complex network. PMID:28374004

  15. Intrinsic valley Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Zhang, Wen-Lian; Liu, Hai; Bai, Yan-Kui

    2017-04-01

    If electrons are incident from an armchair graphene ribbon into the bulk graphene region, the electronic diffraction occurs. Because of the different triangular wrapping of the energy dispersion between valleys K and K ‧ , the electrons of valley K tend to be diffracted to one side and those of valley K ‧ to the other side. When the current is injected from the armchair ribbon of a four-terminal graphene device, the major portion of the incident current of valley K flows through one side arm and the minor portion through the other side arm. The ratio between them is derived to be 1 + 4 E / 3 in the low energy limit, where E is the energy in units of hopping parameter. The major arm for valley K is the minor arm for valley K ‧ . This results in the rise of the valley Hall effect, which is an intrinsic property of graphene stemming from the different electronic structure of the two valleys. The valley Hall conductance is calculated to be (2 E / 3)G0 with G0 being the conductance supported by the injection ribbon.

  16. Intrinsic Dynamic Behavior of Fascin in Filopodia

    PubMed Central

    Schaus, Thomas E.; Taylor, Edwin W.; Borisy, Gary G.

    2007-01-01

    Recent studies showed that the actin cross-linking protein, fascin, undergoes rapid cycling between filopodial filaments. Here, we used an experimental and computational approach to dissect features of fascin exchange and incorporation in filopodia. Using expression of phosphomimetic fascin mutants, we determined that fascin in the phosphorylated state is primarily freely diffusing, whereas actin bundling in filopodia is accomplished by fascin dephosphorylated at serine 39. Fluorescence recovery after photobleaching analysis revealed that fascin rapidly dissociates from filopodial filaments with a kinetic off-rate of 0.12 s−1 and that it undergoes diffusion at moderate rates with a coefficient of 6 μm2s−1. This kinetic off-rate was recapitulated in vitro, indicating that dynamic behavior is intrinsic to the fascin cross-linker. A computational reaction–diffusion model showed that reversible cross-linking is required for the delivery of fascin to growing filopodial tips at sufficient rates. Analysis of fascin bundling indicated that filopodia are semiordered bundles with one bound fascin per 25–60 actin monomers. PMID:17671164

  17. Genomic Insights into Diffuse Intrinsic Pontine Glioma

    PubMed Central

    Lapin, Danielle H.; Tsoli, Maria; Ziegler, David S.

    2017-01-01

    Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brainstem tumor with a peak incidence in middle childhood and a median survival of less than 1 year. The dismal prognosis associated with DIPG has been exacerbated by the failure of over 250 clinical trials to meaningfully improve survival compared with radiotherapy, the current standard of care. The traditional practice to not biopsy DIPG led to a scarcity in available tissue samples for laboratory analysis that till recently hindered therapeutic advances. Over the past few years, the acquisition of patient derived tumor samples through biopsy and autopsy protocols has led to distinct breakthroughs in the identification of key oncogenic drivers implicated in DIPG development. Aberrations have been discovered in critical genetic drivers including histone H3, ACVR1, TP53, PDGFRA, and Myc. Mutations, previously not identified in other malignancies, highlight DIPG as a distinct biological entity. Identification of novel markers has already greatly influenced the direction of preclinical investigations and offers the exciting possibility of establishing biologically targeted therapies. This review will outline the current knowledge of the genomic landscape related to DIPG, overview preclinical investigations, and reflect how biological advances have influenced the focus of clinical trials toward targeted therapies. PMID:28401062

  18. Intrinsic Motivation and Flow Condition on the Music Teacher's Performance

    ERIC Educational Resources Information Center

    Torres Delgado, Gabriela

    2017-01-01

    The aim of these research is to identify if music teachers and teachers from other areas are intrinsically or extrinsically motivated, to identify the dimensions of the flow state, and to identify if there is a relationship between intrinsic motivation and flow state in these teachers. The sample was made up of 738 active teachers. The presence of…

  19. Intrinsic and Extrinsic Motivation for Stereotypic and Repetitive Behavior

    ERIC Educational Resources Information Center

    Joosten, Annette V.; Bundy, Anita C.; Einfeld, Stewart L.

    2009-01-01

    This study provides evidence for intrinsic and extrinsic motivators for stereotypical and repetitive behavior in children with autism and intellectual disability and children with intellectual disability alone. We modified the Motivation Assessment Scale (MAS) (1988b); dividing it into intrinsic and extrinsic measures and adding items to assess…

  20. 30 CFR 18.68 - Tests for intrinsic safety.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Intrinsically safe circuits and/or components will be subjected to tests consisting of making and breaking the intrinsically safe circuit under conditions judged to simulate the most hazardous probable faults or... method of making and breaking the circuit may be varied to meet a particular condition. (3) Those...

  1. 30 CFR 18.68 - Tests for intrinsic safety.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Intrinsically safe circuits and/or components will be subjected to tests consisting of making and breaking the intrinsically safe circuit under conditions judged to simulate the most hazardous probable faults or... method of making and breaking the circuit may be varied to meet a particular condition. (3) Those...

  2. 30 CFR 18.68 - Tests for intrinsic safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Intrinsically safe circuits and/or components will be subjected to tests consisting of making and breaking the intrinsically safe circuit under conditions judged to simulate the most hazardous probable faults or... method of making and breaking the circuit may be varied to meet a particular condition. (3) Those...

  3. 30 CFR 18.68 - Tests for intrinsic safety.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Intrinsically safe circuits and/or components will be subjected to tests consisting of making and breaking the intrinsically safe circuit under conditions judged to simulate the most hazardous probable faults or... method of making and breaking the circuit may be varied to meet a particular condition. (3) Those...

  4. Toward Modeling the Intrinsic Complexity of Test Problems

    ERIC Educational Resources Information Center

    Shoufan, Abdulhadi

    2017-01-01

    The concept of intrinsic complexity explains why different problems of the same type, tackled by the same problem solver, can require different times to solve and yield solutions of different quality. This paper proposes a general four-step approach that can be used to establish a model for the intrinsic complexity of a problem class in terms of…

  5. 46 CFR 111.105-11 - Intrinsically safe systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Intrinsically safe systems. 111.105-11 Section 111.105-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC..., partitioned by a grounded metal barrier from other non-intrinsically safe electric cables, or a shielded...

  6. Extrinsic and Intrinsic Motivation at 30: Unresolved Scientific Issues

    ERIC Educational Resources Information Center

    Reiss, Steven

    2005-01-01

    The undermining effect of extrinsic reward on intrinsic motivation remains unproven. The key unresolved issues are construct invalidity (all four definitions are unproved and two are illogical); measurement unreliability (the free-choice measure requires unreliable, subjective judgments to infer intrinsic motivation); inadequate experimental…

  7. 30 CFR 27.34 - Test for intrinsic safety.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for intrinsic safety. 27.34 Section 27.34 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.34 Test for intrinsic...

  8. Adolescents' Perceptions of Family Connectedness, Intrinsic Religiosity, and Depressed Mood

    ERIC Educational Resources Information Center

    Houltberg, Benjamin J.; Henry, Carolyn S.; Merten, Michael J.; Robinson, Linda C.

    2011-01-01

    Using a sample of 248 ninth and tenth grade students at public high schools, we examined adolescents' perceptions of family connectedness, intrinsic religiosity, and adolescents' gender in relation to depressed mood and whether intrinsic religiosity and gender moderated the association of aspects of family connectedness to adolescent depressed…

  9. The Intrinsic Value of Nature and Moral Education

    ERIC Educational Resources Information Center

    Helton, William S.; Helton, Nicole D.

    2007-01-01

    Many environmental, humane and character educators try to foster a belief in the intrinsic value of nature and a respect for non-human life among students. Marangudakis argues that Christianity advocates anthropocentrism and opposes belief in the intrinsic value of nature. If Marangudakis is correct, then a goal of many environmental and humane…

  10. 30 CFR 27.34 - Test for intrinsic safety.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for intrinsic safety. 27.34 Section 27.34 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.34 Test for intrinsic safety...

  11. 30 CFR 27.34 - Test for intrinsic safety.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for intrinsic safety. 27.34 Section 27.34 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.34 Test for intrinsic safety...

  12. 30 CFR 27.34 - Test for intrinsic safety.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for intrinsic safety. 27.34 Section 27.34 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.34 Test for intrinsic safety...

  13. 30 CFR 27.34 - Test for intrinsic safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for intrinsic safety. 27.34 Section 27.34 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.34 Test for intrinsic safety...

  14. Adolescents' Perceptions of Family Connectedness, Intrinsic Religiosity, and Depressed Mood

    ERIC Educational Resources Information Center

    Houltberg, Benjamin J.; Henry, Carolyn S.; Merten, Michael J.; Robinson, Linda C.

    2011-01-01

    Using a sample of 248 ninth and tenth grade students at public high schools, we examined adolescents' perceptions of family connectedness, intrinsic religiosity, and adolescents' gender in relation to depressed mood and whether intrinsic religiosity and gender moderated the association of aspects of family connectedness to adolescent depressed…

  15. Extrinsic and Intrinsic Motivation at 30: Unresolved Scientific Issues

    ERIC Educational Resources Information Center

    Reiss, Steven

    2005-01-01

    The undermining effect of extrinsic reward on intrinsic motivation remains unproven. The key unresolved issues are construct invalidity (all four definitions are unproved and two are illogical); measurement unreliability (the free-choice measure requires unreliable, subjective judgments to infer intrinsic motivation); inadequate experimental…

  16. Creativity as Mediator for Intrinsic Motivation and Sales Performance

    ERIC Educational Resources Information Center

    Bodla, Mahmood A.; Naeem, Basharat

    2014-01-01

    Substantial theoretical and empirical literature indicates inconsistent performance implications of intrinsic motivation, suggesting the possibility of some explanatory mechanisms. However, little is known about the factors that might explain intrinsic motivation and sales force performance relation, particularly in highly competitive and…

  17. Creativity as Mediator for Intrinsic Motivation and Sales Performance

    ERIC Educational Resources Information Center

    Bodla, Mahmood A.; Naeem, Basharat

    2014-01-01

    Substantial theoretical and empirical literature indicates inconsistent performance implications of intrinsic motivation, suggesting the possibility of some explanatory mechanisms. However, little is known about the factors that might explain intrinsic motivation and sales force performance relation, particularly in highly competitive and…

  18. Fostering Intrinsic Motivation in Children: A Humanistic Counseling Process

    ERIC Educational Resources Information Center

    Watts, Randolph H., Jr.; Cashwell, Craig S.; Schweiger, Wendi K.

    2004-01-01

    Humanistic counselors working with children seek to help them grow and develop the motivation needed to make decisions and changes in their lives. Intrinsic motivation, an important component of humanistic counseling, is defined and explicated, research is reviewed, and suggestions are made for counselors who seek to foster intrinsic motivation in…

  19. Intrinsic unsharpness and approximate repeatability of quantum measurements

    NASA Astrophysics Data System (ADS)

    Carmeli, Claudio; Heinonen, Teiko; Toigo, Alessandro

    2007-02-01

    The intrinsic unsharpness of a quantum observable is studied by introducing the notion of resolution width. This quantification of accuracy is shown to be closely connected with the possibility of making approximately repeatable measurements. As a case study, the intrinsic unsharpness and approximate repeatability of position and momentum measurements are examined in detail.

  20. Self-Determination Theory: Intrinsic Motivation and Behavioral Change.

    PubMed

    Flannery, Marie

    2017-03-01

    Motivation is a central concept in behavioral change. This article reviews the self-determination theory with an emphasis on "intrinsic motivation," which is facilitated when three basic psychological needs (autonomy, competence, and relatedness) are met. Intrinsic motivation is associated with improved well-being and sustained behavioral change.

  1. Brown University.

    ERIC Educational Resources Information Center

    CAUSE/EFFECT, 1984

    1984-01-01

    The computing at Brown University was formalized in 1960. Computing history, current university computing, and a description of the Institute for Research in Information and Scholarship are discussed. The installation of a broadband communications network (BRUNET) was recently completed. (MLW)

  2. Ethnic stigma, academic anxiety, and intrinsic motivation in middle childhood.

    PubMed

    Gillen-O'Neel, Cari; Ruble, Diane N; Fuligni, Andrew J

    2011-01-01

    Previous research addressing the dynamics of stigma and academics has focused on African American adolescents and adults. The present study examined stigma awareness, academic anxiety, and intrinsic motivation among 451 young (ages 6-11) and diverse (African American, Chinese, Dominican, Russian, and European American) students. Results indicated that ethnic-minority children reported higher stigma awareness than European American children. For all children, stigma awareness was associated with higher academic anxiety and lower intrinsic motivation. Despite these associations, ethnic-minority children reported higher levels of intrinsic motivation than their European American peers. A significant portion of the higher intrinsic motivation among Dominican students was associated with their higher levels of school belonging, suggesting that supportive school environments may be important sources of intrinsic motivation among some ethnic-minority children.

  3. Intrinsic motivation and sportsmanship: mediating role of interpersonal relationships.

    PubMed

    Núñez, Juan L; Martín-Albo, José; Navarro, José G; Sánchez, Juana M; González-Cutre, David

    2009-06-01

    This study analyzed the mediating role of interpersonal relations between intrinsic motivation and sportsmanship. Athletes (98 men, 97 women), ages 11 to 43 years, completed measures of intrinsic motivation toward sports, self-concept of social and family relations, and sportsmanship orientation. A structural equation model indicated that self-concept of interpersonal relations mediated the relation between intrinsic motivation and sportsmanship. Also, intrinsic motivation was directly and positively associated with self-concept of interpersonal relations, which, in turn, was positively and significantly related to sportsmanship. Variances explained by self-concept of interpersonal relations and by sportsmanship were 32 and 56%, respectively. The motivational interaction between the context of interpersonal relations and the sports context proposed in the hierarchical model of intrinsic and extrinsic motivation was discussed.

  4. Ethnic Stigma, Academic Anxiety, and Intrinsic Motivation in Middle Childhood

    PubMed Central

    Gillen-O’Neel, Cari; Ruble, Diane N.; Fuligni, Andrew J.

    2011-01-01

    Previous research addressing the dynamics of stigma and academics has focused on African-American adolescents and adults. The present study examined stigma awareness, academic anxiety, and intrinsic motivation among 451 young (ages 6–11) and diverse (African-American, Chinese, Dominican, Russian, and European-American) students. Results indicated that ethnic-minority children reported higher stigma awareness than European-American children. For all children, stigma awareness was associated with higher academic anxiety and lower intrinsic motivation. Despite these associations, ethnic-minority children reported higher levels of intrinsic motivation than their European-American peers. A significant portion of the higher intrinsic motivation among Dominican students was associated with their higher levels of school belonging, suggesting that supportive school environments may be important sources of intrinsic motivation among some ethnic-minority children. PMID:21883152

  5. Intrinsic disorder in proteins involved in amyotrophic lateral sclerosis.

    PubMed

    Santamaria, Nikolas; Alhothali, Marwa; Alfonso, Maria Harreguy; Breydo, Leonid; Uversky, Vladimir N

    2017-04-01

    Five structurally and functionally different proteins, an enzyme superoxide dismutase 1 (SOD1), a TAR-DNA binding protein-43 (TDP-43), an RNA-binding protein FUS, a cofilin-binding protein C9orf72, and polypeptides generated as a result of its intronic hexanucleotide expansions, and to lesser degree actin-binding profilin-1 (PFN1), are considered to be the major drivers of amyotrophic lateral sclerosis. One of the features common to these proteins is the presence of significant levels of intrinsic disorder. The goal of this study is to consider these neurodegeneration-related proteins from the intrinsic disorder perspective. To this end, we employed a broad set of computational tools for intrinsic disorder analysis and conducted intensive literature search to gain information on the structural peculiarities of SOD1, TDP-43, FUS, C9orf72, and PFN1 and their intrinsic disorder predispositions, and the roles of intrinsic disorder in their normal and pathological functions.

  6. An intrinsic timer specifies distal structures of the vertebrate limb.

    PubMed

    Saiz-Lopez, Patricia; Chinnaiya, Kavitha; Campa, Victor M; Delgado, Irene; Ros, Maria A; Towers, Matthew

    2015-09-18

    How the positional values along the proximo-distal axis (stylopod-zeugopod-autopod) of the limb are specified is intensely debated. Early work suggested that cells intrinsically change their proximo-distal positional values by measuring time. Recently, however, it is suggested that instructive extrinsic signals from the trunk and apical ectodermal ridge specify the stylopod and zeugopod/autopod, respectively. Here, we show that the zeugopod and autopod are specified by an intrinsic timing mechanism. By grafting green fluorescent protein-expressing cells from early to late chick wing buds, we demonstrate that distal mesenchyme cells intrinsically time Hoxa13 expression, cell cycle parameters and the duration of the overlying apical ectodermal ridge. In addition, we reveal that cell affinities intrinsically change in the distal mesenchyme, which we suggest results in a gradient of positional values along the proximo-distal axis. We propose a complete model in which a switch from extrinsic signalling to intrinsic timing patterns the vertebrate limb.

  7. Intrinsic Organization of the Anesthetized Brain

    PubMed Central

    Liang, Zhifeng; King, Jean; Zhang, Nanyin

    2012-01-01

    The neural mechanism of unconsciousness has been a major unsolved question in neuroscience despite its vital role in brain states like coma and anesthesia. The existing literature suggests that neural connections, information integration and conscious states are closely related. Indeed, alterations in several important neural circuitries and networks during unconscious conditions have been reported. However, how the whole-brain network is topologically reorganized to support different patterns of information transfer at unconscious states remains unknown. Here we directly compared whole-brain neural networks in an awake and an anesthetized state in rodents. Consistent with our previous report, the awake rat brain was organized in a non-trivial manner and conserved fundamental topological properties as the human brain. Strikingly, these topological features were well maintained in the anesthetized brain. Meanwhile, local neural networks were reorganized with altered local network properties. The connectional strength between brain regions was also considerably different between the awake and anesthetized conditions. Interestingly, we found that long-distance connections were not preferentially reduced in the anesthetized condition, arguing against the hypothesis that loss of long-distance connections is characteristic to unconsciousness. These findings collectively show that the integrity of the whole-brain network can be conserved between widely dissimilar physiologic states while local neural networks can flexibly adapt to new conditions. They also illustrate that the governing principles of intrinsic brain organization might represent fundamental characteristics of the healthy brain. With the unique spatial and temporal scales of rsfMRI, this study has opened a new avenue for understanding the neural mechanism of (un)consciousness. PMID:22836253

  8. Intrinsic Wavelength Shifts in Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Dravins, D.; Lindegren, L.; Ludwig, H.-G.; Madsen, S.

    2004-12-01

    Wavelengths of stellar spectral lines do not have the precise values `naively' expected from laboratory wavelengths merely Doppler-shifted by stellar radial motion. Slight displacements may originate as convective shifts (correlated velocity and brightness patterns in the photosphere), as gravitational redshifts, or perhaps be induced by wave motions. Intrinsic lineshifts thus reveal stellar surface structure, while possible periodic changes (during a stellar activity cycle, say) need to be segregated from variability induced by orbiting exoplanets. Absolute lineshifts can now be studied also in some stars other than the Sun, thanks to astrometric determinations of stellar radial motion. Comparisons between spectroscopic apparent radial velocities and astrometrically determined radial motions reveal greater spectral blueshifts in F-type stars than in the Sun (as theoretically expected from their more vigorous convection), further increasing in A-type stars (possibly due to atmospheric shockwaves). Solar spectral atlases, and high-resolution spectra (from UVES on ESO VLT) of a dozen solar-type stars are being surveyed for `unblended' photospheric lines of most atomic species with accurate laboratory wavelengths available. One aim is to understand the ultimate information content of stellar spectra, and in what detail it will be feasible to verify models of stellar atmospheric hydrodynamics. These may predict line asymmetries (bisectors) and shifts for widely different classes of lines, but there will not result any comparison with observations if such lines do not exist in real spectra. An expected near-future development in stellar physics is spatially resolved spectroscopy across stellar disks, enabled by optical interferometry and adaptive optics on very large telescopes. Stellar surface structure manifests itself in the center-to-limb wavelength changes along a stellar diameter, and their spatially resolved time variability, diagnostics which already now can be

  9. Working memory storage is intrinsically domain specific.

    PubMed

    Fougnie, Daryl; Zughni, Samir; Godwin, Douglass; Marois, René

    2015-02-01

    A longstanding debate in working memory (WM) is whether information is maintained in a central, capacity-limited storage system or whether there are domain-specific stores for different modalities. This question is typically addressed by determining whether concurrent storage of 2 different memory arrays produces interference. Prior studies using this approach have shown at least some cost to maintaining 2 memory arrays that differed in perceptual modalities. However, it is not clear whether these WM costs resulted from competition for a central, capacity-limited store or from other potential sources of dual-task interference, such as task preparation and coordination, overlap in representational content (e.g., object vs. space based), or cognitive strategies (e.g., verbalization, chunking of the stimulus material in a higher order structure). In the present study we assess dual-task costs during the concurrent performance of a visuospatial WM task and an auditory object WM task when such sources of interference are minimized. The results show that performance of these 2 WM tasks are independent from each another, even at high WM load. Only when we introduced a common representational format (spatial information) to both WM tasks did dual-task performance begin to suffer. These results are inconsistent with the notion of a domain-independent storage system, and suggest instead that WM is constrained by multiple domain-specific stores and central executive processes. Evidently, there is nothing intrinsic about the functional architecture of the human mind that prevents it from storing 2 distinct representations in WM, as long as these representations do not overlap in any functional domain.

  10. Intrinsic carnosine metabolism in the human kidney.

    PubMed

    Peters, Verena; Klessens, Celine Q F; Baelde, Hans J; Singler, Benjamin; Veraar, Kimberley A M; Zutinic, Ana; Drozak, Jakub; Zschocke, Johannes; Schmitt, Claus P; de Heer, Emile

    2015-12-01

    Histidine-containing dipeptides like carnosine and anserine have protective functions in both health and disease. Animal studies suggest that carnosine can be metabolized within the kidney. The goal of this study was to obtain evidence of carnosine metabolism in the human kidney and to provide insight with regards to diabetic nephropathy. Expression, distribution, and localization of carnosinase-1 (CNDP1), carnosine synthase (CARNS), and taurine transporters (TauT) were measured in human kidneys. CNDP1 and CARNS activities were measured in vitro. CNDP1 and CARNS were located primarily in distal and proximal tubules, respectively. Specifically, CNDP1 levels were high in tubular cells and podocytes (20.3 ± 3.4 and 15 ± 3.2 ng/mg, respectively) and considerably lower in endothelial cells (0.5 ± 0.1 ng/mg). CNDP1 expression was correlated with the degradation of carnosine and anserine (r = 0.88 and 0.81, respectively). Anserine and carnosine were also detectable by HPLC in the renal cortex. Finally, TauT mRNA and protein were found in all renal epithelial cells. In diabetic patients, CNDP1 seemed to be reallocated to proximal tubules. We report compelling evidence that the kidney has an intrinsic capacity to metabolize carnosine. Both CNDP1 and CARNS are expressed in glomeruli and tubular cells. Carnosine-synthesizing and carnosine-hydrolyzing enzymes are localized in distinct compartments in the nephron and increased CNDP1 levels suggest a higher CNDP1 activity in diabetic kidneys.

  11. Intrinsic disorder in nuclear hormone receptors.

    PubMed

    Krasowski, Matthew D; Reschly, Erica J; Ekins, Sean

    2008-10-01

    Many proteins possess intrinsic disorder (ID) and lack a rigid three-dimensional structure in at least part of their sequence. ID has been hypothesized to influence protein-protein and protein-ligand interactions. We calculated ID for nearly 400 vertebrate and invertebrate members of the biomedically important nuclear hormone receptor (NHR) superfamily, including all 48 known human NHRs. The predictions correctly identified regions in 20 of the 23 NHRs suggested as disordered based on published X-ray and NMR structures. Of the four major NHR domains (N-terminal domain, DNA-binding domain, D-domain, and ligand-binding domain), we found ID to be highest in the D-domain, a region of NHRs critical in DNA recognition and heterodimerization, coactivator/corepressor interactions and protein-protein interactions. ID in the D-domain and LBD was significantly higher in "hub" human NHRs that have 10 or more downstream proteins in their interaction networks compared to "non-hub" NHRs that interact with fewer than 10 downstream proteins. ID in the D-domain and LBD was also higher in classic, ligand-activated NHRs than in orphan, ligand-independent NHRs in human. The correlation between ID in human and mouse NHRs was high. Less correlation was found for ID between mammalian and non-mammalian vertebrate NHRs. For some invertebrate species, particularly sea squirts ( Ciona), marked differences were observed in ID between invertebrate NHRs and their vertebrate orthologs. Our results indicate that variability of ID within NHRs, particularly in the D-domain and LBD, is likely an important evolutionary force in shaping protein-protein interactions and NHR function. This information enables further understanding of these therapeutic targets.

  12. INTRINSIC DISORDER IN NUCLEAR HORMONE RECEPTORS

    PubMed Central

    Krasowski, Matthew D.; Reschly, Erica J.; Ekins, Sean

    2009-01-01

    Many proteins possess intrinsic disorder (ID) and lack a rigid three-dimensional structure in at least part of their sequence. ID has been hypothesized to influence protein-protein and protein-ligand interactions. We calculated ID for nearly 400 vertebrate and invertebrate members of the biomedically important nuclear hormone receptor (NHR) superfamily, including all 48 known human NHRs. The predictions correctly identified regions in 20 of the 23 NHRs suggested as disordered based on published X-ray and NMR structures. Of the four major NHR domains (N-terminal domain, DNA-binding domain, D-domain, and ligand-binding domain), we found ID to be highest in the D-domain, a region of NHRs critical in DNA recognition and heterodimerization, coactivator/corepressor interactions and protein-protein interactions. ID in the D-domain and LBD was significantly higher in “hub” human NHRs that have 10 or more downstream proteins in their interaction networks compared to “non-hub” NHRs that interact with fewer than 10 downstream proteins. ID in the D-domain and LBD was also higher in classic, ligand-activated NHRs than in orphan, ligand-independent NHRs in human. The correlation between ID in human and mouse NHRs was high. Less correlation was found for ID between mammalian and non-mammalian vertebrate NHRs. For some invertebrate species, particularly sea squirts (Ciona), marked differences were observed in ID between invertebrate NHRs and their vertebrate orthologs. Our results indicate that variability of ID within NHRs, particularly in the D-domain and LBD, is likely an important evolutionary force in shaping protein-protein interactions and NHR function. This information enables further understanding of these therapeutic targets. PMID:18651760

  13. Intrinsically disordered regions in autophagy proteins.

    PubMed

    Mei, Yang; Su, Minfei; Soni, Gaurav; Salem, Saeed; Colbert, Christopher L; Sinha, Sangita C

    2014-04-01

    Autophagy is an essential eukaryotic pathway required for cellular homeostasis. Numerous key autophagy effectors and regulators have been identified, but the mechanism by which they carry out their function in autophagy is not fully understood. Our rigorous bioinformatic analysis shows that the majority of key human autophagy proteins include intrinsically disordered regions (IDRs), which are sequences lacking stable secondary and tertiary structure; suggesting that IDRs play an important, yet hitherto uninvestigated, role in autophagy. Available crystal structures corroborate the absence of structure in some of these predicted IDRs. Regions of orthologs equivalent to the IDRs predicted in the human autophagy proteins are poorly conserved, indicating that these regions may have diverse functions in different homologs. We also show that IDRs predicted in human proteins contain several regions predicted to facilitate protein-protein interactions, and delineate the network of proteins that interact with each predicted IDR-containing autophagy protein, suggesting that many of these interactions may involve IDRs. Lastly, we experimentally show that a BCL2 homology 3 domain (BH3D), within the key autophagy effector BECN1 is an IDR. This BH3D undergoes a dramatic conformational change from coil to α-helix upon binding to BCL2s, with the C-terminal half of this BH3D constituting a binding motif, which serves to anchor the interaction of the BH3D to BCL2s. The information presented here will help inform future in-depth investigations of the biological role and mechanism of IDRs in autophagy proteins. Copyright © 2013 Wiley Periodicals, Inc.

  14. Scotland's Universities.

    ERIC Educational Resources Information Center

    Bell, R. E.

    2000-01-01

    Examines the Scottish university tradition and the origins and particulars of Scottish-Anglo differences in higher education. Discusses the 19th-century growth of Scottish universities, which lacked formal entrance requirements; students' rights and power in the university; academic degrees awarded; relationship with the state; and student…

  15. Universal structures of normal and pathological heart rate variability.

    PubMed

    Gañán-Calvo, Alfonso M; Fajardo-López, Juan

    2016-02-25

    The circulatory system of living organisms is an autonomous mechanical system softly tuned with the respiratory system, and both developed by evolution as a response to the complex oxygen demand patterns associated with motion. Circulatory health is rooted in adaptability, which entails an inherent variability. Here, we show that a generalized N-dimensional normalized graph representing heart rate variability reveals two universal arrhythmic patterns as specific signatures of health one reflects cardiac adaptability, and the other the cardiac-respiratory rate tuning. In addition, we identify at least three universal arrhythmic profiles whose presences raise in proportional detriment of the two healthy ones in pathological conditions (myocardial infarction; heart failure; and recovery from sudden death). The presence of the identified universal arrhythmic structures together with the position of the centre of mass of the heart rate variability graph provide a unique quantitative assessment of the health-pathology gradient.

  16. Universal structures of normal and pathological heart rate variability

    PubMed Central

    Gañán-Calvo, Alfonso M.; Fajardo-López, Juan

    2016-01-01

    The circulatory system of living organisms is an autonomous mechanical system softly tuned with the respiratory system, and both developed by evolution as a response to the complex oxygen demand patterns associated with motion. Circulatory health is rooted in adaptability, which entails an inherent variability. Here, we show that a generalized N-dimensional normalized graph representing heart rate variability reveals two universal arrhythmic patterns as specific signatures of health one reflects cardiac adaptability, and the other the cardiac-respiratory rate tuning. In addition, we identify at least three universal arrhythmic profiles whose presences raise in proportional detriment of the two healthy ones in pathological conditions (myocardial infarction; heart failure; and recovery from sudden death). The presence of the identified universal arrhythmic structures together with the position of the centre of mass of the heart rate variability graph provide a unique quantitative assessment of the health-pathology gradient. PMID:26912108

  17. The Work Values of First Year Spanish University Students

    ERIC Educational Resources Information Center

    Cortés-Pascual, P. A.; Cano-Escoriaza, J.; Orejudo, S.

    2014-01-01

    This study analyzes the work values of 2,951 first-year university students in Spain enrolled in degree programs within the five major areas of university studies. For our research, participants were asked to respond to a Scale of Work Values in which intrinsic, social, and pragmatic extrinsic values as well as extrinsic values related to…

  18. New concept to break the intrinsic properties of organic semiconductors for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Choy, Wallace C. H.

    2015-09-01

    As the intrinsic electrostatic limit, space charge limit (SCL) for photocurrent is a universal phenomenon which is fundamental important for organic semiconductors. We will demonstrate SCL breaking by a new plasmonic-electrical concept. As a proof-ofconcept, organic solar cells (OSCs) comprising metallic planar and grating electrodes are studied. Interestingly, although strong plasmonic resonances induce abnormally dense photocarriers around a grating anode, the grating incorporated inverted OSC is exempt from space charge accumulation (limit) and degradation of electrical properties. The plasmonic-electrical concept will open up a new way to manipulate both optical and electrical properties of semiconductor devices simultaneously.

  19. Automated mapping of the ocean floor using the theory of intrinsic random functions of order k

    USGS Publications Warehouse

    David, M.; Crozel, D.; Robb, James M.

    1986-01-01

    High-quality contour maps can be computer drawn from single track echo-sounding data by combining Universal Kriging and the theory of intrinsic random function of order K (IRFK). These methods interpolate values among the closely spaced points that lie along relatively widely spaced lines. The technique provides a variance which can be contoured as a quantitative measure of map precision. The technique can be used to evaluate alternative survey trackline configurations and data collection intervals, and can be applied to other types of oceanographic data. ?? 1986 D. Reidel Publishing Company.

  20. A Census of Intrinsic Narrow Absorption Lines in the Spectra of Quasars at z = 2-4

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael; Ganguly, Rajib; Tytler, David; Kirkman, David; Suzuki, Nao; Lubin, Dan

    2007-07-01

    We use Keck HIRES spectra of 37 optically bright quasars at z=2-4 to study narrow absorption lines that are intrinsic to the quasars (intrinsic NALs, produced in gas that is physically associated with the quasar central engine). We identify 150 NAL systems, which contain 124 C IV, 12 N V, and 50 Si IV doublets, of which 18 are associated systems (within 5000 km s-1 of the quasar redshift). We use partial coverage analysis to separate intrinsic NALs from NALs produced in cosmologically intervening structures. We find 39 candidate intrinsic systems (28 reliable determinations and 11 that are possibly intrinsic). We estimate that 10%-17% of C IV systems at blueshifts of 5000-70,000 km s-1 relative to quasars are intrinsic. At least 32% of quasars contain one or more intrinsic C IV NALs. Considering N V and Si IV doublets showing partial coverage as well, at least 50% of quasars host intrinsic NALs. This result constrains the solid angle subtended by the absorbers to the background source(s). We identify two families of intrinsic NAL systems, those with strong N V absorption and those with negligible absorption in N V but with partial coverage in the C IV doublet. We discuss the idea that these two families represent different regions or conditions in accretion disk winds. Of the 26 intrinsic C IV NAL systems, 13 have detectable low-ionization absorption lines at similar velocities, suggesting that these are two-phase structures in the wind rather than absorbers in the host galaxy. We also compare possible models for quasar outflows, including radiatively accelerated disk-driven winds, magnetocentrifugally accelerated winds, and pressure-driven winds, and we discuss ways of distinguishing between these models observationally. The data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration

  1. Recent Insights into Saturn's Intrinsic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cao, H.; Russell, C. T.; Wicht, J.; Christensen, U. R.; Dougherty, M. K.

    2012-12-01

    The arrival of the Cassini spacecraft in mid-2004 initiated a new era of exploration of Saturn's magnetic field. Based on the Cassini magnetometer measurements, several distinct features of the intrinsic magnetic field of Saturn have been discovered recently. 1) The field is extremely axisymmetry: no unambiguous non-axisymmetric magnetic moment can be detected with an upper limit on the dipole tilt of 0.06 degrees; 2) no secular variation is detected when compared to the field measured by Pioneer-Voyager 30 years ago; 3) degree 4 and 5 axisymmetric moments are identified for the first time; 4) the power spectrum of the magnetic field has a zig-zag shape up to degree 5 with pronounced odd degree moments whose powers become comparable when downward continued to 0.4 Saturn radii; 5) the magnetic field inside Saturn is strongly concentrated near the spin-poles, in contrast to the well-defined polar field minina observed at the surface of the Earth's core and in geodynamo models. What structure and dynamics inside this planet produce these observed features? The observed extreme axisymmetry is widely regarded as resulting from the skin effect of an overlying thin stably-stratified conducting layer. However, extreme axisymmetric field can also directly be reproduced by the interior dynamo process. Furthermore, state-of-the-art calculations of the equation of the state (EOS) of hydrogen-helium mixtures predict helium immiscibility throughout a significant proportion of Saturn, which contradicts the thin stable layer picture. We will discuss three different possible dynamos which could reproduce the magnetic field observations. To distinguish which model is operating require deeper understanding of the properties of the interior of Saturn. Based on a series of numerical dynamo simulations, we suggest that a rocky core smaller than previous estimates inside this planet combined with modestly higher heat flow at high latitude on the dynamo outer boundary can reproduce the

  2. Major intrinsic proteins in biomimetic membranes.

    PubMed

    Nielsen, Claus Hélix

    2010-01-01

    Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport

  3. Selecting Quasars by Their Intrinsic Variability

    NASA Astrophysics Data System (ADS)

    Schmidt, Kasper B.; Marshall, Philip J.; Rix, Hans-Walter; Jester, Sebastian; Hennawi, Joseph F.; Dobler, Gregory

    2010-05-01

    We present a new and simple technique for selecting extensive, complete, and pure quasar samples, based on their intrinsic variability. We parameterize the single-band variability by a power-law model for the light-curve structure function, with amplitude A and power-law index γ. We show that quasars can be efficiently separated from other non-variable and variable sources by the location of the individual sources in the A-γ plane. We use ~60 epochs of imaging data, taken over ~5 years, from the SDSS stripe 82 (S82) survey, where extensive spectroscopy provides a reference sample of quasars, to demonstrate the power of variability as a quasar classifier in multi-epoch surveys. For UV-excess selected objects, variability performs just as well as the standard SDSS color selection, identifying quasars with a completeness of 90% and a purity of 95%. In the redshift range 2.5 < z < 3, where color selection is known to be problematic, variability can select quasars with a completeness of 90% and a purity of 96%. This is a factor of 5-10 times more pure than existing color selection of quasars in this redshift range. Selecting objects from a broad griz color box without u-band information, variability selection in S82 can afford completeness and purity of 92%, despite a factor of 30 more contaminants than quasars in the color-selected feeder sample. This confirms that the fraction of quasars hidden in the "stellar locus" of color space is small. To test variability selection in the context of Pan-STARRS 1 (PS1) we created mock PS1 data by down-sampling the S82 data to just six epochs over 3 years. Even with this much sparser time sampling, variability is an encouragingly efficient classifier. For instance, a 92% pure and 44% complete quasar candidate sample is attainable from the above griz-selected catalog. Finally, we show that the presented A-γ technique, besides selecting clean and pure samples of quasars (which are stochastically varying objects), is also

  4. Separating intrinsic from extrinsic fluctuations in dynamic biological systems

    PubMed Central

    Paulsson, Johan

    2011-01-01

    From molecules in cells to organisms in ecosystems, biological populations fluctuate due to the intrinsic randomness of individual events and the extrinsic influence of changing environments. The combined effect is often too complex for effective analysis, and many studies therefore make simplifying assumptions, for example ignoring either intrinsic or extrinsic effects to reduce the number of model assumptions. Here we mathematically demonstrate how two identical and independent reporters embedded in a shared fluctuating environment can be used to identify intrinsic and extrinsic noise terms, but also how these contributions are qualitatively and quantitatively different from what has been previously reported. Furthermore, we show for which classes of biological systems the noise contributions identified by dual-reporter methods correspond to the noise contributions predicted by correct stochastic models of either intrinsic or extrinsic mechanisms. We find that for broad classes of systems, the extrinsic noise from the dual-reporter method can be rigorously analyzed using models that ignore intrinsic stochasticity. In contrast, the intrinsic noise can be rigorously analyzed using models that ignore extrinsic stochasticity only under very special conditions that rarely hold in biology. Testing whether the conditions are met is rarely possible and the dual-reporter method may thus produce flawed conclusions about the properties of the system, particularly about the intrinsic noise. Our results contribute toward establishing a rigorous framework to analyze dynamically fluctuating biological systems. PMID:21730172

  5. Intrinsic Correlations for Flaring Blazars Detected by Fermi

    NASA Astrophysics Data System (ADS)

    Fan, J. H.; Yang, J. H.; Xiao, H. B.; Lin, C.; Constantin, D.; Luo, G. Y.; Pei, Z. Y.; Hao, J. M.; Mao, Y. W.

    2017-02-01

    Blazars are an extreme subclass of active galactic nuclei. Their rapid variability, luminous brightness, superluminal motion, and high and variable polarization are probably due to a beaming effect. However, this beaming factor (or Doppler factor) is very difficult to measure. Currently, a good way to estimate it is to use the timescale of their radio flares. In this Letter, we use multiwavelength data and Doppler factors reported in the literature for a sample of 86 flaring blazars detected by Fermi to compute their intrinsic multiwavelength data and intrinsic spectral energy distributions and investigate the correlations among observed and intrinsic data. Quite interestingly, intrinsic data show a positive correlation between luminosity and peak frequency, in contrast with the behavior of observed data, and a tighter correlation between γ-ray luminosity and the lower-energy ones. For flaring blazars detected by Fermi, we conclude that (1) observed emissions are strongly beamed; (2) the anti-correlation between luminosity and peak frequency from the observed data is an apparent result, the correlation between intrinsic data being positive; and (3) intrinsic γ-ray luminosity is strongly correlated with other intrinsic luminosities.

  6. Cellular origin of intrinsic optical signals in the rabbit retina.

    PubMed

    Naderian, A; Bussières, L; Thomas, S; Lesage, F; Casanova, C

    2017-08-01

    Optical imaging of retinal intrinsic signals is a relatively new method that provides spatiotemporal patterns of retinal activity through activity-dependent changes in light reflectance of the retina. The exact physiological mechanisms at the origin of retinal intrinsic signals are poorly understood and there are significant inter-species differences in their characteristics and cellular origins. In this study, we re-examined this issue through pharmacological dissection of retinal intrinsic signals in the rabbit with simultaneous ERG recordings. Retinal intrinsic signals faithfully reflected retinal activity as their amplitude was strongly associated with stimulation intensity (r(2)=0.85). Further, a strong linear relation was found using linear regression (r(2)=0.98) between retinal intrinsic signal amplitude and the ERG b wave, which suggests common cellular origins. Intravitreal injections of pharmacological agents were performed to isolate the activity of the retina's major cell types. Retinal intrinsic signals were abolished when the photoreceptors' activity was isolated with aspartate, indicative that they are not at the origin of this signal. A small but significant decrease in intrinsic response (20%) was observed when ganglion and amacrine cells' activity was inhibited by TTX injections. The remaining intrinsic responses were abolished in a dose-dependent manner through the inhibition of ON-bipolar cells by APB. Our results indicate that, in rabbits, retinal intrinsic signals reflect stimulation intensity and originate from the inner retina with a major contribution of bipolar cells and a minor one from ganglion or amacrine cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Structure of gamma-ray burst jets: intrinsic versus apparent properties

    NASA Astrophysics Data System (ADS)

    Salafia, O. S.; Ghisellini, G.; Pescalli, A.; Ghirlanda, G.; Nappo, F.

    2015-07-01

    With this paper we introduce the concept of apparent structure of a gamma-ray burst (GRB) jet, as opposed to its intrinsic structure. The latter is customarily defined specifying the functions ɛ(θ) (the energy emitted per jet unit solid angle) and Γ(θ) (the Lorentz factor of the emitting material); the apparent structure is instead defined by us as the isotropic equivalent energy Eiso(θv) as a function of the viewing angle θv. We show how to predict the apparent structure of a jet given its intrinsic structure. We find that a Gaussian intrinsic structure yields a power-law apparent structure: this opens a new viewpoint on the Gaussian (which can be understood as a proxy for a realistic narrow, well-collimated jet structure) as a possible candidate for a quasi-universal GRB jet structure. We show that such a model (a) is consistent with recent constraints on the observed luminosity function of GRBs; (b) implies fewer orphan afterglows with respect to the standard uniform model; (c) can break out the progenitor star (in the collapsar scenario) without wasting an unreasonable amount of energy; (d) is compatible with the explanation of the Amati correlation as a viewing angle effect; (e) can be very standard in energy content, and still yield a very wide range of observed isotropic equivalent energies.

  8. Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions.

    PubMed

    Ryan; Deci

    2000-01-01

    Intrinsic and extrinsic types of motivation have been widely studied, and the distinction between them has shed important light on both developmental and educational practices. In this review we revisit the classic definitions of intrinsic and extrinsic motivation in light of contemporary research and theory. Intrinsic motivation remains an important construct, reflecting the natural human propensity to learn and assimilate. However, extrinsic motivation is argued to vary considerably in its relative autonomy and thus can either reflect external control or true self-regulation. The relations of both classes of motives to basic human needs for autonomy, competence and relatedness are discussed. Copyright 2000 Academic Press.

  9. Congenital hypertrophy of multiple intrinsic muscles of the foot.

    PubMed

    Shiraishi, Tomohiro; Park, Susam; Niu, Atushi; Hasegawa, Hiromi

    2014-12-01

    Congenital hypertrophy of a single intrinsic muscle of the foot is rare, and as far as we know, only six cases have been reported. We describe a case of congenital anomaly that showed hypertrophy of multiple intrinsic muscles of the foot; the affected muscles were all the intrinsic muscles of the foot except the extensor digitorum brevis or extensor hallucis. Other tissues such as adipose tissue, nervous tissue, or osseous tissue showed no abnormalities. To reduce the volume of the foot we removed parts of the enlarged muscles.

  10. Intrinsic skin aging: the role of oxidative stress.

    PubMed

    Poljšak, Borut; Dahmane, Raja G; Godić, Aleksandar

    2012-01-01

    Skin aging appears to be the result of two overlapping processes, intrinsic and extrinsic. It is well accepted that oxidative stress contributes significantly to extrinsic skin aging, although findings point towards reactive oxygen species (ROS) as one of the major causes of and single most important contributor; not only does ROS production increase with age, but human skin cells' ability to repair DNA damage steadily decreases over the years. We extrapolated mechanisms of intrinsic oxidative stress in tissues other than skin to the skin cells in order to provide effective anti-aging strategies and reviewed the literature on intrinsic skin aging and the role of oxidative stress.

  11. Macroscopic intrinsic stress formation in amorphous CuTi films

    NASA Astrophysics Data System (ADS)

    Dina, S.; Geyer, U.; Minnigerode, G. V.

    During the growth of amorphous CuTi films prepared under UHV conditions onto quartz substrates, macroscopic intrinsic stresses are generated. The intrinsic stresses are measured in situ as a function of the film thickness for a wide range of substrate temperatures and film compositions. Depending on the preparation conditions, compressive stresses during the early growth stages and thickness-independent tensile stresses at higher thicknesses are observed. Films with Cu-content above 50 at% deposited at room temperature do not generate any detectable intrinsic stresses. The results are discussed in terms of a model for the growth of amorphous binary alloy films published earlier.

  12. Intrinsic coherence in assisted sub-state discrimination

    NASA Astrophysics Data System (ADS)

    Zhang, Fu-Lin; Wang, Teng

    2017-01-01

    We study intrinsic coherence in the tripartite process to unambiguously discriminate two nonorthogonal states of a qubit, entangled with another one, and assisted by an auxiliary system. The optimal success probability is found to be benefited by initial intrinsic coherence, but no extra one is required. The transformations among different contributions of intrinsic coherence are necessary in this procedure, which increase with the overlap between the states to recognize. Such state discrimination is a key step of the probabilistic teleportation protocol. Entanglement of the quantum channel decreases the coherence characterizing the reliance on an ancilla.

  13. Simple intrinsic defects in GaAs : numerical supplement.

    SciTech Connect

    Schultz, Peter Andrew

    2012-04-01

    This Report presents numerical tables summarizing properties of intrinsic defects in gallium arsenide, GaAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz and O.A. von Lilienfeld, 'Simple intrinsic defects in GaAs', Modelling Simul. Mater. Sci Eng., Vol. 17, 084007 (2009), and intended for use as reference tables for a defect physics package in device models. The numerical results for density functional theory calculations of properties of simple intrinsic defects in gallium arsenide are presented.

  14. Baby universes.

    NASA Astrophysics Data System (ADS)

    Strominger, Andrew

    The following sections are included: * INTRODUCTION * TOPOLOGY CHANGE AND THIRD QUANTIZATION IN 0+1 DIMENSIONS * Third Quantization of Free One-dimensional Universes * Third Quantization of Interacting One-Dimensional Universes * The Single-Universe Approximation and Dynamical Determination of Coupling Constants * The Third Quantized Uncertainty Principle * THIRD QUANTIZATION IN 3+1 DIMENSIONS * The Gauge Invariant Action * Relation to Other Formalisms * PARENT AND BABY UNIVERSES * The Hybrid Action * Baby Universe Field Operators and Spacetime Couplings * INSTANTONS-FROM QUANTUM MECHANICS TO QUANTUM GRAVITY * Quantum Mechanics * Quantum Field Theory * Quantum Gravity * Axionic Instantons * The Small Expansion Parameter * THE AXION MODEL AND THE INSTANTON APPROXIMATION * THE COSMOLOGICAL CONSTANT * The Hawking-Baum Argument * Baby Universes and Coleman's Argument * ACKNOWLEDGEMENTS * REFERENCES

  15. Strength measurements of the intrinsic hand muscles: a review of the development and evaluation of the Rotterdam intrinsic hand myometer.

    PubMed

    Schreuders, Ton A R; Selles, Ruud W; Roebroeck, Marij E; Stam, Henk J

    2006-01-01

    Numerous neurological diseases are accompanied by atrophy of the intrinsic muscles of the hand. Muscle strength testing of these muscles is frequently used for clinical decision making. Traditionally, these strength measurements have focused on manual muscle testing (MMT) or on grip and pinch strength dynamometry. We have developed a hand-held dynamometer, the Rotterdam Intrinsic Hand Myometer (RIHM), to measure this intrinsic muscle strength. The RIHM was designed such that it can measure a wide range of muscle groups, such as the abduction and adduction strength of the little finger and index finger, the opposition, palmar abduction (anteposition) and opposition strength of the thumb, and intrinsic muscles of the fingers combined in the intrinsic plus position. We found that the reliability of RIHM measurements in nerve injury patients was comparable to grip and pinch strength measurements and is appropriate to study the functional recovery of the intrinsic muscles of the hand in isolation. We have applied the RIHM in a recent study on the long-term outcome of muscle strength in patients with ulnar and median nerve injuries and found that while recovery of grip and pinch strength was relatively good, recovery of the ulnar nerve innervated muscles measured with the RIHM was poor. This poor recovery could not be detected with manual muscle strength testing or with grip and pinch dynamometry. We conclude that the RIHM provides an accurate clinical assessment of the muscle strength of the intrinsic hand muscles that adds valuable information to MMT and grip and pinch dynamometry.

  16. Application of technical strategies for surgical management of adult intrinsic pontine gliomas: a retrospective series.

    PubMed

    Yang, Xiang; Ren, Yan-Ming; Hui, Xu-Hui; Liu, Xue-Song; Wu, Wen-Tao; Zhang, Yue-Kang

    2015-01-01

    The authors retrospectively analyzed the surgical treatment of adult intrinsic pontine gliomas in their department, and to enhance the understanding of technical strategies to treat this disease. 7 patients with intrinsic pontine gliomas were recruited for this study, between January 2011 and June 2013. All patients underwent preoperative MRI and Diffusion Tensor Imaging Fiber Tracking (DTI-FT). In addition, multimodal Intraoperative Neuromonitoring (IOM) and Intraoperative Neuronavigation were also applied during microsurgery. 7 patients with intrinsic pontine gliomas were treated at the West China Hospital of Sichuan University. Mean age, mean duration of symptoms prior to diagnosis, and mean duration of follow-up average time were 38.0 years, 2.0 months, and 23.4 months, respectively. The main presentations were progressive cranial nerve deficits and long tract signs. Total resection was achieved in 3 patients, subtotal resection in 2, and partial resection in 2. Postoperative pathological examination revealed: astrocytoma (WHO II) in 4 cases, anaplastic oligoastrocytoma (AO, WHO III) in one case, and anaplastic astrocytoma (AA, WHO III) in two cases. Postoperative radiotherapy were administered to all patients, and 4 patients with astrocytoma (WHO II) rejected chemotherapy. After 11-39 months of follow-up, patient symptoms were resolved or stable without aggravation except one patient died because of rapidly progressive glioma at 11 months after operation. MRI in other patients showed residual tumor size to be unchanged or without obviously recurrence. Combining preoperative MRI with preoperative DTI-FT, surgery can be better assessed and the operation for adult intrinsic pontine gliomas can be maximally and safely resected with the aid of Multimodal IOMs and Intraoperative Navigation during microsurgery.

  17. A Systematic Review on the Prevalence, Etiology, and Pathophysiology of Intrinsic Pain in Dermal Scar Tissue.

    PubMed

    Bijlard, Eveline; Uiterwaal, Lisa; Kouwenberg, Casimir A E; Mureau, Marc A M; Hovius, Steven E R; Huygen, Frank J P M

    2017-02-01

    Scars can cause pain, even without symptoms of underlying nerve damage. A lack of knowledge on intrinsic scar pain hampers effective treatment of these complaints. Aggregate current knowledge on the prevalence, etiology, and pathophysiology of intrinsic pain in dermal scars. Systematic review. University Medical Center. We searched the Embase, Medline, Cochrane central, CINAHL, Web-of-Science, and Pubmed databases with search terms: scar, skin, pain, and etiology/pathology, adding all synonyms of these terms. Relevant papers were selected and analyzed by 3 reviewers. Intrinsic pain in scars has a low prevalence. However, pathologic scars and burns regularly cause pain of high intensity. The etiology is multifactorial, the extent of trauma was an important predicting factor. Nerve fiber density did not explain the intrinsic pain when pan-neuronal markers were used, while a correlation with an increased number of C-fiber subtypes seems plausible. Nerve growth factor (that stimulate these C-fibers) plays an important role in wound healing. Thereby, it also sensitizes neurons and promotes inflammation, releasing even more neurotrophic factors. Central sensitization causes a long-lasting effect even after wounds are healed. Furthermore, the opioid-system, that influences inflammation and healing and possible systemic sensory alterations after injury, is discussed. Liberal selection criteria challenged the systematic selection of papers. Burn and pathologic scars often lead to high intensity pain symptoms. This pain has many characteristics of neuropathic pain that could be caused by an imbalance of C-fibers subtypes. The scar tissue itself may alter the nerve fiber distribution; the imbalance results in ongoing neuro-inflammation and pain symptoms. Key words: Systematic review, scar, pain, epidermal innervation, prevalence, neuro inflammatory response, peptidergic fibers.

  18. A cyclic universe with colour fields

    NASA Astrophysics Data System (ADS)

    Yershov, Vladimir

    2009-03-01

    The topology of the universe is discussed in relation to the singularity problem. We explore the possibility that the initial state of the universe might have had a structure with 3-Klein bottle topology, which would lead to a model of a nonsingular oscillating (cyclic) universe with a well-defined boundary condition. The same topology is assumed to be intrinsic to the nature of the hypothetical primitive constituents of matter (usually called preons) giving rise to the observed variety of elementary particles. Some phenomenological implications of this approach are also discussed.

  19. What is Intrinsic Motivation? A Typology of Computational Approaches

    PubMed Central

    Oudeyer, Pierre-Yves; Kaplan, Frederic

    2007-01-01

    Intrinsic motivation, centrally involved in spontaneous exploration and curiosity, is a crucial concept in developmental psychology. It has been argued to be a crucial mechanism for open-ended cognitive development in humans, and as such has gathered a growing interest from developmental roboticists in the recent years. The goal of this paper is threefold. First, it provides a synthesis of the different approaches of intrinsic motivation in psychology. Second, by interpreting these approaches in a computational reinforcement learning framework, we argue that they are not operational and even sometimes inconsistent. Third, we set the ground for a systematic operational study of intrinsic motivation by presenting a formal typology of possible computational approaches. This typology is partly based on existing computational models, but also presents new ways of conceptualizing intrinsic motivation. We argue that this kind of computational typology might be useful for opening new avenues for research both in psychology and developmental robotics. PMID:18958277

  20. The role of intrinsic motivations in attention allocation and shifting

    PubMed Central

    Di Nocera, Dario; Finzi, Alberto; Rossi, Silvia; Staffa, Mariacarla

    2014-01-01

    The concepts of attention and intrinsic motivations are of great interest within adaptive robotic systems, and can be exploited in order to guide, activate, and coordinate multiple concurrent behaviors. Attention allocation strategies represent key capabilities of human beings, which are strictly connected with action selection and execution mechanisms, while intrinsic motivations directly affect the allocation of attentional resources. In this paper we propose a model of Reinforcement Learning (RL), where both these capabilities are involved. RL is deployed to learn how to allocate attentional resources in a behavior-based robotic system, while action selection is obtained as a side effect of the resulting motivated attentional behaviors. Moreover, the influence of intrinsic motivations in attention orientation is obtained by introducing rewards associated with curiosity drives. In this way, the learning process is affected not only by goal-specific rewards, but also by intrinsic motivations. PMID:24744746

  1. Experiments with an intrinsically irreversible acoustic heat engine

    SciTech Connect

    Wheatley, J.; Hofler, T.; Swift, G.W.; Migliori, A.

    1983-02-14

    The general qualities of a type of thermodynamic engine that depends intrinsically for its operation on irreversible processes are set forth and demonstrated experimentally in the context of a thermoacoustic heat-pumping engine.

  2. Paradoxes and wonders of intrinsic disorder: Complexity of simplicity.

    PubMed

    Uversky, Vladimir N

    2016-01-01

    At first glance it may seem that intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are simpler than ordered proteins and domains on multiple levels. However, such multilevel simplicity equips these proteins with the ability to have very complex behavior.

  3. Does displayed enthusiasm favour recall, intrinsic motivation and time estimation?

    PubMed

    Moè, Angelica

    2016-11-01

    Displayed enthusiasm has been shown to relate to intrinsic motivation, vitality, and positive affect, but its effects on recall performance and time estimation have not yet been explored. This research aimed at studying the effects of a delivery style characterised by High Enthusiasm (HE) on recall, time estimation, and intrinsic motivation. In line with previous studies, effects on intrinsic motivation were expected. In addition, higher recall and lower time estimations were hypothesised. In two experiments, participants assigned to a HE condition or to a normal reading control condition listened to a narrative and to a descriptive passage. Then, they were asked to rate perceived time, enthusiasm, pleasure, interest, enjoyment and curiosity, before writing a free recall. Experiment 1 showed that in the HE condition, participants recalled more, were more intrinsically motivated, and expressed lower time estimations compared to the control condition. Experiment 2 confirmed the positive effects of HE reading compared to normal reading, using different passages and a larger sample.

  4. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H.

    PubMed

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus; Ara, Ignacio; Dela, Flemming; Helge, Jørn W

    2014-02-01

    It has been suggested that human mitochondrial variants influence maximal oxygen uptake (VO2max). Whether mitochondrial respiratory capacity per mitochondrion (intrinsic activity) in human skeletal muscle is affected by differences in mitochondrial variants is not known. We recruited 54 males and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present. © 2013.

  5. Intrinsic adhesion force of lubricants to steel surface.

    PubMed

    Lee, Jonghwi

    2004-09-01

    The intrinsic adhesion forces of lubricants and other pharmaceutical materials to a steel surface were quantitatively compared using Atomic Force Microscopy (AFM). A steel sphere was attached to the tip of an AFM cantilever, and its adhesion forces to the substrate surfaces of magnesium stearate, sodium stearyl fumarate, lactose, 4-acetamidophenol, and naproxen were measured. Surface roughness varied by an order of magnitude among the materials. However, the results clearly showed that the two lubricants had about half the intrinsic adhesion force as lactose, 4-acetamidophenol, and naproxen. Differences in the intrinsic adhesion forces of the two lubricants were insignificant. The lubricant molecules were unable to cover the steel surface during AFM measurements. Intrinsic adhesion force can slightly be modified by surface treatment and compaction, and its tip-to-tip variation was not greater than its difference between lubricants and other pharmaceutical particles. This study provides a quantitative fundamental basis for understanding adhesion related issues.

  6. Exploring the link between intrinsic motivation and quality

    NASA Astrophysics Data System (ADS)

    Christy, Steven M.

    1992-12-01

    This thesis proposes that it is workers' intrinsic motivation that leads them to produce quality work. It reviews two different types of evidence- expert opinion and empirical studies--to attempt to evaluate a link between intrinsic motivation and work quality. The thesis reviews the works of Total Quality writers and behavioral scientists for any connection they might have made between intrinsic motivation and quality. The thesis then looks at the works of Deming and his followers in an attempt to establish a match between Deming's motivational assumptions and the four task rewards in the Thomas/Tymon model of intrinsic motivation: choice, competence, meaningfulness, and progress. Based upon this analysis, it is proposed that the four Thomas/Tymon task rewards are a promising theoretical foundation for explaining the motivational basis of quality for workers in Total Quality organizations.

  7. Intrinsic and extrinsic motivation for stereotypic and repetitive behavior.

    PubMed

    Joosten, Annette V; Bundy, Anita C; Einfeld, Stewart L

    2009-03-01

    This study provides evidence for intrinsic and extrinsic motivators for stereotypical and repetitive behavior in children with autism and intellectual disability and children with intellectual disability alone. We modified the Motivation Assessment Scale (MAS) (1988b); dividing it into intrinsic and extrinsic measures and adding items to assess anxiety as an intrinsic motivator. Rasch analysis of data from 279 MASs (74 children) revealed that the items formed two unidimensional scales. Anxiety was a more likely intrinsic motivator than sensory seeking for children with dual diagnoses; the reverse was true for children with intellectual disability only. Escape and gaining a tangible object were the most common extrinsic motivators for those with dual diagnoses and attention and escape for children with intellectual disability.

  8. Probability of Intrinsic Time-Arrow from Information Loss

    NASA Astrophysics Data System (ADS)

    Diósi, Lajos

    Time-arrow s=±, intrinsic to a concrete physical system, is associated with the direction of information loss I displayed by the random evolution of the given system. When the information loss tends to zero the intrinsic time-arrow becomes uncertain. We propose the heuristic relationship for the probability of the intrinsic time-arrow. The main parts of the present work are trying to confirm this heuristic equation. The probability of intrinsic time arrow is defined by Bayesian inference from the observed random process. From irreversible thermodynamic systems, the proposed heuristic probabilities follow via the Gallavotti-Cohen relations between time-reversed random processes. In order to explore the underlying microscopic mechanism, a trivial microscopic process is analyzed and an obvious discrepancy is identified. It can be resolved by quantum theory. The corresponding trivial quantum process will exactly confirm the proposed heuristic time-arrow probability.

  9. Spatial reasoning with multiple intrinsic frames of reference.

    PubMed

    Tamborello, Franklin P; Sun, Yanlong; Wang, Hongbin

    2012-01-01

    Establishing and updating spatial relationships between objects in the environment is vital to maintaining situation awareness and supporting many socio-spatial tasks. In a complex environment, people often need to utilize multiple reference systems that are intrinsic to different objects (intrinsic frame of reference, IFOR), but these IFORs may conflict with each other in one or more ways. Current spatial cognition theories do not adequately address how people handle multi-IFOR reasoning problems. Two experiments manipulated relative orientations of two task-relevant objects with intrinsic axes of orientation as well as their relative task salience. Response times (RTs) decreased with increasing salience of the targeted IFOR. In addition, RTs increased as a consequence of intrinsic orientation conflict, but not by amount of orientation difference. The results suggest that people encounter difficulties when they have to process two conflicting IFOR representations, and that they seem to prioritize processing of each IFOR by salience. © 2012 Hogrefe Publishing

  10. Intrinsic feature-based pose measurement for imaging motion compensation

    DOEpatents

    Baba, Justin S.; Goddard, Jr., James Samuel

    2014-08-19

    Systems and methods for generating motion corrected tomographic images are provided. A method includes obtaining first images of a region of interest (ROI) to be imaged and associated with a first time, where the first images are associated with different positions and orientations with respect to the ROI. The method also includes defining an active region in the each of the first images and selecting intrinsic features in each of the first images based on the active region. Second, identifying a portion of the intrinsic features temporally and spatially matching intrinsic features in corresponding ones of second images of the ROI associated with a second time prior to the first time and computing three-dimensional (3D) coordinates for the portion of the intrinsic features. Finally, the method includes computing a relative pose for the first images based on the 3D coordinates.

  11. Topology-based modeling of intrinsically disordered proteins: balancing intrinsic folding and intermolecular interactions.

    PubMed

    Ganguly, Debabani; Chen, Jianhan

    2011-04-01

    Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general. Copyright © 2011 Wiley-Liss, Inc.

  12. Evidence that intrinsic iron but not intrinsic copper determines S-nitrosocysteine decomposition in buffer solution.

    PubMed

    Vanin, Anatoly F; Muller, Bernard; Alencar, Jacicarlos L; Lobysheva, Irina I; Nepveu, Françoise; Stoclet, Jean-Claude

    2002-11-01

    The present experiments were designed to analyze the influence of copper and iron ions on the process of decomposition of S-nitrosocysteine (cysNO), the most labile species among S-nitrosothiols (RSNO). CysNO fate in buffer solution was evaluated by optical and electron paramagnetic resonance (EPR) spectroscopy, and the consequences on its vasorelaxant effect were studied on noradrenaline-precontracted rat aortic rings. The main results are the following: (i) copper or iron ions, especially in the presence of the reducing agent ascorbate, accelerated the decomposition of cysNO and markedly attenuated the amplitude and duration of the relaxant effect of cysNO; (ii) by contrast, the iron and copper chelators bathophenantroline disulfonic acid (BPDS) and bathocuproine disulfonic acid (BCS) exerted a stabilizing effect on cysNO, prolonged its vasorelaxant effect, and abolished the influence of ascorbate; (iii) in the presence of ascorbate, BPDS displayed a selective inhibitory effect toward the influence of iron ions (but not toward copper ions) on cysNO decomposition and vasorelaxant effect, while BCS prevented the effects of both copper and iron ions; (iv) L-cysteine enhanced stability and prolonged the relaxant effect of cysNO; (v) the process of iron-induced decomposition of cysNO was associated with the formation of EPR-detectable dinitrosyl-iron complexes (DNIC) either with non-thiol- or thiol-containing ligands (depending on the presence of L-cysteine), both of which exhibiting vasorelaxant properties. From these data, it is concluded that the amount of intrinsic copper was probably too low to produce a destabilizing effect even on the most labile RSNO, cysNO, and that only intrinsic iron, through the formation of DNIC, was responsible for the process of cysNO decomposition and thus influenced its vasorelaxant properties.

  13. Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation.

    PubMed

    Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles

    2016-05-10

    Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3-3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C-90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability=0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10˚C to 14.9±1.4 MPa at 90˚C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature

  14. Kinetic Stress and Intrinsic Flow in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Ding, W. X.; Lin, L.; Brower, D. L.; Almagri, A. F.; Chapman, B. E.; Fiksel, G.; Den Hartog, D. J.; Sarff, J. S.

    2013-02-01

    A new mechanism for intrinsic plasma flow has been experimentally identified in a toroidal plasma. For reversed field pinch plasmas with a few percent β (ratio of plasma pressure to magnetic pressure), measurements show that parallel pressure fluctuations correlated with magnetic fluctuations create a kinetic stress that can affect momentum balance and the evolution of intrinsic plasma flow. This implies kinetic effects are important for flow generation and sustainment.

  15. Self-perception of intrinsic and extrinsic motivation.

    PubMed

    Calder, B J; Staw, B M

    1975-04-01

    Self-perception theory predicts that intrinsic and extrinsic motivation do not combine additively but rather interact. To test this predicted interaction, intrinsic and extrinsic motivation were both manipulated as independent variables. The results revealed a significant interaction for task satisfaction and a trend for the interaction on a behavioral measure. These results are discussed in terms of a general approach to the self-perception of motivation.

  16. A hierarchy of intrinsic timescales across primate cortex

    PubMed Central

    Murray, John D.; Bernacchia, Alberto; Freedman, David J.; Romo, Ranulfo; Wallis, Jonathan D.; Cai, Xinying; Padoa-Schioppa, Camillo; Pasternak, Tatiana; Seo, Hyojung; Lee, Daeyeol; Wang, Xiao-Jing

    2014-01-01

    Specialization and hierarchy are organizing principles for primate cortex, yet there is little direct evidence for how cortical areas are specialized in the temporal domain. We measured timescales of intrinsic fluctuations in spiking activity across areas, and found a hierarchical ordering, with sensory and prefrontal areas exhibiting shorter and longer timescales, respectively. Based on our findings, we suggest that intrinsic timescales reflect areal specialization for task-relevant computations over multiple temporal ranges. PMID:25383900

  17. New force field on modeling intrinsically disordered proteins.

    PubMed

    Wang, Wei; Ye, Wei; Jiang, Cheng; Luo, Ray; Chen, Hai-Feng

    2014-09-01

    Intrinsically disordered proteins or intrinsically disordered protein regions comprise a large portion of eukaryotic proteomes (between 35% and 51%). These intrinsically disordered proteins were found to link with cancer and various other diseases. However, widely used additive force field parameter sets are insufficient in quantifying the structural properties of intrinsically disordered proteins. Therefore, we explored to a systematic correction of a base additive force field parameter set (chosen as Amber ff99SBildn) to correct the biases that was first demonstrated in simulations with the base parameter set. Specifically, the φ/ψ distributions of disorder-promoting residues were systematically corrected with the CMAP method. Our simulations show that the CMAP corrected Amber parameter set, termed ff99IDPs, improves the φ/ψ distributions of the disorder-promoting residues with respect to the benchmark data of intrinsically disordered protein structures, with root mean-squared percentage deviation less than 0.15% between the simulation and the benchmark. Our further validation shows that the chemical shifts from the ff99IDPs simulations are in quantitative agreement with those from reported NMR measurements for two tested IDPs, MeV NTAIL , and p53. The predicted residue dipolar couplings also show high correlation with experimental data. Interestingly, our simulations show that ff99IDPs can still be used to model the ordered state when the intrinsically disordered proteins are in complex, in contrast to ff99SBildn that can be applied well only to the ordered complex structures. These findings confirm that the newly proposed Amber ff99IDPs parameter set provides a reasonable tool in further studies of intrinsically disordered protein structures. In addition, our study also shows the importance of considering intrinsically disordered protein structures in general-purposed force field developments for both additive and non-additive models.

  18. Intrinsic optical modulation mechanism in electro-optic crystals

    NASA Astrophysics Data System (ADS)

    Garzarella, A.; Hinton, R. J.; Qadri, S. B.; Wu, Dong Ho

    2008-06-01

    An intrinsic mechanism of optical intensity modulation occurring in electro-optic devices such as field sensors and modulators under applied fields is described. The optical modulation results from interactions between internally generated Fizeau interference patterns and electro-optic effects within the nonlinear crystal. Our results indicate that when phase matched with the conventional polarimetric signal, the intrinsic modulation mechanism can nearly double device sensitivity.

  19. Intrinsically Disordered Side of the Zika Virus Proteome

    PubMed Central

    Giri, Rajanish; Kumar, Deepak; Sharma, Nitin; Uversky, Vladimir N.

    2016-01-01

    Over the last few decades, concepts of protein intrinsic disorder have been implicated in different biological processes. Recent studies have suggested that intrinsically disordered proteins (IDPs) provide structural plasticity and functional diversity to viral proteins that are involved in rapid replication and immune evasion in host cells. In case of Zika virus, the roles of protein intrinsic disorder in mechanisms of pathogenesis are not completely understood. In this study, we have analyzed the prevalence of intrinsic disorder in Zika virus proteome (strain MR 766). Our analyses revealed that Zika virus polyprotein is enriched with intrinsically disordered protein regions (IDPRs) and this finding is consistent with previous reports on the involvement of IDPs in shell formation and virulence of the Flaviviridae family. We found abundant IDPRs in Capsid, NS2B, NS3, NS4A, and NS5 proteins that are involved in mature particle formation and replication. In our view, the intrinsic disorder-focused analysis of ZIKV proteins could be important for the development of disorder-based drugs. PMID:27867910

  20. Experimental observations of driven and intrinsic rotation in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Rice, J. E.

    2016-08-01

    Experimental observations of driven and intrinsic rotation in tokamak plasmas are reviewed. For momentum sources, there is direct drive from neutral beam injection, lower hybrid and ion cyclotron range of frequencies waves (including mode conversion flow drive), as well as indirect \\mathbf{j}× \\mathbf{B} forces from fast ion and electron orbit shifts, and toroidal magnetic field ripple loss. Counteracting rotation drive are sinks, such as from neutral drag and toroidal viscosity. Many of these observations are in agreement with the predictions of neo-classical theory while others are not, and some cases of intrinsic rotation remain puzzling. In contrast to particle and heat fluxes which depend on the relevant diffusivity and convection, there is an additional term in the momentum flux, the residual stress, which can act as the momentum source for intrinsic rotation. This term is independent of the velocity or its gradient, and its divergence constitutes an intrinsic torque. The residual stress, which ultimately responds to the underlying turbulence, depends on the confinement regime and is a complicated function of collisionality, plasma shape, and profiles of density, temperature, pressure and current density. This leads to the rich intrinsic rotation phenomenology. Future areas of study include integration of these many effects, advancement of quantitative explanations for intrinsic rotation and development of strategies for velocity profile control.

  1. Intrinsic honesty and the prevalence of rule violations across societies.

    PubMed

    Gächter, Simon; Schulz, Jonathan F

    2016-03-24

    Deception is common in nature and humans are no exception. Modern societies have created institutions to control cheating, but many situations remain where only intrinsic honesty keeps people from cheating and violating rules. Psychological, sociological and economic theories suggest causal pathways to explain how the prevalence of rule violations in people's social environment, such as corruption, tax evasion or political fraud, can compromise individual intrinsic honesty. Here we present cross-societal experiments from 23 countries around the world that demonstrate a robust link between the prevalence of rule violations and intrinsic honesty. We developed an index of the 'prevalence of rule violations' (PRV) based on country-level data from the year 2003 of corruption, tax evasion and fraudulent politics. We measured intrinsic honesty in an anonymous die-rolling experiment. We conducted the experiments with 2,568 young participants (students) who, due to their young age in 2003, could not have influenced PRV in 2003. We find individual intrinsic honesty is stronger in the subject pools of low PRV countries than those of high PRV countries. The details of lying patterns support psychological theories of honesty. The results are consistent with theories of the cultural co-evolution of institutions and values, and show that weak institutions and cultural legacies that generate rule violations not only have direct adverse economic consequences, but might also impair individual intrinsic honesty that is crucial for the smooth functioning of society.

  2. Contribution of motoneuron intrinsic properties to fictive motor pattern generation

    PubMed Central

    Calabrese, Ronald L.

    2011-01-01

    Previously, we reported a canonical ensemble model of the heart motoneurons that underlie heartbeat in the medicinal leech. The model motoneurons contained a minimal set of electrical intrinsic properties and received a synaptic input pattern based on measurements performed in the living system. Although the model captured the synchronous and peristaltic motor patterns observed in the living system, it did not match quantitatively the motor output observed. Because the model motoneurons had minimal intrinsic electrical properties, the mismatch between model and living system suggests a role for additional intrinsic properties in generating the motor pattern. We used the dynamic clamp to test this hypothesis. We introduced the same segmental input pattern used in the model to motoneurons isolated pharmacologically from their endogenous input in the living system. We show that, although the segmental input pattern determines the segmental phasing differences observed in motoneurons, the intrinsic properties of the motoneurons play an important role in determining their phasing, particularly when receiving the synchronous input pattern. We then used trapezoidal input waveforms to show that the intrinsic properties present in the living system promote phase advances compared with our model motoneurons. Electrical coupling between heart motoneurons also plays a role in shaping motoneuron output by synchronizing the activity of the motoneurons within a segment. These experiments provide a direct assessment of how motoneuron intrinsic properties interact with their premotor pattern of synaptic drive to produce rhythmic output. PMID:21562194

  3. Probing Quasar Winds Using Intrinsic Narrow Absorption Lines

    NASA Astrophysics Data System (ADS)

    Culliton, Christopher S.; Charlton, Jane C.; Eracleous, Michael; Roberts, Amber; Ganguly, Rajib; Misawa, Toru; Muzahid, Sowgat

    2017-01-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole. Furthermore, outflows potentially have a role in providing feedback to the galaxy, and halting star formation and infall of gas. The geometry and density of these outflows remain unknown, especially as a function of ionization and velocity. Having searched ultraviolet spectra at both high redshift (VLT/UVES; 1.4intrinsic to (physically associated with) the quasar. We identify intrinsic NALs with a wide range of properties, including ejection velocity, coverage fraction, and ionization level. We also consider the incidence of intrinsic absorbers as a function of quasar properties (optical, radio and X-ray fluxes), and find that radio properties and quasar orientation are influential in determining if a quasar is likely to host an intrinsic system. We find that there is a continuum of properties within the intrinsic NAL sample, rather than discrete families, ranging from partially covered CIV systems with black Lya and with a separate low ionization gas phase to partially covered NV systems with partially covered Lya and without detected low ionization gas. Additionally, we construct a model describing the spatial distributions, geometries, and varied ionization structures of intrinsic NALs.

  4. Intrinsic Honesty and the Prevalence of Rule Violations across Societies

    PubMed Central

    Gächter, Simon; Schulz, Jonathan F.

    2016-01-01

    Deception is common in nature and humans are no exception1. Modern societies have created institutions to control cheating, but many situations remain where only intrinsic honesty keeps people from cheating and violating rules. Psychological2, sociological3 and economic theories4 suggest causal pathways about how the prevalence of rule violations in people's social environment such as corruption, tax evasion, or political fraud can compromise individual intrinsic honesty. Here, we present cross-societal experiments from 23 countries around the world, which demonstrate a robust link between the prevalence of rule violations and intrinsic honesty. We developed an index of the Prevalence of Rule Violations (PRV) based on country-level data of corruption, tax evasion, and fraudulent politics. We measured intrinsic honesty in an anonymous die-rolling experiment.5 We conducted the experiments at least eight years after the measurement of PRV with 2568 young participants (students) who could not influence PRV. We find individual intrinsic honesty is stronger in the subject pools of low PRV countries than those of high PRV countries. The details of lying patterns support psychological theories of honesty.6,7 The results are consistent with theories of the cultural co-evolution of institutions and values8 and show that weak institutions and cultural legacies9-11 that generate rule violations not only have direct adverse economic consequences but might also impair individual intrinsic honesty that is crucial for the smooth functioning of society. PMID:26958830

  5. Intrinsically shunted Josephson junctions for electronics applications

    NASA Astrophysics Data System (ADS)

    Belogolovskii, M.; Zhitlukhina, E.; Lacquaniti, V.; De Leo, N.; Fretto, M.; Sosso, A.

    2017-07-01

    Conventional Josephson metal-insulator-metal devices are inherently underdamped and exhibit hysteretic current-voltage response due to a very high subgap resistance compared to that in the normal state. At the same time, overdamped junctions with single-valued characteristics are needed for most superconducting digital applications. The usual way to overcome the hysteretic behavior is to place an external low-resistance normal-metal shunt in parallel with each junction. Unfortunately, such solution results in a considerable complication of the circuitry design and introduces parasitic inductance through the junction. This paper provides a concise overview of some generic approaches that have been proposed in order to realize internal shunting in Josephson heterostructures with a barrier that itself contains the desired resistive component. The main attention is paid to self-shunted devices with local weak-link transmission probabilities that are so strongly disordered in the interface plane that transmission probabilities are tiny for the main part of the transition region between two super-conducting electrodes, while a small part of the interface is well transparent. We discuss the possibility of realizing a universal bimodal distribution function and emphasize advantages of such junctions that can be considered as a new class of self-shunted Josephson devices promising for practical applications in superconducting electronics operating at 4.2 K.

  6. University Futures

    ERIC Educational Resources Information Center

    Smith, Richard

    2012-01-01

    Recent radical changes to university education in England have been discussed largely in terms of the arrangements for transferring funding from the state to the student as consumer, with little discussion of what universities are for. It is important, while challenging the economic rationale for the new system, to resist talking about higher…

  7. University Architecture.

    ERIC Educational Resources Information Center

    Edwards, Brian

    This book explores how universities relate their built environment to academic discourse, asserting that the character of universities is often a charming dialogue between order and disarray. It contains numerous photographs and building plans for example campuses throughout the world. In part 1, "The Campus," chapters are: (1) "Academic Mission…

  8. Universal Expansion.

    ERIC Educational Resources Information Center

    McArdle, Heather K.

    1997-01-01

    Describes a week-long activity for general to honors-level students that addresses Hubble's law and the universal expansion theory. Uses a discrepant event-type activity to lead up to the abstract principles of the universal expansion theory. (JRH)

  9. Innovative Universities.

    ERIC Educational Resources Information Center

    Barsi, Louis M.; Kaebnick, Gweneth W.

    1989-01-01

    The phenomenon of innovation within the university is examined, noting the possibility of innovation as a key to college vitality. A study was conducted using a group of institutions that demonstrated recent innovative spirit. Members of the American Association of State Colleges and Universities (AASCU), each has been recognized in an annual…

  10. University Futures

    ERIC Educational Resources Information Center

    Smith, Richard

    2012-01-01

    Recent radical changes to university education in England have been discussed largely in terms of the arrangements for transferring funding from the state to the student as consumer, with little discussion of what universities are for. It is important, while challenging the economic rationale for the new system, to resist talking about higher…

  11. Universal Expansion.

    ERIC Educational Resources Information Center

    McArdle, Heather K.

    1997-01-01

    Describes a week-long activity for general to honors-level students that addresses Hubble's law and the universal expansion theory. Uses a discrepant event-type activity to lead up to the abstract principles of the universal expansion theory. (JRH)

  12. Overseas Universities.

    ERIC Educational Resources Information Center

    Inter-University Council for Higher Education Overseas, London (England).

    The following articles and reports are presented in this publication of "Overseas Universities:""Appropriate Technology and University Education," by John Twidell; "The Training of Engineering Staff for Higher Education Institutions in Developing Countries," by D. W. Daniel, C. A. Leal, J. H. Maynes and T. Wilmore;…

  13. Innovative Universities.

    ERIC Educational Resources Information Center

    Barsi, Louis M.; Kaebnick, Gweneth W.

    1989-01-01

    The phenomenon of innovation within the university is examined, noting the possibility of innovation as a key to college vitality. A study was conducted using a group of institutions that demonstrated recent innovative spirit. Members of the American Association of State Colleges and Universities (AASCU), each has been recognized in an annual…

  14. Universal Memcomputing Machines.

    PubMed

    Traversa, Fabio Lorenzo; Di Ventra, Massimiliano

    2015-11-01

    We introduce the notion of universal memcomputing machines (UMMs): a class of brain-inspired general-purpose computing machines based on systems with memory, whereby processing and storing of information occur on the same physical location. We analytically prove that the memory properties of UMMs endow them with universal computing power (they are Turing-complete), intrinsic parallelism, functional polymorphism, and information overhead, namely, their collective states can support exponential data compression directly in memory. We also demonstrate that a UMM has the same computational power as a nondeterministic Turing machine, namely, it can solve nondeterministic polynomial (NP)-complete problems in polynomial time. However, by virtue of its information overhead, a UMM needs only an amount of memory cells (memprocessors) that grows polynomially with the problem size. As an example, we provide the polynomial-time solution of the subset-sum problem and a simple hardware implementation of the same. Even though these results do not prove the statement NP = P within the Turing paradigm, the practical realization of these UMMs would represent a paradigm shift from the present von Neumann architectures, bringing us closer to brain-like neural computation.

  15. Universe Awareness

    NASA Astrophysics Data System (ADS)

    Sankatsing Nava, Tibisay; Russo, Pedro

    2015-08-01

    Universe Awareness (UNAWE) is an educational programme coordinated by Leiden University that uses the beauty and grandeur of the Universe to encourage young children, particularly those from an underprivileged background, to have an interest in science and technology and foster their sense of global citizenship from the earliest age.UNAWE's twofold vision uses our Universe to inspire and motivate very young children: the excitement of the Universe provides an exciting introduction to science and technology, while the vastness and beauty of the Universe helps broaden the mind and stimulate a sense of global citizenship and tolerance. UNAWE's goals are accomplished through four main activities: the coordination of a global network of more than 1000 astronomers, teachers and educators from more than 60 countries, development of educational resources, teacher training activities and evaluation of educational activities.Between 2011 and 2013, EU-UNAWE, the European branch of UNAWE, was funded by the European Commission to implement a project in 5 EU countries and South Africa. This project has been concluded successfully. Since then, the global project Universe Awareness has continued to grow with an expanding international network, new educational resources and teacher trainings and a planned International Workshop in collaboration with ESA in October 2015, among other activities.

  16. Sport Ability Beliefs, 2 x 2 Achievement Goals, and Intrinsic Motivation: The Moderating Role of Perceived Competence in Sport and Exercise

    ERIC Educational Resources Information Center

    Wang, C. K. John; Liu, Woon Chia; Lochbaum, Marc R.; Stevenson, Sarah J.

    2009-01-01

    We examined whether perceived competence moderated the relationships between implicit theories, 2 x 2 achievement goals, and intrinsic motivation for sports and physical activity. We placed 309 university students into high and moderate perceived competence groups. When perceived competence was high, entity beliefs did not predict the…

  17. Intrinsic alignments of galaxies in the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Hilbert, Stefan; Xu, Dandan; Schneider, Peter; Springel, Volker; Vogelsberger, Mark; Hernquist, Lars

    2017-06-01

    We study intrinsic alignments (IA) of galaxy image shapes within the Illustris cosmic structure formation simulations. We investigate how IA correlations depend on observable galaxy properties such as stellar mass, apparent magnitude, redshift and photometric type, and on the employed shape measurement method. The correlations considered include the matter density-intrinsic ellipticity (mI), galaxy density-intrinsic ellipticity (dI), gravitational shear-intrinsic ellipticity (GI) and intrinsic ellipticity-intrinsic ellipticity (II) correlations. We find stronger correlations for more massive and more luminous galaxies, as well as for earlier photometric types, in agreement with observations. Moreover, the correlations significantly depend on the choice of shape estimator, even if calibrated to serve as unbiased shear estimators. In particular, shape estimators that down-weight the outer parts of galaxy images produce much weaker IA signals on intermediate and large scales than methods employing flat radial weights. The expected contribution of IA to the observed ellipticity correlation in tomographic cosmic shear surveys may be below one percent or several percent of the full signal depending on the details of the shape measurement method. A comparison of our results to a tidal alignment model indicates that such a model is able to reproduce the IA correlations well on intermediate and large scales, provided the effect of varying galaxy density is correctly taken into account. We also find that the GI contributions to the observed ellipticity correlations could be inferred directly from measurements of galaxy density-intrinsic ellipticity correlations, except on small scales, where systematic differences between mI and dI correlations are large.

  18. Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models

    PubMed Central

    Singh, Abhyudai; Soltani, Mohammad

    2013-01-01

    Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters. PMID:24391934

  19. Enhancing intrinsic growth capacity promotes adult CNS regeneration.

    PubMed

    Yang, Ping; Yang, Zhong

    2012-01-15

    In the adult mammalian central nervous system (CNS), the axons do not spontaneously regenerate after injury due to the inhibitory extrinsic environment and a diminished intrinsic regenerative capability. Many previous studies focus largely on characterizing the hostile growth inhibitory molecules in the CNS. In fact, blocking such inhibitory activities by either genetic or pharmacological approaches only allows limited sprouting, and majority of the adult neurons fail to regenerate their axons even provided with permissive substrates. Upon the neural circuits established during development, the intrinsic neuronal growth activity is gradually repressed. Little is known to the mechanisms for transition from the robust growth mode of the immature neurons to the poor growth mode of the mature neurons and the way to reactivate the intrinsic growth capacity after injury. The primary sensory neurons with cell bodies in the dorsal root ganglion (DRG) provide a useful model to develop strategies to enhance the intrinsic growth capacity of neurons. The centrally projecting axons in the adult spinal cord do not regenerate, while the peripheral branches regenerate robustly after injury. Regeneration of the central branches can be significantly enhanced after a prior peripheral branch injury, which is defined as conditioning lesion. We reviewed the mode of conditioning lesion reactivating the intrinsic growth program. Importantly, we summarized the intrinsic neuronal determinants for neurite growth such as cAMP, PTEN/mTOR, APC-Cdh1, KLF4, etc., the mechanisms underlying development-dependent decline of CNS neurons growth ability, and procedures to enhance the intrinsic growth potential. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Physical Motif Clustering within Intrinsically Disordered Nucleoporin Sequences Reveals Universal Functional Features

    PubMed Central

    Ando, David; Colvin, Michael; Rexach, Michael; Gopinathan, Ajay

    2013-01-01

    Bioinformatics of disordered proteins is especially challenging given high mutation rates for homologous proteins and that functionality may not be strongly related to sequence. Here we have performed a novel bioinformatic analysis, based on the spatial clustering of physically relevant features such as binding motifs and charges within disordered proteins, on thousands of Nuclear Pore Complex (NPC) FG motif containing proteins (FG nups). The biophysical mechanism by which FG nups regulate nucleocytoplasmic transport has remained elusive. Our analysis revealed a set of highly conserved spatial features in the sequence structure of individual FG nups, such as the separation, localization, and ordering of FG motifs and charged residues along the protein chain. These functionally conserved features provide insight into the particular biophysical mechanisms responsible for regulation of nucleocytoplasmic traffic in the NPC, strongly constraining current models. Additionally this method allows us to identify potentially functionally analogous disordered proteins across distantly related species. PMID:24066078

  1. Universal Truths.

    ERIC Educational Resources Information Center

    Horgan, John

    1990-01-01

    Described is a symposium of Nobel laureates held in the summer of 1990 to discuss cosmology. Different views on the structure and evolution of the universe are presented. Evidence for different theories of cosmology is discussed. (CW)

  2. Universal Truths.

    ERIC Educational Resources Information Center

    Horgan, John

    1990-01-01

    Described is a symposium of Nobel laureates held in the summer of 1990 to discuss cosmology. Different views on the structure and evolution of the universe are presented. Evidence for different theories of cosmology is discussed. (CW)

  3. Intrinsic hand muscle function, part 1: creating a functional grasp.

    PubMed

    Arnet, Ursina; Muzykewicz, David A; Fridén, Jan; Lieber, Richard L

    2013-11-01

    Regaining hand function has been identified as the highest priority for persons with tetraplegia. In many patients, finger flexion can be restored with a tendon transfer of extensor carpi radialis longus to flexor digitorum profundus (FDP). In the absence of intrinsic function, this results in a roll-up finger movement, which tends to push large objects out of grasp. To enable patients to grasp objects of varying sizes, a functional grasp is required that has a larger excursion of fingertip-to-palm distance than can be supplied without intrinsic function. The aim of this study was to quantify the role of intrinsic muscle force in creating a functional grasp. Finger kinematics during grasp were measured on 5 cadaveric hands. To simulate finger flexion, the FDP was activated by a motor and intrinsic muscles were loaded at various levels (0, 125, 250, 375, or 500 g). Finger movement was characterized by the order of metacarpophalangeal, proximal interphalangeal, and distal interphalangeal joint flexion and by the maximal fingertip-to-palm distance during finger closure. Without any intrinsic muscle contribution (0-g load), FDP activation resulted in flexion of all 3 joints, whereby flexion began at the proximal interphalangeal joint, followed by the distal interphalangeal joint, and then the metacarpophalangeal joint. With increasing intrinsic muscle load, finger flexion was initiated at the metacarpophalangeal joint, followed by the proximal interphalangeal and distal interphalangeal joints. This altered joint flexion order resulted in a larger maximal fingertip-to-palm distance during finger flexion. The difference between the 2 extreme conditions (0 g vs 500 g of intrinsic muscle load) was 19 mm. These findings demonstrate that simultaneous activation of the FDP and the intrinsic muscles results in an apparently more functional hand closing compared with FDP activation alone because of altered kinematics and larger fingertip-to-palm distances. These findings

  4. Undulant Universe

    SciTech Connect

    Barenboim, Gabriela; Mena, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    If the equation of state for ''dark energy'' varies periodically, the expansion of the Universe may have undergone alternating eras of acceleration and deceleration. We examine a specific form that survives existing observational tests, does not single out the present state of the Universe as exceptional, and suggests a future much like the matter-dominated past: a smooth expansion without a final inflationary epoch.

  5. Majestic Universe

    NASA Astrophysics Data System (ADS)

    Brunier, Serge; Dunlop, Storm

    1999-10-01

    Foreword; 1. The history of cosmology; 2. The galaxy, an island in space; 3. A thousand generations of stars; 4. The next supernova; 5. Planets by the billion?; 6. The enigma at the heart of the Milky Way; 7. A sea of galaxies; 8. The architecture of the universe; 9. The Big Bang, and the history of the universe; 10. Gravitational lenses; 11. The mystery of the missing mass; 12. Searching for the ultimate; 13. Towards the cosmological horizon; Appendices; Glossary; Index; Bibliography.

  6. In vitro studies on antibodies to intrinsic factor

    PubMed Central

    Schade, S. G.; Feick, Patricia L.; Imrie, Marian H.; Schilling, R. F.

    1967-01-01

    In vitro experiments on anti-intrinsic factor antibodies in the sera from patients with pernicious anaemia are reported. These studies show that antibody activity which blocks the binding of B12 by intrinsic factor (antibody I) is on a different molecule from that which unites with intrinsic factor-B12 (antibody II), and that antibody II unites with either intrinsic factor (IF) or intrinsic factor-B12 (IFB12). Antibody I exchanges readily with the B12 of IFB12. The complex of IF and antibody I will absorb antibody II. The data are interpreted as supporting the conclusion that IF has at least two antigenic regions. An unusual type of antibody activity is also reported. This antibody appears to stabilize B12 on IF, so that exchange of B1259Co or antibody I with the B1257Co of IFB1257Co is inhibited. This antibody also forms a complex with IFB12 which is of a different size from other antibody II–IFB12 complexes. PMID:6052540

  7. Intrinsic choroidal neurons in the duck eye express galanin.

    PubMed

    Schrödl, F; Brehmer, A; Neuhuber, W L

    2000-09-11

    Recently, it has been shown that the choroid of the duck eye harbours approximately 1,000 intrinsic choroidal neurons positive for vasoactive intestinal polypeptide and neuronal nitric oxide synthase. Their connections and functional significance are largely unknown. This study was performed to establish a typical chemical code for these neurons and to define their targets by using immunocytochemistry and confocal laser scanning microscopy. Almost all intrinsic choroidal neurons coexpressed galanin (GAL), vasoactive intestinal polypeptide (VIP), and neuronal nitric oxide synthase (nNOS)/NADPH-diaphorase. A few stained for GAL and/or nNOS only. Among extrinsic ganglia, GAL/VIP/nNOS coexpressing neurons were only found in the pterygopalatine ganglion where they accounted for approximately 30% of the neuronal population. Thus, GAL/VIP/nNOS-positive nerve fibres around branches of the ciliary artery and within the nonvascular smooth muscle stroma of the choroid may originate mainly from intrinsic neurons and to some extent in a subpopulation of pterygopalatine ganglionic neurons exhibiting the same chemical coding. Close contacts of GAL-positive fibres upon intrinsic choroidal neurons may indicate reciprocal connections between them. Thus, intrinsic choroidal neurons may represent peripherally displaced pterygopalatine ganglion neurons forming a local network for regulation of vascular and nonvascular smooth muscle tone in the duck choroid. They may be integrated in the neuronal circuitry controlling intraocular pressure, choroidal thickness, accommodation, and axial bulbus length. Copyright 2000 Wiley-Liss, Inc.

  8. Intrinsic bioremediation modeling to support Superfund site closure

    SciTech Connect

    Bedard, A.H.; Day, M.J.; Johnson, R.H.; Ritter, K.J.; Stancel, S.G.; Thomson, J.A.M.

    1997-09-01

    Closure of the groundwater component of a major Superfund site has been accomplished by a combination of source control, engineered in-situ bioremediation, and subsequent long-term intrinsic bioremediation. Engineered bioremediation outside the source control area resulted in very significant contaminant mass removal. This allowed intrinsic bioremediation to be considered as a passive remedial management method of achieving cleanup objectives after active remediation needed. Modeling demonstrated that intrinsic bioremediation would achieve cleanup objectives (for this site, Federal drinking water standards) within ten years of shutdown of the active bioremediation system. Modeling showed that residual electron acceptors and nutrients distributed in the aquifer during engineered bioremediation greatly enhance the intrinsic bioremediation process. The results of the modeling effort led to the active system being shut down a year ahead of schedule, allowing the project to move into a low-maintenance intrinsic bioremediation and long-term monitoring phase. The modeling demonstration coupled Visual MODFLOW{copyright} and BioTrans{copyright} to simulate groundwater flow, solute transport, and oxygen-limited, multi-species biodegradation. Regional flow evaluation, detailed model sensitivity analyses, and subarea modeling were employed to provide support to model predictions. Predictions will be tested by subsequent progress and compliance monitoring. Site closure began in early 1996.

  9. Physics of Intrinsic Rotation in Flux-Driven ITG Turbulence

    SciTech Connect

    Ku, S; Dimond, P H; Dif-Pradalier, G; Kwon, J M; Sarazin, Y; Hahm, T S; Garbet, X; Chang, C S; Latu, G; Yoon, E S; Ghendrih, Ph; Yi, S; Strugarek, A; Solomon, W

    2012-02-23

    Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale-separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity

  10. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    DOEpatents

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  11. Cosmological information in the intrinsic alignments of luminous red galaxies

    SciTech Connect

    Chisari, Nora Elisa; Dvorkin, Cora E-mail: cdvorkin@ias.edu

    2013-12-01

    The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski and Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by f{sub NL} = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.

  12. Intrinsic motivation and amotivation in first episode and prolonged psychosis.

    PubMed

    Luther, Lauren; Lysaker, Paul H; Firmin, Ruth L; Breier, Alan; Vohs, Jenifer L

    2015-12-01

    The deleterious functional implications of motivation deficits in psychosis have generated interest in examining dimensions of the construct. However, there remains a paucity of data regarding whether dimensions of motivation differ over the course of psychosis. Therefore, this study examined two motivation dimensions, trait-like intrinsic motivation, and the negative symptom of amotivation, and tested the impact of illness phase on the 1) levels of these dimensions and 2) relationship between these dimensions. Participants with first episode psychosis (FEP; n=40) and prolonged psychosis (n=66) completed clinician-rated measures of intrinsic motivation and amotivation. Analyses revealed that when controlling for group differences in gender and education, the FEP group had significantly more intrinsic motivation and lower amotivation than the prolonged psychosis group. Moreover, intrinsic motivation was negatively correlated with amotivation in both FEP and prolonged psychosis, but the magnitude of the relationship did not statistically differ between groups. These findings suggest that motivation deficits are more severe later in the course of psychosis and that low intrinsic motivation may be partially independent of amotivation in both first episode and prolonged psychosis. Clinically, these results highlight the importance of targeting motivation in early intervention services.

  13. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    PubMed

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  14. Scalability, Timing, and System Design Issues for Intrinsic Evolvable Hardware

    NASA Technical Reports Server (NTRS)

    Hereford, James; Gwaltney, David

    2004-01-01

    In this paper we address several issues pertinent to intrinsic evolvable hardware (EHW). The first issue is scalability; namely, how the design space scales as the programming string for the programmable device gets longer. We develop a model for population size and the number of generations as a function of the programming string length, L, and show that the number of circuit evaluations is an O(L2) process. We compare our model to several successful intrinsic EHW experiments and discuss the many implications of our model. The second issue that we address is the timing of intrinsic EHW experiments. We show that the processing time is a small part of the overall time to derive or evolve a circuit and that major improvements in processor speed alone will have only a minimal impact on improving the scalability of intrinsic EHW. The third issue we consider is the system-level design of intrinsic EHW experiments. We review what other researchers have done to break the scalability barrier and contend that the type of reconfigurable platform and the evolutionary algorithm are tied together and impose limits on each other.

  15. Generation disrupts memory for intrinsic context but not extrinsic context.

    PubMed

    Mulligan, Neil W

    2011-08-01

    Although generation typically enhances item memory, the effect is subject to a number of theoretically important limitations. One potential limitation concerns context memory but there has been debate about whether generation actually enhances or disrupts memory for contextual details. Five experiments assessed the effect of generation on context memory for perceptual attributes of the study stimulus (intrinsic context). The results indicate that despite enhancing item memory, generation disrupts memory for intrinsic context. This result generalized over different intrinsic details (print colour and font), different generation manipulations, and several methodological factors identified in earlier research as potential moderators of this negative generation effect. Despite the negative generation effect on intrinsic context, contextual details external to the target item (extrinsic context) are not disrupted. In a sixth experiment, a visually based generation task (letter transposition) enhanced context memory for the extrinsic detail of location. Coupled with earlier research, the results indicate that generation disrupts context memory for intrinsic details but either does not harm or enhances memory for extrinsic context.

  16. Turbulent-driven intrinsic rotation in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Barnes, Michael; Parra, Felix; Lee, Jungpyo; Belli, Emily; Nave, Filomena; White, Anne

    2013-10-01

    Tokamak plasmas are routinely observed to rotate even in the absence of an externally applied torque. This ``intrinsic'' rotation exhibits several robust features, including rotation reversals with varying plasma density and current and rotation peaking at the transition from low confinement to high confinement regimes. Conservation of toroidal angular momentum dictates that the intrinsic rotation is determined by momentum redistribution within the plasma, which is dominated by turbulent transport. The turbulent momentum transport, and thus the intrinsic rotation profile, is driven by formally small effects that are usually neglected. We present a gyrokinetic theory that makes use of the smallness of the poloidal to total magnetic field ratio to self-consistently include the dominant effects driving intrinsic turbulent momentum transport in tokamaks. These effects (including slow radial profile variation, slow poloidal turbulence variation, and diamagnetic corrections to the equilibrium Maxwellian) have now been implemented in the local, delta-f gyrokinetic code GS2. We describe important features of the numerical implementation and show numerical results on intrinsic momentum transport that are qualitatively consistent with experimental rotation reversals.

  17. Intrinsic thermodynamics of inhibitor binding to human carbonic anhydrase IX.

    PubMed

    Linkuvienė, Vaida; Matulienė, Jurgita; Juozapaitienė, Vaida; Michailovienė, Vilma; Jachno, Jelena; Matulis, Daumantas

    2016-04-01

    Human carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding. The observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry. The pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was -24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM. The intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship. It is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of Optical Blur Reduction on Equivalent Intrinsic Blur

    PubMed Central

    Valeshabad, Ali Kord; Wanek, Justin; McAnany, J. Jason; Shahidi, Mahnaz

    2015-01-01

    Purpose To determine the effect of optical blur reduction on equivalent intrinsic blur, an estimate of the blur within the visual system, by comparing optical and equivalent intrinsic blur before and after adaptive optics (AO) correction of wavefront error. Methods Twelve visually normal individuals (age; 31 ± 12 years) participated in this study. Equivalent intrinsic blur (σint) was derived using a previously described model. Optical blur (σopt) due to high-order aberrations was quantified by Shack-Hartmann aberrometry and minimized using AO correction of wavefront error. Results σopt and σint were significantly reduced and visual acuity (VA) was significantly improved after AO correction (P ≤ 0.004). Reductions in σopt and σint were linearly dependent on the values before AO correction (r ≥ 0.94, P ≤ 0.002). The reduction in σint was greater than the reduction in σopt, although it was marginally significant (P = 0.05). σint after AO correlated significantly with σint before AO (r = 0.92, P < 0.001) and the two parameters were related linearly with a slope of 0.46. Conclusions Reduction in equivalent intrinsic blur was greater than the reduction in optical blur due to AO correction of wavefront error. This finding implies that VA in subjects with high equivalent intrinsic blur can be improved beyond that expected from the reduction in optical blur alone. PMID:25785538

  19. An intrinsic timer specifies distal structures of the vertebrate limb

    PubMed Central

    Saiz-Lopez, Patricia; Chinnaiya, Kavitha; Campa, Victor M.; Delgado, Irene; Ros, Maria A.; Towers, Matthew

    2015-01-01

    How the positional values along the proximo-distal axis (stylopod-zeugopod-autopod) of the limb are specified is intensely debated. Early work suggested that cells intrinsically change their proximo-distal positional values by measuring time. Recently, however, it is suggested that instructive extrinsic signals from the trunk and apical ectodermal ridge specify the stylopod and zeugopod/autopod, respectively. Here, we show that the zeugopod and autopod are specified by an intrinsic timing mechanism. By grafting green fluorescent protein-expressing cells from early to late chick wing buds, we demonstrate that distal mesenchyme cells intrinsically time Hoxa13 expression, cell cycle parameters and the duration of the overlying apical ectodermal ridge. In addition, we reveal that cell affinities intrinsically change in the distal mesenchyme, which we suggest results in a gradient of positional values along the proximo-distal axis. We propose a complete model in which a switch from extrinsic signalling to intrinsic timing patterns the vertebrate limb. PMID:26381580

  20. Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell

    NASA Astrophysics Data System (ADS)

    Tiwari, Ishant; Phogat, Richa; Parmananda, P.; Ocampo-Espindola, J. L.; Rivera, M.

    2016-08-01

    In this paper we show the interaction of a composite of a periodic or aperiodic signal and intrinsic electrochemical noise with the nonlinear dynamics of an electrochemical cell configured to study the corrosion of iron in an acidic media. The anodic voltage setpoint (V0) in the cell is chosen such that the anodic current (I ) exhibits excitable fixed point behavior in the absence of noise. The subthreshold periodic (aperiodic) signal consists of a train of rectangular pulses with a fixed amplitude and width, separated by regular (irregular) time intervals. The irregular time intervals chosen are of deterministic and stochastic origins. The amplitude of the intrinsic internal noise, regulated by the concentration of chloride ions, is then monotonically increased, and the provoked dynamics are analyzed. The signal to noise ratio and the cross-correlation coefficient versus the chloride ions' concentration curves have a unimodal shape indicating the emergence of an intrinsic periodic or aperiodic stochastic resonance. The abscissa for the maxima of these unimodal curves correspond to the optimum value of intrinsic noise where maximum regularity of the invoked dynamics is observed. In the particular case of the intrinsic periodic stochastic resonance, the scanning electron microscope images for the electrode metal surfaces are shown for certain values of chloride ions' concentrations. These images, qualitatively, corroborate the emergence of order as a result of the interaction between the nonlinear dynamics and the composite signal.

  1. Intrinsic Redshifts and the Tully-Fisher Distance Scale

    NASA Astrophysics Data System (ADS)

    Russell, David G.

    2005-10-01

    The Tully-Fisher relationship (TFR) has been shown to have a relatively small observed scatter of ˜±0.35 mag implying an intrinsic scatter < ±0.30 mag. However, when the TFR is calibrated from distances derived from the Hubble relation for field galaxies scatter is consistently found to be ±0.64 to ±0.84 mag. This significantly larger scatter requires that intrinsic TFR scatter is actually much larger than ±0.30 mag, that field galaxies have an intrinsic TFR scatter much larger than cluster spirals, or that field galaxies have a velocity dispersion relative to the Hubble flow in excess of 1000 km s-1. Each of these potential explanations faces difficulties and contradicted by available data and the results of previous studies. An alternative explanation is that the measured redshifts of galaxies are composed of a cosmological redshift component predicted from the value of the Hubble constant and a superimposed intrinsic redshift component previously identified in other studies. This intrinsic redshift component may exceed 5000 km s-1 in individual galaxies. In this alternative scenario a possible value for the Hubble constant is 55-60 km s-1 Mpc-1.

  2. Physics of intrinsic rotation in flux-driven ITG turbulence

    NASA Astrophysics Data System (ADS)

    Ku, S.; Abiteboul, J.; Diamond, P. H.; Dif-Pradalier, G.; Kwon, J. M.; Sarazin, Y.; Hahm, T. S.; Garbet, X.; Chang, C. S.; Latu, G.; Yoon, E. S.; Ghendrih, Ph.; Yi, S.; Strugarek, A.; Solomon, W.; Grandgirard, V.

    2012-06-01

    Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E × B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity.

  3. Intrinsically restless: Unifying science, writing, and the human condition

    NASA Astrophysics Data System (ADS)

    Sissom, Matthew

    The field of physics has always fascinated me, but I never possessed the mathematical skills necessary to extend that interest past the point of curiosity. This thesis was set up to explore how I and other writers, specifically Walt Whitman, use(d) the skills we do have to ask and attempt to answer the same cosmic questions normally reserved for scientists overseeing particle collider experiments. In Tao of Physics, Fritjof Capra attempted to blend the principles of Eastern philosophy with the movements associated with modern physics. In doing so, he offers up a few insights into the human desire to "divide the world into separate objects and events" (117), which I believe, when it comes to fiction, greatly influences the audience's interpretive framework. Capra suggests, "To believe that our abstract concepts of separate `things' and `vents' are realities of nature is an illusion" (117). Humans use this division to cope with our everyday environment, yet it is not a fundamental feature of reality but, rather, an abstraction devised by our discriminating and categorizing intellect. It is a coping mechanism, as Capra refers to it, that pins writers in a corner, encouraging them to forms and styles set by their predecessors to better satisfy the "discriminating and categorizing intellect" of their audience. Writers often struggle to achieve a balance between accurately presenting the human condition that, like Capra's description of subatomic particles as "intrinsically restless" (117), changes based on myriad variables and properly structuring their writing to fit a predetermined model. Whitman, a fan of popular science, drew from the scientific world, using his understanding of the interpretive framework, to better craft his poems' metaphors. In "Song of Myself," Whitman suggests that the celebration of one's own existence cannot be separated from the celebration of the universe, "For every atom belonging to me as good belongs to you" (1-3). Whitman's writing

  4. [Intrinsic ureteral endometriosis: description of a striking instance].

    PubMed

    Antonelli, Alessandro; Finotto, Elena; Zambolin, Tiziano; Fisogni, Simona; Simeone, Claudio

    2015-01-01

    Intrinsic ureteral endometriosis is a very rare condition. A 41 y. o. woman with right hydroureteronephrosis and other aspecific symptoms came to our attention. The CT scan showed an ureteral obstacle causing the hydroureteronephrosis. She underwent ureterorenoscopy with biopsies of the lesion that did not result to be diriment. Suspecting a ureteral neoplasm, the patient then underwent ureteral resection and ureterocystoneostomy, and the extemporary histological examination resulted as endometriosis. The abdominal exploration showed a parametrial and a peritoneal growth - both compatible with the extemporary histological examination - that were also excised. The post-operative course was uneventful. The definitive hystological examination confirmed the perioperatory diagnosis. Intrinsic ureteral endometriosis is confirmed as a rare pathology with an indefinite clinical presentation; its typical presentation, namely cyclic hematuria, seems to be an anecdotal feature. Therefore the diagnostics of intrinsic ureteral endometriosis is still difficult even despite such a striking presentation.

  5. Extrinsic and intrinsic motivation at 30: Unresolved scientific issues

    PubMed Central

    Reiss, Steven

    2005-01-01

    The undermining effect of extrinsic reward on intrinsic motivation remains unproven. The key unresolved issues are construct invalidity (all four definitions are unproved and two are illogical); measurement unreliability (the free-choice measure requires unreliable, subjective judgments to infer intrinsic motivation); inadequate experimental controls (negative affect and novelty, not cognitive evaluation, may explain “undermining” effects); and biased metareviews (studies with possible floor effects excluded, but those with possible ceiling effects included). Perhaps the greatest error with the undermining theory, however, is that it does not adequately recognize the multifaceted nature of intrinsic motivation (Reiss, 2004a). Advice to limit the use of applied behavior analysis based on “hidden” undermining effects is ideologically inspired and is unsupported by credible scientific evidence. PMID:22478436

  6. Molecular Recognition by Templated Folding of an Intrinsically Disordered Protein

    NASA Astrophysics Data System (ADS)

    Toto, Angelo; Camilloni, Carlo; Giri, Rajanish; Brunori, Maurizio; Vendruscolo, Michele; Gianni, Stefano

    2016-02-01

    Intrinsically disordered proteins often become structured upon interacting with their partners. The mechanism of this ‘folding upon binding’ process, however, has not been fully characterised yet. Here we present a study of the folding of the intrinsically disordered transactivation domain of c-Myb (c-Myb) upon binding its partner KIX. By determining the structure of the folding transition state for the binding of wild-type and three mutational variants of KIX, we found a remarkable plasticity of the folding pathway of c-Myb. To explain this phenomenon, we show that the folding of c-Myb is templated by the structure of KIX. This adaptive folding behaviour, which occurs by heterogeneous nucleation, differs from the robust homogeneous nucleation typically observed for globular proteins. We suggest that this templated folding mechanism may enable intrinsically disordered proteins to achieve specific and reliable binding with multiple partners while avoiding aberrant interactions.

  7. The effects of cooperative and individualistic reward on intrinsic motivation.

    PubMed

    Hom, H L; Berger, M; Duncan, M K; Miller, A; Blevin, A

    1994-03-01

    The effects of cooperative versus individualistic reward on students' intrinsic motivation were investigated. The controlling aspects of extrinsic reward may be heightened or produce greater ego threat in the individualistic situation when compared with a group situation. We predicted that students in the cooperative social situation would show higher levels of intrinsic motivation. Fifth-grade students from existing cooperative groups were assigned randomly to receive a tangible reward based on either cooperative or individualistic achievement for completing pattern block designs. Cooperation affected intrinsic motivation positively. Students in the cooperative dyad solved the block designs more quickly, interacted positively, and viewed the task as easier than did those in the individualistic situation, and they reported that their peers were helpful. There was little evidence that the controlling functions of reward or ego-threat were factors in producing the outcome. Some evidence supporting the importance of the social nature of cooperation was provided.

  8. Linear Magnetization Dependence of the Intrinsic Anomalous Hall Effect

    SciTech Connect

    Zeng, C.; Yao, Y.; Niu, Q.; Weitering, Harm H

    2006-01-01

    The anomalous Hall effect is investigated experimentally and theoretically for ferromagnetic thin films of Mn{sub 5}Ge{sub 3}. We have separated the intrinsic and extrinsic contributions to the experimental anomalous Hall effect and calculated the intrinsic anomalous Hall conductivity from the Berry curvature of the Bloch states using first-principles methods. The intrinsic anomalous Hall conductivity depends linearly on the magnetization, which can be understood from the long-wavelength fluctuations of the spin orientation at finite temperatures. The quantitative agreement between theory and experiment is remarkably good, not only near 0 K but also at finite temperatures, up to about -240 K (0.8T{sub c}).

  9. Chimpanzees and bonobos differ in intrinsic motivation for tool use.

    PubMed

    Koops, Kathelijne; Furuichi, Takeshi; Hashimoto, Chie

    2015-06-16

    Tool use in nonhuman apes can help identify the conditions that drove the extraordinary expansion of hominin technology. Chimpanzees and bonobos are our closest living relatives. Whereas chimpanzees are renowned for their tool use, bonobos use few tools and none in foraging. We investigated whether extrinsic (ecological and social opportunities) or intrinsic (predispositions) differences explain this contrast by comparing chimpanzees at Kalinzu (Uganda) and bonobos at Wamba (DRC). We assessed ecological opportunities based on availability of resources requiring tool use. We examined potential opportunities for social learning in immature apes. Lastly, we investigated predispositions by measuring object manipulation and object play. Extrinsic opportunities did not explain the tool use difference, whereas intrinsic predispositions did. Chimpanzees manipulated and played more with objects than bonobos, despite similar levels of solitary and social play. Selection for increased intrinsic motivation to manipulate objects likely also played an important role in the evolution of hominin tool use.

  10. Extrinsic and intrinsic motivation at 30: Unresolved scientific issues.

    PubMed

    Reiss, Steven

    2005-01-01

    The undermining effect of extrinsic reward on intrinsic motivation remains unproven. The key unresolved issues are construct invalidity (all four definitions are unproved and two are illogical); measurement unreliability (the free-choice measure requires unreliable, subjective judgments to infer intrinsic motivation); inadequate experimental controls (negative affect and novelty, not cognitive evaluation, may explain "undermining" effects); and biased metareviews (studies with possible floor effects excluded, but those with possible ceiling effects included). Perhaps the greatest error with the undermining theory, however, is that it does not adequately recognize the multifaceted nature of intrinsic motivation (Reiss, 2004a). Advice to limit the use of applied behavior analysis based on "hidden" undermining effects is ideologically inspired and is unsupported by credible scientific evidence.

  11. Intrinsic spin torque without spin-orbit coupling

    PubMed Central

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.

    2016-01-01

    We derive an intrinsic contribution to the non-adiabatic spin torque for non-uniform magnetic textures. It differs from previously considered contributions in several ways and can be the dominant contribution in some models. It does not depend on the change in occupation of the electron states due to the current flow but rather is due to the perturbation of the electronic states when an electric field is applied. Therefore it should be viewed as electric-field-induced rather than current-induced. Unlike previously reported non-adiabatic spin torques, it does not originate from extrinsic relaxation mechanisms nor spin-orbit coupling. This intrinsic non-adiabatic spin torque is related by a chiral connection to the intrinsic spin-orbit torque that has been calculated from the Berry phase for Rashba systems. PMID:26877628

  12. Exploration of Horizontal Intrinsic Spin Resonances in the AGS

    NASA Astrophysics Data System (ADS)

    Lin, Fanglei; Lee, S. Y.; Ahrens, Leif A.; Bai, Mei; Brown, Kevin; Courant, Ernest D.; Glenn, Joseph W.; Huang, Haixin; Luccio, Alfredo; Mackay, William W.; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven; Tsoupas, Nicholaos; Wood, Jeff; Yip, Yin; Okamura, Masahiro; Takano, Junpei

    2006-04-01

    Siberian snakes have been employed to overcome spin resonances during polarized proton acceleration. Considering limited space in the AGS, strong partial snakes that rotate the spin by less than 180 degrees can be used to avoid the spin imperfection and intrinsic resonances in low energy accelerators. However, the tilt of spin away from the vertical direction may become sensitive to horizontal betatron motion which can also cause spin depolarization. These resonances, called horizontal intrinsic spin resonances, have been observed in simulations. Preliminary measurements with beam were also carried out in AGS 2005 polarized proton run. During the AGS 2006 run, we plan to explore the details about the horizontal intrinsics resonances further. This paper describes the experimental methods and the latest results.

  13. Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content.

    PubMed

    Padmanabhan, Krishnan; Urban, Nathaniel N

    2010-10-01

    Although examples of variation and diversity exist throughout the nervous system, their importance remains a source of debate. Even neurons of the same molecular type have notable intrinsic differences. Largely unknown, however, is the degree to which these differences impair or assist neural coding. We examined the outputs from a single type of neuron, the mitral cells of the mouse olfactory bulb, to identical stimuli and found that each cell's spiking response was dictated by its unique biophysical fingerprint. Using this intrinsic heterogeneity, diverse populations were able to code for twofold more information than their homogeneous counterparts. In addition, biophysical variability alone reduced pair-wise output spike correlations to low levels. Our results indicate that intrinsic neuronal diversity is important for neural coding and is not simply the result of biological imprecision.

  14. Dimensionless size scaling of intrinsic rotation in DIII-D

    SciTech Connect

    deGrassie, John S.; Solomon, Wayne M.; Rice, J. E.; Noterdaeme, J. -M.

    2016-08-01

    A dimensionless empirical scaling for intrinsic toroidal rotation is given; MANρ*, where MA is the toroidal velocity divided by the Alfvén velocity, βN the usual normalized β value, and ρ* is the ion gyroradius divided by the minor radius. This scaling describes well experimental data from DIII-D, and also some published data from C-Mod and JET. The velocity used in this scaling is in an outer location in minor radius, outside of the interior core and inside of the large gradient edge region in H-mode conditions. Furthermore, this scaling establishes the basic magnitude of the intrinsic toroidal rotation and its relation to the rich variety of rotation profiles that can be realized for intrinsic conditions is discussed.

  15. Dimensionless size scaling of intrinsic rotation in DIII-D

    DOE PAGES

    deGrassie, John S.; Solomon, Wayne M.; Rice, J. E.; ...

    2016-08-01

    A dimensionless empirical scaling for intrinsic toroidal rotation is given; MA ~βNρ*, where MA is the toroidal velocity divided by the Alfvén velocity, βN the usual normalized β value, and ρ* is the ion gyroradius divided by the minor radius. This scaling describes well experimental data from DIII-D, and also some published data from C-Mod and JET. The velocity used in this scaling is in an outer location in minor radius, outside of the interior core and inside of the large gradient edge region in H-mode conditions. Furthermore, this scaling establishes the basic magnitude of the intrinsic toroidal rotation andmore » its relation to the rich variety of rotation profiles that can be realized for intrinsic conditions is discussed.« less

  16. Molecular Recognition by Templated Folding of an Intrinsically Disordered Protein

    PubMed Central

    Toto, Angelo; Camilloni, Carlo; Giri, Rajanish; Brunori, Maurizio; Vendruscolo, Michele; Gianni, Stefano

    2016-01-01

    Intrinsically disordered proteins often become structured upon interacting with their partners. The mechanism of this ‘folding upon binding’ process, however, has not been fully characterised yet. Here we present a study of the folding of the intrinsically disordered transactivation domain of c-Myb (c-Myb) upon binding its partner KIX. By determining the structure of the folding transition state for the binding of wild-type and three mutational variants of KIX, we found a remarkable plasticity of the folding pathway of c-Myb. To explain this phenomenon, we show that the folding of c-Myb is templated by the structure of KIX. This adaptive folding behaviour, which occurs by heterogeneous nucleation, differs from the robust homogeneous nucleation typically observed for globular proteins. We suggest that this templated folding mechanism may enable intrinsically disordered proteins to achieve specific and reliable binding with multiple partners while avoiding aberrant interactions. PMID:26912067

  17. Transport and MHD simulations of intrinsic and pellet induced ELMs

    NASA Astrophysics Data System (ADS)

    Kim, Ki Min; Na, Yong-Su; Yi, Sumin; Kim, Hyunseok; Kim, Jin Yong

    2010-11-01

    Verification of ELM mechanism and demonstration of ELM control are important issues in current fusion researches targeting ITER and DEMO. This work investigates the physics and operational characteristics of intrinsic and pellet induced ELMs throughout transport simulations using 1.5 D transport codes (C1.5/ASTRA) and MHD simulations using M3D code. Transport simulations are focused on prediction of the global parameters such as ELM energy loss in the type-I ELMy H-mode discharges with and without pellet pace making to examine an applicability of pellet injection for ELM mitigation in KSTAR and ITER. On the other hand, MHD simulations are conducted to explore the physics of intrinsic and pellet induced ELMs by applying the artificial free energy sources of velocity stream and density perturbations on the marginally stable equilibrium, respectively. Similarities and differences of triggering phenomena between intrinsic and pellet induced ELMs are discussed from the MHD approach.

  18. Airborne sodium lidar measurements of gravity wave intrinsic parameters

    NASA Astrophysics Data System (ADS)

    Kwon, Kang H.; Gardner, Chester S.

    1990-11-01

    A data analysis technique for determining gravity wave intrinsic parameters including wave propagation direction is described. The technique involves measuring the altitude variations of the wave-induced density perturbations of the atmospheric Na layer. This technique can be used with airborne lidars, multiple ground-based lidars, and steerable lidars. In this paper the technique is applied to airborne Na lidar data obtained during a round-trip flight from Denver, Colorado, to the Pacific Coast in November 1986. During the flight, strong wave perturbations were observed in the Na layer near the Pacific coast over a horizontal distance of nearly 700 km. The intrinsic horizontal wavelength of this wave was estimated to be about 85 km, and the vertical wavelength was 4.1 km. The intrinsic period was about 102 min, and the propagation direction was almost due south.

  19. Correspondence between evoked and intrinsic functional brain network configurations.

    PubMed

    Bolt, Taylor; Nomi, Jason S; Rubinov, Mikail; Uddin, Lucina Q

    2017-04-01

    Much of the literature exploring differences between intrinsic and task-evoked brain architectures has examined changes in functional connectivity patterns between specific brain regions. While informative, this approach overlooks important overall functional changes in hub organization and network topology that may provide insights about differences in integration between intrinsic and task-evoked states. Examination of changes in overall network organization, such as a change in the concentration of hub nodes or a quantitative change in network organization, is important for understanding the underlying processes that differ between intrinsic and task-evoked brain architectures. The present study used graph-theoretical techniques applied to publicly available neuroimaging data collected from a large sample of individuals (N = 202), and a within-subject design where resting-state and several task scans were collected from each participant as part of the Human Connectome Project. We demonstrate that differences between intrinsic and task-evoked brain networks are characterized by a task-general shift in high-connectivity hubs from primarily sensorimotor/auditory processing areas during the intrinsic state to executive control/salience network areas during task performance. In addition, we demonstrate that differences between intrinsic and task-evoked architectures are associated with changes in overall network organization, such as increases in network clustering, global efficiency and integration between modules. These findings offer a new perspective on the principles guiding functional brain organization by identifying unique and divergent properties of overall network organization between the resting-state and task performance. Hum Brain Mapp 38:1992-2007, 2017. © 2017 Wiley Periodicals, Inc.

  20. The intrinsic resistome of Pseudomonas aeruginosa to β-lactams.

    PubMed

    Alvarez-Ortega, Carolina; Wiegand, Irith; Olivares, Jorge; Hancock, Robert E W; Martínez, José Luis

    2011-01-01

    Pseudomonas aeruginosa is a relevant opportunistic pathogen particularly problematic due to its low intrinsic susceptibility to antibiotics. Intrinsic resistance has been traditionally attributed to the low permeability of cellular envelopes together with the presence of chromosomally-encoded detoxification systems such as multidrug efflux pumps or antibiotic inactivating enzymes. However, some recently published articles indicate that several other elements can contribute to the phenotype of intrinsic resistance of bacterial pathogens. In a recently published article, we explored the chromosomally-encoded determinants that contribute to the phenotype of susceptibility of P. aeruginosa to ceftazidime, imipenem and carbapenem. Using a comprehensive library of transposon-tagged insertion mutants, we found 37 loci in the chromosome of P. aeruginosa that contributed to its intrinsic resistance, because mutants in these loci were more susceptible to antibiotics than their parental strain. 41 further loci could potentially be involved in the acquisition of resistance, because mutants in these loci were less susceptible than their wild-type counterpart. These results indicate that the intrinsic resistome of P. aeruginosa involves several elements, belonging to different functional families and cannot be considered as a specific mechanism of adaptation to the recent usage of antibiotics as therapeutic agents. In the current article, we summarize the findings of the paper and discuss their implications for understanding the evolution of antibiotic resistance and for defining novel targets for the search of new antimicrobials. Finally, the validity of recent theories on the mechanisms of action of antibiotics is discussed taken into consideration the results of our paper and other recently published works on the mechanisms of intrinsic resistance to antibiotics of P. aeruginosa.

  1. Singlet oxygen enhances intrinsic thrombolysis: the intrinsic oxidative clot lysis assay (INOXCLA).

    PubMed

    Stief, Thomas W

    2007-10-01

    Granulocytes are important cells of inflammation and cellular thrombolysis. They produce urokinase (u-PA) and chloramines. In this study, u-PA/chloramine-mediated fibrinolysis is imitated in a microtiter-plate. Seventy-five microliters plasma are incubated with 50 microL 50% Pathromtin SL, 6% BSA, and 38 mM CaCl2 for 30 minutes (37 degrees C). Then, 50 microL 10 mM chloramine-T in PBS are added. After 30 minutes (37 degrees C), 50 microL 0, 100, or 10 IU/mL u-PA in 6% BSA-PBS are added and the turbidity is determined at 405 nm after 0, 3, or 16 hours. Clot lysis was increased more than tenfold by 0.5 to 1 micromoles chloramine (ED50 after 3h = about 0.25 micromoles = 2 mM final concentration). The normal range for the present intrinsic oxidative clot lysis assay (INOXCLA) is 100% +/- 25% (MV +/- SD; 100 relative % of norm; the normal lysis being 60 absolute %; CVs < 10%). Fifty percent lysis of adherent microclots occurred after 0.75 hours, 2 hours, 14 hours, 13 days, or 17 days when using 1000, 100, 10, 1, or 0 IU/mL u-PA reagent. If the u-PA activity is quenched by PAI-2, no clot lysis appears. Chloramines are important physiologic generators of nonradical excited singlet oxygen and enhance u-PA-mediated lysis of plasma clots. Based on the u-PA/chloramines coaction, a new global fibrinolysis assay has been derived.

  2. Intrinsic defect formation in peptide self-assembly

    NASA Astrophysics Data System (ADS)

    Deng, Li; Zhao, Yurong; Xu, Hai; Wang, Yanting

    2015-07-01

    In contrast to extensively studied defects in traditional materials, we report here a systematic investigation of the formation mechanism of intrinsic defects in self-assembled peptide nanostructures. The Monte Carlo simulations with our simplified dynamic hierarchical model revealed that the symmetry breaking of layer bending mode at the two ends during morphological transformation is responsible for intrinsic defect formation, whose microscopic origin is the mismatch between layer stacking along the side-chain direction and layer growth along the hydrogen bond direction. Moreover, defect formation does not affect the chirality of the self-assembled structure, which is determined by the initial steps of the peptide self-assembly process.

  3. Organizational, Nonorganizational, and Intrinsic religiosity and academic dishonesty.

    PubMed

    Storch, E A; Storch, J B

    2001-04-01

    The present study was a preliminary examination of the relations among the Organizational, Nonorganizational, and Intrinsic dimensions of religiosity and academic dishonesty. 244 college students completed the Duke Religion Index and nine questions assessing academic dishonesty. Analysis indicated that (1) regardless of sex, High Nonorganizational and Intrinsic religiosity was associated with lower reported rates of academic dishonesty, and (2) there was an interaction between Organizational religiosity and sex, with High Organizational women and men reporting similar rates of academic dishonesty. Furthermore, the frequency of academic dishonesty reported by High Organizational women was higher than the rates reported by Moderate and Minimal Organizational women.

  4. Thermal limit to the intrinsic emittance from metal photocathodes

    SciTech Connect

    Feng, Jun Nasiatka, J.; Wan, Weishi; Karkare, Siddharth; Padmore, Howard A.; Smedley, John

    2015-09-28

    Measurements of the intrinsic emittance and transverse momentum distributions obtained from a metal (antimony thin film) photocathode near and below the photoemission threshold are presented. Measurements show that the intrinsic emittance is limited by the lattice temperature of the cathode as the incident photon energy approaches the photoemission threshold. A theoretical model to calculate the transverse momentum distributions near this photoemission threshold is presented. An excellent match between the experimental measurements and the theoretical calculations is demonstrated. These measurements are relevant to low emittance electron sources for Free Electron Lasers and Ultrafast Electron Diffraction experiments.

  5. Intrinsic Capacitances and Inductances of Quantum Hall Effect Devices.

    PubMed

    Cage, M E; Jeffery, A

    1996-01-01

    Analytic solutions are obtained for the internal capacitances, kinetic inductances, and magnetic inductances of quantum Hall effect devices to investigate whether or not the quantized Hall resistance is the only intrinsic impedance of importance in measurements of the ac quantum Hall effect. The internal capacitances and inductances are obtained by using the results of Cage and Lavine, who determined the current and potential distributions across the widths of quantum Hall effect devices. These intrinsic capacitances and inductances produce small out-of-phase impedance corrections to the in-phase quantized Hall resistance and to the in-phase longitudinal resistance.

  6. Intrinsic Defects and H Doping in WO3

    PubMed Central

    Zhu, Jiajie; Vasilopoulou, Maria; Davazoglou, Dimitris; Kennou, Stella; Chroneos, Alexander; Schwingenschlögl, Udo

    2017-01-01

    WO3 is widely used as industrial catalyst. Intrinsic and/or extrinsic defects can tune the electronic properties and extend applications to gas sensors and optoelectonics. However, H doping is a challenge to WO3, the relevant mechanisms being hardly understood. In this context, we investigate intrinsic defects and H doping by density functional theory and experiments. Formation energies are calculated to determine the lowest energy defect states. O vacancies turn out to be stable in O-poor environment, in agreement with X-ray photoelectron spectroscopy, and O-H bond formation of H interstitial defects is predicted and confirmed by Fourier transform infrared spectroscopy. PMID:28098210

  7. Intrinsic instability of aberration-corrected electron microscopes.

    PubMed

    Schramm, S M; van der Molen, S J; Tromp, R M

    2012-10-19

    Aberration-corrected microscopes with subatomic resolution will impact broad areas of science and technology. However, the experimentally observed lifetime of the corrected state is just a few minutes. Here we show that the corrected state is intrinsically unstable; the higher its quality, the more unstable it is. Analyzing the contrast transfer function near optimum correction, we define an "instability budget" which allows a rational trade-off between resolution and stability. Unless control systems are developed to overcome these challenges, intrinsic instability poses a fundamental limit to the resolution practically achievable in the electron microscope.

  8. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning.

    PubMed

    Uchibe, Eiji; Doya, Kenji

    2008-12-01

    Understanding the design principle of reward functions is a substantial challenge both in artificial intelligence and neuroscience. Successful acquisition of a task usually requires not only rewards for goals, but also for intermediate states to promote effective exploration. This paper proposes a method for designing 'intrinsic' rewards of autonomous agents by combining constrained policy gradient reinforcement learning and embodied evolution. To validate the method, we use Cyber Rodent robots, in which collision avoidance, recharging from battery packs, and 'mating' by software reproduction are three major 'extrinsic' rewards. We show in hardware experiments that the robots can find appropriate 'intrinsic' rewards for the vision of battery packs and other robots to promote approach behaviors.

  9. Intrinsic integrated UBVRI colors of Galactic globular clusters

    NASA Technical Reports Server (NTRS)

    Reed, B. Cameron; Hesser, James E.; Shawl, Stephen J.

    1988-01-01

    Published observational data on 50 Galactic globular clusters, including spectral classifications, homogenized colors, and color excesses, are compiled in extensive tables, graphs, and diagrams and analyzed to determine the intrinsic-color/integrated-spectral-type relationship in the UBVRI system. These relationships are found to exhibit significant slopes, although the RI colors do not contribute substantially to the intrinsic-color determination. The values of a(B-V) for the northern and southern Galactic hemispheres are found to be 0.068 + or - 0.006 and 0.039 + or - 0.003 mag, respectively.

  10. Tolerance of Intrinsic Defects in PbS Quantum Dots.

    PubMed

    Zherebetskyy, Danylo; Zhang, Yingjie; Salmeron, Miquel; Wang, Lin-Wang

    2015-12-03

    Colloidal quantum dots exhibit various defects and deviations from ideal structures due to kinetic processes, although their band gap frequently remains open and clean. In this Letter, we computationally investigate intrinsic defects in a real-size PbS quantum dot passivated with realistic Cl-ligands. We show that the colloidal intrinsic defects are ionic in nature. Unlike previous computational results, we find that even nonideal, atomically nonstoichiometric quantum dots have a clean band gap without in-gap-states provided that quantum dots satisfy electronic stoichiometry.

  11. Intrinsic Defects and H Doping in WO3

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Vasilopoulou, Maria; Davazoglou, Dimitris; Kennou, Stella; Chroneos, Alexander; Schwingenschlögl, Udo

    2017-01-01

    WO3 is widely used as industrial catalyst. Intrinsic and/or extrinsic defects can tune the electronic properties and extend applications to gas sensors and optoelectonics. However, H doping is a challenge to WO3, the relevant mechanisms being hardly understood. In this context, we investigate intrinsic defects and H doping by density functional theory and experiments. Formation energies are calculated to determine the lowest energy defect states. O vacancies turn out to be stable in O-poor environment, in agreement with X-ray photoelectron spectroscopy, and O-H bond formation of H interstitial defects is predicted and confirmed by Fourier transform infrared spectroscopy.

  12. Intrinsic and extrinsic motivation and intention to breast-feed.

    PubMed

    Wells, Kristen J; Thompson, Nancy J; Kloeblen-Tarver, Amy S

    2002-01-01

    To examine the feasibility of using the cognitive evaluation theory to examine pregnant women's intention to breast-feed. A questionnaire designed to measure intrinsic and extrinsic motivation was administered to 228 pregnant women. Results provide evidence for reliability and validity of the revised instrument in this population. A factor analysis suggests the instrument measures 2 types of intrinsic motivation, one type of extrinsic motivation, and motivation related to the baby. The instrument distinguished differences in motivation between women who intend to breast-feed and those who intend to formula feed. This study helps elucidate motivational factors involved in infant-feeding decisions.

  13. Extrinsic and intrinsic S stars in the Henize sample

    NASA Astrophysics Data System (ADS)

    Van Eck, Sophie; Jorissen, Alain; Mayor, Michel; Udry, Stephane; Burnet, Michel

    Previous studies have identified two distinct families among S stars: intrinsic S stars exhibiting Tc lines in their spectrum, and extrinsic S stars lacking Tc lines. Extrinsic S stars were found to be binaries, and probably owe their chemical peculiarities to mass transfer in the binary system. On the contrary, intrinsic S stars are thermally-pulsating AGB stars where the third dredge-up brought heavy elements to the surface. The Henize sample of 205 S stars south of declination -25^circ is especially well suited for inferring the relative frequency of extrinsic/intrinsic S stars, since it is not biased towards low galactic latitudes where intrinsic S stars tend to concentrate. Each star has been measured 3 or 4 times over a period of 5 years with the spectrovelocimeter CORAVEL. The search for binaries is complicated by the fact that Mira-type pulsations are frequent among intrinsic S stars. Fortunately, radial-velocity variations due to atmospheric motions are generally associated with very broad and asymmetric CORAVEL cross-correlation profiles [see also poster P2-14!]. Therefore extrinsic and intrinsic S stars can be distinguished thanks to (1) radial velocity variations, (2) the shape of the CORAVEL cross-correlation profiles, (3) the presence or absence of the radioactive element Tc, as derived from high-resolution spectroscopy, (4) photometric variability, as derived from a survey in the Geneva photometric system. These criteria correlate in a nice way and allow to derive the frequency of intrinsic-genuine AGB-S stars. The galactic distributions of the two families of S stars are clearly distinct, intrinsic S stars being much more concentrated along the galactic plane that extrinsic S stars. High-resolution spectroscopy led to the discovery of two symbiotic stars among the Henize sample (symbiotic stars are interacting binary systems in which a hot compact object accretes matter ejected by a cool (super)giant). The physical parameters responsible for the

  14. Failure to label baboon milk intrinsically with iron

    SciTech Connect

    Figueroa-Colon, R.; Elwell, J.H.; Jackson, E.; Osborne, J.W.; Fomon, S.J. )

    1989-11-01

    The widely held belief that 50% of the iron in human milk is absorbed is based on studies that have used an extrinsic radioactive iron tag. To determine the validity of an extrinsic tag, it is necessary to label the milk intrinsically with one isotope and to compare absorption of this isotope with absorption of another isotope added as the extrinsic tag. We chose the baboon as a model and infused 59Fe intravenously. In each of three attempts we failed to label the milk intrinsically.

  15. Intrinsic Instability of Aberration-Corrected Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Schramm, S. M.; van der Molen, S. J.; Tromp, R. M.

    2012-10-01

    Aberration-corrected microscopes with subatomic resolution will impact broad areas of science and technology. However, the experimentally observed lifetime of the corrected state is just a few minutes. Here we show that the corrected state is intrinsically unstable; the higher its quality, the more unstable it is. Analyzing the contrast transfer function near optimum correction, we define an “instability budget” which allows a rational trade-off between resolution and stability. Unless control systems are developed to overcome these challenges, intrinsic instability poses a fundamental limit to the resolution practically achievable in the electron microscope.

  16. Determination of intrinsic spin Hall angle in Pt

    SciTech Connect

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  17. The impact of incentives on intrinsic and extrinsic motives for fitness-center attendance in college first-year students.

    PubMed

    Pope, Lizzy; Harvey, Jean

    2015-01-01

    A criticism of incentives for health behaviors is that incentives undermine intrinsic motivation. The objective of this study was to determine the impact of monetary incentive provision on participation motives for exercise in first-year college students at a northeastern public university. Randomized-controlled trial. Public university in the Northeastern United States. One hundred seventeen first-year college students. Participants were randomized to one of three conditions: a control condition receiving no incentives for meeting fitness-center attendance goals; a discontinued-incentive condition receiving weekly incentives during fall semester 2011, and no incentives during spring semester 2012; or a continued-incentive condition receiving weekly incentives during fall semester, and incentives on a variable-interval schedule during spring semester. The Exercise Motivation Inventory 2 measured exercise participation motives at baseline, end of fall semester, and end of spring semester. Fitness-center attendance was monitored by using ID-card check-in/check-out records. Repeated-measures analyses using linear mixed models with first-order autoregressive covariance structures were run to compare motive changes in the three conditions. Participation motives of Enjoyment and Revitalization associated with intrinsic motivation did not decrease significantly over time in any of the conditions, F(4, 218) = 2.25, p = .065 and F(4, 220) = 1.67, p = .16, respectively. Intrinsically associated participation motives for exercise did not decrease with incentive provision. Therefore, incentives may encourage fitness-center attendance without negatively impacting participation motives for exercise.

  18. Eternal Universe

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2014-08-01

    We discuss cosmological models for an eternal Universe. Physical observables show no singularity from the infinite past to the infinite future. While the Universe is evolving, there is no beginning and no end—the Universe exists forever. The early state of inflation is described in two different, but equivalent pictures. In the freeze frame the Universe emerges from an almost static state with flat geometry. After entropy production it shrinks and "thaws" slowly from a "freeze state" with extremely low temperature. The field transformation to the second "big bang picture" (Einstein frame) is singular. This "field singularity" is responsible for an apparent singularity of the big bang. Furthermore, we argue that past-incomplete geodesics do not necessarily indicate a singularity or beginning of the Universe. Proper time ceases to be a useful concept for physical time if particles become massless. We propose to define physical time by counting the number of zeros of a component of the wave function. This counting is independent of the choice of coordinates and frames, and applies to massive and massless particles alike.

  19. Plasma universe

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1986-01-01

    Traditionally the views on the cosmic environent have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasmas. Such a medium may also emit synchrotron radiation which is observable in the radio region. If a model of the universe is based on the plasma phenomena mentioned it is found that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasmas. This approach is possible because it is likely that the basic properties of plasmas are the same everywhere. In order to test the usefulness of the plasma universe model it is applied to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4 to 5 billions of years ago with an accuracy of better than 1%.

  20. Changes in Intrinsic Motivation as a Function of Negative Feedback and Threats.

    ERIC Educational Resources Information Center

    Deci, Edward L.; Cascio, Wayne F.

    Recent studies have demonstrated that external rewards can affect intrinsic motivation to perform an activity. Money tends to decrease intrinsic motivation, whereas positive verbal reinforcements tend to increase intrinsic motivation. This paper presents evidence that negative feedback and threats of punishment also decrease intrinsic motivation.…

  1. Estimation of intrinsic factor and detection of intrinsic factor antibodies using non-radioactive cyanocobalamin and microbiological assay.

    PubMed

    Spray, G H

    1967-09-01

    A method employing non-radioactive vitamin B(12) and microbiological assay is described for estimating intrinsic factor in gastric juice and for detecting antibody to intrinsic factor in serum. Satisfactory agreement was obtained between the results by this method and by a modification of the method of Ardeman and Chanarin (1963). During the first hour after gastric stimulation 11 patients with pernicious anaemia secreted between 0 and 240 units of intrinsic factor compared with between 1,600 and 39,000 units in 21 patients with other conditions. The results in three out of four patients with gastric atrophy were higher than those in pernicious anaemia but lower than in other conditions.

  2. Estimation of intrinsic factor and detection of intrinsic factor antibodies using non-radioactive cyanocobalamin and microbiological assay

    PubMed Central

    Spray, G. H.

    1967-01-01

    A method employing non-radioactive vitamin B12 and microbiological assay is described for estimating intrinsic factor in gastric juice and for detecting antibody to intrinsic factor in serum. Satisfactory agreement was obtained between the results by this method and by a modification of the method of Ardeman and Chanarin (1963). During the first hour after gastric stimulation 11 patients with pernicious anaemia secreted between 0 and 240 units of intrinsic factor compared with between 1,600 and 39,000 units in 21 patients with other conditions. The results in three out of four patients with gastric atrophy were higher than those in pernicious anaemia but lower than in other conditions. PMID:5602976

  3. Disrupted Intrinsic Networks Link Amyloid-β Pathology and Impaired Cognition in Prodromal Alzheimer's Disease.

    PubMed

    Koch, Kathrin; Myers, Nicholas E; Göttler, Jens; Pasquini, Lorenzo; Grimmer, Timo; Förster, Stefan; Manoliu, Andrei; Neitzel, Julia; Kurz, Alexander; Förstl, Hans; Riedl, Valentin; Wohlschläger, Afra M; Drzezga, Alexander; Sorg, Christian

    2015-12-01

    Amyloid-β pathology (Aβ) and impaired cognition characterize Alzheimer's disease (AD); however, neural mechanisms that link Aβ-pathology with impaired cognition are incompletely understood. Large-scale intrinsic connectivity networks (ICNs) are potential candidates for this link: Aβ-pathology affects specific networks in early AD, these networks show disrupted connectivity, and they process specific cognitive functions impaired in AD, like memory or attention. We hypothesized that, in AD, regional changes of ICNs, which persist across rest- and cognitive task-states, might link Aβ-pathology with impaired cognition via impaired intrinsic connectivity. Pittsburgh compound B (PiB)-positron emission tomography reflecting in vivo Aβ-pathology, resting-state fMRI, task-fMRI, and cognitive testing were used in patients with prodromal AD and healthy controls. In patients, default mode network's (DMN) functional connectivity (FC) was reduced in the medial parietal cortex during rest relative to healthy controls, relatively increased in the same region during an attention-demanding task, and associated with patients' cognitive impairment. Local PiB-uptake correlated negatively with DMN connectivity. Importantly, corresponding results were found for the right lateral parietal region of an attentional network. Finally, structural equation modeling confirmed a direct influence of DMN resting-state FC on the association between Aβ-pathology and cognitive impairment. Data provide evidence that disrupted intrinsic network connectivity links Aβ-pathology with cognitive impairment in early AD. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Intrinsic scatter of caustic masses and hydrostatic bias: An observational study

    NASA Astrophysics Data System (ADS)

    Andreon, S.; Trinchieri, G.; Moretti, A.; Wang, J.

    2017-10-01

    All estimates of cluster mass have some intrinsic scatter and perhaps some bias with true mass even in the absence of measurement errors for example caused by cluster triaxiality and large scale structure. Knowledge of the bias and scatter values is fundamental for both cluster cosmology and astrophysics. In this paper we show that the intrinsic scatter of a mass proxy can be constrained by measurements of the gas fraction because masses with higher values of intrinsic scatter with true mass produce more scattered gas fractions. Moreover, the relative bias of two mass estimates can be constrained by comparing the mean gas fraction at the same (nominal) cluster mass. Our observational study addresses the scatter between caustic (i.e., dynamically estimated) and true masses, and the relative bias of caustic and hydrostatic masses. For these purposes, we used the X-ray Unbiased Cluster Sample, a cluster sample selected independently from the intracluster medium content with reliable masses: 34 galaxy clusters in the nearby (0.050 < z < 0.135) Universe, mostly with 14 < log M500/M⊙ ≲ 14.5, and with caustic masses. We found a 35% scatter between caustic and true masses. Furthermore, we found that the relative bias between caustic and hydrostatic masses is small, 0.06 ± 0.05 dex, improving upon past measurements. The small scatter found confirms our previous measurements of a highly variable amount of feedback from cluster to cluster, which is the cause of the observed large variety of core-excised X-ray luminosities and gas masses.

  5. Minute Time Scale Prolyl Isomerization Governs Antibody Recognition of an Intrinsically Disordered Immunodominant Epitope*

    PubMed Central

    Fassolari, Marisol; Chemes, Lucia B.; Gallo, Mariana; Smal, Clara; Sánchez, Ignacio E.; de Prat-Gay, Gonzalo

    2013-01-01

    Conformational rearrangements in antibody·antigen recognition are essential events where kinetic discrimination of isomers expands the universe of combinations. We investigated the interaction mechanism of a monoclonal antibody, M1, raised against E7 from human papillomavirus, a prototypic viral oncoprotein and a model intrinsically disordered protein. The mapped 12-amino acid immunodominant epitope lies within a “hinge” region between the N-terminal intrinsically disordered and the C-terminal globular domains. Kinetic experiments show that despite being within an intrinsically disordered region, the hinge E7 epitope has at least two populations separated by a high energy barrier. Nuclear magnetic resonance traced the origin of this barrier to a very slow (t½ ∼4 min) trans-cis prolyl isomerization event involving changes in secondary structure. The less populated (10%) cis isomer is the binding-competent species, thus requiring the 90% of molecules in the trans configuration to isomerize before binding. The association rate for the cis isomer approaches 6 × 107 m−1 s−1, a ceiling for antigen-antibody interactions. Mutagenesis experiments showed that Pro-41 in E7Ep was required for both binding and isomerization. After a slow postbinding unimolecular rearrangement, a consolidated complex with KD = 1.2 × 10−7 m is reached. Our results suggest that presentation of this viral epitope by the antigen-presenting cells would have to be “locked” in the cis conformation, in opposition to the most populated trans isomer, in order to select the specific antibody clone that goes through affinity and kinetic maturation. PMID:23504368

  6. Quantum Universe

    NASA Astrophysics Data System (ADS)

    Mukhanov, V. F.

    2016-10-01

    In March 2013, following an accurate processing of available measurement data, the Planck Scientific Collaboration published the highest-resolution photograph ever of the early Universe when it was only a few hundred thousand years old. The photograph showed galactic seeds in sufficient detail to test some nontrivial theoretical predictions made more than thirty years ago. Most amazing was that all predictions were confirmed to be remarkably accurate. With no exaggeration, we may consider it established experimentally that quantum physics, which is normally assumed to be relevant on the atomic and subatomic scale, also works on the scale of the entire Universe, determining its structure with all its galaxies, stars, and planets.

  7. Optically simulated universal quantum computation

    NASA Astrophysics Data System (ADS)

    Francisco, D.; Ledesma, S.

    2008-04-01

    Recently, classical optics based systems to emulate quantum information processing have been proposed. The analogy is based on the possibility of encoding a quantum state of a system with a 2N-dimensional Hilbert space as an image in the input of an optical system. The probability amplitude of each state of a certain basis is associated with the complex amplitude of the electromagnetic field in a given slice of the laser wavefront. Temporal evolution is represented as the change of the complex amplitude of the field when the wavefront pass through a certain optical arrangement. Different modules that represent universal gates for quantum computation have been implemented. For instance, unitary operations acting on the qbits space (or U(2) gates) are represented by means of two phase plates, two spherical lenses and a phase grating in a typical image processing set up. In this work, we present CNOT gates which are emulated by means of a cube prism that splits a pair of adjacent rays incoming from the input image. As an example of application, we present an optical module that can be used to simulate the quantum teleportation process. We also show experimental results that illustrate the validity of the analogy. Although the experimental results obtained are promising and show the capability of the system for simulate the real quantum process, we must take into account that any classical simulation of quantum phenomena, has as fundamental limitation the impossibility of representing non local entanglement. In this classical context, quantum teleportation has only an illustrative interpretation.

  8. [Medical professionals on the subject of their core values: the importance of practice-based stories and intrinsic motivation].

    PubMed

    Witman, Yolande; van den Kerkhof, Peter C M; Braat, Didi D M

    2013-01-01

    In the current system for guaranteeing quality of care, emphasis is placed firmly on external control of professionals. We looked for a way to appeal to the intrinsic motivation of medical professionals and to discover what they mean by 'good work'. This was achieved with the aid of reflective sessions using the toolkit 'Good Work': in four sessions three different groups of medical professionals (medical department chairs, residents and interns) from a Dutch university hospital reflected on the topics 'excellence', 'moral responsibility' and 'personal engagement'. The participants exchanged practice-based stories during the sessions. The most important theme was moral responsibility, with its accompanying dilemmas. The sessions gave rise to feelings of mutual acknowledgement, recognition, inspiration and motivation. Sharing meaningful practice-based stories can be considered as a 'moment of learning', strengthening professional identity and stimulating intrinsic motivation. More space for this form of reflection might restore the balance with external control systems.

  9. Extrinsic photoresponse enhancement under additional intrinsic photoexcitation in organic semiconductors

    SciTech Connect

    Kounavis, P.

    2016-06-28

    Dual light beam photoresponse experiments are employed to explore the photoresponse under simultaneous extrinsic and intrinsic photoexcitation of organic semiconductors. The photoresponse of a red modulated light extrinsic photoexcitation is found that can be significantly enhanced under an additional blue bias-light intrinsic photoexcitation in two terminal pentacene films on glass substrates. From the frequency resolved photoresponse, it is deduced that the phenomenon of photoresponse enhancement can be attributed to an increase in the extrinsic photogeneration rate of the red modulated light and/or an improvement of the drift velocity of carriers under an additional blue light intrinsic photoexcitation. The possible predominant extrinsic photogeneration mechanism, which can be compatible with the observed dependence of the photoresponse enhancement on the frequency and on the light intensities of the red and blue light excitation, is the singlet exciton dissociation through electron transfer to acceptor-like traps. Moreover, an improvement in the drift velocity of carriers traversing grain boundaries with potential energy barriers, which may be reduced by trapping of minority carriers created from the intrinsic photoexcitation, may partly contribute to the photoresponse enhancement.

  10. Intrinsic bond strength of metal films on polymer substrates

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Osaki, Hiroyuki

    1990-01-01

    A semiquantitative method for the measurement of the intrinsic bond strength between elastic substrates and elastic films that fail by brittle fracture is described. Measurements on a polyethylene terephthalate (PET)-Ni couple were used to verify the essential features of the analysis. It was found that the interfacial shear strength of Ni on PET doubled after ion etching.

  11. Dominance dynamics of competition between intrinsic and extrinsic grouping cues.

    PubMed

    Luna, Dolores; Villalba-García, Cristina; Montoro, Pedro R; Hinojosa, José A

    2016-10-01

    In the present study we examined the dominance dynamics of perceptual grouping cues. We used a paradigm in which participants selectively attended to perceptual groups based on several grouping cues in different blocks of trials. In each block, single and competing grouping cues were presented under different exposure durations (50, 150 or 350ms). Using this procedure, intrinsic vs. intrinsic cues (i.e. proximity and shape similarity) were compared in Experiment 1; extrinsic vs. extrinsic cues (i.e. common region and connectedness) in Experiment 2; and intrinsic vs. extrinsic cues (i.e. common region and shape similarity) in Experiment 3. The results showed that in Experiment 1, no dominance of any grouping cue was found: shape similarity and proximity grouping cues showed similar reaction times (RTs) and interference effects. In contrast, in Experiments 2 and 3, common region dominated processing: (i) RTs to common region were shorter than those to connectedness (Exp. 2) or shape similarity (Exp. 3); and (ii) when the grouping cues competed, common region interfered with connectedness (Exp. 2) and shape similarity (Exp. 3) more than vice versa. The results showed that the exposure duration of stimuli only affected the connectedness grouping cue. An important result of our experiments indicates that when two grouping cues compete, both the non-attended intrinsic cue in Experiment 1, and the non-dominant extrinsic cue in Experiments 2 and 3, are still perceived and they are not completely lost. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Intrinsic bond strength of metal films on polymer substrates

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Osaki, Hiroyuki

    1990-01-01

    A semiquantitative method for the measurement of the intrinsic bond strength between elastic substrates and elastic films that fail by brittle fracture is described. Measurements on a polyethylene terephthalate (PET)-Ni couple were used to verify the essential features of the analysis. It was found that the interfacial shear strength of Ni on PET doubled after ion etching.

  13. Intrinsic and scattering attenuation images of Usu volcano, Japan

    NASA Astrophysics Data System (ADS)

    Prudencio, J.; Taira, T.; Aoki, Y.; Aoyama, H.; Onizawa, S.

    2017-04-01

    We present intrinsic- and scattering-Q attenuation images for Usu volcano (Japan) by analyzing over 1800 vertical seismograms. By fitting the observed envelopes to the diffusion model, we obtained intrinsic and scattering attenuation values at three different frequency bands. Using a back-projection method and assuming a Gaussian-type weighting function, we obtained the 2D images of intrinsic and scattering attenuation. Resolution tests confirm the robustness and reliability of the obtained images. We found that scattering attenuation is the dominant process of energy loss in the frequency range analyzed, which suggests strong spatial heterogeneity. The resultant scattering attenuation images show an increase of attenuation toward the southwest from Toya caldera, which may correspond to deepening of the basement. We also identify an area of low intrinsic and scattering attenuation at the summit of Usu volcano which could be associated with old magma intrusions. Our results demonstrate a strong spatial relation between structural heterogeneities and attenuation processes in volcanic areas and confirm the efficiency of the method which can be used together with conventional imaging techniques.

  14. Museums, Adventures, Discovery Activities: Gifted Curriculum Intrinsically Differentiated.

    ERIC Educational Resources Information Center

    Haensly, Patricia A.

    This paper discusses how museums, adventure programs, and discovery activities can become an intrinsically differentiated gifted curriculum for gifted learners. Museums and adventure programs are a forum for meaningful learning activities. The contextual characteristics of effectively designed settings for learning activities can, if the…

  15. Intrinsic mechanisms for adaptive gain rescaling in barrel cortex.

    PubMed

    Díaz-Quesada, Marta; Maravall, Miguel

    2008-01-16

    Barrel cortex neuronal responses adapt to changes in the statistics of complex whisker stimuli. This form of adaptation involves an adjustment in the input-output tuning functions of the neurons, such that their gain rescales depending on the range of the current stimulus distribution. Similar phenomena have been observed in other sensory systems, suggesting that adaptive adjustment of responses to ongoing stimulus statistics is an important principle of sensory function. In other systems, adaptation and gain rescaling can depend on intrinsic properties; however, in barrel cortex, whether intrinsic mechanisms can contribute to adaptation to stimulus statistics is unknown. To examine this, we performed whole-cell patch-clamp recordings of pyramidal cells in acute slices while injecting stochastic current stimuli. We induced changes in statistical context by switching across stimulus distributions. The firing rates of neurons adapted in response to changes in stimulus statistics. Adaptation depended on the form of the changes in stimulus distribution: in vivo-like adaptation occurred only for rectified stimuli that maintained neurons in a persistent state of net depolarization. Under these conditions, neurons rescaled the gain of their input-output functions according to the scale of the stimulus distribution, as observed in vivo. This stimulus-specific adaptation was caused by intrinsic properties and correlated strongly with the amplitude of calcium-dependent slow afterhyperpolarizations. Our results suggest that widely expressed intrinsic mechanisms participate in barrel cortex adaptation but that their recruitment is highly stimulus specific.

  16. Development of the intrinsic and extrinsic innervation of the gut.

    PubMed

    Uesaka, Toshihiro; Young, Heather M; Pachnis, Vassilis; Enomoto, Hideki

    2016-09-15

    The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic efferent and afferent nerves. The enteric (intrinsic) nervous system (ENS) in most regions of the gut consists of two main ganglionated layers; myenteric and submucosal ganglia, containing numerous types of enteric neurons and glial cells. Axons arising from the ENS and from extrinsic neurons innervate most layers of the gut wall and regulate many gut functions. The majority of ENS cells are derived from vagal neural crest cells (NCCs), which proliferate, colonize the entire gut, and first populate the myenteric region. After gut colonization by vagal NCCs, the extrinsic nerve fibers reach the GI tract, and Schwann cell precursors (SCPs) enter the gut along the extrinsic nerves. Furthermore, a subpopulation of cells in myenteric ganglia undergoes a radial (inward) migration to form the submucosal plexus, and the intrinsic and extrinsic innervation to the mucosal region develops. Here, we focus on recent progress in understanding the developmental processes that occur after the gut is colonized by vagal ENS precursors, and provide an up-to-date overview of molecular mechanisms regulating the development of the intrinsic and extrinsic innervation of the GI tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Attitudes toward Money, Intrinsic Job Satisfaction, and Voluntary Turnover.

    ERIC Educational Resources Information Center

    Tang, Thomas Li-Ping; Tang, Theresa Li-Na

    A study was conducted to determine whether employees' attitudes toward money (money ethic endorsement) moderates the relationships between intrinsic job satisfaction on the one hand and thoughts of withdrawal and voluntary turnover on the other. Data were collected from workers in the Department of Mental Health and Mental Retardation in a…

  18. The intrinsic γ-ray emissions of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Lin, Chao; Fan, Jun-Hui; Xiao, Hu-Bing

    2017-07-01

    The beaming effect is important for understanding the observational properties of blazars. In this work, we collect 91 Fermi blazars with available radio Doppler factors. γ-ray Doppler factors are estimated and compared with radio Doppler factors for some sources. The intrinsic (de-beamed) γ-ray flux density ({f}γ {{in}}), intrinsic γ-ray luminosity ({L}γ {{in}}) and intrinsic synchrotron peak frequency ({v}{{p}}{{in}}) are calculated. Then we study the correlations between {f}γ {{in}} and redshift and find that they follow the theoretical relation: {log} f=-2.0 {log} z+{{const}}. When the subclasses are considered, we find that stationary jets are perhaps dominant in low synchrotron peaked blazars. Sixty-three Fermi blazars with both available short variability time scales ({{Δ }}T) and Doppler factors are also collected. We find that the intrinsic relationship between {L}γ {{in}} and {{Δ }}{T}{{in}} obeys the Elliot & Shapiro and Abramowicz & Nobili relations. Strong positive correlation between {f}γ {{in}} and {v}{{p}}{{in}} is found, suggesting that synchrotron emissions are highly correlated with γ-ray emissions.

  19. The Intrinsic Value of Archive and Library Material.

    ERIC Educational Resources Information Center

    Menne-Haritz, Angelika; Brubach, Nils

    2000-01-01

    Discusses the intrinsic value of archive and library materials based on a project conducted by the Marburg Archive School (West Germany) to develop criteria for selecting holdings. Topics include external formal features of archive and library materials; conversion methods, including microfilming, imaging, digitization, and textual conversion;…

  20. Paradoxes and wonders of intrinsic disorder: Complexity of simplicity

    PubMed Central

    Uversky, Vladimir N.

    2016-01-01

    ABSTRACT At first glance it may seem that intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are simpler than ordered proteins and domains on multiple levels. However, such multilevel simplicity equips these proteins with the ability to have very complex behavior. PMID:28232895