Sample records for n-doped tio2 nanoparticles

  1. Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution.

    PubMed

    Kamani, Hossein; Nasseri, Simin; Khoobi, Mehdi; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein

    2016-01-01

    Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol-gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV-visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. The results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10(-2) min(-1). The high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.

  2. Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine

    PubMed Central

    Pan, Xiaobo; Liang, Xinyue; Yao, Longfang; Wang, Xinyi; Jing, Yueyue; Fei, Yiyan; Chen, Li

    2017-01-01

    TiO2 nanoparticles modified with phthalocyanines (Pc) have been proven to be a potential photosensitizer in the application of photodynamic therapy (PDT). However, the generation of reactive oxygen species (ROS) by TiO2 nanoparticles modified with Pc has not been demonstrated clearly. In this study, nitrogen-doped TiO2 conjugated with Pc (N-TiO2-Pc) were studied by means of monitoring the generation of ROS. The absorbance and photokilling effect on HeLa cells upon visible light of different regions were also studied and compared with non-doped TiO2-Pc and Pc. Both N-TiO2-Pc and TiO2-Pc can be activated by visible light and exhibited much higher photokilling effect on HeLa cells than Pc. In addition, nitrogen-doping can greatly enhance the formation of 1O2 and •O2−, while it suppresses the generation of OH•. This resulted in significant photodynamic activity. Therefore, N-TiO2-Pc can be an excellent candidate for a photosensitizer in PDT with wide-spectrum visible irradiation. PMID:29053580

  3. Room temperature ferromagnetism in non-magnetic doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Gómez-Polo, C.; Larumbe, S.; Pastor, J. M.

    2013-05-01

    Room-temperature ferromagnetism in non-magnetic doped TiO2 semiconductor nanoparticles is analyzed in the present work. Undoped and N-doped TiO2 nanoparticles were obtained employing sol-gel procedure using urea as the nitrogen source. The obtained gels were first dried at 70 °C and afterwards calcined in air at 300 °C. A residual carbon concentration was retained in the samples as a consequence of the organic decomposition process. Post-annealing treatments at 300 °C under air and vacuum conditions were also performed. The crystallographic structure of nanoparticles was analyzed by X-ray diffraction, obtaining a single anatase crystalline phase after the calcinations (mean nanoparticle diameters around 5-8 nm). SQUID magnetometry was employed to analyze the magnetic response of the samples. Whereas for the undoped samples synthesized with hydrolysis rate h = 6, paramagnetic like behavior is observed at room temperature, the N-doped nanoparticles (h = 3) show a weak ferromagnetic response (saturation magnetization ≈10-3 emu/g). Moreover, a clear reinforcement of the room-temperature ferromagnetism response is found with the post-annealing treatments, in particular that performed in vacuum. Thus, the results indicate the dominant role of the oxygen stoichiometry and the oxygen vacancies in the room temperature ferromagnetic response of these TiO2 nanoparticles.

  4. Visible light photocatalytic antibacterial activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria.

    PubMed

    Ananpattarachai, Jirapat; Boonto, Yuphada; Kajitvichyanukul, Puangrat

    2016-03-01

    The Ni-doped and N-doped TiO2 nanoparticles were investigated for their antibacterial activities on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. Their morphological features and characteristics such as particle size, surface area, and visible light absorbing capacity were compared and discussed. Scanning electron microscopy, X-ray diffraction, and UV-visible spectrophotometry were used to characterize both materials. The inactivation of E. coli (as an example of Gram-negative bacteria) and S. aureus (as an example of Gram-positive bacteria) with Ni-doped and N-doped TiO2 was investigated in the absence and presence of visible light. Antibacterial activity tests were conducted using undoped, Ni-doped, and N-doped TiO2. The N-doped TiO2 nanoparticles show higher antibacterial activity than Ni-doped TiO2. The band gap narrowing of N-doped TiO2 can induce more visible light absorption and leads to the superb antibacterial properties of this material. The complete inactivation time for E. coli at an initial cell concentration of 2.7 × 10(4) CFU/mL was 420 min which is longer than the 360 min required for S. aureus inactivation. The rate of inactivation of S. aureus using the doped TiO2 nanoparticles in the presence of visible light is greater than that of E. coli. The median lethal dose (LD50) values of S. aureus and E. coli by antibacterial activity under an 18-W visible light intensity were 80 and 350 mg/ml for N-doped TiO2, respectively.

  5. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    PubMed

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  6. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption.

    PubMed

    Cho, Sumin; Ahn, Changui; Park, Junyong; Jeon, Seokwoo

    2018-05-24

    Considering the environmental issues, it is essential to develop highly efficient and recyclable photocatalysts in purification systems. Conventional TiO2 nanoparticles have strong intrinsic oxidizing power and high surface area, but are difficult to collect after use and rarely absorb visible light, resulting in low photocatalytic efficiency under sunlight. Here we develop a new type of highly efficient and recyclable photocatalyst made of a three-dimensional (3D) nanostructured N-doped TiO2 monolith with enhanced visible light absorption. To prepare the sample, an ultrathin TiN layer (∼10 nm) was conformally coated using atomic layer deposition (ALD) on 3D nanostructured TiO2. Subsequent thermal annealing at low temperature (550 °C) converted TiN to anatase phase N-doped TiO2. The resulting 3D N-doped TiO2 showed ∼33% enhanced photocatalytic performance compared to pure 3D TiO2 of equivalent thickness under sunlight due to the reduced bandgap, from 3.2 eV to 2.75 eV through N-doping. The 3D N-doped TiO2 monolith could be easily collected and reused at least 5 times without any degradation in photocatalytic performance.

  7. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    PubMed

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  8. Improving surface-enhanced Raman scattering properties of TiO(2) nanoparticles by metal Co doping.

    PubMed

    Yang, Libin; Qin, Xiaoyu; Gong, Mengdi; Jiang, Xin; Yang, Ming; Li, Xiuling; Li, Guangzhi

    2014-04-05

    In this paper, pure and different amount Co ions doped TiO2 nanoparticles were synthesized by a sol-hydrothermal method and were served as SERS-active substrate. The effect of metal Co doping on SERS properties of TiO2 nanoparticles was mostly investigated. The results indicate that abundant metal doping energy levels can be formed in the energy gap of TiO2 by an appropriate amount Co ions doping, which can promote the charge transfer from TiO2 to molecule, and subsequently enhance SERS signal of adsorbed molecule on TiO2 substrate, and improve remarkably SERS properties of TiO2 nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Systematic investigation of structural and morphological studies on doped TiO2 nanoparticles for solar cell applications

    NASA Astrophysics Data System (ADS)

    Murugadoss, G.; Jayavel, R.; Rajesh Kumar, M.

    2014-12-01

    Optical, structural and thermal properties of the doped with different ions (transition metals, other metals or post transition metals, non-metals, alkali metals and lanthanides) in TiO2 nanocrystals were investigated. The doped nanoparticles were synthesized by modified chemical method. Ethanol-deionised water mixer (20:1) was used as solvent for synthesize of the undoped and doped TiO2 nanoparticles. Systematic studies on structural and morphological changes by thermal treatment on TiO2 were examined. It has been observed that with Eu and Al doping TiO2, the phase transition temperature for anatase to rutile phase increased. Blue and red shifting absorptions were observed for doped TiO2 in visible region. Among the dopant, significant blue shift was obtained for Cu, Cd, Ag, Y, Ce and In doped TiO2 and red shift was obtained for Zr, Sm, Al, Na, S, Fe, Ni, Eu and Gd doped TiO2 nanoparticles.

  10. Highly Efficient Low-Temperature N-Doped TiO2 Catalysts for Visible Light Photocatalytic Applications

    PubMed Central

    Mahy, Julien G.; Cerfontaine, Vincent; Devred, François; Gaigneaux, Eric M.; Heinrichs, Benoît; Lambert, Stéphanie D.

    2018-01-01

    In this paper, TiO2 prepared with an aqueous sol-gel synthesis by peptization process is doped with nitrogen precursor to extend its activity towards the visible region. Three N-precursors are used: urea, ethylenediamine and triethylamine. Different molar N/Ti ratios are tested and the synthesis is adapted for each dopant. For urea- and trimethylamine-doped samples, anatase-brookite TiO2 nanoparticles of 6–8 nm are formed, with a specific surface area between 200 and 275 m2·g−1. In ethylenediamine-doped samples, the formation of rutile phase is observed, and TiO2 nanoparticles of 6–8 nm with a specific surface area between 185 and 240 m2·g−1 are obtained. X-ray photoelectron spectroscopy (XPS) and diffuse reflectance measurements show the incorporation of nitrogen in TiO2 materials through Ti–O–N bonds allowing light absorption in the visible region. Photocatalytic tests on the remediation of water polluted with p-nitrophenol show a marked improvement for all doped catalysts under visible light. The optimum doping, taking into account cost, activity and ease of synthesis, is up-scaled to a volume of 5 L and compared to commercial Degussa P25 material. This up-scaled sample shows similar properties compared to the lab-scale sample, i.e., a photoactivity 4 times higher than commercial P25. PMID:29642626

  11. Copper doping enhanced the oxidative stress-mediated cytotoxicity of TiO2 nanoparticles in A549 cells.

    PubMed

    Ahmad, J; Siddiqui, M A; Akhtar, M J; Alhadlaq, H A; Alshamsan, A; Khan, S T; Wahab, R; Al-Khedhairy, A A; Al-Salim, A; Musarrat, J; Saquib, Q; Fareed, M; Ahamed, M

    2018-05-01

    Physicochemical properties of titanium dioxide nanoparticles (TiO 2 NPs) can be tuned by doping with metals or nonmetals. Copper (Cu) doping improved the photocatalytic behavior of TiO 2 NPs that can be applied in various fields such as environmental remediation and nanomedicine. However, interaction of Cu-doped TiO 2 NPs with human cells is scarce. This study was designed to explore the role of Cu doping in cytotoxic response of TiO 2 NPs in human lung epithelial (A549) cells. Characterization data demonstrated the presence of both TiO 2 and Cu in Cu-doped TiO 2 NPs with high-quality lattice fringes without any distortion. The size of Cu-doped TiO 2 NPs (24 nm) was lower than pure TiO 2 NPs (30 nm). Biological results showed that both pure and Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in a dose-dependent manner. Low mitochondrial membrane potential and higher caspase-3 enzyme (apoptotic markers) activity were also observed in A549 cells exposed to pure and Cu-doped TiO 2 NPs. We further observed that cytotoxicity caused by Cu-doped TiO 2 NPs was higher than pure TiO 2 NPs. Moreover, antioxidant N-acetyl cysteine effectively prevented the reactive oxygen species generation, glutathione depletion, and cell viability reduction caused by Cu-doped TiO 2 NPs. This is the first report showing that Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in A549 cells. This study warranted further research to explore the role of Cu doping in toxicity mechanisms of TiO 2 NPs.

  12. Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Jia, Tiekun; Fu, Fang; Yu, Dongsheng; Cao, Jianliang; Sun, Guang

    2018-02-01

    Ultrafine anatase N-doped TiO2 nanocrystals modified with carbon (denoted as N-doped TiO2/C) were successfully prepared via a facile and low-cost approach, using titanium tetrachloride, aqueous ammonia and urea as starting materials. The phase composition, surface chemical composition, morphological structure, electronic and optical properties of the as-prepared photocatalysts were well characterized and analyzed. On the basis of Raman spectral characterization combining with the results of X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM), it could be concluded that N dopant ions were successfully introduced into TiO2 crystal lattice and carbon species were modified on the surface or between the nanoparticles to form N-doped TiO2/C nanocomposites. Compared with that of bare TiO2, the adsorption band edge of N-doped TiO2/C nanocomposites were found to have an evident red-shift toward visible light region, implying that the bandgap of N-doped TiO2/C nanocomposites is narrowed and the visible light absorption capacity is significantly enhanced due to N doping and carbon modification. The photoactivity of the as-prepared photocatalytsts was tested by the degradation of Rhodamine B (RhB) under visible light (λ > 420 nm), and the results showed that the N-doped TiO2/C nanocomposites exhibited much higher photodegradation rate than pure TiO2 and N-doped TiO2, which was mainly attributed to the synergistic effect of the enhanced light harvesting, augmented catalytic active sites and efficient separation of photogenerated electron-hole pairs.

  13. The investigation of photo-induced chemiluminescence on Co2+-doped TiO2 nanoparticles and its analytical application.

    PubMed

    Li, Guixin; Nan, Hongyan; Zheng, Xingwang

    2009-07-01

    A novel space- and time-resolved photo-induced chemiluminescence (PICL) analytical method was developed based on the photocatalysis of the Co2+-doped TiO2 nanoparticles. The PICL reaction procedure under the photocatalysis of Co2+-doped TiO2 nanoparticles was investigated using cyclic voltammetry and potentiometry. Meanwhile, the effect of the electrical double layer outside the Co2+-doped TiO2 nanoparticles on the PICL was investigated by contrasting with the Co2+-doped TiO2-SiO2 core-shell nanoparticles. Significantly, the CL intensity increased apparently and the time of the CL was prolonged in the presence of procaterol hydrochloride because the mechanism of the enhanced PICL reaction may be modified. The route of the PICL was changed due to the participation of the procaterol hydrochloride enriched at the surface of the Co2+-doped TiO2-SiO2 in the PICL reaction, which prolonged the time of the CL reaction and resulted in the long-term PICL. The analytical characteristics of the proposed in-situ PICL method were investigated using the procaterol hydrochloride as the model analyte. The investigation results showed that this new PICL analytical method offered higher sensitivity to the analysis of the procaterol hydrochloride and the PICL intensity was linear with the concentration of the procaterol hydrochloride in the range from ca. 2.0 x 10(-10) to 1.0 x 10(-8) g mL(-1).

  14. A comparative study of the magnetization in transition metal ion doped CeO2, TiO2 and SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.

    2018-05-01

    Using the microscopic s-d model taking into account anharmonic spin-phonon interactions we have studied the magnetic properties of Co and Cu ion doped CeO2 and TiO2 nanoparticles and compared them with those of SnO2. By Co-doping there is a maximum in the magnetization M(x) curve for all nanoparticles observed in the most transition metal doped ones. The s-d interaction plays an important role by the decrease of M at higher dopant concentration. We have discussed the magnetization in dependence of different model parameters. By small Cu-ion doping there are some differences. In CeO2M decreases with the Cu-concentration, whereas in TiO2 and SnO2M increases. For higher Cu dopant concentrations M(X) decreases in TiO2 nanoparticles. We obtain room temperature ferromagnetism also in Zn doped CeO2, TiO2 and SnO2 nanoparticles, i.e. in non-transition metal ion doped ones. The different behavior of M in Co and Cu doped nanoparticles is due to a combination effect of multivalent metal ions, oxygen vacancies, different radius of cation dopants, connection between lattice and magnetism, as well as competition between the s-d and d-d ferromagnetic or antiferromagnetic interactions.

  15. Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Jinfeng; Li, Haiyan; Zong, Lanlan; Li, Qiuye; Wang, Xiaodong; Zhang, Min; Yang, Jianjun

    2015-02-01

    Lanthanum- and nitrogen-codoped TiO2 photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO2 were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra. The La-/N-codoped TiO2 showed excellent photoactivity of propylene oxidation compared with the single-doped TiO2 and La-/N-codoped P25 TiO2 nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.

  16. Determining the Catalytic Activity of Transition Metal-Doped TiO2 Nanoparticles Using Surface Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Yang, Sena; Lee, Hangil

    2017-11-01

    The modified TiO2 nanoparticles (NPs) to enhance their catalytic activities by doping them with the five transition metals (Cr, Mn, Fe, Co, and Ni) have been investigated using various surface analysis techniques such as scanning electron microscopy (SEM), Raman spectroscopy, scanning transmission X-ray microscopy (STXM), and high-resolution photoemission spectroscopy (HRPES). To compare catalytic activities of these transition metal-doped TiO2 nanoparticles (TM-TiO2) with those of TiO2 NPs, we monitored their performances in the catalytic oxidation of 2-aminothiophenol (2-ATP) by using HRPES and on the oxidation of 2-ATP in aqueous solution by taking electrochemistry (EC) measurements. As a result, we clearly investigate that the increased defect structures induced by the doped transition metal are closely correlated with the enhancement of catalytic activities of TiO2 NPs and confirm that Fe- and Co-doped TiO2 NPs can act as efficient catalysts.

  17. Effects of N precursor on the agglomeration and visible light photocatalytic activity of N-doped TiO2 nanocrystalline powder.

    PubMed

    Hu, Yulong; Liu, Hongfang; Rao, Qiuhua; Kong, Xiaodong; Sun, Wei; Guo, Xingpeng

    2011-04-01

    N-doped TiO2 nanocrystalline powders were prepared by the sol-gel method using various N precursors, including triethylamine, hydrazine hydrate, ethylenediamine, ammonium hydroxide, and urea. The samples were characterized by X-ray diffraction, N2 adsorption isotherms, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of as-prepared samples under irradiation of visible light (lambda > 405 nm) were evaluated by photodecomposition of methyl orange. The alkalinity of N precursor was found to play a key role in the gel process. The N precursor with moderate alkalinity causes TiO2 nanoparticles to be sol-transformed into a loosely agglomerated gel. This transformation facilitates the preparation of an N-doped TiO2 powder with small nanocrystal size, large specific surface area, and high N doping level and results in high visible light photocatalytic activity. The N in TiO2 with N is binding energy at 399-400 eV may be assigned to the N-H species located in interstitial sites of TiO2 lattice which is the active N species responsible for the visible light photocatalytic activity. The N species of N 1s peak at 402 and 405 eV are ineffective to the visible light photocatalytic activity and may inhibit the photocatalytic activity. Moreover, a TiO2 nanoparticle powder with large specific area can be achieved by using urea as a template and then by using ammonium hydroxide to transform the sol into gel.

  18. Linear and nonlinear optical studies of bare and copper doped TiO2 nanoparticles via sol gel technique

    NASA Astrophysics Data System (ADS)

    Rajamannan, B.; Mugundan, S.; Viruthagiri, G.; Praveen, P.; Shanmugam, N.

    2014-01-01

    In general, the nanoparticles of TiO2 may exist in the phases of anatase, rutile and brookite. In the present work, we used titanium terta iso propoxide and 2-propanol as a common starting material to prepare the precursors of bare and copper doped nanosized TiO2. Then the synthesized products were calcinated at 500 °C and after calcination the pure TiO2 nanoparticles in anatase phase were harvested. The crystallite sizes of bare and copper doped TiO2 nanoparticles were calculated from X-ray diffraction analysis. The existence of functional groups of the samples was identified by Fourier transform infrared spectroscopy. The optical properties of bare and doped samples were carried out using UV-DRS and photoluminescence measurements. The surface morphology and the element constitution of the copper doped TiO2 nanoparticles were studied by scanning electron microscope fitted with energy dispersive X-ray spectrometer arrangement. The nonlinear optical properties of the products were confirmed by Kurtz second harmonic generation (SHG) test and the output power generated by the nanoparticle was compared with that of potassium di hydrogen phosphate (KDP).

  19. Linear and nonlinear optical studies of bare and copper doped TiO2 nanoparticles via sol gel technique.

    PubMed

    Rajamannan, B; Mugundan, S; Viruthagiri, G; Praveen, P; Shanmugam, N

    2014-01-24

    In general, the nanoparticles of TiO2 may exist in the phases of anatase, rutile and brookite. In the present work, we used titanium terta iso propoxide and 2-propanol as a common starting material to prepare the precursors of bare and copper doped nanosized TiO2. Then the synthesized products were calcinated at 500°C and after calcination the pure TiO2 nanoparticles in anatase phase were harvested. The crystallite sizes of bare and copper doped TiO2 nanoparticles were calculated from X-ray diffraction analysis. The existence of functional groups of the samples was identified by Fourier transform infrared spectroscopy. The optical properties of bare and doped samples were carried out using UV-DRS and photoluminescence measurements. The surface morphology and the element constitution of the copper doped TiO2 nanoparticles were studied by scanning electron microscope fitted with energy dispersive X-ray spectrometer arrangement. The nonlinear optical properties of the products were confirmed by Kurtz second harmonic generation (SHG) test and the output power generated by the nanoparticle was compared with that of potassium di hydrogen phosphate (KDP). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  1. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    PubMed Central

    2013-01-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail. PMID:24369051

  2. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors.

    PubMed

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-26

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  3. Photochemical degradation of an anionic surfactant by TiO2 nanoparticle doped with C, N in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zamiri, M.; Giahi, M.

    2016-12-01

    Novel C,N-doped TiO2 nanoparticles were prepared by a solid phase reaction. The catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The results showed that crystallite size of synthesized C,N-doped TiO2 particles were in nanoscale. UV light photocatalytic studies were carried out using sodium naphthalenesulfonate formaldehyde condensate (SNF) as a model pollutant. The effects of initial concentration of surfactant, catalyst amount, pH, addition of oxidant on the reaction rate were ascertained and optimum conditions for maximum degradation was determined. The results indicated that for a solution of 20 mg/L of SNF, almost 98.7% of the substance were removed at pH 4.0 and 0.44 g/L photocatalyst load, with addition of 1 mM K2S2O8 and irradiation time of 90 min. The kinetics of the process was studied, and the photodegradation rate of SNF was found to obey pseudo-first-order kinetics equation represented by the Langmuir-Hinshelwood model.

  4. Effect of cobalt doping on the phase transformation of TiO2 nanoparticles.

    PubMed

    Barakat, M A; Hayes, G; Shah, S Ismat

    2005-05-01

    Co-doped TiO2 nanoparticles containing 0.0085, 0.017, 0.0255, 0.034, and 0.085 mol % Co(III) ion dopant were synthesized via sol-gel and dip-coating techniques. The effects of metal ion doping on the transformation of anatase to the rutile phase have been investigated. Several analytical tools, such as X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray analysis (EDAX) were used to investigate the nanoparticle structure, size distribution, and composition. Results obtained revealed that the rutile to anatase concentration ratio increases with increase of the cobalt dopant concentration and annealing temperature. The typical composition of Co-doped TiO2 was Ti(1-x)Co(x)O2, where x values ranged from 0.0085 to 0.085. The activation energy for the phase transformation from anatase to rutile was measured to be 229, 222, 211, and 195 kJ/mole for 0.0085, 0.017, 0.0255, and 0.034 mol % Co in TiO2, respectively.

  5. Combined Embedding of N/F-Doping and CaCO3 Surface Modification in the TiO2 Photoanode for Dye-Sensitized Solar Cells.

    PubMed

    Park, Su Kyung; Yun, Tae Kwan; Bae, Jae Young

    2016-03-01

    N/F-doping and CaCO3 surface modification was carried out in TiO2 photoelectrodes for dye-sensitized solar cells (DSSCs). The combined effect of the N/F doped TiO2 and the CaCO3 coating showed a great increase of the short-circuit current (J(sc)), and photoelectric conversion efficiency (η) of the prepared cells; the efficiency (η) was improved from 7.00% of a commercial TiO2 photoelectrode to 7.90% of an uncoated N/F-doped electrode, and to 9.09% of a N/F-doped and CaCO3 surface modified electrode. An enhanced photoresponse in N/F-doped TiO2 nanoparticles generate more photo-excited electrons, as supported by measured UV-Vis diffuse reflectance spectra. A successive CaCO3 surface modification then forms a barrier on the surface of the N/F-doped TiO2 particles; the higher basicity of the CaCO3 modified TiO2 facilitates the dye adsorption, as supported by the direct measurement of the amount of adsorbed dye.

  6. The preparation and characterization of La doped TiO 2 nanoparticles and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liqiang, Jing; Xiaojun, Sun; Baifu, Xin; Baiqi, Wang; Weimin, Cai; Honggang, Fu

    2004-10-01

    In this paper, pure and La doped TiO2 nanoparticles with different La content were prepared by a sol-gel process using Ti (OC4H9)4 as raw material, and also were characterized by XRD, TG-DTA, TEM, XPS, DRS and Photoluminescence (PL) spectra. We mainly investigated the effects of calcining temperature and La content on the properties and the photocatalytic activity for degrading phenol of as-prepared TiO2 samples, and also discussed the relationships between PL spectra and photocatalytic activity as well as the mechanisms of La doping on TiO2 phase transformation. The results showed that La3+ did not enter into the crystal lattices of TiO2 and was uniformly dispersed onto TiO2 as the form of La2O3 particles with small size, which possibly made La dopant have a great inhibition on TiO2 phase transformation; La dopant did not give rise to a new PL signal, but it could improve the intensity of PL spectra with a appropriate La content, which was possibly attributed to the increase in the content of surface oxygen vacancies and defects after doping La; La doped TiO2 nanoparticles calcined at 600°C exhibited higher photocatalytic activity, indicating that 600°C was an appropriate calcination temperature. The order of photocatalytic activity of La doped TiO2 samples with different La content was as following: 1>1.5>3>0.5>5>0 mol%, which was the same as the order of their PL intensity, namely, the stronger the PL intensity, the higher the photocatalytic activity, demonstrating that there were certain relationships between PL spectra and photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions.

  7. Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Ahamed, Maqusood; Khan, M. A. Majeed; Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws

    2016-07-01

    We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1-10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV-3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation & glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells.

  8. Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells

    PubMed Central

    Ahamed, Maqusood; Khan, M. A. Majeed; Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws

    2016-01-01

    We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1–10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV–3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation & glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells. PMID:27444578

  9. Effect of TiO2 nanoparticles doping on structural and electrical properties of PVA: NaBr polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sagar, Rohan N.; Ravindrachary, V.; Guruswamy, B.; Hegde, Shreedatta; Mahanthesh, B. K.; Kumari, R. Padma

    2018-05-01

    The effect of TiO2 nanoparticles on morphology and electrical properties of PVA: NaBr composite films were carried out using various techniques. The pure and TiO2 nanoparticle doped PVA: NaBr composite films were prepared using solvent casting method. The FTIR spectral studies shows that the Ti+ ions of TiO2 interacts with hydroxyl group (OH) of PVA via hydrogen bonding and forms the charge transfer complexes (CTC). These interactions are of inter/intra molecular type and affects the surface morphology as well as the electrical properties of composite films. XRD study shows that the crystallinity of the composite increases with doping level. SEM studies shows that the increase in roughness of the surface of the composite films and uniform dispersion of nanofillers in polymer matrix. Electrical properties are analyzed using impedance analyzer and higher conductivity (10-4Scm-1) is achieved for 5 wt % TiO2 doping concentration.

  10. Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors.

    PubMed

    Chen, Xueyuan; Luo, Wenqin

    2010-03-01

    Trivalent rare-earth (RE3+) ion-doped TiO2 nanophosphors belong to one kind of novel optical materials and have attracted increasing attention. The luminescence properties of different RE3+ ions in various TiO2 nanomaterials have been reviewed. Much attention is paid to our recent progresses on the luminescence properties of RE3+ (RE = Eu, Er, Sm, Nd) ions in anatase TiO2 nanoparticles prepared by a sol-gel-solvothermal method. Using Eu3+ as a sensitive optical probe, three significantly different luminescence centers of Eu3+ in TiO2 nanoparticles were detected by means of site-selective spectroscopy at 10 K. Based on the crystal-field (CF) splitting of Eu3+ at each site, C2v and D2 symmetries were proposed for Eu3+ incorporated at two lattice sites. A structural model for the formation of multiple sites was proposed based on the optical behaviors of Eu3+ at different sites. Similar multi-site luminescence was observed in Sm(3+)- or Nd(3+)-doped TiO2 nanoparticles. In Eu(3+)-doped TiO2 nanoparticles, only weak energy transfer from the TiO2 host to the Eu3+ ions was observed at 10 K due to the mismatch of energy between the TiO2 band-gap and the Eu3+ excited states. On the contrary, efficient host-sensitized luminescences were realized in Sm(3+)- or Nd(3+)-doped anatase TiO2 nanoparticles due to the match of energy between TiO2 band-gap and the Sm3+ and Nd3+ excited states. The excitation spectra of both Sm(3+)- and Nd(3+)-doped samples exhibit a dominant broad peak centered at approximately 340 nm, which is associated with the band-gap of TiO2, indicating that sensitized emission is much more efficient than direct excitation of the Sm3+ and Nd3+ ions. Single lattice site emission of Er3+ in TiO2 nanocrystals can be achieved by modifying the experimental conditions. Upon excitation by a Ti: sapphire laser at 978 nm, intense green upconverted luminescence was observed. The characteristic emission of Er3+ ions was obtained both in the ultraviolet-visible (UV-vis) and

  11. Silver doped TiO2 nano crystallites for dye-sensitized solar cell (DSSC) applications

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Ashok Kumar, K.; Ramanathan, Rajajeyaganthan; Senthilselvan, J.; Jagannathan, K.

    2017-12-01

    This communication deals with the synthesis of Ag doped TiO2 nanoparticles with different doping concentrations prepared by reduction method for the possible usage of photo anode material in DSSC. The prepared nanoparticles are characterized by x-ray diffraction to study their structural properties which confirms the formation of mixed anatase-rutile crystalline phases. The particulate size, shape and surface morphology are examined using FESEM which indicates agglomerated nanostructures with the average particle size of 20-25 nm. The UV-visible absorption spectra showed enhanced absorption in the visible range in accordance with the doping concentration of Ag with a red shift in their absorption edge. The interfacial charge transport phenomena of the DSSCs are determined by electrochemical impedance spectroscopy (EIS) and the corresponding efficiencies are calculated using J-V curve. In the present work, the UV active TiO2 and Ag doped TiO2 nanoparticles are employed as photoanode for the fabrication of DSSCs based on N3 dye and maximum power conversion efficiency of 1.544% is realized.

  12. LED and low level laser therapy association in tooth bleaching using a novel low concentration H2O2/N-doped TiO2 bleaching agent

    NASA Astrophysics Data System (ADS)

    Bezerra Dias, Hércules; Teixeira Carrera, Emanuelle; Freitas Bortolatto, Janaína; Ferrarezi de Andrade, Marcelo; Nara de Souza Rastelli, Alessandra

    2016-01-01

    Since low concentration bleaching agents containing N-doped TiO2 nanoparticles have been introduced as an alternative to conventional agents, it is important to verify their efficacy and the hypersensitivity effect in clinical practice. Six volunteer patients were evaluated for color change and hypersensitivity after bleaching using 35% H2O2 (one session of two 12 min applications) and 6% H2O2/N-doped TiO2 (one session of three 12 min applications) and after low level laser therapy application (LLLT) (780 nm, 40 mW, 10 J.cm-2, 10 s). Based on this case study, the nanobleaching agent provided better or similar aesthetic results than the conventional agent under high concentration, and its association with LLLT satisfactorily decreased the hypersensitivity. The 6% H2O2/N-doped TiO2 agent could be used instead of conventional in-office bleaching agents under high concentrations to fulfill the rising patient demand for aesthetics.

  13. A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6

    NASA Astrophysics Data System (ADS)

    Chen, Daimei; Jiang, Zhongyi; Geng, Jiaqing; Zhu, Juhong; Yang, Dong

    2009-02-01

    The nitrogen and fluorine co-doped TiO2 (N-F-TiO2) nanoparticles of anatase crystalline structure were prepared by a facile method of (NH4)2TiF6 pyrolysis, and characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy etc. With the increase of calcination temperature, (NH4)2TiF6 decomposed into TiOF2 and NH4TiOF3 at first, and then formed anatase-type TiO2 with thin sheet morphology. H3BO3 as oxygen source can promote the formation of anatase TiO2, but decrease the F content in the N-F-TiO2 materials due to the formation of volatile BF3 during the precursor decomposition. The photocatalytic activity of the obtained N-F-TiO2 samples was evaluated by the methylene blue degradation under visible light, and all the samples exhibited much higher photocatalytic activity than P25. Moreover, the merits and disadvantages of this proposed method to prepare doped TiO2 are discussed.

  14. Enhanced photo-catalytic activity of Sr and Ag co-doped TiO2 nanoparticles for the degradation of Direct Green-6 and Reactive Blue-160 under UV & visible light.

    PubMed

    Naraginti, Saraschandra; Thejaswini, T V L; Prabhakaran, D; Sivakumar, A; Satyanarayana, V S V; Arun Prasad, A S

    2015-10-05

    This work is focused on sol-gel synthesis of silver and strontium co-doped TiO2 nanoparticles and their utilization as photo-catalysts in degradation of two textile dyes. Effect of pH, intensity of light, amount of photo-catalyst, concentration of dye, sensitizers, etc., were studied to optimize conditions for obtaining enhanced photo-catalytic activity of synthesized nanoparticles. XRD, BET, HR-TEM, EDAX and UV-Vis (diffused reflectance mode) techniques were used to characterize the nanoparticles. Interestingly, band gap of Sr and Ag co-doped TiO2 nanoparticles showed considerable narrowing (2.6 eV) when compared to Ag doped TiO2 (2.7 eV) and undoped TiO2 (3.17 eV) nanoparticles. Incorporation of Ag and Sr in the lattice of TiO2 could bring isolated energy levels near conduction and valence bands thus narrowing band gap. The XRD analysis shows that both Ag and Sr nanoparticles are finely dispersed on the surface of titania framework, without disturbing its crystalline structure. TEM images indicate that representative grain sizes of Ag-doped TiO2 & Sr and Ag co-doped TiO2 nanoparticles are in the range of 8-20 nm and 11-25 nm, respectively. Effective degradation of Direct Green-6 (DG-6) and Reactive Blue-160 (RB-160) under UV and visible light has been achieved using the photo-catalysts. Sr and Ag co-doped TiO2 photo-catalysts showed higher catalytic activity during degradation process in visible region when compared to Ag-doped and undoped TiO2 nanoparticles which could be attributed to the interactive effect caused by band gap narrowing and enhancement in charge separation. For confirming degradation of the dyes, total organic carbon (TOC) content was monitored periodically. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Xing, Yalan; Wang, Shengbin; Fang, Baizeng; Song, Ge; Wilkinson, David P.; Zhang, Shichao

    2018-05-01

    N-doped hollow urchin-like anatase TiO2 spheres (HUTSs) with carbon coating (HUTS@C) are prepared through a facile and scalable hydrothermal reaction followed by coating of polypyrrole and carbonization. The HUTS is composed of radially grown anatase nanorods and possesses an enhanced percentage of exposed {001} facets compared with P25 TiO2 nanoparticles. After the carbon coating, the HUTS@C retains the hollow nanostructure although covered with an N-doped carbon layer. As an anode for Li-ion batteries, the HUTS@C delivers a higher capacity of 165.1 mAh g-1 at 1C after 200 cycles and better rate capability (111.7 mAh g-1 at 10C) than the HUTS. Further electrochemical studies reveal that the HUTS@C has a better electrochemical reversibility, lower charge-transfer resistance, and higher Li-ion diffusion coefficient due to its unique nanosctructure including the hollow core, anatase phase of TiO2 microspheres with high exposed {001} facets and the N-doped carbon layer, which facilitates mass transport and enhances electrical conductivity.

  16. Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods

    PubMed Central

    2014-01-01

    Co-doped titanium dioxide (TiO2) nanorods with different doping concentrations were fabricated by a molten salt method. It is found that the morphology of TiO2 changes from nanorods to nanoparticles with increasing doping concentration. The mechanism for the structure and phase evolution is investigated in detail. Undoped TiO2 nanorods show strong ferromagnetism at room temperature, whereas incorporating of Co deteriorates the ferromagnetic ordering. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) results demonstrate that the ferromagnetism is associated with Ti vacancy. PMID:25593558

  17. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability

    NASA Astrophysics Data System (ADS)

    Kim, Minjoong; Kwon, Chorong; Eom, Kwangsup; Kim, Jihyun; Cho, Eunae

    2017-03-01

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2.

  18. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability.

    PubMed

    Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe

    2017-03-14

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO 2 (Nb-TiO 2 ) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO 2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb 0.25 Ti 0.75 O 2 ). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO 2 -nanofibers (Pt/Nb-TiO 2 ) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO 2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO 2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO 2 nanofiber catalyst can be attributed to high corrosion resistance of TiO 2 and strong interaction between Pt and TiO 2 .

  19. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability

    PubMed Central

    Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe

    2017-01-01

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2. PMID:28290503

  20. Influence of Iron Doping on Structural, Optical and Magnetic Properties of TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zahid, R.; Manzoor, M.; Rafiq, A.; Ikram, M.; Nafees, M.; Butt, A. R.; Hussain, S. G.; Ali, S.

    2018-05-01

    In this study, various concentrations of Fe doped TiO2 nanoparticles have been successfully synthesized using the sol-gel method. A variety of characterization techniques as ultra-violet visible (UV-Vis) spectroscopy, X-ray diffractometer (XRD), vibrating sample magnetometry (VSM) and field emission scanning electron microscopy (FESEM) were employed to analyze the prepared nanopowders. XRD measurement confirmed the substitution of Fe ion without disturbing the tetragonal crystal system of TiO2. The crystallite size was found to decrease and lattice strain increases upon doping estimated by Williamson Hall plot. Furthermore, the average grain size calculated by FESEM found was between 10 and 30 nm for pure and doped TiO2. UV-Vis spectroscopy showed an increase in absorption accompanied red shift and increase in band gap energies from 3.36 to 3.62 eV with the addition of Fe. The FTIR spectroscopy was employed to confirm the presence of functional groups in the fabricated nanopowders. Upon mixing the saturation magnetization (Ms) varying from (2.12 to 1.51)10-2 emu/g was observed.

  1. Enhancement of Perovskite Solar Cells Efficiency using N-Doped TiO2 Nanorod Arrays as Electron Transfer Layer.

    PubMed

    Zhang, Zhen-Long; Li, Jun-Feng; Wang, Xiao-Li; Qin, Jian-Qiang; Shi, Wen-Jia; Liu, Yue-Feng; Gao, Hui-Ping; Mao, Yan-Li

    2017-12-01

    In this paper, N-doped TiO 2 (N-TiO 2 ) nanorod arrays were synthesized with hydrothermal method, and perovskite solar cells were fabricated using them as electron transfer layer. The solar cell performance was optimized by changing the N doping contents. The power conversion efficiency of solar cells based on N-TiO 2 with the N doping content of 1% (N/Ti, atomic ratio) has been achieved 11.1%, which was 14.7% higher than that of solar cells based on un-doped TiO 2 . To get an insight into the improvement, some investigations were performed. The structure was examined with X-ray powder diffraction (XRD), and morphology was examined by scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) and Tauc plot spectra indicated the incorporation of N in TiO 2 nanorods. Absorption spectra showed higher absorption of visible light for N-TiO 2 than un-doped TiO 2 . The N doping reduced the energy band gap from 3.03 to 2.74 eV. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra displayed the faster electron transfer from perovskite layer to N-TiO 2 than to un-doped TiO 2 . Electrochemical impedance spectroscopy (EIS) showed the smaller resistance of device based on N-TiO 2 than that on un-doped TiO 2 .

  2. Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction

    NASA Astrophysics Data System (ADS)

    Xin, Gang; Pan, Hongfei; Chen, Dan; Zhang, Zhihua; Wen, Bin

    2013-02-01

    N-doped TiO2 was synthesized by calcining a mixture of titanic acid and graphitic carbon nitride (g-C3N4) at temperatures above 500 °C. The final samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and UV-vis diffuse reflectance spectra. The photocatalytic activity of N-doped TiO2 was studied by assessing the degradation of methylene blue in an aqueous solution, under visible light and UV light irradiation. It was found that the N-doped TiO2 displayed higher photocatalytic activity than pure TiO2, under both visible and UV light.

  3. Fabrication of Ce/N co-doped TiO2/diatomite granule catalyst and its improved visible-light-driven photoactivity.

    PubMed

    Chen, Yan; Liu, Kuiren

    2017-02-15

    Eliminating antibiotic remnants in aquatic environment has become one of the hottest topics among current research works. Thus, we prepared Ce, N co-doped TiO 2 /diatomite granule (CNTD-G) catalyst to provide a new method. As one typical antibiotics, oxytetracycline (OTC) was selected as the target pollutant to be degradated under visible light irradiation. The carrier diatomite helped the spread of TiO 2 nanoparticles onto its surface, and inhibited their agglomeration. The synergy of Ce and N dopants highly improved the visible-light-driven photoactivity of TiO 2 . The optimal doping amount and degradation conditions were determined. Besides, the effects of impurity ions were also investigated, including cations: Ca 2+ , Mg 2+ ; or anions: NO 3 - , SO 4 2- and PO 4 3- . The intermediates generated during degradation process were studied, and the mechanism of the photodegradation process was proposed. CNTD-G could be easily collected from the reactor, and showed excellent recyclability. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synthesis and structural analysis of Fe doped TiO2 nanoparticles using Williamson Hall and Scherer Model

    NASA Astrophysics Data System (ADS)

    Patle, L. B.; Labhane, P. K.; Huse, V. R.; Gaikwad, K. D.; Chaudhari, A. L.

    2018-05-01

    The nanoparticles of Pure and doped Ti1-xFexO were synthesized by modified co-precipitation method successfully with nominal composite of x=0.0, 0.01, 0.03 and 0.05 at room temperature. The precursors were further calcined at 500°C for 6hrs in muffle furnace which results in the formation of different TiO2 phase compositions. The structural analysis carried out by XRD (Bruker D8 Cu-Kα1). X-ray peak broadening analysis was used to evaluate the crystalline sizes, the lattice parameters, atomic packing fraction, c/a ratio, X-ray density and Volume of unit cell. The Williamson Hall analysis is used to find grain size and Strain of prepared TiO2 nano particles. Crystalline TiO2 with a Tetragonal Anatase phase is confirmed by XRD results. The grain size of pure and Fe doped samples were found in the range of 10nm to 18nm. All the physical parameters of anatase tetragonal TiO2 nanoparticles were calculated more precisely using modified W-H plot a uniform deformation model (UDM). The results calculated from both the techniques were approximately similar.

  5. Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.

    2018-05-01

    In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.

  6. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2.

    PubMed

    Ozmen, Murat; Güngördü, Abbas; Erdemoglu, Sema; Ozmen, Nesrin; Asilturk, Meltem

    2015-08-01

    The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Preparation and photocatalytic activity of nitrogen-doped TiO2 hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Cho, Hyung-Joon; Hwang, Poong-Gok; Jung, Dongwoon

    2011-12-01

    TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2-xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2-xNx in spite of the structural difference.

  8. Enhanced supercapacitor performances using C-doped porous TiO2 electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Juanrong; Qiu, Fengxian; Zhang, Ying; Liang, Jianzheng; Zhu, Huijun; Cao, Shunsheng

    2015-11-01

    Considerable efforts have been paid to develop electrochemical capacitors with energy storage capability in order to meet the demands of multifunctional electronics. Here we report a facile method to fabricate C-doped porous anatase TiO2. This technique involves the preparation of monodisperse cationic polystyrene nanoparticles (CPN), following sequential deposition of tetrabutylorthotitanate (TBT), and directly carbonizing of CPN. Interestingly, during the process of carbonizing CPN, a phase transition of TiO2 will be happened and whist C-doped porous anatase TiO2 is in situ formed. When this porous C-doped TiO2 is used as electrode material to prepare electrochemical capacitor, it manifests a higher capacitance than the commercial P25, effectively broadening it potential for many practical applications.

  9. Synergetic effect of Ti 3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO 2/g-C 3N 4 heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kai; Huang, Zhenyu; Zeng, Xiaoqiao

    To improve the utilization of visible light and reduce photogenerated electron/hole recombination, Ti 3+ self-doped TiO 2/oxygen-doped graphitic carbon nitride (Ti 3+-TiO 2/O-g-C 3N 4) heterojunctions were prepared via hydrothermal treatment of a mixture of g-C 3N 4 and titanium oxohydride sol obtained from the reaction of TiH 2 with H 2O 2. In this way, exfoliated O-g-C 3N 4 and Ti 3+-TiO 2 nanoparticles were obtained. Simultaneously, strong bonding was formed between Ti 3+-TiO 2 nanoparticles and exfoliated O-g-C 3N 4 during the hydrothermal process. Charge transfer and recombination processes were characterized by transient photocurrent responses, electrochemical impedance test,more » and photoluminescence spectroscopy. The photocatalytic performances were investigated through rhodamine B degradation test under an irradiation source based on 30 W cold visible-light-emitting diode. The highest visible-light photoelectrochemical and photocatalytic activities were observed from the heterojunction with 1:2 mass ratio of Ti 3+-TiO 2 to O-g-C 3N 4. The photodegradation reaction rate constant based on this heterojuction is 0.0356 min -1, which is 3.87 and 4.56 times higher than those of pristine Ti 3+-TiO 2 and pure g-C 3N 4, respectively. Here, the remarkably high photoelectrochemical and photocatalytic performances of the heterojunctions are mainly attributed to the synergetic effect of efficient photogenerated electron-hole separation, decreased electron transfer resistance from interfacial chemical hydroxy residue bonds, and oxidizing groups originating from Ti 3+-TiO 2 and O-g-C 3N 4.« less

  10. Synergetic Effect of Ti3+ and Oxygen Doping on Enhancing Photoelectrochemical and Photocatalytic Properties of TiO2/g-C3N4 Heterojunctions.

    PubMed

    Li, Kai; Huang, Zhenyu; Zeng, Xiaoqiao; Huang, Baibiao; Gao, Shanmin; Lu, Jun

    2017-04-05

    To improve the utilization of visible light and reduce photogenerated electron/hole recombination, Ti 3+ self-doped TiO 2 /oxygen-doped graphitic carbon nitride (Ti 3+ -TiO 2 /O-g-C 3 N 4 ) heterojunctions were prepared via hydrothermal treatment of a mixture of g-C 3 N 4 and titanium oxohydride sol obtained from the reaction of TiH 2 with H 2 O 2 . In this way, exfoliated O-g-C 3 N 4 and Ti 3+ -TiO 2 nanoparticles were obtained. Simultaneously, strong bonding was formed between Ti 3+ -TiO 2 nanoparticles and exfoliated O-g-C 3 N 4 during the hydrothermal process. Charge transfer and recombination processes were characterized by transient photocurrent responses, electrochemical impedance test, and photoluminescence spectroscopy. The photocatalytic performances were investigated through rhodamine B degradation test under an irradiation source based on 30 W cold visible-light-emitting diode. The highest visible-light photoelectrochemical and photocatalytic activities were observed from the heterojunction with 1:2 mass ratio of Ti 3+ -TiO 2 to O-g-C 3 N 4 . The photodegradation reaction rate constant based on this heterojuction is 0.0356 min -1 , which is 3.87 and 4.56 times higher than those of pristine Ti 3+ -TiO 2 and pure g-C 3 N 4 , respectively. The remarkably high photoelectrochemical and photocatalytic performances of the heterojunctions are mainly attributed to the synergetic effect of efficient photogenerated electron-hole separation, decreased electron transfer resistance from interfacial chemical hydroxy residue bonds, and oxidizing groups originating from Ti 3+ -TiO 2 and O-g-C 3 N 4 .

  11. Synergetic effect of Ti 3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO 2/g-C 3N 4 heterojunctions

    DOE PAGES

    Li, Kai; Huang, Zhenyu; Zeng, Xiaoqiao; ...

    2017-03-07

    To improve the utilization of visible light and reduce photogenerated electron/hole recombination, Ti 3+ self-doped TiO 2/oxygen-doped graphitic carbon nitride (Ti 3+-TiO 2/O-g-C 3N 4) heterojunctions were prepared via hydrothermal treatment of a mixture of g-C 3N 4 and titanium oxohydride sol obtained from the reaction of TiH 2 with H 2O 2. In this way, exfoliated O-g-C 3N 4 and Ti 3+-TiO 2 nanoparticles were obtained. Simultaneously, strong bonding was formed between Ti 3+-TiO 2 nanoparticles and exfoliated O-g-C 3N 4 during the hydrothermal process. Charge transfer and recombination processes were characterized by transient photocurrent responses, electrochemical impedance test,more » and photoluminescence spectroscopy. The photocatalytic performances were investigated through rhodamine B degradation test under an irradiation source based on 30 W cold visible-light-emitting diode. The highest visible-light photoelectrochemical and photocatalytic activities were observed from the heterojunction with 1:2 mass ratio of Ti 3+-TiO 2 to O-g-C 3N 4. The photodegradation reaction rate constant based on this heterojuction is 0.0356 min -1, which is 3.87 and 4.56 times higher than those of pristine Ti 3+-TiO 2 and pure g-C 3N 4, respectively. Here, the remarkably high photoelectrochemical and photocatalytic performances of the heterojunctions are mainly attributed to the synergetic effect of efficient photogenerated electron-hole separation, decreased electron transfer resistance from interfacial chemical hydroxy residue bonds, and oxidizing groups originating from Ti 3+-TiO 2 and O-g-C 3N 4.« less

  12. Preparation of Pd-loaded La-doped TiO2 nanotubes and investigation of their photocatalytic activity under visible light

    NASA Astrophysics Data System (ADS)

    Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Wang, Xiaodong; Yang, Jianjun

    2013-11-01

    Orthorhombic titanic acid nanotubes (TAN) have large BET surface area and small-diameter one-dimensional nanotubular morphology, so they can work as a good supporter and a precursor of TiO2. However, in our former research, we found that calcination of TAN to anatase TiO2 would destroy the nanotubular structure and decrease the BET surface area sharply. In this work, we utilized the pillar effect of the foreign nanoparticles (La2O3) to keep the nanotubular morphology of TiO2, and obtained the anatase TiO2 nanotubes with large BET surface area. For improving the photocatalytic activity, Pd nanoparticles were loaded as the electron traps on the surface of La-doped TiO2 by photo-deposition method. The photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, diffuse reflectance spectra, and N2 adsorption-desorption isotherms measurement. Their photocatalytic activities were evaluated by the removal of propylene under visible light irradiation ( λ ≥ 420 nm). The results showed that the photocatalytic activity of Pd-loaded La-doped TiO2 nanotubes improved effectively compared with that of La-doped TiO2 and pure TiO2.

  13. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Xu, Shiping; Sun, Xiang; Xu, Xing; Gao, Baoyu

    2018-04-01

    In this work, a nanocomposite of TiO2 nanoparticles coupled with sulfur-doped C3N4 (S-C3N4) laminated layer was successfully fabricated using a facile impregnation method and the nanocomposite exhibited superior photocatalytic activity in pollutant removal under visible light irradiation, compared to bare TiO2, g-C3N4 and binary C3N4-TiO2 nanocomposite. The enhanced photocatalytic activity was benefited from the efficient migration and transformation of electron-hole (e--h+) pairs, improved visible light absorption capability, and relatively large specific surface area induce by sulfur doping. Interestingly, the introduction of sulfur changes regulated the morphology of g-C3N4 leading to the formation of ultrathin g-C3N4 layer nanosheet assemblies and unique bar-like g-C3N4/TiO2 nanocomposite, which is beneficial for the outstanding performance of the product. In addition, trapping experiment was carried out to identify the main active species in the photocatalytic reaction over the S-C3N4/TiO2 photocatalyst, and functional mechanism of the composite was proposed. This work may provide new ideas for the fabrication and utilization of highly efficient photocatalyst with excellent visible light response in environmental purification applications.

  14. PAMAM templated N,Pt co-doped TiO2 for visible light photodegradation of brilliant black.

    PubMed

    Nzaba, Sarre Kadia Myra; Ntsendwana, Bulelwa; Mamba, Bhekie Brilliance; Kuvarega, Alex Tawanda

    2018-05-01

    This study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal co-doped TiO 2 . N,Pt co-doped TiO 2 photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PG0) as a template and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet/visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25, revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO 2 was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180-min reaction time with an initial concentration of 50 ppm. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The N,Pt co-doped TiO 2 also exhibited pseudo-first-order kinetic behavior with half-life and rate constant of 0.37 and 0.01984 min -1 , respectively. The mechanism of the photodegradation of BB under the visible light irradiation was proposed. The obtained results prove that co-doping of TiO 2 with N and Pt contributed to the enhanced photocatalytic performances of TiO 2 for visible light-induced photodegradation of organic contaminants for environmental remediation. Therefore, this work provides a new approach to the synthesis of PAMAM templated N,Pt co-doped TiO 2 for visible light photodegradation of brilliant black.

  15. The presence of Ti(II) centers in doped nanoscale TiO2 and TiO2-xNx

    NASA Astrophysics Data System (ADS)

    Mikulas, Tanya; Fang, Zongtang; Gole, James L.; White, Mark G.; Dixon, David A.

    2012-06-01

    Unusual trends are observed in the Ti (2s, 2p) XPS spectra of Fe(II) doped TiO2 and TiO2-xNx. The binding energy of Ti (2s, 2p) initially decreases with increasing Fe(II) concentration, as expected, but increases at higher Fe(II) doping levels. Density functional theory is used to analyze the results. The observed VB-XPS and core level XPS spectra are consistent with the facile charge transfer sequence Ti(IV) + Fe(II) → Ti(III) + Fe(III) followed by Ti(III) + Fe(II) → Ti(II) + Fe(III). The formed Ti(II) sites may be relevant to nanoparticle catalysis on TiO2 surfaces.

  16. In-Situ-Reduced Synthesis of Ti 3+ Self-Doped TiO 2 /g-C 3 N 4 Heterojunctions with High Photocatalytic Performance under LED Light Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kai; Gao, Shanmin; Wang, Qingyao

    2015-04-27

    A simple one-step calcination route was used to prepare Ti3+ self-doped TiO2/g-C3N4 heterojunctions by mixture of H2Ti3O7 and melamine. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy, and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) technologies were used to characterize the structure, crystallinity, morphology, and chemical state of the as-prepared samples. The absorption of the prepared Ti3+ self-doped TiO2/g-C3N4 heterojunctions shifted to a longer wavelength region in comparison with pristine TiO2 and g-C3N4. The photocatalytic activities of the heterojunctions were studied by degrading methylene blue under a 30more » W visible-light-emitting diode irradiation source. The visible-light photocatalytic activities enhanced by the prepared Ti3+ self-doped TiO2/g-C3N4 heterojunctions were observed and proved to be better than that of pure TiO2 and g-C3N4. The photocatalysis mechanism was investigated and discussed. The intensive separation efficiency of photogenerated electron-hole in the prepared heterojunction was confirmed by photoluminescence (PL) spectra. The removal rate constant reached 0.038 min(-1) for the 22.3 wt % Ti3+ self-doped TiO2/g-C3N4 heterojunction, which was 26.76 and 7.6 times higher than that of pure TiO2 and g-C3N4, respectively. The established heterojunction between the interfaces of TiO2 nanoparticles and g-C3N4 nanosheets as well as introduced Ti3+ led to the rapid electron transfer rate and improved photoinduced electron-hole pair's separation efficiency, resulting in the improved photocatalytic performance of the Ti3+ self-doped TiO2/g-C3N4 heterojunctions.« less

  17. Study of concentration-dependent cobalt ion doping of TiO2 and TiO(2-x)Nx at the nanoscale.

    PubMed

    Gole, James L; Prokes, Sharka M; Glembocki, O J; Wang, Junwei; Qiu, Xiaofeng; Burda, Clemens

    2010-07-01

    Experiments with a porous sol-gel generated TiO(2) nanocolloid and its corresponding oxynitride TiO(2-x)N(x) are carried out to evaluate those transformations which accompany additional doping with transition metals. In this study, doping with cobalt (Co(ii)) ions is evaluated using a combination of core level and VB-photoelectron and optical spectroscopy, complementing data obtained from Raman spectroscopy. Raman spectroscopy suggests that cobalt doping of porous sol-gel generated anatase TiO(2) and nitridated TiO(2-x)N(x) introduces a spinel-like structure into the TiO(2) and TiO(2-x)N(x) lattices. TEM and XPS data complemented by valence band-photoelectron spectra demonstrate that metallic cobalt clusters are not formed even at high doping levels. As evidenced by Raman spectroscopy, the creation of a spinel-like structure is commensurate with the room temperature conversion of the oxide and its oxynitride from the anatase to the rutile form. The onset of this kinetically driven process correlates with the formation of spinel sites within the TiO(2) and TiO(2-x)N(x) particles. Despite their visible light absorption, the photocatalytic activity of these cobalt seeded systems is diminished relative to the oxynitride TiO(2-x)N(x).

  18. Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Yanlin; Liu, Peihong; Wu, Honghai

    2015-02-01

    One-dimensional (1D) nanowire material (especially nonmetal doped 1D nanowires) synthesized by a facile way is of great significance and greatly desired as it has higher charge carrier mobility and lower carrier recombination rate. N, S-codoped TiO2 nanowires were synthesized using titanium sulfate as a precursor and isopropanol as a protective capping agent by a hydrothermal route. The obtained doped nanowires were characterized by XRD, SEM, HRTEM, SAED, XPS, BET and UV-vis absorption spectrum. The incorporation of N and S into TiO2 NWs can lead to the expansion of its lattice and remarkably lower its electron-transfer resistance. Photocatalytic activity measurement showed that the N, S-codoped TiO2 nanowires with high quantum efficiency revealed the best photocatalytic performance for atrazine degradation under visible light irradiation compared to N, S-codoped TiO2 nanoparticles and S-doped TiO2 nanowires, which was attributed to (i) the synergistic effect of N and S doping in narrowing the band gap, separating electron-hole pairs and increasing the photoinduced electrons, and (ii) extending the anatase-to-rutile transformation temperature above 600 °C.

  19. Atomic layer deposition of TiO2 on nitrogen-doped carbon nanofibers supported Ru nanoparticles for flexible Li-O2 battery: A combined DFT and experimental study

    NASA Astrophysics Data System (ADS)

    Yang, Jingbo; Mi, Hongwei; Luo, Shan; Li, Yongliang; Zhang, Peixin; Deng, Libo; Sun, Lingna; Ren, Xiangzhong

    2017-11-01

    Flexible Li-O2 batteries have attracted worldwide research interests and been considered to be potential alternatives for the next-generation flexible devices. Nitrogen-doped carbon nanofibers (N-CNFs) prepared by electrospinning are used as flexible substrate and an amorphous TiO2 layer is coated by atomic layer deposition (ALD) and then decorated with Ru nanoparticles. The Ru/N-CNFs@TiO2 composite is directly used as a free-standing electrode for Li-O2 batteries and the electrode delivers a high specific capacity, improved round-trip efficiency and good cycling ability. The superior electrochemical performance can be attributed to the amorphous TiO2 protecting layer and superior catalytic activity of Ru nanoparticles. Based on density functional theory (DFT) calculations from first principles, the carbon electrode after coating with TiO2 is more stable during discharge/charge process. The analysis of Li2O2 on three different interfaces (Li2O2/N-CNFs, Li2O2/TiO2, and Li2O2/Ru) indicates that the electron transport capacity was higher on Ru and TiO2 compared with N-CNFs, therefore, Li2O2 could be formed and decomposed more easily on the Ru/N-CNFs@TiO2 cathode. This work paves a way to develop the free-standing cathode materials for the future development of high-performance flexible energy storage systems.

  20. Effect of Cr-N codoping on structural phase transition, Raman modes, and optical properties of TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hassnain Jaffari, G.; Tahir, Adnan; Ali, Naveed Zafar; Ali, Awais; Qurashi, Umar S.

    2018-04-01

    Noncompensated cation-anion codoping in TiO2 nanoparticles has been achieved by a chemical synthesis route. Significant reduction in the optical bandgap and enhancement in the absorption of visible light have been observed. Structural phase transformation has been tracked in detail as a function of doping and heat treatment temperature. Anatase to rutile phase transition temperature for doped samples was higher in comparison to the pure TiO2 nanoparticles. Nitrogen and chromium addition increases the phase transformation barrier, where the effect of the former dopant is of more significance. The Raman results showed an increase in the oxygen content with higher post annealing temperatures. With Cr incorporation, the peak associated with the Eg mode has been found to shift towards a higher wave number, while with nitrogen incorporation, the shift was towards a lower wave number. A decrease in reflectance with N co-doping for all samples, irrespective of phase and annealing temperatures, has been observed. In compositions with nitrogen of the same content, bandgap reduction was higher in the rutile phase in comparison to the anatase phase. In general, overall results revealed that with a higher loading fraction of ammonia, the N content increases, while Cr addition prevents nitrogen loss even up to high post annealing temperatures, i.e., 850 °C.

  1. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm < λ < 780 nm) irradiation is used to evaluate the photocatalytic activity of the composites. Compared with pure TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  2. Synthesis and Characterization of N-Doped Porous TiO2 Hollow Spheres and Their Photocatalytic and Optical Properties

    PubMed Central

    Li, Hongliang; Liu, Hui; Fu, Aiping; Wu, Guanglei; Xu, Man; Pang, Guangsheng; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2016-01-01

    Three kinds of N-doped mesoporous TiO2 hollow spheres with different N-doping contents, surface area, and pore size distributions were prepared based on a sol–gel synthesis and combined with a calcination process. Melamine formaldehyde (MF) microspheres have been used as sacrificial template and cetyltrimethyl ammonium bromide (CTAB) or polyvinylpyrrolidone (PVP) was selected as pore-directing agent. Core–shell intermediate spheres of titania-coated MF with diameters of 1.2–1.6 μm were fabricated by varying the volume concentration of TiO2 precursor from 1 to 3 vol %. By calcining the core–shell composite spheres at 500 °C for 3 h in air, an in situ N-doping process occurred upon the decomposition of the MF template and CTAB or PVP pore-directing surfactant. N-doped mesoporous TiO2 hollow spheres with sizes in the range of 0.4–1.2 μm and shell thickness from 40 to 110 nm were obtained. The composition and N-doping content, thermal stability, morphology, surface area and pore size distribution, wall thickness, photocatalytic activities, and optical properties of the mesoporous TiO2 hollow spheres derived from different conditions were investigated and compared based on Fourier-transformation infrared (FTIR), SEM, TEM, thermogravimetric analysis (TGA), nitrogen adsorption–desorption, and UV–vis spectrophotoscopy techniques. The influences of particle size, N-doping, porous, and hollow characteristics of the TiO2 hollow spheres on their photocatalytic activities and optical properties have been studied and discussed based on the composition analysis, structure characterization, and optical property investigation of these hollow spherical TiO2 matrices. PMID:28773967

  3. Photocatalytic degradation of malathion using Zn2+-doped TiO2 nanoparticles: statistical analysis and optimization of operating parameters

    NASA Astrophysics Data System (ADS)

    Nasseri, Simin; Omidvar Borna, Mohammad; Esrafili, Ali; Rezaei Kalantary, Roshanak; Kakavandi, Babak; Sillanpää, Mika; Asadi, Anvar

    2018-02-01

    A Zn2+-doped TiO2 is successfully synthesized by a facile photodeposition method and used in the catalytic photo-degradation of organophosphorus pesticide, malathion. The obtained photocatalysts are characterized in detail by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD results confirm the formation of the anatase and rutile phases for the Zn2+-doped TiO2 nanoparticles, with crystallite sizes of 12.9 nm. Zn2+-doped TiO2 that was synthesized by 3.0%wt Zn doping at 200 °C exhibited the best photocatalytic activity. 60 sets of experiments were conducted using response surface methodology (RSM) by adjusting five operating parameters, i.e. initial malathion concentration, catalyst dose, pH, reaction time at five levels and presence or absence of UV light. The analysis revealed that all considered parameters are significant in the degradation process in their linear terms. The optimum values of the variables were found to be 177.59 mg/L, 0.99 g/L, 10.99 and 81.04 min for initial malathion concentration, catalyst dose, pH and reaction time, respectively, under UV irradiation (UV ON). Under the optimized conditions, the experimental values of degradation and mineralization were 98 and 74%, respectively. Moreover, the effects of competing anions and H2O2 on photocatalyst process were also investigated.

  4. Sol-Gel Synthesis of Fe-Doped TiO2 Nanocrystals

    NASA Astrophysics Data System (ADS)

    Marami, Mohammad Bagher; Farahmandjou, Majid; Khoshnevisan, Bahram

    2018-03-01

    Fe-doped TiO2 powders were synthesized by the sol-gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18-39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol-gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase/rutile) of Fe-doped TiO2 by this facile method.

  5. Sol-Gel Synthesis of Fe-Doped TiO2 Nanocrystals

    NASA Astrophysics Data System (ADS)

    Marami, Mohammad Bagher; Farahmandjou, Majid; Khoshnevisan, Bahram

    2018-07-01

    Fe-doped TiO2 powders were synthesized by the sol-gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18-39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol-gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase /rutile) of Fe-doped TiO2 by this facile method.

  6. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue

    NASA Astrophysics Data System (ADS)

    Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A.

    2015-01-01

    Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst.

  7. Effect of band gap engineering in anionic-doped TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee

    2017-01-01

    A simple yet promising strategy to modify TiO2 band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO2 was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti3+ impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti3+ ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO2 shows better optical properties relative to single N and F doped TiO2 with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO2 uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO2. This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  8. Effect of fluorine doped TiO2 on the property of perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Zhang, X. Q.; Wu, Y. P.; Huang, Y.; Zhou, Z. H.; Shen, S.

    2017-03-01

    Anatase TiO2 nanoparticles with different amounts of fluorine doping were synthesized by a hydrothermal method using hydrogen titanate nanotubes as a precursor and applied as mesoporous layer for preparing perovskite solar cell. The morphology and structures were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD), meanwhile, the properties and performances were tested by photoluminescence spectrum (PL) and current density and voltage (J-V) curve. It was found that doping fluorine into TiO2 made the photoelectric conversion efficiency (PCE) of perovskite solar cell (PSC) to be improved. The best PCE of PSC based on a F-doped TiO2 was 13.06% and increased by 51% compared to an un-doped TiO2. The study provided a direction for the exploration of high performance electron transport layer of perovskite solar cell.

  9. Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nilima S.; Warule, Sambhaji S.; Dhanmane, Sushil A.; Kulkarni, Milind V.; Valant, Matjaz; Kale, Bharat B.

    2013-09-01

    Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO2 from abundant H2S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides.Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and

  10. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    PubMed Central

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-01-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001

  11. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    NASA Astrophysics Data System (ADS)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  12. On the role of Fe ions on magnetic properties of doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Tolea, F.; Grecu, M. N.; Kuncser, V.; Constantinescu, S. Gr.; Ghica, D.

    2015-04-01

    The role of iron doping on magnetic properties of hydrothermal anatase TiO2:57Fe (0-1 at. %) nanoparticles is investigated by combining superconducting quantum interference device magnetometry with Mössbauer and electron paramagnetic resonance techniques. The results on both as-prepared and thermally treated samples in reduced air atmosphere reveal complexity of magnetic interactions, in connection to certain iron ion electron configurations and defects (oxygen vacancies, F-center, and Ti3+ ions). The distribution of iron ions is predominantly at nanoparticle surface layers. Formation of weak ferromagnetic domains up to 380 K is mainly related to defects, supporting the bound magnetic polaron model.

  13. Enhanced Photocatalytic Activity of TiO2 Nanoparticles Supported on Electrically Polarized Hydroxyapatite.

    PubMed

    Zhang, Xuefei; Yates, Matthew Z

    2018-05-23

    Fast recombination of photogenerated charge carriers in titanium dioxide (TiO 2 ) remains a challenging issue, limiting the photocatalytic activity. This study demonstrates increased photocatalytic performance of TiO 2 nanoparticles supported on electrically polarized hydroxyapatite (HA) films. Dense and thermally stable yttrium and fluorine co-doped HA films with giant internal polarization were synthesized as photocatalyst supports. TiO 2 nanoparticles deposited on the support were then used to catalyze the photochemical reduction of aqueous silver ions to produce silver nanoparticles. It was found that significantly more silver nanoparticles were produced on polarized HA supports than on depolarized HA supports. In addition, the photodegradation of methyl orange with TiO 2 nanoparticles on polarized HA supports was found to be much faster than with TiO 2 nanoparticles on depolarized HA supports. It is proposed that separation of photogenerated electrons and holes in TiO nanoparticles is promoted by the internal polarization of the HA support, and consequently, the recombination of charge carriers is mitigated. The results imply that materials with large internal polarization can be used in strategies for enhancing quantum efficiency of photocatalysts.

  14. Synthesis of Cr3+-doped TiO2 nanoparticles: characterization and evaluation of their visible photocatalytic performance and stability.

    PubMed

    Mendiola-Alvarez, Sandra Yadira; Guzmán-Mar, Jorge Luis; Turnes-Palomino, Gemma; Maya-Alejandro, Fernando; Caballero-Quintero, Adolfo; Hernández-Ramírez, Aracely; Hinojosa-Reyes, Laura

    2017-09-28

    Cr 3+ -doped TiO 2 nanoparticles (Ti-Cr) were synthesized by microwave-assisted sol-gel method. The Ti-Cr catalyst was characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, N 2 adsorption-desorption analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy (XPS) and zetametry. The anatase mesoporous Ti-Cr material exhibited a specific surface area of 54.5 m 2 /g. XPS analysis confirmed the proper substitution of Ti 4+ cations by Cr 3+ cations in the TiO 2 matrix. The particle size was of average size of 17 nm for the undoped TiO 2 but only 9.5 nm for Ti-Cr. The Cr atoms promoted the formation of hydroxyl radicals and modified the surface adsorptive properties of TiO 2 due to the increase in surface acidity of the material. The photocatalytic evaluation demonstrated that the Ti-Cr catalyst completely degraded (4-chloro-2-methylphenoxy) acetic acid under visible light irradiation, while undoped TiO 2 and P25 allowed 45.7% and 31.1%, respectively. The rate of degradation remained 52% after three cycles of catalyst reuse. The higher visible light photocatalytic activity of Ti-Cr was attributed to the beneficial effect of Cr 3+ ions on the TiO 2 surface creating defects within the TiO 2 crystal lattice, which can act as charge-trapping sites, reducing the electron-hole recombination process.

  15. Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis.

    PubMed

    Yoshida, Tomoko; Niimi, Satoshi; Yamamoto, Muneaki; Nomoto, Toyokazu; Yagi, Shinya

    2015-06-01

    The thickness-controlled TiO2 thin films are fabricated by the pulsed laser deposition (PLD) method. These samples function as photocatalysts under UV light irradiation and the reaction rate depends on the TiO2 thickness, i.e., with an increase of thickness, it increases to the maximum, followed by decreasing to be constant. Such variation of the reaction rate is fundamentally explained by the competitive production and annihilation processes of photogenerated electrons and holes in TiO2 films, and the optimum TiO2 thickness is estimated to be ca. 10nm. We also tried to dope nitrogen into the effective depth region (ca. 10nm) of TiO2 by an ion implantation technique. The nitrogen doped TiO2 enhanced photocatalytic activity under visible-light irradiation. XANES and XPS analyses indicated two types of chemical state of nitrogen, one photo-catalytically active N substituting the O sites and the other inactive NOx (1⩽x⩽2) species. In the valence band XPS spectrum of the high active sample, the additional electronic states were observed just above the valence band edge of a TiO2. The electronic state would be originated from the substituting nitrogen and be responsible for the band gap narrowing, i.e., visible light response of TiO2 photocatalysts. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Barkhade, Tejal; Banerjee, Indrani

    2018-05-01

    The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.

  17. Nanostructured microtubes based on TiO2 doped by Zr and Hf oxides with the anatase structure

    NASA Astrophysics Data System (ADS)

    Zheleznov, VV; Voit, EI; Sushkov, YV; Sarin, SA; Kuryavyi, VG; Opra, DP; Gnedenkov, SV; Sinebryukhov, SL; Sokolov, AA

    2016-01-01

    The nanostructured microtubes based on TiO2 have been prepared on the carbon fiber template using the sol-gel method. The microtubes consist of nanoparticles of metal oxides: TiO2/ZrO2 and TiO2/HfO2. The dependence of microtubes morphology and nanoparticles structure on the synthesis conditions has been studied using the methods of SEM, SAXS, and Raman spectroscopy. It has been demonstrated that at the stoichiometric ratio of up to 0.04 for Zr/Ti and up to 0.06 for Hf/Ti microtubes consist of uniform nanoparticles with the anatase structure. Along with further increase of the dopants content in the microtubes composition, nanoparticles acquire the core-shell structure. It has been suggested that nanoparticles have a core composed of the solid solutions Ti1-xZrxO2 or Ti1-xHfxO2 and a shell consisting of zirconium or hafnium titanate. The fabricated Zr- and Hf-doped TiO2 materials were investigated in view of their possible use as anode materials for Li-ion batteries. Charge- discharge measurements showed that the doped samples manifested significantly higher reversibility in comparison with the undoped TiO2. The method opens new prospects in synthesis of nanostructured materials for Li-ion batteries application.

  18. Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase.

    PubMed

    De Los Santos, Desiré M; Navas, Javier; Aguilar, Teresa; Sánchez-Coronilla, Antonio; Fernández-Lorenzo, Concha; Alcántara, Rodrigo; Piñero, Jose Carlos; Blanco, Ginesa; Martín-Calleja, Joaquín

    2015-01-01

    Tm-doped TiO2 nanoparticles were synthesized using a water-controlled hydrolysis reaction. Analysis was performed in order to determine the influence of the dopant concentration and annealing temperature on the phase, crystallinity, and electronic and optical properties of the resulting material. Various characterization techniques were utilized such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy. For the samples annealed at 773 and 973 K, anatase phase TiO2 was obtained, predominantly internally doped with Tm(3+). ICP-AES showed that a doping concentration of up to 5.8 atom % was obtained without reducing the crystallinity of the samples. The presence of Tm(3+) was confirmed by X-ray photoelectron spectroscopy and UV-vis spectroscopy: the incorporation of Tm(3+) was confirmed by the generation of new absorption bands that could be assigned to Tm(3+) transitions. Furthermore, when the samples were annealed at 1173 K, a pyrochlore phase (Tm2Ti2O7) mixed with TiO2 was obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase.

  19. Microcystin-LR removal from aqueous solutions using a magnetically separable N-doped TiO2 nanocomposite under visible light irradiation

    EPA Science Inventory

    The performance of magnetically separable N-doped TiO2 was found to be significantly improved when compared with a non-magnetic N-doped TiO2 for the aqueous removal of cyanotoxin Microcystin-LR. The observed enhanced photocatalytic activity may be related to the presence of ferri...

  20. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: Influence of physical parameters.

    PubMed

    Horovitz, Inna; Avisar, Dror; Baker, Mark A; Grilli, Rossana; Lozzi, Luca; Di Camillo, Daniela; Mamane, Hadas

    2016-06-05

    Commercial α-Al2O3 photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO2 photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO2 films are in the form of anatase with 78-84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3-0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO2-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO2-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    NASA Astrophysics Data System (ADS)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  2. Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films

    PubMed Central

    2014-01-01

    This work deals with the deposition of Cr-doped TiO2 thin films on porous silicon (PS) prepared from electrochemical anodization of multicrystalline (mc-Si) Si wafers. The effect of Cr doping on the properties of the TiO2-Cr/PS/Si samples has been investigated by means of X-ray diffraction (XRD), atomic force microcopy (AFM), photoluminescence, lifetime, and laser beam-induced current (LBIC) measurements. The photocatalytic activity is carried out on TiO2-Cr/PS/Si samples. It was found that the TiO2-Cr/PS/mc-Si type structure degrades an organic pollutant (amido black) under ultraviolet (UV) light. A noticeable degradation of the pollutant is obtained for a Cr doping of 2 at. %. This result is discussed in light of LBIC and photoluminescence measurements. PMID:25313302

  3. Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films.

    PubMed

    Hajjaji, Anouar; Trabelsi, Khaled; Atyaoui, Atef; Gaidi, Mounir; Bousselmi, Latifa; Bessais, Brahim; El Khakani, My Ali

    2014-01-01

    This work deals with the deposition of Cr-doped TiO2 thin films on porous silicon (PS) prepared from electrochemical anodization of multicrystalline (mc-Si) Si wafers. The effect of Cr doping on the properties of the TiO2-Cr/PS/Si samples has been investigated by means of X-ray diffraction (XRD), atomic force microcopy (AFM), photoluminescence, lifetime, and laser beam-induced current (LBIC) measurements. The photocatalytic activity is carried out on TiO2-Cr/PS/Si samples. It was found that the TiO2-Cr/PS/mc-Si type structure degrades an organic pollutant (amido black) under ultraviolet (UV) light. A noticeable degradation of the pollutant is obtained for a Cr doping of 2 at. %. This result is discussed in light of LBIC and photoluminescence measurements.

  4. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.

    PubMed

    Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He

    2018-03-26

    An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    NASA Astrophysics Data System (ADS)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  6. Preparation of (Fe, N)-doped TiO2 powders and their antibacterial activities under visible light irradiation.

    PubMed

    He, Rong-Liang; Wei, Yi; Cao, Wen-Bin

    2009-02-01

    Yellowish (Fe, N)-doped nanocrystalline TiO2 powders have been prepared using TiOSO4, CO(NH2)2, Fe(NO3)3.9H2O and CN3H5.HCl as precursors by hydrothermal method. The as-synthesized powders were anatase in phase and the grain size was about 10 nm according to the TEM photos. The ratio of Fe/Ti is 2.2 at% and N/O is 0.8 at% respectively. TiO2 powders were mixed with organic silicon and acrylic syrup to test their antibacterial performance by the colony counting method. The results show that the sterilization ratio of E. coli by the heat-treated (Fe, N)-doped nanocrystalline TiO2 powders is reached up to 94.5% while that of the powders without any heat treatment is 91.1% by 8 hours-400 lux-Visible-light irradiation with humidity of 55% RH.

  7. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition.

    PubMed

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen

    2009-03-15

    Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.

  8. Band edge movement and structural modifications in transition metal doped TiO2 nanocrystals for the application of DSSC

    NASA Astrophysics Data System (ADS)

    Patle, L. B.; Huse, V. R.; Chaudhari, A. L.

    2017-10-01

    Nanocrystalline undoped and transition metal ion doped (TM:Cu2+, Mn2+ and Fe3+) TiO2 nanoparticles, with 1 mol% were synthesized by a simple and cost effective modified co-precipitation method at room temperature and were successfully used as photoanode for dye sensitized solar cell (DSSC). The effect of transition metal ions into TiO2 nano crystalline powder has been systematically investigated using x-ray diffraction (XRD), UV-Vis spectroscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX). The results of XRD confirm nanocrystalline anatase tetragonal structure of prepared undoped and TM doped TiO2 semiconductor. The influence of doping on band edge movement has been estimated using UV-visible spectroscopy. The SEM results indicate that microscopic effect of doping on morphology of the TiO2. The peaks of EDX signify incorporation of transition metal cations into TiO2 lattice. The effect of doping on flat band potential was estimated using interpolation on Mott-Schottky plot. The performances of DSSCs of undoped and doped TiO2 photoelectrodes were investigated under light illumination. In comparison with undoped and (Cu2+, Fe3+) doped TiO2 photoanodes we found that incorporation of Mn2+ into TiO2 exhibits improvement in photoconversion efficiency (η). There is increase in photoconversion efficiency of DSSCs with Mn2+ doped TiO2 by 6% as compared to that of undoped TiO2 photoanode.

  9. Improved performance of Ag-doped TiO2 synthesized by modified sol-gel method as photoanode of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal

    2016-08-01

    Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol-gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor's blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density ( J sc), open-circuit voltage ( V oc), fill factor (FF) and the overall energy conversion efficiency ( η) were 1.07 mA cm-2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm-2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.

  10. Influence of different aluminum salts on the photocatalytic properties of Al doped TiO2 nanoparticles towards the degradation of AO7 dye.

    PubMed

    Luo, Jin-Ling; Wang, Shi-Fa; Liu, Wei; Tian, Cheng-Xiang; Wu, Ju-Wei; Zu, Xiao-Tao; Zhou, Wei-Lie; Yuan, Xiao-Dong; Xiang, Xia

    2017-08-14

    Three kinds of Al-TiO 2 samples and pure TiO 2 samples were synthesized via a modified polyacrylamide gel route using different aluminum salts, including Al 2 (SO 4 ) 3 ∙18H 2 O, AlCl 3 , and Al(NO 3 ) 3 ∙9H 2 O under identical conditions. The influence of different aluminum salts on the phase purity, morphologies, thermal stability of anatase and photocatalytic properties of the as-prepared Al-TiO 2 nanoparticles were studied. The energy gap (Eg) of Al-TiO 2 nanoparticles decreases due to Al ion doping into TiO 2 . The photocatalytic activities of the Al-TiO 2 samples were investigated by the degradation of acid orange 7 dye in aqueous solution under simulated solar irradiation. The Al-TiO 2 nanoparticles prepared from Al(NO 3 ) 3 ∙9H 2 O exhibit the best photocatalytic activity among the four kinds of samples, followed in turn by the Al-TiO 2 nanoparticles prepared with AlCl 3 , Al 2 (SO 4 ) 3 ∙18H 2 O and pure TiO 2 . The different performances are attributed to complex effects of Eg, particle size, surface morphology, phase purity and the defect sites of the Al-TiO 2 nanoparticles.

  11. TiO(2) doping by hydroxyurea at the nucleation stage: towards a new photocatalyst in the visible spectral range.

    PubMed

    Azouani, R; Tieng, S; Chhor, K; Bocquet, J-F; Eloy, P; Gaigneaux, E M; Klementiev, K; Kanaev, A V

    2010-10-07

    We report an original method of preparation of OCN-doped TiO(2) for photocatalysis in the visible spectral range. The preparation is achieved by a sol-gel route using titanium tetraisopropoxide precursor. Special attention was paid to fluid micromixing, which enables homogeneous reaction conditions in the reactor bulk and monodispersity of the produced clusters/nanoparticles. The dopant hydroxyurea (HyU, CH(4)N(2)O(2)) is injected into the reactive fluid at the nucleation stage, which lasts tens of milliseconds. The doping results in a strong yellow coloration of the nanocolloids due to the absorption band in the spectral range 380-550 nm and accelerates the aggregation kinetics of both nuclei at the induction stage and sub-nuclei units (clusters) at the nucleation stage. FTIR, Raman and UV-visible absorption analyses show the formation of a stable HyU-TiO(2) complex. EXAFS spectra indicate no appreciable changes of the first-shell Ti atom environment. The doping agent takes available surface sites of TiO(2) clusters/nanoparticles attaining ∼10% molar loading. The reaction kinetics then accelerates due to a longer collisional lifetime between nanoparticles induced by the formation of a weak [double bond, length as m-dash]OTi bond. The OCN-group bonding to titanium atoms produces a weakening of the C[double bond, length as m-dash]O double bond and a strengthening of the C-N and N-O bonds.

  12. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  13. Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tran, Vy Anh; Truong, Trieu Thinh; Phan, Thu Anh Pham; Nguyen, Trang Ngoc; Huynh, Tuan Van; Agresti, Antonio; Pescetelli, Sara; Le, Tien Khoa; Di Carlo, Aldo; Lund, Torben; Le, So-Nhu; Nguyen, Phuong Tuyet

    2017-03-01

    Our research aimed to improve the overall energy conversion efficiency of DSCs by applying nitrogen-doped TiO2 nano-tubes (N-TNT) for the preparation of DSCs photo-anodes. The none-doped TiO2 nano-tubes (TNTs) were synthesized by alkaline hydrothermal treatment of Degussa P25 TiO2 particles in 10 M NaOH. The nano-tubes were N-doped by reflux in various concentrations of NH4NO3. The effects of nitrogen doping on the structure, morphology, and crystallography of N-TNT were analyzed by transmission electron microscopy (TEM), infrared spectroscopy (IR), Raman spectroscopy, and X-ray photoelectron spectra (XPS). DSCs fabricated with doped N-TNT and TNT was characterized by J-V measurements. Results showed that nitrogen doping significantly enhanced the efficiency of N-TNT cells, reaching the optimum value (η = 7.36%) with 2 M nitrogen dopant, compared to η = 4.75% of TNT cells. The high efficiency of the N-TNT cells was attributed to increased current density due to the reduction of dark current in the DSCs.

  14. N-Doped TiO2-Coated Ceramic Membrane for Carbamazepine Degradation in Different Water Qualities

    PubMed Central

    Luster, Enbal; Avisar, Dror; Horovitz, Inna; Lozzi, Luca; Baker, Mark A.; Grilli, Rossana; Mamane, Hadas

    2017-01-01

    The photocatalytic degradation of the model pollutant carbamazepine (CBZ) was investigated under simulated solar irradiation with an N-doped TiO2-coated Al2O3 photocatalytic membrane, using different water types. The photocatalytic membrane combines photocatalysis and membrane filtration in a single step. The impact of each individual constituent such as acidity, alkalinity, dissolved organic matter (DOM), divalent cations (Mg2+ and Ca2+), and Cl− on the degradation of CBZ was examined. CBZ in water was efficiently degraded by an N-doped TiO2-coated Al2O3 membrane. However, elements added to the water, which simulate the constituents of natural water, had an impact on the CBZ degradation. Water alkalinity inhibited CBZ degradation mostly due to increase in pH while radical scavenging by carbonate was more dominant at higher values (>200 mg/L as CaCO3). A negative effect of Ca2+ addition on photocatalytic degradation was found only in combination with phosphate buffer, probably caused by deposition of CaHPO4 or CaHPO4·2H2O on the catalyst surface. The presence of Cl− and Mg2+ ions had no effect on CBZ degradation. DOM significantly inhibited CBZ degradation for all tested background organic compounds. The photocatalytic activity of N-doped TiO2-coated Al2O3 membranes gradually decreased after continuous use; however, it was successfully regenerated by 0.1% HCl chemical cleaning. Nevertheless, dissolution of metals like Al and Ti should be monitored following acid cleaning. PMID:28758982

  15. Iron insertion and hematite segregation on Fe-doped TiO2 nanoparticles obtained from sol-gel and hydrothermal methods.

    PubMed

    Santos, Reginaldo da S; Faria, Guilherme A; Giles, Carlos; Leite, Carlos A P; Barbosa, Herbert de S; Arruda, Marco A Z; Longo, Claudia

    2012-10-24

    Iron-doped TiO(2) (Fe:TiO(2)) nanoparticles were synthesized by the sol-gel method (with Fe/Ti molar ratio corresponding to 1, 3, and 5%), followed by hydrothermal treatment, drying, and annealing. A similar methodology was used to synthesize TiO(2) and α-Fe(2)O(3) nanoparticles. For comparison, a mixture hematite/titania, with Fe/Ti = 4% was also investigated. Characterization of the samples using Rietveld refinement of X-ray diffraction data revealed that TiO(2) consisted of 82% anatase and 18% brookite; for Fe:TiO(2), brookite increased to 30% and hematite was also identified (0.5, 1.0, and 1.2 wt % for samples prepared with 1, 3, and 5% of Fe/Ti). For hematite/titania mixture, Fe/Ti was estimated as 4.4%, indicating the Rietveld method reliability for estimation of phase composition. Because the band gap energy, estimated as 3.2 eV for TiO(2), gradually ranged from 3.0 to 2.7 eV with increasing Fe content at Fe:TiO(2), it can be assumed that a Fe fraction was also inserted as dopant in the TiO(2) lattice. Extended X-ray absorption fine structure spectra obtained for the Ti K-edge and Fe K-edge indicated that absorbing Fe occupied a Ti site in the TiO(2) lattice, but hematite features were not observed. Hematite particles also could not be identified in the images obtained by transmission electron microscopy, in spite of iron identification by elemental mapping, suggesting that hematite can be segregated at the grain boundaries of Fe:TiO(2).

  16. [Spectrum characterization and fine structure of copper phthalocyanine-doped TiO2 microcavities].

    PubMed

    Liu, Cheng-lin; Zhang, Xin-yi; Zhong, Ju-hua; Zhu, Yi-hua; He, Bo; Wei, Shi-qiang

    2007-10-01

    Copper phthalocyanine-doped TiO2 microcavities were fabricated by chemistry method. Their spectrum characterization was studied by Fourier transform infrared (FTIR) and Raman spectroscopy, and their fine structure was analyzed by X-ray absorption fine structure (XAFS). The results show that there is interaction of copper phthalocyanine (CuPc) and TiO2 microcavities after TiO2 microcavities was doped with CuPc. For example, there is absorption at 900.76 cm(-1) in FTIR spectra, and the "red shift" of both OH vibration at 3392.75 cm(-1) and CH vibration at 2848.83 cm(-1). There exist definite peak shifts and intensity changes in infrared absorption in the C-C or C-N vibration in the planar phthalocyanine ring, the winding vibration of C-H inside and C-N outside plane of benzene ring. In Raman spectrum, there are 403.4, 592.1 and 679.1 cm(-1) characterized peaks of TiO2 in CuPc-doped TiO2 microcavities, but their wave-numbers show shifts to anatase TiO2. The vibration peaks at 1586.8 and 1525.6 cm(-1) show that there exists the composite material of CuPc and TiO2. These changes are related to the plane tropism of the molecule structure of copper phthalocyanine. XAFS showed tetrahedron TiO4 structure of Ti in TiO2 microcavities doped with copper phthalocyanine, and the changes of inner "medial distances" and the surface structure of TiO2 microcavities.

  17. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    PubMed

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly

  18. Comparison of the killing effects between nitrogen-doped and pure TiO2 on HeLa cells with visible light irradiation

    PubMed Central

    2013-01-01

    The killing effect of nitrogen-doped titanium dioxide (N-TiO2) nanoparticles on human cervical carcinoma (HeLa) cells by visible light photodynamic therapy (PDT) was higher than that of TiO2 nanoparticles. To study the mechanism of the killing effect, the reactive oxygen species produced by the visible-light-activated N-TiO2 and pure-TiO2 were evaluated and compared. The changes of the cellular parameters, such as the mitochondrial membrane potential (MMP), intracellular Ca2+, and nitrogen monoxide (NO) concentrations after PDT were measured and compared for N-TiO2- and TiO2-treated HeLa cells. The N-TiO2 resulted in more loss of MMP and higher increase of Ca2+ and NO in HeLa cells than pure TiO2. The cell morphology changes with time were also examined by a confocal microscope. The cells incubated with N-TiO2 exhibited serious distortion and membrane breakage at 60 min after the PDT. PMID:23433090

  19. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts.

    PubMed

    Wang, Bin; Zhang, Guangxin; Leng, Xue; Sun, Zhiming; Zheng, Shuilin

    2015-03-21

    V-doped TiO2/diatomite composite photocatalysts with different vanadium concentrations were synthesized by a modified sol-gel method. The diatomite was responsible for the well dispersion of TiO2 nanoparticles on the matrix and consequently inhibited the agglomeration. V-TiO2/diatomite hybrids showed red shift in TiO2 absorption edge with enhanced absorption intensity. Most importantly, the dopant energy levels were formed in the TiO2 bandgap due to V(4+) ions substituted to Ti(4+) sites. The 0.5% V-TiO2/diatomite photocatalyst displayed narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples (3.05 eV) with higher doping concentration. The photocatalytic activities of V doped TiO2/diatomite samples for the degradation of Rhodamine B under stimulated solar light illumination were significantly improved compared with the undoped sample. In our case, V(4+) ions incorporated in TiO2 lattice were responsible for increased visible-light absorption and electron transfer to oxygen molecules adsorbed on the surface of TiO2 to produce superoxide radicals ˙O2(-), while V(5+) species presented on the surface of TiO2 particles in the form of V2O5 contributed to e(-)-h(+) separation. In addition, due to the combination of diatomite as support, this hybrid photocatalyst could be separated from solution quickly by natural settlement and exhibited good reusability. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of Ag for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Al-Kamal, Ahmed Kamal

    Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.

  1. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis.

    PubMed

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-02-26

    This study developed a facile approach for preparing Ti(3+) self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti(3+) doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti(3+) in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.

  2. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-02-01

    This study developed a facile approach for preparing Ti3+ self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti3+ doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti3+ in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.

  3. Photoinactivation of Escherichia coli by sulfur-doped and nitrogen-fluorine-codoped TiO2 nanoparticles under solar simulated light and visible light irradiation.

    PubMed

    Pathakoti, Kavitha; Morrow, Shavonda; Han, Changseok; Pelaez, Miguel; He, Xiaojia; Dionysiou, Dionysios D; Hwang, Huey-Min

    2013-09-03

    Titanium dioxide (TiO2) is one of the most widely used photocatalysts for the degradation of organic contaminants in water and air. Visible light (VL) activated sulfur-doped TiO2 (S-TiO2) and nitrogen-fluorine-codoped TiO2 (N-F-TiO2) were synthesized by sol-gel methods and characterized. Their photoinactivation performance was tested against Escherichia coli under solar simulated light (SSL) and VL irradiation with comparison to commercially available TiO2. Undoped Degussa-Evonik P-25 (P-25) and Sigma-TiO2 showed the highest photocatalytic activity toward E. coli inactivation under SSL irradiation, while S-TiO2 showed a moderate toxicity. After VL irradiation, Sigma-TiO2 showed higher photoinactivation, whereas S-TiO2 and P-25 showed moderate toxicity. Oxidative stress to E. coli occurred via formation of hydroxyl radicals leading to lipid peroxidation as the primary mechanism of bacterial inactivation. Various other biological models, including human keratinocytes (HaCaT), zebrafish liver cells (ZFL), and zebrafish embryos were also used to study the toxicity of TiO2 NPs. In conclusion, N-F-TiO2 did not show any toxicity based on the assay results from all the biological models used in this study, whereas S-TiO2 was toxic to zebrafish embryos under all the test conditions. These findings also demonstrate that the tested TiO2 nanoparticles do not show any adverse effects in HaCaT and ZFL cells.

  4. Novel tiO2 nanocatalysts for wastewater purification: tapping energy from the sun.

    PubMed

    Liu, Y; Li, J; Qiu, X; Burda, C

    2006-01-01

    Water treatment using TiO2 semiconductor as a durable heterogeneous photocatalyst has been the focus of environmentalists in recent years. Currently, we developed an inexpensive and highly efficient approach for synthesizing nitrogen-doped TiO2 with lower band-gap energy that can respond to visible light. Doping on the molecular scale led to an enhanced nitrogen concentration of up to 21.8%. Reflectance measurements showed the synthesized N-doped TiO2 nanoparticles are catalytically active with the absorbance that extends into the visible region up to 600 nm. The water purification potential of this new class of compound was evaluated by studying the photodegradation of Acid Orange 7 (AO7) and E. coli. Experiments were conducted to compare the photocatalytic activities of N-doped TiO2 nanocatalysts and commercially available Degussa P25 power under identical solar light exposure. N-doped TiO2 demonstrated superior photocatalytic activities in both chemical compound degradation and bactericidal reactions. The result of this study shows the potential of applying new generations of catalyst for wastewater purification and disinfection.

  5. Enhanced photocatalytic activity of Fe-doped TiO2 coated on N-doped activated carbon composites for photocatalytic degradation of dyeing wastewater

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Zhu, Beibei; Wang, Lu; Li, Ya; Qiao, Qichen

    2017-10-01

    Fe-doped TiO2 coated on N-doped activated carbon (Fe-TiO2/N-AC, FTNA) composites were synthesized simply by a straightforward two-step procedure. The obtained materials were characterized by X-ray diffractometry (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and FT-IR spectroscopies. Through the degradation of dyeing wastewater, the photocatalytic activity of FTNA was investigated under ultraviolet light irradiation. The results showed that containing N functional groups were successfully introduced onto the surface of the activated carbon. Compared with Fe-TiO2/AC (FTA), FTNA with average particle size of TiO2 13.6 nm and surface area 1007.89 m2/g showed a higher photoactivity. Additionally, for the photocatalytic degradation of dyeing wastewater, the optimum N content and catalyst content were 0.8% and 5g/L, respectively. Moreover, the photoactivity and photo stability of the catalyst after many runs was also evaluated.

  6. Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities.

    PubMed

    Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick

    2016-08-04

    To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).

  7. Morphology control of rutile TiO2 with tunable bandgap by preformed β-FeOOH nanoparticles.

    PubMed

    Chen, Zheming; Wang, Feng; Balachandran, Subramanian; Li, Gen; Liu, Peng; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-03-23

    Rutile TiO 2 are widely used for applications of coatings, cosmetics, photoelectric devices and so on. However, effective control of well-defined morphology, size and composition of rutile TiO 2 nanoparticles from agglomeration has always been a challenge. A new synthesis strategy was proposed to prepare rutile TiO 2 with controllable morphology varied from flower-like structures to single-separated nanorods. The β-FeOOH nanoparticles were generated by the hydrolysis of FeCl 3 solution and could prevent the aggregation of TiO 2 nanocrystals at early stages of the reaction; thus, could control the morphology of rutile nanoparticles. The morphology of rutile TiO 2 nanoparticles could be controllably regulated from flower-like structures to individually separated nanorods. Meanwhile, the preformed β-FeOOH also played a role of dopant. Fe ions were substitutionally doped into the bulk lattice of TiO 2 nanocrystals and reduced the bandgap, which extended the solar radiation absorption range of rutile TiO 2 . The prepared TiO 2 may be suitable for novel UV-blue light shielding agents and many other applications in photoelectric devices, photocatalysis, and so on due to its small size, unprecedented discrete rod-like structure and unique UV-vis light permeability.

  8. Morphology control of rutile TiO2 with tunable bandgap by preformed β-FeOOH nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Zheming; Wang, Feng; Balachandran, Subramanian; Li, Gen; Liu, Peng; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-03-01

    Rutile TiO2 are widely used for applications of coatings, cosmetics, photoelectric devices and so on. However, effective control of well-defined morphology, size and composition of rutile TiO2 nanoparticles from agglomeration has always been a challenge. A new synthesis strategy was proposed to prepare rutile TiO2 with controllable morphology varied from flower-like structures to single-separated nanorods. The β-FeOOH nanoparticles were generated by the hydrolysis of FeCl3 solution and could prevent the aggregation of TiO2 nanocrystals at early stages of the reaction; thus, could control the morphology of rutile nanoparticles. The morphology of rutile TiO2 nanoparticles could be controllably regulated from flower-like structures to individually separated nanorods. Meanwhile, the preformed β-FeOOH also played a role of dopant. Fe ions were substitutionally doped into the bulk lattice of TiO2 nanocrystals and reduced the bandgap, which extended the solar radiation absorption range of rutile TiO2. The prepared TiO2 may be suitable for novel UV-blue light shielding agents and many other applications in photoelectric devices, photocatalysis, and so on due to its small size, unprecedented discrete rod-like structure and unique UV-vis light permeability.

  9. Phosphorous-doped TiO2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation.

    PubMed

    Mendiola-Alvarez, Sandra Yadira; Hernández-Ramírez, Ma Aracely; Guzmán-Mar, Jorge Luis; Garza-Tovar, Lorena Leticia; Hinojosa-Reyes, Laura

    2018-05-24

    Mesoporous phosphorous-doped TiO 2 (TP) with different wt% of P (0.5, 1.0, and 1.5) was synthetized by microwave-assisted sol-gel method. The obtained materials were characterized by XRD with cell parameters refinement approach, Raman, BET-specific surface area analysis, SEM, ICP-OES, UV-Vis with diffuse reflectance, photoluminescence, FTIR, and XPS. The photocatalytic activity under visible light was evaluated on the degradation of sulfamethazine (SMTZ) at pH 8. The characterization of the phosphorous materials (TP) showed that incorporation of P in the lattice of TiO 2 stabilizes the anatase crystalline phase, even increasing the annealing temperature. The mesoporous P-doped materials showed higher surface area and lower average crystallite size, band gap, and particle size; besides, more intense bands attributed to O-H bond were observed by FTIR analysis compared with bare TiO 2 . The P was substitutionally incorporated in the TiO 2 lattice network as P 5+ replacing Ti 4+ to form Ti-O-P bonds and additionally present as PO 4 3-  on the TiO 2 surface. All these characteristics explain the observed superior photocatalytic activity on degradation (100%) and mineralization (32%) of SMTZ under visible radiation by TP catalysts, especially for P-doped TiO 2 1.0 wt% calcined at 450 °C (TP1.0-450). Ammonium, nitrate, and sulfate ions released during the photocatalytic degradation were quantified by ion chromatography; the nitrogen and sulfur mass balance evidenced the partial mineralization of this recalcitrant molecule.

  10. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization

    NASA Astrophysics Data System (ADS)

    Wang, Chenglin; Wang, Mengye; Xie, Kunpeng; Wu, Qi; Sun, Lan; Lin, Zhiqun; Lin, Changjian

    2011-07-01

    Microarrays of N-doped flower-like TiO2 composed of well-defined multilayer nanoflakes were synthesized at room temperature by electrochemical anodization of Ti in NH4F aqueous solution. The TiO2 flowers were of good anatase crystallinity. The effects of anodizing time, applied voltage and NH4F concentration on the flower-like morphology were systematically examined. It was found that the morphologies of the anodized Ti were related to the anodizing time and NH4F concentration. The size and density of the TiO2 flowers could be tuned by changing the applied voltage. The obtained N-doped flower-like TiO2 microarrays exhibited intense absorption in wavelengths ranging from 320 to 800 nm. Under both UV and visible light irradiation, the photocatalytic activity of the N-doped flower-like TiO2 microarrays in the oxidation of methyl orange showed a significant increase compared with that of commercial P25 TiO2 film.

  11. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization.

    PubMed

    Wang, Chenglin; Wang, Mengye; Xie, Kunpeng; Wu, Qi; Sun, Lan; Lin, Zhiqun; Lin, Changjian

    2011-07-29

    Microarrays of N-doped flower-like TiO(2) composed of well-defined multilayer nanoflakes were synthesized at room temperature by electrochemical anodization of Ti in NH(4)F aqueous solution. The TiO(2) flowers were of good anatase crystallinity. The effects of anodizing time, applied voltage and NH(4)F concentration on the flower-like morphology were systematically examined. It was found that the morphologies of the anodized Ti were related to the anodizing time and NH(4)F concentration. The size and density of the TiO(2) flowers could be tuned by changing the applied voltage. The obtained N-doped flower-like TiO(2) microarrays exhibited intense absorption in wavelengths ranging from 320 to 800 nm. Under both UV and visible light irradiation, the photocatalytic activity of the N-doped flower-like TiO(2) microarrays in the oxidation of methyl orange showed a significant increase compared with that of commercial P25 TiO(2) film.

  12. Structural, Morphological, Optical and Photocatalytic Properties of Y, N-Doped and Codoped TiO2 Thin Films

    PubMed Central

    Hamden, Zeineb; Conceição, David; Boufi, Sami; Vieira Ferreira, Luís Filipe; Bouattour, Soraa

    2017-01-01

    Pure TiO2, Y-N single-doped and codoped TiO2 powders and thin films deposited on glass beads were successfully prepared using dip-coating and sol-gel methods. The samples were analyzed using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, ground state diffuse reflectance absorption and scanning electron microscopy (SEM). According to the GXRD patterns and micro-Raman spectra, only the anatase form of TiO2 was made evident. Ground state diffuse reflectance absorption studies showed that doping with N or codoping with N and Y led to an increase of the band gap. Laser induced luminescence analysis revealed a decrease in the recombination rate of the photogenerated holes and electrons. The photocatalytic activity of supported catalysts, toward the degradation of toluidine, revealed a meaningful enhancement upon codoping samples at a level of 2% (atomic ratio). The photocatalytic activity of the material and its reactivity can be attributed to a reduced, but significant, direct photoexcitation of the semiconductor by the halogen lamp, together with a charge-transfer-complex mechanism, or with the formation of surface oxygen vacancies by the N dopant atoms. PMID:28772962

  13. The Effect of High N-DOPED Anatase TiO2 on the Band Gap Narrowing and Redshift by First-Principles

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Jin, Yongjun; Ying, Chun; Zhao, Erjun; Zhang, Yue; Dong, Hongying

    2012-10-01

    Anatase TiO2 supercells were studied by first-principles, in which one was undoped and another three were high N-doping. Partial densities of states, band structure, population and absorption spectrum were calculated. The calculated results indicated that in the condition of TiO2-xNx (x = 0.0625, 0.125, 0.25), the higher the doping concentration is, the shorter will be the lattice parameters parallel to the direction of c-axis. The strength of covalent bond significantly varied. The formation energy increases at first, and then decreases. The doping models become less stable as N-doping concentration increases. Meanwhile, the narrower the band gap is, the more significant will be the redshift, which is in agreement with the experimental results.

  14. Photocatalytic degradation properties of V-doped TiO2 to automobile exhaust.

    PubMed

    Wang, Tong; Shen, Dongya; Xu, Tao; Jiang, Ruiling

    2017-05-15

    To improve the photocatalytic degradation properties of titanium dioxide (TiO 2 ) used as raw materials for purifying automobile exhaust (AE), the vanadium (V)-doped TiO 2 samples were prepared. The photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were evaluated under ultraviolet (UV) and visible light irradiation, respectively. Results indicated that the photocatalytic activity of V-doped TiO 2 to AE was higher than that of pure TiO 2 , and the optimal V dopant content of TiO 2 was 1.0% under UV light irradiation. The degradation efficiencies of V-doped TiO 2 to NOx and HC were higher than those to CO 2 and CO in AE because of the reversible reaction between CO 2 and CO. In addition, it was found that the photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were also increased under visible light irradiation. The V-doped TiO 2 also showed higher degradation efficiencies to NOx and HC than those to CO 2 and CO under visible light irradiation. The V doped TiO 2 presented higher photocatalytic activity to CO 2 than that to CO, but the reversible reaction between CO and CO 2 was not found under visible light irradiation. The photocatalytic reactions of pure and V-doped TiO 2 samples to each component in AE followed the first order kinetic pathway under the two light irradiations. It is concluded that the V doping is a feasible method to improve the photocatalytic degradation properties of TiO 2 to AE for air purification, developing a sustainable environmental purification technology based on TiO 2 materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Interaction of New-Developed TiO2-Based Photocatalytic Nanoparticles with Pathogenic Microorganisms and Human Dermal and Pulmonary Fibroblasts

    PubMed Central

    Nica, Ionela Cristina; Stan, Miruna Silvia; Popa, Marcela; Chifiriuc, Mariana Carmen; Lazar, Veronica; Pircalabioru, Gratiela G.; Dumitrescu, Iuliana; Ignat, Madalina; Feder, Marcel; Tanase, Liviu Cristian; Mercioniu, Ionel; Diamandescu, Lucian; Dinischiotu, Anca

    2017-01-01

    TiO2-based photocatalysts were obtained during previous years in order to limit pollution and to ease human daily living conditions due to their special properties. However, obtaining biocompatible photocatalysts is still a key problem, and the mechanism of their toxicity recently received increased attention. Two types of TiO2 nanoparticles co-doped with 1% of iron and nitrogen (TiO2-1% Fe–N) atoms were synthesized in hydrothermal conditions at pH of 8.5 (HT1) and 5.5 (HT2), and their antimicrobial activity and cytotoxic effects exerted on human pulmonary and dermal fibroblasts were assessed. These particles exhibited significant microbicidal and anti-biofilm activity, suggesting their potential application for microbial decontamination of different environments. In addition, our results demonstrated the biocompatibility of TiO2-1% Fe–N nanoparticles at low doses on lung and dermal cells, which may initiate oxidative stress through dose accumulation. Although no significant changes were observed between the two tested photocatalysts, the biological response was cell type specific and time- and dose-dependent; the lung cells proved to be more sensitive to nanoparticle exposure. Taken together, these experimental data provide useful information for future photocatalytic applications in the industrial, food, pharmaceutical, and medical fields. PMID:28125053

  16. Sono-synthesis of solar light responsive S-N-C-tri doped TiO2 photo-catalyst under optimized conditions for degradation and mineralization of Diclofenac.

    PubMed

    Ramandi, Sara; Entezari, Mohammad H; Ghows, Narjes

    2017-09-01

    C-N-S-tri doped TiO 2 anatase phase was synthesized using a facile, effective and novel sonochemical method at low frequency (20kHz) and at room temperature. Titanium butoxide as the titanium precursor and thiourea as the dopant source were used in the synthesis of the photo-catalyst. The effects of important parameters such as thiourea/Ti molar ratio, ultrasound intensity, sonication time and temperature were studied on the synthesis of tri-doped TiO 2 . The XPS results confirmed the presence of N, S, and C in the photo-catalyst. The photo-catalytic efficiency of the synthesized catalyst was studied toward the removal of Diclofenac as a model pharmaceutical organic pollutant. The results confirmed that the photo-catalyst synthesized with narrower band gap energy, shorter sonication time and higher ultrasound intensity leads to a rapid removal of Diclofenac. The effect of operational variables on the photo-catalytic activity of C-N-S tri doped TiO 2 nanoparticles was studied and optimized using the Taguchi method as a statistical technique. Additionally, the degradation process followed the pseudo-first-order kinetics model and the highest apparent rate constant of 0.0632min -1 achieved in 90min. Chemical oxygen demand (COD) analysis confirmed that the mineralization took place completely (100%) under the optimized conditions in 180min. Different scavengers were applied during the degradation process and active species such as OH and O 2 - had key roles in the photo-catalytic process. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Photocatalytic properties of P25-doped TiO2 composite film synthesized via sol-gel method on cement substrate.

    PubMed

    Guo, Xiang; Rao, Lei; Wang, Peifang; Wang, Chao; Ao, Yanhui; Jiang, Tao; Wang, Wanzhong

    2018-04-01

    TiO 2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO 2 composite film on a cement substrate via a sol-gel method. In this case, Rhodamine B (RhB) was employed as the target organic pollutant. The self-generated TiO 2 film and the P25-TiO 2 composite film were characterized by X-ray diffraction (XRD), N 2 adsorption/desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The photodegradation efficiencies of the two films were studied by RhB removal in water under UV (ultraviolet) irradiation. Over 4day exposure, the P25-TiO 2 composite film exhibited higher photocatalytic performance than the self-generated TiO 2 film. The photodegradation rate indicated that the efficiency of the P25-TiO 2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO 2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO 2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO 2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. Copyright © 2017. Published by Elsevier B.V.

  18. Influence the dopant concentration on the photocatalytic activity: Dy3+, Eu3+ doped TiO2

    NASA Astrophysics Data System (ADS)

    Zikriya, Mohamed; Nadaf, Y. F.; Pramod, A. G.; Renuka, C. G.

    2018-05-01

    Titanium dioxide (TiO2) nanoparticles were synthesis by means of hydrothermal process from metatitanic acid. The impacts reaction temperature, stirring process and aging time on the morphology, the transfer of nanoparticles particles were characterized. The morphology of the nanoparticles was described in detail with scanning electron microscopy. In the dynamic of hydrothermal method, stirring can cut down the reaction time of change from particles to nanoparticles. As can be seen from the XRD patterns, the diffraction peaks get broadened as the Eu3+ focus is increased, proposing an orderly abatement in the grain size. The Crystallite size was calculated for pure, Dy3+ and Eu3+ doped TiO2 from diffraction plane by Sherrer's formula and it was found that 13 nm to 18 nm. From SEM images the majorities of TiO2 particles are oblate spheroid or spheroid and look looser, and some macropores could be seen on a few particles.

  19. Exchange of TiO2 nanoparticles between streams and streambeds.

    PubMed

    Boncagni, Natalia Ticiana; Otaegui, Justo Manuel; Warner, Evelyn; Curran, Trisha; Ren, Jianhong; de Cortalezzi, Maria Marta Fidalgo

    2009-10-15

    The expanding use of manufactured nanoparticles has increased the potential for their release into the natural environment. Particularly, TiO2 nanoparticles pose significant exposure risk to humans and other living species due to their extensive use in a wide range of fields. To better understand the environmental and health risks associated with the release of TiO2 nanoparticles, knowledge on their fate and transport is needed. This study evaluates the transport of two different TiO2 nanoparticles: one commercially available (P25 TiO2 and the other synthesized at a lab scale (synthesized TiO2). Laboratory flume, column, and batch experiments were conducted to investigate the processes dominating the transport of TiO2 nanoparticles between streams and streambeds and to characterize the properties of these nanoparticles under different physicochemical conditions. Results show that the synthesized TiO2 was more stable compared to the P25 TiO2, which underwent significant aggregation under the same experimental conditions. As a result, P25 TiO2 deposited at a faster rate than the synthesized TiO2 in the streambed. Both types of TiO2 nanoparticles deposited in the streambed were easily released when the stream velocity was increased. The aggregation and deposition of P25 TiO2 were highly dependent on pH. A process-based colloid exchange model was applied to interpret the observed transport behavior of the TiO2 nanoparticles.

  20. Boosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode

    PubMed Central

    Lim, Su Pei; Pandikumar, Alagarsamy; Lim, Hong Ngee; Ramaraj, Ramasamy; Huang, Nay Ming

    2015-01-01

    A silver nanoparticle-decorated N,S-co-doped TiO2 nanocomposite was successfully prepared and used as an efficient photoanode in high-performance dye-sensitized solar cells (DSSCs) with N719 dye. The DSSCs assembled with the N,S-TiO2@Ag-modified photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 8.22%, which was better than that of a DSSC photoanode composed of unmodified TiO2 (2.57%) under full sunlight illumination (100 mWcm−2, AM 1.5 G). This enhanced efficiency was mainly attributed to the reduced band gap energy, improved interfacial charge transfer, and retarded charge recombination process. The influence of the Ag content on the overall efficiency was also investigated, and the optimum Ag content with N,S-TiO2 was found to be 20 wt%. Because of the enhanced solar energy conversion efficiency of the N,S-TiO2@Ag nanocomposite, it should be considered as a potential photoanode for high-performance DSSCs. PMID:26146362

  1. Highly Visible Light Activity of Nitrogen Doped TiO2 Prepared by Sol-Gel Approach

    NASA Astrophysics Data System (ADS)

    Than, Le Dien; Luong, Ngo Sy; Ngo, Vu Dinh; Tien, Nguyen Manh; Dung, Ta Ngoc; Nghia, Nguyen Manh; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2017-01-01

    A simple approach was explored to prepare N-doped anatase TiO2 nanoparticles (N-TiO2 NPs) from titanium chloride (TiCl4) and ammonia (NH3) via sol-gel method. The effects of important process parameters such as calcination temperatures, NH3/TiCl4 molar ratio ( R N) on crystallite size, structure, phase transformation, and photocatalytic activity of titanium dioxide (TiO2) were thoroughly investigated. The as-prepared samples were characterized by ultraviolet-visible spectroscopy, x-ray diffraction, transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The photocatalytic activity of the samples was evaluated upon the degradation of methylene blue aqueous solution under visible-light irradiation. The results demonstrated that both calcination temperatures and NH3/TiCl4 molar ratios had significant impacts on the formation of crystallite nanostructures, physicochemical, as well as catalytic properties of the obtained TiO2. Under the studied conditions, calcination temperature of 600°C and NH3/TiCl4 molar ratio of 4.2 produced N-TiO2 with the best crystallinity and photocatalytic activity. The high visible light activity of the N-TiO2 nanomaterials was ascribed to the interstitial nitrogen atoms within TiO2 lattice units. These findings could provide a practical pathway capable of large-scale production of a visible light-active N-TiO2 photocatalyst.

  2. Photochemical quenching of aqueous methylene blue by N, Nb co-doped TiO2 nanomaterials under visible light: a confirmatory UV/LC-MS study

    NASA Astrophysics Data System (ADS)

    Gupta, Kamini; Pandey, Ashutosh; Singh, R. P.

    2017-12-01

    Nanodimensional un-doped, Nb doped, N doped and N,Nb co-doped TiO2 particles have been prepared by the sol-gel procedure. Phase identification of the anatase particles was done by X-ray powder diffraction and Deby-Scherrer calculations revealed their particle sizes to range from 20 to 30 nm. The band gap energies of the samples were measured by UV-Vis-diffuse reflectance (UV-DRS) spectra. While un-doped TiO2 showed wide optical absorption in the UV region. The co-doped TiO2 particles exhibited narrow band gaps of ~2.7 eV, which showed absorption in the visible region. A decline in charge carrier recombination rates in the prepared samples was confirmed through photoluminescence (PL). The morphological appearances of the particles have been examined by scanning electron microscopy. X-ray photoelectron spectroscopy (XPS) of the samples confirmed the incorporations of N and Nb into the TiO2 matrices. The photocatalytic efficiencies of the prepared particles have been determined by the degradation of the non-biodegradable dye methylene blue (MB) under electromagnetic radiation. The co-doped sample showed superior photocatalytic activity under the visible light (λ  >  400) over the other samples. Photochemical quenching of aqueous MB was further analysed by UV/LC-MS which confirmed the attenuation of methylene blue.

  3. Role of Fe doping in tuning the band gap of TiO2 for photo-oxidation induced cytotoxicity paradigm

    PubMed Central

    George, Saji; Pokhrel, Suman; Ji, Zhaoxia; Henderson, Bryana L.; Xia, Tian; Li, LinJiang; Zink, Jeffrey I.; Nel, André E.; Mädler, Lutz

    2014-01-01

    UV-Light induced electron-hole (e−/h+) pair generation and free radical production in TiO2 based nanoparticles is a major conceptual paradigm for biological injury. However, to date, this hypothesis has been difficult to experimentally verify due to the high energy of UV light that is intrinsically highly toxic to biological systems. Here, a versatile flame spray pyrolysis (FSP) synthetic process has been exploited to synthesize a library of iron doped (0–10 at wt%) TiO2 nanoparticles. These particles have been tested for photoactivation-mediated cytotoxicity using near-visible light exposure. The reduction in TiO2 band gap energy with incremental levels of Fe loading maintained the nanoparticle crystalline structure in spite of homogeneous Fe distribution (demonstrated by XRD, HRTEM, SAED, EFTEM, and EELS). Photochemical studies showed that band gap energy was reciprocally tuned proportional to the Fe content. The photo-oxidation capability of Fe-doped TiO2 was found to increase during near-visible light exposure. Use of a macrophage cell line to evaluate cytotoxic and ROS production showed increased oxidant injury and cell death in parallel with a decrease in band gap energy. These findings demonstrate the importance of band gap energy in the phototoxic response of the cell to TiO2 nanoparticles and reflect the potential of this material to generate adverse effects in humans and the environment during high intensity light exposure. PMID:21678906

  4. Photocatalytic, Antimicrobial and Biocompatibility Features of Cotton Knit Coated with Fe-N-Doped Titanium Dioxide Nanoparticles

    PubMed Central

    Stan, Miruna Silvia; Nica, Ionela Cristina; Dinischiotu, Anca; Varzaru, Elena; Iordache, Ovidiu George; Dumitrescu, Iuliana; Popa, Marcela; Chifiriuc, Mariana Carmen; Pircalabioru, Gratiela G.; Lazar, Veronica; Bezirtzoglou, Eugenia; Feder, Marcel; Diamandescu, Lucian

    2016-01-01

    Our research was focused on the evaluation of the photocatalytic and antimicrobial properties, as well as biocompatibility of cotton fabrics coated with fresh and reused dispersions of nanoscaled TiO2-1% Fe-N particles prepared by the hydrothermal method and post-annealed at 400 °C. The powders were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy and X-ray photoelectron spectroscopy. The textiles coated with doped TiO2 were characterized by scanning electron microscopy and energy dispersive X-ray analyses, and their photocatalytic effect by trichromatic coordinates of the materials stained with methylene blue and coffee and exposed to UV, visible and solar light. The resulting doped TiO2 consists of a mixture of prevailing anatase phase and a small amount (~15%–20%) of brookite, containing Fe3+ and nitrogen. By reusing dispersions of TiO2-1% Fe-N, high amounts of photocatalysts were deposited on the fabrics, and the photocatalytic activity was improved, especially under visible light. The treated fabrics exhibited specific antimicrobial features, which were dependent on their composition, microbial strain and incubation time. The in vitro biocompatibility evaluation on CCD-1070Sk dermal fibroblasts confirmed the absence of cytotoxicity after short-term exposure. These results highlight the potential of TiO2-1% Fe-N nanoparticles for further use in the development of innovative self-cleaning and antimicrobial photocatalytic cotton textiles. However, further studies are required in order to assess the long-term skin exposure effects and the possible particle release due to wearing. PMID:28773913

  5. Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension.

    PubMed

    Dai, Ke; Peng, Tianyou; Chen, Hao; Liu, Juan; Zan, Lin

    2009-03-01

    Photocatalytic degradation of commercial phoxim emulsion in aqueous suspension was investigated by using La-doped mesoporous TiO2 nanoparticles (m-TiO2) as the photocatalyst under UV irradiation. Effects of La-doping level, calcination temperature, and additional amount of the photocatalyst on the photocatalytic degradation efficiency were investigated in detail. Experimental results indicate that 20 mg L(-1) phoxim in 0.5 g L(-1) La/m-TiO2 suspension (the initial pH 4.43) can be decomposed as prolonging the irradiation time. Almost 100% phoxim was decomposed after 4 h irradiation according to the spectrophotometric analyses, whereas the mineralization rate of phoxim just reached ca. 80% as checked by ion chromatography (IC) analyses. The elimination of the organic solvent in the phoxim emulsion as well as the formation and decomposition of some degradation intermediates were observed by high-performance liquid chromatography-mass spectroscopy (HPLC-MS). On the basis of the analysis results on the photocatalytic degradation intermediates, two possible photocatalytic degradation pathways are proposed under the present experimental conditions, which reveal that both the hydrolysis and adsorption of phoxim under UV light irradiation play important roles during the photocatalytic degradation of phoxim.

  6. Tunability of morphological properties of Nd-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Rehan, Imran; Sultana, Sabiha; Khan, Nauman; Qamar, Zahid; Rehan, Kamran

    2016-11-01

    In this work, an endeavor is made toward structural assessment and morphological variation of titanium dioxide (TiO2) thin films when doped with neodymium (Nd). The electron beam deposition technique was employed to fabricate Nd-based TiO2 thin films on n-Type Si substrates. Nd concentration was varied from 0.0 to 2.0 atomic percent (at.%) under identical growth environments. The films were deposited in an oxygen-deficient environment to cause the growth of rutile phases. Energy dispersive x-ray spectroscopy confirmed the presence and variation of Nd dopant in TiO2. X-ray diffraction analysis showed the transformation of amorphous structures of the as-grown samples to anatase polycrystalline after annealing at 500 °C, while atomic force microscopy exposed linearity in grain density in as-grown samples with doping until 1 at.%. Raman spectrums of as-grown and annealed samples revealed the growth of the anatase phase in the annealed samples. Based on these results it can be proposed that Nd doping has pronounced effects on the structural characteristics of TiO2 thin films.

  7. Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals

    NASA Astrophysics Data System (ADS)

    Qin, Xiu-Bo; Li, Dong-Xiang; Li, Rui-Qin; Zhang, Peng; Li, Yu-Xiao; Wang, Bao-Yi

    2014-06-01

    The magnetic properties and defect types of virgin and N-doped TiO2 single crystals are probed by superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), and positron annihilation analysis (PAS). Upon N doping, a twofold enhancement of the saturation magnetization is observed. Apparently, this enhancement is not related to an increase in oxygen vacancy, rather to unpaired 3d electrons in Ti3+, arising from titanium vacancies and the replacement of O with N atoms in the rutile structure. The production of titanium vacancies can enhance the room temperature ferromagnetism (RTFM), and substitution of O with N is the onset of ferromagnetism by inducing relatively strong ferromagnetic ordering.

  8. Probing the electronic structure and photoactivation process of nitrogen-doped TiO2 using DRS, PL, and EPR.

    PubMed

    Zhang, Zizhong; Long, Jinlin; Xie, Xiuqiang; Lin, Huan; Zhou, Yangen; Yuan, Rusheng; Dai, Wenxin; Ding, Zhengxin; Wang, Xuxu; Fu, Xianzhi

    2012-04-23

    The electronic structure and photoactivation process in N-doped TiO(2) is investigated. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electron paramagnetic resonance (EPR) are employed to monitor the change of optical absorption ability and the formation of N species and defects in the heat- and photoinduced N-doped TiO(2) catalyst. Under thermal treatment below 573 K in vacuum, no nitrogen dopant is removed from the doped samples but oxygen vacancies and Ti(3+) states are formed to enhance the optical absorption in the visible-light region, especially at wavelengths above 500 nm with increasing temperature. In the photoactivation processes of N-doped TiO(2), the DRS absorption and PL emission in the visible spectral region of 450-700 nm increase with prolonged irradiation time. The EPR results reveal that paramagnetic nitrogen species (N(s)·, oxygen vacancies with one electron (V(o)·), and Ti(3+) ions are produced with light irradiation and the intensity of N(s)· species is dependent on the excitation light wavelength and power. The combined characterization results confirm that the energy level of doped N species is localized above the valence band of TiO(2) corresponding to the main absorption band at 410 nm of N-doped TiO(2), but oxygen vacancies and Ti(3+) states as defects contribute to the visible-light absorption above 500 nm in the overall absorption of the doped samples. Thus, a detailed picture of the electronic structure of N-doped TiO(2) is proposed and discussed. On the other hand, the transfer of charge carriers between nitrogen species and defects is reversible on the catalyst surface. The presence of oxygen-vacancy-related defects leads to quenching of paramagnetic N(s)· species but they stabilize the active nitrogen species N(s)(-). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Efficiency enhancement of dye-sensitized solar cells by use of ZrO2-doped TiO2 nanofibers photoanode.

    PubMed

    Mohamed, Ibrahim M A; Dao, Van-Duong; Barakat, Nasser A M; Yasin, Ahmed S; Yousef, Ahmed; Choi, Ho-Suk

    2016-08-15

    Due to the good stability and convenient optical properties, TiO2 nanostructures still the prominent photoanode materials in the Dye Sensitized Solar Cells (DSCs). However, the well-known low bandgap energy and weak adsorption affinity for the dye distinctly constrain the wide application. This work discusses the impact of Zr-doping and nanofibrous morphology on the performance and physicochemical properties of TiO2. Zr-doped TiO2 nanofibers (NFs), with various zirconia content (0, 0.5, 1, 1.5 and 2wt%) were prepared by calcination of electrospun mats composed of polyvinyl acetate, titanium isopropoxyl and zirconium n-propoxyl. For all formulations, the results have shown that the prepared materials are continuous, randomly oriented, and good morphology nanofibers. The average diameter decreased from 353.85nm to 210.78nm after calcination without a considerable influence on the nanofibrous structure regardless the zirconia content. XRD result shows that there is no Rutile nor Brookite phases in the obtained material and the average crystallite size of the sample is affected by the presence of Zr-doping and changed from 23.01nm to 37.63nm for TiO2 and Zr-doped TiO2, respectively. Optical studies have shown Zr-doped TiO2 NFs have more absorbance in the visible region than that of pristine TiO2 NFs; the maximum absorbance is corresponding to the NFs having 1wt% zirconia. The improved spectra of Zr-doped TiO2 in the visible region is attributed to the heterostructure composition resulting from Zr-doping. The absorption bandgaps were calculated using Tauc model as 3.202 and 3.217 for pristine and Zr (1wt%)-doped TiO2 NFs, respectively. Furthermore, in Dye-sensitized Solar Cells, utilizing Zr (1wt%)-doped TiO2 nanofibers achieved higher efficiency of 4.51% compared to the 1.61% obtained from the pristine TiO2 NFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants.

    PubMed

    Belver, C; Bedia, J; Rodriguez, J J

    2017-01-15

    Solar light-active Zr-doped TiO 2 nanoparticles were successfully immobilized on delaminated clay materials by a one-step sol-gel route. Fixing the amount of TiO 2 at 65wt.%, this work studies the influence of Zr loading (up to 2%) on the photocatalytic activity of the resulting Zr-doped TiO 2 /clay materials. The structural characterization demonstrates that all samples were formed by a delaminated clay with nanostructured anatase assembled on its surface. The Zr dopant was successfully incorporated into the anatase lattice, resulting in a slight deformation of the anatase crystal and the reduction of the band gap. These materials exhibit high surface area with a disordered mesoporous structure formed by TiO 2 particles (15-20nm) supported on a delaminated clay. They were tested in the solar photodegradation of antipyrine, usually used as an analgesic drug and selected as an example of emerging pollutant. High degradation rates have been obtained at low antipyrine concentrations and high solar irradiation intensities with the Zr-doped TiO 2 /clay catalyst, more effective than the undoped one. This work demonstrates the potential application of the synthesis method for preparing novel and efficient solar-light photocatalysts based on metal-doped anatase and a delaminated clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of substrate surface treatment on electrochemically assisted photocatalytic activity of N-S co-doped TiO2 films

    NASA Astrophysics Data System (ADS)

    Parada-Gamboa, N. J.; Pedraza-Avella, J. A.; Meléndez, A. M.

    2017-01-01

    To investigate whether different metal surface treatments, performed on meshes of stainless steel 304 and titanium, affect the photocatalytic activity (PCA) of supported modified anodic TiO2 films, metallic substrates were coated with titanium isopropoxide sol-gel precursor modified with thiourea. Substrates were pretreated by some of the following techniques: a) sandblasting, b) pickling, c) hydroxylation and d) passivation. The as-prepared electrode materials were characterized by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and voltammetry in the dark and under light UVA irradiation. PCA of modified N-S-TiO2 electrodes was evaluated by electrochemically assisted photocatalytic degradation of methyl orange. The results of XPS revealed that N and S were incorporated into the lattice of TiO2. FESEM showed that surface roughness and thickness of films varies depending on surface treatment. Voltammetric and XPS characterization of N-S co-doped TiO2 films supported on stainless steel revealed that their surface contains alpha-Fe2O3/FeOOH. Accordingly, iron contamination of the films coming from stainless steel was detrimental to the degradation of methyl orange. Prior to sol-gel coating process, sandblasting followed by nitric acid passivation for stainless steel or hydrofluoric acid pickling process in the case of titanium improved the PCA of N-S co-doped TiO2 films.

  12. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  13. Influence of Ta doping in resistive switching behavior of TiO2

    NASA Astrophysics Data System (ADS)

    Barman, Arabinda; Saini, Chetan P.; Deshmukh, Sujit; Dhar, Sankar; Kanjilal, Aloke

    An approach has been made to understand the resistive switching behavior in Ta-doped TiO2 films on Pt substrates. Prior to thin film deposition, Ta-doped TiO2 powder has been synthesized chemically using Ta and Ti precursor solutions. However, the Ta doping has seriously been affected by increasing Ta concentration above 1 at% due to the segregation of Ta2O5 phase. The Ta-doped TiO2 targets have been prepared for pulsed laser deposition of the films on Pt substrates using an excitation wavelength of 248 nm. The structural and chemical properties of the Ta-doped TiO2 films have been investigated in details with the help of XRD, SIMS, XAS and XPS. The stoichiometry of the Ta-doped TiO2 films with increasing depth has been verified initially by SIMS. The electrical study of the corresponding device structures further suggests that the optimized resistive switching effect can be accomplished up to a threshold Ta-doping of 1 at%. Nevertheless, a highly conducting behavior has been shown when the TiO2 films are doped with 2 at% Ta. These results will be discussed in details in the light of defect induced resistive switching phenomenon.

  14. Thermo-selective Tm(x)Ti(1-x)O(2-x/2) nanoparticles: from Tm-doped anatase TiO2 to a rutile/pyrochlore Tm2Ti2O7 mixture. An experimental and theoretical study with a photocatalytic application.

    PubMed

    Navas, Javier; Sánchez-Coronilla, Antonio; Aguilar, Teresa; De los Santos, Desireé M; Hernández, Norge C; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2014-11-07

    This is an experimental and theoretical study of thulium doped TiO2 nanoparticles. From an experimental perspective, a method was used to synthesize thulium-doped TiO2 nanoparticles in which Tm(3+) replaces Ti(4+) in the lattice, which to our knowledge has neither been reported nor studied theoretically so far. Different proportions of anatase and rutile phases were obtained at different annealing temperatures, and XRD and Raman spectroscopy also revealed the presence of a pyrochlore phase (Tm2Ti2O7) at 1173 K. Thus, the structure of the Tm-doped nanoparticles was thermally-controlled. Furthermore, XPS showed the presence of Tm(3+) in the samples synthesized, which produces oxygen vacancies to maintain the local neutrality in the lattice. The presence of Tm(3+) in the samples led to changes in the UV-Vis absorption spectra, so they showed photoluminescence properties and new states in the band gap, which produce a new lower energy electronic transition than the main TiO2 one. Periodic DFT calculations were performed to understand the experimentally produced structures. The production of oxygen vacancies was analysed and the changes generated in the structure were fully detailed. The DOS and PDOS analyses confirmed the experimental results obtained using UV-Vis spectroscopy, and showed that the new electronic states in the band gap are due to interactions of the f state of Tm and the p state of O. Likewise, the charge study and the ELF analysis indicate that when Tm is introduced into the TiO2 structure, the Ti-O bond around the oxygen vacancy is strengthened. Finally, an example of a photocatalytic application was developed to show the high efficiency of the samples due to the heterojunction in the interfaces of the phases in the samples, which improved the charge separation and the good charge carrier mobility due to the presence of the pyrochlore phase, as was also shown theoretically.

  15. Zr-doped TiO2 as a thermostabilizer in plasmon-enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Pasche, Anastasia; Grohe, Bernd; Mittler, Silvia; Charpentier, Paul A.

    2017-07-01

    Harvesting solar energy is a promising solution toward meeting the world's ever-growing energy demand. Dye-sensitized solar cells (DSSCs) are hybrid organic-inorganic solar cells with tremendous potential for commercial application, but they are plagued by inefficiency due to their poor sunlight absorption. Plasmonic silver nanoparticles (AgNPs) have been shown to enhance the absorptive properties of DSSCs, but their plasmonic resonance can cause thermal damage resulting in cell deterioration. Hence, the influence of Zr-doped TiO2 on the efficiency of plasmon-enhanced DSSCs was studied, showing that 5 mol.% Zr-doping of the photoactive TiO2 material can improve the photovoltaic performance of DSSCs by 44%. By examining three different DSSC designs, it became clear that the efficiency enhancing effect of Zr strongly depends on the proximity of the Zr-doped material to the plasmonic AgNPs.

  16. Multivalent Mn-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Lin, C. Y. W.; Channei, D.; Koshy, P.; Nakaruk, A.; Sorrell, C. C.

    2012-07-01

    Thin films of TiO2 doped with Mn were deposited on F-doped SnO2-coated glass using spin coating. The concentration of the dopant was in the range 0-7 wt% Mn (metal basis). The films were examined in terms of the structural, chemical, and optical properties. Glancing angle X-ray diffraction data show that the films consisted of the anatase polymorph of TiO2, without any contaminant phases. The X-ray photoelectron spectroscopy data indicate the presence of Mn3+ and Mn4+ in the doped films as well as atomic disorder and associated structural distortion. Ultraviolet-visible spectrophotometry data show that the optical indirect band gap of the films decreased significantly with increasing manganese doping, from 3.32 eV for the undoped composition to 2.90 eV for that doped with 7 wt% Mn.

  17. Comparison of photovoltaic properties of TiO2 electrodes prepared with nanoparticles and nanorods.

    PubMed

    Nam, Sang-Hun; Ju, Dong-Woo; Boo, Jin-Hyo

    2014-12-01

    In this report, single crystalline rutile TiO2 nanoparticles and nanorods were synthesized via the hydrothermal method using titanium tetra-isopropoxide as a precursor then, these were coated on top of a fluorine-doped tin oxide (FTO) substrate by using a doctor blade and direct deposition, respectively. Consequently, TiO2 nanorods-based dye-sensitized solar cells (DSSC) exhibit a J(sc) of 3.37 mA/cm2, a V(oc) of 0.82 V and fill factor of 60.1% with an overall conversion efficiency of 1.66%. This result shows an increase of around 38% for current density and 35% for conversion efficiency. Also, with respect to the impedance data, TiO2 nanorods-based DSSCs had smaller semicircles than did the nanoparticles-based DSSCs. These results demonstrate that the nanorod structure can have fast electron transport and reduced charge recombination.

  18. High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruu Siah, Wai; Lintang, Hendrik O.; Shamsuddin, Mustaffa; Yuliati, Leny

    2016-02-01

    Titanium dioxide (TiO2) is well-known as an active photocatalyst for degradation of various organic pollutants. Over the years, a wide range of TiO2 nanoparticles with different phase compositions, crystallinities, and surface areas have been developed. Due to the different methods and conditions used to synthesize these commercial TiO2 nanoparticles, the properties and photocatalytic performance would also be different from each other. In this study, the photocatalytic removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5- trichlorophenoxyacetic acid (2,4,5-T) was investigated on commercial Evonik P25, Evonik P90, Hombikat UV100 and Hombikat N100 TiO2 nanoparticles. Upon photocatalytic tests, it was found that overall, the photocatalytic activities of the P25 and the P90 were higher than the N100 and the UV100 for the removal of both 2,4-D and 2,4,5-T. The high activities of the P25 and the P90 could be attributed to their phase compositions, which are made up of a mixture of anatase and rutile phases of TiO2. Whereas, the UV100 and the N100 are made up of 100% anatase phase of TiO2. The synergistic effect of the anatase/rutile mixture was reported to slow down the recombination rate of photogenerated electron-hole pairs. Consequently, the photocatalytic activity was increased on these TiO2 nanoparticles.

  19. Effect of addition of nanoparticle TiO 2/SiO 2 on the superconducting properties of MgB 2

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhou, S. H.; Wang, X. L.; Dou, S. X.

    2008-09-01

    In this paper, bulk MgB 2 was prepared by doping with nanoparticle TiO 2 surface-modified by 5-10% SiO 2. The doping ratio of TiO 2/SiO 2 to MgB 2 was 0, 5, 10, and 15 wt%. The sintering temperature varied from 650 °C to 950 °C. Quantitative X-ray diffraction (XRD) analysis was performed to obtain the lattice constants and the weight fraction of impurities using the Rietveld method. It was found that the critical temperature ( Tc) increases with the lattice constants. The critical current density ( Jc) is affected by the doping ratio and the sintering temperature. The Jc exhibited the highest value at the doping ratio of 10 wt% for 5 K and 20 K and at the doping ratio of 5 wt% for 30 K, when the sintering temperature was fixed at 750 °C. When the doping ratio was fixed at 5 wt%, the samples with the sintering temperature of 750 °C had the best Jc for 5 K and 20 K, while the sample with the sintering temperature of 850 °C exhibited the highest Jc at 30 K.

  20. Effect of photocatalytic reduction of carbon dioxide by N-Zr co-doped nano TiO2.

    PubMed

    Zhang, Ru; Wang, Li; Kang, Zhuo; Li, Qiang; Pan, Huixian

    2017-11-01

    Modified sol-gel method was adopted to prepare TiO 2 , Zr-TiO 2 and N/Zr-TiO 2 composite catalyst. The as-synthesized photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunner- Emmet- Teller measurement and UV-Vis diffuse reflectance spectroscopy. And the photocatalytic performance toward CO 2 reduction was evaluated under ultraviolet light. The catalyst particles were demonstrated in the nanometer level size. When N and Zr are co-doped, on the one hand, Ti 4+ can be replaced by Zr 4  +, which leads to lattice distortion and inhibits electron-hole recombination. On the other hand, N enters into TiO 2 lattice gap to form O-Ti-N bond structure, and partial Ti 4+ are reduced to Ti 3+ . Compared with pristine TiO 2 , the specific surface area and the band gap of N/Zr-TiO 2 were improved and reduced, respectively. The N and Zr synergistically contribute to the obviously strengthened absorption intensity in visible region, as well as significantly improved photocatalytic activity. In the gas phase reactor, when the calcination temperature was 550°C, 0.125N/0.25Zr-TiO 2 composite performed the highest photocatalytic activity UV irradiation for 8 h, and the corresponding CH 4 yield was 11.837 µmol/g, which was 87.8% higher than that of pristine TiO 2 . For the visible light, the CH 4 yield was 9.003 µmol/g after 8 h irradiation, which was 83.9% higher than that of pristine TiO 2 .

  1. Observation of Significant enhancement in the efficiency of a DSSC by InN nanoparticles over TiO 2-nanoparticle films

    NASA Astrophysics Data System (ADS)

    Wang, Tsai-Te; Raghunath, P.; Lu, Yun-Fang; Liu, Yu-Chang; Chiou, Chwei-Huawn; Lin, M. C.

    2011-06-01

    We have studied the effect of InN deposited over TiO2 nanoparticle (NP) films on the performance of dye-sensitized solar cells (DSSCs) using N3 dye with I/I3- electrolyte. A 10-20% increase in efficiency was observed for InN deposited, N3 sensitized 5-8.5 μm thick TiO2 films as compared to similar non-treated films. The deposition of InN was carried out in the temperature range of 573-723 K organometallic chemical vapor deposition (OMCVD). Spectral shifts and DFT calculations with a model anchoring group (R‧COOH) both suggest binding of the N3 dye directly to both InN and the InN/TiO2 sites.

  2. Antibacterial activity of standard and N-doped titanium dioxide-coated endotracheal tubes: an in vitro study

    PubMed Central

    Caratto, Valentina; Ball, Lorenzo; Sanguineti, Elisa; Insorsi, Angelo; Firpo, Iacopo; Alberti, Stefano; Ferretti, Maurizio; Pelosi, Paolo

    2017-01-01

    Objective The aim of this study was to assess the antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa of two nanoparticle endotracheal tube coatings with visible light-induced photocatalysis. Methods Two types of titanium dioxide nanoparticles were tested: standard anatase (TiO2) and N-doped TiO2 (N-TiO2). Nanoparticles were placed on the internal surface of a segment of commercial endotracheal tubes, which were loaded on a cellulose acetate filter; control endotracheal tubes were left without a nanoparticle coating. A bacterial inoculum of 150 colony forming units was placed in the endotracheal tubes and then exposed to a fluorescent light source (3700 lux, 300-700 nm wavelength) for 5, 10, 20, 40, 60 and 80 minutes. Colony forming units were counted after 24 hours of incubation at 37°C. Bacterial inactivation was calculated as the percentage reduction of bacterial growth compared to endotracheal tubes not exposed to light. Results In the absence of light, no relevant antibacterial activity was shown against neither strain. For P. aeruginosa, both coatings had a higher bacterial inactivation than controls at any time point (p < 0.001), and no difference was observed between TiO2 and N-TiO2. For S. aureus, inactivation was higher than for controls starting at 5 minutes for N-TiO2 (p = 0.018) and 10 minutes for TiO2 (p = 0.014); inactivation with N-TiO2 was higher than that with TiO2 at 20 minutes (p < 0.001), 40 minutes (p < 0.001) and 60 minutes (p < 0.001). Conclusions Nanosized commercial and N-doped TiO2 inhibit bacterial growth under visible fluorescent light. N-TiO2 has higher antibacterial activity against S. aureus compared to TiO2. PMID:28444073

  3. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.

    PubMed

    Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong

    2012-09-26

    Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films.

  4. A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Wang, Boya; Wu, Hao; Xiang, Mingwu; Wang, Qiong; Liu, Heng; Zhang, Yun; Liu, Huakun; Dou, Shixue

    2018-03-01

    Free-standing electrodes have stood out from the electrode pack, owing to their advantage of abandoning the conventional polymeric binder and conductive agent, thus increasing the specific capacity of lithium-ion batteries. Nevertheless, their practical application is hampered by inferior electrical conductivity and complex manufacturing process. To this end, we report here a facile approach to fabricate a flexible 3D N-doped carbon foam/carbon nanotubes (NCF@CNTs) hybrid to act as the current collector and host scaffold for TiO2 particles, which are integrated into a lightweight free-standing electrode (NCF@CNTs-TiO2). In the resulting architecture, ultra-fine TiO2 nanoparticles are homogeneously anchored in situ into the N-doped NCF@CNTs framework with macro- and meso-porous structure, wrapped by a dense CNT layer, cooperatively enhances the electrode flexibility and forms an interconnected conductive network for electron/ion transport. As a result, the as-prepared NCF@CNTs-TiO2 electrode exhibits excellent lithium storage performance with high specific capacity of 241 mAh g-1 at 1 C, superb rate capability of 145 mAh g-1 at 20 C, ultra-long cycling stability with an ultra-low capacity decay of 0.0037% per cycle over 2500 cycles, and excellent thermal stability with ∼94% capacity retention over 100 cycles at 55 °C.

  5. Principal component analysis of Raman spectra for TiO2 nanoparticle characterization

    NASA Astrophysics Data System (ADS)

    Ilie, Alina Georgiana; Scarisoareanu, Monica; Morjan, Ion; Dutu, Elena; Badiceanu, Maria; Mihailescu, Ion

    2017-09-01

    The Raman spectra of anatase/rutile mixed phases of Sn doped TiO2 nanoparticles and undoped TiO2 nanoparticles, synthesised by laser pyrolysis, with nanocrystallite dimensions varying from 8 to 28 nm, was simultaneously processed with a self-written software that applies Principal Component Analysis (PCA) on the measured spectrum to verify the possibility of objective auto-characterization of nanoparticles from their vibrational modes. The photo-excited process of Raman scattering is very sensible to the material characteristics, especially in the case of nanomaterials, where more properties become relevant for the vibrational behaviour. We used PCA, a statistical procedure that performs eigenvalue decomposition of descriptive data covariance, to automatically analyse the sample's measured Raman spectrum, and to interfere the correlation between nanoparticle dimensions, tin and carbon concentration, and their Principal Component values (PCs). This type of application can allow an approximation of the crystallite size, or tin concentration, only by measuring the Raman spectrum of the sample. The study of loadings of the principal components provides information of the way the vibrational modes are affected by the nanoparticle features and the spectral area relevant for the classification.

  6. Fabrication of predominantly Mn4+ -doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts.

    PubMed

    Wang, Lijie; Fan, Jiajie; Cao, Zetan; Zheng, Yichao; Yao, Zhiqiang; Shao, Guosheng; Hu, Junhua

    2014-07-01

    The chemical state of a transition-metal dopant in TiO(2) can intrinsically determine the performance of the doped material in applications such as photocatalysis and photovoltaics. In this study, manganese-doped TiO2 is fabricated by a near-equilibrium process, in which the TiO(2) precursor powder precipitates from a hydrothermally obtained transparent mother solution. The doping level and subsequent thermal treatment influence the morphology and crystallization of the TiO(2) samples. FTIR spectroscopy and X-ray photoelectron spectroscopy analyses indicate that the manganese dopant is substitutionally incorporated by replacing Ti(4+) cations. The absorption band edge can be gradually shifted to 1.8 eV by increasing the nominal manganese content to 10 at %. Manganese atoms doped into the titanium lattice are associated with the dominant 4+ valence oxidation state, which introduces two curved, intermediate bands within the band gap and results in a significant enhancement in photoabsorption and the quantity of photogenerated hydroxyl radicals. Additionally, the high photocatalytic performance of manganese-doped TiO(2) is also attributed to the low oxygen content, owing to the equilibrium fabrication conditions. This work provides an important strategy to control the chemical and defect states of dopants by using an equilibrium fabrication process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Wang, Hsin-Yi; Chen, Jiazang; Hy, Sunny; Yu, Linghui; Xu, Zhichuan; Liu, Bin

    2014-11-01

    Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m2 g-1 were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping modifies the electronic structure of TiO2 (e.g., Fermi level, Ef), and thus influences its electrochemical properties. Solid electrolyte interface (SEI) formation, which is not common for titania, could be initiated in carbonate-doped TiO2 due to elevated Ef. After removing carbonate dopants by high-temperature calcination, the mesoporous TiO2 microspheres showed much improved performance in lithium insertion and stability at various current rates, attributed to a synergistic effect of high surface area, large pore size and good anatase crystallinity.Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m2 g-1 were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping

  8. Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions

    NASA Astrophysics Data System (ADS)

    Liu, Yazi; Sun, Dan; Askari, Sadegh; Patel, Jenish; Macias-Montero, Manuel; Mitra, Somak; Zhang, Richao; Lin, Wen-Feng; Mariotti, Davide; Maguire, Paul

    2015-10-01

    A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding.

  9. Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO2 for Visible Light Photocatalytic Activity

    PubMed Central

    Peng, Fuchang; Gao, Honglin; Zhang, Genlin; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2017-01-01

    Mixed phase TiO2 nanoparticles with element doping by Sm and C were prepared via a facile sol-gel procedure. The UV-Vis light-diffuse reflectance spectroscopy analysis showed that the absorption region of co-doped TiO2 was shifted to the visible-light region, which was attributed to incorporation of samarium and carbon into the TiO2 lattice during high-temperature reaction. Samarium effectively decreased the anatase-rutile phase transformation. The grain size can be controlled by Sm doping to achieve a large specific surface area useful for the enhancement of photocatalytic activity. The photocatalytic activities under visible light irradiation were evaluated by photocatalytic degradation of methylene blue (MB). The degradation rate of MB over the Sm-C co-doped TiO2 sample was the best. Additionally, first-order apparent rate constants increased by about 4.3 times compared to that of commercial Degusssa P25 under the same experimental conditions. Using different types of scavengers, the results indicated that the electrons, holes, and •OH radicals are the main active species for the MB degradation. The high visible-light photocatalytic activity was attributed to low recombination of the photo-generated electrons and holes which originated from the synergistic effect of the co-doped ions and the heterostructure. PMID:28772569

  10. Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma

    NASA Astrophysics Data System (ADS)

    Zhan, Zhibin; Di, Lanbo; Zhang, Xiuling; Li, Yanchun

    2016-05-01

    An atmospheric-pressure dielectric barrier discharge (DBD) gas-liquid cold plasma was employed to synthesize Cu-doped TiO2 nanoparticles in an aqueous solution with the assistance of [C2MIM]BF4 ionic liquid (IL) and using air as the working gas. The influences of the discharge voltage, IL and the amount of copper nitrite were investigated. X-ray diffraction, N2 adsorption-desorption measurements and UV-Vis spectroscopy were adopted to characterize the samples. The results showed that the specific surface area of TiO2 was promoted with Cu-doping (from 57.6 m2·g-1 to 106.2 m2·g-1 with 3% Cu-doping), and the content of anatase was increased. Besides, the band gap energy of TiO2 with Cu-doping decreased according to the UV-Vis spectroscopy test. The 3%Cu-IL-TiO2 samples showed the highest efficiency in degrading methylene blue (MB) dye solutions under simulated sunlight with an apparent rate constant of 0.0223 min-1, which was 1.2 times higher than that of non-doped samples. According to the characterization results, the reasons for the high photocatalytic activity were discussed. supported by National Natural Science Foundation of China (Nos. 21173028, 11505019), the Science and Technology Research Project of Liaoning Provincial Education Department (No. L2013464), the Scientific Research Foundation for the Doctor of Liaoning Province (No. 20131004), the Program for Liaoning Excellent Talents in University (No. LR2012042), and Dalian Jinzhou New District Science and Technology Plan Project (No. KJCX-ZTPY-2014-0001)

  11. Imaging TiO2 nanoparticles on GaN nanowires with electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Ting; Wen, Baomei; Liu, Guannan; Guo, Shiqi; Motayed, Abhishek; Murphy, Thomas; Gomez, R. D.

    Gallium nitride (GaN) nanowires that are functionalized with metal-oxides nanoparticles have been explored extensively for gas sensing applications in the past few years. These sensors have several advantages over conventional schemes, including miniature size, low-power consumption and fast response and recovery times. The morphology of the oxide functionalization layer is critical to achieve faster response and recovery times, with the optimal size distribution of nanoparticles being in the range of 10 to 30 nm. However, it is challenging to characterize these nanoparticles on GaN nanowires using common techniques such as scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. Here, we demonstrate electrostatic force microscopy in combination with atomic force microscopy as a non-destructive technique for morphological characterization of the dispersed TiO2 nanoparticles on GaN nanowires. We also discuss the applicability of this method to other material systems with a proposed tip-surface capacitor model. This project was sponsored through N5 Sensors and the Maryland Industrial Partnerships (MIPS, #5418).

  12. Band structures of TiO2 doped with N, C and B*

    PubMed Central

    Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532

  13. Molecular adsorption of hydrogen peroxide on N- and Fe-doped titania nanoclusters

    NASA Astrophysics Data System (ADS)

    Mohajeri, Afshan; Dashti, Nasimeh Lari

    2017-06-01

    Titanium dioxide (titania) nanoparticles have been extensively investigated for photocatalytic applications such as the decomposition and adsorption of pollutant and undesirable compound in air and waste water. In this context, the present article reports the molecular adsorption of hydrogen peroxide on the surface of doped titania clusters. Density functional theory calculations were performed to investigate the structures and electronic properties of two nanoscale (TiO2)n clusters (n = 5,6) modified by nitrogen and iron dopants. The relative stability of all possible N-doped and Fe-doped isomers has been compared with each other and with the parent cluster. It was found that the Fe-doped clusters are in general more stable than the N-doped counterparts. Moreover, after N/Fe doping an enhanced in the magnetization of the clusters is observed. In the second part, we have investigated different modes of H2O2 adsorption on the lowest-energy isomers of doped clusters. In almost all the cases, the adsorptions on the doped clusters are found to be less exothermic than on the corresponding undoped parent cluster. Our results highlight the essential role of charge transfer into the interaction between H2O2 and doped (TiO2)n clusters, especially for Fe-doped clusters.

  14. Photocatalytic Antibacterial Performance of Glass Fibers Thin Film Coated with N-Doped SnO 2 /TiO 2

    PubMed Central

    Sikong, Lek; Niyomwas, Sutham; Rachpech, Vishnu

    2014-01-01

    Both N-doped and undoped thin films of 3SnO2/TiO2 composite were prepared, by sol-gel and dip-coating methods, and then calcined at 600°C for 2 hours. The films were characterized by FTIR, XRD, UV-Vis, SEM, and XPS, and their photocatalytic activities to degrade methylene blue in solution were determined, expecting these activities to correlate with the inactivation of bacteria, which was confirmed. The doped and undoped films were tested for activities against Gram-negative Escherichia coli (E. coli) and Salmonella typhi (S. typhi), and Gram-positive Staphylococcus aureus (S. aureus). The effects of doping on these composite films included reduced energy band gap, high crystallinity of anatase phase, and small crystallite size as well as increased photocatalytic activity and water disinfection efficiency. PMID:24693250

  15. Impedance analysis and dielectric response of anatase TiO2 nanoparticles codoped with Mn and Co ions

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Kashyap, Manish K.; Sabharwal, Namita; Kumar, Sarvesh; Kumar, Ashok; Kumar, Parmod; Asokan, K.

    2017-11-01

    In order to elucidate the effect of transition metal (TM) doping, the impedance and dielectric responses of Co and/or Mn-doped TiO2 nanocrystalline powder samples with 3% doping concentration synthesized via sol gel technique, have been analyzed. X-ray diffraction (XRD) analysis confirms the formation of tetragonal TiO2 anatase phase for all studied samples without any extra impurity phase peaks. The variation in the grain size measured from field emission scanning electron microscope (FESEM) measurements for all the samples are in accordance with the change in crystallite size as obtained from XRD. The DC resistivity for pure TiO2 nanoparticles is the highest while codoped samples exhibit low resistivity. The temperature dependent dielectric constant and dielectric loss possess step like enhancement and show the relaxation behavior. At room temperature, the dielectric function and dielectric loss decrease rapidly with increase in frequency and become almost constant at the higher frequencies. Such a decrease in dielectric loss is suitable for energy storage devices.

  16. Dual roles of a flouride-doped SnO2/TiO2 bilayer based on inverse opal/nanoparticle structure for water oxidation

    NASA Astrophysics Data System (ADS)

    Yun, Gun; Balamurugan, Maheswari; Ahn, Kwang-Soon; Lee, Sang-Kwon; Kang, Soon Hyung; Lim, Dong-Ha

    2018-01-01

    Fluorine-doped tin dioxide (FTO) inverse opals (IOs) were fabricated on a template of polystyrene (PS) beads (diameter = 400 nm (±20 nm)) by using a spin-coating method. The concentration of the FTO precursor, in particular, the 1.0 M FTO concentration solution significantly influenced the morphology of the IO film. The FTO nanoparticles upon the FTO IO film were sparsely formed relative to these formed from the 0.5 M FTO solution. To compensate for the large band gap ( E g = 3.8 eV) of FTO in the photoelectrochemical (PEC) reaction, we deposited a photoactive TiO2 shell on the FTO IO film by using the sol-gel method. The morphological change and the crystalline properties of the FTO IO and TiO2-coated FTO IO (hereafter referred to as FTO IO/TiO2) films, were investigated with field emission scanning electron microscopy and X-ray diffraction, respectively. The PEC behaviors of the samples were tested in a 0.1 M KOH solution under one sun illumination (100 mW/cm2 with an AM 1.5 filter). The highest PEC performance was obtained with the 1.0 M FTO IO/TiO2 film, which produced a photocurrent density (Jsc) of 3.28 mA/cm2 at 1.23 V (vs. normal hydrogen electrode (NHE), as briefly expressed to 1.23 VNHE) compared to 2.42 mA/cm2 at 1.23 VNHE with the 0.5 M FTO IO/TiO2 film. The approximately 30% enhanced performance of the 1.0 M FTO IO/TiO2 film was mainly attributed to the peculiar structure comprised of the FTO nanoparticle layer and IO films to form a bilayer structure, providing a much larger surface area, as well as complete coverage of the photoactive TiO2 nanoparticles through the FTO IO skeleton in the proper band alignment to boost the charge separation/transfer phenomenon, finally resulting in the enhanced PEC activity.

  17. Characteristics of ionic polymer-metal composite with chemically doped TiO2 particles

    NASA Astrophysics Data System (ADS)

    Jung, Youngsoo; Kim, Seong Jun; Kim, Kwang J.; Lee, Deuk Yong

    2011-12-01

    Many studies have investigated techniques to improve the bending performance of ionic polymer-metal composite (IPMC) actuators, including 'doping' of metal particles in the polymer membrane usually by means of physical processes. This study is mainly focused on the characterization of the physical, electrochemical and electromechanical properties of TiO2-doped ionic polymer membranes and IPMCs prepared by the sol-gel method, which results in a uniform distribution of the particles inside the polymer membrane. X-ray and UV-visible spectra indicate the presence of anatase-TiO2 in the modified membranes. TiO2-doped membranes (0.16 wt%) exhibit the highest level of water uptake. The glass transition temperature of these membranes, measured using differential scanning calorimetry (DSC), increases with the increase of the amount of TiO2 in the membrane. Dynamic mechanical analysis (DMA) demonstrated that the storage modulus of dried TiO2-doped ionic polymer membranes increases as the amount of TiO2 in the membrane increases, whereas the storage modulus of hydrated samples is closely related to the level of water uptake. Electrochemical impedance spectroscopy (EIS) shows that the conductivity of TiO2-doped membranes decreases with increasing TiO2 content in spite of an internal resistance drop in the samples. Above all, bending deflection of TiO2-doped IPMC decreased with higher TiO2 content in the membrane while the blocking force of each sample increased with the higher TiO2 content. Additionally, it was determined that the lifetime of IPMC is strongly dependent on the level of water uptake.

  18. Pr3+ doped biphasic TiO2 (rutile-brookite) nanorod arrays grown on activated carbon fibers: Hydrothermal synthesis and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Min; Zhang, Xiaomei; Liu, Ying; Yang, Yi

    2018-05-01

    Praseodymium-doped biphasic TiO2 (rutile-brookite) nanorod arrays (Pr-TiO2 NRAs) were successfully prepared via a two-step hydrothermal reaction on activated carbon fibers (ACFs) which pre-coated with TiO2 nanoparticles at first step. The bicrystalline arrays grown on ACFs are primarily constructed by the well-aligned TiO2 nanorods growing along [0 0 1] direction, which were indicated by the results of SEM and XRD. The nanorods are uniform in diameter and length with about 250 nm and 2.5 μm. The composite photocatalyst with high specific surface area and well-aligned nanostructure are beneficial to enhance the adsorption capacity and even help to suppress electron-hole recombination effectively, which consequently revealed much better (2 times) catalytic performance than that of commercially available P25 TiO2 on methylene blue(MB) photodegradation. In addition, the existence of praseodymium in TiO2 gives rise to shift of absorption edge towards long wavelength, which was indicated by the results of UV-vis DRS. Photodegradation results reveal that Pr-doping significantly improves the activity of TiO2, which was 20% higher than that of undoped TiO2 NRAs for the photodegradation of MB in aqueous medium under visible light irradiation. Meanwhile, the doped amount of Pr had a tiny influence on the photocatalytic performance of the composites. In our experiment, 3% Pr-doped molar concentration was proven to be the relatively optimal dopant concentration for the doping of TiO2 NRAs. Moreover, the photocatalyst grown on ACFs substrates is favorable to reuse and photodegradation rate kept on 76% even after 4 times of reuse.

  19. Porous immobilized C coated N doped TiO2 containing in-situ generated polyenes for enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sabri, N. A.; Nawi, M. A.; Nawawi, W. I.

    2015-10-01

    Carbon coated nitrogen-doped Degussa P25TiO2 (or C,N-P25TiO2) was successfully immobilized on a glass plate using epoxidized natural rubber (ENR-50) and polyvinyl chloride (PVC) as the organic binders. Photo-etching of the fabricated system for 10 h oxidized its PVC binder into polyenes as well as forming a highly porous surface. The band gap energy (Eg) of the photo-etched immobilized photocatalyst system (C,N-P25TiO2/ENR/PVC-10 h) was reduced from 2.91 to 2.86 eV. Its photocatalytic activity was studied via photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under a 45 W visible light fluorescent lamp. C,N-P25TiO2/ENR/PVC-10 h with polyenes performed better than its slurry counterpart under visible light irradiation where the conjugated double bonds acted as photo sensitizers. The immobilized C,N-P25TiO2/ENR/PVC-10 h has excellent reusability and sustainable with an average k value of 0.056 ± 0.011 min-1 and average percent removal of 99.18 ± 0.54%.

  20. Magnetic, electronic, optical, and photocatalytic properties of nonmetal- and halogen-doped anatase TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Fadlallah, M. M.

    2017-05-01

    The structure stability, magnetic, electronic, optical, and photocatalytic properties of nonmetal (B, C, N, P, and S), and halogen (F, Cl, Br, and I)-doped anatase TiO2 nanotubes (TNTs) have been investigated using spin polarized density functional theory. The N- and F-doped TNTs are the most stable among other doped TNTs. It is found that the magnetic moment of doped TNT is the difference between the number of the valence electrons of the dopant and host anion. All dopants decrease the band gap of TNT. The decrease in the band gap of nonmetal (C, N, P, and S)-doped TNTs, in particular N and P, is larger than that of halogen-doped TNTs due to the created states of the nonmetal dopant in the band gap. There is a good agreement between the calculation results and the experimental observations. Even though C-, N-, and P-doped TNTs have the lowest band gap, they cannot be used as a photocatalysis for water splitting. The B-, S-, and I-doped TiO2 nanotubes are of great potential as candidates for water splitting in the visible light range.

  1. One-pot synthesis and optical properties of Eu3+-doped nanocrystalline TiO2 and ZrO2

    NASA Astrophysics Data System (ADS)

    Julián, Beatriz; Corberán, Rosa; Cordoncillo, Eloisa; Escribano, Purificación; Viana, Bruno; Sanchez, Clément

    2005-11-01

    A simple and versatile one-pot sol-gel synthesis of Eu3+-doped nanocrystalline TiO2 and ZrO2 nanomaterials is reported in this paper. It consists of the controlled crystallization of Eu3+-doped TiO2 or ZrO2 nanoparticles from an initial solution containing the metal alkoxide, the lanthanide precursor, a complexing agent and a non-complexing acid. The main interest is that it could be extended to different lanthanide ions and inorganic metal oxides to prepare other multifunctional nanomaterials. The characterization by XRD, HRTEM and SAED techniques showed that the TiO2 and ZrO2 crystallization takes place at very low temperatures (60 °C) and that the crystallite size can be tailored by modifying the synthetic conditions. The optical properties of the resulting materials were studied by emission spectra and decay measurements. Both Eu3+:TiO2 and Eu3+:ZrO2 samples exhibited long lifetime values after removing organic components (τ = 0.7 and 1.3 ms, respectively), but the Eu3+:ZrO2 system is specially promising for photonic applications since its τ value is longer than some reported for other inorganic or hybrid matrices in which Eu3+ ions are complexed. This behaviour has been explained through an effective dispersion of the lanthanide ions within the ZrO2 nanocrystals.

  2. Y-doping TiO2 nanorod arrays for efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Deng, Xinlian; Wang, Yanqing; Cui, Zhendong; Li, Long; Shi, Chengwu

    2018-05-01

    To improve the electron transportation in TiO2 nanorod arrays and charge separation in the interface of TiO2/perovskite, Y-doping TiO2 nanorod arrays with the length of 200 nm, diameter of 11 nm and areal density of 1050 μm-2 were successfully prepared by the hydrothermal method and the influence of Y/Ti molar ratios of 0%, 3%, 5% in the hydrothermal grown solutions on the growth of TiO2 nanorod arrays was investigated. The results revealed that the appropriate Y/Ti molar ratios can increase the areal density of the corresponding TiO2 nanorod arrays and improve the charge separation in the interface of the TiO2/perovskite. The Y-doping TiO2 nanorod array perovskite solar cells with the Y/Ti molar ratio of 3% exhibited a photoelectric conversion efficiency (PCE) of 18.11% along with an open-circuit voltage (Voc) of 1.06 V, short-circuit photocurrent density (Jsc) of 22.50 mA cm-2 and fill factor (FF) of 76.16%, while the un-doping TiO2 nanorod array perovskite solar cells gave a PCE of 16.42% along with Voc of 1.04 V, Jsc of 21.66 mA cm-2 and FF of 72.97%.

  3. Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders.

    PubMed

    McManamon, Colm; Holmes, Justin D; Morris, Michael A

    2011-10-15

    This paper studies the photocatalytic degradation of phenol using zirconia-doped TiO(2) nanoparticles. ZrO(2) was chosen due to its promising results during preliminary studies. Particles smaller than 10nm were synthesised and doped with quantities of ZrO(2) ranging from 0.5 to 4% (molar metal content). Particles were calcined at different temperatures to alter the TiO(2) structure, from anatase to rutile, in order to provide an ideal ratio of the two phases. Powder X-ray diffraction (PXRD) analysis was used to examine the transformation between anatase and rutile. Degradation of phenol was carried out using a 40 W UV bulb at 365 nm and results were measured by UV-vis spectrometry. TEM images were obtained and show the particles exhibit a highly ordered structure. TiO(2) doped with 1% ZrO(2) (molar metal content) calcined at 700 °C proved to be the most efficient catalyst. This is due to an ideal anatase:rutlie ratio of 80:20, a large surface area and the existence of stable electron-hole pairs. ZrO(2) doping above the optimum loading acted as an electron-hole recombination centre for electron-hole pairs and reduced photocatalytic degradation. Synthesised photocatalysts compared favourably to the commercially available photocatalyst P25. The materials also demonstrated the ability to be recycled with similar results to those achieved on fresh material after 5 uses. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine

    NASA Astrophysics Data System (ADS)

    Dorraj, Masoumeh; Goh, Boon Tong; Sairi, Nor Asrina; Woi, Pei Meng; Basirun, Wan Jefrey

    2018-05-01

    Cu-I-co-doped TiO2 photocatalysts active to visible light absorption were prepared by hydrothermal method and calcined at various temperatures (350 °C, 450 °C, and 550 °C). The co-doped powders at 350 °C displayed the highest experimental Brunauer-Emmett-Teller surface area and lowest photoluminescence intensity, which demonstrated that a decrease in electron-hole recombination process. The synthesis of co-doped TiO2 was performed at this optimized temperature. In the co-doped sample, the Cu2+ doped TiO2 lattice created a major "red-shift" in the absorption edge due to the presence of the 3d Cu states, whereas the amount of red-shift from the I5+ doping in the TiO2 lattice was minor. Interestingly, the presence of Cu2+ species also boosted the reduction of I5+ ions to the lower multi-valance state I- in the TiO2 lattice by trapping the photogenerated electrons, which resulted in effective separation of the photogenerated charges. The Cu-I-co-doped TiO2 was able to degrade methyl orange dye under visible-light irradiation with improved photocatalytic activity compared with the single metal-doped TiO2 and pure TiO2 because of the strong visible light absorption and effective separation of photogenerated charges caused by the synergistic effects of Cu and I co-dopants.

  5. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    PubMed

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-07

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.

  6. Structure and high photocatalytic activity of (N, Ta)-doped TiO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, N. T. H.; Lam, V. D.; Manh, D. H.

    2016-10-14

    A hydrothermal method was used to prepare three nano-crystalline samples of TiO{sub 2} (S1), N-doped TiO{sub 2} (S2), and (N, Ta)-codoped TiO{sub 2} (S3) with average crystallite sizes (D) of 13–25 nm. X-ray diffraction studies confirmed a single phase of the samples with a tetragonal/anatase structure. A slight increase in the lattice parameters was observed when N and/or Ta dopants were doped into the TiO{sub 2} host lattice. Detailed analyses of extended X-ray absorption spectra indicated that N- and/or Ta-doping into TiO{sub 2} nanoparticles influenced the co-ordination number and radial distance (R) of Ti ions in the anatase structure. Concerning theirmore » absorption spectra, (N, Ta)-doping narrowed the band gap (E{sub g}) of TiO{sub 2} from 3.03 eV for S1 through 2.94 eV for S2 to 2.85 eV for S3. Such results revealed the applicability of these nanoparticles in the photocatalytic field working in the ultraviolet (UV)-visible region. Among these, photocatalytic activity of S3 was the strongest. By using S3 as a catalyst powder, the degradation efficiency of methylene blue solution was about 99% and 93% after irradiation of UV-visible light for 75 min and visible-light for 180 min, respectively.« less

  7. Photocatalytic thin films containing TiO2:N nanopowders obtained by the layer-by-layer self-assembling method

    NASA Astrophysics Data System (ADS)

    Rojas-Blanco, L.; Urzúa, M. D.; Ramírez-Bon, R.; Espinoza Beltrán, F. J.

    2012-01-01

    In this work, TiO2-N powders were synthesized by high-energy ball milling, using commercial titanium dioxide (TiO2) in the anatase phase and urea to introduce nitrogen into TiO2 in order to enhance their photocatalytic properties in the visible spectral region. Several samples were prepared by milling a mixture of TiO2-urea during 2, 4, 8, 12 and 24 h and characterized by spectroscopic and analytical techniques. X-ray diffraction (XRD) results showed the coexistence of anatase and high-pressure srilankite TiO2 crystalline phases in the samples. Scanning electron microscopy (SEM) revealed that the grain size of the powder samples decreases to 200 nm at 24 h milling time. UV-Vis diffuse reflectance spectroscopic data showed a clear red-shift in the onset of light absorption from 387 to 469 nm as consequence of nitrogen doping in the samples. The photocatalytic activity of the TiO2-N samples was evaluated by methylene blue degradation under visible light irradiation. It was found that TiO2-N samples had higher photocatalytic activity than undoped TiO2 samples, which could be assigned to the effect of introducing N atoms and XPS results confirm it. Using polyethylenimine (PEI), transparent thin films of TiO2-N nanoparticles were prepared by layer-by-layer self assembly method. UV-visible spectrophotometry was employed in a quantitative manner to monitor the adsorbed mass of TiO2 and PEI after each dip cycle. The adsorption of both TiO2 and PEI showed a saturation dip time of 15 min.

  8. Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2-DNA nanoconjugate stability.

    PubMed

    Thurn, Kenneth T; Paunesku, Tatjana; Wu, Aiguo; Brown, Eric M B; Lai, Barry; Vogt, Stefan; Maser, Jörg; Aslam, Mohammed; Dravid, Vinayak; Bergan, Raymond; Woloschak, Gayle E

    2009-06-01

    Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.

  9. Nuclear microscopy as a tool in TiO2 nanoparticles bioaccumulation studies in aquatic species

    NASA Astrophysics Data System (ADS)

    Pinheiro, Teresa; Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana

    2013-07-01

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO2) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO2 nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4-25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO2, respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO2 was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO2 (>10 mg/L). The exposure to TiO2 nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO2 nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems.

  10. Effects of donor doping and acceptor doping on rutile TiO2 particles for photocatalytic O2 evolution by water oxidation

    NASA Astrophysics Data System (ADS)

    Amano, Fumiaki; Tosaki, Ryosuke; Sato, Kyosuke; Higuchi, Yamato

    2018-02-01

    Crystalline defects of photocatalyst particles may be considered to be the recombination center of photoexcited electrons and holes. In this study, we investigated the photocatalytic activity of cation-doped rutile TiO2 photocatalysts for O2 evolution from an aqueous silver nitrate solution under ultraviolet light irradiation. The photocatalytic activity of rutile TiO2 was enhanced by donor doping of Ta5+ and Nb5+ with a valence higher than that of Ti4+, regardless of increased density of electrons and Ti3+ species (an electron trapped in Ti4+ sites). Conversely, acceptor doping of lower valence cations such as In3+ and Ga3+ decreased photocatalytic activity for O2 evolution by water oxidation. The doping of equal valence cations such as Sn4+ and Ge4+ hardly changed the activity of non-doped TiO2. This study demonstrates that Ti3+ species, which is a crystalline defect, enhanced the photocatalytic activity of semiconductor oxides, for example rutile TiO2 with large crystalline size.

  11. TiO2 -coated fluoride nanoparticles for dental multimodal optical imaging.

    PubMed

    Braz, Ana K S; Moura, Diógenes S; Gomes, Anderson S L; Ohulchanskyy, Tymish Y; Chen, Guanying; Liu, Maixian; Damasco, Jossana; de Araujo, Renato E; Prasad, Paras N

    2018-04-01

    Core-shell nanostructures associated with photonics techniques have found innumerous applications in diagnostics and therapy. In this work, we introduce a novel core-shell nanostructure design that serves as a multimodal optical imaging contrast agent for dental adhesion evaluation. This nanostructure consists of a rare-earth-doped (NaYF 4 :Yb 60%, Tm 0.5%)/NaYF 4 particle as the core (hexagonal prism, ~51 nm base side length) and the highly refractive TiO 2 material as the shell (~thickness of 15 nm). We show that the TiO 2 shell provides enhanced contrast for optical coherence tomography (OCT), while the rare-earth-doped core upconverts excitation light from 975 nm to an emission peaked at 800 nm for photoluminescence imaging. The OCT and the photoluminescence wide-field images of human tooth were demonstrated with this nanoparticle core-shell contrast agent. In addition, the described core-shell nanoparticles (CSNps) were dispersed in the primer of a commercially available dental bonding system, allowing clear identification of dental adhesive layers with OCT. We evaluated that the presence of the CSNp in the adhesive induced an enhancement of 67% scattering coefficient to significantly increase the OCT contrast. Moreover, our results highlight that the upconversion photoluminescence in the near-infrared spectrum region is suitable for image of deep dental tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying

    2014-07-01

    TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.

  13. Optical properties of rhodamine 6G-doped TiO2 sol-gel films

    NASA Astrophysics Data System (ADS)

    Tomás, S. A.; Stolik, S.; Palomino, R.; Lozada, R.; Persson, C.; Ahuja, R.; Pepe, I.; Ferreira da Silva, A.

    2005-06-01

    The optical properties of titania (TiO2) thin films prepared by the sol-gel process and doped with rhodamine 6G were studied by Photoacoustic Spectroscopy. Rhodamine 6G-doping was achieved by adding 0.01%, 0.02%, 0.05% y 0.1% mol rhodamine to a solution that contained titanium isopropoxide as precursor. Two absorption regions were distinguished in the absorption spectrum of a typical rhodamine 6G-doped TiO2 film. A shift of these bands occured as a function of rhodamine 6G-doping concentration. In addition, the optical absorption and band gap energy for rutile-phase TiO2 films were calculated employing the full-potential linearized augmented plane wave method. A comparison of these calculations with experimental data of TiO2 films prepared by sol-gel at room temperature was performed.

  14. Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst.

    PubMed

    Mohamed, Mohamad Azuwa; Salleh, W N W; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Jamil, Siti Munira

    2015-11-20

    In this work, an environmental friendly RC/N-TiO2 nanocomposite thin film was designed as a green portable photocatalyst by utilizing recycled newspaper as sustainable cellulose resource. Investigations on the influence of N-doped TiO2 nanorods incorporation on the structural and morphological properties of RC/N-TiO2 nanocomposite thin film are presented. The resulting nanocomposite thin film was characterized by FESEM, AFM, FTIR, UV-vis-NIR spectroscopy, and XPS analysis. The results suggested that there was a remarkable compatibility between cellulose and N-doped TiO2 nanorods anchored onto the surface of the RC/N-TiO2 nanocomposite thin film. Under UV and visible irradiation, the RC/N-TiO2 nanocomposite thin film showed remarkable photocatalytic activity for the degradation of methylene blue solution with degradation percentage of 96% and 78.8%, respectively. It is crucial to note that the resulting portable photocatalyst produced via an environmental and green technique in its fabrication process has good potential in the field of water and wastewater treatment application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Voltammetric Sensor Based on Fe-doped ZnO and TiO2 Nanostructures-modified Carbon-paste Electrode for Determination of Levodopa

    NASA Astrophysics Data System (ADS)

    Anaraki Firooz, Azam; Hosseini Nia, Bahram; Beheshtian, Javad; Ghalkhani, Masoumeh

    2017-10-01

    In this study, undoped and 1 wt.% Fe-doped with ZnO, and TiO2 nanostructures were synthesized by a simple hydrothermal method without using templates. The influence of the Fe dopant on structural, optical and electrochemical response was studied by x-ray diffraction, scanning electron microscopy, UV-Vis spectra, photoluminescence spectra and electrochemical characterization system. The electrochemical response of the carbon paste electrode modified with synthesized nanostructures (undoped ZnO and TiO2 as well as doped with Fe ions) toward levodopa (L-Dopa) was studied. Cyclic voltammetry using provided modified electrodes showed electro-catalytic properties for electro-oxidation of L-Dopa and a significant reduction was observed in the anodic overvoltage compared to the bare electrode. The results indicated the presence of the sufficient dopants. The best response was obtained in terms of the current enhancement, overvoltage reduction, and reversibility improvement of the L-Dopa oxidation reaction under experimental conditions by the modified electrode with TiO2 nanoparticles doped with Fe ions.

  16. Visible light driven photocatalyst of vanadium (V3+) doped TiO2 synthesized using sonochemical method

    NASA Astrophysics Data System (ADS)

    Aini, N.; Ningsih, R.; Maulina, D.; Lami’, F. F.; Chasanah, S. N.

    2018-03-01

    TiO2 has been widely investigated due to its superior photocatalytic activity under ultraviolet irradiation among the photocatalyst materials. In this research, vanadium (V3+) was doped into TiO2 to enhance its light response under visible irradiation for wider application. Vanadium was introduced into TiO2 lattice at various concentration respectively 0.3, 0.5, 0.7 and 0.9% using simple and fast sonochemical method. X-Ray Diffraction data show that vanadium doped TiO2 crystallized in anatase phase with I41amd space group. X-Ray Diffraction pattern shifted to lower value of 2θ due to vanadium dopant. It indicated that V3+ was incorporated into anatase lattice. UV-Vis Diffuse Reflectance Spectra was revealed that the doped TiO2 has lowered reflectance and enhanced absorption coefficient in visible region than undoped TiO2 and commercial anatase TiO2. Band gap energy for undoped and doped TiO2 were respectively 3.22, 3.05, 2.93, 3.03 and 2.40 eV. Therefore vanadium doped TiO2 had potential to be applied under visible light.

  17. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.

    PubMed

    Hamzezadeh-Nakhjavani, Sahar; Tavakoli, Omid; Akhlaghi, Seyed Parham; Salehi, Zeinab; Esmailnejad-Ahranjani, Parvaneh; Arpanaei, Ayyoob

    2015-12-01

    Preparation of novel nanocomposite particles (NCPs) with high visible-light-driven photocatalytic activity and possessing recovery potential after advanced oxidation process (AOP) is much desired. In this study, pure anatase phase titania (TiO2) nanoparticles (NPs) as well as three types of NCPs including nitrogen-doped titania (TiO2-N), titania-coated magnetic silica (Fe3O4 cluster@SiO2@TiO2 (FST)), and a novel magnetically recoverable TiO2 nanocomposite photocatalyst containing nitrogen element (Fe3O4 cluster@SiO2@TiO2-N (FST-N)) were successfully synthesized via a sol-gel process. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity of as-prepared samples was further investigated and compared with each other by degradation of phenol, as a model for the organic pollutants, in deionized (DI) water under visible light irradiation. The TiO2-N (55 ± 1.5%) and FST-N (46 ± 1.5%) samples exhibited efficient photocatalytic activity in terms of phenol degradation under visible light irradiation, while undoped samples were almost inactive under same operating conditions. Moreover, the effects of key operational parameters, the optimum sample calcination temperature, and reusability of FST-N NCPs were evaluated. Under optimum conditions (calcination temperature of 400 °C and near-neutral reaction medium), the obtained results revealed efficient degradation of phenol for FST-N NCPs under visible light irradiation (46 ± 1.5%), high yield magnetic separation and efficient reusability of FST-N NCPs (88.88% of its initial value) over 10 times reuse.

  18. Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Juma, A.; Oja Acik, I.; Oluwabi, A. T.; Mere, A.; Mikli, V.; Danilson, M.; Krunks, M.

    2016-11-01

    Chemical spray pyrolysis (CSP) is a flexible deposition technique that allows for mixing of the precursor solutions in different proportions suitable for doping thin films. The CSP method was used to dope TiO2 thin films with Zr by adding zirconium(IV) acetylacetonate into a solution of titanium(IV) isopropoxide in ethanol stabilized by acetylacetone at [Zr]/[Ti] of 0, 5, 10 and 20 at%. The Zr-doped TiO2 thin films were uniform and homogeneous showing much smaller grains than the undoped TiO2 films. Zr stabilized the anatase phase to temperatures above 800 °C depending on Zr concentration in the spray solution. The concentration of Zr determined by XPS was 6.4 at% for the thin film deposited from the 20 at% solution. According to AFM studies, Zr doping decreased the root mean square roughness of TiO2 film from 5.9 to 1.1 nm. An XRD study of samples with the highest Zr amount showed the ZrTiO4 phase started forming after annealing at 800 °C. The optical band gap for TiO2 decreased from 3.3 eV to 3.0 eV after annealing at 800 °C but for the TiO2:Zr(20) film it remained at 3.4 eV. The dielectric constant increased by more than four times with Zr-doping and this was associated with the change in the bond formations caused by substitution of Ti by Zr in the lattice.

  19. Photodegradation of ibuprofen by TiO2 co-doping with urea and functionalized CNT irradiated with visible light - Effect of doping content and pH.

    PubMed

    Yuan, Ching; Hung, Chung-Hsuang; Li, Huei-Wen; Chang, Wei-Hsian

    2016-07-01

    Ibuprofen (IBP) is one kind of non-steroidal anti-inflammatory drugs (NSAIDs), which are classified as Pharmaceuticals and Personal Care Products (PPCPs). IBP possesses bioactive property and the substantial use of IBP results in a harmful impact on bioreceptors even in small concentrations. Accordingly, the treatment of these wastewaters is important before discharging them into the ecosystem. The photodegradation of IBP with TiO2 co-doped with functionalized CNTs (CNT-COOH and CNT-COCl) and urea, named as N-doping CNT/TiO2, irradiated with visible light of 410 nm was investigated in this study. The titanium tetrachloride was used as the precursor of Ti. The N-doping CNT-COCl/TiO2 photocatalysts exhibited a better crystalline structure and smaller crystal size than the N-doping CNT-COOH/TiO2 photocatalyst. It might largely ascribe to strong binding between acyl chloride functional group and TiO2. About 85.0%-86.0% of IBP was degraded with N-doping CNT/TiO2 within 120 min at natural condition, which obeyed the pseudo first order reaction and the rate constant was 4.45 × 10(-3)-1.22 × 10(-2) min(-1) and 5.03 × 10(-3)-1.47 × 10(-2) min(-1) for N-doping CNT-COOH/TiO2 and N-doping CNT-COCl/TiO2, respectively. The best IBP degradation of 87.9%-89.0% was found at pH 5, which indicated superoxide radicals (O2(-)) played a key role. The optimal pH was majorly dominated by the nature of IBP and N-doping CNT/TiO2. A successful synergy effect of TiO2 and dopants was exhibited and this mainly attributed to the strong binding strength by functional group of acyl chloride (COCl) and carboxylic acid (COOH). In summary, IBP could be effectively photodegraded by the fabricated N-doping CNT/TiO2 photocatalysts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    PubMed

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates.

  1. Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: a review

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jia, Baoping; Wang, Qiuze; Dionysiou, Dionysois

    2015-05-01

    Increased pollution of ground and surface water and emerging new micropollutants from a wide variety of industrial, municipal, and agricultural sources has increased demand on the development of innovative new technologies and materials whereby challenges associated with the provision of safe potable water can be addressed. Heterogeneous photocatalysis using visible-light sensitized TiO2 photocatalysts has attracted a lot of attention as it can effectively remove dissolved organic compound in water without generating harmful by-products. On this note, recent progress on visible-light sensitive TiO2 synthesis via wet chemical N-doping method is reviewed. In a typical visible-light sensitive TiO2 preparation via wet chemical methods, the chemical (e.g., N-doping content and states) and morphological properties (e.g., particle size, surface area, and crystal phase) of TiO2 in as-prepared resultants are sensitively dependent on many experimental variables during the synthesis. This has also made it very difficult to provide a universal guidance at this stage with a certainty for each variable of N-doping preparation. Instead of one-factor-at-a-time style investigation, a statistically valid parameter optimization investigation for general optima of photocatalytic activity will be certainly useful. Optimization of the preparation technique is envisaged to be beneficial to many environmental applications, i.e., dissolved organic compounds removal in wastewater treatment.

  2. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO(2-x)N(y) thin film and examination of its antimicrobial performance.

    PubMed

    Cao, Baocheng; Wang, Yuhua; Li, Na; Liu, Bin; Zhang, Yingjie

    2013-01-01

    A bracket coated with a nitrogen-doped (N-doped) TiO(2-x)N(y) thin film was prepared using the RF magnetron sputtering method. The physicochemical properties of the thin film were measured using X-ray diffraction and energy-dispersive X-ray spectrometry, while the antimicrobial activity of the bracket against common oral pathogenic microbes was assessed on the basis of colony counts. The rate of antimicrobial activity of the bracket coated with nano-TiO(2-x)N(y) thin film against Streptococcus mutans, Lactobacillus acidophilus, Actinomyces viscous, and Candida albicans was 95.19%, 91.00%, 69.44%, and 98.86%, respectively. Scanning electron microscopy showed that fewer microbes adhered to the surface of this newly designed bracket than to the surface of the normal edgewise bracket. The brackets coated with the N-doped TiO(2-x)N(y) thin film showed high antimicrobial and bacterial adhesive properties against normal oral pathogenic bacterial through visible light, which is effective in prevention of enamel demineralization and gingivitis in orthodontic patients.

  3. Evolution of microstructural defects of TiO2 nanocrystals by Zr4+ or/and Ge4+ doping lead to high disinfection efficiency for CWAs

    NASA Astrophysics Data System (ADS)

    Shen, Zhong; Zhong, Jin-Yi; Chai, Na-Na; He, Xin; Zang, Jian-Zheng; Xu, Hui; Han, Xiao-Yuan; Zhang, Peng

    2017-06-01

    Zr4+, Ge4+ doped and co-doped TiO2 nanoparticles were prepared by a 'one-pot' homogeneous precipitation method. The photocatalytic reaction kinetics of DMMP and the disinfection efficiency of HD, GD and VX on the samples were investigated. By means of a variety of characterization methods, especially the positron annihilation lifetime spectroscopy, the changes in structure and property of TiO2 across doping were studied. The results show that the reasonable engineering design of novel photocatalysts in the field of CWAs decontamination can be realized by adjusting the bulk-to-surface defects ratio, except for crystal structure, specific surface area, pore size distribution and light utilization.

  4. Transparent nanostructured Fe-doped TiO2 thin films prepared by ultrasonic assisted spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir

    2018-05-01

    Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.

  5. Tungsten-Doped TiO2 Nanolayers with Improved CO2 Gas Sensing Properties for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Saberi, Maliheh; Ashkarran, Ali Akbar

    Tungsten-doped TiO2 gas sensors were successfully synthesized using sol-gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001g tungsten-doped TiO2 NLs at 200∘C as an optimum operating temperature.

  6. Exposure to TiO2 nanoparticles increases Staphylococcusaureusinfection of HeLa cells

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wei, Ming-Tzo; Walker, Stephen. G.; Wang, Hong Zhan; Gondon, Chris; Brink, Peter; Guterman, Shoshana; Zawacki, Emma; Applebaum, Eliana; Rafailovich, Miriam; Ou-Yang, H. Daniel; Mironava, Tatsiana

    TiO2 is one of the most common nanoparticles in industry from food additives to energy generation. Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles largely increased their risk of bacterial invasion. HeLa cells cultured with low dosage rutile and anatase TiO2 nanoparticles (0.1 mg/ml) for 24 hrs prior to exposure to bacteria had 350% and 250% respectively more bacteria infected per cell. The increase was attributed to increased LDH leakage, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40% fewer bacteria, further increasing the risk of infection. In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection.

  7. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment.

    PubMed

    Liga, Michael V; Bryant, Erika L; Colvin, Vicki L; Li, Qilin

    2011-01-01

    Photocatalytic inactivation of viruses and other microorganisms is a promising technology that has been increasingly utilized in recent years. In this study, photocatalytic silver doped titanium dioxide nanoparticles (nAg/TiO(2)) were investigated for their capability of inactivating Bacteriophage MS2 in aqueous media. Nano-sized Ag deposits were formed on two commercial TiO(2) nanopowders using a photochemical reduction method. The MS2 inactivation kinetics of nAg/TiO(2) was compared to the base TiO(2) material and silver ions leached from the catalyst. The inactivation rate of MS2 was enhanced by more than 5 fold depending on the base TiO(2) material, and the inactivation efficiency increased with increasing silver content. The increased production of hydroxyl free radicals was found to be responsible for the enhanced viral inactivation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Effect on Electron Structure and Magneto-Optic Property of Heavy W-Doped Anatase TiO2.

    PubMed

    Hou, Qingyu; Zhao, Chunwang; Guo, Shaoqiang; Mao, Fei; Zhang, Yue

    2015-01-01

    The spin or nonspin state of electrons in W-doped anatase TiO2 is very difficult to judge experimentally because of characterization method limitations. Hence, the effect on the microscopic mechanism underlying the visible-light effect of W-doped anatase TiO2 through the consideration of electronic spin or no-spin states is still unknown. To solve this problem, we establish supercell models of W-doped anatase TiO2 at different concentrations, followed by geometry optimization and energy calculation based on the first-principle planewave norm conserving pseudo-potential method of the density functional theory. Calculation results showed that under the condition of nonspin the doping concentration of W becomes heavier, the formation energy becomes greater, and doping becomes more difficult. Meanwhile, the total energy increases, the covalent weakens and ionic bonds strengthens, the stability of the W-doped anatase TiO2 decreases, the band gap increases, and the blue-shift becomes more significant with the increase of W doping concentration. However, under the condition of spin, after the band gap correction by the GGA+U method, it is found that the semimetal diluted magnetic semiconductors can be formed by heavy W-doped anatase TiO2. Especially, a conduction electron polarizability of as high as near 100% has been found for the first time in high concentration W-doped anatase TiO2. It will be able to be a promising new type of dilute magnetic semiconductor. And the heavy W-doped anatase TiO2 make the band gap becomes narrower and absorption spectrum red-shift.

  9. Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis

    NASA Astrophysics Data System (ADS)

    Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro

    2018-04-01

    The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.

  10. Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite

    PubMed Central

    Xing, Mingyang; Li, Xiao; Zhang, Jinlong

    2014-01-01

    TiO2/graphene (TiO2-x/GR) composites, which are Ti3+ self-doped TiO2 nanorods decorated on boron doped graphene sheets, were synthesized via a simple one-step hydrothermal method using low-cost NaBH4 as both a reducing agent and a boron dopant on graphene. The resulting TiO2 nanorods were about 200 nm in length with exposed (100) and (010) facets. The samples were characterized by X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy, X-band electron paramagnetic resonance (EPR), X-ray photoelectron spectra (XPS), transmission electron microscope (TEM), Raman, and Fourier-transform infrared spectroscopy (FTIR). The XRD results suggest that the prepared samples have an anatase crystalline structure. All of the composites tested exhibited improved photocatalytic activities as measured by the degradation of methylene blue and phenol under visible light irradiation. This improvement was attributed to the synergistic effect of Ti3+ self-doping on TiO2 nanorods and boron doping on graphene. PMID:24974890

  11. Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions.

    PubMed

    Di, Kai; Zhu, Yihua; Yang, Xiaoling; Li, Chunzhong

    2006-02-15

    A type of anhydrous electrorheological (ER) material of copper phthalocyanine (CuPC)-doped mesoporous TiO2 was synthesized by in situ micelle-assisted incorporation CuPC during mesoporous TiO2 synthesis. TEM, XRD and the nitrogen adsorption-desorption isotherms demonstrated that the material had mesoporous structure and an anatase framework. The ER behavior of the suspensions of CuPC-doped mesoporous TiO2 in silicone oil with the different volume fractions was investigated under an applied electric field. It is found that the suspensions showed visible electrorheological behavior which were compared with that of pure TiO2. The dopants of CuPC molecules within the mesochannel of TiO2 mesoporous sieve improved the conductivity of the particles and produced a proper conductivity of approximately 10(-7) S m(-1). Dielectric spectra of the ER fluid were measured to examine the peak of epsilon'' should appear in the frequency range of 10(2)-10(5) Hz and have a large Deltaepsilon' in this frequency range. Therefore, the both properties may make a conjunct effect on electrorheological behavior.

  12. Effect on Electron Structure and Magneto-Optic Property of Heavy W-Doped Anatase TiO2

    PubMed Central

    Hou, Qingyu; Zhao, Chunwang; Guo, Shaoqiang; Mao, Fei; Zhang, Yue

    2015-01-01

    The spin or nonspin state of electrons in W-doped anatase TiO2 is very difficult to judge experimentally because of characterization method limitations. Hence, the effect on the microscopic mechanism underlying the visible-light effect of W-doped anatase TiO2 through the consideration of electronic spin or no-spin states is still unknown. To solve this problem, we establish supercell models of W-doped anatase TiO2 at different concentrations, followed by geometry optimization and energy calculation based on the first-principle planewave norm conserving pseudo-potential method of the density functional theory. Calculation results showed that under the condition of nonspin the doping concentration of W becomes heavier, the formation energy becomes greater, and doping becomes more difficult. Meanwhile, the total energy increases, the covalent weakens and ionic bonds strengthens, the stability of the W-doped anatase TiO2 decreases, the band gap increases, and the blue-shift becomes more significant with the increase of W doping concentration. However, under the condition of spin, after the band gap correction by the GGA+U method, it is found that the semimetal diluted magnetic semiconductors can be formed by heavy W-doped anatase TiO2. Especially, a conduction electron polarizability of as high as near 100% has been found for the first time in high concentration W-doped anatase TiO2. It will be able to be a promising new type of dilute magnetic semiconductor. And the heavy W-doped anatase TiO2 make the band gap becomes narrower and absorption spectrum red-shift. PMID:25955308

  13. Fabrication of Al2O3 coated 2D TiO2 nanoparticle photonic crystal layers by reverse nano-imprint lithography and plasma enhanced atomic layer deposition.

    PubMed

    Kim, Ki-Kang; Ko, Ki-Young; Ahn, Jinho

    2013-10-01

    This paper reports simple process to enhance the extraction efficiency of photoluminescence (PL) from Eu-doped yttrium oxide (Y2O3:Eu3+) thin-film phosphor (TFP). Two-dimensional (2D) photonic crystal layer (PCL) was fabricated on Y2O3:Eu3+ phosphor films by reverse nano-imprint method using TiO2 nanoparticle solution as a nano-imprint resin and a 2D hole-patterned PDMS stamp. Atomic scale controlled Al2O3 deposition was performed onto this 2D nanoparticle PCL for the optimization of the photonic crystal pattern size and stabilization of TiO2 nanoparticle column structure. As a result, the light extraction efficiency of the Y2O3:Eu3+ phosphor film was improved by 2.0 times compared to the conventional Y2O3:Eu3+ phosphor film.

  14. Effect of V-Nd co-doping on phase transformation and grain growth process of TiO2

    NASA Astrophysics Data System (ADS)

    Khatun, Nasima; Amin, Ruhul; Anita, Sen, Somaditya

    2018-05-01

    The pure and V-Nd co-doped TiO2 samples are prepared by the modified sol-gel process. The phase formation is confirmed by XRD spectrum. Phase transformation is delayed in V-Nd co-doped TiO2 (TVN) samples compared to pure TiO2. The particle size is comparatively small in TVN samples at both the temperature 450 °C and 900 °C. Hence the effect of Nd doping is dominated over V doping in both phase transformation and grain growth process of TiO2.

  15. Tuning Phase Composition of TiO2 by Sn(4+) Doping for Efficient Photocatalytic Hydrogen Generation.

    PubMed

    Wang, Fenglong; Ho, Jie Hui; Jiang, Yijiao; Amal, Rose

    2015-11-04

    The anatase-rutile mixed-phase photocatalysts have attracted extensive research interest because of the superior activity compared to their single phase counterparts. In this study, doping of Sn(4+) ions into the lattice of TiO2 facilitates the phase transformation from anatase to rutile at a lower temperature while maintaining the same crystal sizes compared to the conventional annealling approach. The mass ratios between anatase and rutile phases can be easily manipulated by varying the Sn-dopant content. Characterization results reveal that the Sn(4+) ions entered into the lattice of TiO2 by substituting some of the Ti(4+) ions and distributed evenly in the matrix of TiO2. The substitution induced the distortion of the lattice structure, which realized the phase transformation from anatase to rutile at a lower temperature and the close-contact phase junctions were consequently formed between anatase and rutile, accounting for the efficient charge separations. The mixed-phase catalysts prepared by doping Sn(4+) ions into the TiO2 exhibit superior activity for photocatalytic hydrogen generation in the presence of Au nanoparticles, relatively to their counterparts prepared by the conventional annealling at higher temperatures. The band allignment between anatase and rutile phases is established based on the valence band X-ray photoelectron spectra and diffuse reflectance spectra to understand the spatial charge separation process at the heterojunction between the two phases. The study provides a new route for the synthesis of mixed-phase TiO2 catalysts for photocatalytic applications and advances the understanding on the enhanced photocatalytic properties of anatase-rutile mixtures.

  16. Removal of 4-Nitrophenol from Water Using Ag–N–P-Tridoped TiO2 by Photocatalytic Oxidation Technique

    PubMed Central

    Achamo, Temesgen; Yadav, O. P.

    2016-01-01

    Photocatalytic oxidation using semiconductor nanoparticles is an efficient, eco-friendly, and cost-effective process for the removal of organic pollutants, such as dyes, pesticides, phenols, and their derivatives in water. In the present study, nanosize Ag–N–P-tridoped titanium(IV) oxide (TiO2) was prepared by using sol–gel-synthesized Ag-doped TiO2 and soybean (Glycine max) or chickpea (Cicer arietinum) seeds as nonmetallic bioprecursors. As-synthesized photocatalysts were characterized using X-ray diffraction, Fourier transform infrared, and ultra violet (UV)–visible spectroscopic techniques. Average crystallite size of the studied photocatalysts was within 39–46 nm. Whereas doped Ag in TiO2 minimized the photogenerated electron–hole recombination, doped N and P extended its photoabsorption edge to visible region. Tridoping of Ag, N, and P in TiO2 exhibited synergetic effect toward enhancing its photocatalytic degradation of 4-nitrophenol (4-NP), separately, under UV and visible irradiations. At three hours, degradations of 4-NP over Ag–N–P-tridoped TiO2 under UV and visible radiations were 73.8 and 98.1%, respectively. PMID:27081309

  17. TiO2 nanoparticles alleviate toxicity by reducing free Zn2+ ion in human primary epidermal keratinocytes exposed to ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kathawala, Mustafa Hussain; Ng, Kee Woei; Loo, Say Chye Joachim

    2015-06-01

    Nanoparticles have been a subject of intense safety screenings due to their influx in various applications. Although recent studies have reported on the plausible cytotoxicity of nanoparticles, many of these focused only on single-material nanoparticles, while the cytotoxicity of dual-nanoparticle systems (e.g., ZnO with TiO2) has remained unexplored. For example, commercial products like sunscreens and cosmetics contain both nano-sized ZnO and TiO2, but cytotoxicity studies of such systems are meager. In this paper, the cytotoxicity of this dual-nanoparticle system comprising both ZnO and TiO2 was evaluated in vitro on skin-mimicking human primary epidermal keratinocytes (HPEKs). Inductively coupled plasma mass spectrometry, flow cytometry, and confocal microscopy were used to investigate the uptake of nanoparticles and free ions. Results revealed that ZnO nanoparticles were partially soluble (up to 20 μg ml-1 after 1 day) and could induce strong cytotoxicity as compared to the insoluble TiO2 nanoparticles which remained non-toxic until very high concentrations. It was found that TiO2 nanoparticles could play "vigilante" by protecting keratinocytes from acute toxicity of ZnO nanoparticles. This is in agreement with the observation that TiO2 nanoparticles caused an attenuation of free intracellular Zn2+ ions concentration, by adsorbing and immobilizing free Zn2+ ions. This study reveals a unique dual-nanoparticle observation in vitro on HPEKs, and highlights the importance of dual-nanoparticulate toxicity studies, especially in applications where more than one nanoparticle material-type is present.

  18. Synthesis of N-doped TiO2 Using Guanidine Nitrate: An Excellent Visible Light Photocatalyst

    EPA Science Inventory

    An excellent visible light active nitrogen-rich TiO2 photocatalyst have been synthesized by using guanidine nitrate as the doping material. The catalytic efficiency of the catalyst has been demonstrated by the decomposition of the dye, methyl orange (MO), and the pollutant, 2,4 d...

  19. Synthesis of TiO2 Nanoparticle and its phase Transition

    NASA Astrophysics Data System (ADS)

    Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.

    2011-12-01

    Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.

  20. 1-D and 2-D morphology of metal cation co-doped (Zn, Mn) TiO2 and investigation of their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Benjwal, Poonam; De, Bibekananda; Kar, Kamal K.

    2018-01-01

    Morphology and electronic bandgap of titania (TiO2) are considered to be the primary factors for determining the photocatalytic efficiency, as they determine the number of active sites for the photocatalytic reactions. In the present study, two different morphologies of TiO2 (nanosphere and nanorod) with varying Zn and Mn co-doping were synthesized by solvothermal and hydrothermal methods to examine their photocatalytic efficiency by methylene blue degradation. The co-doped photocatalysts were characterized by XRD, XPS, SEM, TEM, Raman, FTIR and UV-vis DRS. Further, a comparison has been made with co-doped TiO2 nanospheres and TiO2 nanorods, where Zn, Mn co-doped TiO2 nanorods show higher photocatalytic activity compared to nanospheres. This higher photocatalytic activity of co-doped TiO2 is attributed to its polymorphic phases, as they act as heterojunctions for TiO2. Further, being 1-D nanostructure, the TiO2 nanorods exhibit the straight diffusion path for charge carriers, which reduces the recombination possibilities. The obtained results suggest that the photocatalysis efficiency of TiO2 can be significantly enhanced by tailoring the shape and co-doping concentration, which enforce a new concept for developing the new nanostructures of TiO2.

  1. Sensitizing of pyrene fluorescence by β-cyclodextrin-modified TiO2 nanoparticles.

    PubMed

    Shown, Indrajit; Ujihara, Masaki; Imae, Toyoko

    2010-12-15

    TiO(2) nanoparticles were synthesized by hydrolysis of tetraisopropyl orthotitanate in an aqueous solution of cyclodextrin. The β-cyclodextrin-modified spherical TiO(2) nanoparticles were water-dispersible and had an average particle diameter of 4.4 ± 1 nm. Pyrene fluorescence was enhanced by increasing the concentration of β-cyclodextrin-modified TiO(2) nanoparticle and the sensitization effect was triply stronger than the case of the β-cyclodextrin only. The increase in a concentration of host (β-cyclodextrin) changes its microenvironment for guest (pyrene), that is, the interaction of pyrene with apolar cavity of β-cyclodextrin increases, resulting in enhancement of fluorescence. The sensitization behavior of pyrene fluorescence in the presence of TiO(2) nanoparticles occurs from the increase in the extinction coefficient of pyrene, demonstrating the charge transfer between pyrene and metal oxide nanoparticle. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  2. Study on Photocatalytic Properties of TiO2 Nanoparticle in various pH condition

    NASA Astrophysics Data System (ADS)

    Nasikhudin; Diantoro, M.; Kusumaatmaja, A.; Triyana, K.

    2018-04-01

    Titanium dioxide has been widely studied for its ability to photocatalytic and applications have high performance for photovoltaic applications. In this paper TiO2 nanoparticle was investigated for the degradation of methylene blue under UV light in various pH condition. The TiO2 nanoparticle was characterized by SEM and XRD. The results showed that TiO2 nanoparticle has the structure of anatase and have a particle size of 27 nm. The photocatalytic activity of TiO2 nanoparticle show that the degradation of methylene blue under UV light have dye removal of 97% dye was degraded in 3 h, but the degradation of methylene blue without UV light have dye removal of 15% dye was degraded in 3 h. It indicated that The photocatalytic activity of TiO2 nanoparticle could occur if there the UV light. If not UV light the photocatalytic activity cannot occurs, the degradation of Methylene Blue 15% is not a photocatalytic activity but it is adsorption of Methylene Blue by TiO2 nanoparticle. The photocatalytic activity of TiO2 nanoparticle has pH-sensitive. The photocatalytic activity of TiO2 nanoparticle in acid condition (pH 4.1) is 40%, in neutral condition (pH 7.0) is 90%, and in base condition (pH 9.7) is 97%. The highest photocatalytic activity occurs in base condition, it causes in base condition OH- can be direct reaction with a hole to produce hydroxyl radical (OH*).

  3. Selective Detection of Formaldehyde Gas Using a Cd-Doped TiO2-SnO2 Sensor

    PubMed Central

    Zeng, Wen; Liu, Tianmo; Wang, Zhongchang; Tsukimoto, Susumu; Saito, Mitsuhiro; Ikuhara, Yuichi

    2009-01-01

    We report the microstructure and gas-sensing properties of a nonequilibrium TiO2-SnO2 solid solution prepared by the sol-gel method. In particular, we focus on the effect of Cd doping on the sensing behavior of the TiO2-SnO2 sensor. Of all volatile organic compound gases examined, the sensor with Cd doping exhibits exclusive selectivity as well as high sensitivity to formaldehyde, a main harmful indoor gas. The key gas-sensing quantities, maximum sensitivity, optimal working temperature, and response and recovery time, are found to meet the basic industrial needs. This makes the Cd-doped TiO2-SnO2 composite a promising sensor material for detecting the formaldehyde gas. PMID:22291551

  4. Formation of Sol Gel Dried Droplets of Carbon Doped Titanium Dioxide (TiO2) at Low Temperature via Electrospraying

    NASA Astrophysics Data System (ADS)

    Halimi, S. U.; Hashib, S. Abd; Abu Bakar, N. F.; Ismail, S. N.; Nazli Naim, M.; Rahman, N. Abd; Krishnan, J.

    2018-05-01

    The high band gap energy of TiO2 and inconsistency in particles size has imposed a significant drawback on TiO2 applications. Dried droplets of carbon-doped TiO2 fine particles were produced by using electrospraying technique. The C-doped TiO2 particles were prepared by hydrolysis of titanium isopropoxide with the addition of carbon precursor followed by electrospraying the suspension in stable Taylor cone-jet mode. Coulomb fission of charged droplets from the electrospraying technique successfully transformed dispersed liquid C-doped TiO2 particles into solid. The deposited C-doped TiO2 droplets were collected on aluminium substrates placed at working distances of 10 to 20 cm from the tip of the electrospray needle. The collected C-doped TiO2 droplets were characterized by using FESEM, UV-Vis, FTIR and XRD. By increasing the working distance, the average droplets size of the deposited C-doped TiO2 was reduced from ±163.2 nm to ±147.56 nm. UV-Vis analysis showed a strong absorption in the visible-light region and about 93 nm red shift of the onset spectrum for C-doped TiO2. The red shift indicates an increase in photocatalytic efficiency by reducing the TiO2 band gap energy from 3.0 eV to 2.46 eV and shifting its activity to the visible-light region. FTIR analysis indicated the presence of Ti-C and C-O chemical bonding in the C-doped TiO2.

  5. Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells.

    PubMed

    Kim, Dong Hoe; Han, Gill Sang; Seong, Won Mo; Lee, Jin-Wook; Kim, Byeong Jo; Park, Nam-Gyu; Hong, Kug Sun; Lee, Sangwook; Jung, Hyun Suk

    2015-07-20

    Perovskite solar cells (PSCs) are the most promising candidates as next-generation solar energy conversion systems. To design a highly efficient PSC, understanding electronic properties of mesoporous metal oxides is essential. Herein, we explore the effect of Nb doping of TiO2 on electronic structure and photovoltaic properties of PSCs. Light Nb doping (0.5 and 1.0 at %) increased the optical band gap slightly, but heavy doping (5.0 at %) distinctively decreased it. The relative Fermi level position of the conduction band is similar for the lightly Nb-doped TiO2 (NTO) and the undoped TiO2 whereas that of the heavy doped NTO decreased by as much as ∼0.3 eV. The lightly doped NTO-based PSCs exhibit 10 % higher efficiency than PSCs based on undoped TiO2 (from 12.2 % to 13.4 %) and 52 % higher than the PSCs utilizing heavy doped NTO (from 8.8 % to 13.4 %), which is attributed to fast electron injection/transport and preserved electron lifetime, verified by transient photocurrent decay and impedance studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles

    PubMed Central

    Xie, Zheng; Liu, Xiangxuan; Wang, Weipeng; Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2014-01-01

    TiO2 nanorod arrays (TiO2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation. PMID:27877718

  7. Preparation of Ag@AgCl-doped TiO2/sepiolite and its photocatalytic mechanism under visible light.

    PubMed

    Liu, Shaomin; Zhu, Dinglong; Zhu, Jinglin; Yang, Qing; Wu, Huijun

    2017-10-01

    A cube-like Ag@AgCl-doped TiO 2 /sepiolite (denoted Ag@AgCl-TiO 2 /sepiolite) was successfully synthesized via a novel method. X-ray diffraction, scanning electron microscopy, energy dispersion X-ray fluorescence, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and diffuse reflectance ultraviolet-visible spectroscopy were performed to determine the structure and physicochemical properties of Ag@AgCl-TiO 2 /sepiolite. SEM micrographs revealed that Ag@AgCl nanoparticles and TiO 2 film are well deposited on the surface of tube-like sepiolite. As a result, Ag@AgCl-TiO 2 /sepiolite exhibits a red shift relative to TiO 2 /sepiolite. Photocatalytic experiments demonstrated that the dosage of catalysts plays an important role during photocatalysis. The photoelectrochemical activities of Ag@AgCl-TiO 2 /sepiolite and TiO 2 /sepiolite were also investigated. Photocurrent responses confirmed that the ability of Ag@AgCl-TiO 2 /sepiolite to separate photo-generated electron-hole pairs is stronger than that of TiO 2 /sepiolite. Methylene Blue degradation is also improved under alkaline conditions and visible light irradiation because more OH is produced by visible light excitation. This excellent catalytic ability is mainly attributed to the formed Ag nanoparticles and the Schottky barrier at the Ag/TiO 2 interface. Active species analysis indicated that O 2 - and h + are implicated as active species in photocatalysis. Therefore, catalysts are excited to produce abundant electron-hole pairs after they absorb photons in photocatalysis. Copyright © 2017. Published by Elsevier B.V.

  8. Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO 2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Reisi-Vanani, A.; Majedi, A.

    2010-01-01

    A novel copper and sulfur codoped TiO 2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl 2·2H 2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO 2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO 2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced "red-shift" in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO 2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO 2 catalyst has higher activity than undoped and Cu or S doped TiO 2 catalysts.

  9. Electrical and structural properties of Nb-doped TiO2 at different Nb concentrations deposited by spin coating technique

    NASA Astrophysics Data System (ADS)

    Saurdi, I.; Shafura, A. K.; Mamat, M. H.; Ishak, A.; Rusop, M.

    2018-05-01

    In this paper, the Nb-doped TiO2 films were deposited on glass substrate and their electrical and structural properties were investigated. The results revealed that the resistivity of Nb-doped TiO2 films of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.% were 2.78 × 105, 1.35 × 105 Ω.cm, 5.89 × 104 Ω.cm, 9.20 × 102 Ω.cm and 9.56 × 103 Ω.cm, respectively. Where, the lowest resistivity of 9.20 × 102 Ω.cm was obtained at 5at.% Nb-doped TiO2 films. The resistivity of Nb-doped TiO2 films decreases as the Nb concentration increased from 0 at.% to 5 at.%. However, the resistivity decrease at 7 at.% Nb-doped TiO2 films. Meanwhile, from the FESEM images the Nb-doped TiO2 films with 0 at.%, 1 at.%, 3 at.% and 5 at.% Nb had a rough and porous structures were observed. However, the Nb-doped TiO2 at 7 at.% has a agglomerated and denser structures.

  10. Tungsten Doped TiO2 with Enhanced Photocatalytic and Optoelectrical Properties via Aerosol Assisted Chemical Vapor Deposition

    PubMed Central

    Sathasivam, Sanjayan; Bhachu, Davinder S.; Lu, Yao; Chadwick, Nicholas; Althabaiti, Shaeel A.; Alyoubi, Abdulrahman O.; Basahel, Sulaiman N.; Carmalt, Claire J.; Parkin, Ivan P.

    2015-01-01

    Tungsten doped titanium dioxide films with both transparent conducting oxide (TCO) and photocatalytic properties were produced via aerosol-assisted chemical vapor deposition of titanium ethoxide and dopant concentrations of tungsten ethoxide at 500 °C from a toluene solution. The films were anatase TiO2, with good n-type electrical conductivities as determined via Hall effect measurements. The film doped with 2.25 at.% W showed the lowest resistivity at 0.034 Ω.cm and respectable charge carrier mobility (14.9 cm3/V.s) and concentration (×1019 cm−3). XPS indicated the presence of both W6+ and W4+ in the TiO2 matrix, with the substitutional doping of W4+ inducing an expansion of the anatase unit cell as determined by XRD. The films also showed good photocatalytic activity under UV-light illumination, with degradation of resazurin redox dye at a higher rate than with undoped TiO2. PMID:26042724

  11. Bacteria Adherence Properties of Nitrogen-Doped TiO2 Coatings by Plasma Surface Alloying Technique

    NASA Astrophysics Data System (ADS)

    Wang, Hefeng; Tang, Bin; Li, Xiuyan; Fan, Ailan

    Titanium nitride coatings on 316L stainless steel (S. S) were obtained by plasma surface alloying technique. Nitrogen-doped titanium dioxide (TiO2-xNx) was synthesized by oxidative annealing the resulted TiNx coatings in air. The reference TiO2 samples were also prepared by oxidation of sputtered Ti coatings. The as-prepared coatings were characterized by X-ray diffraction, glow discharge optical emission spectrometer (GDOES), scanning electron microscopy, X-ray hotoelectron spectroscopy and UV-Vis spectrophotometry, respectively. The bacteria adherence property of the TiO2-xNx coatings on stainless steel on the oral bacteria Streptococcus Mutans was investigated and compared with that of stainless steel by fluorescence microscopy. The mechanism of the bacteria adherence was discussed. The results show that the TiO2-xNx coatings are composed of anatase crystalline structure. SEM measurement indicates a rough surface morphology with three-dimensional homogenous protuberances after annealing treatment. Optical properties reveal an extended tailing of the absorption edge toward the visible region due to nitrogen presence. The band gap of the N-doped sample is reduced from 2.29 eV to 1.90 eV compared with the pure TiO2 one. Because of the different roughness and microstructure, the TiO2-xNx coatings inhibit the bacteria adherence.

  12. Interrelationship between TiO2 nanoparticle size and kind/size of dyes in the mechanism and conversion efficiency of dye sensitized solar cells.

    PubMed

    Tahay, Pooya; Babapour Gol Afshani, Meisam; Alavi, Ali; Parsa, Zahra; Safari, Nasser

    2017-05-10

    In order to provide a comprehensive investigation of TiO 2 nanoparticle size in relation with different dye types in DSSCs, three sizes of TiO 2 nanoparticles and two different dye types including a porphyrin dye (T2) and a ruthenium dye (N3) were synthesized. Steady state current-voltage (J-V) characteristics were investigated for the fabricated DSSCs and the results demonstrated that the optimum TiO 2 nanoparticle size changed with the dye type. The obtained J-V data were interpreted by cyclic voltammetry, UV-visible absorption spectroscopy, BET measurement, DFT calculation, IPCE measurement and impedance spectroscopy. The results for the N3 dye show that the surface area of the TiO 2 nanoparticles is a key factor for the N3 cells, which is restricted by TiO 2 pore diameter and surface state traps. In contrast, the density of localized states of the TiO 2 film under the LUMO state of the porphyrin dyes is the dominating factor for the performance of the solar cells, which is restricted by the surface area of the TiO 2 nanoparticles. These obtained results represent a significant advance in the development of porphyrin, ruthenium and even solid electrolyte DSSCs.

  13. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  14. N incorporation and electronic structure in N-doped TiO2(110) rutile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Sau H.; Nachimuthu, Ponnusamy; Joly, Alan G.

    2007-02-08

    Epitaxial TiO2-xNx film growth under anion-rich conditions is characterized by nearly balanced incorporation rates for substitutional N (NO) and interstitial Ti (Tii). Tii donors fully compensate and stabilize N3-, but preclude the formation of p-type material. Hybridization occurs between Tii(IV) and NO3-, but the value of x is limited to ~0.02 under these conditions. Tii(IV)-NO3- states occur above the valence band maximum of pure TiO2, riving rise to enhanced optical absorption in the visible up to ~2.5 eV. Much higher NO and Tii concentrations result from using cation-rich conditions.

  15. Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst

    EPA Science Inventory

    TiO2 doping with N-rich melamine produced a stable, active and visible light sentisized nanocatalyst that showed a remarkable efficiency towards the photobleaching of a model compound – methylene blue (MB) in aqueous solution. The photobleaching followed a mixed reaction order ki...

  16. Development of DNA biosensor based on TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A novel technique of DNA hybridization on the TiO2 nanoparticles film was developed by dropping a single droplet of target DNA onto the surface of TiO2 for the study of various concentrations of target DNA. The surface of TiO2 nanoparticle film was functionalized with APTES and covalently immobilized with 1 µM probe DNA on the silanized TiO2 nanoparticles surface. The effect of silanization, immobilization and hybridization were quantitatively measured by the output current signal obtained using a picoammeter. The 1 µM target DNA was found to be the most effective target towards the 1 µM probe DNA as the output current signal was within range; while the output current signal of the 10 µM target DNA was observed to beyond the range of the probe DNA control due to the excessive concentration as compared to the probe DNA. This approach has several advantages such as rapid, simple, low cost, and sensitive current signal during detection of different target DNA concentrations.

  17. A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Georgieva, J.; Valova, E.; Armyanov, S.; Tatchev, D.; Sotiropoulos, S.; Avramova, I.; Dimitrova, N.; Hubin, A.; Steenhaut, O.

    2017-08-01

    Highly ordered TiO2 nanotube arrays (TNTA) have attracted much attention due to the excellent photocatalytic, optical and electrical properties. However, their absorption range is limited to ultraviolet (UV) spectrum only due to the wide band gap (3.2 eV). One of the strategies to overcome this problem is doping with boron and nitrogen. They are produced via titanium sheet anodization and subsequent electrochemical treatment of titania in an electrolyte containing boric acid. The as-prepared B-TNTA are annealed in N2 atmosphere at 500 °C for 2 h to obtain B,N-TNTA. The samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The B,N-TNTA consist of uniform and well aligned nanotubes with an average inner diameter of 80-100 nm and a length not exceeding 1 μm. The photocurrent response measurements of undoped TNTA, N-doped and B,N-co-doped samples are performed under UV and visible light (Vis) illumination and a comparison is made. The obtained results show that the B,N-doping leads to remarkable photocurrent enhancement and better photocatalytic activity for methyl orange (MO) degradation due to the synergistic effects of B,N-co-doping and lower electron-hole recombination rates.

  18. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    PubMed

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  19. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens

    NASA Astrophysics Data System (ADS)

    Sankar Boxi, Siddhartha; Mukherjee, Khushi; Paria, Santanu

    2016-02-01

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated •OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  20. N/Fe-TiO2 doped nanoparticles loaded on bentonite for increased photocatalytic activity for the degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Espenilla, Mel Bryan L.; Magyaya, Ryan Carl S.; Conato, Marlon T.

    2018-05-01

    Photocatalyst materials based on Philippine bentonite-titanium oxide composites and their ability to degrade organic pollutants is reported. Nanosized-titanium dioxide (TiO2) was synthesized by sol-gel method from titanium tetraisopropoxide. This was then incorporated in the Philippine bentonite via hydrothermal methods. In order to shift the absorbance of the TiO2 to the visible region doping was done using iron and nitrogen ions. The hydrodynamic radius of the synthesized TiO2 was analyzed using a zeta-sizer and was found to be around 70 nm. The photocatalytic efficiency of the TiO2/bentonite, N-TiO2/bentonite, Fe-TiO2/bentonite and N-Fe-TiO2/bentonite was evaluated using a photocatalytic reactor. It was found out that the N-Fe-TiO2/bentonite to be the most efficient with 22% degradation of the model pollutant after 80 minutes. FT-IR analysis was done to determine the bonding of the different components. Scanning electron microscopy and atomic force microscopy analysis was also performed to characterize the products.

  1. Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders.

    PubMed

    Guo, Meilan; Gao, Yun; Shao, G

    2016-01-28

    Mn-doped TiO2 powders with a wide range of nominal doping levels were fabricated using a one-step hydrothermal method followed by 400 °C annealing. Anatase powders with a uniform size distribution below 10 nm were obtained. The maximum solubility of Mn in the TiO2 lattice was around 30%, beyond which the Mn3O4 compound appeared as a secondary phase. The optical absorption edges for Mn-doped anatase TiO2 were red-shifted effectively through increasing Mn content. Alloying chemistry and associated elemental valences were elaborated through combining X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and theoretical simulation in the framework of density functional theory (DFT). The results showed that the Mn species exhibited mixed valence states of 3+ and 4+ in anatase TiO2, with the latter being the key to remarkable photocatalytic performance.

  2. Composition and crystal structure of N doped TiO2 film deposited at different O2 flow rate by direct current sputtering.

    PubMed

    Ding, Wanyu; Ju, Dongying; Chai, Weiping

    2011-06-01

    N doped Ti02 films were deposited by direct current pulse magnetron sputtering system at room temperature. The influence of 02 flow rate on the crystal structure of deposited films was studied by Stylus profilometer, X-ray photoelectron spectroscopy, and X-ray diffractometer. The results indicate that the 02 flow rate strongly controls the growth behavior and crystal structure of N doped Ti02 film. It is found that N element mainly exists as substitutional doped state and the chemical stiochiometry is near to TiO1.68±0.06N0.11±0.01 for all film samples. N doped Ti02 film deposited with 2 sccm (standard-state cubic centimeter per minute) 02 flow rate is amorphous structure with high growth rate, which contains both anatase phase and rutile phase crystal nucleuses. In this case, the film displays the mix-phase of anatase and rutile after annealing treatment. While N doped Ti02 film deposited with 12 cm(3)/min 02 flow rate displays anatase phase before and after annealing treatment. And it should be noticed that no TiN phase appears for all samples before and after annealing treatment. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  3. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-02-01

    SnO2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO2, were investigated. The particle size (1.8-16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO2 single-phase structure for samples annealed at 1073-1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  4. Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms

    NASA Astrophysics Data System (ADS)

    Gosteva, I.; Morgalev, Yu; Morgaleva, T.; Morgalev, S.

    2015-11-01

    Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Δ50=5 nm, Δ50=50 nm, Δ50=90 nm), aluminum oxide alpha-forms (Δ50=7 nm and Δ50=70 nm) and macro forms (TiO2 Δ50=350 nm, Al2O3 A50=4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO2 and nAl2O3 on the fluorescence of the bacterial biosensor "Ekolyum", the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO2 and nAl2O3 toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO2 and nAl2O3 effect depends on the type of the test- organism and the test reaction under study. We specified L(E)C50 and acute toxicity categories for all the studied nanoparticles. We determined that nTiO2 (Δ50=5 nm) belong to the category «Acute toxicity 1», nTiO2 (A50=90 nm) and nAl2O3 (Δ50=70 nm) - to the category «Acute toxicity 2», nAl2O3 (Δ50=7 nm) - to the category «Acute toxicity 3». No acute toxicity was registered for nTiO2 (Δ50=50 nm) and macro form TiO2.

  5. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection

    PubMed Central

    Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E.

    2018-01-01

    Titanium dioxide (TiO2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here. PMID:29541425

  6. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection.

    PubMed

    Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E

    2018-01-01

    Titanium dioxide (TiO 2 ) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.

  7. Enhanced photocatalytic degradation of dyes under sunlight using biocompatible TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bharati, B.; Sonkar, A. K.; Singh, N.; Dash, D.; Rath, Chandana

    2017-08-01

    As TiO2 is one of the most popular photocatalysts, we have studied here the photocatalytic degradation of the most common dyestuffs like rhodamine B (RhB), congo red (CR) and methylene blue (MB), which mainly come from the textile and photographic industries using nanoparticles of TiO2. Nanoparticles of TiO2 synthesized through a simple and cost effective sol-gel technique crystallizes in the anatase phase, showing a band gap less than that of bulk value. Particles consisting of coherently scattered domains of size 33 nm are found to be agglomerated and polycrystalline in nature. While the degradation rates of MB, CR and RhB after irradiating with a renewable source of energy, i.e. sunlight, show 100% degradation, TiO2 irradiated with UV light of 4.8 eV shows a much slower degradation rate. To use the waste water after photocatalysis, we examine further the biocompatibile nature of the TiO2 nanoparticles by platelet interaction activity, hemolysis effect and MTT assay. It is worth mentioning here that TiO2 nanoparticles are found to be highly hemocompatible, show no platelet aggregation, and the level of intracellular ROS in human platelets does not show significant change in ROS level. We conclude that TiO2 nanoparticles constitute an excellent photocatalyst and biocompatible material, and that after photocatalytic degradation of dye effluents obtained from textile industries, purified water can be used in agriculture and domestic sectors.

  8. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    NASA Astrophysics Data System (ADS)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  9. The synergistic effect of nitrogen-doped titanium dioxide/mercaptobenzoic acid/silver nanocomplexes for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Bao, Wenyuan; Li, Lijun; Cheng, Hao; Huang, Wenyi; Kong, Hongxing; Li, Yanqing

    2018-03-01

    We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications. [Figure not available: see fulltext.

  10. Preparation and characterization of visible-light-driven TiO2 photocatalyst Co-doped with nitrogen and erbium.

    PubMed

    Chen, Guihua; Wang, Yong; Zhang, Juihui; Wu, Chenglin; Liang, Huading; Yang, Hui

    2012-05-01

    A series of nitrogen and erbium co-doped TiO2 photocatalyst was prepared by sol-hydrothermal method. The structure and properties of the photocatalyst were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (DRS). The XRD and BET results showed that co-doping inhibited the increase of crystallite size and enlarged specific surface areas. XPS spectroscopy indicated nitrogen atoms were incorporated into TiO2 lattice, and erbium atoms mostly existed in the forms of Er2O3. A shift of the absorption edge to the lower energy and four absorption bands located at 654, 544, 524 and 489 nm attributed to the 4f transitions of 4I15/2 --> 4F2/9, 4I15/2 --> 4S3/2, 4I15/2 --> 2H11/2, 4I15/2 --> 4F7/2 of Er3+ were observed using DRS spectroscopy. The catalytic efficency was evaluated by the photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results showed that the photocatalytic performance of the co-doped TiO2 was related with the hydrothermal temperature and the molar ratio of N/Ti, and they showed higher acitivites than pure TiO2. Results determined by fluorescence technique revealed that irradiation (lambda > 400 nm) of TiO2 photocatalyst dispersed in MO solution induces the generation of the highly active hydroxyl radicals (OH). It indicated the photocatalytic activities of TiO2 photocatalyst were correlation with the formation rate of hydroxyl radicals (OH) and other active oxygen species.

  11. TiO2 Nanoparticle-Induced Oxidation of the Plasma Membrane: Importance of the Protein Corona.

    PubMed

    Runa, Sabiha; Lakadamyali, Melike; Kemp, Melissa L; Payne, Christine K

    2017-09-21

    Titanium dioxide (TiO 2 ) nanoparticles, used as pigments and photocatalysts, are widely present in modern society. Inhalation or ingestion of these nanoparticles can lead to cellular-level interactions. We examined the very first step in this cellular interaction, the effect of TiO 2 nanoparticles on the lipids of the plasma membrane. Within 12 h of TiO 2 nanoparticle exposure, the lipids of the plasma membrane were oxidized, determined with a malondialdehyde assay. Lipid peroxidation was inhibited by surface passivation of the TiO 2 nanoparticles, incubation with an antioxidant (Trolox), and the presence of serum proteins in solution. Subsequent experiments determined that serum proteins adsorbed on the surface of the TiO 2 nanoparticles, forming a protein corona, inhibit lipid peroxidation. Super-resolution fluorescence microscopy showed that these serum proteins were clustered on the nanoparticle surface. These protein clusters slow lipid peroxidation, but by 24 h, the level of lipid peroxidation is similar, independent of the protein corona or free serum proteins. Additionally, over 24 h, this corona of proteins was displaced from the nanoparticle surface by free proteins in solution. Overall, these experiments provide the first mechanistic investigation of plasma membrane oxidation by TiO 2 nanoparticles, in the absence of UV light and as a function of the protein corona, approximating a physiological environment.

  12. Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jinglei; Li, Fei; Zhuang, Yongyong; Jin, Li; Wang, Linghang; Wei, Xiaoyong; Xu, Zhuo; Zhang, Shujun

    2014-08-01

    The (Nb + In) co-doped TiO2 ceramics recently attracted considerable attention due to their colossal dielectric permittivity (CP) (˜100,000) and low dielectric loss (˜0.05). In this research, the 0.5 mol. % In-only, 0.5 mol. % Nb-only, and 0.5-7 mol. % (Nb + In) co-doped TiO2 ceramics were synthesized by standard conventional solid-state reaction method. Microstructure studies showed that all samples were in pure rutile phase. The Nb and In ions were homogeneously distributed in the grain and grain boundary. Impedance spectroscopy and I-V behavior analysis demonstrated that the ceramics may compose of semiconducting grains and insulating grain boundaries. The high conductivity of grain was associated with the reduction of Ti4+ ions to Ti3+ ions, while the migration of oxygen vacancy may account for the conductivity of grain boundary. The effects of annealing treatment and bias filed on electrical properties were investigated for co-doped TiO2 ceramics, where the electric behaviors of samples were found to be susceptible to the annealing treatment and bias field. The internal-barrier-layer-capacitance mechanism was used to explain the CP phenomenon, the effect of annealing treatment and nonlinear I-V behavior for co-doped rutile TiO2 ceramics. Compared with CaCu3Ti4O12 ceramics, the high activation energy of co-doped rutile TiO2 (3.05 eV for grain boundary) was thought to be responsible for the low dielectric loss.

  13. Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Koshonna; Thurn, Ted; Xin, Lun

    Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less

  14. Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection

    DOE PAGES

    Brown, Koshonna; Thurn, Ted; Xin, Lun; ...

    2017-07-19

    Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less

  15. Photoinduced interaction studies on N-(2-methylthiophenyl)-2-hydroxy-1-naphthadiamine with TiO2 nanoparticles: a combined experimental and theoretical (DFT and spectroscopic) approach.

    PubMed

    Pushpam, S; Gayathri, S; Ramakrishnan, V

    2014-12-10

    Schiff base derivative synthesized by the reaction of 2-(methylthio) aniline and 2-hydroxy-1-naphthaldehyde exhibits keto-amine tautomerism in methanol solvent. The fluorescence quenching of N-(2-methyl thiophenyl)-2-hydroxy-1-naphthadiamine (NMTHN) by TiO2 nanoparticles in methanol has been studied. The excitation and emission peaks have been observed at 439 and 509nm respectively. The apparent association constant has been deduced from the absorption spectral changes of NMTHN-TiO2 nanoparticles using Bensi-Hildebrand equation. The number of binding sites and the binding constant have been calculated from the relevant fluorescence data. Quenching of fluorescence of NMTHN by TiO2 could be due to a dynamic mode. Density Functional Theory (DFT) calculations also have been performed to study the charge distribution of NMTHN-TiO2 both in ground and excited states. The HOMO-LUMO analysis of NMTHN-TiO2 in the ground state has been made. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synthesis of two-dimensional nanowall of Cu-Doped TiO2 and its application as photoanode in DSSCs

    NASA Astrophysics Data System (ADS)

    Dahlan, Dahyunir; Md Saad, Siti Khatijah; Berli, Ade Usra; Bajili, Abdil; Umar, Akrajas Ali

    2017-07-01

    Two-dimensional nanowall of Cu-doped TiO2 (CuTNW) has been prepared in this work to study the role of Cu doping on its photoactivity properties and its photovoltaic performance as photoanode in a dye-sensitized solar cell (DSSC). TiO2 nanowall with five Cu ion doping, i.e. 6.25, 12.5, 25.0, 50.0 and 100.0 mM, were prepared via a liquid-phase deposition method using ammoniumhexafluorotitanate and hexamethylenetetramine as the reagents with a growth temperature of 90 °C. The X-Ray Diffraction (XRD), X-ray energy dispersion (EDX) and diffuse optical reflectance spectroscopy analysis results confirmed the successfulness of the Cu doping process in the TiO2 nanowall and effective modification on the photoactivity of the TiO2 nanowall. We found that the power conversion efficiency of the DSSC utilizing TiO2 nanowall as photoanode can be enhanced up to 2 times, i.e. from 0.2% to 0.44%, when the TiO2 nanowall doped with Cu ion. The nanostructure preparation, device fabrication and the mechanism for the device performance enhancement will be discussed.

  17. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    PubMed Central

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-01-01

    We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells. PMID:29495612

  18. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid.

    PubMed

    Ghasemi, S; Rahimnejad, S; Setayesh, S Rahman; Rohani, S; Gholami, M R

    2009-12-30

    TiO(2) and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO(2) nanoparticles were synthesized by the sol-gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 degrees C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO(2). Dopant ions in the TiO(2) structure caused significant absorption shift into the visible region. The results of photodegradation of Acid Blue92 (AB92) in aqueous medium under UV light showed that photocatalytic activity of TiO(2) nanoparticles was significantly enhanced by the presence of some transition metal ions. Chemical Oxygen Demand (COD) of dye solutions were done at regular intervals gave a good idea about mineralization of dye.

  19. Pt-Enhanced Mesoporous Ti3+/TiO2 with Rapid Bulk to Surface Electron Transfer for Photocatalytic Hydrogen Evolution.

    PubMed

    Lian, Zichao; Wang, Wenchao; Li, Guisheng; Tian, Fenghui; Schanze, Kirk S; Li, Hexing

    2017-05-24

    Pt-doped mesoporous Ti 3+ self-doped TiO 2 (Pt-Ti 3+ /TiO 2 ) is in situ synthesized via an ionothermal route, by treating metallic Ti in an ionic liquid containing LiOAc, HOAc, and a H 2 PtCl 6 aqueous solution under mild ionothermal conditions. Such Ti 3+ -enriched environment, as well as oxygen vacancies, is proven to be effective for allowing the in situ reduction of Pt 4+ ions uniformly located in the framework of the TiO 2 bulk. The photocatalytic H 2 evolution of Pt-Ti 3+ /TiO 2 is significantly higher than that of the photoreduced Pt loaded on the original TiO 2 and commercial P25. Such greatly enhanced activity is due to the various valence states of Pt (Pt n+ , n = 0, 2, or 3), forming Pt-O bonds embedded in the framework of TiO 2 and ultrafine Pt metal nanoparticles on the surface of TiO 2 . Such Pt n+ -O bonds could act as the bridges for facilitating the photogenerated electron transfer from the bulk to the surface of TiO 2 with a higher electron carrier density (3.11 × 10 20 cm -3 ), about 2.5 times that (1.25 × 10 20 cm -3 ) of the photoreduced Pt-Ti 3+ /TiO 2 sample. Thus, more photogenerated electrons could reach the Pt metal for reducing protons to H 2 .

  20. Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications

    PubMed Central

    Ganesh, Ibram; Gupta, A. K.; Kumar, P. P.; Sekhar, P. S. C.; Radha, K.; Padmanabham, G.; Sundararajan, G.

    2012-01-01

    Different amounts of Ni-doped TiO2 (Ni = 0.1 to 10%) powders and thin films were prepared by following a conventional coprecipitation and sol-gel dip coating techniques, respectively, at 400 to 800°C, and were thoroughly characterized by means of XRD, FT-IR, FT-Raman, DRS, UV-visible, BET surface area, zeta potential, flat band potential, and photocurrent measurement techniques. Photocatalytic abilities of Ni-doped TiO2 powders were evaluated by means of methylene blue (MB) degradation reaction under simulated solar light. Characterization results suggest that as a dopant, Ni stabilizes TiO2 in the form of anatase phase, reduces its bandgap energy, and adjusts its flat band potentials such that this material can be employed for photoelectrochemical (PEC) oxidation of water reaction. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of Ni in TiO2. The kinetic studies revealed that the MB degradation reaction follows the Langmuir-Hinshelwood first-order reaction relationship. PMID:22619580

  1. Surface modification of the TiO2 nanoparticle surface enables fluorescence monitoring of aggregation and enhanced photoreactivity.

    PubMed

    Kamps, Kara; Leek, Rachael; Luebke, Lanette; Price, Race; Nelson, Megan; Simonet, Stephanie; Eggert, David Joeseph; Ateşin, Tülay Aygan; Brown, Eric Michael Bratsolias

    2013-01-01

    Chemically and biologically modified nanoparticles are increasingly considered as viable and multifunctional tools to be used in cancer theranostics. Herein, we demonstrate that coordination of alizarin blue black B (ABBB) to the TiO(2) nanoparticle surface enhances the resulting nanoparticles by (1) creating distinct fluorescence emission spectra that differentiate smaller TiO(2) nanoparticles from larger TiO(2) nanoparticle aggregates (both in vitro and intracellular) and (2) enhancing visible light activation of TiO(2) nanoparticles above previously described methods to induce in vitro and intracellular damage to DNA and other targets. ABBB-TiO(2) nanoparticles are characterized through sedimentation, spectral absorbance, and gel electrophoresis. The possible coordination modes of ABBB to the TiO(2) nanoparticle surface are modeled by computational methods. Fluorescence emission spectroscopy studies indicate that ABBB coordination on TiO(2) nanoparticles enables discernment between nanoparticles and nanoparticle aggregates both in vitro and intracellular through fluorescence confocal microscopy. Visible light activated ABBB-TiO(2) nanoparticles are capable of inflicting increased DNA cleavage through localized production of reactive oxygen species as visualized by plasmid DNA damage detected through gel electrophoresis and atomic force microscopy. Finally, visible light excited ABBB-TiO(2) nanoparticles are capable of inflicting damage upon HeLa (cervical cancer) cells by inducing alterations in DNA structure and membrane associated proteins. The multifunctional abilities of these ABBB-TiO(2) nanoparticles to visualize and monitor aggregation in real time, as well as inflict visible light triggered damage upon cancer targets will enhance the use of TiO(2) nanoparticles in cancer theranostics.

  2. Nitrogen-doping of bulk and nanotubular TiO2 photocatalysts by plasma-assisted atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Creatore, Mariadriana; Ma, Quan-Bao; El Boukili, Aishah; Gao, Lu; Verheijen, Marcel A.; Verhoeven, M. W. G. M. (Tiny); Hensen, Emiel. J. M.

    2015-03-01

    Plasma-assisted atomic layer deposition (PA-ALD) was adopted to deposit TiO2-xNx ultrathin layers on Si wafers, calcined Ti foils and nanotubular TiO2 arrays. A range of N content and chemical bond configurations were obtained by varying the background gas (O2 or N2) during the Ti precursor exposure, while the N2/H2-fed inductively coupled plasma exposure time was varied between 2 and 20 s. On calcined Ti foils, a positive effect from N doping on photocurrent density was observed when O2 was the background gas with a short plasma exposure time (5 and 10 s). This correlates with the presence of interstitial N states in the TiO2 with a binding energy of 400 eV (Ninterst) as measured by X-ray photoelectron spectroscopy. A longer plasma time or the use of N2 as background gas results in formation of N state with a binding energy of 396 eV (Nsubst) and very low photocurrents. These Nsubst are linked to the presence of Ti3+, which act as detrimental recombination center for photo-generated electron-hole pairs. On contrary, PA-ALD treated nanotubular TiO2 arrays show no variation of photocurrent density (with respect to the pristine nanotubes) upon different plasma exposure times and when the O2 recipe was adopted. This is attributed to constant N content in the PA-ALD TiO2-xNx, regardless of the adopted recipe.

  3. Three-dimensional ruthenium-doped TiO 2 sea urchins for enhanced visible-light-responsive H 2 production

    DOE PAGES

    Nguyen-Phan, Thuy -Duong; Luo, Si; Vovchok, Dimitriy; ...

    2016-05-23

    Here, three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO 2 hierarchical architectures composed of radially aligned, densely-packed TiO 2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H 2 production under visible light irradiation, not possible on undoped and bulk rutile TiO 2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m 2 g –1 but alsomore » induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti 3+, significantly below the conduction band of TiO 2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less

  4. Properties of Structurally Excellent N-doped TiO2 Rutile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, Scott A.; Cheung, Sau H.; Shutthanandan, V.

    2007-10-15

    We have used plasma-assisted molecular beam epitaxy to synthesize structurally near-perfect crystalline films of TiO2-xNx rutile for the first time. These materials allow the properties of TiO2-xNx to be elucidated without the interfering effects of oxygen vacancy defects. In the absence of such defects, the extent of N incorporation in the lattice is limited to 2 ± 1 at. % of the anions. Substitutional N (NO) exhibits a -3 formal charge due to charge transfer from shallow-donor interstitial Ti(III), which forms during epitaxial growth. Hybridization between NO and adjacent lattice Ti ions occurs, resulting in new states off the topmore » of the rutile valence band and an apparent band gap reduction of ~ 0.5 eV. It is not yet known if these new states result in mobile electron-hole pair creation upon irradiation, but experiments are planned to answer this important question.« less

  5. Nanoparticle size and combined toxicity of TiO2 and DSLS (surfactant) contribute to lysosomal responses in digestive cells of mussels exposed to TiO2 nanoparticles.

    PubMed

    Jimeno-Romero, A; Oron, M; Cajaraville, M P; Soto, M; Marigómez, I

    2016-10-01

    The aim of this investigation was to understand the bioaccumulation, cell and tissue distribution and biological effects of disodium laureth sulfosuccinate (DSLS)-stabilised TiO2 nanoparticles (NPs) in marine mussels, Mytilus galloprovincialis. Mussels were exposed in vivo to 0.1, 1 and 10 mg Ti/L either as TiO2 NPs (60 and 180 nm) or bulk TiO2, as well as to DSLS alone. A significant Ti accumulation was observed in mussels exposed to TiO2 NPs, which were localised in endosomes, lysosomes and residual bodies of digestive cells, and in the lumen of digestive tubules, as demonstrated by ultrastructural observations and electron probe X-ray microanalysis. TiO2 NPs of 60 nm were internalised within digestive cell lysosomes to a higher extent than TiO2 NPs of 180 nm, as confirmed by the quantification of black silver deposits after autometallography. The latter were localised mainly forming large aggregates in the lumen of the gut. Consequently, lysosomal membrane stability (LMS) was significantly reduced upon exposure to both TiO2 NPs although more markedly after exposure to TiO2-60 NPs. Exposure to bulk TiO2 and to DSLS also affected the stability of the lysosomal membrane. Thus, effects on the lysosomal membrane depended on the nanoparticle size and on the combined biological effects of TiO2 and DSLS.

  6. Ultrasound assisted synthesis of iron doped TiO2 catalyst.

    PubMed

    Ambati, Rohini; Gogate, Parag R

    2018-01-01

    The present work deals with synthesis of Fe (III) doped TiO 2 catalyst using the ultrasound assisted approach and conventional sol-gel approach with an objective of establishing the process intensification benefits. Effect of operating parameters such as Fe doping, type of solvent, solvent to precursor ratio and initial temperature has been investigated to get the best catalyst with minimum particle size. Comparison of the catalysts obtained using the conventional and ultrasound assisted approach under the optimized conditions has been performed using the characterization techniques like DLS, XRD, BET, SEM, EDS, TEM, FTIR and UV-Vis band gap analysis. It was established that catalyst synthesized by ultrasound assisted approach under optimized conditions of 0.4mol% doping, irradiation time of 60min, propan-2-ol as the solvent with the solvent to precursor ratio as 10 and initial temperature of 30°C was the best one with minimum particle size as 99nm and surface area as 49.41m 2 /g. SEM analysis, XRD analysis as well as the TEM analysis also confirmed the superiority of the catalyst obtained using ultrasound assisted approach as compared to the conventional approach. EDS analysis also confirmed the presence of 4.05mol% of Fe element in the sample of 0.4mol% iron doped TiO 2 . UV-Vis band gap results showed the reduction in band gap from 3.2eV to 2.9eV. Photocatalytic experiments performed to check the activity also confirmed that ultrasonically synthesized Fe doped TiO 2 catalyst resulted in a higher degradation of Acid Blue 80 as 38% while the conventionally synthesized catalyst resulted in a degradation of 31.1%. Overall, the work has clearly established importance of ultrasound in giving better catalyst characteristics as well as activity for degradation of the Acid Blue 80 dye. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Nanoporous TiO2 nanoparticle assemblies with mesoscale morphologies: nano-cabbage versus sea-anemone

    NASA Astrophysics Data System (ADS)

    Darbandi, Masih; Gebre, Tesfaye; Mitchell, Lucas; Erwin, William; Bardhan, Rizia; Levan, M. Douglas; Mochena, Mogus D.; Dickerson, James H.

    2014-05-01

    We report the novel synthesis of nanoporous TiO2 nanoparticle ensembles with unique mesoscale morphologies. Constituent nanoparticles evolved into multifaceted assemblies, exhibiting excellent crystallinity and enhanced photocatalytic activity compared with commercial TiO2. Such materials could be exploited for applications, like organic pollutant degradation.We report the novel synthesis of nanoporous TiO2 nanoparticle ensembles with unique mesoscale morphologies. Constituent nanoparticles evolved into multifaceted assemblies, exhibiting excellent crystallinity and enhanced photocatalytic activity compared with commercial TiO2. Such materials could be exploited for applications, like organic pollutant degradation. Electronic supplementary information (ESI) available: Synthesis and characterization procedures, TEM/XRD of samples prepared at different temperature and water content, table of nitrogen adsorption-desorption values of different samples. See DOI: 10.1039/c3nr06154j

  8. Mild solution-processed metal-doped TiO2 compact layers for hysteresis-less and performance-enhanced perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Chao; Li, Pengwei; Zhang, Yiqiang; Gu, Hao; Cai, Qingbin; Liu, Xiaotao; Wang, Jiefei; Wen, Hua; Shao, Guosheng

    2017-12-01

    TiO2 is extensively used as electron-transporting material on perovskite solar cells (PSCs). However, traditional TiO2 processing method needs high annealing temperature (>450 °C) and pure TiO2 suffers from low electrical mobility and poor conductivity. In this study, a general one-pot solution-processed method is devised to grow uniform crystallized metal-doped TiO2 thin film as large as 15 × 15 cm2. The doping process can be controlled effectively via a series of doping precursors from niobium (V), tin (IV), tantalum (V) to tungsten (VI) chloride. As far as we know, this is so far the lowest processing temperature for metal-doped TiO2 compact layers, as low as 70 °C. The overall performance of PSCs employing the metal-doped TiO2 layers is significantly improved in term of hysteresis effect, short circuit current, open-circuit voltage, fill factor, power conversion efficiency, and device stability. With the insertion of metal ions into TiO2 lattice, the corresponding CH3NH3PbI3 PSC leads to a ∼25% improved PCE of over 16% under irradiance of 100 mW cm-2 AM1.5G sunlight, compared with control device. The results indicate that this mild solution-processed metal-doped TiO2 is an effective industry-scale way for fabricating hysteresis-less and high-performance PSCs.

  9. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    PubMed

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synthesis and photocatalytic activity of anatase TiO2 nanoparticles for degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Singh, Manmeet; Duklan, Neha; Singh, Pritpal; Sharma, Jeewan

    2018-05-01

    In present study, TiO2 nanoparticles, in anatase form, were successfully synthesized using TiCl4 as precursor. These nanoparticles were synthesized by sol-gel method at room temperature (298 K). As prepared samples were characterized for phase structure, optical absorption and surface properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Visible spectroscopy. The synthesized TiO2 nanoparticles sample was compared with one of the most efficient commercial photocatalyst Degussa TiO2 also known as P(25). The effect of phase composition of anatase TiO2 nanoparticles, as compared to P(25), on photocatalytic decomposition of organic dye, methyl orange (MO) was studies under UV light illumination. An enhanced degradation of hazardous dye was observed in the presence of anatase TiO2 nanoparticles as compared to P(25) due to slow recombination rate. Other possible reasons for this enhancement have also been discussed.

  11. Effects of TiO2 nanoparticles on the NO2 - levels in cell culture media analysed by Griess colorimetric methods

    NASA Astrophysics Data System (ADS)

    Popescu, Traian; Lupu, Andreea R.; Diamandescu, Lucian; Tarabasanu-Mihaila, Doina; Teodorescu, Valentin S.; Raditoiu, Valentin; Purcar, Violeta; Vlaicu, Aurel M.

    2013-02-01

    The Griess assay has been used to determine the possible changes in the measured NO2 - concentrations induced by TiO2 nanoparticles in three types of nitrite-containing samples: aqueous NaNO2 solutions with known concentrations, and two types of cell culture media—Roswell Park Memorial Institute medium (RPMI-1640) and Dulbecco's Modified Eagle Medium (DMEM-F12) used either as delivered or enriched in NO2 - by NaNO2 addition. We have used three types of titania with average particle sizes between 10 and 30 nm: Degussa P25 and two other samples (undoped and Fe3+-doped anatase TiO2) synthesised by a hydrothermal route in our laboratory. The structural, morphological, optical and physicochemical characteristics of the used materials have been studied by X-ray diffraction, transmission electron microscopy (EDX), Mössbauer spectroscopy, Brunauer-Emmett-Teller nitrogen adsorption, UV-Vis reflectance spectroscopy, dynamic light scattering and diffuse reflectance infrared Fourier transform spectroscopy. The opacity and sedimentation behaviour of the studied TiO2 suspensions have been investigated by photometric attenuance measurements at 540 nm. To account for the photocatalytic properties of titania in a biologically relevant context, multiple Griess tests have been performed under controlled exposure to laboratory natural daylight illumination. The results show significant variations of light attenuance (associated with NO2 - concentrations in the Griess test) depending on the opacity, sedimentation behaviour, NO2 - adsorption and photocatalytic properties of the tested TiO2 nanomaterials. These findings identify material characteristics recommended to be considered when analysing the results of Griess tests performed in biological studies involving TiO2 nanoparticles.

  12. Photocatalytic Activity of W-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Song, Yo-Seung; Cho, Nam-Ihn; Lee, Myung-Hyun; Kim, Bae-Yeon; Lee, Deuk Yong

    2016-02-01

    Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2-

  13. Wet-Chemical Preparation of TiO2-Based Composites with Different Morphologies and Photocatalytic Properties

    PubMed Central

    Xiang, Liqin; Zhao, Xiaopeng

    2017-01-01

    TiO2-based composites have been paid significant attention in the photocatalysis field. The size, crystallinity and nanomorphology of TiO2 materials have an important effect on the photocatalytic efficiency. The synthesis and photocatalytic activity of TiO2-based materials have been widely investigated in past decades. Based on our group’s research works on TiO2 materials, this review introduces several methods for the fabrication of TiO2, rare-earth-doped TiO2 and noble-metal-decorated TiO2 particles with different morphologies. We focused on the preparation and the formation mechanism of TiO2-based materials with unique structures including spheres, hollow spheres, porous spheres, hollow porous spheres and urchin-like spheres. The photocatalytical activity of urchin-like TiO2, noble metal nanoparticle-decorated 3D (three-dimensional) urchin-like TiO2 and bimetallic core/shell nanoparticle-decorated urchin-like hierarchical TiO2 are briefly discussed. PMID:28991208

  14. Plasmonic layers based on Au-nanoparticle-doped TiO2 for optoelectronics: structural and optical properties.

    PubMed

    Pedrueza, E; Sancho-Parramon, J; Bosch, S; Valdés, J L; Martinez-Pastor, J P

    2013-02-15

    The anti-reflective effect of dielectric coatings used in silicon solar cells has traditionally been the subject of intensive studies and practical applications. In recent years the interest has permanently grown in plasmonic layers based on metal nanoparticles, which are shown to increase light trapping in the underlying silicon. In the present work we have combined these two concepts by means of in situ synthesis of Au nanoparticles in a dielectric matrix (TiO2), which is commonly used as an anti-reflective coating in silicon solar cells, and added the third element: a 10-20% porosity in the matrix. The porosity is formed by means of a controllable wet etching by low concentration HF. As a consequence, the experimentally measured reflectance of silicon coated by such a plasmonic layer decreases to practically zero in a broad wavelength region around the localized surface plasmon resonance. Furthermore, we demonstrate that extinction and reflectance spectra of silicon coated by the plasmonic films can be successfully accounted for by means of Fresnel formulae, in which a double refractive index of the metal-dielectric material is used. This double refractive index cannot be explained by effective medium theory (Maxwell-Garnett, for example) and appears when the contribution of Au nanoparticles located at the TiO2/Si interface is high enough to result in formation of interface surface plasmon modes.

  15. Novel three-dimensionally ordered macroporous Fe3+-doped TiO2 photocatalysts for H2 production and degradation applications

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoqing; Xue, Chao; Yang, Bolun; Yang, Guidong

    2017-02-01

    Novel three-dimensionally ordered macroporous (3DOM) Fe3+-doped TiO2 photocatalysts were prepared using a colloidal crystal template method with low-cost raw material including ferric trichloride, isopropanol, tetrabutyl titanate and polymethyl methacrylate. The as-prepared 3DOM Fe3+-doped TiO2 photocatalysts were characterized by various analytical techniques. TEM and SEM results showed that the obtained photocatalysts possess well-ordered macroporous structure in three dimensional orientations. As proved by XPS and EDX analysis that Fe3+ ions have been introduced TiO2 lattice and the doped Fe3+ ions can act as the electron acceptor/donor centers to significantly enhance the electron transfer from the bulk to surface of TiO2, resulting in more electrons could take part in the oxygen reduction process thereby decreasing the recombination rate of photogenerated charges. Meanwhile, the 3DOM architecture with the feature of interfacial chemical reaction active sites and optical absorption active sites is remarkably favorable for the reactant transfer and light trapping in the photoreaction process. As a result, the 3DOM Fe3+-doped TiO2 photocatalysts show the considerably higher photocatalytic activity for decomposition of the Rhodamine B (RhB) and the generation of hydrogen under visible light irradiation due to the synergistic effects of open, interconnected macroporous network and metal ion doping.

  16. Synthesis of Mesoporous Co2+-Doped TiO2 Nanodisks Derived from Metal Organic Frameworks with Improved Sodium Storage Performance.

    PubMed

    Hong, Zhensheng; Kang, Meiling; Chen, Xiaohui; Zhou, Kaiqiang; Huang, Zhigao; Wei, Mingdeng

    2017-09-20

    TiO 2 is a most promising anode candidate for rechargeable Na-ion batteries (NIBs) because of its appropriate working voltage, low cost, and superior structural stability during chage/discharge process. Nevertheless, it suffers from intrinsically low electrical conductivity. Herein, we report an in situ synthesis of Co 2+ -doped TiO 2 through the thermal treatment of metal organic frameworks precursors of MIL-125(Ti)-Co as a superior anode material for NIBs. The Co 2+ -doped TiO 2 possesses uniform nanodisk morphology, a large surface area and mesoporous structure with narrow pore distribution. The reversible capacity, Coulombic efficiency (CE) and rate capability can be improved by Co 2+ doping in mesoporous TiO 2 anode. Co 2+ -doped mesoporous TiO 2 nanodisks exhibited a high reversible capacity of 232 mAhg -1 at 0.1 Ag 1- , good rate capability and cycling stability with a stable capacity of about 140 mAhg -1 at 0.5 Ag 1- after 500 cycles. The enhanced Na-ion storage performance could be due to the increased electrical conductivity revealed by Kelvin probe force microscopy measurements.

  17. Enhancement of the photocatalytic activity of TiO(2) by doping it with calcium ions.

    PubMed

    Akpan, U G; Hameed, B H

    2011-05-01

    Titanium dioxide (TiO(2)) with an enhanced photocatalytic activity was developed by doping it with calcium ions through a sol-gel method. The developed photocatalysts were characterized by Fourier transform infrared (FTIR) spectroscopy, N(2) physisorption, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction. Their surface morphologies were studied using surface scanning electron microscopy (SEM). The XPS analyses confirmed the presence of Ti, O, Ca, and C in the Ca-doped TiO(2) sample. The activities of the catalysts were evaluated by photocatalytic degradation of an azo dye, acid red 1 (AR1), using UV light irradiation. The results of the investigations revealed that the samples calcined at 300 °C for 3.6h in a cyclic (2 cycles) mode had the best performance. Lower percentage dopant, 0.3-1.0 wt.%, enhanced the photocatalytic activity of TiO(2), with the best at 0.5 wt.% Ca-TiO(2). The performance of 0.5 wt.% Ca-TiO(2) in the degradation of AR1 was far superior to that of a commercial anatase TiO(2) Sigma product CAS No. 1317-70-0. The effect of pH on the degradation of AR1 was studied, and the pH of the dye solution exerted a great influence on the degradation of the dye. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramanian, B; Kraemer, KL; Valloppilly, SR

    2011-09-13

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) moleculesmore » using a thermal evaporation source, prior to deposition as TiO2-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO2 nanoparticles serve two purposes, namely to prevent the TiO2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO2-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO2-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.« less

  19. Improving the Photocatalytic Activity of Modified Anatase TiO2 with Different Concentrations of Aluminum under Visible Light: Mechanistic Survey.

    PubMed

    Afshar, Shahrara; Pordel, Shabnam; Tahmouresilerd, Babak; Azad, Alireza

    2016-11-01

    Visible light-driven Al-doped TiO 2 with different aluminum contents (2, 5 and 10 mol%) were synthesized via a facile sol-gel method. Fourier transform infrared (FTIR), UV-visible diffuse reflectance, energy dispersive X-ray (EDX) spectroscopy as well as X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM) methods were used for the characterization of the obtained nanoparticles. The photocatalytic performance of the samples was evaluated by the degradation of rhodamine B (RhB) under visible light irradiation. The yield of the degradation RhB was estimated to be 71%, 89%, 65% and 56%, for the bare TiO 2 , 2%, 5% and 10% Al-doped TiO 2 , respectively. It was found that 2 mol% of Al-doped TiO 2 shows the best photocatalytic performance. In low concentration of dopant, separation of photogenerated electron-hole pairs promoted, and subsequently, the degradation efficiency increased. It was proposed that the degradation of RhB by 2 mol% Al-doped TiO 2 photocatalyst follows both N-deethylation and chromophore cleavage mechanisms, while the N-deethylation still predominated over cleavage of dye chromophore structure. The key role of hydroxyl radicals in RhB degradation was verified by the effects of scavengers. In addition, the photocatalyst can be reused for three runs without any significant loss of its catalytic activity. © 2016 The American Society of Photobiology.

  20. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes.

    PubMed

    Yao, Shenglian; Feng, Xujia; Lu, Jiaju; Zheng, Yudong; Wang, Xiumei; Volinsky, Alex A; Wang, Lu-Ning

    2018-06-15

    Titanium (Ti) with nanoscale structure on the surface exhibits excellent biocompatibility and bone integration. Once implanted, the surgical implantation may lead to bacterial infection and inflammatory reaction, which cause the implant failure. In this work, irregular and nanorod-shaped ZnO nanoparticles were doped into TiO 2 nanotubes (TNTs) with inner diameter of about 50 nm by electro-deposition. The antibacterial properties of ZnO incorporated into TiO 2 nanotubes (TNTs/ZnO) were evaluated using Staphylococcus aureus (S. aureus). Zn ions released from the nanoparticles and the morphology could work together, improving antibacterial effectiveness up to 99.3% compared with the TNTs. Macrophages were cultured on the samples to determine their respective anti-inflammatory properties. The proliferation and viability of macrophages were evaluated by the CCK-8 method and Live&Dead stain, and the morphology of the cells was observed by scanning electron microscopy. Results indicated that TNTs/ZnO has a significant inhibitory effect on the proliferation and adhesion of macrophages, which could be used to prevent chronic inflammation and control the inflammatory reaction. Besides, the release of Zn ions from the ZnO nanoparticles is a long-term process, which could be beneficial for bone integration. Results demonstrate that ZnO deposited into TNTs improved the antibacterial effectiveness and weakened the inflammatory reaction of titanium-based implants, which is a promising approach to enhance their bioactivity.

  1. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Yao, Shenglian; Feng, Xujia; Lu, Jiaju; Zheng, Yudong; Wang, Xiumei; Volinsky, Alex A.; Wang, Lu-Ning

    2018-06-01

    Titanium (Ti) with nanoscale structure on the surface exhibits excellent biocompatibility and bone integration. Once implanted, the surgical implantation may lead to bacterial infection and inflammatory reaction, which cause the implant failure. In this work, irregular and nanorod-shaped ZnO nanoparticles were doped into TiO2 nanotubes (TNTs) with inner diameter of about 50 nm by electro-deposition. The antibacterial properties of ZnO incorporated into TiO2 nanotubes (TNTs/ZnO) were evaluated using Staphylococcus aureus (S. aureus). Zn ions released from the nanoparticles and the morphology could work together, improving antibacterial effectiveness up to 99.3% compared with the TNTs. Macrophages were cultured on the samples to determine their respective anti-inflammatory properties. The proliferation and viability of macrophages were evaluated by the CCK-8 method and Live&Dead stain, and the morphology of the cells was observed by scanning electron microscopy. Results indicated that TNTs/ZnO has a significant inhibitory effect on the proliferation and adhesion of macrophages, which could be used to prevent chronic inflammation and control the inflammatory reaction. Besides, the release of Zn ions from the ZnO nanoparticles is a long-term process, which could be beneficial for bone integration. Results demonstrate that ZnO deposited into TNTs improved the antibacterial effectiveness and weakened the inflammatory reaction of titanium-based implants, which is a promising approach to enhance their bioactivity.

  2. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.

    PubMed

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-10-15

    The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Deposition of gold nanoparticles from colloid on TiO2 surface

    NASA Astrophysics Data System (ADS)

    Rehacek, Vlastimil; Hotovy, Ivan

    2017-11-01

    In this paper, experimental results are presented on the deposition of colloidal gold nanoparticles on the surfaces of TiO2 prepared on silicon/silicon dioxide. Important procedures, such as titanium dioxide surface hydrophilization as well as functionalization by an organosilane coupling agent (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane were investigated in order to obtain a metal oxide surface with the most convenient properties for immobilization of gold nanoparticles having a dense and uniform distribution. TiO2 nanotips prepared by reactive ion etching of oxide surface covered with self-mask gold nanoparticles are demonstrated.

  4. The effect of CO2 gas adsorption on the electrical properties of Fe doped TiO2 films

    NASA Astrophysics Data System (ADS)

    Mardare, Diana; Adomnitei, Catalin; Florea, Daniel; Luca, Dumitru; Yildiz, Abdullah

    2017-11-01

    CO2 has to be monitored for indoor air quality, being also an important greenhouse gas. The electrical and sensing gas properties of the undoped and Fe doped TiO2 thin films, obtained by RF sputtering, have been investigated in different CO2 atmospheres. It was observed that the response to CO2 increases by Fe doping for the lowest doped film, and then decreases, as the dopant concentration increases. An explanation was given based on multiphonon-assisted hopping model. By studying the films electrical conductivity in front of a certain CO2 atmosphere, we have qualitatively evidenced the semiconducting n-type nature of the films under study, except for the highest Fe doped film which has a p-type behavior. An important finding is that Fe doping determines the decrease of the optimum operating temperature, approaching the room temperature.

  5. Chronic impacts of TiO2 nanoparticles on Populus nigra L. leaf decomposition in freshwater ecosystem.

    PubMed

    Du, Jingjing; Zhang, Yuyan; Guo, Wei; Li, Ningyun; Gao, Chaoshuai; Cui, Minghui; Lin, Zhongdian; Wei, Mingbao; Zhang, Hongzhong

    2018-05-15

    Titanium dioxide (TiO 2 ) nanoparticles have been applied in diverse commercial products, which could lead to toxic effects on aquatic microbes and would inhibit some important ecosystem processes. The study aimed to investigate the chronic impacts of TiO 2 nanoparticles with different concentrations (5, 50, and 500 mg L -1 ) on Populus nigra L. leaf decomposition in the freshwater ecosystem. After 50 d of decomposing, a significant decrease in decomposition rates was observed with higher concentrations of TiO 2 nanoparticles. During the period of litter decomposition, exposure of TiO 2 nanoparticles led to decreases in extracellular enzyme activities, which was caused by the reduction of microbial especially fungal biomass. In addition, the diversity and composition of the fungal community associated with litter decomposition were strongly affected by the concentrations of TiO 2 nanoparticles. The diversity and composition of the fungal community associated with litter decomposition was strongly affected. The abundance of Tricladium chaetocladium decreased with the increasing concentrations of TiO 2 nanoparticles, indicating the little contribution of the species to the litter decomposition. In conclusion, this study provided the evidence for the chronic exposure effects of TiO 2 nanoparticles on the litter decomposition and further the functions of freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Dye sensitized solar cell based on environmental friendly eosin Y dye and Al doped titanium dioxide nano particles

    NASA Astrophysics Data System (ADS)

    Kulkarni, Swati S.; Bodkhe, Gajanan A.; Shirsat, Sumedh M.; Hussaini, S. S.; Shejwal, N. N.; Shirsat, Mahendra D.

    2018-03-01

    Present communication deals with the development of cost effective dye sensitized solar cell (DSSC) with eco-friendly materials. Eco-friendly Eosin Y dye was used to sensitize photo anode which was fabricated using undoped and Aluminium doped titanium dioxide (TiO2) nanoparticles. Undoped and Aluminium doped TiO2 nanoparticles were synthesized by simple and cost effective sol-gel method. Aluminium doped and undoped TiO2 nanoparticles were characterized using UV-visible, FT-IR spectroscopy, x-ray Diffraction, and Scanning Electron Micrograph with EDX. The photo-voltaic activity of the cell was studied under light irradiation of 100 milliwatt cm-2. Aluminium doped TiO2 nanoparticle photo electrode exhibits more than 60% increase in cell efficiency as compared to the undoped TiO2 nanoparticle photo electrode.

  7. Antibacterial activity of DLC films containing TiO2 nanoparticles.

    PubMed

    Marciano, F R; Lima-Oliveira, D A; Da-Silva, N S; Diniz, A V; Corat, E J; Trava-Airoldi, V J

    2009-12-01

    Diamond-like carbon (DLC) films have been the focus of extensive research in recent years due to their potential applications as surface coatings on biomedical devices. Titanium dioxide (TiO2) in the anatase crystalline form is a strong bactericidal agent when exposed to near-UV light. In this work we investigate the bactericidal activity of DLC films containing TiO2 nanoparticles. The films were grown on 316L stainless-steel substrates from a dispersion of TiO2 in hexane using plasma-enhanced chemical vapor deposition. The composition, bonding structure, surface energy, stress, and surface roughness of these films were also evaluated. The antibacterial tests were performed against Escherichia coli (E. coli) and the results were compared to the bacterial adhesion force to the studied surfaces. The presence of TiO2 in DLC bulk was confirmed by Raman spectroscopy. As TiO2 content increased, I(D)/I(G) ratio, hydrogen content, and roughness also increased; the films became more hydrophilic, with higher surface free energy and the interfacial energy of bacteria adhesion decreased. Experimental results show that TiO2 increased DLC bactericidal activity. Pure DLC films were thermodynamically unfavorable to bacterial adhesion. However, the chemical interaction between the E. coli and the studied films increased for the films with higher TiO2 concentration. As TiO2 bactericidal activity starts its action by oxidative damage to the bacteria wall, a decrease in the interfacial energy of bacteria adhesion causes an increase in the chemical interaction between E. coli and the films, which is an additional factor for the increasing bactericidal activity. From these results, DLC with TiO2 nanoparticles can be useful for producing coatings with antibacterial properties.

  8. Sol-flame synthesis of cobalt-doped TiO2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction.

    PubMed

    Cai, Lili; Cho, In Sun; Logar, Manca; Mehta, Apurva; He, Jiajun; Lee, Chi Hwan; Rao, Pratap M; Feng, Yunzhe; Wilcox, Jennifer; Prinz, Fritz B; Zheng, Xiaolin

    2014-06-28

    Doping nanowires (NWs) is of crucial importance for a range of applications due to the unique properties arising from both impurities' incorporation and nanoscale dimensions. However, existing doping methods face the challenge of simultaneous control over the morphology, crystallinity, dopant distribution and concentration at the nanometer scale. Here, we present a controllable and reliable method, which combines versatile solution phase chemistry and rapid flame annealing process (sol-flame), to dope TiO2 NWs with cobalt (Co). The sol-flame doping method not only preserves the morphology and crystallinity of the TiO2 NWs, but also allows fine control over the Co dopant profile by varying the concentration of Co precursor solution. Characterizations of the TiO2:Co NWs show that Co dopants exhibit 2+ oxidation state and substitutionally occupy Ti sites in the TiO2 lattice. The Co dopant concentration significantly affects the oxygen evolution reaction (OER) activity of TiO2:Co NWs, and the TiO2:Co NWs with 12 at% of Co on the surface show the highest OER activity with a 0.76 V reduction of the overpotential with respect to undoped TiO2 NWs. This enhancement of OER activity for TiO2:Co NWs is attributed to both improved surface charge transfer kinetics and increased bulk conductivity.

  9. Sonocatalytic degradation of azo fuchsine in the presence of the Co-doped and Cr-doped mixed crystal TiO2 powders and comparison of their sonocatalytic activities.

    PubMed

    Wang, Jun; Lv, Yanhui; Zhang, Zhaohong; Deng, Yingqiao; Zhang, Liquan; Liu, Bin; Xu, Rui; Zhang, Xiangdong

    2009-10-15

    In order to degrade some pollutants effectively under ultrasonic irradiation, the Co-doped and Cr-doped mixed crystal TiO(2) powders, with high sonocatalytic activity, were prepared as sonocatalyst. The Co-doped and Cr-doped mixed crystal TiO(2) powders as sonocatalyst were prepared through sol-gel and heat-treated methods from tetrabutylorthotitanate, and then were characterized by XRD and TG-DTA technologies. In order to compare and evaluate the sonocatalytic activity of the Co-doped and Cr-doped mixed crystal TiO(2) powders, the low power ultrasound was as an irradiation source and the azo fuchsine was chosen as a model compound to be degraded. The degradation process was investigated by UV-vis, TOC, ion chromatogram and HPLC techniques. The results indicated that the sonocatalytic activity of Cr-doped mixed crystal TiO(2) powder was higher than that of Co-doped and undoped mixed crystal TiO(2) powder during the sonocatalytic degradation of the azo fuchsine in aqueous solution. These results may be of great significance for driving sonocatalytic method to treat non- or low-transparent industrial wastewaters.

  10. TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton

    PubMed Central

    Miller, Robert J.; Bennett, Samuel; Keller, Arturo A.; Pease, Scott; Lenihan, Hunter S.

    2012-01-01

    Nanoparticulate titanium dioxide (TiO2) is highly photoactive, and its function as a photocatalyst drives much of the application demand for TiO2. Because TiO2 generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UVR), nanoparticulate TiO2 has been used in antibacterial coatings and wastewater disinfection, and has been investigated as an anti-cancer agent. Oxidative stress mediated by photoactive TiO2 is the likely mechanism of its toxicity, and experiments demonstrating cytotoxicity of TiO2 have used exposure to strong artificial sources of ultraviolet radiation (UVR). In vivo tests of TiO2 toxicity with aquatic organisms have typically shown low toxicity, and results across studies have been variable. No work has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR. Here we show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth. No effect of TiO2 on phytoplankton was found in treatments where UV light was blocked. Under low intensity UVR, ROS in seawater increased with increasing nano-TiO2 concentration. These increases may lead to increased overall oxidative stress in seawater contaminated by TiO2, and cause decreased resiliency of marine ecosystems. Phototoxicity must be considered when evaluating environmental impacts of nanomaterials, many of which are photoactive. PMID:22276179

  11. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.

    PubMed

    Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia

    2018-06-06

    The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.

  12. Novel preparation of N-doped SnO 2 nanoparticles via laser-assisted pyrolysis: Demonstration of exceptional lithium storage properties

    DOE PAGES

    Wang, Luyuan Paul; Leconte, Yann; Feng, Zhenxing; ...

    2016-12-05

    Here, laser pyrolyzed SnO 2 nanoparticles with an option of nitrogen (N) doping are prepared using a cost-effective method. The electrochemical performance of N-doped samples is tested for the first time in Li-ion batteries where the sample with 3% of N-dopant exhibits optimum performance with a capacity of 522 mAh g active material –1 that can be obtained at 10 A g –1 (6.7C).

  13. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.

    2016-07-01

    Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and

  14. Defect Complex Effect in Nb Doped TiO2 Ceramics with Colossal Permittivity

    NASA Astrophysics Data System (ADS)

    Li, Fuchao; Shang, Baoqiang; Liang, Pengfei; Wei, Lingling; Yang, Zupei

    2016-10-01

    Donor-doped Nb x Ti1- x O2 ( x = 1%, 2%, 4%, 6%, and 8%) ceramics with giant permittivity (>104) and a very low dielectric loss (˜0.05) were sintered under flowing N2 at 1400°C for 10 h. By increasing Nb doping concentration, two different dielectric responses were evidenced in the frequency dependence of dielectric properties of Nb doped TiO2 ceramics, which corresponded to the space charge polarization and the electron-pinned defect-dipoles effect, respectively. Especially, combined with the x-ray photoelectron spectroscopy results, the electron-pinned defect-dipoles induced by the 2({Nb}^{5 + } )_{{Ti}}^{ bullet } to 4({Ti}^{3 + } )^'_{{Ti}} leftarrow {V}_{{o}}^{ bullet bullet } defect complex were further confirmed to give rise to both their high ɛr and low tan δ in the high frequency range for the Nb x Ti1- x O2 ceramics with x > 4%.

  15. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    PubMed Central

    Banerjee, Arghya Narayan

    2011-01-01

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and

  16. TiO2 nanoparticles for enhancing the refractive index of hydrogels for ophthalmological applications

    NASA Astrophysics Data System (ADS)

    Hampp, Norbert; Dams, Christian; Badur, Thorben; Reinhardt, Hendrik

    2017-02-01

    Intraocular lenses (IOL) are currently the only treatment for cataract dependent vision impairment and blindness [1]. A polymer suitable for IOL manufacture needs to meet a plurality of properties, biocompatibility, excellent transmission in the visible range, a high flexibility for micro invasive surgery, a high refractive index as well as a good ABBE-number, just to mention the most important ones [2]. We present the use of in situ generated TiO2-nanoparticles to enhance the refractive index of poly-HEMA hydrogels - with are suitable polymers for IOL manufacture[3] - from 1.44 to 1.527 at 589.3 nm combined with an excellent ABBE-number of 54. The nanoparticles were prepared using titaniumdiisopropoxide- bis(acetylacetonate) as a precursor. First the titanium salt was diffused into the poly-HEMA matrix and then it was transformed into TiO2 in boiling water. The resulting pHEMA [TiO2] hydrogel was dried for 10 days under ambient conditions. By lathing these polymers were machined into lens precursors, the so-called Saturn-rings. After reswelling in physiological saline solutions flexible polymer lenses with high surface quality, shape memory and superior optical properties were obtained. The crystal structure of the formed TiO2 nanoparticles was identified as anatase via Xray. No release of titanium ions or TiO2 nanoparticles was observe under physiological conditions. Such hybrid materials of TiO2 nanoparticles and poly-HEMA like hydrogels are promising materials for IOL.

  17. Molecular mechanism of composite nanoparticles TiO2/WO3/GO-induced activity changes of catalase and superoxide dismutase.

    PubMed

    Hao, Xiaoyan; Zhang, Li; Zheng, Xin; Zong, Wansong; Liu, Chunguang

    2018-06-21

    More and more composite nano-photocatalysts were developed by doping, modifying and coupling, which expanded its application but resulted in pollution due to the unrecyclability. Composite photocatalyst TiO 2 /WO 3 /GO, as a model, was evaluated by exploring the molecular mechanism of TiO 2 /WO 3 /GO-induced activity changes of catalase (CAT) and superoxide dismutase (SOD). Results showed that TiO 2 /WO 3 /GO could lead to conformational and functional changes of CAT and SOD. The activity of both CAT and SOD increased depending on the exposure dose of TiO 2 /WO 3 /GO. The change skeleton structure and increase of α-helix content of CAT and SOD were certificated with UV-vis absorption and CD measurements. Intrinsic fluorescence of CAT and SOD were quenched by dynamic quenching. Micro-environment of amino acid residues of CAT and SOD became more hydrophilic, and the microenvironment of Trp residues was more vulnerable than Tyr residues with TiO 2 /WO 3 /GO exposure. In addition, inhibitory comparison between GO, TiO 2 , WO 3 and TiO 2 /WO 3 /GO was made, results showed that composite nano-photocatalyst exhibited different inhibitory compared to their parent nano-particles. Copyright © 2018. Published by Elsevier B.V.

  18. Photochemical tuning of ultrathin TiO2/ p-Si p-n junction properties via UV-induced H doping

    NASA Astrophysics Data System (ADS)

    Lee, Sang Yeon; Kim, Jinseo; Ahn, Byungmin; Cho, In Sun; Yu, Hak Ki; Seo, Hyungtak

    2017-03-01

    We report a modified TiO2/ p-Si electronic structure that uses ultraviolet exposure for the incorporation of H. This structure was characterized using various photoelectron spectroscopic techniques. The ultraviolet (UV) exposure of the TiO2 surface allowed the Fermi energy level to be tuned by the insertion of H radicals, which induced changes in the heterojunction TiO2/ p-Si diode properties. The UV exposure of the TiO2 surface was performed in air. On UVexposure, a photochemical reaction involving the incorporation of UV-induced H radicals led to the creation of a surface Ti-O-OH group and caused interstitial H doping (Ti-H-O) in the bulk, which modified the electronic structures in different ways, depending on the location of the H. On the basis of the band alignment determined using a combined spectroscopic analysis, it is suggested that the UV-induced H incorporation into the TiO2 could be utilized for the systematic tuning of the heterojunction property for solar cells, photocatalytic applications, and capacitors.

  19. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo

    2018-03-01

    The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.

  20. Spectroscopy Study on the Location and Distribution of Eu3+ Ions in TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tsuboi, Taiju; Setiawati, Elly; Kawano, Katsuyasu

    2008-09-01

    Eu3+- and non-doped TiO2 nanoparticles were synthesized by the sol-gel method at sintering temperatures of 500 or 900 °C. The photoluminescence spectra of these nanoparticles have been investigated at various temperatures between 290 and 12 K. Two kinds of Eu3+ photoluminescence spectra were observed. One spectrum consists of sharp lines; the other consists of broad bands. The former was obtained by indirect excitation into Eu3+ with light of wavelengths shorter than 330 nm, while the latter was obtained by direct excitation into Eu3+ with light of wavelengths longer than 380 nm which correspond to the Eu3+ absorption bands. In the latter case, different spectra were obtained depending on the excitation wavelength even in the same absorption band. It is suggested that the sharp line spectrum is caused by Eu3+ ions substituted for Ti4+ but with some distortion around the Eu3+ ions in the matrix of TiO2 due to the large difference in ionic radius between the Ti4+ and Eu3+ ions, which are mainly present in the interior region of the nanoparticle. The broad band spectrum is caused by the disordered Eu3+ ions with Eu-O-Ti bonds which are predominantly present in the near surface region.

  1. Size-Selective Synthesis and Stabilization of Small Silver Nanoparticles on TiO 2 Partially Masked by SiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Zhenyu; Eaton, Todd R.; Gallagher, James R.

    Controlling metal nanoparticle size is one of the principle challenges in developing new supported catalysts. Typical methods where a metal salt is deposited and reduced can result in a polydisperse mixture of metal nanoparticles, especially at higher loading. Polydispersity can exacerbate the already significant challenge of controlling sintering at high temperatures, which decreases catalytic surface area. Here, we demonstrate the size-selective photoreduction of Ag nanoparticles on TiO2 whose surface has been partially masked with a thin SiO2 layer. To synthesize this layered oxide material, TiO2 particles are grafted with tert-butylcalix[4]arene molecular templates (~2 nm in diameter) at surface densities ofmore » 0.05–0.17 templates.nm–2, overcoated with ~2 nm of SiO2 through repeated condensation cycles of limiting amounts of tetraethoxysilane (TEOS), and the templates are removed oxidatively. Ag photodeposition results in uniform nanoparticle diameters ≤ 3.5 nm (by transmission electron microscopy (TEM)) on the partially masked TiO2, whereas Ag nanoparticles deposited on the unmodified TiO2 are larger and more polydisperse (4.7 ± 2.7 nm by TEM). Furthermore, Ag nanoparticles on the partially masked TiO2 do not sinter after heating at 450 °C for 3 h, while nanoparticles on the control surfaces sinter and grow by at least 30%, as is typical. Overall, this new synthesis approach controls metal nanoparticle dispersion and enhances thermal stability, and this facile synthesis procedure is generalizable to other TiO2-supported nanoparticles and sizes and may find use in the synthesis of new catalytic materials.« less

  2. Effect of Nitrogen Doping Level on the Performance of N-Doped Carbon Quantum Dot/TiO2 Composites for Photocatalytic Hydrogen Evolution.

    PubMed

    Shi, Run; Li, Zi; Yu, Huijun; Shang, Lu; Zhou, Chao; Waterhouse, Geoffrey I N; Wu, Li-Zhu; Zhang, Tierui

    2017-11-23

    Carbon quantum dots (CQDs) have attracted widespread interest for photocatalytic applications, owing to their low cost and excellent electron donor/acceptor properties. However, their advancement as visible-light photosensitizers in CQDs/semiconductor nanocomposites is currently impaired by their poor quantum yields (QYs). Herein, we describe the successful fabrication of a series of nitrogen-doped CQDs (NCDs) with N/C atomic ratios ranging from 0.14-0.30. NCDs with the highest N-doping level afforded a remarkable external QY of 66.8 % at 360 nm, and outstanding electron transfer properties and photosensitization efficiencies when physically adsorbed on P25 TiO 2 . A NCDs/P25-TiO 2 hybrid demonstrated excellent performance for hydrogen evolution in aqueous methanol under both UV and visible-light illumination relative to pristine P25 TiO 2 . Controlled nitrogen doping of CQDs therefore represents a very effective strategy for optimizing the performance of CQDs/semiconductor hybrid photocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effective photodegradation of methomyl pesticide in concentrated solutions by novel enhancement of the photocatalytic activity of TiO2 using CdSO4 nanoparticles.

    PubMed

    Barakat, N A M; Nassar, M M; Farrag, T E; Mahmoud, M S

    2014-01-01

    Annihilation of electrons-holes recombination process is the main remedy to enhance the photocatalytic activity of the semiconductors photocatalysts. Doping of this class of photocatalysts by foreign nanoparticles is usually utilized to create high Schottky barrier that facilitates electron capture. In the literature, because nonpolar nanoparticles (usually pristine metals, e.g., Ag, Pt, Au, etc.) were utilized in the doping process, the corresponding improvement was relatively low. In this study, CdSO4-doped TiO2 nanoparticles are introduced as a powerful and reusable photocatalyst for the photocatalytic degradation of methomyl pesticide in concentrated aqueous solutions. The utilized CdSO4 nanoparticles form polar grains in the TiO2 matrix due to the electrons leaving characteristic of the sulfate anion. The introduced nanoparticles could successfully eliminate the harmful pesticide under the sunlight radiation within a very short time (less than 1 h), with a removal capacity reaching 1,000 mg pesticide per gram of the introduced photocatalyst. Moreover, increase in the initial concentration of the methomyl did not affect the photocatalytic performance; typically 300, 500, 1,000, and 2,000 mg/l solutions were completely treated within 30, 30, 40, and 60 min, respectively, using 100 mg catalyst. Interestingly, the photocatalytic efficiency was not affected upon multiple use of the photocatalyst. Moreover, negative activation energy was obtained which reveals super activity of the introduced photocatalyst. The distinct photocatalytic activity indicates the complete annihilation of the electrons-holes recombination process and abundant existence of electrons on the catalyst surfaces due to strong electrons capturing the operation of the utilized polar CdSO4 nanoparticles. The introduced photocatalyst has been prepared using the sol-gel technique. Overall, the simplicity of the synthesizing procedure and the obtained featured photocatalytic activity strongly

  4. Controllable fabrication of Pt nanocatalyst supported on N-doped carbon containing nickel nanoparticles for ethanol oxidation.

    PubMed

    Yu, Jianguo; Dai, Tangming; Cao, Yuechao; Qu, Yuning; Li, Yao; Li, Juan; Zhao, Yongnan; Gao, Haiyan

    2018-08-15

    In this paper, platinum nanoparticles were deposited on a carbon carrier with the partly graphitized carbon and the highly dispersive carbon-coated nickel particles. An efficient electron transfer structure can be fabricated by controlling the contents of the deposited platinum. The high resolution transmission electron microscopy images of Pt 2 /Ni@C N-doped sample prove the electron transfer channel from Pt (1 1 1) crystal planes to graphite (1 0 0) or Ni (1 1 1) crystal planes due to these linked together crystal planes. The Pt 3 /Ni@C N-doped with low Pt contents cannot form the electron transfer structure and the Pt 1 /Ni@C N-doped with high Pt contents show an obvious aggregation of Pt nanoparticles. The electrochemical tests of all the catalysts show that the Pt 2 /Ni@C N-doped sample presents the highest catalytic activity, the strongest CO tolerance and the best catalytic stability. The high performance is attributed to the efficient electronic transport structure of the Pt 2 /Ni@C N-doped sample and the synergistic effect between Pt and Ni nanoparticles. This paper provides a promising method for enhancing the conductivity of electrode material. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Synthesis and characterization of UV-treated Fe-doped bismuth lanthanum titanate-doped TiO2 layers in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Song, Myoung Geun; Bark, Chung Wung

    2016-06-01

    Dye-sensitized solar cells (DSSCs) based on titanium dioxide (TiO2) have been extensively studied because they constitute promising low-cost alternatives to their conventional semiconductor-based counterparts. However, much of the effort aimed at achieving high conversion efficiencies has focused on dye and liquid electrolytes. In this work, we report the photovoltaic characteristics of DSSCs fabricated by mixing TiO2 with Fe-doped bismuth lanthanum titanate (Fe-BLT). These nanosized Fe-BLT powders were prepared by using a high-energy ball-milling process. In addition, we used a UV radiation-ozone (UV-O3) treatment to change the surface wettability of TiO2 from hydrophobic to hydrophilic and thereby prevented the easy separation of the Fe-BLT-mixed TiO2 from the fluorine-doped tin-oxide (FTO) coating glass.

  6. TiO2 nanoparticle-induced ROS correlates with modulated immune cell function

    NASA Astrophysics Data System (ADS)

    Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L.

    2012-12-01

    Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO2) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO2 exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO2 nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO2 nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.

  7. Effect of doping (C or N) and co-doping (C+N) on the photoactive properties of magnetron sputtered titania coatings for the application of solar water-splitting.

    PubMed

    Rahman, M; Dang, B H Q; McDonnell, K; MacElroy, J M D; Dowling, D P

    2012-06-01

    The photocatalytic splitting of water into hydrogen and oxygen using a photoelectrochemical (PEC) cell containing titanium dioxide (TiO2) photoanode is a potentially renewable source of chemical fuels. However, the size of the band gap (-3.2 eV) of the TiO2 photocatalyst leads to its relatively low photoactivity toward visible light in a PEC cell. The development of materials with smaller band gaps of approximately 2.4 eV is therefore necessary to operate PEC cells efficiently. This study investigates the effect of dopant (C or N) and co-dopant (C+N) on the physical, structural and photoactivity of TiO2 nano thick coating. TiO2 nano-thick coatings were deposited using a closed field DC reactive magnetron sputtering technique, from titanium target in argon plasma with trace addition of oxygen. In order to study the influence of doping such as C, N and C+N inclusions in the TiO2 coatings, trace levels of CO2 or N2 or CO2+N2 gas were introduced into the deposition chamber respectively. The properties of the deposited nano-coatings were determined using Spectroscopic Ellipsometry, SEM, AFM, Optical profilometry, XPS, Raman, X-ray diffraction UV-Vis spectroscopy and tri-electrode potentiostat measurements. Coating growth rate, structure, surface morphology and roughness were found to be significantly influenced by the types and amount of doping. Substitutional type of doping in all doped sample were confirmed by XPS. UV-vis measurement confirmed that doping (especially for C doped sample) facilitate photoactivity of sputtered deposited titania coating toward visible light by reducing bandgap. The photocurrent density (indirect indication of water splitting performance) of the C-doped photoanode was approximately 26% higher in comparison with un-doped photoanode. However, coating doped with nitrogen (N or N+C) does not exhibit good performance in the photoelectrochemical cell due to their higher charge recombination properties.

  8. Hydrothermal growth of highly monodispersed TiO2 nanoparticles: Functional properties and dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Navaneethan, M.; Nithiananth, S.; Abinaya, R.; Harish, S.; Archana, J.; Sudha, L.; Ponnusamy, S.; Muthamizhchelvan, C.; Ikeda, H.; Hayakawa, Y.

    2017-10-01

    Monodispersed anatase TiO2 nanoparticles were synthesized by hydrothermal method using citric acid as a capping agent. The effect of citric acid and the growth time on the formation of TiO2, functional properties and dye-sensitized solar cell performances were investigated. X-ray diffraction pattern (XRD) and Raman spectroscopy results revealed that the TiO2 nanoparticles possess the anatase phase. Transmission electron microscopy (TEM) measurement revealed the formation of spherical nanoparticles with monodispersity in size and morphology. An average size of 14 nm was obtained for the growth period of 15 h. The maximum efficiency (η) of dye-sensitized solar cell was achieved for TiO2 nanoparticles grown for 15 h as 7.66% which was higher than that of commercial P25 TiO2 (5.23%) and uncapped nanoparticles (3.68%).

  9. TiO2 nanoparticles and bulk material stimulate human peripheral blood mononuclear cells☆

    PubMed Central

    Becker, Kathrin; Schroecksnadel, Sebastian; Geisler, Simon; Carriere, Marie; Gostner, Johanna M.; Schennach, Harald; Herlin, Nathalie; Fuchs, Dietmar

    2014-01-01

    Nanomaterials are increasingly produced and used throughout recent years. Consequently the probability of exposure to nanoparticles has risen. Because of their small 1–100 nm size, the physicochemical properties of nanomaterials may differ from standard bulk materials and may pose a threat to human health. Only little is known about the effects of nanoparticles on the human immune system. In this study, we investigated the effects of TiO2 nanoparticles and bulk material in the in vitro model of human peripheral blood mononuclear cells (PBMC) and cytokine-induced neopterin formation and tryptophan breakdown was monitored. Both biochemical processes are closely related to the course of diseases like infections, atherogenesis and neurodegeneration. OCTi60 (25 nm diameter) TiO2 nanoparticles and bulk material increased neopterin production in unstimulated PBMC and stimulated cells significantly, the effects were stronger for OCTi60 compared to bulk material, while P25 TiO2 (25 nm diameter) nanoparticles had only little influence. No effect of TiO2 nanoparticles on tryptophan breakdown was detected in unstimulated cells, whereas in stimulated cells, IDO activity and IFN-γ production were suppressed but only at the highest concentrations tested. Because neopterin was stimulated and tryptophan breakdown was suppressed in parallel, data suggests that the total effect of particles would be strongly pro-inflammatory. PMID:24361406

  10. In Vitro Therapeutic Potential of Tio2 Nanoparticles Against Human Cervical Carcinoma Cells.

    PubMed

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Young, Jung A; Hoon, Hur Ji; Lee, Hannah; Lee, SooBin; Kim, Doo Hwan

    2016-06-01

    Cellular and physiological responses to the degradation products of titanium implants are key indicators to determine the quality of biocompatibility of implant devices. The present study investigated titanium dioxide (TiO2) nanoparticle-induced cytotoxicity, apoptotic morphological modification, and apoptotic-related gene expressions in the human cervical carcinoma cells. TiO2 nanoparticle-induced cytotoxicity on cancer cells was determined by the sulphorhodamine-B assay. Apoptotic morphological modification such as nuclear fragmentation, rounding, cytoplasm shrinkage, loss of adhesion, and reduced cell volume were observed by an inverted, fluorescence, and confocal laser scanning microscope (CLSM). The DNA fragmentation study showed the occurrence of necrosis and apoptosis in nanoparticle-treated cells. The qPCR study showed the increased p53 and bax mRNA expression in the nanoparticle-treated cells compared to control. In addition, caspase 3 activity was increased in nanoparticle-treated cells, which indicates the increased auto-catalysis. Taking all these data together, it may suggest that TiO2 nanoparticle could inhibit the growth of HeLa cells.

  11. Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation.

    PubMed

    Ahmed, M A; Abou-Gamra, Z M; Medien, H A A; Hamza, M A

    2017-11-01

    As known, porphyrins have central role in photosynthesis, biological oxidation and reduction and oxygen transport beside to their intensive color which qualify them to be good photosensitizers. Herein, tetra (4-carboxyphenyl) porphyrin (TCPP) was prepared by a simple one-pot synthesis to use as a visible antenna for TiO 2 nanoparticles that were prepared via a simple template-free sol-gel method. Various loading percentages of TCPP (0.05-1%) were incorporated on the surface of TiO 2 as photosensitizer for photocatalytic degradation of Rhodamine B (Rh B) dye as a primary cationic pollutant model. Among them, 0.1% TCPP-TiO 2 was the most reactive sample. It was found that the photoactivity of 0.1% TCPP-TiO 2 sample (0.5g/L) was approximately 1.5 times greater than that of pure TiO 2 (0.5g/L) toward the degradation of Rh B (1×10 -5 M) under UV-A irradiation. Transient fluorescence decay measurements showed that the life time of TiO 2 excited state has doubled after anchoring TCPP, thus the probability of electron-hole recombination has decreased. The samples were characterized by XRD, HR-TEM, DRS and N 2 adsorption-desorption isotherms. The XRD patterns confirmed the successful preparation of TiO 2 nanoparticles with average crystalline size of 25.7nm. Also, XRD patterns suggested the presence of mixed phase TiO 2 nanoparticles of 77% anatase and 23% rutile. DRS showed that the characteristic peaks of TCPP covered the whole visible range 400-700nm. HR-TEM images showed the spheroids shape of TiO 2 nanoparticles and confirmed the presence of anatase and rutile phases as suggested from XRD data. The different parameters affecting the photodegradation of Rh B dye such as catalyst dose, dye concentration and pH were studied to obtain the optimum conditions. Almost complete degradation of Rh B was obtained which confirmed by HPLC and TOC measurements. The effect of scavengers was studied to indicate the most active species. TCPP-TiO 2 gave a good response toward the

  12. Compressibility of porous TiO2 nanoparticle coating on paperboard

    PubMed Central

    2013-01-01

    Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross‒sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure. PACS 61.46.-w; 68.08.Bc; 81.07.-b PMID:24160373

  13. Effects of photocatalytic activity of metal and non-metal doped Tio2 for Hydrogen production enhancement - A Review

    NASA Astrophysics Data System (ADS)

    Nur Aqilah Sulaiman, Siti; Zaky Noh, Mohamad; Nadia Adnan, Nurul; Bidin, Noriah; Razak, Siti Noraiza Ab

    2018-05-01

    Titanium dioxide TiO2 is well-known materials that has become an efficient photocatalyst for environmental sustainability. Known as solar driven catalysis, TiO2 is considered as the most promising way to alleviate environmental issues caused by the combustion of fossil fuels and to meet worldwide demands for energy. Much effort has been concerned on TiO2 band gap modification to become a visible-light-activated photocatalysts of TiO2 because it can only be excited by UV light irradiation due to its large band gap. Modifications like metals and nonmetals doping has been proposed in the past decades. This reviews survey recent advanced preparation methods of doped-TiO2 including various types of doping methods for various types of dopants and provides general review on further modifications. The characterizations techniques used in order to determine the structural, morphological and optical properties of modified TiO2 is also discussed. Further, a new method of TiO2 modification is proposed in this mini review paper.

  14. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light.

    PubMed

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.

  15. Fe doped TiO2 nanofibers on the surface of graphene sheets for photovoltaics applications

    NASA Astrophysics Data System (ADS)

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Charpentier, Paul A.

    2011-08-01

    Highly ordered, visible light driven TiO2 nanowire arrays doped with Fe photocatalysts were grown on the surface of functionalized graphene sheets (FGSs) using a sol-gel method with titanium isopropoxide (TIP) monomer, acetic acid (HAc) as the polycondensation agent and iron chloride in the green solvent, supercritical carbon dioxide (scCO2). The morphology of the synthesized materials was studied by SEM and TEM, which showed uniform formation of Fe doped TiO2 nanofibers on the surface of graphene sheets, which acted as a template for nanowire growth through surface -COOH functionalities. Increasing Fe content in the nanowires did not change the morphology significantly. Optical properties of the synthesized composites were examined by UV spectroscopy which showed a significant reduction in band gap with increasing Fe content, i.e. 2.25 eV at 0.6% Fe. The enhancement of the optical properties of synthesized materials was confirmed by photocurrent measurement. The optimum sample containing 0.6% Fe doped TiO2 on the graphene sheets increased the power conversation efficiency by 6-fold in comparison to TiO2 alone.

  16. Synergistic effects of graphene quantum dot sensitization and nitrogen doping of ordered mesoporous TiO2 thin films for water splitting photocatalysis(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Islam, Syed Z.; Wanninayake, Namal; Reed, Allen D.; Kim, Doo-Young; Rankin, Stephen E.

    2016-10-01

    The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, we prepared ordered mesoporous TiO2 films co-modified by graphene quantum dot sensitization and nitrogen doping (GQD-N-TiO2) for hydrogen production from photoelectrochemical water splitting under visible light irradiation. First, cubic ordered mesoporous TiO2 films were prepared by a surfactant templated sol-gel method. Then, TiO2 films were treated with N2/Ar plasma for the incorporation of substitutional N atoms into the lattice of TiO2. GQDs were prepared by chemically oxidizing carbon nano-onions. The immobilization of GQDs was accomplished by reacting carboxyl groups of GQDs with amine groups of N-TiO2 developed by the prior immobilization of (3-aminopropyl)triethoxysilane (APTES). Successful immobilization of GQDs onto N-TiO2 was probed by UV-Vis, FT-IR, and scanning electron microscopy. Further, zeta potential and contact angle measurements showed enhanced surface charge and hydrophilicity, confirming the successful immobilization of GQDs. The GQD-N-TiO2, N-TiO2 and GQD-TiO2 films showed 400 times, 130 times and 8 times photocurrent enhancement, respectively, compared to TiO2 films for water splitting with a halogen bulb light source. This outstanding enhancement is attributed to the high surface area of mesoporous films and synergistic effects of nitrogen doping and GQD sensitization resulting in enhanced visible light absorption, efficient charge separation and transport.

  17. Removal of aqueous chromium and environmental CO2 by using photocatalytic TiO2 doped with tungsten.

    PubMed

    Trejo-Valdez, M; Hernández-Guzmán, S R; Manriquez-Ramírez, M E; Sobral, H; Martínez-Gutiérrez, H; Torres-Torres, C

    2018-05-15

    Removal of hexavalent chromium was accomplished by using photocatalyst materials of TiO 2 doped with tungsten oxide, environmental air as oxygen supply and white light as irradiation source. Dichromate anions in concentration ranges of 50 to 1000 μg/L were removed by means of aqueous dispersions of TiO 2 doped with tungsten. The aqueous chromium analyses were performed by Differential Pulse Voltammetry technique. Additionally, mineralization of CO 2 gas was promoted by the photocatalysis process, as was clearly shown by Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS) analyses obtained from the TiO 2 samples recovered after photocatalytic experiments. Results of sample analyses by Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM) are presented and discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  19. Influence of Zr doping on structure and morphology of TiO2 nanorods prepared using hydrothermal method

    NASA Astrophysics Data System (ADS)

    Muslimin, Masliana; Jumali, Mohammad Hafizuddin; Tee, Tan Sin; Beng, Lee Hock; Hui, Tan Chun; Chin, Yap Chi

    2018-04-01

    The aim of this work is to investigate the effect of Zr doping on TiO2 nanostructure. TiO2 nanorods thin films with different Zr-doping concentrations (6 × 10-3 M, 13 × 10-3 M and 25 × 10-3 M) were successfully prepared using a simple hydrothermal method. The structural and morphological properties of the samples were evaluated using XRD and FESEM respectively. The XRD results revealed that the TiO2 in all samples stabilized as rutile phase. The FESEM micrographs confirmed that TiO2 exist as square like nanorods with blunt tips. Although the crystallographic nature remains unchanged, the introduction of Zr has altered the surface density, structure and morphology of TiO2 which subsequently will have significant effect on its properties.

  20. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation

    NASA Astrophysics Data System (ADS)

    Dong, Zhenbiao; Ding, Dongyan; Li, Ting; Ning, Congqin

    2018-04-01

    Photoelectrochemical (PEC) water splitting based doping modified one dimensional (1D) titanium dioxide (TiO2) nanostructures provide an efficient method for hydrogen generation. Here we first successfully fabricated 1D Si-doped TiO2 (Ti-Si-O) nanotube arrays through anodizing Ti-Si alloys with different Si amount, and reported the PEC properties for water splitting. The Ti-Si-O nanotube arrays fabricated on Ti-5 wt.% Si alloy and annealed at 600 °C possess higher PEC activity, yielding a higher photocurrent density of 0.83 mA/cm2 at 0 V vs. Ag/AgCl. The maximum photoconversion efficiency was 0.54%, which was 2.7 times the photoconversion efficiency of undoped TiO2.

  1. Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Guo, Jiaqi; Yan, Ting; Han, Yong

    2018-03-01

    In order to enhance skin integration and antibacterial activity of Ti percutaneous implants, microporous TiO2 coatings co-doped with different doses of Cu2+ and Zn2+ were directly fabricated on Ti via micro-arc oxidation (MAO). The structures of coatings were investigated; the behaviors of fibroblasts (L-929) as well as the response of Staphylococcus aureus (S. aureus) were evaluated. During the MAO process, a large number of micro-arc discharges forming on Ti performed as penetrating channels; O2-, Ca2+, Zn2+, Cu2+ and PO43- delivered via the channels, giving rise to the formation of doped TiO2. Surface characteristics including phase component, topography, surface roughness and wettability were almost the same for different coatings, whereas, the amount of Cu doped in TiO2 decreased with the increased Zn amount. Compared with Cu single-doped TiO2 (0.77 Wt% Cu), the co-doped with appropriate amounts of Cu and Zn, for example, 0.55 Wt% Cu and 2.53 Wt% Zn, further improved proliferation of L-929, facilitated fibroblasts to switch to fibrotic phenotype, and enhanced synthesis of collagen I as well as the extracellular collagen secretion; the antibacterial properties including contact-killing and release-killing were also enhanced. By analyzing the relationship of Cu/Zn amount in TiO2 and the behaviors of L-929 and S. aureus, it can be deduced that when the doped Zn is in a low dose (<1.79 Wt%), the behaviors of L-929 and S. aureus are sensitive to the reduced amount of Cu2+, whereas, Zn2+ plays a key role in accelerating fibroblast functions and reducing S. aureus when its dose obviously increases from 2.63 to 6.47 Wt%.

  2. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna.

    PubMed

    Hartmann, Nanna B; Legros, Samuel; Von der Kammer, Frank; Hofmann, Thilo; Baun, Anders

    2012-08-15

    The use of engineered nanoparticles (e.g. in industrial applications and consumer products) is increasing. Consequently, these particles will be released into the aquatic environment. Through aggregation/agglomeration and sedimentation, sediments are expected ultimately to be sinks for nanoparticles. Both in the water phase and in the sediments engineered nanoparticles will mix and interact with other environmental pollutants, including metals. In this study the toxicity of cadmium to two freshwater organisms, water column crustacean Daphnia magna and sediment oligochaete Lumbriculus variegatus, was investigated both in the absence and presence of titanium dioxide (TiO(2)) nanoparticles (P25 Evonic Degussa, d: 30 nm). The uptake of cadmium in sub-lethal concentrations was also studied in the absence and presence of 2 mg/L TiO(2) nanoparticles. Formation of larger nanoparticles aggregates/agglomerates was observed and sizes varied depending on media composition (358±13 nm in US EPA moderately hard synthetic freshwater and 1218±7 nm in Elendt M7). TiO(2) nanoparticles are potential carriers for cadmium and it was found that 25% and 6% of the total cadmium mass in the test system for L. variegatus and D. magna tests were associated to suspended TiO(2) particles, respectively. μXRF (micro X-ray fluorescence) analysis confirmed the uptake of TiO(2) in the gut of D. magna. For L. variegatus μXRF analysis indicated attachment of TiO(2) nanoparticles to the organism surface as well as a discrete distribution within the organisms. Though exact localisation in this organism was more difficult to assess, the uptake seems to be within the coelomic cavity. Results show that the overall body burden and toxicity of cadmium to L. variegatus was unchanged by addition of TiO(2) nanoparticles, showing that cadmium adsorption to TiO(2) nanoparticles did not affect overall bioavailability. Despite facilitated uptake of cadmium by TiO(2) nanoparticles in D. magna, resulting in

  3. In situ synthesis of TiO2(B) nanotube/nanoparticle composite anode materials for lithium ion batteries.

    PubMed

    Liu, Xiang; Sun, Qian; Ng, Alan M C; Djurišić, Aleksandra B; Xie, Maohai; Liao, Changzhong; Shih, Kaimin; Vranješ, Mila; Nedeljković, Jovan M; Deng, Zhaofeng

    2015-10-23

    Titania nanotubes were prepared by a simple hydrothermal route. Their electrochemical performance has been examined in detail and compared to TiO2(B) nanoparticles, TiO2 anatase and P25 titania nanoparticles. The cycling and rate performance of TiO2 nanotubes is superior to both types of nanoparticles, and it can be further improved by an in situ titanium precursor treatment, which results in the formation of TiO2 nanoparticles on/between the nanotubes. The obtained specific capacity after 200 cycles at 0.2 A g(-1) charge/discharge rate remained above 130 mAh g(-1). The enhanced lithium storage properties of these samples can be attributed to their unique morphology and crystal structure.

  4. Delicate Ag/V2O5/TiO2 ternary nanostructures as a high-performance photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Dong; Zheng, Ya-Lun; Feng, Yu-Jie; Sun, Ke-Ning

    2018-02-01

    Here we report, for the first time, delicate ternary nanostructures consisting of TiO2 nanoplatelets co-doped with Ag and V2O5 nanoparticles. The relationship between the composition and the morphology is systematically studied. We find a remarkable synergistic effect among the three components, and the resulting delicate Ag/V2O5/TiO2 ternary nanostructures exhibit a superior photocatalytic performance over neat TiO2 nanoplatelets as well as Ag/TiO2 and V2O5/TiO2 binary nanostructures for the degradation of methyl orange. We believe our delicate Ag/V2O5/TiO2 ternary nanostructures may lay a basis for developing next-generating, high-performance composite photocatalysts.

  5. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tay, See Leng; Gao, Wei

    2014-01-01

    Copper (Cu) containing coatings can provide sustainable protection against microbial contamination. However, metallic Cu coatings have not been widely used due to the relatively high cost, poor corrosion resistance, and low compatibility with non-metal substrates. Titanium dioxide (TiO2) possesses antibacterial functions by its photocatalytic properties which can destroy bacteria or suppress their reproduction. TiO2 also has the function of improving the mechanical properties through particle dispersion strengthening. We have recently developed an innovative polymer based coating system containing fine particles of Cu and TiO2 nanoparticles. These polymer based coatings simultaneously display excellent antimicrobial and good mechanical properties. The results showed that the addition of TiO2 has improved the antimicrobial property under sunlight, which provides extended applications in outdoor environment. The elimination of 106 bacterial by contacting the coatings without TiO2 needs 5 h, while contacting with the Cu/TiO2- 1 wt.% TiO2 took only 2 h to kill the same amount of bacteria. The coatings also presented enhanced hardness and wear resistance after adding TiO2. The width of wear track decreased from 270 μm of the Cu-polymer coating to 206 μm of Cu/TiO2-polymer coatings with 10 wt.% TiO2. Synchrotron Infrared Microscopy was used to in-situ and in-vivo study the bacteria killing process at the molecular level. The real-time chemical images of bacterial activities showed that the bacterial cell membranes were damaged by the Cu and TiO2 containing coatings

  6. Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity

    PubMed Central

    Li, Ye; Qin, Zhenping; Guo, Hongxia; Yang, Hanxiao; Zhang, Guojun; Ji, Shulan; Zeng, Tingying

    2014-01-01

    In this work, the positively or negatively charged anatase TiO2 nanoparticles were synthesized via a low temperature precipitation-peptization process (LTPPP) in the presence of poly(ethyleneimine) (PEI) and poly(sodium4- styrenesulfonate) (PSS). X-ray diffraction (XRD) pattern and high-resolution transmission electron microscope (HRTEM) confirmed the anatase crystalline phase. The charges of the prepared TiO2, PEI-TiO2 and PSS-TiO2 nanoparticles were investigated by zeta potentials. The results showed that the zeta potentials of PEI-TiO2 nanoparticles can be tuned from +39.47 mV to +95.46 mV, and that of PSS-TiO2 nanoparticles can be adjusted from −56.63 mV to −119.32 mV. In comparison with TiO2, PSS-TiO2 exhibited dramatic adsorption and degradation of dye molecules, while the PEI modified TiO2 nanoparticles showed lower photocatalytic activity. The photocatalytic performances of these charged nanoparticles were elucidated by the results of UV-vis diffuse reflectance spectra (DRS) and the photoluminescence (PL) spectra, which indicated that the PSS-TiO2 nanoparticles showed a lower recombination rate of electron-hole pairs than TiO2 and PEI-TiO2. PMID:25506839

  7. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites

    PubMed Central

    Huyen, Duong Ngoc; Tung, Nguyen Trong; Thien, Nguyen Duc; Thanh, Le Hai

    2011-01-01

    A nanocomposite of titanium dioxide (TiO2) and polyaniline (PANi) was synthesized by in-situ chemical polymerization using aniline (ANi) monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules. PMID:22319389

  8. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae.

    PubMed

    Zhang, Shuai; Deng, Rui; Lin, Daohui; Wu, Fengchang

    Engineered nanoparticles are increasingly discharged into the environment. After discharge, these nanoparticles can interact with co-existing organic contaminants, resulting in a phenomena referred to as 'joint toxicity'. This study evaluated joint toxicities of TiO 2 nanoparticles (TiO 2 NPs) with four different (atrazine, hexachlorobenzene, pentachlorobenzene, and 3,3',4,4'-tetrachlorobiphenyl) organochlorine contaminants (OCs) toward algae (Chlorella pyrenoidosa). The potential mechanisms underlying the joint toxicity were discussed, including TiO 2 NPs-OC interactions, effects of TiO 2 NPs and OCs on biophysicochemical properties of algae and effects of TiO 2 NPs and OCs on each other's bioaccumulation in algae. The results indicate that coexposure led to a synergistic effect on the joint toxicity for TiO 2 NPs-atrazine, antagonistic effect for TiO 2 NPs-hexachlorobenzene and TiO 2 NPs-3,3',4,4'-tetrachlorobiphenyl, and an additive effect for TiO 2 NPs-pentachlorobenzene. There was nearly no adsorption of OCs by TiO 2 NPs, and the physicochemical properties of TiO 2 NPs were largely unaltered by the presence of OCs. However, both OCs and NPs affected the biophysicochemical properties of algal cells and thereby influenced the cell surface binding and/or internalization. TiO 2 NPs significantly increased the bioaccumulation of each OC. However, with the exception of atrazine, the bioaccumulation of TiO 2 NPs decreased when used with each OC. The distinct joint toxicity outcomes were a result of the balance between the increased toxicities of OCs (increased bioaccumulations) and the altered toxicity of TiO 2 NPs (bioaccumulation can either increase or decrease). These results can significantly improve our understanding of the potential environmental risks associated with NPs.

  9. Evaluation of the content of TiO2 nanoparticles in the coatings of chewing gums.

    PubMed

    Dudefoi, William; Terrisse, Hélène; Popa, Aurelian Florin; Gautron, Eric; Humbert, Bernard; Ropers, Marie-Hélène

    2018-02-01

    Titanium dioxide is a metal oxide used as a white pigment in many food categories, including confectionery. Due to differences in the mass fraction of nanoparticles contained in TiO 2 , the estimated intakes of TiO 2 nanoparticles differ by a factor of 10 in the literature. To resolve this problem, a better estimation of the mass of nanoparticles present in food products is needed. In this study, we focused our efforts on chewing gum, which is one of the food products contributing most to the intake of TiO 2 . The coatings of four kinds of chewing gum, where the presence of TiO 2 was confirmed by Raman spectroscopy, were extracted in aqueous phases. The extracts were analysed by transmission electron microscopy (TEM), X-ray diffraction, Fourier Transform Raman spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP-AES) to establish their chemical composition, crystallinity and size distribution. The coatings of the four chewing gums differ chemically from each other, and more specifically the amount of TiO 2 varies from one coating to another. TiO 2 particles constitute the entire coating of some chewing gums, whereas for others, TiO 2 particles are embedded in an organic matrix and/or mixed with minerals like calcium carbonate, talc, or magnesium silicate. We found 1.1 ± 0.3 to 17.3 ± 0.9 mg TiO 2 particles per piece of chewing gum, with a mean diameter of 135 ± 42 nm. TiO 2 nanoparticles account for 19 ± 4% of all particles, which represents a mass fraction of 4.2 ± 0.1% on average. The intake of nanoparticles is thus highly dependent on the kind of chewing gum, with an estimated range extending from 0.04 ± 0.01 to 0.81 ± 0.04 mg of nano-TiO 2 per piece of chewing gum. These data should serve to refine the exposure scenario.

  10. Preparation of K-doped TiO2 nanostructures by wet corrosion and their sunlight-driven photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Shin, Eunhye; Jin, Saera; Kim, Jiyoon; Chang, Sung-Jin; Jun, Byung-Hyuk; Park, Kwang-Won; Hong, Jongin

    2016-08-01

    K-doped TiO2 nanowire networks were prepared by the corrosion reaction of Ti nanoparticles in an alkaline (potassium hydroxide: KOH) solution. The prepared nanostructures were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and photoluminescence (PL) spectra. Their sunlight-driven photocatalytic activity was also investigated with differently charged dye molecules, such as methylene blue, rhodamine B and methyl orange. The adsorption of the dye molecules on the photocatalyst surface would play a critical role in their selective photodegradation under sunlight illumination.

  11. Effect of N, S Co-doped TiO2 concentration on photocatalytic degradation of phenol

    NASA Astrophysics Data System (ADS)

    Yunus, Nur Najwa; Hamzah, Fazlena; So'aib, Mohamad Sufian; Krishnan, Jagannathan

    2017-12-01

    The effect of N, S Co-doped TiO2 concentration on photocatalytic degradation of phenol was investigated. The photocatalyst were prepared using sol-gel method with different concentration of dopant ranging from 0.5% to 1.0%. The precursor of titania was Titanium (IV) isopropoxide (TTIP) while the sources of nitrogen and sulfur were ammonium nitrate and thiourea respectively. The precursors were mixed to obtain a gel. The gel was dried, ground and calcined at 600 °C. The characterization of the photocatalyst using XRD showed the presence of anatase phase only and dopant concentration of 1.0% had the smallest size of crystallite which is 24 nm. The performance of the photocatalyst was tested under visible light for five hours of irradiation time. The highest degradation efficiency of phenol was at 81.8% by dopant concentration of 1.0%.

  12. Gas-sensing performances of Cd-doped ZnO nanoparticles synthesized by a surfactant-mediated method for n-butanol gas

    NASA Astrophysics Data System (ADS)

    Zhao, Rongjun; Li, Kejin; Wang, Zhezhe; Xing, Xinxin; Wang, Yude

    2018-01-01

    Zinc oxide nanoparticles with the different Cd doping contents were prepared by with a surfactant-mediated method in this paper. The effects of Cd doping on the gas sensing properties of the ZnO nanoparticles were studied. The morphology and microstructure of as-prepared samples were characterized by X-ray diffraction (XRD); scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), respectively. The results reveal that all the products are the high crystalline hexagonal wurtzite ZnO crystal structure. The gas-sensing characteristics of the Cd doped ZnO nanoparticles for volatile organic compounds (VOCs) were investigated. At its optimal operation temperature of 300 °C, the sensing properties of the Cd doped ZnO nanoparticles for n-butanol gas exhibit a high-performance gas sensing performances including high gas response, good selectivity, response/recovery time, and repeatability as well as stability. Especially, its response reaches 130 for 100 ppm n-butanol of ZnO nanoparticles with 2.5% Cd doping. Those values demonstrate the potential of using as-prepared Cd doped ZnO nanoparticles for n-butanol gas detection, making them to be promising candidates for practical detectors to n-butanol gas. Apart from these, the mechanism related to the advanced properties was also investigated and presented.

  13. Photocatalytic performance of Cu-doped TiO2 nanofibers treated by the hydrothermal synthesis and air-thermal treatment

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Wu, Po-Yeh; Lin, Ting-Han; Lin, Tz-Feng

    2018-02-01

    Series of transition metal-doped TiO2 (metal/TiO2) is prepared by combining the hydrothermal synthesis and air-thermal treatment without any reduction process. The selected transition metal precursors, including Ag, Au, Co, Cr, Cu, Fe, Ni, Pd, Pt, Y, and Zn, were individually doped into TiO2 nanofibers to evaluate the photocatalytic degradation activity and photocatalytic hydrogen generation. Consider the photocatalytic performance of these synthesized metal/TiO2 under UV-A irradiation, copper doped TiO2 nanofibers (Cu/TiO2 NFs) was chosen for further study due to its extraordinary reactivity. Systematical studies were spread to optimize the doping concentration and the calcination condition for much higher photocatalytic activity Cu/TiO2 NFs. In the photocatalytic degradation test, 0.5 mol%-Cu/TiO2 NFs calcined at 650 °C exhibits the highest activity, which is even higher than commercial TiO2-AEROXIDE® TiO2 P25 under UV-A irradiation. The synthesized 0.5 mol%-Cu/TiO2-650 NFs also have the capability in the photocatalytic hydrogen production. The hydrogen evolution rates are 200 μmol/g·h under UV-A irradiation and 280 μmol/g·h under UV-B irradiation. The density of state calculated by CASTEP for Cu/TiO2 indicates that Cu doping contributes to the states near valence band edge and narrows the band gap. The disclosed process in this study is industrial safe, convenient and cost-effective. We further produce a significant amount of TiO2-based catalysts without any hydrogen reduction treatment.

  14. Dye surface coating enables visible light activation of TiO2 nanoparticles leading to degradation of neighboring biological structures.

    PubMed

    Blatnik, Jay; Luebke, Lanette; Simonet, Stephanie; Nelson, Megan; Price, Race; Leek, Rachael; Zeng, Leyong; Wu, Aiguo; Brown, Eric

    2012-02-01

    Biologically and chemically modified nanoparticles are gaining much attention as a new tool in cancer detection and treatment. Herein, we demonstrate that an alizarin red S (ARS) dye coating on TiO2 nanoparticles enables visible light activation of the nanoparticles leading to degradation of neighboring biological structures through localized production of reactive oxygen species. Successful coating of nanoparticles with dye is demonstrated through sedimentation, spectrophotometry, and gel electrophoresis techniques. Using gel electrophoresis, we demonstrate that visible light activation of dye-TiO2 nanoparticles leads to degradation of plasmid DNA in vitro. Alterations in integrity and distribution of nuclear membrane associated proteins were detected via fluorescence confocal microscopy in HeLa cells exposed to perinuclear localized ARS-TiO2 nanoparticles that were photoactivated with visible light. This study expands upon previous studies that indicated dye coatings on TiO2 nanoparticles can serve to enhance imaging, by clearly showing that dye coatings on TiO2 nanoparticles can also enhance the photoreactivity of TiO2 nanoparticles by allowing visible light activation. The findings of our study suggest a therapeutic application of dye-coated TiO2 nanoparticles in cancer research; however, at the same time they may reveal limitations on the use of dye assisted visualization of TiO2 nanoparticles in live-cell imaging.

  15. Gilded nanoparticles for plasmonically enhanced fluorescence in TiO2:Sm3+ sol-gel films

    PubMed Central

    2014-01-01

    Abstract Silica-gold core-shell nanoparticles were used for plasmonic enhancement of rare earth fluorescence in sol-gel-derived TiO2:Sm3+ films. Local enhancement of Sm3+ fluorescence in the vicinity of separate gilded nanoparticles was revealed by a combination of dark field microscopy and fluorescence spectroscopy techniques. An intensity enhancement of Sm3+ fluorescence varies from 2.5 to 10 times depending on the used direct (visible) or indirect (ultraviolet) excitations. Analysis of fluorescence lifetimes suggests that the locally stronger fluorescence occurs because of higher plasmon-coupled direct absorption of exciting light by the Sm3+ ions or due to plasmon-assisted non-radiative energy transfer from the excitons of TiO2 host to the rare earth ions. PACS 78; 78.67.-n; 78.67.Bf PMID:24666921

  16. Gilded nanoparticles for plasmonically enhanced fluorescence in TiO2:Sm3+ sol-gel films.

    PubMed

    Pikker, Siim; Dolgov, Leonid; Heinsalu, Siim; Mamykin, Sergii; Kiisk, Valter; Kopanchuk, Sergei; Lõhmus, Rünno; Sildos, Ilmo

    2014-03-25

    Silica-gold core-shell nanoparticles were used for plasmonic enhancement of rare earth fluorescence in sol-gel-derived TiO2:Sm3+ films. Local enhancement of Sm3+ fluorescence in the vicinity of separate gilded nanoparticles was revealed by a combination of dark field microscopy and fluorescence spectroscopy techniques. An intensity enhancement of Sm3+ fluorescence varies from 2.5 to 10 times depending on the used direct (visible) or indirect (ultraviolet) excitations. Analysis of fluorescence lifetimes suggests that the locally stronger fluorescence occurs because of higher plasmon-coupled direct absorption of exciting light by the Sm3+ ions or due to plasmon-assisted non-radiative energy transfer from the excitons of TiO2 host to the rare earth ions. 78; 78.67.-n; 78.67.Bf.

  17. C/TiO{sub 2} nanohybrids co-doped by N and their enhanced photocatalytic ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming Hai; Huang Hui; Pan Keming

    2012-08-15

    N-doping carbon-TiO{sub 2} nanohybrids (NCTs, nitrogen not only in situ doped carbon film but also doped TiO{sub 2} nanocrystals, and 5-10 nm TiO{sub 2} nanocrystals evenly dispersed on N-doping carbon film) have been successfully prepared by a mild, one-step approach. N-O-Ti chemical bonds between N-Carbon film and N-TiO{sub 2} nanoparticles were formed, and here, N-Carbon can not only sensitize and modify TiO{sub 2} nanocrystals surface, but also N can dope in the TiO{sub 2} nanocrystals. The as-prepared NCTs were investigated by X-ray photoelectron spectroscopy, TEM, FT-IR, electrochemistry method. It was demonstrated that the as-obtained NCTs have a large BET specificmore » surface area of 279.43 m{sup 2}/g. The NCTs show excellent photocatalytic abilities towards organic (Rhodamine B) and inorganic pollutant (K{sub 2}Cr{sub 2}O{sub 7}) degradation under visible light irradiation. This work provided a new approach for the high performance catalyst design towards new energy sources and environmental issues. - Graphical abstract: C/TiO{sub 2} nanohybrids co-doped by N with excellent photocatalytic performance were prepared. Highlights: Black-Right-Pointing-Pointer C/TiO{sub 2} nanohybrids (NCTs) co-doped by nitrogen (N) were prepared. Black-Right-Pointing-Pointer N was not only in situ doped in carbon film but also doped in TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer N-O-Ti chemical bonds were formed between C film and TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer NCTs exhibited excellent visible-light photocatalytic performance.« less

  18. Concise N-doped Carbon Nanosheets/Vanadium Nitride Nanoparticles Materials via Intercalative Polymerization for Supercapacitors.

    PubMed

    Tan, Yongtao; Liu, Ying; Tang, Zhenghua; Wang, Zhe; Kong, Lingbin; Kang, Long; Liu, Zhen; Ran, Fen

    2018-02-13

    N-doped carbon nanosheets/vanadium nitride nanoparticles (N-CNS/VNNPs) are synthesized via a novel method combining surface-initiated in-situ intercalative polymerization and thermal-treatment process in NH 3 /N 2 atmosphere. The pH value of the synthesis system plays a critical role in constructing the structure and enhancing electrochemical performance for N-CNS/VNNPs, which are characterized by SEM, TEM, XRD, and XPS, and measured by electrochemical station, respectively. The results show that N-CNS/VNNPs materials consist of 2D N-doped carbon nanosheets and 0D VN nanoparticles. With the pH value decreasing from 2 to 0, the sizes of both carbon nanosheets and VN nanoparticles decreased to smaller in nanoscale. The maximum specific capacitance of 280 F g -1 at the current density of 1 A g -1 for N-CNS/VNNPs is achieved in three-electrode configuration. The asymmetric energy device of Ni(OH) 2 ||N-CNS/VNNPs offers a specific capacitance of 89.6 F g -1 and retention of 60% at 2.7 A g -1 after 5000 cycles. The maximum energy density of Ni(OH) 2 ||N-CNS/VNNPs asymmetric energy device is as high as 29.5 Wh kg -1 .

  19. Preparation and photocatalytic properties of nanometer-sized magnetic TiO2/SiO2/CoFe2O4 composites.

    PubMed

    Li, Hansheng; Zhang, Yaping; Wu, Qin; Wang, Xitao; Liu, Changhao

    2011-11-01

    Magnetic TiO2/SiO2/CoFe2O4 nanoparticles (TiO2/SCFs) were prepared by a sol-gel process in a reverse microemulsion combined with solvent-thermal technique. TiO2/SCFs were characterized by Fourier transform infrared spectrometry, thermogravimetric analysis-differential scanning calorimetry, X-ray diffraction, Raman spectrometry, TEM, BET specific surface area measurement, and magnetic analysis. Structure analyses indicated that TiO2/SCFs presented a core-shell structure with TiO2 uniformly coating on SiO2/CoFe2O4 nanomagnets (SCFs) and typical ferromagnetic hysteresis. TiO2/SCFs showed larger specific surface area and better photocatalytic activities than TiO2 and TiO2/CoFe2O4 photocatalysts prepared by the same method. The doping interaction between TiO2 and CoFe2O4 reduced thanks to the inert SiO2 mesosphere.

  20. Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles

    PubMed Central

    Schanen, Brian C.; Das, Soumen; Reilly, Christopher M.; Warren, William L.; Self, William T.; Seal, Sudipta; Drake, Donald R.

    2013-01-01

    Immunomodulation by nanoparticles, especially as related to the biochemical properties of these unique materials, has scarcely been explored. In an in vitro model of human immunity, we demonstrate two catalytic nanoparticles, TiO2 (oxidant) and CeO2 (antioxidant), have nearly opposite effects on human dendritic cells and T helper (TH) cells. For example, whereas TiO2 nanoparticles potentiated DC maturation that led towards TH1-biased responses, treatment with antioxidant CeO2 nanoparticles induced APCs to secrete the anti-inflammatory cytokine, IL-10, and induce a TH2-dominated T cell profile. In subsequent studies, we demonstrate these results are likely explained by the disparate capacities of the nanoparticles to modulate ROS, since TiO2, but not CeO2 NPs, induced inflammatory responses through an ROS/inflammasome/IL-1β pathway. This novel capacity of metallic NPs to regulate innate and adaptive immunity in profoundly different directions via their ability to modulate dendritic cell function has strong implications for human health since unintentional exposure to these materials is common in modern societies. PMID:23667525

  1. Characterization of the thin layer photocatalysts TiO2 and V2O5- and Fe2O3- doped TiO2 prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Nguyen, Quoc Tuan; Thoang Ho, Si; Nguyen, Tri

    2013-09-01

    The catalysts TiO2 and TiO2 doped with Fe and V were prepared using the sol-gel method. TiO2-modified samples were obtained in the form of a thick film on pyrex glass sticks and tubes and were used as catalysts in the gas phase photo-oxidation of p-xylene. The physico-chemical characteristics of the catalysts were determined using the methods of Brunauer-Emmett-Teller adsorption, x-ray diffraction, and infrared, ultraviolet and visible and Raman spectroscopies. The experimental results show that the introduction of V did not expand the region of light absorption, but slightly reduced the size of the TiO2 particles, and reduced the number of OH-groups, which should decrease the photocatalytic activity and efficiency of the obtained catalysts compared to those of pure TiO2. The Fe-doped TiO2 samples, in contrast, are characterized by an extension of the spectrum of photon absorption to the visible region with wavenumbers λ up to 464 nm and the values of their band gap energy decreased to lower quantities (up to 2.67 eV), therefore they should have higher catalytic activity and conversion efficiency of p-xylene in the visible region than the original sample. For these catalysts, a combined utilization of radiation by ultraviolet (λ = 365 nm) and visible (λ = 470 nm) light increased the activity and the yield in p-xylene conversion by a factor of around 2-3, as well as making these quantities more stable in comparison with those of TiO2-P25 Degussa.

  2. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    PubMed

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).

  3. Acidic Peptizing Agent Effect on Anatase-Rutile Ratio and Photocatalytic Performance of TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoud, Hatem A.; Narasimharao, Katabathini; Ali, Tarek T.; Khalil, Kamal M. S.

    2018-02-01

    TiO2 nanoparticles were synthesized from titanium isopropoxide by a simple peptization method using sulfuric, nitric, and acetic acids. The effect of peptizing acid on physicochemical and photocatalytic properties of TiO2 powders was studied. The structural properties of synthesized TiO2 powders were analyzed by using XRD, TEM, N2-physisorption, Raman, DR UV- vis, FTIR, and X-ray photoelectron spectroscopy techniques. The characterization results showed that acetic acid peptization facilitated the formation of pure anatase phase after thermal treatment at 500 °C; in contrast, nitric acid peptization led to a major rutile phase formation (67%). Interestingly, the sample peptized using sulfuric acid yielded 95% anatase and 5% rutile phases. The photocatalytic activity of synthesized TiO2 nanoparticles was evaluated for degradation of selected organic dyes (crystal violet, methylene blue, and p-nitrophenol) in aqueous solution. The results confirmed that the TiO2 sample peptized using nitric acid (with rutile and anatase phases in 3:1 ratio) offered the highest activity for degradation of organic dyes, although, TiO2 samples peptized using sulfuric acid and acetic acid possessed smaller particle size, higher band gap energy, and high surface area. Interestingly, TiO2 sample peptized with nitric acid possessed relatively high theoretical photocurrent density (0.545 mAcm-2) and pore diameter (150 Å), which are responsible for high electron-hole separation efficiency and diffusion and mass transportation of organic reactants during the photochemical degradation process. The superior activity of TiO2 sample peptized with nitric acid is due to the effective transfer of photogenerated electrons between rutile and anatase phases.

  4. Degradation of selected industrial dyes using Mg-doped TiO2 polyscales under natural sun light as an alternative driving energy

    NASA Astrophysics Data System (ADS)

    Shivaraju, H. P.; Midhun, G.; Anil Kumar, K. M.; Pallavi, S.; Pallavi, N.; Behzad, Shahmoradi

    2017-11-01

    Designing photocatalytic materials with modified functionalities for the utilization of renewable energy sources as an alternative driving energy has attracted much attention in the area of sustainable wastewater treatment applications. Catalyst-assisted advanced oxidation process is an emerging treatment technology for organic pollutants and toxicants in industrial wastewater. Preparation of visible-light-responsive photocatalyst such as Mg-doped TiO2 polyscales was carried out under mild sol-gel technique. Mg-doped TiO2 polyscales were characterized by powder XRD, SEM, FTIR, and optical and photocatalytic activity techniques. The Mg-doped TiO2 showed a mixed phase of anatase and rutile with an excellent crystallinity, structural elucidations, polyscales morphology, consequent shifting of bandgap energy and adequate photocatalytic activities under visible range of light. Mg-doped TiO2 polyscales were investigated for their efficiencies in the degradation of most commonly used industrial dyes in the real-time textile wastewater. Mg-doped TiO2 polyscales showed excellent photocatalytic degradation efficiency in both model industrial dyes (65-95%) and textile wastewater (92%) under natural sunlight as an alternative and renewable driving energy.

  5. Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: Highly efficient visible-light-driven composite photocatalysts for environmental remediation.

    PubMed

    Jo, Wan-Kuen; Kim, Yeong-Gyeong; Tonda, Surendar

    2018-05-22

    Herein, highly efficient composite photocatalysts comprising black Cu-doped TiO 2 nanoparticles (BCT) encapsulated within hierarchical flower-like NiAl-layered double hydroxide (LDH) microspheres were fabricated via a one-step hydrothermal route. Cu-doping and subsequent reduction treatment led to extended visible-light absorption of TiO 2 in the resulting composites, as confirmed by ultraviolet-visible diffuse reflectance spectral analysis. Moreover, thorough investigations confirmed the strong interactions between LDH and BCT in the resulting BCT/LDH composites. Notably, the BCT/LDH composites exhibited remarkable performance in the degradation of hazardous materials (methyl orange and isoniazid), superior to that of the individual components, reference P25, and P25/LDH under visible-light irradiation. Moreover, the BCT/LDH composite containing 30 wt% of BCT displayed the highest photocatalytic performance among the synthesized photocatalysts and also exhibited high stability during recycling tests with no obvious change in the activity. The superior photodegradation activity of the BCT/LDH composites was primarily attributed to efficient transfer and separation of the photoinduced charge carriers, resulting from the intimate contact interfaces between LDH and BCT. This approach represents a promising route for the rational design of highly efficient and visible-light-active LDH-based composite photocatalysts for application in energy harvesting and environmental protection. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Nanostructured Gd3+-TiO2 surfaces for self-cleaning application

    NASA Astrophysics Data System (ADS)

    Saif, M.; El-Molla, S. A.; Aboul-Fotouh, S. M. K.; Ibrahim, M. M.; Ismail, L. F. M.; Dahn, Douglas C.

    2014-06-01

    Preparation of self-cleaning surfaces based on lanthanide modified titanium dioxide nanoparticles has rarely been reported. In the present work, gadolinium doped titanium dioxide thin films (x mol Gd3+-TiO2 where x = 0.000, 0.005, 0.008, 0.010, 0.020 and 0.030 mol) were synthesized by sol-gel method and deposited using doctor-blade method. These films were characterized by studying their structural, optical and electrical properties. Doping with gadolinium decreases the band gap energy and increase conductivity of thin films. The photo self-cleaning activity in term of quantitative determination of the active oxidative species (rad OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results show that, the highly active thin film is the 0.020 Gd3+-TiO2. The structural, morphology, optical, electrical and photoactivity properties of Gd3+-TiO2 thin films make it promising surfaces for self-cleaning application. Mineralization of commercial textile dye (Remazol Red RB-133, RR) and durability using 0.020Gd3+-TiO2 film surface was studied.

  7. Preparation of anatase TiO2 nanoparticles using low hydrothermal temperature for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Sofyan, N.; Ridhova, A.; Yuwono, A. H.; Udhiarto, A.

    2018-03-01

    One device being developed as an alternative source of renewable energy by utilizing solar energy source is dye-sensitized solar cells (DSSC). This device works using simple photosynthetic-electrochemical principle in the molecular level. In this device, the inorganic oxide semiconductor of titanium dioxide (TiO2) has a great potential for the absorption of the photon energy from the solar energy source, especially in the form of TiO2 nanoparticle structure. This nanoparticle structure is expected to improve the performance of DSSC because the surface area to weight ratio of this nanostructures is very large. In this study, the synthesis of TiO2 nanoparticle from its precursors has been performed along with the fabrication of the DSSC device. Effort to improve the size of nanocrystalline anatase TiO2 was accomplished by low hydrothermal treatment at various temperatures whereas the crystallinity of the anatase phase in the structure was performed by calcination process. Characterization of the materials was performed using X-ray Diffraction (XRD) and scanning electron microscope (SEM), while the DSSC performance was examined through a high precision current versus voltage (I-V) curve analyzer. The results showed that pure anatase TiO2 nanoparticles could be obtained at low hydrothermal of 100, 125, and 150 °C followed by calcination at 450 °C. The best performance of photocurrent-voltage characteristic was given by TiO2 hydrothermally synthesized at 150 °C with power conversion efficiency (PCE) of 4.40 %, whereas the standard TiO2 nanoparticles has PCE only 4.02 %. This result is very promising in terms low temperature and thus low cost of anatase TiO2 semiconductor preparation for DSSC application.

  8. Effect of Surface-Modified TiO2 Nanoparticles on the Anti-Ultraviolet Aging Performance of Foamed Wheat Straw Fiber/Polypropylene Composites

    PubMed Central

    Xuan, Lihui; Han, Guangping; Wang, Dong; Cheng, Wanli; Gao, Xun; Chen, Feng; Li, Qingde

    2017-01-01

    Surface modification and characterization of titanium dioxide (TiO2) nanoparticles and their roles in thermal, mechanical, and accelerated aging behavior of foamed wheat straw fiber/polypropylene (PP) composites are investigated. To improve the dispersion of nanoparticles and increase the possible interactions between wheat straw fiber and the PP matrix, the surface of the TiO2 nanoparticles was modified with ethenyltrimethoxy silane (A171), a silane coupling agent. The grafting of A171 on the TiO2 nanoparticles’ surface was characterized by Fourier transform infrared spectroscopy (FTIR). The wheat straw fibers treated with A171 and modified TiO2 nanoparticles were characterized by FTIR and thermogravimetric analysis (TGA). FTIR spectra confirmed that the organic functional groups of A171 were successfully grafted onto the TiO2 nanoparticles and wheat straw fibers, and the modified TiO2 nanoparticles were adsorbed onto the wheat straw fibers. Thermogravimetric analysis showed that a higher thermal stability of the wheat straw fiber was obtained with the modified TiO2 nanoparticles. The flexural, tensile, and impact properties were improved. A higher ultraviolet (UV) stability of the samples treated with modified TiO2 nanoparticles was exhibited by the study of the color change and loss in mechanical properties. PMID:28772816

  9. Enhanced photoelectrocatalytic performance of heterostructured TiO2-based nanoparticles decorated nanotubes

    NASA Astrophysics Data System (ADS)

    Wu, Liangpeng; Yang, Xu; Huang, Yanqin; Li, Xinjun

    2017-06-01

    Titanium oxide nanotubes were prepared by hydrothermal treatment of TiO2 powder in NaOH aqueous solution and subsequently calcined. Titanium oxide nanotubes were further decorated by TiO2 nanoparticles through in situ hydrolysis of titanium isopropoxide containing alcohol and ammonia in an aqueous medium to form the composite catalyst (TNP/TiO2NTs). The morphology and structure of TNP/TiO2NTs were characterized by scanning and transmission electron microscopy, X-ray diffraction, UV-Vis, and Raman spectra. The separation efficiency of photo-excited carriers was investigated by photoluminescence technique and photoelectrochemical behavior. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange. Due to the synergy effect caused by the interaction of titanium oxide nanotubes and TiO2 nanoparticles, the TNP/TiO2NTs composite shows efficient photogenerated carriers' separation and the increased light absorption. The photocatalytic activity was enhanced.

  10. Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent

    NASA Astrophysics Data System (ADS)

    Lee, So-Yeon; Yim, Jung-Ryoul; Lee, Se-Hee; Choi, In-Suk; Nam, Ki Tae; Joo, Young-Chang

    2018-01-01

    We studied the dependences of the concentration of additive and particle size on the electrophoretic mobility of TiO2 nanoparticles. A high concentration of TiO2 nanoparticles was dispersed in aprotic solvent, which is similar to the operating conditions of electrophoretic applications. Because spectroscopy has limits to measuring the electrophoretic mobility of concentrated suspensions in aprotic solvents, we developed a new measurement to determine the electrophoretic mobility of particles using the reflectance change according to the motion of the particles. TiO2 nanoparticles with sizes of 31 nm to 164 nm were synthesized by hydrolysis and were dispersed in cyclohexanone with a dye (Sudan Black B) for use in the new measurement method. In a concentrated suspension in aprotic solvent, the mobility of the particles was proportional to the dye concentration and was inversely proportional to the size of the particles. This infers that the particle size influences the drag force rather than the surface charge, and therefore, to increase the mobility by changing the surface charge, an additive is effective. [Figure not available: see fulltext.

  11. Influence of transition metal doping on the structural, optical, and magnetic properties of TiO2 films deposited on Si substrates by a sol–gel process

    PubMed Central

    2013-01-01

    Transition metal (TM)-doped TiO2 films (TM = Co, Ni, and Fe) were deposited on Si(100) substrates by a sol–gel method. With the same dopant content, Co dopants catalyze the anatase-to-rutile transformation (ART) more obviously than Ni and Fe doping. This is attributed to the different strain energy induced by the different dopants. The optical properties of TM-doped TiO2 films were studied with spectroscopic ellipsometry data. With increasing dopant content, the optical band gap (EOBG) shifts to lower energy. With the same dopant content, the EOBG of Co-doped TiO2 film is the smallest and that of Fe-doped TiO2 film is the largest. The results are related to electric disorder due to the ART. Ferromagnetic behaviors were clearly observed for TM-doped TiO2 films except the undoped TiO2 film which is weakly magnetic. Additionally, it is found that the magnetizations of the TM-doped TiO2 films decrease with increasing dopant content. PMID:24350904

  12. Photocatalytic degradation of p,p'-DDT under UV and visible light using interstitial N-doped TiO₂.

    PubMed

    Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-01-01

    1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (or p,p'-DDT) is one of the most persistent pesticides. It is resistant to breakdown in nature and cause the water contamination problem. In this work, a major objective was to demonstrate the application of N-doped TiO2 in degradation and mineralization of the p,p'-DDT under UV and visible light in aqueous solution. The N-doped TiO2 nanopowders were prepared by a simple modified sol-gel procedure using diethanolamine (DEA) as a nitrogen source. The catalyst characteristics were investigated using XRD, SEM, TEM, and XPS. The adsorption and photocatalytic oxidation of p,p'-DDT using the synthesized N-doped TiO2 under UV and visible light were conducted in a batch photocatalytic experiment. The kinetics and p,p'-DDT degradation performance of the N-doped TiO2 were evaluated. Results show that the N-doped TiO2 can degrade p,p'-DDT effectively under both UV and visible lights. The rate constant of the p,p'-DDT degradation under UV light was only 0.0121 min(-1), whereas the rate constant of the p,p'-DDT degradation under visible light was 0.1282 min(-1). Under visible light, the 100% degradation of p,p'-DDT were obtained from N-doped TiO2 catalyst. The reaction rate of p,p'-DDT degradation using N-doped TiO2 under visible light was sixfold higher than that under UV light. According to Langmuir-Hinshelwood model, the adsorption equilibrium constant (K) for the N-doped TiO2 under visible light was 0.03078 L mg(-1), and the apparent reaction rate constant (k) was 1.3941 mg L(-1)-min. Major intermediates detected during the p,p'-DDT degradation were p,p'-DDE, o,p'-DDE, p,p'-DDD and p,p'-DDD. Results from this work can be applied further for the breakdown of p,p'-DDT molecule in the real contaminated water using this technology.

  13. Photoinduced Disaggregation of TiO2 Nanoparticles Enables Transdermal Penetration

    PubMed Central

    Bennett, Samuel W.; Zhou, Dongxu; Mielke, Randall; Keller, Arturo A.

    2012-01-01

    Under many aqueous conditions, metal oxide nanoparticles attract other nanoparticles and grow into fractal aggregates as the result of a balance between electrostatic and Van Der Waals interactions. Although particle coagulation has been studied for over a century, the effect of light on the state of aggregation is not well understood. Since nanoparticle mobility and toxicity have been shown to be a function of aggregate size, and generally increase as size decreases, photo-induced disaggregation may have significant effects. We show that ambient light and other light sources can partially disaggregate nanoparticles from the aggregates and increase the dermal transport of nanoparticles, such that small nanoparticle clusters can readily diffuse into and through the dermal profile, likely via the interstitial spaces. The discovery of photoinduced disaggregation presents a new phenomenon that has not been previously reported or considered in coagulation theory or transdermal toxicological paradigms. Our results show that after just a few minutes of light, the hydrodynamic diameter of TiO2 aggregates is reduced from ∼280 nm to ∼230 nm. We exposed pigskin to the nanoparticle suspension and found 200 mg kg−1 of TiO2 for skin that was exposed to nanoparticles in the presence of natural sunlight and only 75 mg kg−1 for skin exposed to dark conditions, indicating the influence of light on NP penetration. These results suggest that photoinduced disaggregation may have important health implications. PMID:23155401

  14. Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Dong, Zhenbiao; Ding, Dongyan; Li, Ting; Ning, Congqin

    2018-06-01

    Photoelectrochemical (PEC) water splitting hydrogen production provides a promising way for sustainable development. In this work, we prepared Ni-doped TiO2 (Ti-Ni-O) nanotubes through anodizing different Ti-Ni alloys and further annealing them at elevated temperatures, and reported their PEC water splitting performance. It was found that Ni doping could improve light absorption and facilitate separation of photo-excited electron-hole pair. The nanotubes fabricated on Ti-1 wt.% Ni alloy and annealed at 550 °C exhibited better PEC water splitting performance than those on Ti-10 wt.% Ni alloy. The photoconversion efficiency was 0.67%, which was 3.35 times the photoconversion efficiency of undoped TiO2. It demonstrated that it was feasible to fabricate high-performance Ti-Ni-O nanotubes on Ti-Ni alloys and used as photoanode for improving PEC water splitting.

  15. Electron-plasmon and electron-phonon satellites in the angle-resolved photoelectron spectra of n -doped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Verdi, Carla; Poncé, Samuel; Giustino, Feliciano

    2018-04-01

    We develop a first-principles approach based on many-body perturbation theory to investigate the effects of the interaction between electrons and carrier plasmons on the electronic properties of highly doped semiconductors and oxides. Through the evaluation of the electron self-energy, we account simultaneously for electron-plasmon and electron-phonon coupling in theoretical calculations of angle-resolved photoemission spectra, electron linewidths, and relaxation times. We apply this methodology to electron-doped anatase TiO2 as an illustrative example. The simulated spectra indicate that electron-plasmon coupling in TiO2 underpins the formation of satellites at energies comparable to those of polaronic spectral features. At variance with phonons, however, the energy of plasmons and their spectral fingerprints depends strongly on the carrier concentration, revealing a complex interplay between plasmon and phonon satellites. The electron-plasmon interaction accounts for approximately 40% of the total electron-boson interaction strength, and it is key to improve the agreement with measured quasiparticle spectra.

  16. Efficient Bulk Heterojunction CH3NH3PbI3-TiO2 Solar Cells with TiO2 Nanoparticles at Grain Boundaries of Perovskite by Multi-Cycle-Coating Strategy.

    PubMed

    Shao, Jun; Yang, Songwang; Liu, Yan

    2017-05-17

    A novel bulk heterojunction (BHJ) perovskite solar cell (PSC), where the perovskite grains act as donor and the TiO 2 nanoparticles act as acceptor, is reported. This efficient BHJ PSC was simply solution processed from a mixed precursor of CH 3 NH 3 PbI 3 (MAPbI 3 ) and TiO 2 nanoparticles. With dissolution and recrystallization by multi-cycle-coating, a unique composite structure ranging from a MAPbI 3 -TiO 2 -dominated layer on the substrate side to a pure perovskite layer on the top side is formed, which is beneficial for the blocking of possible contact between TiO 2 and the hole transport material at the interface. Scanning electron microscopy clearly shows that TiO 2 nanoparticles accumulate along the grain boundaries (GBs) of perovskite. The TiO 2 nanoparticles at the GBs quickly extract and reserve photogenerated electrons before they transport into the perovskite phase, as described in the multitrapping model, retarding the electron-hole recombination and reducing the energy loss, resulting in increased V OC and fill factor. Moreover, the pinning effect of the TiO 2 nanoparticles at the GBs from the strong bindings between TiO 2 and MAPbI 3 suppresses massive ion migration along the GBs, leading to improved operational stability and diminished hysteresis. Photoluminescence (PL) quenching and PL decay confirm the efficient exciton dissociation on the heterointerface. Electrochemical impedance spectroscopy and open-circuit photovoltage decay measurements show the reduced recombination loss and improved carrier lifetime of the BHJ PSCs. This novel strategy of device design effectively combines the benefits of both planar and mesostructured architectures whilst avoiding their shortcomings, eventually leading to a high PCE of 17.42% under 1 Sun illumination. The newly proposed approach also provides a new way to fabricate a TiO 2 -containing perovskite active layer at a low temperature.

  17. FABRICATION AND PHOTOCATALYTIC PROPERTIES OF TiO2 NANOFILMS CO-DOPED WITH Fe3+ AND Bi3+ IONS

    NASA Astrophysics Data System (ADS)

    Gao, Qiongzhi; Liu, Xin; Liu, Wei; Liu, Fang; Fang, Yueping; Zhang, Shiying; Zhou, Wuyi

    2016-12-01

    In this work, the titanium dioxide (TiO2) nanofilms co-doped with Fe3+ and Bi3+ ions were successfully fabricated by the sol-gel method with dip-coating process. Methylene blue was used as the target degradation chemical to study the photocatalytic properties affected by different doping contents of Fe3+ and Bi3+ ions. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and infrared (IR) spectroscopy. The results indicated that both pure TiO2 nanofilms and single-doped samples possessed the photocatalytic activity in degradation of methylene blue. However, when the nanofilms co-doped with Fe3+ and Bi3+ ions were fabricated at the molar ratio of 3:1 (Fe3+:Bi3+), they exhibited the best photocatalytic activity after the heat treatment at 500∘C for 2h. The wettability property test indicated that the TiO2 nanofilms co-doped with Fe3+ and Bi3+ ions in the molar ratio 3:1 owned an excellent hydrophilic property.

  18. Targeted sonodynamic therapy using protein-modified TiO2 nanoparticles.

    PubMed

    Ninomiya, Kazuaki; Ogino, Chiaki; Oshima, Shuhei; Sonoke, Shiro; Kuroda, Shun-ichi; Shimizu, Nobuaki

    2012-05-01

    Our previous study suggested new sonodynamic therapy for cancer cells based on the delivery of titanium dioxide (TiO(2)) nanoparticles (NPs) modified with a protein specifically recognizing target cells and subsequent generation of hydroxyl radicals from TiO(2) NPs activated by external ultrasound irradiation (called TiO(2)/US treatment). The present study first examined the uptake behavior of TiO(2) NPs modified with pre-S1/S2 (model protein-recognizing hepatocytes) by HepG2 cells for 24h. It took 6h for sufficient uptake of the TiO(2) NPs by the cells. Next, the effect of the TiO(2)/US treatment on HepG2 cell growth was examined for 96 h after the 1 MHz ultrasound was irradiated (0.1 W/cm(2), 30s) to the cells which incorporated the TiO(2) NPs. Apoptosis was observed at 6h after the TiO(2)/US treatment. Although no apparent cell-injury was observed until 24h after the treatment, the viable cell concentration had deteriorated to 46% of the control at 96 h. Finally, the TiO(2)/US treatment was applied to a mouse xenograft model. The pre-S1/S2-immobilized TiO(2) (0.1mg) was directly injected into tumors, followed by 1 MHz ultrasound irradiation at 1.0 W/cm(2) for 60s. As a result of the treatment repeated five times within 13 days, tumor growth could be hampered up to 28 days compared with the control conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Switchable Pickering Emulsions Stabilized by Awakened TiO2 Nanoparticle Emulsifiers Using UV/Dark Actuation.

    PubMed

    Zhang, Qing; Bai, Rui-Xue; Guo, Ting; Meng, Tao

    2015-08-26

    In this work, switchable Pickering emulsions that utilize UV/dark manipulation employ a type of smart TiO2 nanoparticle as emulsifiers. The emulsifiers can be awakened when needed via UV-induced degradation of grafted silanes on TiO2 nanoparticles. By tuning the surface wettability of TiO2 nanoparticles in situ via UV/dark actuation, emulsions stabilized by the nanoparticles can be reversibly switched between the water-in-oil (W/O) type and oil-in-water (O/W) type for several cycles. Due to the convertible wettability, the smart nanoparticle emulsifiers can be settled in either the oil phase or the water phase as desired during phase separation, making it convenient for recycling. The present work provides a facile and noninvasive method to freely manipulate the formation, breakage, and switching of the emulsion; this method has promising potential as a powerful technique for use in energy-efficient and environmentally friendly industries.

  20. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation.

    PubMed

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-10-28

    A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10(-3) s(-1). The La(3+), Sm(3+), Eu(3+) and Er(3+) doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.

  1. Synthesis of rare earth doped TiO 2 nanorods as photocatalysts for lignin degradation

    DOE PAGES

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; ...

    2015-09-10

    In this paper, a two-step process is developed to synthesize rare earth doped titania nanorods (RE–TiO 2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE–TiO 2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO 2 NRs or the commercial P25 TiO 2 photocatalyst. Using methyl orange (MO) as a probing molecule,more » we demonstrate that Eu–TiO 2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10 -3 s -1. The La 3+, Sm 3+, Eu 3+ and Er 3+ doped TiO 2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO 2. Finally, we further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.« less

  2. Thermoelectric Properties of Self Assembled TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  3. Intrinsic Enhancement of Dielectric Permittivity in (Nb + In) co-doped TiO2 single crystals.

    PubMed

    Kawarasaki, Masaru; Tanabe, Kenji; Terasaki, Ichiro; Fujii, Yasuhiro; Taniguchi, Hiroki

    2017-07-13

    The development of dielectric materials with colossal permittivity is important for the miniaturization of electronic devices and fabrication of high-density energy-storage devices. The electron-pinned defect-dipoles has been recently proposed to boost the permittivity of (Nb + In) co-doped TiO 2 to 10 5 . However, the follow-up studies suggest an extrinsic contribution to the colossal permittivity from thermally excited carriers. Herein, we demonstrate a marked enhancement in the permittivity of (Nb + In) co-doped TiO 2 single crystals at sufficiently low temperatures such that the thermally excited carriers are frozen out and exert no influence on the dielectric response. The results indicate that the permittivity attains quadruple of that for pure TiO 2 . This finding suggests that the electron-pinned defect-dipoles add an extra dielectric response to that of the TiO 2 host matrix. The results offer a novel approach for the development of functional dielectric materials with large permittivity by engineering complex defects into bulk materials.

  4. Thermoelectric Properties of Self Assemble TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 (mu)W/m sq K at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  5. Ultrasound-induced capping of polystyrene on TiO2 nanoparticles by precipitation with compressed CO2 as antisolvent.

    PubMed

    Zhang, Jianling; Liu, Zhimin; Han, Buxing; Li, Junchun; Li, Zhonghao; Yang, Guanying

    2005-06-01

    In this work, a route for the synthesis of inorganic/polymer core/shell composite nanoparticles was proposed, which can be called the antisolvent-ultrasound method. Compressed CO2 was used as antisolvent to precipitate the polymer from its solution dispersed with inorganic nanoparticles, during which ultrasonic irradiation was used to induce the coating of precipitated polymers on the surfaces of the inorganic nanoparticles. TiO2/polystyrene (PS) core/shell nanocomposites have been successfully prepared using this method. The transmission electronic micrographs (TEM) of the obtained nanocomposites show that the TiO2 nanoparticles are coated by the PS shells, of which the thickness can be tuned by the pressure of CO2. The phase structure, absorption properties, and thermal stability of the composite were characterized by X-ray diffraction (XRD), UV-vis spectra, and thermogravimetry, respectively. The results of X-ray photoelectron spectra (XPS) indicate the formation of a strong interaction between PS and TiO2 nanoparticles in the resultant products. This method has some potential advantages for applications and may be easily applied to the preparation of a range of inorganic/polymer core/shell composite nanoparticles.

  6. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes, Karla Rosa; Stephens, Zachary Dan.; Robinson, David B.

    2013-05-01

    A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The ECmore » redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.« less

  7. Composite WO 3/TiO 2 nanostructures for high electrochromic activity

    DOE PAGES

    Reyes-Gil, Karla R.; Stephens, Zachary D.; Stavila, Vitalie; ...

    2015-01-06

    A composite material consisting of TiO 2 nanotubes (NT) with WO 3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO 2 made from commercially available TiO 2 nanoparticles creates an interface for the TiO 2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WOmore » 3 concentration on the EC performance were studied. As a result, the composite WO 3/TiO 2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO 3 and TiO 2 materials« less

  8. Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction.

    PubMed

    Liang, Jingwen; Hassan, Mehboob; Zhu, Dongsheng; Guo, Liping; Bo, Xiangjie

    2017-03-15

    Nitrogen-doped graphene (N/GR) has been considered as active metal-free electrocatalysts for oxygen reduction reaction (ORR). However, the nitrogen (N) doping efficiency is very low and only few N atoms are doped into the framework of GR. To boost the N doping efficiency, in this work, a confined pyrolysis method with high N doping efficiency is used for the preparation of cobalt nanoparticles/nitrogen-doped GR (Co/N/GR). Under the protection of SiO 2 , the inorganic ligand NH 3 in cobalt amine complex ([Co(NH 3 ) 6 ] 3+ ) is trapped in the confined space and then can be effectively doped into the framework of GR without the introduction of any carbon residues. Meanwhile, due to the redox reaction between the cobalt ions and carbon atoms of GR, Co nanoparticles are supported into the framework of N/GR. Due to prevention of GR layer aggregation with SiO 2 , the Co/N/GR with high dispersion provides sufficient surface area and maximum opportunity for the exposure of Co nanoparticles and active sites of N dopant. By combination of enhanced N doping efficiency, Co nanoparticles and high dispersion of GR sheets, the Co/N/GR is remarkably active, cheap and selective noble-metal free catalysts for ORR. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Carrier recombination dynamics in anatase TiO 2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Cavigli, Lucia; Bogani, Franco; Vinattieri, Anna; Cortese, Lorenzo; Colocci, Marcello; Faso, Valentina; Baldi, Giovanni

    2010-11-01

    We present an experimental study of the radiative recombination dynamics in size-controlled TiO 2 nanoparticles in the range 20-130 nm. Time-integrated photoluminescence spectra clearly show a dominance of self-trapped exciton (STE) emission, with main features not dependent on the nanoparticle size and on its environment. From picosecond time-resolved experiments as a function of the excitation density and the nanoparticle size we address the STE recombination dynamics as the result of two main processes related to the direct STE formation and to the indirect STE formation mediated by non-radiative surface states.

  10. Nb doped TiO2 as a Cathode Catalyst Support Material for Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    O'Toole, Alexander W.

    In order to reduce the emissions of greenhouse gases and reduce dependence on the use of fossil fuels, it is necessary to pursue alternative sources of energy. Transportation is a major contributor to the emission of greenhouse gases due to the use of fossil fuels in the internal combustion engine. To reduce emission of these pollutants into the atmosphere, research is needed to produce alternative solutions for vehicle transportation. Low temperature polymer electrolyte membrane fuel cells are energy conversion devices that provide an alternative to the internal combustion engine, however, they still have obstacles to overcome to achieve large scale implementation. T he following work presents original research with regards to the development of Nb doped TiO2 as a cathode catalyst support material for low temperature polymer electrolyte membrane fuel cells. The development of a new process to synthesize nanoparticles of Nb doped TiO2 with controlled compositions is presented as well as methods to scale up the process and optimize the synthesis for the aforementioned application. In addition to this, comparison of both electrochemical activity and durability with current state of the art Pt on high surface area carbon black (Vulcan XC-72) is investigated. Effects of the strong metal-support interaction on the electrochemical behavior of these materials is also observed and discussed.

  11. A first principle simulation of competitive adsorption of SF6 decomposition components on nitrogen-doped anatase TiO2 (101) surface

    NASA Astrophysics Data System (ADS)

    Dong, Xingchen; Zhang, Xiaoxing; Cui, Hao; Zhang, Jun

    2017-11-01

    Gas insulated switchgear has been widely used in modern electric systems due to its significantly excellent performances such as compact structure and low land occupation as well as the security stability. However, inside defects caused during manufacture process can lead to partial discharge which might develop into serious insulation failure. Online monitoring method on basis of gas sensors is considered a promising way of detecting partial discharge for alarm ahead of time. Research has found that TiO2 nanotubes sensors show good response to SO2, SOF2, SO2F2, the decomposition components as a result of partial discharge. In order to investigate the gas-sensing mechanism of nitrogen-doped TiO2 prepared via plasma treatment methods to SO2, SOF2, and SO2F2, the adsorption structures of both three gas molecules and anatase TiO2 (101) surface were built, and DFT calculations were then carried out for calculation and analysis of adsorption parameters. Adsorption property comparison of anatase TiO2 (101) surface after nitrogen doping with Au doping and without doping shows that nitrogen doping can obviously enhance the adsorption energy for SO2 and SOF2 adsorption and no charge transfer for SO2F2 adsorption, further explaining the adsorption mechanism and doping influence of different doping elements.

  12. Controlled Synthesis, Characterization, and Photocatalytic Application of Co2TiO4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramezani, Majid; Hosseinpour-Mashkani, S. Mostafa

    2017-02-01

    In the current study, an attempt is made to synthesize Co2TiO4 nanoparticles through the simple two-step sol-gel method with the aid of titanium(IV) isopropoxide and cobalt(II) acetate tetrahydrate as starting reagents in the presence of ethanol as a solvent. Additionally, the effects of sodium hydroxide and oxalic acid as the pH controller agents on the morphology and particle size of the products were investigated. Furthermore, effects of several natural and chemical surfactants such as starch, lactose, glucose, oleyl amine, and sodium dodecyl sulfate (SDS) on the morphology and particle size of final products were investigated. Based on the scanning electron microscopy (SEM) results, the above-mentioned parameters have a direct effect on the morphology and particle size of Co2TiO4 nanoparticles. The x-ray diffraction (XRD) results showed that pure cubic cobalt titanium oxide nanoparticles were obtained by this method after heat treatment at 600 and 900°C. Moreover, in the presence of Co2TiO4 nanoparticles as photocatalyst, the percentage of methyl orange (MO) degradation was about 100% after 40 min of irradiation of ultraviolet (UV) light.

  13. Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices

    NASA Astrophysics Data System (ADS)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-04-01

    The adsorption of O3 molecule on the undoped and N-doped TiO2/WSe2 nanocomposites was studied using first principles density functional theory calculations. O3 interaction with TiO2/WSe2 nanocomposites is considered so as to investigate WSe2 effects on the adsorption process. WSe2 favors the adsorption of O3 on TiO2 particles. In other words, WSe2 is conducive to the interaction of O3 molecule with fivefold coordinated titanium sites of TiO2. The effects of vdW interactions were taken into account in order to obtain equilibrium geometries of O3 molecules at TiO2/WSe2 interfaces. For all adsorption configurations, the binding site was positioned on the fivefold coordinated titanium atoms. The results show that the interactions between O3 and TiO2 in TiO2/WSe2 nanocomposites are stronger than those between O3 and bare TiO2, suggesting that WSe2 helps to strengthen the interaction of ozone molecule with TiO2 particles. The results also indicate that the adsorption of the O3 molecule on the N-doped TiO2/WSe2 nanocomposite is more energetically favorable than the adsorption of O3 on the pristine one, representing that the N-doped nanocomposites are more sensitive than the undoped ones. Our DFT results clearly show that the N-doped TiO2/WSe2 nanocomposite would be a promising O3 gas sensor. The electronic structure of the adsorption system was also investigated, including analysis of the total and projected density of states, and charge density differences of the TiO2/WSe2 with adsorbed O3 molecules. The charge density difference calculations indicate that the charges were accumulated over the adsorbed O3 molecule. Besides, the N-doped nanocomposites have better sensing response than the pristine ones. This work was devoted to provide the theory basis for the design and development of novel and advanced O3 sensors based on modified TiO2/WSe2 nanocomposites.

  14. The promotional role of Ni in FeVO4/TiO2 monolith catalyst for selective catalytic reduction of NOx with NH3

    NASA Astrophysics Data System (ADS)

    Wu, Ganxue; Feng, Xi; Zhang, Hailong; Zhang, Yanhua; Wang, Jianli; Chen, Yaoqiang; Dan, Yi

    2018-01-01

    The promotional effect of nickel additive on the catalytic performance of the representative FeVO4/TiO2 for NH3-SCR reaction is systematically studied for the first time in the present work. The experimental results showed that NOx conversion at low temperature and N2 selectivity could be significantly improved by Ni doping and 0.4Ni-FeV-Ti exhibited the highest NOx removal efficiency. Analysis by XRD, SEM/HR-TEM, Raman, TPD, DRIFTS, TPR and XPS showed that nickel doping effectively promoted the interaction of FeVO4 nanoparticles with TiO2, consequently resulting in an enhanced acidity property, improved redox activity and giving rise to the formation of the surface oxygen vacancies and defect sites.

  15. Influence of Ag substitution on structural and dielectric properties of TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, T.; Ahmed, Ateeq; Siddique, M. Naseem; Aftab, Tabish; Tripathi, P.

    2018-04-01

    In this paper, we report the structural, electrical and dielectric properties of Ag-substituted TiO2 nanoparticles synthesized by sol-gel method. The X-ray diffraction (XRD) spectra revealed that the synthesized nanoparticles are pure and crystalline in nature and showing tetragonal anatase phase of TiO2. TEM micrograph shows that shapes of the nanoparticles are non-spherical. We have also studied the dielectric properties and in relation to it the dielectric constants, dielectric loss and A.C. conductivity have been studied as the function of frequency and composition of iron. The above theory may be explained by `Maxwell Wagner Model'.

  16. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-06-01

    Titanium dioxide (TiO2) nanopowders at different concentrations (0-50 mg L-1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L-1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L-1 TiO2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO2 nanoparticles (up to 50 mg L-1) from the effluent.

  17. SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses.

    PubMed

    Tsugita, Misato; Morimoto, Nobuyuki; Nakayama, Masafumi

    2017-04-11

    Silicon dioxide (SiO 2 ) nanoparticles (NPs) and titanium dioxide (TiO 2 ) NPs are the most widely used inorganic nanomaterials. Although the individual toxicities of SiO 2 and TiO 2 NPs have been extensively studied, the combined toxicity of these NPs is much less understood. In this study, we observed unexpected and drastic activation of the caspase-1 inflammasome and production of IL-1β in mouse bone marrow-derived macrophages stimulated simultaneously with SiO 2 and TiO 2 NPs at concentrations at which these NPs individually do not cause macrophage activation. Consistent with this, marked lung inflammation was observed in mice treated intratracheally with both SiO 2 and TiO 2 NPs. In macrophages, SiO 2 NPs localized in lysosomes and TiO 2 NPs did not; while only TiO 2 NPs produced ROS, suggesting that these NPs induce distinct cellular damage leading to caspase-1 inflammasome activation. Intriguingly, dynamic light scattering measurements revealed that, although individual SiO 2 and TiO 2 NPs immediately aggregated to be micrometer size, the mixture of these NPs formed a stable and relatively monodisperse complex with a size of ~250 nm in the presence of divalent cations. Taken together, these results suggest that SiO 2 and TiO 2 NPs synergistically induce macrophage inflammatory responses and subsequent lung inflammation. Thus, we propose that it is important to assess the synergistic toxicity of various combinations of nanomaterials.

  18. Photocatalytic Applications of Electrospun TiO2 Nanofibres Embedded with Bimodal Sized and Prismatic Gold Nanoparticles.

    PubMed

    Gopika, G; Asha, A M; Sivakumar, N; Balakrishnan, A; Nair, S V; Subramanian, K R V

    2015-09-01

    In this paper, we have synthesized electrospun TiO2 nanofibers embedded with bimodal sized and prismatic gold nanoparticles. The surface plasmons generated in the gold nanoparticles were used to enhance the performance of photocatalysis. The photocatalytic conversion efficiencies of these bimodal sized/prismatic gold nanoparticles when embedded in electrospun TiO2 fibres showed an enhancement of upto 60% over bare fiber systems and also show higher efficiencies than electrospun fibrous systems embedded with unimodal sized gold nanoparticles. Anisotropic bimodal gold nanoparticles show the highest degree of photocatalytic activity. This may be attributed to greater density/concentration of nanoparticles with higher effective surface area and formation of a junction between the smaller and larger nanoparticles. Such a bimodally distributed range of nanoparticles could also lead to greater trapping of charge carriers at the TiO2 conduction band edge and promoting catalytic reactions on account of these trapped charges. This enhanced photocatalytic activity is explained by invoking different operating mechanisms such as improved surface area, greater trapping, coarse plasmon resonance and band effects. Thus, a useful applicability of the gold nanoparticles is shown in the area of photocatalysis.

  19. Gd, I-doped TiO2 thin films coated on solid waste material: synthesis, characterization, and photocatalytic activity under UV or visible light irradiation

    NASA Astrophysics Data System (ADS)

    Deng, Siwei; Yu, Jiang; Yang, Chun; Chang, Jiahua; Wang, Yizheng; Wang, Ping; Xie, Shiqian

    2017-10-01

    In this work, titanium dioxide thin films doped with different concentrations of gadolinium (Gd) and iodine (I) were synthesized using the sol-gel method and successfully coated on solid waste material (made in our lab) by dipping, resulting in the titanium dioxide thin-film-coated material (TiO2M). Then, the doped titanium dioxide thin films were characterized by X-ray diffraction (XRD), SEM, and UV-Vis spectroscopy; the optimum coating cycle was evaluated by removal rates of COD and ammonia nitrogen in raw wastewater and secondary effluent. Moreover, the photocatalytic activity was determined by degradation efficiency of methyl orange. The results showed that TiO2M had desirable reusability and the photocatalytic activity was attractive under ultraviolet light irradiation. Furthermore, it is found that the amount of dopant in TiO2 was a key parameter in increasing the photoactivity. 1% Gd-doped TiO2M exhibited the best photocatalytic activity for the degradation of methyl orange with the removal rate reaching 85.55%. The result was in good agreement with the observed smaller crystallite size and profitable crystal structure (anatase phase). Besides, the TiO2M (0.8% Gd-doped TiO2M, 1% Gd-doped TiO2M, 10% I-doped TiO2M, and 5% I-1% Gd-doped TiO2M) with desirable photocatalytic activity at ultraviolet light irradiation was selected for the visible light photocatalytic experiments with taking methyl orange as the target pollutants. The results showed that all of them exhibited the similar photocatalytic activity after 7 h of sunlight irradiation (around 90% removal effect). In general, this research developed a very effective and environmentally friendly photocatalyst for pollutant degradation.

  20. Preparation and thermoelectric properties of sulfur doped Ag2Te nanoparticles via solvothermal methods.

    PubMed

    Zhou, Wenwen; Zhao, Weiyun; Lu, Ziyang; Zhu, Jixin; Fan, Shufen; Ma, Jan; Hng, Huey Hoon; Yan, Qingyu

    2012-07-07

    In this work, n-type Ag(2)Te nanoparticles are prepared by a solvothermal approach with uniform and controllable sizes, e.g. 5-15 nm. The usage of dodecanethiol during the synthesis effectively introduces sulfur doping into the sample, which optimizes the charge carrier concentration of the nanoparticles to >1 × 10(20) cm(-3). This allows us to achieve the desired electrical resistivities of <5 × 10(-6)Ω m. It is demonstrated that Ag(2)Te particles prepared by this solvothermal process can exhibit high ZT values, e.g. 15 nm Ag(2)Te nanoparticles with effective sulphur doping show a maximum ZT value of ~0.62 at 550 K.

  1. Multifunctional Gadolinium-Doped Mesoporous TiO2 Nanobeads: Photoluminescence, Enhanced Spin Relaxation, and Reactive Oxygen Species Photogeneration, Beneficial for Cancer Diagnosis and Treatment.

    PubMed

    Imani, Roghayeh; Dillert, Ralf; Bahnemann, Detlef W; Pazoki, Meysam; Apih, Tomaž; Kononenko, Veno; Repar, Neža; Kralj-Iglič, Veronika; Boschloo, Gerrit; Drobne, Damjana; Edvinsson, Tomas; Iglič, Aleš

    2017-05-01

    Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO 2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO 2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd 3+ ions introduce impurity energy levels inside the bandgap of anatase TiO 2 , and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO 2 nanobeads (NBs) show enhanced ability for ROS monitored via • OH radical photogeneration, in comparison with undoped TiO 2 nanobeads and TiO 2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO 2 @xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A new preparation of doped photocatalytic TiO2 anatase nanoparticles: a preliminary study for the removal of pollutants in confined museum areas

    NASA Astrophysics Data System (ADS)

    Greco, Enrico; Ciliberto, Enrico; Cirino, Antonio M. E.; Capitani, Donatella; Di Tullio, Valeria

    2016-05-01

    The use of nanotechnology in conservation is a relatively new concept. Usually, classical cleanup methods take into account the use of other chemicals: On the one hand they help the environment destroying pollutants, but on the other hand they often become new pollutants. Among the new oxidation methods called advanced oxidation processes, heterogeneous photocatalysis has appeared an emerging technology with several economic and environmental advantages. A new sol-gel method of synthesis of TiO2 anatase is reported in this work using lithium and cobalt (II) salts. The activation energy of the doped photocatalyst was analyzed by solid-state UV-Vis spectrophotometer. The mobility of Li ions on TiO2 NPs surface was studied by 7Li MAS NMR spectroscopy. Use of doped nanotitania is suggested from authors for the removal of pollutants in confined areas containing goods that must be preserved from decomposition and aging phenomena.

  3. High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B.

    PubMed

    Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng

    2017-10-15

    Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: A comparative study of photo catalysis on acid red 88

    NASA Astrophysics Data System (ADS)

    Balachandran, K.; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P.

    2014-07-01

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m2/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4 h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88.

  5. Facile decoration of TiO2 nanoparticles on graphene for solar degradation of organic dye

    NASA Astrophysics Data System (ADS)

    Salem, Shiva; Salem, Amin; Rezaei, Mostafa

    2016-11-01

    The reduced graphene oxide is interesting material for the synthesis of TiO2-based photocatalyst. In the present investigation, blackberry fruit, which contains high levels of anthocyanins and other phenolic compounds, was employed as a reducing agent mainly due to its high antioxidant capacity. The nano-crystalline TiO2 was decorated on different amounts of graphene oxide with sol-gel method and then the photocatalytic activity for degradation of cationic dye was evaluated by UV spectroscopy to achieve the optimum content of graphene oxide. The decoration of anatase nanoparticles on prepared reduced graphene oxide was investigated by X-ray diffraction, scanning and transmission electron microscopy techniques. The new composite gives significantly higher activity when is compared to the compositions fabricated by graphene oxide. The compact layer provides a large TiO2-graphene contact area and reduces the electron recombination. The decoration of TiO2 nanoparticles, 5-10 nm, on the graphene oxide reduced by blackberry juice further improves the dye removal. The results imply that the nanoparticle decoration is the key strategy to increase the degradation capacity.

  6. Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye.

    PubMed

    Ullah, Irfan; Haider, Ali; Khalid, Nasir; Ali, Saqib; Ahmed, Sajjad; Khan, Yaqoob; Ahmed, Nisar; Zubair, Muhammad

    2018-06-13

    Tungsten-doped TiO 2 (W@TiO 2 ) nanoparticles, with different percentages of atomic tungsten dopant levels (range of 0 to 6 mol%) have been synthesized by the sol-gel method and characterized by UV-Visible spectroscopy, XRD, SEM, EDX, ICP-OES and XPS analysis. By means of UV-Vis spectroscopy, it has been observed that with 6 mol% tungsten doping the wavelength range of excitation of TiO 2 has extended to the visible portion of spectrum. Therefore, we evaluated the photocatalytic activity of W@TiO 2 catalysts for the degradation of Congo red dye under varying experimental parameters such as dopant concentration, catalyst dosage, dye concentrations and pH. Moreover, 6 mol% W@TiO 2 catalyst was deposited on a glass substrate to form thin film using spin coating technique in order to make the photocatalyst effortlessly reusable with approximately same efficiency. The results compared with standard titania, Degussa P25 both in UV- and visible light, suggest that 6 mol% W@TiO 2 can be a cost-effective choice for visible light induced photocatalytic degradation of Congo red dye. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Effect of Ge-GeO2 co-doping on non-ohmic behaviour of TiO2-V2O5-Y2O3 varistor ceramics

    NASA Astrophysics Data System (ADS)

    Kunyong, Kang; Guoyou, Gan; Jikang, Yan; Jianhong, Yi; Jiamin, Zhang; Jinghong, Du; Wenchao, Zhao; Xuequan, Rong

    2015-07-01

    An investigation was made into the effect of doping with the elemental crystal Ge or/and GeO2 on the TiO2-V2O5-Y2O3 varistor ceramics. The result shows that as the doping contents of V2O5 and Y2O3 are 0.5 mol%, respectively, co-doping with 0.3 mol% Ge and 0.9 mol% GeO2 makes the highest α value (α = 12.8), the lowest breakdown voltage V1mA (V1mA = 15.8 V/mm) and the highest grain boundary barrier ΦB (ΦB = 1.48 eV), which is remarkably superior to the TiO2-V2O5-Y2O3 varistor ceramics undoped with Ge and GeO2 and mono-doped with Ge or GeO2. The TiO2-V2O5-Y2O3-Ge-GeO2 ceramic has the prospect of becoming a novel varistor ceramic with excellent electrical properties. Project supported by the National Natural Science Foundation of China (Nos. 51262017, 51362017).

  8. High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode

    PubMed Central

    Hafez, Hoda; Lan, Zhang; Li, Qinghua; Wu, Jihuai

    2010-01-01

    High light-to-energy conversion efficiency was achieved by applying novel TiO2 nanorod/nanoparticle (NR/NP) bilayer electrode in the N719 dye-sensitized solar cells. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) were 14.45 mA/cm2, 0.756 V, 0.65, and 7.1%, respectively. The single-crystalline TiO2 NRs with length 200–500 nm and diameter 30–50 nm were prepared by simple hydrothermal methods. The dye-sensitized solar cells with pure TiO2 NR and pure TiO2 NP electrodes showed only a lower light-to-electricity conversion efficiency of 4.4% and 5.8%, respectively, compared with single-crystalline TiO2 NRs. This can be attributed to the new NR/NP bilayer design that can possess the advantages of both building blocks, ie, the high surface area of NP aggregates and rapid electron transport rate and the light scattering effect of single-crystalline NRs. PMID:24198470

  9. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.

    PubMed

    Jiang, Lei; You, Ting; Deng, Wei-Qiao

    2013-10-18

    In this work Nb-doped anatase TiO2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell.

  10. Synthesis of anatase TiO2 nanoparticles with beta-cyclodextrin as a supramolecular shell.

    PubMed

    Li, Landong; Sun, Xiaohong; Yang, Yali; Guan, Naijia; Zhang, Fuxiang

    2006-11-20

    We report a novel, green hydrothermal-synthesis route to well-dispersed anatase TiO2 nanoparticles with particle sizes of 9-16 nm in the presence of beta-CD (beta-cyclodextrin). During the synthesis process, the CD-containing synthesis mixture assembled in both longitudinal and latitudinal directions. Driven by the interaction between molecules, the beta-CDs assembled in the longitudinal direction to form long-chain compounds, whereas in the latitudinal direction, they tended to form regular aggregates through coordination with the Ti species from the hydrolysis of tetrabutyl titanate. In view of the effect of the coordination and the steric hindrance of beta-CDs as a supramolecular shell, homogeneous nuclei and slow growth of TiO2 crystals during the synthesis process was observed, which was responsible for the formation of uniform TiO2 nanoparticles. The low beta-CD dosage and the high product yield (>90%) demonstrated well the potential of this synthesis route in the large-scale industrial production of anatase nanoparticles.

  11. Synthesis and photocatalytic activity of boron-doped TiO(2) in aqueous suspensions under UV-A irradiation.

    PubMed

    Xekoukoulotakis, N P; Mantzavinos, D; Dillert, R; Bahnemann, D

    2010-01-01

    Boron-doped TiO(2) photocatalysts were synthesized employing a sol-gel method. Boric acid was used as the boron source and titanium tetra-isopropoxide as the TiO(2) precursor, both dissolved in isopropanol. Nominal boron to titanium atomic ratios were in the range 0 to 4%. After the hydrolysis step, two different procedures for the recovery of TiO(2) were followed, based on either centrifugation of the resulting reaction mixture or evaporation of the solvent under reduced pressure, both followed by a subsequent calcination step performed at 400 or 500 degrees C. The photocatalytic efficiency of the synthesized photocatalysts was assessed by measuring the photocatalytic mineralization of dichloroacetic acid in aqueous suspensions under UV-A irradiation and it was compared to the corresponding efficiency of the commercial Degussa P 25 TiO(2). Photocatalytic efficiency of the synthesized catalysts was higher for the boron-doped TiO(2) synthesized at 2% boron to titanium nominal atomic ratio, centrifuged after the hydrolysis step followed by calcinations at 400 degrees C. However, all photocatalysts synthesized in this work showed lower photocatalytic activity than Degussa P 25 TiO(2), thus highlighting the need of further improvements of the proposed method.

  12. Gas Sensitivity and Sensing Mechanism Studies on Au-Doped TiO2 Nanotube Arrays for Detecting SF6 Decomposed Components

    PubMed Central

    Zhang, Xiaoxing; Yu, Lei; Tie, Jing; Dong, Xingchen

    2014-01-01

    The analysis to SF6 decomposed component gases is an efficient diagnostic approach to detect the partial discharge in gas-insulated switchgear (GIS) for the purpose of accessing the operating state of power equipment. This paper applied the Au-doped TiO2 nanotube array sensor (Au-TiO2 NTAs) to detect SF6 decomposed components. The electrochemical constant potential method was adopted in the Au-TiO2 NTAs' fabrication, and a series of experiments were conducted to test the characteristic SF6 decomposed gases for a thorough investigation of sensing performances. The sensing characteristic curves of intrinsic and Au-doped TiO2 NTAs were compared to study the mechanism of the gas sensing response. The results indicated that the doped Au could change the TiO2 nanotube arrays' performances of gas sensing selectivity in SF6 decomposed components, as well as reducing the working temperature of TiO2 NTAs. PMID:25330053

  13. Modeling and calculation of RKKY exchange coupling to explain Ti-vacancy-induced ferromagnetism in Ta-doped TiO2

    NASA Astrophysics Data System (ADS)

    Majidi, Muhammad Aziz; Bupu, Annamaria; Fauzi, Angga Dito

    2017-12-01

    We present a theoretical study on Ti-vacancy-induced ferromagnetism in anatase TiO2. A recent experimental study has revealed room temperature ferromagnetism in Ta-doped anatase TiO2thin films (Rusydi et al., 2012) [7]. Ta doping assists the formation of Ti vacancies which then induce the formation of localized magnetic moments around the Ti vacancies. As neighboring Ti vacancies are a few unit cells apart, the ferromagnetic order is suspected to be mediated by itinerant electrons. We propose that such an electron-mediated ferromagnetism is driven by Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. To examine our hypothesis, we construct a tight-binding based model Hamiltonian for the anatase TiO2 system. We calculate the RKKY exchange coupling constant of TiO2 as a function of distance between local magnetic moments at various temperatures. We model the system by taking only the layer containing a unit of TiO2, at which the Ti vacancy is believed to form, as our effective two-dimensional unit cell. Our model incorporates the Hubbard repulsive interactions between electrons occupying Ti d orbitals treated within mean-field approximation. The density of states profile resulting from the model captures the relevant electronic properties of TiO2, such as the energy gap of 3.4 eV and the n-type character, which may be a measure of the adequacy of the model. The calculated RKKY coupling constant shows that the ferromagnetic coupling extends up to 3-4 unit cells and enhances slightly as temperature is increased from 0 to 400 K. These results support our hypothesis that the ferromagnetism of this system is driven by RKKY mechanism.

  14. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Yoo, Seung Hwa; Ali, Ghafar; Cho, Sung Oh

    2010-03-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  15. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    PubMed Central

    2010-01-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2. PMID:20671780

  16. Non-metal doped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water

    NASA Astrophysics Data System (ADS)

    Szkoda, Mariusz; Siuzdak, Katarzyna; Lisowska-Oleksiak, Anna

    2016-10-01

    Titanium dioxide is a well-known photoactive semiconductor with a variety of possible applications. The procedure of pollutant degradation is mainly performed using TiO2 powder suspension. It can also be exploited an immobilized catalyst on a solid support. Morphology and chemical doping have a great influence on TiO2 activity under illumination. Here we compare photoactivity of titania nanotube arrays doped with non-metal atoms: nitrogen, iodine and boron applied for photodegradation of organic dye - methylene blue and terephtalic acid. The doped samples act as a much better photocatalyst in the degradation process of methylene blue and lead to the formation of much higher amount of hydroxyl radicals (•OH) than undoped TiO2 nanotube arrays. The use of a catalyst active under solar light illumination in the form of thin films on a stable substrate can be scaled up for an industrial application.

  17. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    NASA Astrophysics Data System (ADS)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou, Anhong

    2010-06-01

    The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50-100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  18. TiO2 nanosheets decorated with B4C nanoparticles as photocatalysts for solar fuel production under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojie; Yang, Jipeng; Cai, Tiancong; Zuo, Guoqiang; Tang, Changqing

    2018-06-01

    Boron carbide (B4C) nanoparticles-decorated anatase titanium dioxide (TiO2) nanosheets photocatalysts were synthesized by a hydrothermal method in the presence of hydrofluoric acid and characterized by field emission scanning electron microscope, high-resolution transmission electron microscope, UV-vis diffuse reflectance spectra, photoluminescence spectra, etc. With metallic Pt nanoparticles as a co-catalyst, the as-synthesized B4C/TiO2 composites were evaluated using photocatalytic CO2 or H2O reduction to solar fuels such as methane and hydrogen. Under either simulated sunlight or visible light irradiation, coupling p-type B4C with n-type anatase TiO2 significantly improved the photocatalytic performance. Both photoluminescence and transient photocurrent measurements indicated that the interfacial coupling effect between B4C and anatase TiO2 could significantly promote photo-excited charges separations. On the basis of measurements and literatures, a possible mechanism of excited charges transfer at the B4C-anatase TiO2 heterojunction interface during irradiation was deduced.

  19. MRI tracing non-invasive TiO2-based nanoparticles activated by ultrasound for multi-mechanism therapy of prostatic cancer

    NASA Astrophysics Data System (ADS)

    Yuan, Pu; Song, Dongkui

    2018-03-01

    To reduce the side effects of chemotherapy and achieve effective and safe therapy for prostate cancer, herein a simple but multi-functional TiO2:Gd@DOX/FA system activated by ultrasound was developed for the MRI-guided multi-mechanism therapy of prostate cancer. TiO2 nanoparticles served as a sonosensitizer as well as a nanocarrier with the pH-responsive release of DOX. The doping of Gd was not only able to endow the TiO2 with magnetic resonance imaging (MRI) ability, but also further improve the sonodynamic ability of the TiO2. The characterization of the as-prepared TiO2:Gd@DOX/FA showed sensitive pH-responsive drug release, high reactive oxygen species (ROS) production, T 1-MRI contrast performance and excellent biocompatibility. The cytotoxicity assay in vitro showed cell death up to 91.68% after 48 h incubation induced by the TiO2:Gd@DOX + ultrasound group. Meanwhile, in the in vivo synergistic therapy studies, the tumor sizes of all the nanomedicine groups were smaller than for the free DOX (V:V 0 = 4.2). More importantly, the body showed nearly no weight loss. This safety was also confirmed by the H&E staining, biodistribution experiment and serum biochemistry results. Altogether, TiO2:Gd@DOX/FA significantly reduced the side effects of DOX, augmented the levels of ROS and achieved effective and safe therapy, indicating its potential for the multi-mechanism therapy of prostate cancer. There is no conflict of interest in this study and no funding has been received for it. We received the approval of the Research Ethics Committee before conducting this study.

  20. Whiter, brighter, and more stable cellulose paper coated with TiO2 /SiO2 core/shell nanoparticles using a layer-by-layer approach.

    PubMed

    Cheng, Fei; Lorch, Mark; Sajedin, Seyed Mani; Kelly, Stephen M; Kornherr, Andreas

    2013-08-01

    To inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2 ) nanoparticles, four kinds of TiO2 nanoparticles, that is, commercial P25-TiO2 , commercial rutile phase TiO2 , rutile TiO2 nanorods and rutile TiO2 spheres, prepared from TiCl4 , were coated with a thin, but dense, coating of silica (SiO2 ) using a conventional sol-gel technique to form TiO2 /SiO2 core/shell nanoparticles. These core/shell particles were deposited and fixed as a very thin coating onto the surface of cellulose paper samples by a wet-chemistry polyelectrolyte layer-by-layer approach. The TiO2 /SiO2 nanocoated paper samples exhibit higher whiteness and brightness and greater stability to UV-bleaching than comparable samples of blank paper. There are many potential applications for this green chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to improve their whiteness and brightness. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes.

    PubMed

    Sun, Chia-Liang; Pao, Chih-Wen; Tsai, Huang-Ming; Chiou, Jau-Wern; Ray, Sekhar C; Wang, Houng-Wei; Hayashi, Michitoshi; Chen, Li-Chyong; Lin, Hong-Ji; Lee, Jyh-Fu; Chang, Li; Tsai, Min-Hsiung; Chen, Kuei-Hsien; Pong, Way-Faung

    2013-08-07

    The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.

  2. Structural and Visible-Near Infrared Optical Properties of Cr-Doped TiO2 for Colored Cool Pigments

    NASA Astrophysics Data System (ADS)

    Yuan, Le; Weng, Xiaolong; Zhou, Ming; Zhang, Qingyong; Deng, Longjiang

    2017-11-01

    Chromium-doped TiO2 pigments were synthesized via a solid-state reaction method and studied with X-ray diffraction, SEM, XPS, and UV-VIS-NIR reflectance spectroscopy. The incorporation of Cr3+ accelerates the transition from the anatase phase to the rutile phase and compresses the crystal lattice. Moreover, the particle morphology, energy gap, and reflectance spectrum of Cr-doped TiO2 pigments is affected by the crystal structure and doping concentration. For the rutile samples, some of the Cr3+ ions are oxidized to Cr4+ after sintering at a high temperature, which leads to a strong near-infrared absorption band due to the 3A2 → 3 T1 electric dipole-allowed transitions of Cr4+. And the decrease of the band gap causes an obvious redshift of the optical absorption edges as the doping concentration increases. Thus, the VIS and near-infrared average reflectance of the rutile Ti1 - x Cr x O2 sample decrease by 60.2 and 58%, respectively, when the Cr content increases to x = 0.0375. Meanwhile, the color changes to black brown. However, for the anatase Ti1 - x Cr x O2 pigments, only the VIS reflection spectrum is inhibited by forming some characteristic visible light absorption peaks of Cr3+. The morphology, band gap, and NIR reflectance are not significantly affected. Finally, a Cr-doped anatase TiO2 pigment with a brownish-yellow color and 90% near-infrared reflectance can be obtained.

  3. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88.

    PubMed

    Balachandran, K; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P

    2014-07-15

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m(2)/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Improving the Optoelectronic Properties of Mesoporous TiO2 by Cobalt Doping for High-Performance Hysteresis-free Perovskite Solar Cells.

    PubMed

    Sidhik, Siraj; Cerdan Pasarán, Andrea; Esparza, Diego; López Luke, Tzarara; Carriles, Ramón; De la Rosa, Elder

    2018-01-31

    We for the first time report the incorporation of cobalt into a mesoporous TiO 2 electrode for application in perovskite solar cells (PSCs). The Co-doped PSC exhibits excellent optoelectronic properties; we explain the improvements by passivation of electronic trap or sub-band-gap states arising due to the oxygen vacancies in pristine TiO 2 , enabling faster electron transport and collection. A simple postannealing treatment is used to prepare the cobalt-doped mesoporous electrode; UV-visible spectroscopy, X-ray photoemission spectroscopy, space charge-limited current, photoluminescence, and electrochemical impedance measurements confirm the incorporation of cobalt, enhanced conductivity, and the passivation effect induced in the TiO 2 . An optimized doping concentration of 0.3 mol % results in the maximum power conversion efficiency of 18.16%, 21.7% higher than that of a similar cell with an undoped TiO 2 electrode. Also, the device shows negligible hysteresis and higher stability, retaining 80.54% of the initial efficiency after 200 h.

  5. Computational study of TiO2 Brookite (100), (010) and (210) surface doped with Ruthenium for application in Dye Sensitised Solar Cells

    NASA Astrophysics Data System (ADS)

    Dima, R. S.; Maluta, N. E.; Maphanga, R. R.; Sankaran, V.

    2017-10-01

    Titanium dioxide (TiO2) polymorphs are widely used in many energy-related applications due to their peculiar electronic and physicochemical properties. The electronic structures of brookite TiO2 surfaces doped with transition metal ruthenium have been investigated by ab initio band calculations based on the density functional theory with the planewave ultrasoft pseudopotential method. The generalized gradient approximation (GGA) was used in the scheme of Perdew-Burke-Ernzerhof (PBE) to describe the exchange-correlation functional. All calculations were carried out with CASTEP (Cambridge Sequential Total EnergyPackage) code in Materials Studio of Accelrys Inc. The surface structures of Ru doped TiO2 were constructed by cleaving the 1 × 1 × 1 optimized bulk structure of brookite TiO2. The results indicate that Ru doping can narrow the band gap of TiO2, leading to the improvement in the photoreactivity of TiO2, and simultaneously maintain strong redox potential. The theoretical calculations could provide meaningful guide to develop more active photocatalysts with visible light response.

  6. Functionalized TiO2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy.

    PubMed

    Cędrowska, Edyta; Pruszynski, Marek; Majkowska-Pilip, Agnieszka; Męczyńska-Wielgosz, Sylwia; Bruchertseifer, Frank; Morgenstern, Alfred; Bilewicz, Aleksander

    2018-01-01

    The 225 Ac radioisotope exhibits very attractive nuclear properties for application in radionuclide therapy. Unfortunately, the major challenge for radioconjugates labelled with 225 Ac is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-targeted tissues. In the present work, we propose to apply TiO 2 nanoparticles (NPs) as carrier for 225 Ac and its decay products. The surface of TiO 2 nanoparticles with 25 nm diameter was modified with Substance P (5-11), a peptide fragment which targets NK1 receptors on the glioma cells, through the silan-PEG-NHS linker. Nanoparticles functionalized with Substance P (5-11) were synthesized with high yield in a two-step procedure, and the products were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The obtained results show that one TiO 2 -bioconjugate nanoparticle contains in average 80 peptide molecules on its surface. The synthesized TiO 2 -PEG-SP(5-11) conjugates were labelled with 225 Ac by ion-exchange reaction on hydroxyl (OH) functional groups on the TiO 2 surface. The labelled bioconjugates almost quantitatively retain 225 Ac in phosphate-buffered saline (PBS), physiological salt and cerebrospinal fluid (CSF) for up to 10 days. The leaching of 221 Fr, a first decay daughter of 225 Ac, in an amount of 30% was observed only in CSF after 10 days. The synthesized 225 Ac-TiO 2 -PEG-SP(5-11) has shown high cytotoxic effect in vitro in T98G glioma cells; therefore, it is a promising new radioconjugate for targeted radionuclide therapy of brain tumours.

  7. Functionalized TiO2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Cędrowska, Edyta; Pruszynski, Marek; Majkowska-Pilip, Agnieszka; Męczyńska-Wielgosz, Sylwia; Bruchertseifer, Frank; Morgenstern, Alfred; Bilewicz, Aleksander

    2018-03-01

    The 225Ac radioisotope exhibits very attractive nuclear properties for application in radionuclide therapy. Unfortunately, the major challenge for radioconjugates labelled with 225Ac is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-targeted tissues. In the present work, we propose to apply TiO2 nanoparticles (NPs) as carrier for 225Ac and its decay products. The surface of TiO2 nanoparticles with 25 nm diameter was modified with Substance P (5-11), a peptide fragment which targets NK1 receptors on the glioma cells, through the silan-PEG-NHS linker. Nanoparticles functionalized with Substance P (5-11) were synthesized with high yield in a two-step procedure, and the products were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The obtained results show that one TiO2-bioconjugate nanoparticle contains in average 80 peptide molecules on its surface. The synthesized TiO2-PEG-SP(5-11) conjugates were labelled with 225Ac by ion-exchange reaction on hydroxyl (OH) functional groups on the TiO2 surface. The labelled bioconjugates almost quantitatively retain 225Ac in phosphate-buffered saline (PBS), physiological salt and cerebrospinal fluid (CSF) for up to 10 days. The leaching of 221Fr, a first decay daughter of 225Ac, in an amount of 30% was observed only in CSF after 10 days. The synthesized 225Ac-TiO2-PEG-SP(5-11) has shown high cytotoxic effect in vitro in T98G glioma cells; therefore, it is a promising new radioconjugate for targeted radionuclide therapy of brain tumours.

  8. Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.

    PubMed

    Dong, Wen; Hu, Wanbiao; Berlie, Adam; Lau, Kenny; Chen, Hua; Withers, Ray L; Liu, Yun

    2015-11-18

    Stimulated by the excellent colossal permittivity (CP) behavior achieved in In+Nb co-doped rutile TiO2, in this work we investigate the CP behavior of Ga and Nb co-doped rutile TiO2, i.e., (Ga(0.5)Nb(0.5))(x)Ti(1-x)O2, where Ga(3+) is from the same group as In(3+) but with a much smaller ionic radius. Colossal permittivity of up to 10(4)-10(5) with an acceptably low dielectric loss (tan δ = 0.05-0.1) over broad frequency/temperature ranges is obtained at x = 0.5% after systematic synthesis optimizations. Systematic structural, defect, and dielectric characterizations suggest that multiple polarization mechanisms exist in this system: defect dipoles at low temperature (∼10-40 K), polaronlike electron hopping/transport at higher temperatures, and a surface barrier layer capacitor effect. Together these mechanisms contribute to the overall dielectric properties, especially apparent observed CP. We believe that this work provides comprehensive guidance for the design of new CP materials.

  9. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    PubMed

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  10. Enhanced, robust light-driven H 2 generation by gallium-doped titania nanoparticles

    DOE PAGES

    Luo, Si; Nguyen-Phan, Thuy-Duong; Vovchok, Dimitriy; ...

    2017-12-14

    The splitting of water into molecular hydrogen and oxygen with the use of renewable solar energy is considered one of the most promising routes to yield sustainable fuel. In this paper, we report the H 2 evolution performance of gallium doped TiO 2 photocatalysts with varying degrees of Ga dopant. The gallium(III) ions induced significant changes in the structural, textural and electronic properties of TiO 2 nanoparticles, resulting in remarkably enhanced photocatalytic activity and good stability for H 2 production. Ga 3+ ions can act as hole traps that enable a large number of excited electrons to migrate towards themore » TiO 2 surface, thereby facilitating electron transfer and charge separation. Additionally, the cationic dopant and its induced defects might introduce a mid-gap state, promoting electron migration and prolonging the lifetime of charge carrier pairs. We have discovered that the optimal Ga dopant concentration was 3.125 at% and that the incorporation of platinum (0.5 wt%) as a co-catalyst further improved the H 2 evolution rate up to 5722 μmol g -1 h -1. Pt not only acts as an electron sink, drastically increasing the electron/hole pair lifetime, but it also creates an intimate contact at the heterojunction between Pt and Ga-TiO 2, thus improving the interfacial electron transfer process. Finally, these catalyst design strategies provide new ways of designing transition metal photocatalysts that improve green fuel production from renewable solar energy and water.« less

  11. Red shifts of the Eg(1) Raman mode of nanocrystalline TiO2:Er monoliths grown by sol-gel process

    NASA Astrophysics Data System (ADS)

    Palomino-Merino, R.; Trejo-Garcia, P.; Portillo-Moreno, O.; Jiménez-Sandoval, S.; Tomás, S. A.; Zelaya-Angel, O.; Lozada-Morales, R.; Castaño, V. M.

    2015-08-01

    Nanocrystalline monoliths of Er doped TiO2 were prepared by the sol-gel technique, by controlling the Er-doping levels into the TiO2 precursor solution. As-prepared and annealed in air samples showed the anatase TiO2 phase. The average diameter of the nanoparticles ranged from 19 to 2.6 nm as the nominal concentration of Er varies from 0% to 7%, as revealed by EDS analysis in an electron microscope. Photo Acoustic Spectroscopy (PAS) allowed calculate the forbidden band gap, evidencing an absorption edge at around 300 nm, attributed to TiO2 and evidence of electronic transitions or Er3+. The Raman spectra, corresponding to the anatase phase, show the main phonon mode Eg(1) band position at 144 cm-1 with a red shift for the annealing samples.

  12. Selection of a novel peptide aptamer with high affinity for TiO2-nanoparticle through a direct electroporation with TiO2-binding phage complexes.

    PubMed

    Inoue, Ippei; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yasueda, Hisashi

    2016-11-01

    We have developed an easy and rapid screening method of peptide aptamers with high affinity for a target material TiO 2 using M13 phage-display and panning procedure. In a selection step, the phage-substrate complexes and Escherichia coli cells were directly applied by electric pulse for electroporation, without separating the objective phages from the TiO 2 nanoparticles. Using this simple and rapid method, we obtained a novel peptide aptamer (named ST-1 with the sequence AYPQKFNNNFMS) with highly strong binding activity for TiO 2 . A cage-shaped protein fused with both ST-1 and an available carbon nanotube-affinity peptide was designed and produced in E. coli. The multi-functional supraprotein could efficiently mineralize a titanium-compound around the surface of single-wall carbon nanotubes (SWNTs), indicating that the ST-1 is valuable in the fabrication of nano-composite materials with titanium-compounds. The structural analysis of ST-1 variants indicated the importance of the N-terminal region (as a motif of AXPQKX 6 S) of the aptamer in the TiO 2 -binding activity. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Influence of Nb-doped TiO2 blocking layers as a cascading band structure for enhanced photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Ryul; Oh, Dong-Hyeun; Ahn, Hyo-Jin

    2018-03-01

    Nb-doped TiO2 (Nb-TiO2) blocking layers (BLs) were developed using horizontal ultrasonic spray pyrolysis deposition (HUSPD). In order to improve the photovoltaic properties of the dye-sensitized solar cells (DSSCs), we optimized the Nb doping level of the Nb-TiO2 BLs by controlling the Nb/Ti molar ratio (0, 5, 6, and 7) of the precursor solution for HUSPD. Compared to bare TiO2 BLs, the Nb-TiO2 BLs formed a cascading band structure using the positive shift of the conduction band minimum of the Nb-TiO2 positioned between fluorine-doped tin oxide (FTO) and TiO2. This results in the increase of the potential current and the suppression of the electron recombination. Hence, it led to the improvement of the electrical conductivity, due to the increased electron concentration by the Nb doping into TiO2. Therefore, the DSSC fabricated with the Nb-TiO2 BLs at a Nb/Ti molar ratio of 6 showed superior photoconversion efficiency (∼7.50 ± 0.20%) as a result of the improved short-circuit current density. This is higher than those with the other Nb-TiO2 BLs and without BL. This improvement of the photovoltaic properties for the DSSCs can be attributed to the synergistic effects of uniform and compact BL relative to the prevention of the backward electron transport at the FTO/electrolyte interface, efficient electron transport at interfaces relative to a cascading band structure of FTO/Nb-TiO2/TiO2 multilayers and the facilitated electron transport at the BLs relative to the increased electrical conductivity of the optimized Nb-TiO2 BLs.

  14. Role of hydrothermal temperature on crystallinity, photoluminescence, photocatalytic and gas sensing properties of TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Malligavathy, M.; Iyyapushpam, S.; Nishanthi, S. T.; Padiyan, D. Pathinettam

    2018-04-01

    TiO2 nanoparticles were synthesised by hydrothermal method. The degree of crystallinity and phase purity were confirmed from the Raman spectra and X-ray diffraction. By increasing the hydrothermal temperature, crystallinity and AC conductivity of the TiO2 nanoparticles increase. Nitrogen adsorption-desorption measurements confirmed that the samples were mesoporous with an average pore diameter of 4.4-7.45 nm. Photocatalytic activity of TiO2 nanoparticles was evaluated and the sample hydrothermally treated at 160°C has the highest photocatalytic activity. In gas sensing measurements, sensitivity increases as a function of concentration and the response to ethanol vapour was better compared to other gases for the sample synthesised at 160°C.

  15. Disruption of Autolysis in Bacillus subtilis using TiO2 Nanoparticles

    PubMed Central

    McGivney, Eric; Han, Linchen; Avellan, Astrid; VanBriesen, Jeanne; Gregory, Kelvin B.

    2017-01-01

    In contrast to many nanotoxicity studies where nanoparticles (NPs) are observed to be toxic or reduce viable cells in a population of bacteria, we observed that increasing concentration of TiO2 NPs increased the cell survival of Bacillus subtilis in autolysis-inducing buffer by 0.5 to 5 orders of magnitude over an 8 hour exposure. Molecular investigations revealed that TiO2 NPs prevent or delay cell autolysis, an important survival and growth-regulating process in bacterial populations. Overall, the results suggest two potential mechanisms for the disruption of autolysis by TiO2 NPs in a concentration dependent manner: (i) directly, through TiO2 NP deposition on the cell wall, delaying the collapse of the protonmotive-force and preventing the onset of autolysis; and (ii) indirectly, through adsorption of autolysins on TiO2 NP, limiting the activity of released autolysins and preventing further lytic activity. Enhanced darkfield microscopy coupled to hyperspectral analysis was used to map TiO2 deposition on B. subtilis cell walls and released enzymes, supporting both mechanisms of autolysis interference. The disruption of autolysis in B. subtilis cultures by TiO2 NPs suggests the mechanisms and kinetics of cell death may be influenced by nano-scale metal oxide materials, which are abundant in natural systems. PMID:28303908

  16. Direct isolation of flavonoids from plants using ultra-small anatase TiO2 nanoparticles

    PubMed Central

    Kurepa, Jasmina; Nakabayashi, Ryo; Paunesku, Tatjana; Suzuki, Makoto; Saito, Kazuki; Woloschak, Gayle E.; Smalle, Jan A.

    2013-01-01

    Summary Surface functionalization of nanoparticles has become an important tool for the in vivo delivery of bioactive agents to their target sites. Here we describe the reverse strategy, nanoharvesting, in which nanoparticles are used as a tool to isolate and enrich bioactive compounds from living cells. Anatase TiO2 nanoparticles smaller than 20 nm form strong bonds with molecules carrying enediol and especially catechol groups. We show that these nanoparticles can enter plant cells, conjugate enediol and catechol group-rich flavonoids in situ, and exit plant cells as flavonoid-nanoparticle conjugates. The source plant tissues remain viable after treatment. As predicted by the surface chemistry of anatase TiO2 nanoparticles, the quercetin-based flavonoids were enriched amongst the nanoharvested flavonoid species. Nanoharvesting eliminates the use of organic solvents, allows spectral identification of the isolated compounds, and offers a new avenue for the use of nanomaterials for the coupled isolation and testing of bioactive properties of plant-made compounds. PMID:24147867

  17. Degradation of Direct Black 38 dye under visible light and sunlight irradiation by N-doped anatase TIO₂ as photocatalyst.

    PubMed

    Collazzo, Gabriela Carvalho; Foletto, Edson Luiz; Jahn, Sérgio Luiz; Villetti, Marcos Antônio

    2012-05-15

    The N-doped TiO(2) photocatalyst was prepared by calcination of a hydrolysis product composed of titanium (IV) isopropoxide with ammonia as the precipitator. X-ray diffraction, surface area, XPS and UV-vis spectra analyses showed a nanosized anatase structure and the appearance of a new absorption band in the visible region caused by nitrogen doping. The degradation of Direct Black 38 dye on the nitrogen-doped TiO(2) photocatalyst was investigated under visible light and sunlight irradiation. The N-doped anatase TiO(2) demonstrated excellent photocatalytic activity under visible light. Under sunlight irradiation, the N-doped sample showed slightly higher activity than that of the non-doped sample. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Evaluation of the photocatalytic activity of Ln3+-TiO2 nanomaterial using fluorescence technique for real wastewater treatment.

    PubMed

    Saif, M; Aboul-Fotouh, S M K; El-Molla, S A; Ibrahim, M M; Ismail, L F M

    2014-07-15

    Evaluation the photocatalytic activity of different Ln(3+) modified TiO2 nanomaterials using fluorescence based technique has rarely been reported. In the present work, xmol Ln(3+) modified TiO2 nanomaterials (Ln = Nd(3+), Sm(3+), Eu(3+), Gd(3+), Dy(3+) and Er(3+) ions; x = 0.005, 0.008, 0.01, 0.02 and 0.03) were synthesized by sol-gel method and characterized using different advanced techniques. The photocatalytic efficiency of the modified TiO2 expressed in the charge carrier separation and OH radicals formation were assigned using TiO2 fluorescence quenching and fluorescence probe methods, respectively. The obtained fluorescence measurements confirm that doping treatment significantly decreases the electron-hole recombination probability in the obtained Ln(3+)/TiO2. Moreover, the rate of OH radicals formation is increased by doping. The highly active nanoparticles (0.02Gd(3+)/TiO2 and 0.01Eu(3+)/TiO2) were applied for industrial wastewater treatment using solar radiation as a renewable energy source. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Lithiation Thermodynamics and Kinetics of the TiO 2 (B) Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xiao; Liu, Zheng; Fischer, Michael G.

    TiO2 (B) has attracted a lot of attention in recent years because it exhibits the largest capacity among all studied titania polymorphs with high rate performance for Li intercalation achieved when this material is nanostructured. However, due to the complex nature of its lithiation mechanism and practical challenges in probing Li local environments in nanostructured materials, a definitive understanding of the lithiation thermodynamics has yet to be established. A comprehensive mechanistic investigation of the TiO2 (B) nanoparticles is therefore presented using a combination of in situ / operando X-ray pair distribution function (PDF) and electrochemical techniques. The discharge begins withmore » surface reactions involving surface hydroxyl groups. Such reactions contribute to the capacity loss and take place in parallel with Li insertion into the near-surface region of the nanoparticles. The Li bulk insertion starts with a single-phase reaction into the A2 site, a position adjacent to the b channel. A change of the Li diffusion pathway from that along this open channel to that along the c-direction is likely to occur at the composition of Li0.25TiO2 until Li0.5TiO2 is attained, leading to a two-step A2-site incorporation with one step kinetically distinct from the other. Subsequent Li insertion involves C’ site, a position situated inside the channel, and follows a rapid two-phase reaction to form Li0.75TiO2. Due to the high diffusion barrier associated with the further lithiation, Li insertion into the A1 site, another position adjacent to the channel neighboring the A2 sites, is kinetically restricted. It can be promoted by either nanostructuring or raising the operating temperature, the latter however triggering concurrent electrolyte decomposition giving rise to additional capacity loss. This study not only provides compelling experimental evidence for the unresolved reaction thermodynamics of nanoparticulate TiO2 (B), but also serves as a strong

  20. Surface plasmon resonance effect of silver nanoparticles on a TiO2 electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jung, Haeng-Yun; Yeo, In-Seon; Kim, Tae-Un; Ki, Hyun-Chul; Gu, Hal-Bon

    2018-02-01

    In this study, we exploit local surface plasmon resonance (LSPR) in order to improve the efficiency of dye-sensitized solar cells (DSSCs). In order to investigate the effect of LSPR, Ag nanoparticles of several sizes were formed using electro-beam equipment; sizes were varied by changing the annealing time. DSSCs were fabricated by coating Ag nanoparticles onto a TiO2 thin film. Finally, TiO2 nanoparticles were layered onto the Ag nanoparticles via a titanium tetra-isopropoxide (TTIP) treatment. This study used nanoparticle-coated TiO2 thin films as photoelectrodes, and manufactured the cell in the unit of the DSSCs. We compared the behavior of the electrical properties of DSSCs depending on the presence or absence of Ag nanoparticles, as well as on the nanoparticle size. The Ag particles did not affect dye adsorption because the content of Ag particles is very low (0.13%) compared to that in TiO2 in the photoelectrode. The DSSCs with LSPR showed increased electric current density compared to those without LSPR, and improved the solar conversion efficiency (η) by 24%. The current density of the DSSCs increased because the light absorption of the dye increased. Therefore, we determined that LSPR affects the electrical properties of DSSCs.

  1. Effect of silver-doping on the crystal structure, morphology and photocatalytic activity of TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Barakat, N. A. M.; Kim, H. Y.

    2012-09-01

    In this study, effect of sliver-doping on the crystal structure, the nanofibrous morphology and the photocatalytic activity of titanium oxide nanofibers have been investigated. Silver-doped TiO2 nanofibers having different silver contents were prepared by calcination of electrospun nanofiber mats consisting of silver nitrate, titanium isopropoxide and poly(vinyl acetate) at 600 °C. The results affirmed formation of silver-doped TiO2 nanofibers composed of anatase and rutile when the silver nitrate content in the original electrospun solution was more than 3 wt%. The rutile phase content was directly proportional with the AgNO3 concentration in the electrospun solution. Negative impact of the silver-doping on the nanofibrous morphology was observed as increase the silver content caused to decrease the aspect ratio, i.e. producing nanorods rather nanofibers. However, silver-doping leads to modify the surface roughness. Study of the photocatalytic degradation of methylene blue dye clarified that increase the silver content strongly enhances the dye oxidation process.

  2. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells.

    PubMed

    Kim, In-Sun; Baek, Miri; Choi, Soo-Jin

    2010-05-01

    The increased applications of nanoparticles in a wide range of industrial fields raise the concern about their potential toxicity to human. The aim of this study was to assess and compare the toxicity of four different oxide nanoparticles (Al2O3, CeO2, TiO2 and ZnO) to human lung epithelial cells, A549 carcinoma cells and L-132 normal cells, in vitro. We focused on the toxicological effects of the present nanoparticles on cell proliferation, cell viability, membrane integrity and oxidative stress. The long-term cytotoxicity of nanoparticles was also evaluated by employing the clonogenic assay. Among four nanoparticles tested, ZnO exhibited the highest cytotoxicity in terms of cell proliferation, cell viability, membrane integrity and colony formation in both cell lines. Al2O3, CeO2 and TiO2 showed little adverse effects on cell proliferation and cell viability. However, TiO2 induced oxidative stress in a concentration- and time-dependent manner. CeO2 caused membrane damage and inhibited colony formation in long-term, but with different degree depending on cell lines. Al2O3 seems to be less toxic than the other nanoparticles even after long time exposure. These results highlight the need for caution during manufacturing process of nanomaterials as well as further investigation on the toxicity mechanism.

  3. ZnO, TiO(2), SiO(2,) and Al(2)O(3) nanoparticles-induced toxic effects on human fetal lung fibroblasts.

    PubMed

    Zhang, Xiao Qiang; Yin, Li Hong; Tang, Meng; Pu, Yue Pu

    2011-12-01

    This study aims to investigate and compare the toxic effects of four types of metal oxide (ZnO, TiO(2), SiO(2,) and Al(2)O(3)) nanoparticles with similar primary size (∼20 nm) on human fetal lung fibroblasts (HFL1) in vitro. The HFL1 cells were exposed to the nanoparticles, and toxic effects were analyzed by using MTT assay, cellular morphology observation and Hoechst 33 258 staining. The results show that the four types of metal oxide nanoparticles lead to cellular mitochondrial dysfunction, morphological modifications and apoptosis at the concentration range of 0.25-1.50 mg/mL and the toxic effects are obviously displayed in dose-dependent manner. ZnO is the most toxic nanomaterials followed by TiO(2), SiO(2), and Al(2)O(3) nanoparticles in a descending order. The results highlight the differential cytotoxicity associated with exposure to ZnO, TiO(2), SiO(2), and Al(2)O(3) nanoparticles, and suggest an extreme attention to safety utilization of these nanomaterials. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  4. Solution-combustion synthesis of doped TiO2 compounds and its potential antileishmanial activity mediated by photodynamic therapy.

    PubMed

    Lopera, A A; Velásquez, A M A; Clementino, L C; Robledo, S; Montoya, A; de Freitas, L M; Bezzon, V D N; Fontana, C R; Garcia, C; Graminha, M A S

    2018-06-01

    Photodynamic therapy has emerged as an alternative treatment for cutaneous leishmaniasis, and compounds with photocatalytic behavior are promising candidates to develop new therapeutic strategies for the treatment of this parasitic disease. Titanium dioxide TiO 2 is a semiconductor ceramic material that shows excellent photocatalytic and antimicrobial activity under Ultraviolet irradiation. Due to the harmful effects of UV radiation, many efforts have been made in order to enhance both photocatalytic and antimicrobial properties of TiO 2 in the visible region of the spectrum by doping or through modifications in the route of synthesis. Herein, Fe-, Zn-, or Pt- doped TiO 2 nanostructures were synthesized by solution-combustion route. The obtained compounds presented aggregates of 100 nm, formed by particles smaller than 20 nm. Doping compounds shift the absorption spectrum towards the visible region, allowing production of reactive oxygen species in the presence of oxygen and molecular water when the system is irradiated in the visible spectrum. The Pt (EC 50  = 18.2 ± 0.8 μg/mL) and Zn (EC 50  = 16.4 ± 0.3 μg/mL) -doped TiO 2 presented the higher antileishmanial activities under visible irradiation and their application as photosensitizers in photodynamic therapy (PDT) strategies for the treatment of cutaneous leishmaniasis should be considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2016-08-01

    The focus of this investigation is to evaluate the phytotoxicity of selected metal oxide nanoparticles and microparticles as a function of maize seed germination and root elongation under different growth conditions (Petri plate, cotton and soil). The results of seed germination and root elongation experiments reveal that all the growth conditions show almost similar results. Alumina (Al2O3) and titania (TiO2) nanoparticles significantly reduce the germination percentage, whereas silica (SiO2) nanoparticles and microparticles enhance the same. The results of nanoparticles and microparticles of zirconia (ZrO2) are found to be same as those of controls. Root elongation is enhanced by SiO2 nanoparticles and microparticles treatment, whereas inhibition is observed with Al2O3 and TiO2 nanoparticles and microparticles. The X-ray fluorescence spectrometry data of the treated and control seed samples show that seeds uptake SiO2 particles to a greater extent followed by TiO2, Al2O3 and ZrO2. In addition, the uptake of nanoparticles is found to be greater than that of microparticles. Thus, the tested metal oxides penetrated seeds at the nanoscale as compared with the microscale. This study clarifies phytotoxicity of nanoparticles treated in different growth substrates and highlights the impact of nanoparticles on environment and agricultural systems.

  6. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    PubMed

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  7. Characteristics and anticorrosion performance of Fe-doped TiO2 films by liquid phase deposition method

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Xu, Chao; Feng, ZuDe

    2014-09-01

    Fe-doped TiO2 thin films were fabricated by liquid phase deposition (LPD) method, using Fe(III) nitrate as both Fe element source and fluoride scavenger instead of commonly-used boric acid (H3BO3). Scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis spectrum were employed to examine the effects of Fe element on morphology, structure and optical characteristics of TiO2 films. The as-prepared films were served as photoanode applied to photogenerated cathodic protection of SUS304 stainless steel (304SS). It was observed that the photoelectrochemical properties of the as-prepared films were enhanced with the addition of Fe element compared to the undoped TiO2 film. The highest photoactivity was achieved for Ti13Fe (Fe/Ti = 3 molar ratio) film prepared in precursor bath containing 0.02 M TiF4 + 0.06 M Fe(NO3)3 under white-light illumination. The effective anticorrosion behaviors can be attributed to the Fe element incorporation which decreases the probability of photogenerated charge-carrier recombination and extends the light response range of Fe-doped TiO2 films appeared to visible-light region.

  8. TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid.

    PubMed

    Ribao, Paula; Rivero, Maria J; Ortiz, Inmaculada

    2017-05-01

    Noble metals have been used to improve the photocatalytic activity of TiO 2 . Noble metal nanoparticles prevent charge recombination, facilitating electron transport due to the equilibration of the Fermi levels. Furthermore, noble metal nanoparticles show an absorption band in the visible region due to a high localized surface plasmon resonance (LSPR) effect, which contributes to additional electron movements. Moreover, systems based on graphene, titanium dioxide, and noble metals have been used, considering that graphene sheets can carry charges, thereby reducing electron-hole recombination, and can be used as substrates of atomic thickness. In this work, TiO 2 -based nanocomposites were prepared by blending TiO 2 with noble metals (Pt and Ag) and/or graphene oxide (GO). The nanocomposites were mainly characterized via transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), Raman spectroscopy, and photocurrent analysis. Here, the photocatalytic performance of the composites was analyzed via oxidizing dichloroacetic acid (DCA) model solutions. The influence of the noble metal load on the composite and the ability of the graphene sheets to improve the photocatalytic activity were studied, and the composites doped with different noble metals were compared. The results indicated that the platinum structures show the best photocatalytic degradation, and, although the presence of graphene oxide in the composites is supposed to enhance their photocatalytic performance, graphene oxide does not always improve the photocatalytic process. Graphical abstract It is a schematic diagram. Where NM is Noble Metal and LSPR means Localized Surface Plasmon Resonance.

  9. Synthesis of Au/TiO2 Core-Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Woo; Lim, Young-Min; Tripathy, Suraj Kumar; Kim, Byoung-Gyu; Lee, Min-Sang; Yu, Yeon-Tae

    2007-04-01

    On the synthesis of Au/TiO2 core-shell structure nanoparticles, the effect of the concentration of Ti4+ on the morphology and optical property of Au/TiO2 core-shell nanoparticles was examined. A gold colloid was prepared by mixing HAuCl4\\cdot4H2O and C6H5Na3\\cdot2H2O. Titanium stock solution was prepared by mixing solutions of titanium(IV) isopropoxide (TTIP) and triethanolamine (TEOA). The concentration of the Ti4+ stock solution was adjusted to 0.01-0.3 mM, and then the gold colloid was added to the Ti4+ stock solution. Au/TiO2 core-shell structure nanoparticles could be prepared by the hydrolysis of the Ti4+ stock solution at 80 °C. The size of the as-prepared Au nanoparticles was 15 nm. The thickness of the TiO2 shell on the surface of gold particles was about 10 nm. The absorption peak of the Au/TiO2 core-shell nanoparticles shifted towards the red end of the spectrum by about 3 nm because of the formation of the TiO2 shell on the surface of the gold particles. The crystal structure of the TiO2 shell showed an anatase phase. The increase in the Au crystallite size of the Au/TiO2 nanoparticles with increasing heat treatment temperature is smaller than that in the pure Au nanoparticles. This may be due to the encapsulation of Au particles with the TiO2 shell that prevents the growth of the nanoparticle nucleation.

  10. TiO2 film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    He, Lifei; Chen, Li; Zhao, Yue; Chen, Weilin; Shan, Chunhui; Su, Zhongmin; Wang, Enbo

    2016-10-01

    In this work, two kinds of polyoxometalate (POM) nanoparticles with controlled shapes and structures were synthesized by micelle directed method and then composited with TiO2 via calcination to remove the surfactants owing to the excellent electronic storage and transmission ability of POM, finally obtaining two kinds of TiO2 composites with highly dispersed and small-sized POM nanoparticles (∼1 nm). The TiO2 composites were then induced into the photoanodes of dye-sensitized (N719) solar cells (DSSCs). The separation of electron-holes becomes more favorable due to the nanostructure and high dispersion of POM which provide more active sites than pure POM tending to agglomeration. The TiO2 composite photoanodes finally yielded the power conversion efficiency (PCE) of 8.4% and 8.2%, respectively, which were 42% and 39% higher than the pristine TiO2 based anodes. In addition, the mechanisms of POM in DSSC are proposed.

  11. Non-equilibrium nitrogen DC-arc plasma treatment of TiO2 nanopowder.

    PubMed

    Suzuki, Yoshikazu; Gonzalez-Aguilar, José; Traisnel, Noel; Berger, Marie-Hélène; Repoux, Monique; Fulcheri, Laurent

    2009-01-01

    Non-equilibrium nitrogen DC-arc plasma treatment of a commercial TiO2 anatase nanopowder was examined to obtain nitrogen-doped TiO2. By using a non-thermal discharge at low current (150 mA) and high voltage (1200 V) using pure N2 gas, light yellowish-gray TiO2 powder was successfully obtained within a short period of 5-10 min. XPS and TEM-EELS studies confirmed the existence of doped nitrogen. Due to the relatively mild conditions (plasma power of 180 W), metastable anatase structure and fine crystallite size of TiO2 (ca. 10 nm) were maintained after the plasma treatment. The in-flight powder treatment system used in this study is promising for various type of powder treatment.

  12. Antimicrobial effect of TiO2 doped with Ag and Cu on Escherichia coli and Pseudomonas putida

    NASA Astrophysics Data System (ADS)

    Angelov, O.; Stoyanova, D.; Ivanova, I.

    2016-10-01

    Antimicrobial effect of TiO2 doped with Ag and Cu on Gram-negative bacteria Escherichia coli and Pseudomonas putida is studied. The thin films are deposited on glass substrates without heating during the deposition by r.f. magnetron co-sputtering of TiO2 target and pieces of Ag and Cu. The studied films, thickness about 65 nm, were as deposited and annealed (5200C, 4h, N2+5%H2, 4Pa). The as deposited thin films TiO2:Ag:Cu have band gap energy of 3.56 eV little higher than the band gap of crystalline anatase TiO2 which can be explained with the quantum effect of the granular structure of r.f. magnetron sputtered films. The annealed samples have band gap of 2.52 eV due to formation of donor levels from Ag and Cu atoms near the bottom of the conduction band. The toxic effect was determined through the classical Koch's method and the optical density measurements at λ=610 nm. The as deposited TiO2:Ag:Cu thin films demonstrate stronger inhibition effect - bactericidal for P. putida and bacteriostatic for E. coli (up to the 6th hour) in comparison with the annealed samples. The both methods of study show the same trends of the bacterial growth independently of their different sensitivity which confirms the observed effect.

  13. Radiation-induced synthesis of Fe-doped TiO 2: Characterization and catalytic properties

    NASA Astrophysics Data System (ADS)

    Bzdon, Sylwia; Góralski, Jacek; Maniukiewicz, Waldemar; Perkowski, Jan; Rogowski, Jacek; Szadkowska-Nicze, Magdalena

    2012-03-01

    Fe-doped TiO 2 catalyst was prepared by wet impregnation, using TiO 2 P25 Degussa as a precursor and Fe(NO 3) 3 as a dopant, followed by irradiation with an electron beam or γ-rays. Surface properties of Fe/TiO 2 samples were examined by BET, XRD, ToF-SIMS, and TPR methods. The photocatalytic activity towards destruction of the anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), in aqueous solutions was higher for the irradiated Fe/TiO 2 catalysts than for bare TiO 2 P25 or that calcined at 500 °C. The results show that irradiated catalysts exhibit a more uniform texture with high dispersion of iron species. An enhancement of the activity of irradiated Fe/TiO 2 systems can be attributed to the synergetic effects of small crystallite size and homogenous distribution of iron species including FeTiO 3 phase.

  14. MS2 inactivation by TiO2 nanoparticles in the presence of quartz sand

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2017-04-01

    Virus inactivation by nanoparticles (NPs) is hypothesized to affect virus fate and transport in the subsurface. This study examines the interactions of viruses with titanium dioxide (TiO2) anatase NPs, which is a good disinfectant with unique physiochemical properties, using three different virus concentrations. The bacteriophage MS2 was used as a model virus. A series of batch experiments of MS2 inactivation by TiO2 NPs were conducted at room temperature (25 °C), in the presence of quartz sand, with and without ambient light. The virus inactivation experimental data were satisfactorily fitted with a pseudo-first order expression with a time dependent rate coefficient. Quartz sand was shown to affect MS2 inactivation by TiO2 NPs both in the presence and absence of ambient light, because, under the experimental conditions of this study, the quartz sand offers a protection to the attached MS2 against inactivation. Moreover, in most cases similar inactivation rates were observed in reactor and control tubes (absence of TiO2 NPs) suggesting that low TiO2 concentration (10 mg/L) affects only slightly MS2 inactivation with and without ambient light.

  15. Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes.

    PubMed

    Hudari, Felipe F; Bessegato, Guilherme G; Bedatty Fernandes, Flávio C; Zanoni, Maria V B; Bueno, Paulo R

    2018-06-19

    TiO 2 nanotube electrodes were self-doped by electrochemical cathodic polarization, potentially converting Ti 4+ into Ti 3+ , and thereby increasing both the normalized conductance and capacitance of the electrodes. One-hundred (from 19.2 ± 0.1 μF cm -2 to 1.9 ± 0.1 mF cm -2 for SD-TNT) and two-fold (from ∼6.2 to ∼14.4 mS cm -2 ) concomitant increases in capacitance and conductance, respectively, were achieved in self-doped TiO 2 nanotubes; this was compared with the results for their undoped counterparts. The increases in the capacitance and conductance indicate that the Ti 3+ states enhance the density of the electronic states; this is attributed to an existing relationship between the conductance and capacitance for nanoscale structures built on macroscopic electrodes. The ratio between the conductance and capacitance was used to detect and quantify, in a reagentless manner, the triamterene (TRT) diuretic by designing an appropriate doping level of TiO 2 nanotubes. The sensitivity was improved when using immittance spectroscopy (Patil et al. Anal. Chem. 2015, 87, 944-950; Bedatty Fernandes et al. Anal. Chem. 2015, 87, 12137-12144) (2.4 × 10 6 % decade -1 ) compared to cyclic voltammetry (5.8 × 10 5 % decade -1 ). Furthermore, a higher linear range from 0.5 to 100 μmol L -1 (5.0 to 100 μmol L -1 for cyclic voltammetry measurements) and a lower limit-of-detection of approximately 0.2 μmol L -1 were achieved by using immittance function methodology (better than the 4.1 μmol L -1 obtained by using cyclic voltammetry).

  16. Thermostable photocatalytically active TiO2 anatase nanoparticles

    NASA Astrophysics Data System (ADS)

    Qi, Fei; Moiseev, Anna; Deubener, Joachim; Weber, Alfred

    2011-03-01

    Anatase is the low-temperature (300-550 °C) crystalline polymorph of TiO2 and it transforms to rutile upon heating. For applications utilizing the photocatalytic properties of nanoscale anatase at elevated temperatures (over 600 °C) the issue of phase stabilisation is of major interest. In this study, binary TiO2/SiO2 particles were synthesized by a flame aerosol process with TiCl4 and SiCl4 as precursors. The theoretical Si/Ti ratio was varied in the range of 0.7-1.3 mol/mol. The synthesized TiO2/SiO2 samples were heat treated at 900 and 1,000 °C for 3 h to determine the thermostability of anatase. Pyrogenic TiO2 P25 (from Evonik/Degussa, Germany) widely applied as photocatalyst was used as non-thermostabilized reference material for comparison of photocatalytic activity of powders. Both the non-calcinated and calcinated powders were characterized by means of XRD, TEM and BET. Photocatalytic activity was examined with dichloroacetic acid (DCA) chosen as a model compound. It was found that SiO2 stabilized the material retarding the collapse of catalyst surface area during calcination. The weighted anatase content of 85% remains completely unchanged even after calcination at 1,000 °C. The presence of SiO2 layer/bridge as spacer between TiO2 particles freezes the grain growth: the average crystallite size increased negligibly from 17 to 18 nm even during the calcination at 1,000 °C. Due to the stabilizing effect of SiO2 the titania nanoparticles calcinated at 900 and 1,000 °C show significant photocatalytic activity. Furthermore, the increase in photocatalytic activity with calcination temperature indicates that the titania surface becomes more accessible either due to intensified cracking of the SiO2 layer or due to enhanced transport of SiO2 into the necks thus releasing additional titania surface.

  17. Phototoxicity of TiO2 nanoparticles to zebrafish (Danio rerio) is dependent on life stage.

    PubMed

    Ma, Hongbo; Diamond, Stephen A

    2013-09-01

    Zebrafish embryos have been used increasingly to evaluate nanomaterial toxicity. The present study compared phototoxicity of TiO2 nanoparticles with zebrafish at 4 life stages (embryos, yolk-sac larvae, free-swimming larvae, and juvenile) under simulated sunlight using the 96-h standard toxicity assay. Yolk-sac larvae were found to be the most sensitive to TiO2 phototoxicity, suggesting that the widely used zebrafish embryo test may not fully or accurately predict hazard and risk of these nanoparticles to small fish. Copyright © 2013 SETAC.

  18. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.

    PubMed

    Aruoja, Villem; Dubourguier, Henri-Charles; Kasemets, Kaja; Kahru, Anne

    2009-02-01

    Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 approximately 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50=35.9 mg Ti/l) and bulk CuO (EC50=11.55 mg Cu/l) were less toxic than their nano formulations (EC50=5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (approximately 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions. To our knowledge, this is one of the first systematic studies on effects of metal oxide nanoparticles on algal growth and the first describing toxic effects of nano CuO towards algae.

  19. Photocatalytic characteristic and photodegradation kinetics of toluene using N-doped TiO2 modified by radio frequency plasma.

    PubMed

    Shie, Je-Lueng; Lee, Chiu-Hsuan; Chiou, Chyow-San; Chen, Yi-Hung; Chang, Ching-Yuan

    2014-01-01

    This study investigates the feasibility of applications of the plasma surface modification of photocatalysts and the removal of toluene from indoor environments. N-doped TiO2 is prepared by precipitation methods and calcined using a muffle furnace (MF) and modified by radio frequency plasma (RF) at different temperatures with light sources from a visible light lamp (VLL), a white light-emitting diode (WLED) and an ultraviolet light-emitting diode (UVLED). The operation parameters and influential factors are addressed and prepared for characteristic analysis and photo-decomposition examination. Furthermore, related kinetic models are established and used to simulate the experimental data. The characteristic analysis results show that the RF plasma-calcination method enhanced the Brunauer Emmett Teller surface area of the modified photocatalysts effectively. For the elemental analysis, the mass percentages of N for the RF-modified photocatalyst are larger than those of MF by six times. The aerodynamic diameters of the RF-modifiedphotocatalyst are all smaller than those of MF. Photocatalytic decompositions of toluene are elucidated according to the Langmuir-Hinshelwood model. Decomposition efficiencies (eta) of toluene for RF-calcined methods are all higher than those of commercial TiO2 (P25). Reaction kinetics ofphoto-decomposition reactions using RF-calcined methods with WLED are proposed. A comparison of the simulation results with experimental data is also made and indicates good agreement. All the results provide useful information and design specifications. Thus, this study shows the feasibility and potential use of plasma modification via LED in photocatalysis.

  20. Photocatalytic degradation of furfural in aqueous solution by N-doped titanium dioxide nanoparticles.

    PubMed

    Veisi, Farzaneh; Zazouli, Mohammad Ali; Ebrahimzadeh, Mohammad Ali; Charati, Jamshid Yazdani; Dezfoli, Amin Shiralizadeh

    2016-11-01

    The photocatalytic degradation of furfural in aqueous solution was investigated using N-doped titanium dioxide nanoparticles under sunlight and ultraviolet radiation (N-TiO 2 /Sun and N-TiO 2 /UV) in a lab-scale batch photoreactor. The N-TiO 2 nanoparticles prepared using a sol-gel method were characterized using XRD, X-ray photoelectron spectroscopy (XPS), and SEM analyses. Using HPLC to monitor the furfural concentration, the effect of catalyst dosage, contact time, initial solution pH, initial furfural concentration, and sunlight or ultraviolet radiation on the degradation efficiency was studied. The efficiency of furfural removal was found to increase with increased reaction time, nanoparticle loading, and pH for both processes, whereas the efficiency decreased with increased furfural concentration. The maximum removal efficiencies for the N-TiO 2 /UV and N-TiO 2 /Sun processes were 97 and 78 %, respectively, whereas the mean removal efficiencies were 80.71 ± 2.08 % and 62.85 ± 2.41 %, respectively. In general, the degradation and elimination rate of furfural using the N-TiO 2 /UV process was higher than that using the N-TiO 2 /Sun process.

  1. Characterization of manufactured TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Macé, T.; Vaslin-Reimann, S.; Ausset, P.; Maillé, M.

    2013-04-01

    Technological advances in nanomaterials have allowed the development of new applications in industry, increasing the probability of finding airborne manufactured and engineered nano-objects in the workplace, as well as in ambient air. Scientific studies on health and environmental risks have indicated that airborne nano-objects in ambient air have potential adverse effects on the health of exposed workers and the general population. For regulatory purposes, ambient measurements of particulate matter are based on the determination of mass concentrations for PM10 and PM2.5, as regulated in the European Directive 2008/50/EC. However, this legislation is not suitable for airborne manufactured and engineered nano-objects. Parameters characterising ultrafine particles, such as particle number concentration and size distribution, are under consideration for future health-based legislation, to monitor workplaces and to control industrial processes. Currently, there are no existing regulations covering manufactured airborne nano-objects. There is therefore a clear, unaddressed need to focus on the toxicology and exposure assessment of nano-objects such as titanium dioxide (TiO2), which are manufactured and engineered in large quantities in industry. To perform reliable toxicology studies it is necessary to determine the relevant characteristics of nano-objects, such as morphology, surface area, agglomeration, chemical composition, particle size and concentration, by applying traceable methods. Manufacturing of nanomaterials, and their use in industrial applications, also require traceable characterisation of the nanomaterials, particularly for quality control of the process. The present study arises from the OECD WPMN sponsorship programme, supported by the French Agency for Environmental and Occupational Health Safety (ANSES), in order to develop analytical methods for the characterization of TiO2 nanoparticles in size and count size distribution, based on different

  2. The protective roles of TiO2 nanoparticles against UV-B toxicity in Daphnia magna.

    PubMed

    Liu, Jie; Wang, Wen-Xiong

    2017-09-01

    Aquatic environments are increasingly under environmental stress due to ultraviolet (UV) radiation and potential inputs of nanoparticles with intense application of nanotechnology. In this study, we investigated the interaction between UV-B radiation and titanium nanoparticles (TiO 2 -NPs) in a model freshwater cladoceran Daphnia magna. UV-B toxicity to Daphnia magna was examined when the daphnids were exposed to a range of TiO 2 -NPs concentrations with an initial 5 or 10min of 200μW/cm 2 UV-B radiation. In addition, UV-B toxicity was also examined in the presence of TiO 2 -NPs in the body of daphnids. Our results demonstrated that the daphnid mortality under UV-B radiation decreased significantly in the presence of TiO 2 -NPs both in the water and in the body, indicating that TiO 2 -NPs had some protective effects on D. magna against UV-B. Such protective effect was mainly caused by the blockage of UV-B by TiO 2 -NPs adsorption. UV-B produced reactive oxygen species (ROS) in the water and in the daphnids, which was not sufficient to cause mortality of daphnids over short periods of radiation. Previous studies focused on the effects of TiO 2 -NPs on the toxicity of total UV radiation, and did not attempt to differentiate the potential diverse roles of UV-A and UV-B. Our study indicated that TiO 2 -NPs may conversely protect the UV-B toxicity to daphnids. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Synthesis of TiO2 Nanoparticles from Ilmenite Through the Mechanism of Vapor-Phase Reaction Process by Thermal Plasma Technology

    NASA Astrophysics Data System (ADS)

    Samal, Sneha

    2017-11-01

    Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.

  4. Structure and Formation Mechanism of Black TiO 2 Nanoparticles

    DOE PAGES

    Tian, Mengkun; Mahjouri-Samani, Masoud; Eres, Gyula; ...

    2015-10-27

    The remarkable properties of black TiO 2 are due to its disordered surface shell surrounding a crystalline core. However, the chemical composition and the atomic and electronic structure of the disordered shell and its relationship to the core remain poorly understood. Using advanced transmission electron microscopy methods, we show that the outermost layer of black TiO 2 nanoparticles consists of a disordered Ti 2O 3 shell. The measurements show a transition region that connects the disordered Ti 2O 3 shell to the perfect rutile core consisting first of four to five monolayers of defective rutile, containing clearly visible Ti interstitialmore » atoms, followed by an ordered reconstruction layer of Ti interstitial atoms. Our data suggest that this reconstructed layer presents a template on which the disordered Ti 2O 3 layers form by interstitial diffusion of Ti ions. In contrast to recent reports that attribute TiO 2 band-gap narrowing to the synergistic action of oxygen vacancies and surface disorder of nonspecific origin, our results point to Ti 2O 3, which is a narrow-band-gap semiconductor. In conclusion, as a stoichiometric compound of the lower oxidation state Ti 3+ it is expected to be a more robust atomic structure than oxygen-deficient TiO 2 for preserving and stabilizing Ti 3+ surface species that are the key to the enhanced photocatalytic activity of black TiO 2.« less

  5. Single-step One-pot Synthesis of TiO2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity

    PubMed Central

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Luo, Zhu; Suib, Steven L.; He, Peng; Ding, Guqiao; Zhang, Zhengguo; Sun, Luyi

    2017-01-01

    A hybrid photocatalyst based on anatase TiO2 was designed by doping TiO2 with sulfur and incorporating reduced graphene oxide (TiO2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO2-S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation of methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO2-S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Considering both the facile and scalable reaction to synthesize TiO2-S/rGO hybrid, and its excellent photocatalytic performance, such TiO2-S/rGO hybrids are expect to find practical applications in environmental and energy sectors. PMID:28429736

  6. Single-step One-pot Synthesis of TiO2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity.

    PubMed

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Luo, Zhu; Suib, Steven L; He, Peng; Ding, Guqiao; Zhang, Zhengguo; Sun, Luyi

    2017-04-21

    A hybrid photocatalyst based on anatase TiO 2 was designed by doping TiO 2 with sulfur and incorporating reduced graphene oxide (TiO 2 -S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO 2 -S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO 2 -S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation of methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO 2 -S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Considering both the facile and scalable reaction to synthesize TiO 2 -S/rGO hybrid, and its excellent photocatalytic performance, such TiO 2 -S/rGO hybrids are expect to find practical applications in environmental and energy sectors.

  7. Single-step One-pot Synthesis of TiO2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Luo, Zhu; Suib, Steven L.; He, Peng; Ding, Guqiao; Zhang, Zhengguo; Sun, Luyi

    2017-04-01

    A hybrid photocatalyst based on anatase TiO2 was designed by doping TiO2 with sulfur and incorporating reduced graphene oxide (TiO2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO2-S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation of methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO2-S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Considering both the facile and scalable reaction to synthesize TiO2-S/rGO hybrid, and its excellent photocatalytic performance, such TiO2-S/rGO hybrids are expect to find practical applications in environmental and energy sectors.

  8. First-principles study on codoping effect to enhance photocatalytic activity of anatase TiO2

    NASA Astrophysics Data System (ADS)

    Bai, Yujie; Zhang, Qinfang; Zheng, Fubao; Yang, Yun; Meng, Qiangqiang; Zhu, Lei; Wang, Baolin

    2017-03-01

    Codopant is an effective approach to modify the bandgap and band edge positions of transition metal oxide. Here, the electronic structures as well as the optical properties of pristine, mono-doped (N/P/Sb) and codoped (Sb, N/P) anatase TiO2 have been systematically investigated based on density functional theory calculations. It is found that mono-doped TiO2 exhibits either unoccupied or partially occupied intermediate state within the energy gap, which promotes the recombination of electron-hole pairs. However, the presence of (Sb, N/P) codopant not only effectively reduces the width of bandgap by introducing delocalized occupied intermediate states, but also adjusts the band edge alignment to enhance the hydrogen evolution activity of TiO2. Moreover, the optical absorption spectrum for (Sb, N/P) codoped TiO2, which is favored under oxygen-rich condition, demonstrates the improvement of its visible light absorption. These findings will promote the potential application of (Sb, N/P) codoped TiO2 photocatalysis for water splitting under visible light irradiation.

  9. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.

  10. Temperature-dependent local structural properties of redox Pt nanoparticles on TiO 2 and ZrO 2 supports

    DOE PAGES

    Jeong, Eun -Suk; Park, Chang -In; Jin, Zhenlan; ...

    2015-01-21

    This paper examined the local structural properties of Pt nanoparticles on SiO 2, TiO 2–SiO 2, and ZrO 2–SiO 2 supports to better understand the impact of oxide-support type on the performance of Pt-based catalysts. In situ X-ray absorption fine structure (XAFS) measurements were taken for the Pt L3-edge in a temperature range from 300 to 700 K in He, H 2, and O 2 gas environments. The XAFS measurements demonstrated that Pt atoms were highly dispersed on TiO 2–SiO 2 and ZrO 2–SiO 2 forming pancake-shaped nanoparticles, whereas Pt atoms formed larger particles of hemispherical shapes on SiO 2more » supports. Contrary to the SiO 2 case, the coordination numbers for Pt, Ti, and Zr around Pt atoms on the TiO 2–SiO 2 and ZrO 2–SiO 2 supports were nearly constant from 300 to 700 K under the different gas environments. These results are consistent with the improvements in thermal stability of Pt nanoparticles achieved by incorporating TiO 2 or ZrO 2 on the surface of SiO 2 supports. XAFS analysis further indicated that the enhanced dispersion and stability of Pt were a consequence of the strong metal support interaction via Pt–Ti and Pt–Zr bonds.« less

  11. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  12. Photocatalytic degradation of 17α-ethinylestradiol (EE2) in the presence of TiO2-doped zeolite.

    PubMed

    Pan, Zhong; Stemmler, Elizabeth A; Cho, Hong Je; Fan, Wei; LeBlanc, Lawrence A; Patterson, Howard H; Amirbahman, Aria

    2014-08-30

    Current design limitations and ineffective remediation techniques in wastewater treatment plants have led to concerns about the prevalence of pharmaceutical and personal care products (PPCPs) in receiving waters. A novel photocatalyst, TiO2-doped low-silica X zeolite (TiO2-LSX), was used to study the degradation of the pharmaceutical compound, 17α-ethinylestradiol (EE2). The catalyst was synthesized and characterized using XRD, BET surface analysis, SEM-EDAX, and ICP-OES. The effects of different UV light intensities, initial EE2 concentrations, and catalyst dosages on the EE2 removal efficiency were studied. A higher EE2 removal efficiency was attained with UV-TiO2-LSX when compared with UV-TiO2 or UV alone. The EE2 degradation process followed pseudo-first-order kinetics. A comprehensive empirical model was developed to describe the EE2 degradation kinetics under different conditions using multiple linear regression analysis. The EE2 degradation mechanism was proposed based on molecular calculations, identification of photoproducts using HPLC-MS/MS, and reactive species quenching experiments; the results showed that oxidative degradation pathways initiated by hydroxyl radicals were predominant. This novel TiO2-doped zeolite system provides a promising application for the UV disinfection process in wastewater treatment plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Monitoring the Environmental Impact of TiO2 Nanoparticles Using a Plant-Based Sensor Network

    PubMed Central

    Lenaghan, Scott C.; Li, Yuanyuan; Zhang, Hao; Burris, Jason N.; Stewart, C. Neal; Parker, Lynne E.; Zhang, Mingjun

    2016-01-01

    The increased manufacturing of nanoparticles for use in cosmetics, foods, and clothing necessitates the need for an effective system to monitor and evaluate the potential environmental impact of these nanoparticles. The goal of this research was to develop a plant-based sensor network for characterizing, monitoring, and understanding the environmental impact of TiO2 nanoparticles. The network consisted of potted Arabidopsis thaliana with a surrounding water supply, which was monitored by cameras attached to a laptop computer running a machine learning algorithm. Using the proposed plant sensor network, we were able to examine the toxicity of TiO2 nanoparticles in two systems: algae and terrestrial plants. Increased terrestrial plant growth was observed upon introduction of the nanoparticles, whereas algal growth decreased significantly. The proposed system can be further automated for high-throughput screening of nanoparticle toxicity in the environment at multiple trophic levels. The proposed plant-based sensor network could be used for more accurate characterization of the environmental impact of nanomaterials. PMID:28458617

  14. Correlated vortex pinning in Si-nanoparticle doped MgB 2

    NASA Astrophysics Data System (ADS)

    Kušević, I.; Babić, E.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.

    2004-12-01

    The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB 2 tapes have been measured at temperatures T≥28 K in magnetic fields B≤0.9 T. The irreversibility line Birr( T) for doped tape shows a stepwise variation with a kink around 0.3 T. Such Birr( T) variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field Bϕ) and is very different from a smooth Birr( T) variation in undoped MgB 2 samples. The microstructure studies of nanoparticle doped MgB 2 samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.

  15. Pulsed Laser Ablation-Induced Green Synthesis of TiO2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis.

    PubMed

    Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki

    2016-12-01

    This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO 2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO 2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO 2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO 2 : anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO 2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO 2 nanoparticles.

  16. Characterization, Degradation, and Reaction Pathways of Indoor Toluene over Visible-light-driven S, Zn Co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Chu, H.; Lin, Y. H.; Lin, C. Y.

    2017-01-01

    Sulfur and Zinc co-doped TiO2 prepared by a sol-gel method to degrade toluene under a fluorescent lamp was investigated. The results indicate that S,Zn co-doped TiO2 photocatalysts are mainly nano-size with an anatase phase structure. The degradation reactions of toluene were performed under various operation conditions. The results show that the toluene conversion increases with increasing toluene concentration and decreasing relative humidity. Based on the results of activity test, S0.05Zn0.001/TiO2 was chosen for further studies. The main oxidation products of toluene photodegradation are CO2, H2O, benzyl alcohol, acetone, butadiene and acetic acid. Two possible mechanisms have been developed for photodegradation of toluene in a dry and a humid environment.

  17. Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation.

    PubMed

    Sun, Jianhui; Qiao, Liping; Sun, Shengpeng; Wang, Guoliang

    2008-06-30

    In this paper, the degradation of an azo dye Orange G (OG) on nitrogen-doped TiO2 photocatalysts has been investigated under visible light and sunlight irradiation. Under visible light irradiation, the doped TiO2 nanocatalysts demonstrated higher activity than the commercial Dugussa P25 TiO2, allowing more efficient utilization of solar light, while under sunlight, P25 showed higher photocatalytic activity. According to the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectra analyses, it was found that both the nanosized anatase structure and the appearance of new absorption band in the visible region caused by nitrogen doping were responsible for the significant enhancement of OG degradation under visible light. In addition, the photosensitized oxidation mechanism originated from OG itself was also considered contributing to the higher visible-light-induced degradation efficiency. The effect of the initial pH of the solution and the dosage of hydrogen peroxide under different light sources was also investigated. Under visible light and sunlight, the optimal solution pH was both 2.0, while the optimal dosage of H2O2 was 5.0 and 15.0 mmol/l, respectively.

  18. Design of an efficient photoanode for dye-sensitized solar cells using electrospun one-dimensional GO/N-doped nanocomposite SnO2/TiO2

    NASA Astrophysics Data System (ADS)

    Mohamed, Ibrahim M. A.; Dao, Van-Duong; Yasin, Ahmed S.; Barakat, Nasser A. M.; Choi, Ho-Suk

    2017-04-01

    This study presents the combination of N, graphene oxide (GO) and SnO2 as efficient dopants into TiO2 nanofibers (NFs) photoanode substrate for highly efficient dye-sensitized solar cells (DSCs). The developed NFs are synthesized by electrospinning and hydrothermal processes and characterized by FESEM, TEM, XPS, FT-IR, Raman and EDX-studies. The formation of short NFs is confirmed through FESEM and TEM measurements. As the results, the major crystal structure of TiO2 in the prepared NFs has anatase (85.23%) and rutile-structure (14.67%). XPS and EDX studies affirm that the material has Ti, O, Sn, N and C elements. In addition, FT-IR and Raman spectra give an indication about the GO-content. Typically, the DSC based on the novel NFs shows 6.18% efficiency. The Jsc, Voc, FF and Rct are estimated and found to be 10.32 mA cm-2, 0.825 V, 0.73 and 21.66 Ω, respectively. The high-power efficiency is contributed by three reasons. The first one is the high dye-loading (2.16 × 10-7 mol cm-2). The second reason is the enhanced charge transfer and decreasing of the electrons/holes recombination through formation of wide band-gap oxide (3.246 eV). Finally, the third one is GO-doping which may create new routes for the electron transfer in working electrode layer.

  19. Enhanced photocatalytic activity of wool fibers having titanium dioxide nanoparticles formed inside their cortex.

    PubMed

    Zhang, Hui; Sun, Runjun; Wu, Hailiang; Mao, Ningtao

    2018-05-01

    A wool-TiO2 nanoparticle composite material having TiO2 nanoparticles both infiltrated in the matrix between macrofibrils inside cortical cells of wool fibers and grafted on the fiber surface is obtained in this study, and the wool-nanoparticle composite material is found to have highly photocatalytic activities with an extremely narrow band gap of 2.8 eV. The wool fibers are obtained using three successive technical steps: wool fibers are swollen by using lithium bromide, then saturated with tetrabutyl titanate ethanol solution and subsequently treated in boiling water. It was demonstrated that the chemical bonds formed between the as-synthesized TiO2 nanoparticles and the wool fibers swollen by lithium bromide include C-Ti4+(Ti3+), N-Ti4+(Ti3+), O-Ti3+, and S-Ti4+(Ti3+) bonds. The modified wool fibers have shown markedly improved photocatalytic efficiency due to their enhanced visible light absorption capability, which is much better than the (N-doped) TiO2 coated wool fibers. In contrast, TiO2 modified wool fibers swollen by using formic acid have poorer photoactivity, this might be due to the elimination of trivalent titanium between TiO2 nanoparticles and the wool fibers. © 2018 IOP Publishing Ltd.

  20. One-step electrospinning synthesis of TiO2/g-C3N4 nanofibers with enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Tang, Qian; Meng, Xianfeng; Wang, Zhiying; Zhou, Jianwei; Tang, Hua

    2018-02-01

    TiO2/g-C3N4 composite nanofibers have been successfully synthesized by one-step electrospinning method, using titanium (IV) n-butoxide (TNBT) and urea as raw materials. The structure and compositions of TiO2/g-C3N4 samples are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Diffuse reflectance spectroscopy (DRS), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), X-ray photoelectron spectrometer (XPS) and Brunauer-Emmett-Teller (BET), respectively. The results show that the porous uniform TiO2/g-C3N4 composite nanofibers, with diameter of 100-150 nm, can be successfully prepared through electrospinning method combining 550 °C calcination process. The photocatalytic activity is evaluated by the degradation of rhodamine B (RhB) under simulated solar light. The enhanced catalytic activity is attributed predominantly to the heterojunction between TiO2 and g-C3N4, which promotes the transferring of carriers and prohibits their recombination. With the optimal doping amount of 0.6 g urea (corresponding to 3 g TNBT), the TiO2/g-C3N4 composite nanofibers exhibit the highest rate towards the photocatalytic degradation of RhB. A diagram is presented to explicate the mechanism of the whole catalytic experiment. This study might provide a promising future of applying green catalysts to solving water pollution problems.

  1. Immobilized TiO2 nanoparticles produced by flame spray for photocatalytic water remediation

    NASA Astrophysics Data System (ADS)

    Bettini, Luca Giacomo; Diamanti, Maria Vittoria; Sansotera, Maurizio; Pedeferri, Maria Pia; Navarrini, Walter; Milani, Paolo

    2016-08-01

    Anatase/rutile mixed-phase titanium dioxide (TiO2) photocatalysts in the form of nanostructured powders with different primary particle size, specific surface area, and rutile content were produced from the gas-phase by flame spray pyrolysis (FSP) starting from an organic solution containing titanium (IV) isopropoxide as Ti precursor. Flame spray-produced TiO2 powders were characterized by means of X-ray diffraction, Raman spectroscopy, and BET measurements. As-prepared powders were mainly composed of anatase crystallites with size ranging from 7 to 15 nm according to the synthesis conditions. TiO2 powders were embedded in a multilayered fluoropolymeric matrix to immobilize the nanoparticles into freestanding photocatalytic membranes. The photocatalytic activity of the TiO2-embedded membranes toward the abatement of hydrosoluble organic pollutants was evaluated employing the photodegradation of rhodamine B in aqueous solution as test reaction. The photoabatement rate of best performing membranes significantly overcomes that of membranes produced by the same method and incorporating commercial P25-TiO2.

  2. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    PubMed

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  3. Dielectric characterization of TiO2, Al2O3 - Nanoparticle loaded epoxy resin

    NASA Astrophysics Data System (ADS)

    Thakor, S. G.; Rana, V. A.; Vankar, H. P.

    2018-05-01

    In present work, the dielectric properties of two different nanoparticle loaded Bisphenol A-epoxy resin were carried out at room temperature. Sample of the neat epoxy resin and nanoparticle loaded epoxy resin in the form of disc were prepared of different weight fraction (i.e 0.5 wt%,0.7 wt%,1 wt%,1.5 wt%,1.7 wt%,2 wt%). TiO2 and Al2O3 nanoparticles were taken as filler in the epoxy resin. Complex permittivity of the prepared samples was measured using Agilent E4980A precision LCR meter in frequency range of 103 Hz to 106 Hz. The dependency of dielectric behavior on type and concentration of nanoparticle in considered frequency range are discussed in detail.

  4. Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO2 nanoparticles.

    PubMed

    Hong, Yayun; Zhan, Qiliang; Pu, Chenlu; Sheng, Qianying; Zhao, Hongli; Lan, Minbo

    2018-09-01

    In this work, hollow magnetic macro/mesoporous TiO 2 nanoparticles (denoted as Fe 3 O 4 @H-fTiO 2 ) were synthesized by a facile "hydrothermal etching assisted crystallization" route to improve the phosphopeptide enrichment efficiency. The porous nanostructure of TiO 2 shell and large hollow space endowed the Fe 3 O 4 @H-fTiO 2 with a high surface area (144.71 m 2 g -1 ) and a large pore volume (0.52 cm 3 g -1 ), which could provide more affinity sites for phosphopeptide enrichment. Besides, the large pore size of TiO 2 nanosheets and large hollow space could effectively prevent the "shadow effect", thereby facilitating the diffusion and release of phosphopeptides. Compared with the hollow magnetic mesoporous TiO 2 with small and deep pores (denoted as Fe 3 O 4 @H-mTiO 2 ) and solid magnetic macro/mesoporous TiO 2 , the Fe 3 O 4 @H-fTiO 2 nanoparticles showed a better selectivity (molar ratio of α-casein/BSA up to 1:10000) and a higher sensitivity (0.2 fmol/μL α-casein) for phosphopeptide enrichment. Furthermore, 1485 unique phosphopeptides derived from 660 phosphoproteins were identified from HeLa cell extracts after enrichment with Fe 3 O 4 @H-fTiO 2 nanoparticles, further demonstrating that the Fe 3 O 4 @H-fTiO 2 nanoparticles had a high-efficiency performance for phosphopeptide enrichment. Taken together, the Fe 3 O 4 @H-fTiO 2 nanoparticles will have unique advantages in phosphoproteomics analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. TiO2, SiO2 and ZrO2 Nanoparticles Synergistically Provoke Cellular Oxidative Damage in Freshwater Microalgae

    PubMed Central

    Liu, Yinghan; Ye, Nan; Fang, Hao; Wang, Degao

    2018-01-01

    Metal-based nanoparticles (NPs) are the most widely used engineered nanomaterials. The individual toxicities of metal-based NPs have been plentifully studied. However, the mixture toxicity of multiple NP systems (n ≥ 3) remains much less understood. Herein, the toxicity of titanium dioxide (TiO2) nanoparticles (NPs), silicon dioxide (SiO2) NPs and zirconium dioxide (ZrO2) NPs to unicellular freshwater algae Scenedesmus obliquus was investigated individually and in binary and ternary combination. Results show that the ternary combination systems of TiO2, SiO2 and ZrO2 NPs at a mixture concentration of 1 mg/L significantly enhanced mitochondrial membrane potential and intracellular reactive oxygen species level in the algae. Moreover, the ternary NP systems remarkably increased the activity of the antioxidant defense enzymes superoxide dismutase and catalase, together with an increase in lipid peroxidation products and small molecule metabolites. Furthermore, the observation of superficial structures of S. obliquus revealed obvious oxidative damage induced by the ternary mixtures. Taken together, the ternary NP systems exerted more severe oxidative stress in the algae than the individual and the binary NP systems. Thus, our findings highlight the importance of the assessment of the synergistic toxicity of multi-nanomaterial systems. PMID:29419775

  6. Optical, electrochemical and hydrophilic properties of Y2O3 doped TiO2 nanocomposite films.

    PubMed

    Zhang, Xiangchao; Yang, Huaming; Tang, Aidong

    2008-12-25

    The 5% Y2O3 doped TiO2 nanocomposite film (YTF) deposited on ITO glass substrate has been synthesized by the sol-gel dip-coating method. The as-synthesized samples were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), voltage-current (V-I), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible (UV-vis) analysis technologies. The crystalline structure, surface morphology and surface chemical composition of YTF sample have been primarily investigated. The results demonstrate that YTF is anatase crystalline phase with thickness of 480 nm and consists of spherical shape particles with a grain size of about 15.8 nm. The binding energy appears as a chemical shift, and relatively more Y and Ti species are present on the surface, indicating that active surfaces of the nanocomposite film have been enhanced with more oxygen vacancies Vö due to doping Y2O3 to TiO2. The absorption edge of YTF has a red shift, and the optical properties of YTF in visible light region have been obviously improved. The water contact angle is about 8 degrees after daylight lamp irradiation 60 min. An equivalent circuit model provided a reliable description for the electrochemical systems. Based on the Mott-Schottky equation, the donor concentration (ND) for YTF is 1.05 x 10(20) cm(-3), which enhances 1 order of magnitude than that for pure TiO2 film (TF), the flat-band potential (V(fb)) and the space charge layer (d(sc)) obviously decreased. With the incorporation of Y2O3 into TiO2, the optical, electrochemical and photoinduced hydrophilic properties of YTF in visible light region have obviously improved, indicating that YTF shows promising applications in solar energy conversion, self-cleaning and other potential fields.

  7. Single-step One-pot Synthesis of TiO 2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity

    DOE PAGES

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; ...

    2017-04-21

    A hybrid photocatalyst based on anatase TiO 2 was designed by doping TiO 2 with sulfur and incorporating reduced graphene oxide (TiO 2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO 2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO 2-S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation ofmore » methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO 2-S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Finally, considering both the facile and scalable reaction to synthesize TiO 2-S/rGO hybrid, and its excellent photocatalytic performance, such TiO 2-S/rGO hybrids are expect to find practical applications in environmental and energy sectors.« less

  8. Effect of TiO2 nanoparticles on the reproduction of silkworm.

    PubMed

    Ni, Min; Li, Fanchi; Wang, Binbin; Xu, Kaizun; Zhang, Hua; Hu, Jingsheng; Tian, Jianghai; Shen, Weide; Li, Bing

    2015-03-01

    Silkworm (Bombyx mori) is an important economic insect and the model insect of Lepidoptera. Because of its high fecundity and short reproduction cycle, it has been widely used in reproduction and development research. The high concentrations of titanium dioxide nanoparticles (TiO2 NPs) show reproductive toxicity, while low concentrations of TiO2 NPs have been used as feed additive and demonstrated significant biological activities. However, whether the low concentrations of TiO2 NPs affect the reproduction of B. mori has not been reported. In this study, the growth and development of gonad of B. mori fed with a low concentration of TiO2 NPs (5 mg/L) were investigated by assessing egg production and expression of reproduction-related genes. The results showed that the low concentration of TiO2 NPs resulted in faster development of the ovaries and testes and more gamete differentiation and formation, with an average increase of 51 eggs per insect and 0.34 × 10(-4) g per egg after the feeding. The expressions of several reproduction-related genes were upregulated, such as the yolk-development-related genes Ovo-781 and vitellogenin (Vg) were increased by 5.33- and 6.77-folds, respectively. This study shows that TiO2 NPs feeding at low concentration can enhance the reproduction of B. mori, and these results are useful in developing new methods to improve fecundity in B. mori and providing new clues for its broad biological applications.

  9. Photodegradation of organic pollutants in water and green hydrogen production via methanol photoreforming of doped titanium oxide nanoparticles.

    PubMed

    Rico-Oller, Beatriz; Boudjemaa, Amel; Bahruji, Hasliza; Kebir, Mohammed; Prashar, Sanjiv; Bachari, Khaldoun; Fajardo, Mariano; Gómez-Ruiz, Santiago

    2016-09-01

    Novel nanomaterials based on doped TiO2 nanoparticles with different morphological, textural and band-gap properties have been synthesized using scalable methods. The influence of synthetic parameters such as titanium source (titanium(IV) isopropoxide and titanium(IV) butoxide), doping quantity (0%, 2% or 5% Zn), acidic solution for the hydrolysis reaction (ascorbic acid, nitric acid) and calcination temperatures (500°C and 600°C) was simultaneously investigated. The obtained nanomaterials were characterized by different methods and photocatalytic tests of methylene blue (MB) degradation under UV-light were conducted to determine their activity. The results revealed that the synthesized nanomaterials are porous aggregates with very high crystallinity and are mainly composed of the anatase phase; although their physical properties vary depending on the different synthetic parameters employed. These changes are able to modify the apparent rate constant of the degradation of MB up to one order of magnitude, indicating, substantial changes in their photoactivity. Hybrid materials TiO2-Pd nanoparticles have also been prepared, characterized and tested for hydrogen production using photocatalytic methanol reforming where supported palladium nanoparticles acted as co-catalyst. Furthermore, the hybrid materials TiO2-Pd nanoparticles were studied in photocatalytic tests of methylene blue degradation under visible LED-light. The results obtained in the production of hydrogen from the photocatalytic reforming of methanol by hybrid materials suggest that the reported hybrid systems could be suitable photocatalysts for future sustainable hydrogen production upon tuning of the morphological, textural and band gap energy properties to allow processes to be carried out under visible light. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction

    NASA Astrophysics Data System (ADS)

    Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P.

    2017-02-01

    TiO2/g-C3N4 photocatalysts with the various TiO2/g-C3N4 weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO2 was prepared by thermal hydrolysis and pure g-C3N4 was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO2/g-C3N4 nanocomposites showed moderate improvement compared to pure g-C3N4 but pure TiO2 proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO2/g-C3N4 (1:2) nanocomposite exhibited an increase compared to pure TiO2. Nevertheless, further increase of g-C3N4 amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO2 and g-C3N4 have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C3N4. This is probably due to the generation of heterojunction on the TiO2/g-C3N4 interface.

  11. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage.

    PubMed

    Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan

    2017-12-01

    Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of TiO2 nanoparticles on some photophysical characteristics of ketocyanine dyes.

    PubMed

    Thipperudrappa, Javuku; Raghavendra, U P; Basanagouda, Mahantesha

    2017-11-01

    The effect of titanium dioxide (TiO 2 ) nanoparticles (NPs) on photophysical characteristics of 2,5-di[(E)-1-(4-dimethylaminophenyl) methylidine]-1-cyclopentanone (2,5-DMAPMC) and 2,5-di[(E)-1-(4-diethylaminophenyl)methylidine]-1-cyclopentanone (2,5-DEAPMC) ketocyanine dyes has been studied using absorption, steady-state and time-resolved fluorescence spectroscopy. The magnitudes of association constants determined based on modified absorption spectrum of dyes due to the presence of TiO 2 NPs indicate the interaction of TiO 2 NPs with dye molecules. The quenching of fluorescence intensity of dyes by TiO 2 NPs is observed and it follows linear Stern-Volmer (S-V) equation. The magnitude of quenching rate parameter suggests the involvement of static quenching mechanism. The involvement of electron transfer process in reducing fluorescence intensity of dyes has been discussed. Also, varying influence of TiO 2 NPs on two dyes is explained based on the presence of different alkyl substituent in two dyes. Copyright © 2017 John Wiley & Sons, Ltd.

  13. The mechanism of charge carrier generation at the TiO2n-Si heterojunction activated by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mishin, Maxim V.; Vorobyev, Alexander A.; Kondrateva, Anastasia S.; Koroleva, Ekaterina Y.; Karaseov, Platon A.; Bespalova, Polina G.; Shakhmin, Alexander L.; Glukhovskoy, Anatoly V.; Wurz, Marc Christopher; Filimonov, Alexey V.

    2018-07-01

    Photo-induced current through nanocomposite heterojunction structures consisting of a TiO2 coating activated with embedded gold nanoparticles on top of Si, SiO2, and columnar structured SiO2 is studied. The highest photo-activity in the visible part of the spectrum is found in the composite containing pillar-like silicon dioxide nanostructures. Experimental results were qualitatively explained on the basis of Franz-Keldysh effect taking into account the effects of electrical inhomogeneities appearing at charged nanoparticles. It is established that processes at the interface between silicon and noble metal nanoparticles play an important role in charge carrier photo-generation which opens a new opportunity to tune the photo-response of a nanocomposite via changing heterostructure topology.

  14. Genotoxic and cytotoxic activity of green synthesized TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Koca, Fatih Doğan; Duman, Fatih

    2018-03-01

    Nowadays, nanomaterials that are smaller than 100 nm in size are very attractive owing to their enhanced physicochemical properties. Although they have been used widely for industrial applications, their toxicity still remains a problem. This article is a new record of the synthesis of titanium dioxide nanoparticles (TiO2 NPs) by a Mentha aquatica leaf extract and determination of its toxicity to rat marrow mesenchymal stem cells. In this study, we aimed to determine the genotoxic and cytotoxic effects of biologically synthetized TiO2 NPs. The characteristic peak of the nanomaterial was observed at 354 nm. The mean size of the nanomaterial was measured to be 69 nm from SEM images. According to zeta analysis, the surface charge of the nanomaterial was - 37.6 mV. The crystalline structure of the nanomaterial was determined using XRD analysis. It was concluded that the obtained nanomaterial was TiO2 The results of the FT-IR analysis showed that the functional groups that were found in the plant extract could play an important role in the formation and stabilization of TiO2 NPs. The effective size of the TiO2 NPs was found to be 304 nm using DLS analysis. The TGA analysis results showed that the total mass loss was 4% at 900 °C. According to DNA cleavage analysis results, TiO2 NPs cause damage to the plasmid pBR322 DNA in a concentration-dependant matter. It has been noted that TiO2 NPs lead to decreased cell viability during increased time and concentration of applications on rat marrow mesenchymal stem cells. It has also been determined that bulk TiO2 causes a greater reduction in the stem cell viability compared to the biosynthesized NPs. The obtained results could be useful for further application and toxicity studies.

  15. Effect of Catalyst Loading on Photocatalytic Degradation of Phenol by Using N, S Co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Yunus, N. N.; Hamzah, F.; So'aib, M. S.; Krishnan, J.

    2017-06-01

    The study on the effect of catalyst loading of photocatalytic degradation of phenol by using N, S co-doped TiO2 was investigated. The precursor of titania was Titanium (IV) isopropoxide (TTIP), while the sources of Nitrogen and Sulfur were ammonium nitrate and thiourea respectively. The photocatalyst were prepared by using dopant concentration at 1% of both Nitrogen and Sulphur that were prepared via sol-gel method. The photocatalyst were tested by different catalyst loading which were 1 g/L, 2g/L and 3 g/L. The gel obtained from the mixing process was dried and calcined at 600°C. The performance of the photocatalyst were tested by using phenol as a model pollutant. The mixture of photocatalyst and pollutant was left under visible light for five hours for irradiation time. The experiment showed that catalyst loading of 3 g/L able to fully degrade phenol while 1 g/L and 2 g/L of photocatalyst degraded phenol at 69.9% and 96.2% respectively.

  16. Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction.

    PubMed

    Ning, Rui; Tian, Jingqi; Asiri, Abdullah M; Qusti, Abdullah H; Al-Youbi, Abdulrahman O; Sun, Xuping

    2013-10-29

    In this Letter, for the first time, we demonstrated the preparation of a highly efficient electrocatalyst, spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide (CuCo2O4/N-rGO), for an oxygen reduction reaction (ORR) under alkaline media. The hybrid exhibits higher ORR catalytic activity than CuCo2O4 or N-rGO alone, the physical mixture of CuCo2O4 nanoparticles and N-rGO, and Co3O4/N-rGO. Moreover, such a hybrid affords superior durability to the commercial Pt/C catalyst.

  17. Self-doped Ti(3+)-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation.

    PubMed

    Sasan, Koroush; Zuo, Fan; Wang, Yuan; Feng, Pingyun

    2015-08-28

    Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti(3+) into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation.

  18. Fabrication of a Highly Sensitive Single Aligned TiO2 and Gold Nanoparticle Embedded TiO2 Nano-Fiber Gas Sensor.

    PubMed

    Nikfarjam, Alireza; Hosseini, Seyedsina; Salehifar, Nahideh

    2017-05-10

    In this research, a single-aligned nanofiber of pure TiO 2 and gold nanoparticle (GNP)-TiO 2 were fabricated using a novel electro-spinning procedure equipped with secondary electrostatic fields on highly sharp triangular and rectangular electrodes provided for gas sensing applications. The sol used for spinning nanofiber consisted of titanium tetraisopropoxide (C 12 H 28 O 4 Ti), acetic acid (CH 3 COOH), ethanol (C 2 H 5 OH), polyvinylpyrrolidone (PVP), and gold nanoparticle solution. FE-SEM, TEM, and XRD were used to characterize the single nanofiber. In triangular electrodes, the electrostatic voltage for aligning single nanofiber between electrodes depends on the angle tip of the electrode, which was around 1.4-2.1, 2-2.9, and 3.2-4.1 kV for 30°, 45°, and 60°, respectively. However, by changing the shape of the electrodes to rectangular samples and by increasing distance between electrodes from 100 to 200 μm, electro-spinning applied voltage decreased. Response of pure TiO 2 single nanofiber sensor was measured for 30-200 ppb carbon monoxide gas. The triangular sample revealed better response and lower threshold than the rectangular sample. Adding appropriate amounts of GNP decreased the operating temperature and increased the responses. CO concentration threshold for the pure TiO 2 and GNP-TiO 2 triangular samples was about 5 ppb and 700 ppt, respectively.

  19. Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction--a benchmark structure-property study.

    PubMed

    Lock, Nina; Jensen, Ellen M L; Mi, Jianli; Mamakhel, Aref; Norén, Katarina; Qingbo, Meng; Iversen, Bo B

    2013-07-14

    Metal functionalized nanoparticles potentially have improved properties e.g. in catalytic applications, but their precise structures are often very challenging to determine. Here we report a structural benchmark study based on tetragonal anatase TiO2 nanoparticles containing 0-2 wt% copper. The particles were synthesized by continuous flow synthesis under supercritical water-isopropanol conditions. Size determination using synchrotron PXRD, TEM, and X-ray total scattering reveals 5-7 nm monodisperse particles. The precise dopant structure and thermal stability of the highly crystalline powders were characterized by X-ray absorption spectroscopy and multi-temperature synchrotron PXRD (300-1000 K). The combined evidence reveals that copper is present as a dopant on the particle surfaces, most likely in an amorphous oxide or hydroxide shell. UV-VIS spectroscopy shows that copper presence at concentrations higher than 0.3 wt% lowers the band gap energy. The particles are unaffected by heating to 600 K, while growth and partial transformation to rutile TiO2 occur at higher temperatures. Anisotropic unit cell behavior of anatase is observed as a consequence of the particle growth (a decreases and c increases).

  20. Three-dimensional TiO2/Au nanoparticles for plasmon enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Yu, Jianyu; Zhou, Lin; Wang, Yang; Tan, Yingling; Wang, Zhenlin; Zhu, Shining; Zhu, Jia

    2018-03-01

    The mechanisms of plasmonic nanostructures assisted photocatalytic processes are fundamental and of great importance and interest for decades. Therefore, we adopt a unique porous structure of three-dimensional TiO2/Au nanoparticles to experimentally explore the potential mechanisms of rhodamine B (RhB) based photocatalytic degradation. The highly efficient absorbance measured across the entire ultraviolet and infrared regions shows the broadband light harvesting capability and photocatalytic activity, in which the direct bandgap transition, plasmon sensitization as well as the plasmonic photothermal effect can be beneficial for the photocatalytic reaction. The RhB photocatalytic degradation experiments were conducted systematically under solar irradiance with finely chosen optical filters. Apart from the ultraviolet-driven degradation of TiO2, the plasmon assisted photocatalytic rate of our TiO2/Au structure can be enhanced by >30% as compared to the referenced TiO2 structure (equivalent to 2-4 times promotion with respect to the same quantity of the active material TiO2). Detailed wavelength-dependent analyses have revealed that the visible-driven degradation rate can be enhanced by 10 times because of the plasmon sensitization effect; while infrared-driven degradation rate is enhanced by 4 times as well for the plasmonic photothermal effect, respectively. Our experimental results may provide a clear understanding for the wavelength-dependent plasmon enhanced photocatalytic processes.

  1. Strongly bound excitons in anatase TiO 2 single crystals and nanoparticles

    DOE PAGES

    Baldini, E.; Chiodo, L.; Dominguez, A.; ...

    2017-04-13

    Anatase TiO 2 is among the most studied materials for light-energy conversion applications, but the nature of its fundamental charge excitations is still unknown. Yet it is crucial to establish whether light absorption creates uncorrelated electron-hole pairs or bound excitons and, in the latter case, to determine their character. Here, by combining steady-state angle-resolved photoemission spectroscopy and spectroscopic ellipsometry with state-of-the-art ab initio calculations, we demonstrate that the direct optical gap of single crystals is dominated by a strongly bound exciton rising over the continuum of indirect interband transitions. This exciton possesses an intermediate character between the Wannier-Mott and Frenkelmore » regimes and displays a peculiar two-dimensional wavefunction in the three-dimensional lattice. The nature of the higher-energy excitations is also identified. Furthermore, the universal validity of our results is confirmed up to room temperature by observing the same elementary excitations in defect-rich samples (doped single crystals and nanoparticles) via ultrafast two-dimensional deep-ultraviolet spectroscopy.« less

  2. MoS2 embedded TiO2 nanoparticles for concurrent role of adsorption and photocatalysis

    NASA Astrophysics Data System (ADS)

    Pal, Arnab; Jana, Tushar K.; Chatterjee, Kuntal

    2018-04-01

    In this work, MoS2 embedded TiO2 nanoparticles, synthesized through hydrothermal process, was successfully employed to remove organic pollutant dye like methylene blue(MB) through adsorption and as well as through photocatalysis under visible light irradiation. The system was characterized by structural and morphological study. The adsorption and photocatalytic study of MB were evaluated with different concentrations of dye in aqueous solution. This work brings the MoS2-TiO2 nanostructure as excellent adsorbent as well as efficient photocatalyst materials which can be used for organic dye removal towards waste-water treatment.

  3. Lanthanum doped titania decorated with silver plasmonic nanoparticles with enhanced photocatalytic activity under UV-visible light

    NASA Astrophysics Data System (ADS)

    Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia

    2018-05-01

    Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.

  4. Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries.

    PubMed

    Liu, Huiqiao; Cao, Kangzhe; Xu, Xiaohong; Jiao, Lifang; Wang, Yijing; Yuan, Huatang

    2015-06-03

    To inhibit the aggregation of TiO2 nanoparticles and to improve the electrochemical kinetics of TiO2 electrode, a hybrid material of ultrasmall TiO2 nanoparticles in situ grown on rGO nanosheets was obtained by ultraphonic and reflux methods. The size of the TiO2 particles was controlled about 10 nm, and these particles were evenly distributed across the rGO nanosheets. When used for the anode of a sodium ion battery, the electrochemical performance of this hybrid TiO2@rGO was much improved. A capacity of 186.6 mAh g(-1) was obtained after 100 cycles at 0.1 A g(-1), and 112.2 mAh g(-1) could be maintained at 1.0 A g(-1), showing a high capacity and good rate capability. On the basis of the analysis of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the achieved excellent electrochemical performance was mainly attributed to the synergetic effect of well-dispersed ultrasmall TiO2 nanoparticles and conductive graphene network and the improved electrochemical kinetics. The superior electrochemical performance of this hybrid material on lithium storage further confirmed the positive effect of rGO.

  5. Aging and behavior of functional TiO2 nanoparticles in aqueous environment.

    PubMed

    Lu, Huiting; Dong, Haifeng; Fan, Wenhong; Zuo, Jinxing; Li, Xiaomin

    2017-03-05

    Nanoparticles are usually functionalized with various surface capping moieties in practical applications. Understand the behavior and fate of them is critical to evaluate or even predict their risk to environment. However, little attention has been denoted on this issue until now. Using three commercial TiO 2 nanoparticles with different capping moieties, their aging procedures and corresponding change as well as their byproducts were systematically studied. Comprehensive microscopic and spectrometric measurements demonstrated a capping agent-dependent with the aging procedure. All the aging agents exhibited sharp change in morphologies compared to the fresh counterparts. The degraded degree and surface properties including surface charge and hydrophobicity of the functional TiO 2 nanoparticles were varied depended on the capping moieties. Furthermore, the behaviors of these byproducts in various background media had also been investigated. Contrastively, environment factors such as pH, electrolyte valence, and humic acid regardless of capping moieties govern the behavior of these byproducts, despite of the capping moieties slightly affect the point of zero charge. This study highlights the influence of the capping moieties and environmental factors to the transformation progress of functional nanomaterials in environment exposure, which contributes to design and assess the environmental risk of other analogous functional nanoparticles in practical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Protein Corona Prevents TiO2 Phototoxicity.

    PubMed

    Garvas, Maja; Testen, Anze; Umek, Polona; Gloter, Alexandre; Koklic, Tilen; Strancar, Janez

    2015-01-01

    TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations. Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles' surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes' surface. These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired - as for efficient photodynamic cancer therapy.

  7. XAS study of TiO2-based nanomaterials

    NASA Astrophysics Data System (ADS)

    Schneider, K.; Zajac, D.; Sikora, M.; Kapusta, Cz.; Michalow-Mauke, K.; Graule, Th.; Rekas, M.

    2015-07-01

    X-Ray Absorption Spectroscopy studies of the W (0-1 at% W) and Mo-doped TiO2 (0-1 at% Mo) nanoparticle specimens at the K edges of titanium and molybdenum as well as at the L2 L3 edges of tungsten are presented. The materials were prepared with Flame Spray Synthesis process by oxidation of metal-organic precursors. The Ti:K edge spectra in the XANES range show pre-edge and post-edge features characteristic for anatase. A decrease of the amplitude of the EXAFS function with doping is observed and attributed to a softening of the crystal lattice. The Mo EXAFS functions show a considerable decrease of the second-neighbour-shell peak with increasing Mo content, which is attributed to an increased number of cation vacancies. For tungsten a less pronounced effect is observed. The Mo and W XANES spectra do not show noticeable changes with doping level, which indicates their unchanged oxidation states.

  8. Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Kim, Yong Nam; Yoo, Seung Hwa; Cho, Sung Oh

    2010-01-01

    We present the synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles (NPs) and TiO2 nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag2S NPs and TiO2 NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag2S NPs on TiO2 NWs was created. Due to the coupling with such a low bandgap material as Ag2S, the TiO2 nanocomposites could have a visible-light absorption capability much higher than that of pure TiO2. As a result, the synthesized Ag2S/TiO2 nanocomposites exhibited much higher catalytic efficiency for the decomposition of methyl orange than commercial TiO2 (Degussa P25, Germany) under visible light.

  9. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO2 nanocrystals: Investigation of bio-medical application by chemical method.

    PubMed

    Kaviyarasu, K; Geetha, N; Kanimozhi, K; Maria Magdalane, C; Sivaranjani, S; Ayeshamariam, A; Kennedy, J; Maaza, M

    2017-05-01

    We report the synthesis of high quality ZnO doped TiO 2 nanocrystals by chemical method at room temperature (RT), it can cause serious oxidative stress and DNA damage to human lung epithelial cells (A549) lines. Our aim in this study, to reduce the cytotoxicity effect of ZnO doped TiO 2 nanocrystals are widely in biological fields. Several studies have been performed to understand the influence of ZnO doped titanium dioxide (TiO 2 -NPs) on cell function; however the effects of nanoparticle against to exposure on the cell membrane have been duly addressed fascinatingly so far. However, In this interaction, which may alter cell metabolism and integrity, it is one of the importance to understand the modifications of the cell membrane, mechanisms of pulmonary A549 cell lines nanoparticles were uptake and the molecular pathway during the initial cell responses are still unclear and much more investigative efforts are need to properly characterize the ZnO doped titanium dioxide nanoparticles were reported successfully. In particular of the epithelial cells, upon particles are exposed human pulmonary epithelial cells (A549) to various concentrations of composition, structure and morphology of the nanocrystals were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD assessed the crystal structure of the nanocrystals which identified peaks associated with (002), (100) and (101) planes of hexagonal wurtzite-type ZnO with lattice constants of a=b=3.249Å and c=5.219Å. The IR results showed high purity of products and indicated that the nanocrystals are made up of TiO and ZnO bonds. The Photoluminescence (PL) spectra are dominated by a strong narrow band edge emission tunable in the blue region of the visible spectra indicating a narrow size distribution of ZnO/TiO 2 nanocrystals which exhibits antibacterial activity over a broad range of bacterial species and in particular against Stre. Mut where it out competes four other

  10. Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions.

    PubMed

    Fries, Elke; Crouzet, Catherine; Michel, Caroline; Togola, Anne

    2016-09-01

    The aim of the present study was to investigate interactions of the antibiotic ciprofloxacin (CIP), titanium dioxide nanoparticles (TiO2 NP) and natural organic matter (NOM) in aqueous suspensions. The mean hydrodynamic diameter of particles of TiO2 NP and NOM in the suspensions ranged from 113 to 255nm. During batch experiments the radioactivity resulting from (14)CIP was determined in the filtrate (filter pore size 100nm) by scintillation measurements. Up to 72h, no significant sorption of NOM to TiO2 NP was observed at a TiO2 NP concentration of 5mg/L. When the concentration of TiO2 NP was increased to 500mg/L, a small amount of NOM of 9.5%±0.6% was sorbed at 72h. The low sorption affinity of NOM on TiO2 NP surfaces could be explained by the negative charge of both components in alkaline media or by the low hydrophobicity of the NOM contents. At a TiO2 NP concentration of 5mgL(-1), the sorption of CIP on TiO2 NP was insignificant (TiO2 NP/CIP ratio: 10). When the TiO2 NP/CIP ratio was increased to 1000, a significant amount of 53.6%±7.2% of CIP was sorbed on TiO2 NP under equilibrium conditions at 64h. In alkaline media, CIP is present mainly as zwitterions which have an affinity to sorb on negatively charged TiO2 NP surfaces. The sorption of CIP on TiO2 NP in the range of TiO2 NP concentrations currently estimated for municipal wastewater treatment plants is estimated to be rather low. The Freundlich sorption coefficients (KF) in the presence of NOM of 2167L(n)mgmg(-n)kg(-1) was about 10 times lower than in the absence of NOM. This is an indication that the particle fraction of NOM<100nm could play a role as a carrier for ionic organic micro-pollutants as CIP. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei

    2006-02-01

    We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%.

  12. Electrocatalytic N-Doped Graphitic Nanofiber - Metal/Metal Oxide Nanoparticle Composites.

    PubMed

    Tang, Hongjie; Chen, Wei; Wang, Jiangyan; Dugger, Thomas; Cruz, Luz; Kisailus, David

    2018-03-01

    Carbon-based nanocomposites have shown promising results in replacing commercial Pt/C as high-performance, low cost, nonprecious metal-based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal-air batteries. Herein, a general approach for the production of 1D porous nitrogen-doped graphitic carbon fibers embedded with active ORR components, (M/MO x , i.e., metal or metal oxide nanoparticles) using a facile two-step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite-metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N-doped graphitic carbon fibers, especially Co 3 O 4 , exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co 3 O 4 and robust 1D porous structures composed of interconnected N-doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Studies on the Fe3+ Doping Effect on Structural, Optical and Catalytic Properties of Hydrothermally Synthesized TiO2 Photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamble, Ravi; Sabale, Sandip; Chikode, Prashant

    2017-08-01

    Pure TiO2 and Fe3+-TiO2 nanoparticles have been prepared by simple hydrothermal method with different Fe3+ concentrations. The synthesized nanoparticles are analysed to determine its structural, optical, morphological and compositional properties using X-ray diffraction, Raman, UV-DRS, photoluminescence, Mossbauer, XPS, TEM and SEM/EDS. The EDS micrograph confirms the existence of Fe3+ atoms in the TiO2 matrix with 0.85, 1.52 and 1.87 weight percent. The crystallite size and band gap decrease with increase in Fe3+concentration. The average particle size obtained from TEM is 7-11 nm which is in good agreement with XRD results. Raman bands at 640 cm-1, 517 cm-1 and 398 cm-1more » further confirm pure phase anatase in all samples. XPS shows the proper substitutions of few sites of Ti4+ ions by Fe3+ ions in the TiO2 host lattice. The intensity of PL spectra for Fe3+-TiO2 shows a gradual decrease in the peak intensity with increasing Fe3+ concentration in TiO2, and it indicates lower recombination rate as Fe3+ ions increases. These nanoparticles are further studied for its photocatalytic activities using malachite green dye under UV light, visible light and sunlight.« less

  14. Improving the visible light photocatalytic activity of mesoporous TiO2 via the synergetic effects of B doping and Ag loading

    NASA Astrophysics Data System (ADS)

    Tian, Baozhu; Shao, Zhimang; Ma, Yunfei; Zhang, Jinlong; Chen, Feng

    2011-11-01

    B-doped together with Ag-loaded mesoporous TiO2 (Ag/B-TiO2) was prepared by a two-step hydrothermal method in the presence of boric acid, triblock copolymer surfactant, and silver nitrate, followed by heat treatment. The obtained samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. It was revealed that all samples consist of highly crystalline anatase with mesoporous structure. For Ag/B-TiO2, B was doped into TiO2 matrix in the form of both interstitial B and substitutional B while Ag was deposited on the surface of B-TiO2 in the form of metallic silver. Compared with the single B-doped or Ag-loaded TiO2 one, mesoporous Ag/B-TiO2 exhibits much higher visible light photocatalytic activity for the degradation of Rhodamine 6G, which can be ascribed to the synergistic effects of B doping and Ag loading by narrowing the band gap of the photocatalyst and preventing the fast recombination of the photogenerated charge carriers, respectively.

  15. Hybrid TiO2 -Ruthenium Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in both Hypoxic and Normoxic Conditions.

    PubMed

    Gilson, Rebecca C; Black, Kvar C L; Lane, Daniel D; Achilefu, Samuel

    2017-08-28

    Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect in a hypoxic environment, such as solid tumors. Herein, we developed a ROS-producing hybrid nanoparticle-based photosensitizer capable of maintaining high levels of ROS under both normoxic and hypoxic conditions. Conjugation of a ruthenium complex (N3) to a TiO 2 nanoparticle afforded TiO 2 -N3. Upon exposure of TiO 2 -N3 to light, the N3 injected electrons into TiO 2 to produce three- and four-fold more hydroxyl radicals and hydrogen peroxide, respectively, than TiO 2 at 160 mmHg. TiO 2 -N3 maintained three-fold higher hydroxyl radicals than TiO 2 under hypoxic conditions via N3-facilitated electron-hole reduction of adsorbed water molecules. The incorporation of N3 transformed TiO 2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, irrespective of the oxygen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Modulation of physiological responses with TiO2 nano-particle in Azolla pinnata R.Br. under 2,4-D toxicity.

    PubMed

    De, Arnab Kumar; Ghosh, Arijit; Debnath, Subhas Chandra; Sarkar, Bipul; Saha, Indraneel; Adak, Malay Kumar

    2018-06-05

    The present work is emphasised with the herbicidal tolerance of Azolla pinnata R.Br. and its modulation with TiO 2 nano-particle. Both carbohydrate and nitrogen metabolism were effected with 2,4-D as herbicide and in few cases TiO 2 -NP had recovered few detrimental effects. From the nutrient status in Azolla it recorded the recovery of nitrogen as well as potassium by TiO 2 -NP but not in case of phosphorus. However, a conversion of nitrate to ammonium was more induced by TiO 2 -NP under herbicidal toxicity. Similar results were obtained for inter-conversion of amino acid-nitrate pool, but no changes with glutamine synthase activity with TiO 2 -NP. Initially, the effects of 2,4-D was monitored with changes of chlorophyll content but had not been recovered with nanoparticle. Photosynthetic reserves expressed as both total and reducing sugar were insensitive to TiO 2 -NP interference but activity of soluble and wall bound invertase was in reverse trend as compared to control. The 2,4-D mediated changes of redox and its oxidative stress was ameliorated in plants with over expressed ADH activity. As a whole the Azolla bio system with TiO 2 supplementation may be useful in sustenance against 2,4-D toxicity through recovery of nitrogen metabolism. Thus, Azolla-TiO 2 -NP bio system would be realised to monitor the herbicidal toxicity in soil and its possible bioremediation.

  17. Thin film nano-photocatalyts with low band gap energy for gas phase degradation of p-xylene: TiO2 doped Cr, UiO66-NH2 and LaBO3 (B  =  Fe, Mn, and Co)

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Thuy Van Nguyen, Thi; Nguyen, Tri; Nguyen, Phung Anh; Hoang, Tien Cuong; Ha, Cam Anh

    2018-03-01

    By dip-coating technique the thin films of nano-photocatalysts TiO2, Cr-doped TiO2, LaBO3 perovskites (B  =  Fe, Mn, and Co) prepared by sol-gel method, and UiO66-NH2 prepared by a solvothermal were obtained and employed for gas phase degradation of p-xylene. Physicochemical characteristics of the catalysts were examined by the methods of BET, SEM, TEM, XRD, FT-IR, TGA, Raman and UV-vis spectroscopies. The thickness of film was determined by a Veeco-American Dektek 6M instrument. The activity of catalysts was evaluated in deep photooxidation of p-xylene in a microflow reactor at room temperature with the radiation sources of a UV (λ  =  365 nm) and LED lamps (λ  =  400-510 nm). The obtained results showed that TiO2 and TiO2 doped Cr thin films was featured by an anatase phase with nanoparticles of 10-100 nm. Doping TiO2 with 0.1%mol Cr2O3 led to reduce band gap energy from 3.01 down to 1.99 eV and extend the spectrum of photon absorption to the visible region (λ  =  622 nm). LaBO3 perovkite thin films were also featured by a crystal phase with average particle nanosize of 8-40 nm, a BET surface area of 17.6-32.7 m2 g-1 and band gap energy of 1.87-2.20 eV. UiO66-NH2 was obtained in the ball shape of 100-200 nm, a BET surface area of 576 m2 g-1 and a band gap energy of 2.83 eV. The low band gap energy nano-photocatalysts based on Cr-doped TiO2 and LaBO3 perovskites exhibited highly stable and active for photo-degradation of p-xylene in the gas phase under radiation of UV-vis light. Perovskite LaFeO3 and Cr-TiO2 thin films were the best photocatalysts with a decomposition yield being reached up to 1.70 g p-xylene/g cat.

  18. Assessment of phototoxicity, skin irritation, and sensitization potential of polystyrene and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Yoon-Hee; Jeong, Sang Hoon; Yi, Sang Min; Hyeok Choi, Byeong; Kim, Yu-Ri; Kim, In-Kyoung; Kim, Meyoung-Kon; Son, Sang Wook

    2011-07-01

    The human skin equivalent model (HSEM) is well known as an attractive alternative model for evaluation of dermal toxicity. However, only limited data are available on the usefulness of an HSEM for nanotoxicity testing. This study was designed to investigate cutaneous toxicity of polystyrene and TiO2 nanoparticles using cultured keratinocytes, an HSEM, and an animal model. In addition, we also evaluated the skin sensitization potential of nanoparticles using a local lymph node assay with incorporation of BrdU. Findings from the present study indicate that polystyrene and TiO2 nanoparticles do not induce phototoxicity, acute cutaneous irritation, or skin sensitization. Results from evaluation of the HSEMs correspond well with those from animal models. Our findings suggest that the HSEM might be a useful alternative model for evaluation of dermal nanotoxicity.

  19. In-situ co-doping of sputter-deposited TiO2:WN films for the development of photoanodes intended for visible-light electro-photocatalytic degradation of emerging pollutants

    NASA Astrophysics Data System (ADS)

    Delegan, N.; Pandiyan, R.; Komtchou, S.; Dirany, A.; Drogui, P.; El Khakani, M. A.

    2018-05-01

    We report on the magnetron sputtering deposition of in-situ codoped TiO2:WN films intended for electro-photocatalytic (EPC) applications under solar irradiation. By varying the RF-magnetron sputtering deposition parameters, we were able to tune the in-situ incorporation of both N and W dopants in the TiO2 films over a wide concentration range (i.e., 0-9 at. % for N and 0-3 at. % for W). X-ray photoelectron spectroscopy analysis revealed that both dopants are mostly of a substitutional nature. The analysis of the UV-Vis transmission spectra of the films confirmed that the optical bandgap of both TiO2:N and TiO2:WN films can be significantly narrowed (from 3.2 eV for undoped-TiO2 down to ˜2.3 eV for the doped ones) by tuning their dopant concentrations. We were thus able to pinpoint an optimal window for both dopants (N and W) where the TiO2:WN films exhibit the narrowest bandgap. Moreover, the optimal codoping conditions greatly reduce the recombination defect state density compared to the monodoped TiO2:N films. These electronically passivated TiO2:WN films are shown to be highly effective for the EPC degradation of atrazine (pesticide pollutant) under sunlight irradiation (93% atrazine degraded after only 30 min of EPC treatment). Indeed, the optimally codoped TiO2:WN photoanodes were found to be more efficient than both the undoped-TiO2 and equally photosensitized TiO2:N photoanodes (by ˜70% and ˜25%, respectively) under AM1.5 irradiation.

  20. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    NASA Astrophysics Data System (ADS)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  1. Creeping flashover characteristics improvement of nanofluid/pressboard system with TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Wang, Lei; Ge, Yang; Lv, Yu-zhen; Qi, Bo; Li, Cheng-rong

    2018-03-01

    Creeping flashover easily occurs at the interface between oil and pressboard in transformer and thus results in outage of power transmission system. Investigations have shown that creeping flashover characteristics at oil/pressboard interface can be improved by the addition of TiO2 nanoparticles, but the mechanism is still not thoroughly known. In this work, creeping flashover performance at nanofluid/pressboard interface modified by different sizes of nanoparticles were studied and the mechanism was presented as well. Nanofluids with the same concentration but with different sizes of TiO2 nanoparticles were prepared, and pressboards impregnated with them were prepared as well. After that, their creeping flashover characteristics were measured and compared. Nanoparticle's size affected the creeping flashover performance along oil/pressboard greatly under both AC and lightning impulse voltages. The highest creeping flashover voltage can be enhanced by as high as 12.2% and 32.0% respectively. The underlying electric field distribution and charge transportation behaviors were analyzed to demonstrate the influence of nanoparticle's size. By the addition of nanoparticles with a smaller size, the dielectric constant of nanofluid was increased closer to that of the pressboard, thus they were matched better. Moreover, charge was easier to dissipate from the oil/pressboard interface and electric field distortion at the interface was consequently reduced. Therefore, the electric field was more like a uniform field and the forward development of flashover was more difficult, leading to a better performance of creeping flashover of oil-impregnated pressboard.

  2. High-Selectivity Electrochemical Conversion of CO 2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode

    DOE PAGES

    Song, Yang; Peng, Rui; Hensley, Dale K.; ...

    2016-09-28

    Carbon dioxide is a pollutant, but also a potential carbon source provided an efficient means to convert it to useful products. Herein we report a nanostructured catalyst for the direct electrochemical reduction of dissolved CO 2 to ethanol with high Faradaic efficiency (63%) and high selectivity (84%). The catalyst is comprised of Cu nanoparticle on a highly textured, N-doped graphene film. Detailed electrochemical analysis and complementary DFT calculations indicate a novel mechanism in which multiple active sites, working sequentially, control the coupling of carbon monoxide radicals and mediate the subsequent electrochemical reduction to alcohol.

  3. Influence of TiO2 Nanoparticles on Growth and Phenolic Compounds Production in Photosynthetic Microorganisms

    PubMed Central

    Comotto, Mattia; Casazza, Alessandro Alberto; Aliakbarian, Bahar; Caratto, Valentina; Ferretti, Maurizio; Perego, Patrizia

    2014-01-01

    The influence of titanium dioxide nanoparticles (pure anatase and 15% N doped anatase) on the growth of Chlorella vulgaris, Haematococcus pluvialis, and Arthrospira platensis was investigated. Results showed that pure anatase can lead to a significant growth inhibition of C. vulgaris and A. platensis (17.0 and 74.1%, resp.), while for H. pluvialis the nanoparticles do not cause a significant inhibition. Since in these stress conditions photosynthetic microorganisms can produce antioxidant compounds in order to prevent cell damages, we evaluated the polyphenols content either inside the cells or released in the medium. Although results did not show a significant difference in C. vulgaris, the phenolic concentrations of two other microorganisms were statistically affected by the presence of titanium dioxide. In particular, 15% N doped anatase resulted in a higher production of extracellular antioxidant compounds, reaching the concentration of 65.2 and 68.0 mg gDB −1 for H. pluvialis and A. platensis, respectively. PMID:25610914

  4. Photocatalytic quartz fiber felts with carbon-connected TiO2 nanoparticles for capillarity-driven continuous-flow water treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Su, Xiaowen; Gao, Wenqiang; Wang, Fulei; Liu, Zhihe; Zhan, Jie; Liu, Baishan; Wang, Ruosong; Liu, Hong; Sang, Yuanhua

    2018-06-01

    Immobility of photocatalysts on substrates is a vital factor for the practical application of photocatalysis in polluted water/air treatment. In this study, TiO2 homogenously loaded quartz fiber felt was prepared by assembling of carboxyl-contained organic molecules functionalized TiO2 nanoparticles on the surface of amino group-modified quartz fiber by electrostatic adsorption between them and followed by an anneal process. The immobilization of TiO2 nanoparticles overcomes one main obstacle of the photocatalysts recycling in photocatalysis application. In addition, a plasma treatment endowed the hybrid photocatalyst a high hydrophilic property. Due to the homogeneous distribution of TiO2, charge carriers' separation by carbon, and full contact between water and the photocatalyst derived from the high hydrophilia, the TiO2/quartz fiber felt shows excellent photocatalytic performance. Based on the stable loading and the capillarity effect of the contacted fibers photocatalyst, a demo capillarity-driven continuous-flow water treatment photocatalysis reactor was designed and built up. The TiO2 nanoparticle/quartz fiber hybrid photocatalyst can disposal organic contaminants in actual industrial waste water from a dyeing factory in the continuous-flow reactor. The chemical oxygen demand (COD) of the industrial waste water was decreased from 104 to 45 mg/L, overcoming the problem of deep water treatment which is difficult to solve by other methods. This study provides a new photocatalyst and reaction mode for the continuous-flow photocatalysis application.

  5. Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water.

    PubMed

    Pang, Yean Ling; Abdullah, Ahmad Zuhairi

    2012-10-15

    Fe-doped titanium dioxide (TiO(2)) nanotubes were prepared using sol-gel followed by hydrothermal methods and characterized using various methods. The sonocatalytic activity was evaluated based on oxidation of Rhodamine B under ultrasonic irradiation. Iron ions (Fe(3+)) might incorporate into the lattice and intercalated in the interlayer spaces of TiO(2) nanotubes. The catalysts showed narrower band gap energies, higher specific surface areas, more active surface oxygen vacancies and significantly improved sonocatalytic activity. The optimum Fe doping at Fe:Ti=0.005 showed the highest sonocatalytic activity and exceeded that of un-doped TiO(2) nanotubes by a factor of 2.3 times. It was believed that Fe(3+) doping induced the formation of new states close to the valence band and conduction bands and accelerated the separation of charge carriers. Leached Fe(3+) could catalyze Fenton-like reaction and led to an increase in the hydroxyl radical (OH) generation. Fe-doped TiO(2) nanotubes could retain high degradation efficiency even after being reused for 4 cycles with minimal loss of Fe from the surface of the catalyst. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Deng, Quanrong; Han, Xiaoping; Gao, Yun; Shao, Guosheng

    2012-07-01

    A first attempt has been made to study the effect of codoping of transition metal and sp metal on the electronic structure and associated optical properties of TiO2, through V-Ga codoped thin films. V-Ga codoped rutile TiO2 films were fabricated on fused quartz substrates using pulsed laser ablation, followed by heat treatment at high temperatures. Gigantic redshift in the optical absorption edge was observed in V-Ga co-doped TiO2 materials, from UV to infrared region with high absorption coefficient. Through combined structural characterization and theoretical modeling, this is attributed to the p-d hybridization between the two metals. This leads to additional energy bands to overlap with the minimum of the conduction band, leading to remarkably narrowed band gap free of mid-gap states. The direct-gap of the co-doped phase is key to the remarkably high optical absorption coefficient of the coped titania.

  7. Protein Corona Prevents TiO2 Phototoxicity

    PubMed Central

    Garvas, Maja; Testen, Anze; Umek, Polona; Gloter, Alexandre; Koklic, Tilen; Strancar, Janez

    2015-01-01

    Background & Aim TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations. Methods & Results Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles’ surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes’ surface. Conclusion These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired – as for efficient photodynamic cancer therapy. PMID:26083725

  8. Volume versus surface-mediated recombination in anatase TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Cavigli, Lucia; Bogani, Franco; Vinattieri, Anna; Faso, Valentina; Baldi, Giovanni

    2009-09-01

    We present an experimental study of the radiative recombination dynamics in size-controlled anatase TiO2 nanoparticles in the range 20-130 nm. From time-integrated photoluminescence spectra and picosecond time-resolved experiments as a function of the nanoparticle size, excitation density, and temperature, we show that photoluminescence comes out from a bulk and a surface radiative recombination. The spectral shift and the different time dynamics provide a clear distinction between them. Moreover, the intrinsic nature of the emission is also proven, providing a quantitative evaluation of volume and surface contributions.

  9. Electrodeposition of hydroxyapatite nanoparticles onto ultra-fine TiO2 nanotube layer by electrochemical reaction in mixed electrolyte.

    PubMed

    Park, Su-Jung; Jang, Jae-Myung

    2011-08-01

    Electrochemical depositions of HAp nanoparticles onto Ultra-fine TiO2 nanotube layer were carried out by the electrochemical reaction in mixed electrolyte of 1.6 M (NH4)H2PO4 + 0.8 M NH4F containing 0.15 and 0.25 wt% HAp. The Ca/P ratios of the HAp nanoparticles were evaluated by EDS analysis and their values were 1.53 and 1.66 respectively. The distribution quantity of Ca and P were remained at the middle region of TiO2 nanotube, but the Ti element was mainly stayed at the bottom of barrier layer from the result of line scanning diagram. Especially, adsorbed phosphate ions facilitated nucleation of nanophase calcium phosphate material inside the TiO2 nanotubu layer that resulted in vertical growth of HAp nanoparticles. These surfaces and structures were all effective for biocompatibility from the SBF tests.

  10. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    NASA Astrophysics Data System (ADS)

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml-1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses.

  11. Toxicological effect of TiO2 nanoparticle-induced myocarditis in mice

    NASA Astrophysics Data System (ADS)

    Hong, Fashui; Wang, Ling; Yu, Xiaohong; Zhou, Yingjun; Hong, Jie; Sheng, Lei

    2015-08-01

    Currently, impacts of exposure to TiO2 nanoparticles (NPs) on the cardiovascular system are not well understood. The aim of this study was to investigate whether TiO2 NPs induce myocarditis and its underlying molecular mechanism in the cardiac inflammation in mice. Mice were exposed to TiO2 NPs for 6 months; biochemical parameters of serum and expression of Th1-related and Th2-related cytokines in the heart were investigated. The results showed that TiO2 NP exposure resulted in cardiac lesions coupling with pulmonary inflammation; increases of aspartate aminotransferase (AST), creatine kinase (CK), C-reaction protein (CRP), lactate dehydrogenase (LDH), alpha-hydroxybutyrate dehydrogenase (HBDH), adhesion molecule-1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels; and a reduction of nitric oxide (NOx) level in the serum. These were associated with increases of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, transforming growth factor-β (TGF-β), creatine kinase, CRP, adhesion molecule-1, and monocyte chemoattractant protein-1, interferon-γ (IFN-γ), signal transducers and activators of transcription (STAT)1, STAT3, or STAT6, GATA-binding domain-3, GATA-binding domain-4, endothelin-1 expression levels, and T-box expressed in T cells expression level that is the master regulator of pro-inflammatory cytokines and transcription factors in the heart. These findings imply that TiO2 NP exposure may increase the occurrence and development of cardiovascular diseases.

  12. Enhanced Adsorption and Photocatalytic Activities of Co-Doped TiO2 Immobilized on Silica for Paraquat

    NASA Astrophysics Data System (ADS)

    Nghia, Nguyen Manh; Negishi, Nobuaki; Hue, Nguyen Thi

    2018-01-01

    We studied the adsorption and photocatalysis of paraquat in an aqueous solution with cobalt-doped TiO2 supported on mesoporous silica gel. With Co concentration increasing from 0% to 9%, it was found that the TiO2 anatase phase remained unchanged and the Co was uniformly distributed, while the band gap energy decreased from 3.32 eV to 2.64 eV. The drop in band gap energy leads to the Co-TiO2/silica gel photocatalyst oxidation of paraquat to NH4 + and NO3 - products under visible light. Relative to TiO2, the incorporation of Co into TiO2 led to an increase in the adsorption ability against the paraquat. A possible mechanism of the paraquat degradation may be that the paraquat was selectively adsorbed onto the Co-TiO2/silica gel photocatalyst before light irradiation and after that the paraquat was continuously photodecomposed.

  13. Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

    PubMed Central

    Buruiana, Tinca; Melinte, Violeta; Buruiana, Emil C

    2017-01-01

    Polymer nanocomposites containing titanium oxide nanoparticles (TiO2 NPs) combined with other inorganic components (Si–O–Si or/and γ-Fe2O3) were prepared by the dispersion of premade NPs (nanocrystalline TiO2, TiO2/SiO2, TiO2/Fe2O3, TiO2/SiO2/Fe2O3) within a photopolymerizable urethane dimethacrylate (polytetrahydrofuran-urethane dimethacrylate, PTHF-UDMA). The physicochemical characterization of nanoparticles and hybrid polymeric composites with 10 wt % NPs (S1–S4) was realized through XRD, TEM and FTIR analyses. The mean size (10–30 nm) and the crystallinity of the NPs varied as a function of the inorganic constituent. The catalytic activity of these hybrid films was tested for the photodegradation of phenol, hydroquinone and dopamine in aqueous solution under UV or visible-light irradiation. The best results were obtained for the films with TiO2/Fe2O3 or TiO2/SiO2/Fe2O3 NPs. The degradation of the mentioned model pollutants varied between 71% and 100% (after 250 min of irradiation) depending on the composition of the hybrid film tested and the light applied (UV–visible light). Also, it was established that such hybrid films can be reused at least for five cycles, without losing too much of the photocatalytic efficiency (ca. 7%). These findings could have implications in the development of new nanocatalysts. PMID:28243566

  14. Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Li, Juan; Zhang, Min; Li, Qiuye; Yang, Jianjun

    2017-01-01

    Direct contact Z-scheme g-C3N4-TiO2 nanocomposites without an electron mediator are prepared via simple annealing the mixture of bulk g-C3N4 and nanotube titanic acid (NTA) in air at 600 °C for 2 h. In the process of annealing, the bulk g-C3N4 transformed to ultra-thin g-C3N4 nanosheets, and NTA converted to a novel anatase TiO2, then the two components formed a close interaction. The XPS result reveals that some amount of nitrogen is doped into this novel-TiO2, and g-C3N4 nanosheets exist in the composites. The results of XRD, TEM and TG indicate that the thickness of g-C3N4 nanosheets is very thin. The ESR spectrum shows the existence of Ti3+ and single-electron-trapped oxygen vacancy in the 30%g-C3N4-TiO2 composites. In photocatalytic activity test, the 30%g-C3N4-TiO2 nanocomposites showed an excellent photo-oxidation activity of propylene under visible light irradiation (λ≥ 420 nm), and the removal efficiency of propylene reached as high as 56.6%, and the activity kept nearly 82% after four consecutive recycles. Photoluminescence (PL) result using terephthalic acid (TA) as a probe molecule indicated that the g-C3N4-TiO2 nanocomposites displayed a Z-sheme photocatalytic reaction system and this should be the main reason for the high photocatalytic activity. A possible photocatalytic mechanism was proposed on the basis of PL result and transient photocurrent-time curves.

  15. TiO2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance.

    PubMed

    Dhawale, Dattatray S; Gujar, Tanaji P; Lokhande, Chandrakant D

    2017-08-15

    Development of highly sensitive and selective semiconductor-based metal oxide sensor devices to detect toxic, explosive, flammable, and pollutant gases is still a challenging research topic. In the present work, we systematically enhanced the liquefied petroleum gas (LPG) sensing performance of chemical bath deposited TiO 2 nanorods by decorating Pd nanoparticle catalyst. Surface morphology with elemental mapping, crystal structure, composition and oxidation states, and surface area measurements of pristine TiO 2 and Pd:TiO 2 nanorods was examined by high resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption characterization techniques. LPG sensing performance of pristine TiO 2 and Pd:TiO 2 nanorods was investigated in different LPG concentration and operating temperature ranges. The LPG response of 21% for pristine TiO 2 nanorods is enhanced to 49% after Pd catalyst decoration with reasonably fast response and recovery times. Further, the sensor exhibited long-term stability, which could be due to the strong metal support (Pd:TiO 2 ) interaction and catalytic properties offered by the Pd nanoparticle catalyst. The work described herein demonstrates a general and scalable approach that provides a promising route for rational design of variety of sensor devices for LPG detection.

  16. Study of nanoparticles TiO2 thin films on p-type silicon substrate using different alcoholic solvents

    NASA Astrophysics Data System (ADS)

    Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.

    2016-07-01

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.

  17. In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light.

    PubMed

    Bhirud, Ashwini P; Sathaye, Shivaram D; Waichal, Rupali P; Ambekar, Jalindar D; Park, Chan-J; Kale, Bharat B

    2015-03-21

    Highly monodispersed nitrogen doped TiO2 nanoparticles were successfully deposited on graphene (N-TiO2/Gr) by a facile in-situ wet chemical method for the first time. N-TiO2/Gr has been further used for photocatalytic hydrogen production using a naturally occurring abundant source of energy i.e. solar light. The N-TiO2/Gr nanocomposite composition was optimized by varying the concentrations of dopant nitrogen and graphene (using various concentrations of graphene) for utmost hydrogen production. The structural, optical and morphological aspects of nanocomposites were studied using XRD, UV-DRS, Raman, XPS, FESEM, and TEM. The structural study of the nanocomposite shows existence of anatase N-TiO2. Further, the details of the components present in the composition were confirmed with Raman and XPS. The morphological study shows that very tiny, 7-10 nm sized, N-TiO2 nanoparticles are deposited on the graphene sheet. The optical study reveals a drastic change in absorption edge and consequent total absorption due to nitrogen doping and presence of graphene. Considering the extended absorption edge to the visible region, these nanocomposites were further used as a photocatalyst to transform hazardous H2S waste into eco-friendly hydrogen using solar light. The N-TiO2/Gr nanocomposite with 2% graphene exhibits enhanced photocatalytic stable hydrogen production i.e. ∼5941 μmol h(-1) under solar light irradiation using just 0.2 gm nanocomposite, which is much higher as compared to P25, undoped TiO2 and TiO2/Gr nanocomposite. The enhancement in the photocatalytic activity is attributed to 'N' doping as well as high specific surface area and charge carrier ability of graphene. The recycling of the photocatalyst shows a good stability of the nanocomposites. This work may provide new insights to design other semiconductor deposited graphene novel nanocomposites as a visible light active photocatalyst.

  18. Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes

    PubMed Central

    Tucci, P; Porta, G; Agostini, M; Dinsdale, D; Iavicoli, I; Cain, K; Finazzi-Agró, A; Melino, G; Willis, A

    2013-01-01

    The long-term health risks of nanoparticles remain poorly understood, which is a serious concern given their prevalence in the environment from increased industrial and domestic use. The extent to which such compounds contribute to cellular toxicity is unclear, and although it is known that induction of oxidative stress pathways is associated with this process, the proteins and the metabolic pathways involved with nanoparticle-mediated oxidative stress and toxicity are largely unknown. To investigate this problem further, the effect of TiO2 on the HaCaT human keratinocyte cell line was examined. The data show that although TiO2 does not affect cell cycle phase distribution, nor cell death, these nanoparticles have a considerable and rapid effect on mitochondrial function. Metabolic analysis was performed to identify 268 metabolites of the specific pathways involved and 85 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. Importantly, the uptake of nanoparticles into the cultured cells was restricted to phagosomes, TiO2 nanoparticles did not enter into the nucleus or any other cytoplasmic organelle. No other morphological changes were detected after 24-h exposure consistent with a specific role of mitochondria in this response. PMID:23519118

  19. Thin layer of ordered boron-doped TiO2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity

    NASA Astrophysics Data System (ADS)

    Siuzdak, Katarzyna; Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Karczewski, Jakub; Ryl, Jacek

    2015-12-01

    This paper reports a novel method of boron doped titania nanotube arrays preparation by electrochemical anodization in electrolyte containing boron precursor - boron trifluoride diethyl etherate (BF3 C4H10O), simultaneously acting as an anodizing agent. A pure, ordered TiO2 nanotubes array, as a reference sample, was also prepared in solution containing a standard etching compound: ammonium fluoride. The doped and pure titania were characterized by scanning electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, photoluminescence emission spectroscopy and by means of electrochemical methods. The B-doping decidedly shifts the absorption edge of TiO2 nanotubes towards the visible light region and significantly inhibits the radiative recombination processes. Despite the fact that the doped sample is characterized by 4.6 lower real surface area when compared to pure titania, it leads to the decomposition of methylene blue in 93%, that is over 2.3 times higher than the degradation efficiency exhibited by the undoped material. The formation rate of hydroxyl radicals (rad OH) upon illumination significantly favours boron doped titania as a photocatalytic material. Moreover, the simple doping of TiO2 nanotubes array results in the enhancement of generated photocurrent from 120 μA/cm2 to 350 μA/cm2 registered for undoped and doped electrode, respectively.

  20. Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Wu, Pengcheng; Song, Xianyin; Si, Shuyao; Ke, Zunjian; Cheng, Li; Li, Wenqing; Xiao, Xiangheng; Jiang, Changzhong

    2018-05-01

    The metal-oxide semiconductor TiO2 shows enormous potential in the field of photoelectric detection; however, UV-light absorption only restricts its widespread application. It is considered that nitrogen doping can improve the visible light absorption of TiO2, but the effect of traditional chemical doping is far from being used for visible light detection. Herein, we dramatically broadened the absorption spectrum of the TiO2 nanowire (NW) by nitrogen ion implantation and apply the N-doped single TiO2 NW to visible light detection for the first time. Moreover, this novel strategy effectively modifies the surface states and thus regulates the height of Schottky barriers at the metal/semiconductor interface, which is crucial to realizing high responsivity and a fast response rate. Under the illumination of a laser with a wavelength of 457 nm, our fabricated photodetector exhibits favorable responsivity (8 A W-1) and a short response time (0.5 s). These results indicate that ion implantation is a promising method in exploring the visible light detection of TiO2.