Science.gov

Sample records for n-fe2o3 nanowire films

  1. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films

    NASA Astrophysics Data System (ADS)

    Bergin, Stephen M.; Chen, Yu-Hui; Rathmell, Aaron R.; Charbonneau, Patrick; Li, Zhi-Yuan; Wiley, Benjamin J.

    2012-03-01

    This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For

  2. Thermal property of transparent silver nanowire films

    NASA Astrophysics Data System (ADS)

    Park, J. W.; Shin, D. K.; Ahn, J.; Lee, J. Y.

    2014-01-01

    Through a comparison with transparent polymer composite films, we investigate the thermal property of transparent silver nanowire (AgNW) films that may be employed for heat sink in transparent electronic devices. To fabricate transparent polymer composite films and enhance their thermal property, poly(methyl methacrylate) (PMMA) solution featuring high transparency (∼90%) and thermal emissivity (0.9) is mixed with thermal conductive fillers such as aluminum nitride (AlN) and silicon carbide (SiC). It is observed that the thermal emissivity of the AgNW films is decreased as the sheet resistance is reduced. However, we have found that the AgNW film shows the most excellent heat dissipation property (53.7 °C) while maintaining relatively higher transparency (77.1% at 520 nm), followed by the PMMA:SiC and then PMMA:AlN films.

  3. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence; Yuan, Jikang

    2011-02-15

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.

  4. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence; Yuan, Jikang

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  5. Ferromagnetic of nanowires of infinite length and infinite thin films

    NASA Astrophysics Data System (ADS)

    Chacouche, Khaled; Hadiji, Rejeb

    2015-12-01

    The aim of the work described in this paper is to determine, via an asymptotic analysis, the limiting form of the free energy governing in the first case 3D ferromagnetic nanowires of infinite length in the limit and in the second case 3D thin films which become infinite when their thickness is vanished. A 1D limit problem on the nanowires and a 2D limit problem on the thin films are obtained.

  6. Indium doped zinc oxide nanowire thin films for antireflection and solar absorber coating applications

    SciTech Connect

    Shaik, Ummar Pasha; Krishna, M. Ghanashyam

    2014-04-24

    Indium doped ZnO nanowire thin films were prepared by thermal oxidation of Zn-In metal bilayer films at 500°C. The ZnO:In nanowires are 20-100 nm in diameter and several tens of microns long. X-ray diffraction patterns confirm the formation of oxide and indicate that the films are polycrystalline, both in the as deposited and annealed states. The transmission which is <2% for the as deposited Zn-In films increases to >90% for the ZnO:In nanowire films. Significantly, the reflectance for the as deposited films is < 10% in the region between 200 to 1500 nm and < 2% for the nanowire films. Thus, the as deposited films can be used solar absorber coatings while the nanowire films are useful for antireflection applications. The growth of nanowires by this technique is attractive since it does not involve very high temperatures and the use of catalysts.

  7. Expanding the versatility of silicon carbide thin films and nanowires

    NASA Astrophysics Data System (ADS)

    Luna, Lunet

    Silicon carbide (SiC) based electronics and sensors hold promise for pushing past the limits of current technology to achieve small, durable devices that can function in high-temperature, high-voltage, corrosive, and biological environments. SiC is an ideal material for such conditions due to its high mechanical strength, excellent chemical stability, and its biocompatibility. Consequently, SiC thin films and nanowires have attracted interest in applications such as micro- and nano-electromechanical systems, biological sensors, field emission cathodes, and energy storage devices. However to fully realize SiC in such technologies, the reliability of metal contacts to SiC at high temperatures must be improved and the nanowire growth mechanism must be understood to enable strict control of nanowire crystal structure and orientation. Here, we present a novel metallization scheme, utilizing solid-state graphitization of SiC, to improve the long-term reliability of Pt/Ti contacts to polycrystalline n-type SiC films at high temperature. The metallization scheme includes an alumina protection layer and exhibits low, stable contact resistivity even after long-term (500 hr) testing in air at 450 ºC. We also report the crystal structure and growth mechanism of Ni-assisted silicon carbide nanowires using single-source precursor, methyltrichlorosilane. The effects of growth parameters, such as substrate and temperature, on the structure and morphology of the resulting nanowires will also be presented. Overall, this study provides new insights towards the realization of novel SiC technologies, enabled by advanced electron microscopy techniques located in the user facilities at the Molecular Foundry in Berkeley, California. This work was performed in part at the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  8. Thermal boundary conductance between Al films and GaN nanowires investigated with molecular dynamics.

    PubMed

    Zhou, Xiao-Wang; Jones, Reese E; Hopkins, Patrick E; Beechem, Thomas E

    2014-05-28

    GaN nanowires are being pursued for optoelectronic and high-power applications. In either use, increases in operating temperature reduce both performance and reliability making it imperative to minimize thermal resistances. Since interfaces significantly influence the thermal response of nanosystems, the thermal boundary resistance between GaN nanowires and metal contacts has major significance. In response, we have performed systematic molecular dynamics simulations to study the thermal boundary conductance between GaN nanowires and Al films as a function of nanowire dimensions, packing density, and the depth the nanowire is embedded into the metal contact. At low packing densities, the apparent Kapitza conductance between GaN nanowires and an aluminum film is shown to be larger than when contact is made between films of these same materials. This enhancement decreases toward the film-film limit, however, as the packing density increases. For densely packed nanowires, maximizing the Kapitza conductance can be achieved by embedding the nanowires into the films, as the conductance is found to be proportional to the total contact area.

  9. Effects of length dispersity and film fabrication on the sheet resistance of copper nanowire transparent conductors

    NASA Astrophysics Data System (ADS)

    Borchert, James W.; Stewart, Ian E.; Ye, Shengrong; Rathmell, Aaron R.; Wiley, Benjamin J.; Winey, Karen I.

    2015-08-01

    Development of thin-film transparent conductors (TC) based on percolating networks of metal nanowires has leaped forward in recent years, owing to the improvement of nanowire synthetic methods and modeling efforts by several research groups. While silver nanowires are the first commercially viable iteration of this technology, systems based on copper nanowires are not far behind. Here we present an analysis of TCs composed of copper nanowire networks on sheets of polyethylene terephthalate that have been treated with various oxide-removing post treatments to improve conductivity. A pseudo-2D rod network modeling approach has been modified to include lognormal distributions in length that more closely reflect experimental data collected from the nanowire TCs. In our analysis, we find that the copper nanowire TCs are capable of achieving comparable electrical performance to silver nanowire TCs with similar dimensions. Lastly, we present a method for more accurately determining the nanowire area coverage in a TC over a large area using Rutherford Backscattering Spectrometry (RBS) to directly measure the metal content in the TCs. These developments will aid research and industry groups alike in the characterization of nanowire based TCs.Development of thin-film transparent conductors (TC) based on percolating networks of metal nanowires has leaped forward in recent years, owing to the improvement of nanowire synthetic methods and modeling efforts by several research groups. While silver nanowires are the first commercially viable iteration of this technology, systems based on copper nanowires are not far behind. Here we present an analysis of TCs composed of copper nanowire networks on sheets of polyethylene terephthalate that have been treated with various oxide-removing post treatments to improve conductivity. A pseudo-2D rod network modeling approach has been modified to include lognormal distributions in length that more closely reflect experimental data collected

  10. Preparation of Mesoporous Silica Templated Metal Nanowire Films on Foamed Nickel Substrates

    SciTech Connect

    Campbell, Roger; Kenik, Edward A; Bakker, Martin; Havrilla, George; Montoya, Velma; Shamsuzzoha, Mohammed

    2006-01-01

    A method has been developed for the formation of high surface area nanowire films on planar and three-dimensional metal electrodes. These nanowire films are formed via electrodeposition into a mesoporous silica film. The mesoporous silica films are formed by a sol-gel process using Pluronic tri-block copolymers to template mesopore formation on both planar and three-dimensional metal electrodes. Surface area increases of up to 120-fold have been observed in electrodes containing a templated film when compared to the same types of electrodes without the templated film.

  11. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  12. Influence of Nanowire Diameter on Structural and Optical Properties of cu Nanowire Synthesized in Anodic Aluminium Oxide Film

    NASA Astrophysics Data System (ADS)

    Cetinel, A.; Özcelik, Z.

    2016-11-01

    Copper (Cu) nanowire arrays embedded in anodic aluminium oxide films (AAO) on aluminium substrate have been synthesized by alternating current electrochemical deposition. Two-step anodization process has been performed to get the through-hole AAO with ordered nanochannels in 0.3M oxalic acids at DC voltages 30, 40, 50 and 60V, respectively. Structural characterization of the Cu nanowires has been analyzed by scanning electron microscopy (SEM) and X-ray diffraction (or) X-ray diffractometer (XRD). Our SEM analysis has revealed that the diameters of vertically oriented Cu nanowires are 15, 25, 45 and 60nm and the length of Cu nanowires having high packing density is about 15μm. XRD measurement has indicated that polycrystalline Cu nanowires prefer growth orientation along the (111) direction. Optical measurements show that reflection of the Cu nanowires/AAO on aluminium reduces with decreasing diameter of the Cu nanowires. This effect can be associated with increased light scattering from metal nanoparticles near their localized plasmon resonance frequency depending on the size and shape of the nanoparticles.

  13. Evaluation of the effects of iron nanowires on polystyrene microthin films

    NASA Astrophysics Data System (ADS)

    Glaze, Kelly R.

    The different properties that polymer films possess compared to their bulk materials have been studied over the past several decades. One explanation for this involves interactions between substrates and films, and the use of nanoparticles has emerged as an alternative means of investigating these interactions. The objective of this study is to determine the effects and the nature of interactions between iron (Fe) nanowires and polystyrene (PS) microthin films. Investigation of the interactions by utilization of physical, thermal, and spectral methodologies was performed on four types of PS film samples based on the possible combinations of unstretched or stretched films that were without or with Fe nanowires. Differential scanning calorimetry (DSC) experiments were performed on heating the four types of PS film samples. Compared to the glass transition temperature (Tg) of the bulk material (˜94 °C), the average experimental Tg of unstretched PS films without Fe nanowires was 84.0 °C, which decreased after the addition of Fe nanowires to 67.5 °C, presumably due to the thermal conductivity of the nanowires. Polarized light microscope (PLM) images showed color differences with 90° polarization using a 530 nm filter in areas around Fe nanowires in stretched PS film samples. The differences may have been due to orientation changes caused by interactions with Fe nanowires, or the nanowires may have either hindered or prevented stretching in surrounding areas, leaving those areas a similar shade of pink as the background. Fourier Transform infrared spectroscopy (FT-IR) as a function of polarization angle confirmed the expectation that the physical effect of stretching a PS film without the addition of nanoparticles is sufficient to produce linear absorbance variations. FT-IR as a function of temperature suggested that absorbance decreases were caused by the PS film melting, which may have been hastened by the physical interaction of Fe nanowires conducting heat. Two

  14. Silver Nanowire Transparent Conductive Films with High Uniformity Fabricated via a Dynamic Heating Method.

    PubMed

    Jia, Yonggao; Chen, Chao; Jia, Dan; Li, Shuxin; Ji, Shulin; Ye, Changhui

    2016-04-20

    The uniformity of the sheet resistance of transparent conductive films is one of the most important quality factors for touch panel applications. However, the uniformity of silver nanowire transparent conductive films is far inferior to that of indium-doped tin oxide (ITO). Herein, we report a dynamic heating method using infrared light to achieve silver nanowire transparent conductive films with high uniformity. This method can overcome the coffee ring effect during the drying process and suppress the aggregation of silver nanowires in the film. A nonuniformity factor of the sheet resistance of the as-prepared silver nanowire transparent conductive films could be as low as 6.7% at an average sheet resistance of 35 Ω/sq and a light transmittance of 95% (at 550 nm), comparable to that of high-quality ITO film in the market. In addition, a mechanical study shows that the sheet resistance of the films has little change after 5000 bending cycles, and the film could be used in touch panels for human-machine interactive input. The highly uniform and mechanically stable silver nanowire transparent conductive films meet the requirement for many significant applications and could play a key role in the display market in a near future. PMID:27054546

  15. Enhanced film conductance of silver nanowire-based flexible transparent & conductive networks by bending

    NASA Astrophysics Data System (ADS)

    Xia, Xingda; Yang, Bingchu; Zhang, Xiang; Zhou, Conghua

    2015-07-01

    Bending is usually used to test durability of flexible transparent and conductive films. Due to the large stress incurred by this technique, bending has always been observed to deteriorate conductance of electrodes such as indium tin oxide film. In contrast, we here demonstrate that bending could be used to improve conductance of silver nanowire-based flexible transparent and conductive films. The enhanced conductance is due to improved contact between nanowires, which was favored by the hydrogen bond formed between residential polyvinylpyrrolidone (PVP) on silver nanowire and TiOx nanoparticles pre-coated on the substrate. The enhanced conductance was found to be affected by bending direction; bending towards the substrate not only yielded quicker decrease in sheet resistance, but also showed better film conductance than bending towards the nanowires. Then, with assistance of surface modification of substrate and ultra-long silver nanowires (averaged at 124 μm, maximum at 438 μm), optoelectronic performance of 90.2% (transmittance at 550 nm) and 12.5 Ω sq-1 (sheet resistance) has been achieved by bending. Such performance was better than commercialized flexible ITO films, and even competed with that obtained from thermal annealing at temperature of 200 °C. Moreover, Fourier transfer infrared (FTIR) spectroscopy study showed strong coordination between C=O (heterocyclic ring of PVP) and silver atoms, showing obvious capping behavior of PVP on silver nanowires.

  16. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires

    NASA Astrophysics Data System (ADS)

    Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun

    2016-06-01

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm-1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.

  17. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics.

    PubMed

    Im, Hyeon-Gyun; Jung, Soo-Ho; Jin, Jungho; Lee, Dasom; Lee, Jaemin; Lee, Daewon; Lee, Jung-Yong; Kim, Il-Doo; Bae, Byeong-Soo

    2014-10-28

    We report a flexible high-performance conducting film using an embedded copper nanowire transparent conducting electrode; this material can be used as a transparent electrode platform for typical flexible optoelectronic devices. The monolithic composite structure of our transparent conducting film enables simultaneously an outstanding oxidation stability of the copper nanowire network (14 d at 80 °C), an exceptionally smooth surface topography (R(rms) < 2 nm), and an excellent opto-electrical performances (Rsh = 25 Ω sq(-1) and T = 82%). A flexible organic light emitting diode device is fabricated on the transparent conducting film to demonstrate its potential as a flexible copper nanowire electrode platform.

  18. SiC Nanowire Film Photodetectors: A Promising Candidate Toward High Temperature Photodetectors.

    PubMed

    Chong, Haining; Yang, Huijun; Yang, Weiyou; Zheng, Jinju; Shang, Minghui; Yang, Zuobao; Wei, Guodong; Gao, Fengmei

    2016-04-01

    In this study, UV photodetectors (PDs) based on SiC nanowire films have been successfully prepared by a simple and low-cost drip-coating method followed by sintering at 500 °C. The corresponding electrical characterizations clearly demonstrate that the SiC nanowire based PD devices can be regarded as a promising candidate for UV PDs. The PDs can exhibit the excellent performances of fast, high sensitivity, linearity, and stable response, which can thus achieve on-line monitoring of weak UV light. Furthermore, the SiC nanowire-based PDs enable us to fabricate detectors working under high temperature as high as 150 °C. The high photosensitivity and rapid photoresponse for the PDs can be attributed to the superior single crystalline quality of SiC nanowires and the ohmic contact between the electrodes and nanowires. PMID:27451712

  19. Predicting the optoelectronic properties of nanowire films based on control of length polydispersity.

    PubMed

    Large, Matthew J; Burn, Jake; King, Alice A; Ogilvie, Sean P; Jurewicz, Izabela; Dalton, Alan B

    2016-05-09

    We demonstrate that the optoelectronic properties of percolating thin films of silver nanowires (AgNWs) are predominantly dependent upon the length distribution of the constituent AgNWs. A generalized expression is derived to describe the dependence of both sheet resistance and optical transmission on this distribution. We experimentally validate the relationship using ultrasonication to controllably vary the length distribution. These results have major implications where nanowire-based films are a desirable material for transparent conductor applications; in particular when application-specific performance criteria must be met. It is of particular interest to have a simple method to generalize the properties of bulk films from an understanding of the base material, as this will speed up the optimisation process. It is anticipated that these results may aid in the adoption of nanowire films in industry, for applications such as touch sensors or photovoltaic electrode structures.

  20. Predicting the optoelectronic properties of nanowire films based on control of length polydispersity

    PubMed Central

    Large, Matthew J.; Burn, Jake; King, Alice A.; Ogilvie, Sean P.; Jurewicz, Izabela; Dalton, Alan B.

    2016-01-01

    We demonstrate that the optoelectronic properties of percolating thin films of silver nanowires (AgNWs) are predominantly dependent upon the length distribution of the constituent AgNWs. A generalized expression is derived to describe the dependence of both sheet resistance and optical transmission on this distribution. We experimentally validate the relationship using ultrasonication to controllably vary the length distribution. These results have major implications where nanowire-based films are a desirable material for transparent conductor applications; in particular when application-specific performance criteria must be met. It is of particular interest to have a simple method to generalize the properties of bulk films from an understanding of the base material, as this will speed up the optimisation process. It is anticipated that these results may aid in the adoption of nanowire films in industry, for applications such as touch sensors or photovoltaic electrode structures. PMID:27158132

  1. Flash nano-welding: investigation and control of the photothermal response of ultrathin bismuth sulfide nanowire films.

    PubMed

    Thomson, Jordan W; Lawson, Gregor; O'Brien, Paul; Klenkler, Richard; Helander, Michael G; Petrov, Srebri; Lu, Zheng-Hong; Kherani, Nazir P; Adronov, Alex; Ozin, Geoffery

    2010-10-15

    Ultrathin Bi₂S₃ nanowires undergo a pronounced photothermal response to irradiation from a commercial camera flash. Controlled nano-welding was shown by using single walled carbon nanotube mats as an electrically and thermally conductive substrate. The resulting welded nanowire film is denser and has significantly lower resistance than unflashed bilayer films.

  2. Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding.

    PubMed

    Hu, Mingjun; Gao, Jiefeng; Dong, Yucheng; Li, Kai; Shan, Guangcun; Yang, Shiliu; Li, Robert Kwok-Yiu

    2012-05-01

    We have developed a kind of high-yield synthesis strategy for silver nanowires by a two-step injection polyol method. Silver nanowires and polyethylene oxide (PEO) (M(w) = 900,000) were prepared in a homogeneous-coating ink. Wet composite films with different thicknesses were fabricated on a PET substrate by drawn-down rod-coating technology. Silver nanowires on PET substrates present a homogeneous distribution under the assistance of PEO. Then PEO was thermally removed in situ at a relatively low temperature attributed to its special thermal behavior under atmospheric conditions. As-prepared metallic nanowire films on PET substrates show excellent stability and a good combination of conductivity and light transmission. A layer of transparent poly(ethersulfones) (PESs) was further coated on silver nanowire networks by the same coating method to prevent the shedding and corrosion of silver nanowires. Sandwich-structured flexible transparent films were obtained and displayed excellent electromagnetic interference (EMI) shielding effectiveness.

  3. Nanostructured Zn and ZnO nanowire thin films for mechanical and self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Shaik, Ummar Pasha; Purkayastha, Debarun Dhar; Krishna, M. Ghanashyam; Madhurima, V.

    2015-03-01

    Nanostructured Zn metal films were deposited by thermal evaporation, on borosilicate glass, Quartz, sapphire, lanthanum aluminate and yttria stabilized zirconia substrates. The as-deposited films are nanocrystalline and show a morphology that consists of triangular nanosheets. The films are hydrophobic with contact angles between 102° and 120° with hardness and Young's modulus between 0.15-0.8 GPa and 18-300 GPa, respectively. Thermal annealing of the films at 500 °C results only in partial oxidation of Zn to ZnO, which indicates good oxidation resistance. Annealing also causes transformation of the Zn nanosheets into ZnO nanowires that are polycrystalline in nature. The ZnO nanowires are superhydrophobic with contact angles between 159° and 162°, contact angle hysteresis between 5° and 10° and exhibit a reversible superhydrophobic-hydrophilic transition under UV irradiation. The nanowires are much softer than the as-deposited Zn metal films, with hardness between 0.02 and 0.4 GPa and Young's modulus between 3 and 35 GPa. The current study thus demonstrates a simple process for fabrication of nanostructured Zn metal films followed by a one-step transformation to nanowires with properties that will be very attractive for mechanical and self-cleaning applications.

  4. The mechanism of Bi nanowire growth from Bi/Co immiscible composite thin films.

    PubMed

    Volobuev, Valentine V; Dziawa, Piotr; Stetsenko, Alexander N; Zubarev, Eugene N; Savitskiy, Boris A; Samburskaya, Tatyana A; Reszka, Anna; Story, Tomasz; Sipatov, Alexander Yu

    2012-11-01

    Single crystalline Bi nanowires were grown by extrusion from Bi/Co thin films. The films were obtained by thermal evaporation in high vacuum. The average diameter, length and density of obtained nanowires were 100 nm, 30 microm and 6.5 x 10(5) cm(-2), respectively. The non-catalyzed self-organized process of whisker formation on the surface of immiscible composite thin film was exploited for nanowire growth. It was shown that the whiskers had formed during and after a thin film deposition. The value of residual stresses in a whole thin film coating as well as in its bismuth component was measured using X-ray diffraction technique. It was revealed that local compressive stresses, that had induced the whisker growth, had been formed by a segregation of Bi layers into Bi globules. A simple model of the whisker formation to minimize free energy in the Bi/Co system was proposed taking into account interfacial and elastic deformation energies. The obtained results can be utilized for growing of nanowires of other low-melting-point metals and semiconductors from immiscible composite thin films. PMID:23421254

  5. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens.

    PubMed

    Madaria, Anuj R; Kumar, Akshay; Zhou, Chongwu

    2011-06-17

    The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σ(DC)/σ(Op), for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, Φ(TE). Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated. PMID:21508460

  6. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens

    NASA Astrophysics Data System (ADS)

    Madaria, Anuj R.; Kumar, Akshay; Zhou, Chongwu

    2011-06-01

    The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σDC/σOp, for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, ΦTE. Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated.

  7. Electrochemically synthesized amorphous and crystalline nanowires: dissimilar nanomechanical behavior in comparison with homologous flat films

    NASA Astrophysics Data System (ADS)

    Zeeshan, M. A.; Esqué-de Los Ojos, D.; Castro-Hartmann, P.; Guerrero, M.; Nogués, J.; Suriñach, S.; Baró, M. D.; Nelson, B. J.; Pané, S.; Pellicer, E.; Sort, J.

    2016-01-01

    The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires requires taking the curved geometry of the indented surface and sink-in effects into account. These findings are of high relevance for optimizing the performance of new, mechanically-robust, nanoscale materials for increasingly complex miniaturized devices.The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires

  8. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy.

    PubMed

    Baxter, Jason B; Schmuttenmaer, Charles A

    2006-12-21

    The terahertz absorption coefficient, index of refraction, and conductivity of nanostructured ZnO have been determined using time-resolved terahertz spectroscopy, a noncontact optical probe. ZnO properties were measured directly for thin films and were extracted from measurements of nanowire arrays and mesoporous nanoparticle films by applying Bruggeman effective medium theory to the composite samples. Annealing significantly reduces the intrinsic carrier concentration in the ZnO films and nanowires, which were grown by chemical bath deposition. The complex-valued, frequency-dependent photoconductivities for all morphologies were found to be similar at short pump-probe delay times. Fits using the Drude-Smith model show that films have the highest mobility, followed by nanowires and then nanoparticles, and that annealing the ZnO increases its mobility. Time constants for decay of photoinjected electron density in films are twice as long as those in nanowires and more than 5 times those for nanoparticles due to increased electron interaction with interfaces and grain boundaries in the smaller-grained materials. Implications for electron transport in dye-sensitized solar cells are discussed.

  9. Scalable alignment and transfer of nanowires in a Spinning Langmuir Film.

    PubMed

    Zhu, Ren; Lai, Yicong; Nguyen, Vu; Yang, Rusen

    2014-10-21

    Many nanomaterial-based integrated nanosystems require the assembly of nanowires and nanotubes into ordered arrays. A generic alignment method should be simple and fast for the proof-of-concept study by a researcher, and low-cost and scalable for mass production in industries. Here we have developed a novel Spinning-Langmuir-Film technique to fulfill both requirements. We used surfactant-enhanced shear flow to align inorganic and organic nanowires, which could be easily transferred to other substrates and ready for device fabrication in less than 20 minutes. The aligned nanowire areal density can be controlled in a wide range from 16/mm(-2) to 258/mm(-2), through the compression of the film. The surface surfactant layer significantly influences the quality of alignment and has been investigated in detail. PMID:25177924

  10. Characterization and Fabrication of ZnO Nanowires Grown on AlN Thin Film

    SciTech Connect

    Yousefi, Ramin; Kamaluddin, Burhanuddin; Ghoranneviss, Mahmood; Hajakbari, Fatemeh

    2009-07-07

    In this paper, we report ZnO nanowires grown on AlN thin film deposited on glass as substrate by physical vapour deposition. The temperature of substrates was kept between 600 deg. C and 500 deg. C during the growth. The typical average diameters of the obtained nanowires on substrate at 600 deg. C and 500 deg. C was about 57 nm and 22 nm, respectively with several micrometers in lengths. X-ray diffraction and Auger spectroscopy results showed Al diffused from AlN thin film into ZnO nanowires for sample at high temperature zone. In the photoluminescence spectra two emission bands appeared, one related to ultraviolet emission with a strong peak at 380-382 nm, and another related to deep level emission with a weak peak at 510 nm.

  11. Fabrication and properties of a branched (NH₄)xWO₃ nanowire array film and a porous WO3 nanorod array film.

    PubMed

    Liu, Ya; Zhao, Liang; Su, Jinzhan; Li, Mingtao; Guo, Liejin

    2015-02-18

    We describe the successful fabrication of a three-dimensional branched (NH4)xWO3 nanowire array film on fluorine-doped tin oxide coated glass by a facile one-step hydrothermal method. The porous WO3 nanorod array film formed after heat treatment and recrystallization. Specifically, the branched (NH4)xWO3 nanowire array film has very thin nanowires that were about 10 nm in diameter. The results of an optical and photoelectrochemical test show that the branched (NH4)xWO3 nanowire array film could be used as a near-infrared shielder, while the porous WO3 nanorod array film can be used as a photoanode for water splitting. Moreover, the morphology, structure, and composition of the as-prepared films are revealed, and the related changes caused by heat treatment are discussed in detail. PMID:25623076

  12. Physical model for the exotic ultraviolet photo-conductivity of ZnO nanowire films

    NASA Astrophysics Data System (ADS)

    Pan, Yue-Wu; Ren, Shou-Tian; Qu, Shi-Liang; Wang, Qiang

    2013-11-01

    Employing a simple and efficient method of electro-chemical anodization, ZnO nanowire films are fabricated on Zn foil, and an ultraviolet (UV) sensor prototype is formed for investigating the electronic transport through back-to-back double junctions. The UV (365 nm) responses of surface-contacted ZnO film are provided by I—V measurement, along with the current evolution process by on/off of UV illumination. In this paper, the back-to-back metal—seconductor—metal (M—S—M) model is used to explain the electronic transport of a ZnO nanowire film based structure. A thermionic-field electron emission mechanism is employed to fit and explain the as-observed UV sensitive electronic transport properties of ZnO film with surface-modulation by oxygen and water molecular coverage.

  13. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.

    PubMed

    Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X

    2010-12-01

    Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.

  14. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    PubMed

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased. PMID:24922214

  15. Thin-Film Nanowire Networks for Transparent Conductor Applications: Simulations of Sheet Resistance and Percolation Thresholds

    NASA Astrophysics Data System (ADS)

    Winey, Karen I.; Mutiso, Rose M.; Sherrott, Michelle C.; Rathmell, Aaron R.; Wiley, Benjamin J.

    2013-03-01

    Thin-film metal nanowire networks are being pursued as a viable alternative to the expensive and brittle indium tin oxide (ITO) for transparent conductors. For high performance applications, nanowire networks must exhibit high transmittance at low sheet resistance. Previously, we have used complimentary experimental, simulation and theoretical techniques to explore the effects of filler aspect ratio (L/D), orientation, and size-dispersity on the electrical conductivity of three-dimensional rod-networks in bulk polymer nanocomposites. We adapted our 3D simulation approach and analytical percolation model to study the electrical properties of thin-film rod-networks. By fitting our simulation results to experimental results, we determined the average effective contact resistance between silver nanowires. This contact resistance was then used to quantify how the sheet resistance depends on the aspect ratio of the rods and to show that networks made of nanowires with L/D greater than 100 yield sheet resistances lower than the required 100 Ohm/sq. We also report the critical area fraction of rods required to form a percolated network in thin-film networks and provide an analytical expression for the critical area fraction as a function of L/D.

  16. Thermal response of transparent silver nanowire/PEDOT:PSS film heaters.

    PubMed

    Ji, Shulin; He, Weiwei; Wang, Ke; Ran, Yunxia; Ye, Changhui

    2014-12-10

    Thermal response behavior of transparent silver nanowire/PEDOT:PSS film heaters are intensively studied for manipulating heating temperature, response time, and power consumption. Influences of substrate heat capacity, heat transfer coefficient between air and heater, sheet resistance and dimension of Ag nanowire film, on the thermal response are investigated from thermodynamic analysis. Suggestion is given for practical applications that if other parameters are fixed, Ag nanowire coverage can be utilized as an effective parameter to adjust the thermal response. The heat transfer coefficient plays opposite roles on thermal response speed and achievable steady temperature. A value of ≈32 W m(-2) K(-1) is obtained from transient process analysis after correcting it by considering heater resistance variation during heating tests. Guidance of designing heaters with a given response time is provided by forming Ag nanowire film with a suitable sheet resistance on substrate of appropriate material and a certain thickness. Thermal response tests of designed Ag heaters are performed to show higher heating temperature, shorter response time, and lower power consumption (179 °C cm(2) W(-1)) than ITO/FTO heaters, as well as homogeneous temperature distribution and stability for repeated use. Potential applications of the Ag heaters in window defogging, sensing and thermochromism are manifested.

  17. Electrochemically synthesized amorphous and crystalline nanowires: dissimilar nanomechanical behavior in comparison with homologous flat films.

    PubMed

    Zeeshan, M A; Esqué-de Los Ojos, D; Castro-Hartmann, P; Guerrero, M; Nogués, J; Suriñach, S; Baró, M D; Nelson, B J; Pané, S; Pellicer, E; Sort, J

    2016-01-21

    The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (ϕ ≈ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires requires taking the curved geometry of the indented surface and sink-in effects into account. These findings are of high relevance for optimizing the performance of new, mechanically-robust, nanoscale materials for increasingly complex miniaturized devices. PMID:26399166

  18. Preparation and characterization of bio-based hybrid film containing chitosan and silver nanowires.

    PubMed

    Shahzadi, Kiran; Wu, Lin; Ge, Xuesong; Zhao, Fuhua; Li, Hui; Pang, Shuping; Jiang, Yijun; Guan, Jing; Mu, Xindong

    2016-02-10

    A bio-based hybrid film containing chitosan (CS) and silver nanowires (AgNWs) has been prepared by a simple casting technique. X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-visible spectroscopy were employed to characterize the structure of bio-based film. The bio-based hybrid film showed unique performance compared with bare chitosan film. The incorporated nano-silver could improve the strength properly. The results revealed that AgNWs in CS film, improved its tensile strength more than 62% and Young modulus 55% compared with pure chitosan film. On the other hand tensile strength was increased 36.7% with AgNPs. Importantly, the film also exhibited conductivity and antibacterial properties, which may expand its future application.

  19. Ultra-Long Crystalline Red Phosphorus Nanowires from Amorphous Red Phosphorus Thin Films.

    PubMed

    Smith, Joshua B; Hagaman, Daniel; DiGuiseppi, David; Schweitzer-Stenner, Reinhard; Ji, Hai-Feng

    2016-09-19

    Heating red phosphorus in sealed ampoules in the presence of a Sn/SnI4 catalyst mixture has provided bulk black phosphorus at much lower pressures than those required for allotropic conversion by anvil cells. Herein we report the growth of ultra-long 1D red phosphorus nanowires (>1 mm) selectively onto a wafer substrate from red phosphorus powder and a thin film of red phosphorus in the present of a Sn/SnI4 catalyst. Raman spectra and X-ray diffraction characterization suggested the formation of crystalline red phosphorus nanowires. FET devices constructed with the red phosphorus nanowires displayed a typical I-V curve similar to that of black phosphorus and a similar mobility reaching 300 cm(2)  V(-1)  s with an Ion /Ioff ratio approaching 10(2) . A significant response to infrared light was observed from the FET device. PMID:27553637

  20. Ultra-Long Crystalline Red Phosphorus Nanowires from Amorphous Red Phosphorus Thin Films.

    PubMed

    Smith, Joshua B; Hagaman, Daniel; DiGuiseppi, David; Schweitzer-Stenner, Reinhard; Ji, Hai-Feng

    2016-09-19

    Heating red phosphorus in sealed ampoules in the presence of a Sn/SnI4 catalyst mixture has provided bulk black phosphorus at much lower pressures than those required for allotropic conversion by anvil cells. Herein we report the growth of ultra-long 1D red phosphorus nanowires (>1 mm) selectively onto a wafer substrate from red phosphorus powder and a thin film of red phosphorus in the present of a Sn/SnI4 catalyst. Raman spectra and X-ray diffraction characterization suggested the formation of crystalline red phosphorus nanowires. FET devices constructed with the red phosphorus nanowires displayed a typical I-V curve similar to that of black phosphorus and a similar mobility reaching 300 cm(2)  V(-1)  s with an Ion /Ioff ratio approaching 10(2) . A significant response to infrared light was observed from the FET device.

  1. Metal Nanowires: Synthesis, Processing, and Structure-Property Relationships in the Context of Flexible Transparent Conducting Films

    NASA Astrophysics Data System (ADS)

    Rathmell, Aaron R.

    The demand for flat-panel televisions, e-readers, smart-phones, and touch-screens has been increasing over the past few years and will continue to increase for the foreseeable future. Each of these devices contains a transparent conductor, which is usually indium tin oxide (ITO) because of its high transparency and low sheet resistance. ITO films, however, are brittle, expensive, and difficult to deposit, and because of these problems, alternative transparent electrodes are being studied. One cheap and flexible alternative to ITO is films of randomly oriented copper nanowires. We have developed a synthesis to make long, thin, and well-dispersed copper nanowires that can be suspended in an ink and coated onto a substrate to make flexible transparent films. These films are then made conductive by annealing in a hydrogen atmosphere or by a solution processing technique that can be done in air at room temperature. The resulting flexible transparent conducting films display transparencies and sheet resistance values comparable to ITO. Since it is well known that copper oxidizes, we also developed a synthesis to coat the copper nanowires with a layer of nickel in solution. Our measurements indicated that copper nanowires would double their sheet resistance in 3 months, but the sheet resistance of cupronickel nanowire films containing 20 mole% nickel will double in about 400 years. The addition of nickel to the copper nanowires also gave the film a more neutral grey appearance. The nickel coating can also be applied to the copper nanowires after the film is formed via an electroless plating method. To further optimize the properties of our transparent conductors we developed a framework to understand how the dimensions and area coverage of the nanowires affect the overall film properties. To quantify the effect of length on the sheet resistance and transmittance, wires with different lengths but the same diameter were synthesized to make transparent conducting films and

  2. Highly stretchable and conductive silver nanowire thin films formed by soldering nanomesh junctions.

    PubMed

    Chen, Shih-Pin; Liao, Ying-Chih

    2014-10-01

    Silver nanowires (AgNWs) have been widely used for stretchable and foldable conductors due to their percolating network nanostructure. To enhance the mechanical strength of AgNW thin films under extreme stretching conditions, in this study, we utilize a simple chemical reaction to join AgNW network connections. Upon applying a reactive ink over AgNW thin films, silver nanoparticles are preferentially generated over the nanowire junctions and solder the nanomesh structures. The soldered nanostructure reinforces the conducting network and exhibits no obvious change in electrical conductivity in the stretching or rolling process with elongation strains up to 120%. Several examples are also demonstrated to show potential applications of this material in stretchable electronic devices. PMID:25139194

  3. Synthesis and characterization of ZnO nanowires by thermal oxidation of Zn thin films at various temperatures.

    PubMed

    Khanlary, Mohammad Reza; Vahedi, Vahid; Reyhani, Ali

    2012-05-02

    In this research high-quality zinc oxide (ZnO) nanowires have been synthesized by thermal oxidation of metallic Zn thin films. Metallic Zn films with thicknesses of 250 nm have been deposited on a glass substrate by the PVD technique. The deposited zinc thin films were oxidized in air at various temperatures ranging between 450 °C to 650 °C. Surface morphology, structural and optical properties of the ZnO nanowires were examined by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and photoluminescence (PL) measurements. XRD analysis demonstrated that the ZnO nanowires has a wurtzite structure with orientation of (002), and the nanowires prepared at 600 °C has a better crystalline quality than samples prepared at other temperatures. SEM results indicate that by increasing the oxidation temperature, the dimensions of the ZnO nanowires increase. The optimum temperature for synthesizing high density, ZnO nanowires was determined to be 600 °C. EDX results revealed that only Zn and O are present in the samples, indicating a pure ZnO composition. The PL spectra of as-synthesized nanowires exhibited a strong UV emission and a relatively weak green emission.

  4. Finite-size scaling in silver nanowire films: design considerations for practical devices

    NASA Astrophysics Data System (ADS)

    Large, Matthew J.; Cann, Maria; Ogilvie, Sean P.; King, Alice A. K.; Jurewicz, Izabela; Dalton, Alan B.

    2016-07-01

    We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of the percolating material. We derive a design rule for the minimum viable feature size in a device pattern, relating it to parameters which can be derived from a transmittance-sheet resistance data series for the material in question. This understanding has direct implications for the industrial adoption of silver nanowire electrodes in applications where small features are required including single-layer capacitive touch sensors, LCD and OLED display panels.We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of

  5. Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins

    PubMed Central

    Cayron, Cyril; Den Hertog, Martien; Latu-Romain, Laurence; Mouchet, Céline; Secouard, Christopher; Rouviere, Jean-Luc; Rouviere, Emmanuelle; Simonato, Jean-Pierre

    2009-01-01

    Odd electron diffraction patterns (EDPs) have been obtained by transmission electron microscopy (TEM) on silicon nanowires grown via the vapour–liquid–solid method and on silicon thin films deposited by electron beam evaporation. Many explanations have been given in the past, without consensus among the scientific community: size artifacts, twinning artifacts or, more widely accepted, the existence of new hexagonal Si phases. In order to resolve this issue, the microstructures of Si nanowires and Si thin films have been characterized by TEM, high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy. Despite the differences in the geometries and elaboration processes, the EDPs of the materials show great similarities. The different hypotheses reported in the literature have been investigated. It was found that the positions of the diffraction spots in the EDPs could be reproduced by simulating a hexagonal structure with c/a = 12(2/3)1/2, but the intensities in many EDPs remained unexplained. Finally, it was established that all the experimental data, i.e. EDPs and HRTEM images, agree with a classical cubic silicon structure containing two microstructural defects: (i) overlapping Σ3 microtwins which induce extra spots by double diffraction, and (ii) nanotwins which induce extra spots as a result of streaking effects. It is concluded that there is no hexagonal phase in the Si nanowires and the Si thin films presented in this work. PMID:22477767

  6. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems.

    PubMed

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p'-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis.

  7. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems

    PubMed Central

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p’-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis. PMID:26601698

  8. Interfacial hydrodynamic drag on nanowires embedded in thin oil films and protein layers.

    PubMed

    Lee, Myung Han; Lapointe, Clayton P; Reich, Daniel H; Stebe, Kathleen J; Leheny, Robert L

    2009-07-21

    We investigate the motion of ferromagnetic nanowires confined to nanometer-scale oil films at an air/aqueous interface in response to the application of external magnetic fields and field gradients. By varying the oil viscosity, film thickness, and wire length, we cover two regimes of response suggested by theory: one where the surface viscosity is expected to dominate the wire's motion and one where the subphase viscosity is expected to dominate [Levine, A. J.; Liverpool, T. B.; MacKintosh, F. C. Phys. Rev. E 2004, 69, 021503]. For wire motion parallel to the long axis of the wire, the observed drag agrees reasonably with theoretical predictions. However, the drag on wires moving perpendicular to their long axis or rotating about a short axis is unexpectedly insensitive to the film properties over the full range of measurements. This behavior is in contrast to the rotational and translational drag on nanowires in molecularly thin protein layers, which follow theoretical expectations. The observations in the oil films, which are explained in terms of the manner in which the wire immerses dynamically in the film and subphase, demonstrate how the effective drag viscosity of an aspherical particle confined to a fluid interface can depend on its direction of motion. PMID:19594180

  9. Nanowires of Fe/multi-walled carbon nanotubes and nanometric thin films of Fe/MgO

    SciTech Connect

    Newman, Alexander; Khatiwada, Suman; Neupane, Suman; Seifu, Dereje

    2015-04-14

    We observed that nanowires of Fe grown in the lumens of multi-walled carbon nanotubes required four times higher magnetic field strength to reach saturation compared to planar nanometric thin films of Fe on MgO(100). Nanowires of Fe and nanometric thin films of Fe both exhibited two fold magnetic symmetries. Structural and magnetic properties of 1-dimensional nanowires and 2-dimensional nanometric films were studied by several magnetometery techniques. The θ-2θ x-ray diffraction measurements showed that a (200) peak of Fe appeared on thin film samples deposited at higher substrate temperatures. In these samples prepared at higher temperatures, lower coercive field and highly pronounced two-fold magnetic symmetry were observed. Our results show that maximum magnetocrystalline anisotropy occurred for sample deposited at 100 °C and it decreased at higher deposition temperatures.

  10. Nanowires of Fe/multi-walled carbon nanotubes and nanometric thin films of Fe/MgO

    NASA Astrophysics Data System (ADS)

    Newman, Alexander; Khatiwada, Suman; Neupane, Suman; Seifu, Dereje

    2015-04-01

    We observed that nanowires of Fe grown in the lumens of multi-walled carbon nanotubes required four times higher magnetic field strength to reach saturation compared to planar nanometric thin films of Fe on MgO(100). Nanowires of Fe and nanometric thin films of Fe both exhibited two fold magnetic symmetries. Structural and magnetic properties of 1-dimensional nanowires and 2-dimensional nanometric films were studied by several magnetometery techniques. The θ-2θ x-ray diffraction measurements showed that a (200) peak of Fe appeared on thin film samples deposited at higher substrate temperatures. In these samples prepared at higher temperatures, lower coercive field and highly pronounced two-fold magnetic symmetry were observed. Our results show that maximum magnetocrystalline anisotropy occurred for sample deposited at 100 °C and it decreased at higher deposition temperatures.

  11. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    SciTech Connect

    Pathirane, M. Iheanacho, B.; Lee, C.-H.; Wong, W. S.; Tamang, A.; Knipp, D.; Lujan, R.

    2015-10-05

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm–800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact.

  12. Field emission property improvement of ZnO nanowires coated with amorphous carbon and carbon nitride films

    NASA Astrophysics Data System (ADS)

    Liao, L.; Li, J. C.; Wang, D. F.; Liu, C.; Liu, C. S.; Fu, Q.; Fan, L. X.

    2005-06-01

    In this paper, we report an approach to prepare a new type of field emitter made up of ZnO nanowires coated with an amorphous carbon (a-C) or carbon nitride film (a-CNx). The coated ZnO nanowires form coaxial nanocables. The best field emission properties, which showed a very low turn-on electric field of 1.5 V µm-1 and an emission current density of 1 mA cm-2 (enough to produce a luminance of 300 cd m-2 from a VGA FED with a typical high-voltage phosphor screen efficacy of 9 lm W-1) under the field of only 2.5 V µm-1, have been obtained from the a-CNx coated ZnO nanowire field emitter among three kinds of emitters: a-C coated ZnO nanowires, a-CNx coated ZnO nanowires and uncoated ZnO nanowires. Microstructures and crystal configuration were investigated by scanning electron microscopy, x-ray diffraction and transmission electron microscopy. Band edge transition without any significant photoluminescence peak relating to intrinsic defects has been observed by photoluminescence measurement. The superior properties of the field emission are attributed to the low work function of the coated carbon nitride film and good electron transport property of the ZnO nanowires with an extremely sharp tip.

  13. Direct synthesis of high-density lead sulfide nanowires on metal thin films towards efficient infrared light conversion.

    PubMed

    Wu, Hengkui; Yang, Yiming; Oh, Eunsoon; Lai, Fachun; Yu, Dong

    2012-07-01

    We report chemical-vapor-deposition (CVD) synthesis of high-density lead sulfide (PbS) nanowire arrays and nano pine trees directly on Ti thin films, and the fabrication of photovoltaic devices based upon the PbS nanowires. The as-grown nanowire arrays are largely vertically aligned to the substrates and are uniformly distributed over a relatively large area. Field effect transistors incorporating single PbS nanowires show p-type conduction and high mobilities. These catalytic metal thin films also serve as photocarrier collection electrodes and greatly facilitate device integration. For the first time, we have fabricated Schottky junction photovoltaic devices incorporating PbS nanowires, which demonstrate the capability of converting near-infrared light to electricity. The PbS nanowire devices are stable in air and their external quantum efficiency shows no significant decrease over a period of 3 months in air. We have also compared the photocurrent direction and quantum efficiencies of photovoltaic devices made with different metal electrodes, and the results are explained by band bending at the Schottky junction. Our research shows that PbS nanowires are promising building blocks for collecting near-infrared solar energy.

  14. ZnO-nanowires modified polypyrrole films as highly selective and sensitive chlorine sensors

    NASA Astrophysics Data System (ADS)

    Joshi, Aditee; Aswal, D. K.; Gupta, S. K.; Yakhmi, J. V.; Gangal, S. A.

    2009-03-01

    Room temperature sensing characteristics of the polypyrrole (PPy) films modified with different weight percentages of ZnO nanowires (ZnO-NWs) have been studied for various oxidizing (NO2 and Cl2) as well as reducing (H2S, NH3, CH4, and CO) gases. We demonstrate that ZnO-NW (50 wt %):PPy composite films are highly selective to Cl2 along with high-sensitivity (40 at 10 ppm), fast-response (55 s), and highly reproducible response curves. It has been shown that negatively charged O2- surfaces of ZnO-NW transfer electrons to PPy, making it in a highly reduced form. A strong localization of charge carriers in the reduced PPy makes composite film highly resistive (>1010 Ω cm) as well insensitive to interaction with most of the gases except Cl2. Cl2 being highly oxidizing gas interacts with composite films and causes a sharp reduction in its resistivity.

  15. The electrochemistry of transparent quantum size rutile nanowire thin films prepared by one-step low temperature chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Lana-Villarreal, Teresa; Monllor-Satoca, Damián; Gómez, Roberto

    2007-10-01

    We performed a spectro- and photoelectrochemical study of electrodes consisting of oriented rutile TiO 2 nanowires with a diameter of ˜2 nm prepared directly by chemical bath deposition on conducting glass. A significant increase (around 0.25 eV with respect to bulk rutile) of the band gap energy for the nanowire film is observed and attributed to quantum size effects, pointing to the presence of individual monocrystalline nanowires with no significant electronic communication among them. This allows for the investigation of morphologically well defined electrodes in the two dimensional quantum confinement regime, which are characterized by particularly good photoelectrocatalytic and electrochromic properties.

  16. Epitaxial Growth of GaN Nanowires with High Structural Perfection on a Metallic TiN Film.

    PubMed

    Wölz, M; Hauswald, C; Flissikowski, T; Gotschke, T; Fernández-Garrido, S; Brandt, O; Grahn, H T; Geelhaar, L; Riechert, H

    2015-06-10

    Vertical GaN nanowires are grown in a self-induced way on a sputtered Ti film by plasma-assisted molecular beam epitaxy. Both in situ electron diffraction and ex situ ellipsometry show that Ti is converted to TiN upon exposure of the surface to the N plasma. In addition, the ellipsometric data demonstrate this TiN film to be metallic. The diffraction data evidence that the GaN nanowires have a strict epitaxial relationship to this film. Photoluminescence spectroscopy of the GaN nanowires shows excitonic transitions virtually identical in spectral position, line width, and decay time to those of state-of-the-art GaN nanowires grown on Si. Therefore, the crystalline quality of the GaN nanowires grown on metallic TiN and on Si is equivalent. The freedom to employ metallic substrates for the epitaxial growth of semiconductor nanowires in high structural quality may enable novel applications that benefit from the associated high thermal and electrical conductivity as well as optical reflectivity.

  17. Finite-size scaling in silver nanowire films: design considerations for practical devices.

    PubMed

    Large, Matthew J; Cann, Maria; Ogilvie, Sean P; King, Alice A K; Jurewicz, Izabela; Dalton, Alan B

    2016-07-14

    We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of the percolating material. We derive a design rule for the minimum viable feature size in a device pattern, relating it to parameters which can be derived from a transmittance-sheet resistance data series for the material in question. This understanding has direct implications for the industrial adoption of silver nanowire electrodes in applications where small features are required including single-layer capacitive touch sensors, LCD and OLED display panels.

  18. Thermoelectric Properties of Hybrid Thin Films of PEDOT-PSS and Silver Nanowires

    NASA Astrophysics Data System (ADS)

    Yoshida, Akihito; Toshima, Naoki

    2016-06-01

    We report the thermoelectric (TE) properties of organic-inorganic hybrid thin films composed of conductive polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), and inorganic silver nanowire (AgNW). Two kinds of AgNW with different wire length, 3 μm and 27 μm, were used in this study. The AgNW/PEDOT-PSS hybrid films showed an increase in electrical conductivity ( σ) with increase in AgNW concentration. The maximum value of σ obtained in this system was ca. 10,000 S cm-1. The films containing long AgNWs (L-AgNWs) showed higher σ relative to short AgNWs (S-AgNWs) at given concentration, which results from the fact that longer nanowires can easily form a percolated structure. The formation of a percolated structure was confirmed by scanning electron microscopy (SEM) observation. On the other hand, the Seebeck coefficient ( S) of the hybrid films showed the opposite dependence on AgNW concentration. This decrease in S with increasing AgNW concentration is probably because of increase in carrier number due to the AgNWs. These results suggest that the presented organic-inorganic hybrid system is one example where the electrical conductivity and TE properties can be tuned by use of a nanocomposite.

  19. Finite-size scaling in silver nanowire films: design considerations for practical devices.

    PubMed

    Large, Matthew J; Cann, Maria; Ogilvie, Sean P; King, Alice A K; Jurewicz, Izabela; Dalton, Alan B

    2016-07-14

    We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of the percolating material. We derive a design rule for the minimum viable feature size in a device pattern, relating it to parameters which can be derived from a transmittance-sheet resistance data series for the material in question. This understanding has direct implications for the industrial adoption of silver nanowire electrodes in applications where small features are required including single-layer capacitive touch sensors, LCD and OLED display panels. PMID:27377048

  20. Characterization of NbN films for superconducting nanowire single photon detectors

    SciTech Connect

    Mcdonald, Ross D; Ayala - Valenzuela, Oscar E; Weisse - Bernstein, Nina R; Williamson, Todd L; Hoffbauer, M. A.; Graf, M. J.; Rabin, M. W.

    2011-01-14

    Nanoscopic superconducting meander patterns offer great promise as a new class of cryogenic radiation sensors capable of single photon detection. To realize this potential, control of the superconducting properties on the nanoscale is imperative. To this end, Superconducting Nanowire Single Photon Detectors (SNSPDs) are under development by means Energetic Neutral Atom Beam Lithography and Epitaxy, or ENABLE. ENABLE can growth highly-crystalline, epitaxial thin-film materials, like NbN, at low temperatures; such wide-ranging control of fabrication parameters is enabling the optimization of film properties for single photon detection. T{sub c}, H{sub c2}, {zeta}{sub GL} and J{sub c} of multiple thin films and devices have been studied as a function of growth conditions. The optimization of which has already produced devices with properties rivaling all reports in the existing literature.

  1. Autophagy induction by silver nanowires: A new aspect in the biocompatibility assessment of nanocomposite thin films

    SciTech Connect

    Verma, Navin K.; Conroy, Jennifer; Lyons, Philip E.; Coleman, Jonathan; O'Sullivan, Mary P.; Kornfeld, Hardy; Kelleher, Dermot; Volkov, Yuri

    2012-11-01

    Nanomaterials and their enabled products have increasingly been attracting global attention due to their unique physicochemical properties. Among these emerging products, silver nanowire (AgNW)-based thin films are being developed for their promising applications in next generation nanoelectronics and nanodevices. However, serious concerns remain about possible health and safety risks they may pose. Here, we employed a multi-modal systematic biocompatibility assessment of thin films incorporating AgNW. To represent the possible routes of nanomaterial entry during occupational or environmental exposure, we employed four different cell lines of epithelial, endothelial, gastric, and phagocytic origin. Utilizing a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we observed a low level of cytotoxicity of AgNW, which was dependent on cell type, nanowire lengths, doses and incubation times. Similarly, no major cytotoxic effects were induced by AgNW-containing thin films, as detected by conventional cell viability and imaging assays. However, transmission electron microscopy and Western immunoblotting analysis revealed AgNW-induced autophasosome accumulation together with an upregulation of the autophagy marker protein LC3. Autophagy represents a crucial mechanism in maintaining cellular homeostasis, and our data for the first time demonstrate triggering of such mechanism by AgNW in human phagocytic cells. Finally, atomic force microscopy revealed significant changes in the topology of cells attaching and growing on these films as substrates. Our findings thus emphasize the necessity of comprehensive biohazard assessment of nanomaterials in modern applications and devices and a thorough analysis of risks associated with their possible contact with humans through occupational or environmental exposure. Highlights: ► Thin films containing nanomaterials are subject to increasing contact with humans. ► This

  2. CMOS Alcohol Sensor Employing ZnO Nanowire Sensing Films

    NASA Astrophysics Data System (ADS)

    Santra, S.; Ali, S. Z.; Guha, P. K.; Hiralal, P.; Unalan, H. E.; Dalal, S. H.; Covington, J. A.; Milne, W. I.; Gardner, J. W.; Udrea, F.

    2009-05-01

    This paper reports on the utilization of zinc oxide nanowires (ZnO NWs) on a silicon on insulator (SOI) CMOS micro-hotplate for use as an alcohol sensor. The device was designed in Cadence and fabricated in a 1.0 μm SOI CMOS process at XFAB (Germany). The basic resistive gas sensor comprises of a metal micro-heater (made of aluminum) embedded in an ultra-thin membrane. Gold plated aluminum electrodes, formed of the top metal, are used for contacting with the sensing material. This design allows high operating temperatures with low power consumption. The membrane was formed by using deep reactive ion etching. ZnO NWs were grown on SOI CMOS substrates by a simple and low-cost hydrothermal method. A few nanometer of ZnO seed layer was first sputtered on the chips, using a metal mask, and then the chips were dipped in a zinc nitrate hexahydrate and hexamethylenetramine solution at 90° C to grow ZnO NWs. The chemical sensitivity of the on-chip NWs were studied in the presence of ethanol (C2H5OH) vapour (with 10% relative humidity) at two different temperatures: 200 and 250° C (the corresponding power consumptions are only 18 and 22 mW). The concentrations of ethanol vapour were varied from 175-1484 ppm (pers per million) and the maximum response was observed 40% (change in resistance in %) at 786 ppm at 250° C. These preliminary measurements showed that the on-chip deposited ZnO NWs could be a promising material for a CMOS based ethanol sensor.

  3. Silver nanowires decorated with silver nanoparticles for low-haze flexible transparent conductive films

    PubMed Central

    Mol Menamparambath, Mini; Muhammed Ajmal, C.; Hee Kim, Kwang; Yang, Daejin; Roh, Jongwook; Cheol Park, Hyeon; Kwak, Chan; Choi, Jae-Young; Baik, Seunghyun

    2015-01-01

    Silver nanowires have attracted much attention for use in flexible transparent conductive films (TCFs) due to their low sheet resistance and flexibility. However, the haze was too high for replacing indium-tin-oxide in high-quality display devices. Herein, we report flexible TCFs, which were prepared using a scalable bar-coating method, with a low sheet resistance (24.1 Ω/sq at 96.4% transmittance) and a haze (1.04%) that is comparable to that of indium-tin-oxide TCFs. To decrease the haze and maintain a low sheet resistance, small diameter silver nanowires (~20 nm) were functionalized with low-temperature surface-sintering silver nanoparticles (~5 nm) using bifunctional cysteamine. The silver nanowire-nanoparticle ink stability was excellent. The sheet resistance of the TCFs was decreased by 29.5% (from 34.2 to 24.1 Ω/sq) due to the functionalization at a low curing temperature of 85 °C. The TCFs were highly flexible and maintained their stability for more than 2 months and 10,000 bending cycles after coating with a protective layer. PMID:26575970

  4. Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage.

    PubMed

    Gu, Junsi; Collins, Sean M; Carim, Azhar I; Hao, Xiaoguang; Bartlett, Bart M; Maldonado, Stephen

    2012-09-12

    The direct electrodeposition of crystalline germanium (Ge) nanowire film electrodes from an aqueous solution of dissolved GeO(2) using discrete 'flux' nanoparticles capable of dissolving Ge(s) has been demonstrated. Electrodeposition of Ge at inert electrode substrates decorated with small (<100 nm), discrete indium (In) nanoparticles resulted in crystalline Ge nanowire films with definable nanowire diameters and densities without the need for a physical or chemical template. The Ge nanowires exhibited strong polycrystalline character as-deposited, with approximate crystallite dimensions of 20 nm and a mixed orientation of the crystallites along the length of the nanowire. Energy dispersive spectroscopic elemental mapping of individual Ge nanowires showed that the In nanoparticles remained at the base of each nanowire, indicating good electrical communication between the Ge nanowire and the underlying conductive support. As-deposited Ge nanowire films prepared on Cu supports were used without further processing as Li(+) battery anodes. Cycling studies performed at 1 C (1624 mA g(-1)) indicated the native Ge nanowire films supported stable discharge capacities at the level of 973 mA h g(-1), higher than analogous Ge nanowire film electrodes prepared through an energy-intensive vapor-liquid-solid nanowire growth process. The cumulative data show that ec-LLS is a viable method for directly preparing a functional, high-activity nanomaterials-based device component. The work presented here is a step toward the realization of simple processes that make fully functional energy conversion/storage technologies based on crystalline inorganic semiconductors entirely through benchtop, aqueous chemistry and electrochemistry without time- or energy-intensive process steps.

  5. Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties

    NASA Astrophysics Data System (ADS)

    Mehra, Saahil; Christoforo, Mark G.; Peumans, Peter; Salleo, Alberto

    2013-05-01

    Metal nanowire transparent networks are promising replacements to indium tin oxide (ITO) transparent electrodes for optoelectronic devices. While the transparency and sheet resistance are key metrics for transparent electrode performance, independent control of the film light scattering properties is important to developing multifunctional electrodes for improved photovoltaic absorption. Here we show that controlled incorporation of ZnO nanopyramids into a metal nanowire network film affords independent, highly tunable control of the scattering properties (haze) with minimal effects on the transparency and sheet resistance. Varying the zinc oxide/silver nanostructure ratios prior to spray deposition results in sheet resistances, transmission (600 nm), and haze (600 nm) of 6-30 Ω □-1, 68-86%, and 34-66%, respectively. Incorporation of zinc oxide nanopyramid scattering agents into the conducting nanowire mesh has a negligible effect on mesh connectivity, providing a straightforward method of controlling electrode scattering properties. The decoupling of the film scattering power and electrical characteristics makes these films promising candidates for highly scattering transparent electrodes in optoelectronic devices and can be generalized to other metal nanowire films as well as carbon nanotube transparent electrodes.

  6. Sub-100 °C solution processed amorphous titania nanowire thin films for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Chen, Dehong; Huang, Fuzhi; Cheng, Yi-Bing; Caruso, Rachel A.

    2016-10-01

    The present work demonstrates a facile one-step process to fabricate thin films of amorphous titania nanowires on transparent conducting oxide substrates via hydrolysis of potassium titanium oxide oxalate in an aqueous solution at 90 °C. The resultant titania nanowire thin films (that have not undergone further annealing) are efficient electron transport layers in CH3NH3PbI3 perovskite solar cells, yielding full sun solar-to-electricity conversion efficiencies of up to 14.67% and a stabilized efficiency of 14.00% under AM 1.5G one sun illumination, comparable to high temperature sintered TiO2 counterparts. The high photovoltaic performance is attributed to the porous nanowire network that facilitates perovskite infiltration, its unique 1D geometry and excellent surface coverage for efficient electron transport, as well as suppressed charge recombination between FTO and perovskite.

  7. Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Fan, Xing; Shen, Wanci; Zhu, Jing

    2009-09-01

    Carbon-coated silicon nanowire array films prepared by metal catalytic etching of silicon wafers and pyrolyzing of carbon aerogel were used for lithium-ion battery anodes. The films exhibited an excellent first discharge capacity of 3344 mAh g-1 with a Coulombic efficiency of 84% at a rate of 150 mA g-1 between 2 and 0.02 V and a significantly enhanced cycling performance, i.e., a reversible capacity of 1326 mAh g-1 was retained after 40 cycles. These improvements were attributed to the uniform and continuous carbon coatings, which increased electronic contact and conduction and buffered large volume changes during lithium ion insertion/extraction.

  8. Plane wave scattering from a plasmonic nanowire array spacer-separated from a plasmonic film

    NASA Astrophysics Data System (ADS)

    Thomas, Arun; Trivedi, Rahul; Dhawan, Anuj

    2016-06-01

    In this paper, we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire-spacer-plasmonic film system. The analytical solution presented in this paper is a full-wave solution, which is used to compute the fields scattered by the plasmonic nanostructure system on illumination by a plane electromagnetic wave. The physical structure comprises of an array of plasmonic nanowires made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material and separated from it by a dielectric spacer such as silica or alumina. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric and electromagnetic parameters such as spacer thickness and spacer refractive index, which makes it favourable for various sensing applications such as chemical and biological sensing, strain sensing, position sensing, vibration sensing, and thickness sensing. We report a comparison of our analytical solution with a numerical rigorous coupled wave analysis of the same structure with the plasmonic medium being treated as local in nature.

  9. Enhanced electrochemical performance of Si-Cu-Ti thin films by surface covered with Cu3Si nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Kaiqi; He, Yu; Ben, Liubin; Li, Hong; Huang, Xuejie

    2015-05-01

    Si-Cu-Ti thin films with Cu3Si nanowires on the surface and voids in the Cu layer are fabricated for the first time by magnetron sputtering combined with atomic layer deposition (ALD) of alumina. The formation of the surface Cu3Si nanowires is strongly dependent on the thickness of the coated alumina and cooling rate of the thin films during annealing. The maximum coverage of the surface Cu3Si nanowires is obtained with an alumina thickness of 2 nm and a cooling rate of 1 °C min-1. The electrode based on this thin film shows an excellent capacity retention of more than 900 mAh g-1 and a high columbic efficiency of more than 99% after 100 cycles. The improvement of the electrochemical performance of Si-Cu-Ti thin film electrode is attributed to the surface Cu3Si nanowires which reduce the polarization and inhomogeneous lithiation by formation of a surface conductive network, in addition to the alleviation of volume expansion of Si by voids in the Cu layer during cycling.

  10. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection

    SciTech Connect

    Wang Guoping; Chu Sheng; Zhan Ning; Liu Jianlin; Lin Yuqing; Chernyak, Leonid

    2011-01-24

    ZnO p-n homojunctions based on Sb-doped p-type nanowire array and n-type film were grown by combining chemical vapor deposition (for nanowires) with molecular-beam epitaxy (for film). Indium tin oxide and Ti/Au were used as contacts to the ZnO nanowires and film, respectively. Characteristics of field-effect transistors using ZnO nanowires as channels indicate p-type conductivity of the nanowires. Electron beam induced current profiling confirmed the existence of ZnO p-n homojunction. Rectifying I-V characteristic showed a turn-on voltage of around 3 V. Very good response to ultraviolet light illumination was observed from photocurrent measurements.

  11. TiO{sub 2} nanotube, nanowire, and rhomboid-shaped particle thin films fixed on a titanium metal plate

    SciTech Connect

    Inoue, Yuko; Noda, Iwao; Torikai, Toshio; Watari, Takanori; Hotokebuchi, Takao; Yada, Mitsunori

    2010-01-15

    Titanium dioxide thin films having various nanostructures could be formed by various treatments on sodium titanate nanotube thin films approximately 5 {mu}m thick fixed on titanium metal plates. Using an aqueous solution with a lower hydrochloric acid concentration (0.01 mol/L) and a higher reaction temperature (90 deg. C) than those previously employed, we obtained a hydrogen titanate nanotube thin film fixed onto a titanium metal plate by H{sup +} ion-exchange treatment of the sodium titanate nanotube thin film. Calcination of hydrogen titanate nanotube thin films yielded porous thin films consisting of anatase nanotubes, anatase nanowires, and anatase nanoparticles grown directly from the titanium metal plate. H{sup +} ion-exchange treatment of sodium titanate nanotube thin films at 140 deg. C resulted in porous thin films consisting of rhomboid-shaped anatase nanoparticles. - Graphical abstract: Titanium dioxide nanotube, nanowire, and rhombic particle thin films could be formed by various treatments on a sodium titanate nanotube thin film fixed on a titanium metal plate.

  12. Fabrication of superconducting nanowires from ultrathin MgB{sub 2} films via focused ion beam milling

    SciTech Connect

    Zhang, Chen; Wang, Da; Liu, Zheng-Hao; Zhang, Yan; Ma, Ping; Feng, Qing-Rong; Wang, Yue Gan, Zi-Zhao

    2015-02-15

    High quality superconducting nanowires were fabricated from ultrathin MgB{sub 2} films by a focused ion beam milling technique. The precursor MgB{sub 2} films in 10 nm thick were grown on MgO substrates by using a hybrid physical-chemical vapor deposition method. The nanowires, in widths of about 300-600 nm and lengths of 1 or 10 μm, showed high superconducting critical temperatures (T{sub c}’s) above 34 K and narrow superconducting transition widths (ΔT{sub c}’s) of 1-3 K. The superconducting critical current density J{sub c} of the nanowires was above 5 × 10{sup 7} A/cm{sup 2} at 20 K. The high T{sub c}, narrow ΔT{sub c}, and high J{sub c} of the nanowires offered the possibility of making MgB{sub 2}-based nano-devices such as hot-electron bolometers and superconducting nanowire single-photon detectors with high operating temperatures at 15-20 K.

  13. Investigation of optimal silver nanowires film as conductive wires for LED

    NASA Astrophysics Data System (ADS)

    Wu, I. C.; Yang, T. L.; Pan, C. T.; Chen, Y. C.; Hung, K. H.

    2015-03-01

    In the study, the Polyol reduction process was used to fabricate silver nanowires (AgNWs). In the experiment, the ratio of PVP/Ag, silver seed, AgNO3 and the amount of ethylene glycol (EG) were adopted to design orthogonal array with a constant temperature and heating time and the synthesis parameters of AgNWs were obtained. Therefore, the optimal AgNWs solution was obtained, followed by centrifuging to obtain AgNWs which were used to fabricate AgNWs film. The scanning electron microscope (SEM), Fourier Transform Infrared Spectroscope (FTIR), Energy Dispersive Spectrometer (EDS) and four-point probe were used to measure the sheet resistant and transmittance of AgNWs film. Moreover, the AgNWs film was adopted to be the conductive wires of LED. From the experiment results, the synthesis parameter of 15ml EG, 0.01g AgCl, ratio 2 of PVP/Ag and 0.22g AgNO3 could be used to fabricate optimal AgNWs with 45nm average diameter, 5μm average length and aspect ratio of 110. The sheet resistance and transmittance of film fabricated by centrifuged AgNWs was 0.1252 Ω/sq and 70%, respectively. Furthermore, the luminance of LED with conductive wires made of AgNWs film was better than that made of commercial silver plastic. In the future, the AgNWs film can be broadly applied to the conductive films of touch electric products, LCD display and solar panels.

  14. Hydrogen-incorporated ZnO nanowire films: stable and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kushwaha, Ajay; Aslam, M.

    2013-12-01

    Post-growth hydrogen annealing treatment of highly oriented ZnO nanowire (NW) films (ZnO : H) results in high electrical conductivity (3.7 × 103 S m-1) and fully suppressed defect emission at room temperature. The formation of hydrogen-related vacancy complexes is responsible for the suppression of vacancies ( V_{o}^{+} and V_{o}^{2+} ), leading to a reduction in defect-based emission. ZnO : H NW films show five orders larger stable electrical conductance with a four-fold increment in carrier mobility (7-28 cm2 V-1 s-1). As compared with pristine NWs, the carrier concentration in ZnO : H NW films increases from 1015 to 1019 cm-3, which is in the range of commercial transparent conducting oxides. X-ray photoelectron spectroscopy and secondary ion mass spectrometry analyses reveal stable OH bond formation, which strongly supports the prediction of H doping. These films offer a promising conducting oxide platform for photovoltaic applications.

  15. Plane wave scattering from a plasmonic nanowire-film system with the inclusion of non-local effects.

    PubMed

    Trivedi, Rahul; Sharma, Yashna; Dhawan, Anuj

    2015-10-01

    In this paper we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire-film system. The analytical solution accounts for both the dispersive as well as non-local nature of the plasmonic media. The physical structure comprises of a plasmonic nanowire made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric parameters such as spacer thickness and nanowire radius, which makes it favorable for various sensing applications. The non-locality of the plasmonic medium, which can be captured using the hydrodynamic model, significantly affects the resonant wavelength of this system for structures of small dimensions (~ less than 5 nm gap between the nanowire and the film). We present an analytical method that can be used to predict the effect of non-locality on the resonances of the system. To validate the analytical method, we also report a comparison of our analytical solution with a numerical Finite Difference Time Domain analysis (FDTD) of the same structure with the plasmonic medium being treated as local in nature.

  16. Plane wave scattering from a plasmonic nanowire-film system with the inclusion of non-local effects.

    PubMed

    Trivedi, Rahul; Sharma, Yashna; Dhawan, Anuj

    2015-10-01

    In this paper we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire-film system. The analytical solution accounts for both the dispersive as well as non-local nature of the plasmonic media. The physical structure comprises of a plasmonic nanowire made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric parameters such as spacer thickness and nanowire radius, which makes it favorable for various sensing applications. The non-locality of the plasmonic medium, which can be captured using the hydrodynamic model, significantly affects the resonant wavelength of this system for structures of small dimensions (~ less than 5 nm gap between the nanowire and the film). We present an analytical method that can be used to predict the effect of non-locality on the resonances of the system. To validate the analytical method, we also report a comparison of our analytical solution with a numerical Finite Difference Time Domain analysis (FDTD) of the same structure with the plasmonic medium being treated as local in nature. PMID:26480121

  17. Ultra-thin superconducting film coated silicon nitride nanowire resonators for low-temperature applications

    NASA Astrophysics Data System (ADS)

    Sebastian, Abhilash; Zhelev, Nikolay; de Alba, Roberto; Parpia, Jeevak

    We demonstrate fabrication of high stress silicon nitride nanowire resonators with a thickness and width of less than 50 nm intended to be used as probes for the study of superfluid 3He. The resonators are fabricated as doubly-clamped wires/beams using a combination of electron-beam lithography and wet/dry etching techniques. We demonstrate the ability to suspend (over a trench of depth ~8 µm) wires with a cross section as small as 30 nm, covered with a 20 nm superconducting film, and having lengths up to 50 µm. Room temperature resonance measurements were carried out by driving the devices using a piezo stage and detecting the motion using an optical interferometer. The results show that metalizing nano-mechanical resonators not only affects their resonant frequencies but significantly reduce their quality factor (Q). The devices are parametrically pumped by modulating the system at twice its fundamental resonant frequency, which results in observed amplification of the signal. The wires show self-oscillation with increasing modulation strength. The fabricated nanowire resonators are intended to be immersed in the superfluid 3He. By tracking the resonant frequency and the Q of the various modes of the wire versus temperature, we aim to probe the superfluid gap structure.

  18. The formation of MgH(2) nanowires during the hydrogenation of Ti-doped Mg film.

    PubMed

    He, Yuping; Liu, Yongjun; Zhao, Yiping

    2008-11-19

    A unique diffusion barrier structure, consisting of layers of a Ti nanorod array and Ti film, has been fabricated on Si substrate for a subsequent 2 at.% Ti-doped Mg film deposition using a combinational technique of multilayer growth, co-deposition and dynamic shadowing growth. The hydrogenation of the Ti-doped Mg film on such a barrier structure shows that the barrier can prevent direct Mg-Si contact and suppress the formation of Mg(2)Si alloy in a high-temperature process. When this film has been hydrogenated at temperatures T≤300 °C for approximately 150 h, tetragonal single-crystal MgH(2) nanowires are formed on the surface of the Ti-doped Mg film. The hydrogenation time and temperature are the two main factors for the nanowire formation. The doping of Ti also plays a significant role. This result reveals that complicated dynamic processes could occur during the hydrogenation of Ti-doped Mg film when Mg(2)Si formation can be eliminated by an effective diffusion barrier layer.

  19. Plane wave scattering from a plasmonic nanowire array spacer-separated from a plasmonic film

    NASA Astrophysics Data System (ADS)

    Thomas, Arun; Trivedi, Rahul; Dhawan, Anuj

    2016-06-01

    In this paper, we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire–spacer–plasmonic film system. The analytical solution presented in this paper is a full-wave solution, which is used to compute the fields scattered by the plasmonic nanostructure system on illumination by a plane electromagnetic wave. The physical structure comprises of an array of plasmonic nanowires made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material and separated from it by a dielectric spacer such as silica or alumina. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric and electromagnetic parameters such as spacer thickness and spacer refractive index, which makes it favourable for various sensing applications such as chemical and biological sensing, strain sensing, position sensing, vibration sensing, and thickness sensing. We report a comparison of our analytical solution with a numerical rigorous coupled wave analysis of the same structure with the plasmonic medium being treated as local in nature.

  20. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method

    PubMed Central

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films. PMID:25349554

  1. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method.

    PubMed

    Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.

  2. The wavelength dependent photovoltaic effects caused by two different mechanisms in carbon nanotube film/CuO nanowire array heterodimensional contacts

    SciTech Connect

    Xu Jia; Xu Jinliang; Sun Jialin; Wei Jinquan

    2012-06-18

    Hetrodimensional contacts were fabricated by coating double-walled carbon nanotube (CNT) films on CuO nanowire arrays. Wavelength dependent photovoltaic effects by irradiating the devices with 405, 532, and 1064 nm lasers were observed. Two possible mechanisms responsible for the observed results were discussed. Photoexcitations within CuO nanowires and Schottky barriers in the heterojunctions dominate the photovoltaics in the 405 and 532 nm cases. For the 1064 nm case, the photovoltaic is the result of the excitation within the CNTs and of the heterodimensionality effect. Control experiments on CNT film/CuO granular film hetrodimensional contacts further show the relationship between these two mechanisms.

  3. High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Jiangxin; Yan, Chaoyi; Kang, Wenbin; Lee, Pooi See

    2014-08-01

    Stretchable devices with good transparency offer exciting new applications over the existing technologies, but remarkable difficulties remain in the fabrication of transparent and stretchable devices. In this paper, we report an effective method to fabricate transparent elastic photodetectors which combines the merits of the transparent polydimethylsiloxane (PDMS) polymer with its stretchability and the Zn2SnO4 nanowire (NW) with its photodetection functionality. Zonyl fluorosurfactant is found to be critical which improves the bonding between the functional NWs and the PDMS matrix, thus enabling the high efficient transfer of NW structures into PDMS. Highly conductive and thin percolating AgNW films were successfully embedded into PDMS mixed with ~11% Zonyl which are otherwise not achievable with pure PDMS. Transparent and stretchable photodetectors were fabricated with the developed method. The photocurrent was found to be reciprocal to the square of the channel length, Iph ~ 1/l2. The chemically bonded sensing materials in the PDMS matrix allow more NW exposure to air. This lead to a fast switching operation of the photodetectors with a response time below 0.8 s and a reset time around 3 s, which is significantly improved compared to reported stretchable NW photodetectors fully embedded in the polymer matrix.Stretchable devices with good transparency offer exciting new applications over the existing technologies, but remarkable difficulties remain in the fabrication of transparent and stretchable devices. In this paper, we report an effective method to fabricate transparent elastic photodetectors which combines the merits of the transparent polydimethylsiloxane (PDMS) polymer with its stretchability and the Zn2SnO4 nanowire (NW) with its photodetection functionality. Zonyl fluorosurfactant is found to be critical which improves the bonding between the functional NWs and the PDMS matrix, thus enabling the high efficient transfer of NW structures into PDMS. Highly

  4. A MEMS based acetone sensor incorporating ZnO nanowires synthesized by wet oxidation of Zn film

    NASA Astrophysics Data System (ADS)

    Behera, Bhagaban; Chandra, Sudhir

    2015-01-01

    In this work, we report a simple and efficient method for synthesis of ZnO nanowires by thermal oxidation of Zn film and their integration with MEMS technologies to fabricate a sensor for acetone vapour detection. ZnO nanowires were prepared by thermal oxidation of sputter deposited Zn film. The nanostructured ZnO was characterized by x-ray diffraction, a scanning electron microscope and room temperature photoluminescence measurements. The ZnO nanowires synthesis process was integrated with MEMS technologies to obtain a sensor for volatile organic compounds, incorporating an on-chip Ni microheater and an interdigited electrode structure. To reduce the heat loss from the on-chip microheater, the sensor was made on a thin silicon diaphragm obtained via a modified reactive ion etching process. This resulted in considerable power saving during sensor operation. For this, a three-mask process was used. The performance of the microheater was simulated on COMSOL and validated experimentally. The sensor has been tested for acetone vapour sensing and the operating parameters were optimized. The sensor has the ability to detect acetone vapour at 5 parts per million (ppm) concentrations when operated at 100 °C. The sensor consumed only 36 mW power and showed a high-sensitivity value of 26.3% for 100 ppm of acetone vapour.

  5. Effect of hydrogen plasma irradiation of catalyst films on growth of carbon nanotubes filled with iron nanowires

    SciTech Connect

    Sato, Hideki Kubonaka, Nobuo; Nagata, Atsushi; Fujiwara, Yuji

    2014-03-15

    Carbon nanotubes filled with iron (Fe-filled CNTs) show shape anisotropy on account of the high aspect ratio of magnetic nanowires, and are promising candidates for various applications, such as magnetic recording media, probes for scanning force microscopy, and medical treatment for cancer. The ability to appropriately control the magnetic properties of CNTs for those applications is desirable. In this study, the authors investigated magnetic properties of Fe-filled CNTs synthesized by thermal chemical vapor deposition for the purpose of tuning their coercivity. Here, the authors implemented hydrogen plasma irradiation of catalyst film that was previously deposited on a substrate as a catalyst layer. This treatment activates the catalyst film and thus enhances the growth of the Fe-filled CNTs. It was confirmed that the H{sub 2} plasma irradiation enhances the growth of the CNTs in terms of increasing their length and diameter compared to CNTs without irradiation. On the other hand, the coercivity of Fe-filled CNTs dropped to approximately half of those without H{sub 2} plasma irradiation. This is probably due to a decrease in the aspect ratio of the Fe nanowires, which results from the increase in their diameter. Furthermore, the crystal structure of the Fe nanowires may affect the coercivity.

  6. Co-assembled thin films of Ag nanowires and functional nanoparticles at the liquid-liquid interface by shaking

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Yi; Liu, Jian-Wei; Zhang, Chuan-Ling; Yu, Shu-Hong

    2013-05-01

    In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system has been proved to be a facile way for co-assembling nanowires and nanoparticles, and will pave a way for further applications of the macroscopic co-assemblies with novel functionalities.In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system

  7. Solution processed Cu(In,Ga)S2 thin film and nanowire photovoltaics

    NASA Astrophysics Data System (ADS)

    Armstrong, Johnathan Charles

    Solar energy conversion is a highly attractive process for clean and renewable power for the future. Cu(In,Ga)(Se,S)2/CdS/ZnO has proven itself to be a worthwhile photovoltaic combination achieving record efficiencies upwards of 20%. These record efficiencies have been obtained through vacuum-based approaches. However, the high cost of vacuum-based fabrication processes become a barrier to affordable solar cells as an energy source. As a result, solution-based approaches have become the focus of many studies which have achieved record efficiencies of 15%. These solution-based approaches have not matched up with the vacuum-based approaches. In this work, we investigate methods to improve the solution-based Cu(In,Ga)(Se,S)2 solar cell. We have fabricated thin film devices with efficiencies on par to the record solution processed devices at 12.48%. This was achieved through direct control over elemental compositions, ideally Cu and Ga, and crystallinity of the thin film. Inverted thin films, called superstrate structures, were fabricated yielding device performance of 1.38%. The goal of this project is to incorporate nanowires into superstrate structures to improve the device performance by increasing the light conversion. An emerging solar cell design is to transfer the typical 2-dimensional structure into a 3-dimensional one by utilizing 1-dimensional nanostructures to build devices in an "up and out" fashion. ZnO nanostructures have been of high interest in the research community due to their enhanced physical properties in comparison to bulk materials. This makes them an ideal structure to incorporate them into the foundation of the solar cell. The benefit of utilizing the 3-dimensional design into these Cu(In,Ga)(Se,S)2 solar cells is to enhance the light absorption through light trapping, increase the surface area of the device, and enhance the charge collection. These all hold a key into increasing the device performance. Device structures were fabricated and

  8. Recyclable surface-enhanced Raman scattering template based on nanoporous gold film/Si nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Chang Xing; Liu, Luo; Jun Yin, Hong; Fang, Hui; Mei Zhao, Yong; Jian Bi, Chu; Jun Xu, Hai

    2014-07-01

    Nanoporous gold film (NPGF) composed of gold nanoparticles was used to cover a large Si nanowire array (SiNWA) by simple metal-assisted chemical etching and metal reduction processes. Three-dimensional SiNWA/NPGF was employed as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for crystal violet was as low as 10-12M, and the Raman enhancement factor was as large as 107 with a relative standard deviation of less than 20%. After calibrating the Raman peak intensities of crystal violet and thiram could be quantitatively detected. More importantly, the SERS substrates are recyclable and can be used for many gold surface adsorbates such as p-aminothiophenol, crystal violet, Rhodamine 6G, and methyl orange, which can all be rapidly and completely removed from the NPGF surface. Our findings are an important advance in SERS substrates and will allow the quantitative and recyclable detection of trace organic contaminants.

  9. Thin Film Silicon Nanowire/PEDOT:PSS Hybrid Solar Cells with Surface Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wang, Jianxiong; Hong, Lei; Tan, Yew Heng; Tan, Chuan Seng; Rusli

    2016-06-01

    SiNW/PEDOT:PSS hybrid solar cells are fabricated on 10.6-μm-thick crystalline Si thin films. Cells with Si nanowires (SiNWs) of different lengths fabricated using the metal-catalyzed electroless etching (MCEE) technique have been investigated. A surface treatment process using oxygen plasma has been applied to improve the surface quality of the SiNWs, and the optimized cell with 0.7-μm-long SiNWs achieved a power conversion efficiency (PCE) of 7.83 %. The surface treatment process is found to remove surface defects and passivate the SiNWs and substantially improve the average open circuit voltage from 0.461 to 0.562 V for the optimized cell. The light harvesting capability of the SiNWs has also been investigated theoretically using optical simulation. It is found that the inherent randomness of the MCEE SiNWs, in terms of their diameter and spacing, accounts for the excellent light harvesting capability. In comparison, periodic SiNWs of comparable dimensions have been shown to exhibit much poorer trapping and absorption of light.

  10. High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors.

    PubMed

    Wang, Jiangxin; Yan, Chaoyi; Kang, Wenbin; Lee, Pooi See

    2014-09-21

    Stretchable devices with good transparency offer exciting new applications over the existing technologies, but remarkable difficulties remain in the fabrication of transparent and stretchable devices. In this paper, we report an effective method to fabricate transparent elastic photodetectors which combines the merits of the transparent polydimethylsiloxane (PDMS) polymer with its stretchability and the Zn₂SnO₄ nanowire (NW) with its photodetection functionality. Zonyl fluorosurfactant is found to be critical which improves the bonding between the functional NWs and the PDMS matrix, thus enabling the high efficient transfer of NW structures into PDMS. Highly conductive and thin percolating AgNW films were successfully embedded into PDMS mixed with ∼11% Zonyl which are otherwise not achievable with pure PDMS. Transparent and stretchable photodetectors were fabricated with the developed method. The photocurrent was found to be reciprocal to the square of the channel length, Iph∼ 1/l(2). The chemically bonded sensing materials in the PDMS matrix allow more NW exposure to air. This lead to a fast switching operation of the photodetectors with a response time below 0.8 s and a reset time around 3 s, which is significantly improved compared to reported stretchable NW photodetectors fully embedded in the polymer matrix.

  11. Thin Film Silicon Nanowire/PEDOT:PSS Hybrid Solar Cells with Surface Treatment.

    PubMed

    Wang, Hao; Wang, Jianxiong; Hong, Lei; Tan, Yew Heng; Tan, Chuan Seng; Rusli

    2016-12-01

    SiNW/PEDOT:PSS hybrid solar cells are fabricated on 10.6-μm-thick crystalline Si thin films. Cells with Si nanowires (SiNWs) of different lengths fabricated using the metal-catalyzed electroless etching (MCEE) technique have been investigated. A surface treatment process using oxygen plasma has been applied to improve the surface quality of the SiNWs, and the optimized cell with 0.7-μm-long SiNWs achieved a power conversion efficiency (PCE) of 7.83 %. The surface treatment process is found to remove surface defects and passivate the SiNWs and substantially improve the average open circuit voltage from 0.461 to 0.562 V for the optimized cell. The light harvesting capability of the SiNWs has also been investigated theoretically using optical simulation. It is found that the inherent randomness of the MCEE SiNWs, in terms of their diameter and spacing, accounts for the excellent light harvesting capability. In comparison, periodic SiNWs of comparable dimensions have been shown to exhibit much poorer trapping and absorption of light.

  12. High-transparency and low-resistivity poly (methylmethacrylate) films containing silver nanowires and graphene-oxide nanoplatelets

    NASA Astrophysics Data System (ADS)

    Bang, Yo Han; Choo, Dong Chul; Kim, Tae Whan

    2016-07-01

    Nanocomposite films containing silver nanowires (Ag NWs) and graphene-oxide nanoplatelets (GONPs) were formed on glass, and the nanocomposite films were then transferred to poly(methylmethacrylate) (PMMA) films. Scanning electron microscopy images showed that Ag NWs with a length of 20 μm and a width of 80 nm, together with GONPs with a size of 15 μm, had been formed on the PMMA film and that the Ag NWs on the PMMA film were partially covered with the GONPs. While the transmittance of the PMMA film with the Ag NWs and the GONPs was almost the same as that of the PMMA film with the Ag NWs alone, the corresponding sheet resistance was decreased due to the generation of quaternary nitrogen in the GONPs, which the results of X-ray photoelectron spectroscopy and Raman spectroscopy confirmed. The transmittance and the sheet resistance of the PMMA film containing Ag NWs and GONPs were approximately 90% at 550 nm and 24 Ohm/sq, respectively.

  13. X-ray Reciprocal Space Mapping of Graded Al x Ga1 - x N Films and Nanowires.

    PubMed

    Stanchu, Hryhorii V; Kuchuk, Andrian V; Kladko, Vasyl P; Ware, Morgan E; Mazur, Yuriy I; Zytkiewicz, Zbigniew R; Belyaev, Alexander E; Salamo, Gregory J

    2016-12-01

    The depth distribution of strain and composition in graded Al x Ga1 - x N films and nanowires (NWs) are studied theoretically using the kinematical theory of X-ray diffraction. By calculating [Formula: see text] reciprocal space maps (RSMs), we demonstrate significant differences in the intensity distributions from graded Al x Ga1 - x N films and NWs. We attribute these differences to relaxation of the substrate-induced strain on the NWs free side walls. Finally, we demonstrate that the developed X-ray reciprocal space map model allows for reliable depth profiles of strain and Al composition determination in both Al x Ga1 - x N films and NWs.

  14. High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays.

    PubMed

    Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu

    2009-11-24

    We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature.

  15. Improved flux pinning by prefabricated SnO2 nanowires embedded in epitaxial YBa2Cu3Ox superconducting thin film tapes

    NASA Astrophysics Data System (ADS)

    Selvamanickam, V.; Mallick, R.; Tao, X.; Yao, Y.; Heydari Gharahcheshmeh, M.; Xu, A.; Zhang, Y.; Galstyan, E.; Majkic, G.

    2016-08-01

    We have developed processes to fabricate SnO2 nanowires on single crystalline-like buffer surfaces on flexible metal substrates with controlled alignment and density while eliminating undesired in-plane nanostructures that can be deleterious to subsequent epitaxial growth of the superconductor film. The in-plane nanostructures formed due to the mobility of gold catalyst on the nucleating surface and a two-step process was developed to restrict this mobility. Post-ion bombardment of the surface with randomly aligned SnO2 nanowires has resulted in re-alignment of the nanowires along the ion beam direction as well as in the removal of the undesired in-plane nanostructures. The most effective and reproducible control of SnO2 nanowire density with near absence of in-plane nanostructures was achieved by growth on single crystalline-like CeO2 surfaces and use of colloidal gold catalysts of 30 nm in size. YBa2Cu3Ox superconductor films epitaxially grown on the single crystalline-like surfaces with SnO2 nanowires exhibit a 50% improvement in critical current at 77 K in a magnetic field of 1 Tesla aligned along the orientation of the embedded nanowires.

  16. High dielectric, dynamic mechanical and thermal properties of polyimide composite film filled with carbon-coated silver nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Lisi; Piao, Xiaoyu; Zou, Heng; Wang, Ya; Li, Hengfeng

    2015-01-01

    High dielectric permittivity materials are much desirable in the electric industry. Filling polymer matrix with conductive powders to form percolative composites is one of the most promising methods to achieve high dielectric permittivity. However, they do not always provide high mechanical properties and thermal stability, which seriously limit their applications. In this study, we present the preparation of functional core-shell structured silver nanowires/polyimide (AgNWs/PI) hybrid film with high dielectric permittivity and low loss dielectric. The core-shell structure of AgNWs was characterized by transmission electric microscopy. The dynamical mechanical analysis showed that AgNWs/PI hybrid films had relative high dynamic mechanical properties with storage modules over 1 Gpa. Moreover, the hybrid films exhibited excellent thermal stability with 5 % weight-loss temperature above 500 °C. The dielectric properties of the carbon-coated AgNWs hybrid films were remarkably improved. The maximum dielectric permittivity of hybrid films is 126 at 102 Hz, which was 39 times higher than that of pure PI matrix, while the dielectric loss of that is still remained at a low value. This study showed a new method to improve the dielectric, dynamic mechanical and thermal properties of films.

  17. Biocompatible and Antibacterial SnO2 Nanowire Films Synthesized by E-Beam Evaporation Method.

    PubMed

    Prasad, R G S V; Phani, A R; Rao, K N; Kumar, R Rakesh; Prasad, S; Prabhakara, G; Sheeja, M S; Salins, C P; Endrino, J L; Raju, D B

    2015-06-01

    In this work, the biocompatibility and antibacterial activities of novel SnO2 nanowire coatings prepared by electron-beam (E-Beam) evaporation process at low temperatures were studied. The nanowire coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD) methods. The results of in vitro cytotoxicity and cell proliferation assays suggested that the SnO2 nanowire coatings were nontoxic and promoted the proliferation of C2C12 and L929 cells (> 90% viability). Cellular activities, cell adhesion, and lactate dehydrogenase activities were consistent with the superior biocompatibility of the nanowire materials. Notably, the nanowire coating showed potent antibacterial activity against six different bacterial strains. The antibacterial activity of the SnO2 material was attributed to the photocatalytic nature of SnO2. The antibacterial activity and biocompatibility of the newly developed SnO2 nanowire coatings may enable their use as coating materials for biomedical implants. PMID:26353584

  18. Characterization of planar pn heterojunction diodes constructed with Cu2O nanoparticle films and single ZnO nanowires.

    PubMed

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2013-05-01

    In this study, we fabricate planar pn heterojunction diodes composed of Cu2O nanoparticle (NP) films and single ZnO nanowires (NWs) on SiO2 (300 nm)/Si substrates and investigate their characteristics in the dark and under the illumination of white light and 325 nm wavelength light. The diode at bias voltages of +/- 1 V shows rectification ratios of 10 (in the dark) and 34 (under the illumination of white light). On the other hand, the diode exposed to the 325 nm wavelength light exhibits Ohmic characteristics which are associated with efficient photocurrent generation in both the Cu2O NP film and the single ZnO NW. PMID:23858873

  19. Glucose biosensor based on functionalized ZnO nanowire/graphite films dispersed on a Pt electrode

    NASA Astrophysics Data System (ADS)

    Gallay, P.; Tosi, E.; Madrid, R.; Tirado, M.; Comedi, D.

    2016-10-01

    We present a glucose biosensor based on ZnO nanowire self-sustained films grown on compacted graphite flakes by the vapor transport method. Nanowire/graphite films were fragmented in water, filtered to form a colloidal suspension, subsequently functionalized with glucose oxidase and finally transferred to a metal electrode (Pt). The obtained devices were evaluated using scanning electron microscopy, energy-dispersive x-ray spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical responses of the devices were determined in buffer solutions with successive glucose aggregates using a tripolar electrode system. The nanostructured biosensors showed excellent analytical performance, with linear response to glucose concentrations, high sensitivity of up to ≈17 μA cm-2 mM-1 in the 0.03-1.52 mM glucose concentration range, relatively low Michaelis-Menten constant, excellent reproducibility and a fast response. The detection limits are more than an order of magnitude lower than those achievable in commercial biosensors for glucose control, which is promising for the development of glucose monitoring methods that do not require blood extraction from potentially diabetic patients. The strong detection enhancements provided by the functionalized nanostructures are much larger than the electrode surface-area increase and are discussed in terms of the physical and chemical mechanisms involved in the detection and transduction processes.

  20. Glucose biosensor based on functionalized ZnO nanowire/graphite films dispersed on a Pt electrode.

    PubMed

    Gallay, P; Tosi, E; Madrid, R; Tirado, M; Comedi, D

    2016-10-21

    We present a glucose biosensor based on ZnO nanowire self-sustained films grown on compacted graphite flakes by the vapor transport method. Nanowire/graphite films were fragmented in water, filtered to form a colloidal suspension, subsequently functionalized with glucose oxidase and finally transferred to a metal electrode (Pt). The obtained devices were evaluated using scanning electron microscopy, energy-dispersive x-ray spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical responses of the devices were determined in buffer solutions with successive glucose aggregates using a tripolar electrode system. The nanostructured biosensors showed excellent analytical performance, with linear response to glucose concentrations, high sensitivity of up to ≈17 μA cm(-2) mM(-1) in the 0.03-1.52 mM glucose concentration range, relatively low Michaelis-Menten constant, excellent reproducibility and a fast response. The detection limits are more than an order of magnitude lower than those achievable in commercial biosensors for glucose control, which is promising for the development of glucose monitoring methods that do not require blood extraction from potentially diabetic patients. The strong detection enhancements provided by the functionalized nanostructures are much larger than the electrode surface-area increase and are discussed in terms of the physical and chemical mechanisms involved in the detection and transduction processes. PMID:27622391

  1. Glucose biosensor based on functionalized ZnO nanowire/graphite films dispersed on a Pt electrode.

    PubMed

    Gallay, P; Tosi, E; Madrid, R; Tirado, M; Comedi, D

    2016-10-21

    We present a glucose biosensor based on ZnO nanowire self-sustained films grown on compacted graphite flakes by the vapor transport method. Nanowire/graphite films were fragmented in water, filtered to form a colloidal suspension, subsequently functionalized with glucose oxidase and finally transferred to a metal electrode (Pt). The obtained devices were evaluated using scanning electron microscopy, energy-dispersive x-ray spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical responses of the devices were determined in buffer solutions with successive glucose aggregates using a tripolar electrode system. The nanostructured biosensors showed excellent analytical performance, with linear response to glucose concentrations, high sensitivity of up to ≈17 μA cm(-2) mM(-1) in the 0.03-1.52 mM glucose concentration range, relatively low Michaelis-Menten constant, excellent reproducibility and a fast response. The detection limits are more than an order of magnitude lower than those achievable in commercial biosensors for glucose control, which is promising for the development of glucose monitoring methods that do not require blood extraction from potentially diabetic patients. The strong detection enhancements provided by the functionalized nanostructures are much larger than the electrode surface-area increase and are discussed in terms of the physical and chemical mechanisms involved in the detection and transduction processes.

  2. Preparation of patterned boron nanowire films with different widths of unit-cell and their field emission properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Xin; Liu, Fei; Shen, Cheng-Min; Li, Jun; Deng, Shao-Zhi; Xu, Ning-Sheng; Gao, Hong-Jun

    2016-08-01

    Large-area patterned films of boron nanowires (BNWs) are fabricated at various densities by chemical vapor deposition (CVD). Different widths of unit-cell of Mo masks are used as templates. The widths of unit-cell of Mo masks are 100 μm, 150 μm, and 200 μm, respectively. The distance between unit cells is 50 μm. The BNWs have an average diameter of about 20 nm and lengths of 10 μm-20 μm. High-resolution transmission electron microscopy analysis shows that each nanowire has a β-tetragonal structure with good crystallization. Field emission measurements of the BNW films show that their turn-on electric fields decrease with width of unit-cell increasing. Project supported by the National Basic Research Program of China (Grant Nos. 2013CB933604), the National Natural Science Foundation of China (Grant No. 51572290), and the Fund from the Chinese Academy of Sciences (Grant Nos. 1731300500015 and XDB07030100).

  3. Preparation of patterned boron nanowire films with different widths of unit-cell and their field emission properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Xin; Liu, Fei; Shen, Cheng-Min; Li, Jun; Deng, Shao-Zhi; Xu, Ning-Sheng; Gao, Hong-Jun

    2016-08-01

    Large-area patterned films of boron nanowires (BNWs) are fabricated at various densities by chemical vapor deposition (CVD). Different widths of unit-cell of Mo masks are used as templates. The widths of unit-cell of Mo masks are 100 μm, 150 μm, and 200 μm, respectively. The distance between unit cells is 50 μm. The BNWs have an average diameter of about 20 nm and lengths of 10 μm–20 μm. High-resolution transmission electron microscopy analysis shows that each nanowire has a β-tetragonal structure with good crystallization. Field emission measurements of the BNW films show that their turn-on electric fields decrease with width of unit-cell increasing. Project supported by the National Basic Research Program of China (Grant Nos. 2013CB933604), the National Natural Science Foundation of China (Grant No. 51572290), and the Fund from the Chinese Academy of Sciences (Grant Nos. 1731300500015 and XDB07030100).

  4. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability.

    PubMed

    Wang, Peng; Ng, Yun Hau; Amal, Rose

    2013-04-01

    A highly stable p-type cuprous oxide (Cu2O) photoelectrode has been fabricated by direct anodization of the Cu foil, followed by a thermal treatment to introduce a protective layer of copper oxide (CuO) nanowires penetrating the surface of the Cu2O layer. The anodized Cu2O served as the seeding sites for the growth of CuO nanowires. The embedment of CuO nanowires within the Cu2O matrix enhanced the adhesion of the nanowires onto the Cu substrate. In addition, the presence of CuO nanowires on the outer layer of the composite film, in turn stabilized the Cu2O layer by passivating the redox activities of Cu2O when exposed to the environment. This nanostructured p-type Cu2O photoelectrode generated 360 μA cm(-2) of photocathodic current density upon visible light illumination and managed to retain its photocathodic current density after being used and kept for one month. The improvement in photoelectrochemical (PEC) stability by introducing a passive layer of CuO nanowires provides useful insights into the development of a Cu2O photoelectrode, as its stability remained as the main challenge.

  5. Time-resolved analysis of the white photoluminescence from chemically synthesized SiCxOy thin films and nanowires

    NASA Astrophysics Data System (ADS)

    Tabassum, Natasha; Nikas, Vasileios; Ford, Brian; Huang, Mengbing; Kaloyeros, Alain E.; Gallis, Spyros

    2016-07-01

    The study reported herein presents results on the room-temperature photoluminescence (PL) dynamics of chemically synthesized SiCxOy≤1.6 (0.19 < x < 0.6) thin films and corresponding nanowire (NW) arrays. The PL decay transients of the SiCxOy films/NWs are characterized by fast luminescence decay lifetimes that span in the range of 350-950 ps, as determined from their deconvoluted PL decay spectra and their stretched-exponential recombination behavior. Complementary steady-state PL emission peak position studies for SiCxOy thin films with varying C content showed similar characteristics pertaining to the variation of their emission peak position with respect to the excitation photon energy. A nearly monotonic increase in the PL energy emission peak, before reaching an energy plateau, was observed with increasing excitation energy. This behavior suggests that band-tail states, related to C-Si/Si-O-C bonding, play a prominent role in the recombination of photo-generated carriers in SiCxOy. Furthermore, the PL lifetime behavior of the SiCxOy thin films and their NWs was analyzed with respect to their luminescence emission energy. An emission-energy-dependent lifetime was observed, as a result of the modulation of their band-tail states statistics with varying C content and with the reduced dimensionality of the NWs.

  6. Preparation and characterization of thin-film composite membrane with nanowire-modified support for forward osmosis process.

    PubMed

    Low, Ze-Xian; Liu, Qi; Shamsaei, Ezzatollah; Zhang, Xiwang; Wang, Huanting

    2015-01-01

    Internal concentration polarization (ICP) in forward osmosis (FO) process is a characteristic problem for asymmetric thin-film composite (TFC) FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates' properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high water flux was recently produced by incorporating Zn2GeO4 nanowires. The composite membrane was used as a substrate for the fabrication of TFC FO membrane, by coating a thin layer of polyamide on top of the substrate. The substrate and the nanowires were characterized by a range of techniques such as SEM, XRD, and contact angle goniometry. The water permeability and molecular weight cut-offs (MWCO) of the substrate; and the FO performance of the TFC membrane were also determined. The Zn2GeO4-modified membrane showed ~45% increase in water permeability and NaCl salt rejection of 80% under RO mode. In FO mode, the ratio of water flux to reverse solute flux was also improved. However, lower FO flux was obtained which could be due to ICP. The result shows that Zn2GO4 nanowire may be used as a modifier to the substrate to improve the quality of the polyamide layer on the substrate to improve the flux and selectivity, but not as effective in reducing ICP. This work demonstrates that the incorporation of nanomaterials to the membrane substrate may be an alternative approach to improve the formation of polyamide skin layer to achieve better FO performance. PMID:25803239

  7. Preparation and Characterization of Thin-Film Composite Membrane with Nanowire-Modified Support for Forward Osmosis Process

    PubMed Central

    Low, Ze-Xian; Liu, Qi; Shamsaei, Ezzatollah; Zhang, Xiwang; Wang, Huanting

    2015-01-01

    Internal concentration polarization (ICP) in forward osmosis (FO) process is a characteristic problem for asymmetric thin-film composite (TFC) FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates’ properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high water flux was recently produced by incorporating Zn2GeO4 nanowires. The composite membrane was used as a substrate for the fabrication of TFC FO membrane, by coating a thin layer of polyamide on top of the substrate. The substrate and the nanowires were characterized by a range of techniques such as SEM, XRD, and contact angle goniometry. The water permeability and molecular weight cut-offs (MWCO) of the substrate; and the FO performance of the TFC membrane were also determined. The Zn2GeO4-modified membrane showed ~45% increase in water permeability and NaCl salt rejection of 80% under RO mode. In FO mode, the ratio of water flux to reverse solute flux was also improved. However, lower FO flux was obtained which could be due to ICP. The result shows that Zn2GO4 nanowire may be used as a modifier to the substrate to improve the quality of the polyamide layer on the substrate to improve the flux and selectivity, but not as effective in reducing ICP. This work demonstrates that the incorporation of nanomaterials to the membrane substrate may be an alternative approach to improve the formation of polyamide skin layer to achieve better FO performance. PMID:25803239

  8. Contact-enhanced transparent silver nanowire network for all solution-based top-contact metal-oxide thin-film transistors.

    PubMed

    Kim, Yong-Hoon; Kim, Tae-Hyoung; Lee, Yeji; Kim, Jong-Woong; Kim, Jaekyun; Park, Sung Kyu

    2014-11-01

    In this paper, we investigate contact-enhanced transparent silver nanowire (Ag NW) network for solution-processed metal-oxide thin-film transistors (TFTs). Mechanical roll pressing was applied to a bar-coated Ag NW film to enhance the inter-nanowire connectivity. As a result, the sheet resistance of the Ag NW film was decreased from 119.5 ψ/square to 92.4 ψ/square, and more stable and enhanced TFT characteristics were achieved when the roll-pressed Ag NW was employed as source/drain electrodes. In addition, a non-acidic wet etching method was developed to pattern the Ag NW electrodes to construct top-contact geometry indium-gallium-zinc oxide TFTs. From the results, it is believed that the mechanical roll pressing and non-acidic wet etching method may be utilized in realizing all solution-based transparent metal-oxide TFTs. PMID:25958491

  9. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    NASA Astrophysics Data System (ADS)

    Lim, Taekyung; Lee, Jonghun; Ju, Sanghyun

    2016-08-01

    We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA) self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  10. Layer-by-layer assembly of TiO2 nanowire/carbon nanotube films and characterization of their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Darányi, Mária; Csesznok, Tamás; Kukovecz, Ákos; Kónya, Zoltán; Kiricsi, Imre; Ajayan, Pulickel M.; Vajtai, Robert

    2011-05-01

    We report on the layer-by-layer (LbL) formation of TiO2-MWNT-TiO2 coatings on quartz with either trititanate derived TiO2 nanowires or Degussa P25 as the photocatalytically active material. The optimized deposition sequence is discussed in detail and the morphology of the prepared coatings is analyzed by SEM and XRD. The heterogeneous photocatalytic performance of the coatings was tested in the methyl orange oxidation reaction. The apparent first order rate constant fell in the 0.01-0.20 h - 1 range over a 2.5 × 2.5 cm2 film depending on the type and the thickness of the titanate coating. Building a multiwall carbon nanotube layer into the middle of the layer improved the photocatalytic activity for each material for all of the studied thicknesses. P25 based films performed 2-5 times better than TiO2 nanowire films; however, the pores in the P25 based films were largely blocked because the isotropic P25 nanoparticles form closely packed layers by themselves and even more so with the comparably sized multiwall carbon nanotubes. Therefore, films derived from titanate nanowires appear to be more suitable for use as multifunctional, photocatalytically active filtration media.

  11. Highly Conductive, Air-Stable Silver Nanowire@Iongel Composite Films toward Flexible Transparent Electrodes.

    PubMed

    Xiong, Weiwei; Liu, Hongliang; Chen, Yongzhen; Zheng, Meiling; Zhao, Yuanyuan; Kong, Xiangbin; Wang, Ying; Zhang, Xiqi; Kong, Xiangyu; Wang, Pengfei; Jiang, Lei

    2016-09-01

    A new type of flexible transparent electrode is designed, by employing wettability-induced selective electroless-welding of silver nanowire (AgNW) networks, together with a thin conductive iongel as the protective layer. The obtained electrode exhibits high optical transmittance, and excellent air-stability without sacrificing conductivity. PMID:27296551

  12. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs(1-x)Bi(x) films.

    PubMed

    Wood, Adam W; Collar, Kristen; Li, Jincheng; Brown, April S; Babcock, Susan E

    2016-03-18

    We have examined the morphology and composition of embedded nanowires that can be formed during molecular beam epitaxy of GaAs(1-x)Bi(x) using high angle annular dark field ('Z-contrast') imaging in an aberration-corrected scanning transmission electron microscope. Samples were grown in Ga-rich growth conditions on a stationary GaAs substrate. Ga-rich droplets are observed on the surface with lateral trails extending from the droplet in the [110] direction. Cross-sectional scanning transmission electron microscopy of the film reveals epitaxial nanowire structures of composition ∼GaAs embedded in the GaAs(1-x)Bi(x) epitaxial layers. These nanowires extend from a surface droplet to the substrate at a shallow angle of inclination (∼4°). They typically are 4 μm long and have a lens-shaped cross section with major and minor axes dimensions of 800 and 120 nm. The top surface of the nanowires exhibits a linear trace in longitudinal cross-section, across which the composition change from ∼GaAs to GaAs(1-x)Bi(x) appears abrupt. The bottom surfaces of the nanowires appear wavy and the composition change appears to be graded over ∼25 nm. The droplets have phase separated into Ga- and Bi-rich components. A qualitative model is proposed in which Bi is gettered into Ga droplets, leaving Bi depleted nanowires in the wakes of the droplets as they migrate in one direction across the surface during GaAs(1-x)Bi(x) film growth.

  13. High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films

    NASA Astrophysics Data System (ADS)

    Verma, V. B.; Korzh, B.; Bussières, F.; Horansky, R. D.; Dyer, S. D.; Lita, A. E.; Vayshenker, I.; Marsili, F.; Shaw, M. D.; Zbinden, H.; Mirin, R. P.; Nam, S. W.

    2015-12-01

    We demonstrate high-efficiency superconducting nanowire single-photon detectors (SNSPDs) fabricated from MoSi thin-films. We measure a maximum system detection efficiency (SDE) of 87 +- 0.5 % at 1542 nm at a temperature of 0.7 K, with a jitter of 76 ps, maximum count rate approaching 10 MHz, and polarization dependence as low as 3.4 +- 0.7 % The SDE curves show saturation of the internal efficiency similar to WSi-based SNSPDs at temperatures as high as 2.3 K. We show that at similar cryogenic temperatures, MoSi SNSPDs achieve efficiencies comparable to WSi-based SNSPDs with nearly a factor of two reduction in jitter.

  14. Fabrication of hybrid ultraviolet photodetector using organic polymer thin-film-coated TiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Saha, Saptadip; Das, Priyanath; Chakraborty, Ajoy Kumar; Sarkar, Sharmistha; Debbarma, Ruchira

    2016-04-01

    Poly (methyl methacrylate) (PMMA) thin film (TF) was employed on TiO2 nanowires (NWs) to fabricate organic-inorganic hybrid UV photodetector (PD), and its properties were studied and compared with bare TiO2 NW-based PD. A maximum photoresponsivity of 20×10-3 A/W and a maximum external quantum efficiency of ˜3.15% were observed in the UV region at 370 nm (˜3.35 eV). Enhanced photon absorption was observed in the hybrid detector. The TF of PMMA, which is a π-conjugated polymer, increased the carrier lifetime and reduced recombination rate. The PMMA TF:TiO2 NWs hybrid UV detector shows excellent rectification, and light current/dark current ratio was measured to be ˜1.46 times in comparison to bare TiO2 NWs photodetector in the reverse bias condition from -1 to -10 V.

  15. Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode

    NASA Astrophysics Data System (ADS)

    Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung

    2016-04-01

    Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.

  16. Fabrication and characterization of ZnO nanowires by wet oxidation of Zn thin film deposited on Teflon substrate

    NASA Astrophysics Data System (ADS)

    Farhat, O. F.; Halim, M. M.; Abdullah, M. J.; Ali, M. K. M.; Ahmed, Naser M.; Bououdina, M.

    2015-10-01

    In this study, ZnO nanowires (NWs) were successfully grown for the first time on to Teflon substrate by a wet oxidation of a Zn thin film coated by RF sputtering technique. The sputtered Zn thin film was oxidized at 100 °C for 5 h under water-vapour using a horizontal furnace. This oxidation process transformed Zn thin film into ZnO with wire-like nanostructure. XRD analysis confirms the formation of single nanocrystalline ZnO phase having a low compressive strain. FESEM observations reveal high density of ZnO NWs with diameter ranging from 34 to 52 nm and length about 2.231 μm, which are well distributed in different direction. A flexible ZnO NWs-based metal-semiconductor-metal UV photodetector was fabricated. Photo-response and sensitivity measurements under low power illumination (375 nm, 1.5 mW/cm2) showed a high sensitivity of 2050%, which can be considered a relatively fast response and baseline recovery for UV detection.

  17. Enhanced Optoelectronic Conversion Efficiency of CdSe/ZnS Quantum Dot/Graphene/Silver Nanowire Hybrid Thin Films.

    PubMed

    Liu, Bo-Tau; Wu, Kuan-Han; Lee, Rong-Ho

    2016-12-01

    In this study, we prepared the reduced graphene oxide (rGO)-CdSe/ZnS quantum dots (QDs) hybrid films on a three-layer scaffold that the QD layer was sandwiched between the two rGO layers. The photocurrent was induced by virtue of the facts that the rGO quenched the photoluminescence of QDs and transferred the excited energy. The quenching mechanism was attributed to the surface energy transfer, supported in our experimental results. We found that the optoelectronic conversion efficiency of the hybrid films can be significantly improved by incorporating the silver nanowires (AgNWs) into the QD layer. Upon increasing AgNW content, the photocurrent density increased from 22.1 to 80.3 μA cm(-2), reaching a near 3.6-fold enhancement compared to the pristine rGO-QD hybrid films. According to the analyses of photoluminescence spectra, shape effect, and electrochemical impedance spectra, the enhancement on the optoelectronic conversion efficiency arise mainly from the strong quenching ability of silver and the rapid electron transfer of AgNWs. PMID:27599719

  18. Enhanced Optoelectronic Conversion Efficiency of CdSe/ZnS Quantum Dot/Graphene/Silver Nanowire Hybrid Thin Films.

    PubMed

    Liu, Bo-Tau; Wu, Kuan-Han; Lee, Rong-Ho

    2016-12-01

    In this study, we prepared the reduced graphene oxide (rGO)-CdSe/ZnS quantum dots (QDs) hybrid films on a three-layer scaffold that the QD layer was sandwiched between the two rGO layers. The photocurrent was induced by virtue of the facts that the rGO quenched the photoluminescence of QDs and transferred the excited energy. The quenching mechanism was attributed to the surface energy transfer, supported in our experimental results. We found that the optoelectronic conversion efficiency of the hybrid films can be significantly improved by incorporating the silver nanowires (AgNWs) into the QD layer. Upon increasing AgNW content, the photocurrent density increased from 22.1 to 80.3 μA cm(-2), reaching a near 3.6-fold enhancement compared to the pristine rGO-QD hybrid films. According to the analyses of photoluminescence spectra, shape effect, and electrochemical impedance spectra, the enhancement on the optoelectronic conversion efficiency arise mainly from the strong quenching ability of silver and the rapid electron transfer of AgNWs.

  19. Enhanced Optoelectronic Conversion Efficiency of CdSe/ZnS Quantum Dot/Graphene/Silver Nanowire Hybrid Thin Films

    NASA Astrophysics Data System (ADS)

    Liu, Bo-Tau; Wu, Kuan-Han; Lee, Rong-Ho

    2016-09-01

    In this study, we prepared the reduced graphene oxide (rGO)-CdSe/ZnS quantum dots (QDs) hybrid films on a three-layer scaffold that the QD layer was sandwiched between the two rGO layers. The photocurrent was induced by virtue of the facts that the rGO quenched the photoluminescence of QDs and transferred the excited energy. The quenching mechanism was attributed to the surface energy transfer, supported in our experimental results. We found that the optoelectronic conversion efficiency of the hybrid films can be significantly improved by incorporating the silver nanowires (AgNWs) into the QD layer. Upon increasing AgNW content, the photocurrent density increased from 22.1 to 80.3 μA cm-2, reaching a near 3.6-fold enhancement compared to the pristine rGO-QD hybrid films. According to the analyses of photoluminescence spectra, shape effect, and electrochemical impedance spectra, the enhancement on the optoelectronic conversion efficiency arise mainly from the strong quenching ability of silver and the rapid electron transfer of AgNWs.

  20. Growth of hydrophilic CuS nanowires via DNA-mediated self-assembly process and their use in fabricating smart hybrid films for adjustable chemical release.

    PubMed

    Zhou, Li; Li, Wei; Chen, Zhaowei; Ju, Enguo; Ren, Jinsong; Qu, Xiaogang

    2015-02-01

    Facile growth of CuS nanowires through self-assembly and their application as building blocks for near-infrared light-responsive functional films have been demonstrated. It is found that DNA is a key factor in preparing the CuS material with defined nanostructure. An exclusive oriented self-aggregate growth mechanism is proposed for the growth of the nanowires, which might have important implications for preparing advanced, sophisticated nanostructures based on DNA nanotechnology. By employing the hydrophilic CuS nanowire as an optical absorber and thermosensitive nanogel as guest reservoir inside alginate film, a new platform for the release of functional molecules has been set up. In vitro studies have shown that the hybrid film possesses excellent biocompatibility and the release rate of chemical molecules from the film could be controlled with high spatial and temporal precision. Our novel approach and the resulting outstanding combination of properties may advance both the fields of DNA nanotechnology and light-responsive devices. PMID:25504567

  1. Cubic SiC nano-thin films and nano-wires: high vacuum metal-organic chemical vapor deposition, surface characterization, and application tests.

    PubMed

    Hyun, J S; Nam, S H; Kang, B C; Park, J H; Boo, J H

    2008-10-01

    Single-crystalline and epitaxial cubic silicon carbide (beta-SiC) nano-thin films have been deposited on Si(100) substrates at a sample temperature of approximately 900 degrees C using single source precursors by the thermal metal-organic chemical vapor deposition (MOCVD) method. Diethylmethylsilane and 1,3-disilabutane, which contain Si and C atoms in the same molecule, were used as precursors without any carrier or bubbler gas. Upon increasing the deposition temperature from 900 to 950 degrees C, beta-SiC nano-thin films with relatively small crystals and smoother surfaces were created on Si(100) substrates. Moreover, beta-SiC nano-wires with 40 approximately 100 nm in diameter have also been grown selectively on nickel catalyzed Si(100) substrates with dichloromethylvinylsilane by the MOCVD method. The deposition temperature in this case was as low as 800 degrees C under the pressure of 5.0 x 10(-2) Torr. It is worth noting that the initial growth rates of deposited beta-SiC nano-thin films and nano-wires strongly depend on the deposition temperature rather than the time. In order to test the possibility of applications of these materials for electronic components such as field emitter, MEMS, and high-power transistor, we fabricated the nanoelectronic devices using both beta-SiC nano-wires and nano-thin films. With these preliminary application tests, it is expected that SiC nanowires can be used as field emitter and nanoelectronic high-power transistor, and application of the SiC nano-thin films to MEMS is promising as well.

  2. Tuning of multifunctional Cu-doped ZnO films and nanowires for enhanced piezo/ferroelectric-like and gas/photoresponse properties.

    PubMed

    Ong, Wei Li; Huang, Hejin; Xiao, Juanxiu; Zeng, Kaiyang; Ho, Ghim Wei

    2014-01-01

    The prospect of tuning and enhancing multiple properties of ZnO from optical, electrical, piezo to ferroelectricity/magnetism with Cu dopants will certainly spur the pursuit of facile doping methodology to immensely advance this field of research. Here, a one-step aqueous synthesis of Cu-doped ZnO nanostructured materials with effective controllability over the morphology (film to nanowire) and doping concentrations both on rigid and flexible substrates has been developed. High structural integrity Cu-doped ZnO films and nanowires were achieved without multiple/harsh post-processing which tends to degrade their functional properties. Comprehensive investigations of varying doping concentrations on the enhancement and tunability of room temperature piezo/ferroelectricity to gas/photosensing multifunctional properties were systematically reported for the first time.

  3. Effect of indium on photovoltaic property of n-ZnO/p-Si heterojunction device prepared using solution-synthesized ZnO nanowire film

    NASA Astrophysics Data System (ADS)

    Kathalingam, Adaikalam; Kim, Hyun-Seok; Park, Hyung-Moo; Valanarasu, Santiyagu; Mahalingam, Thaiyan

    2015-01-01

    Preparation of n-ZnO/p-Si heterostructures using solution-synthesized ZnO nanowire films and their photovoltaic characterization is reported. The solution-grown ZnO nanowire film is characterized using scanning electron microscope, electron dispersive x-ray, and optical absorption studies. Electrical and photovoltaic properties of the fabricated heterostructures are studied using e-beam-evaporated aluminum as metal contacts. In order to use transparent contact and to simultaneously collect the photogenerated carriers, sandwich-type solar cells were fabricated using ZnO nanorod films grown on p-silicon and indium tin oxide (ITO) coated glass as ITO/n-ZnO NR/p-Si. The electrical properties of these structures are analyzed from current-voltage (I-V) characteristics. ZnO nanowire film thickness-dependent photovoltaic properties are also studied. Indium metal was also deposited over the ZnO nanowires and its effects on the photovoltaic response of the devices were studied. The results demonstrated that all the samples exhibit a strong rectifying behavior indicating the diode nature of the devices. The sandwich-type ITO/n-ZnO NR/p-Si solar cells exhibit improved photovoltaic performance over the Al-metal-coated n-ZnO/p-Si structures. The indium deposition is found to show enhancement in photovoltaic behavior with a maximum open-circuit voltage (Voc) of 0.3 V and short-circuit current (Isc) of 70×10-6 A under ultraviolet light excitation.

  4. Application of patterned Ag-nanowire networks to transparent thin-film heaters and electrodes for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Rok; Triambulo, Ross E.; Kim, Jin-Hoon; Park, Jaeyoon; Jeong, Unyong; Park, Jin-Woo

    2016-06-01

    We present patterned Ag-nanowire (AgNW) networks for their application to transparent electrodes in flexible devices. Using capillary-force-based soft lithography (CFL), we formed 25- to 30-µm-wide line patterns of AgNWs on flexible polymer substrates. Organic light-emitting diodes (OLEDs) and transparent thin-film heaters (TFHs) were successfully fabricated on the patterned substrates, which verified the potential of AgNW patterns formed by CFL as interconnects in flexible devices.

  5. Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh.

    PubMed

    Chen, Tong Lai; Ghosh, Dhriti Sundar; Mkhitaryan, Vahagn; Pruneri, Valerio

    2013-11-27

    Polycrystalline graphene and metallic nanowires (NWs) have been proposed to replace indium tin oxide (ITO), the most widely used transparent electrode (TE) film on the market. However, the trade-off between optical transparency (Topt) and electrical sheet resistance (Rs) of these materials taken alone makes them difficult to compete with ITO. In this paper, we show that, by hot-press transfer of graphene monolayer on Ag NWs, the resulting combined structure benefits from the synergy of the two materials, giving a Topt-Rs trade-off better than that expected by simply adding the single material contributions Ag NWs bridge any interruption in transferred graphene, while graphene lowers the contact resistance among neighboring NWs and provides local conductivity in the uncovered regions in-between NWs. The hot-pressing not only allows graphene transfer but also compacts the NWs joints, thus reducing contact resistance. The dependence on the initial NW concentration of the effects produced by the hot press process on its own and the graphene transfer using hot press was investigated and indicates that a low concentration is more suitable for the proposed geometry. A TE film with Topt of 90% and Rs of 14 Ω/sq is demonstrated, also on a flexible glass substrate about 140 μm thick, a very attractive platform for efficient flexible electronic and photonic devices. PMID:24164641

  6. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon

    SciTech Connect

    Li, Qiang; Ng, Kar Wei; Lau, Kei May

    2015-02-16

    We report the use of highly ordered, dense, and regular arrays of in-plane GaAs nanowires as building blocks to produce antiphase-domain-free GaAs thin films on exact (001) silicon. High quality GaAs nanowires were grown on V-grooved Si (001) substrates using the selective aspect ratio trapping concept. The 4.1% lattice mismatch has been accommodated by the initial GaAs, a few nanometer-thick with high density stacking faults. The bulk of the GaAs wires exhibited smooth facets and a low defect density. An unusual defect trapping mechanism by a “tiara”-like structure formed by Si undercuts was discovered. As a result, we were able to grow large-area antiphase-domain-free GaAs thin films out of the nanowires without using SiO{sub 2} sidewalls for defect termination. Analysis from XRD ω-rocking curves yielded full-width-at-half-maximum values of 238 and 154 arc sec from 900 to 2000 nm GaAs thin films, respectively, indicating high crystalline quality. The growth scheme in this work offers a promising path towards integrated III-V electronic, photonic, or photovoltaic devices on large scale silicon platform.

  7. Nanowire Solar Cells

    NASA Astrophysics Data System (ADS)

    Garnett, Erik C.; Brongersma, Mark L.; Cui, Yi; McGehee, Michael D.

    2011-08-01

    The nanowire geometry provides potential advantages over planar wafer-based or thin-film solar cells in every step of the photoconversion process. These advantages include reduced reflection, extreme light trapping, improved band gap tuning, facile strain relaxation, and increased defect tolerance. These benefits are not expected to increase the maximum efficiency above standard limits; instead, they reduce the quantity and quality of material necessary to approach those limits, allowing for substantial cost reductions. Additionally, nanowires provide opportunities to fabricate complex single-crystalline semiconductor devices directly on low-cost substrates and electrodes such as aluminum foil, stainless steel, and conductive glass, addressing another major cost in current photovoltaic technology. This review describes nanowire solar cell synthesis and fabrication, important characterization techniques unique to nanowire systems, and advantages of the nanowire geometry.

  8. A pn heterojunction diode constructed with a n-type ZnO nanowire and a p-type HgTe nanoparticle thin film

    NASA Astrophysics Data System (ADS)

    Seong, Hojun; Cho, Kyoungah; Kim, Sangsig

    2009-01-01

    We demonstrate a pn heterojunction diode constructed with a n-type ZnO nanowire (NW) and a p-type HgTe nanoparticle (NP) thin film on a SiO2/p-Si substrate. For the pn heterojunction diode, the rectifying characteristics of both the dark current and the photocurrent excited by 633 nm wavelength light were observed, but the photocurrent excited by 325 nm wavelength light possesses Ohmic characteristics. The optoelectronic characteristics of the pn heterojunction diode were compared with those of the ZnO NW and HgTe NP thin film composing it.

  9. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels

    PubMed Central

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-01-01

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30–70 Ohm/square), optical transmittance values (89–90%), and haze (0.5–1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle. PMID:27677410

  10. Mesoporous TiO2 Nanowire Film for Dye-Sensitized Solar Cell.

    PubMed

    Xiao, Li; Xu, Jia; Liu, Xiu; Zhang, Yongzhe; Zhang, Bing; Yao, Jianxi; Dai, Songyuan; Tan, Zhanao; Pan, Xu

    2016-06-01

    In this work, TiO2 nanowire arrays were grown on fluorine-doped tin oxide (FTO) glass substrate, and then were converted into mesoporous nanowires (MNWs). The TiO2 MNWs are about 5 μm in length and 30-200 nm in diameter, with mesopores size of 5-30 nm randomly distributed on the NW surface. X-ray diffraction pattern reports show that the NWs are single crystallized rutile TiO2 and oriented grown along [001]. Through further characterization of FT-IR and TG-DSC, we proposed a reasonable explanation for pore existence. After dye-sensitized solar cells (DSSCs) assembly, the photoelectric conversion efficiency (PCE) of MNWs based DSSC achieved 3.2%. It means tenfold enhancement of photoelectric property compare with the as-grown NWs. Furthermore, dye absorb capacity of MNWs can reach up to 4.11 x 10(-8) mol/cm2. However, such MNWs can not only provide quick and efficient electron transmission channel, but also owns big specific surface area to absorb abundant dyes, thus conducive to fabricate solar cell with a high PCE.

  11. Mesoporous TiO2 Nanowire Film for Dye-Sensitized Solar Cell.

    PubMed

    Xiao, Li; Xu, Jia; Liu, Xiu; Zhang, Yongzhe; Zhang, Bing; Yao, Jianxi; Dai, Songyuan; Tan, Zhanao; Pan, Xu

    2016-06-01

    In this work, TiO2 nanowire arrays were grown on fluorine-doped tin oxide (FTO) glass substrate, and then were converted into mesoporous nanowires (MNWs). The TiO2 MNWs are about 5 μm in length and 30-200 nm in diameter, with mesopores size of 5-30 nm randomly distributed on the NW surface. X-ray diffraction pattern reports show that the NWs are single crystallized rutile TiO2 and oriented grown along [001]. Through further characterization of FT-IR and TG-DSC, we proposed a reasonable explanation for pore existence. After dye-sensitized solar cells (DSSCs) assembly, the photoelectric conversion efficiency (PCE) of MNWs based DSSC achieved 3.2%. It means tenfold enhancement of photoelectric property compare with the as-grown NWs. Furthermore, dye absorb capacity of MNWs can reach up to 4.11 x 10(-8) mol/cm2. However, such MNWs can not only provide quick and efficient electron transmission channel, but also owns big specific surface area to absorb abundant dyes, thus conducive to fabricate solar cell with a high PCE. PMID:27427603

  12. Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior.

    PubMed

    Zhao, Bing; Qi, Ning; Zhang, Ke-Qin; Gong, Xiao

    2016-06-01

    Solar cells containing upconversion nanoparticles (UCNPs) used as a power source in biomedical nanosystems have attracted great interest. However, such solar cells further need to be developed because their substrate materials should be biocompatible, flexible and highly luminescent. Here, we report that freestanding silk fibroin (SF) films containing a mesh of silver nanowires (AgNWs) and β-NaYF4:Yb,Er nanocrystals with metal-enhanced fluorescence behavior can be fabricated. The freestanding composite films exhibit properties such as good optical transparency, conductivity and flexibility. Furthermore, they show significantly enhanced upconversion fluorescence due to surface plasmon polaritons (SPPs) of AgNWs compared to the SF-UCNP films without AgNWs. The freestanding composite films with metal-enhanced fluorescence behavior show great promise for future applications in self-powered nanodevices such as cardiac pacemakers, biosensors and nanorobots.

  13. Effect of passivation layer on InGaZnO thin-film transistors with hybrid silver nanowires as source and drain electrodes

    NASA Astrophysics Data System (ADS)

    Yu, Chien-Hsien; Wu, Hung-Chi; Chien, Chao-Hsin

    2015-08-01

    InGaZnO (IGZO) thin-film transistors (TFTs) with hybrid silver nanowires (hybrid-AgNWs) as the source and drain electrodes exhibit superior performance according to the on/off current ratio (≈106), subthreshold swing (SS) (367 mV/decade), and mobility (15.6 cm2 V-1 s-1). The transfer and output characteristics of nanowire-based electrodes are comparable with those of titanium electrodes. The devices are fabricated on a plastic substrate and are highly transparent (>70%) and flexible. The device performance is severely degraded during operation in air, especially under high humidity conditions, and progressive deterioration resulting from water molecule diffusion leads to a high current density when the device is swept. Hence, introducing a passivation layer on the hybrid-AgNW electrodes is imperative.

  14. Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film.

    PubMed

    Sun, Qijun; Lee, Seong Jun; Kang, Hyungseok; Gim, Yuseong; Park, Ho Seok; Cho, Jeong Ho

    2015-04-21

    An ultrathin conductive adhesion promoter using positively charged reduced graphene oxide (rGO-NH3(+)) has been demonstrated for preparing highly stable silver nanowire transparent conductive electrodes (AgNW TCEs). The adhesion promoter rGO-NH3(+), spray coated between the substrate and AgNWs, significantly enhances the chemical and mechanical stabilities of the AgNW TCEs. Besides, the ultrathin thickness of the rGO-NH3(+) ensures excellent optical transparency and mechanical flexibility for TCEs. The AgNW films prepared using the adhesion promoter are extremely stable under harsh conditions, including ultrasonication in a variety of solvents, 3M Scotch tape detachment test, mechanical bending up to 0.3% strain, or fatigue over 1000 cycles. The greatly enhanced adhesion force is attributed to the ionic interactions between the positively charged protonated amine groups in rGO-NH3(+) and the negatively charged hydroxo- and oxo-groups on the AgNWs. The positively charged GO-NH3(+) and commercial polycationic polymer (poly allylamine hydrochloride) are also prepared as adhesion promoters for comparison with rGO-NH3(+). Notably, the closely packed hexagonal atomic structure of rGO offers better barrier properties to water permeation and demonstrates promising utility in durable waterproof electronics. This work offers a simple method to prepare high-quality TCEs and is believed to have great potential application in flexible waterproof electronics. PMID:25807039

  15. Surface properties of anatase TiO2 nanowire films grown from a fluoride-containing solution.

    PubMed

    Berger, Thomas; Anta, Juan A; Morales-Flórez, Víctor

    2013-06-01

    Controlling the surface chemistry of nucleating seeds during wet-chemical synthesis allows for the preparation of morphologically well-defined nanostructures. Synthesis conditions play a key role in the surface properties, which directly affect the functional properties of the material. Therefore, it is important to establish post-synthesis treatments to facilitate the optimization of surface properties with respect to a specific application, without losing the morphological peculiarity of the nanostructure. We studied the surface properties of highly crystalline and porous anatase TiO2 nanowire (NW) electrodes, grown by chemical-bath deposition in fluoride-containing solutions, using a combined electrochemical and spectroscopic approach. As-deposited films showed low capacity for catechol adsorption and a poor photoelectrocatalytic activity for water oxidation. Mild thermal annealing at 200 °C resulted in a significant improvement of the electrode photoelectrocatalytic activity, whereas the bulk properties of the NWs (crystal structure, band-gap energy) remained unchanged. Enhancement of the functional properties of the material is discussed on the basis of adsorption capacity and electronic properties. The temperature-induced decrease of recombination centers, along with the concomitant increase of adsorption and reaction sites upon thermal annealing are called to be responsible for such improved performance.

  16. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    NASA Astrophysics Data System (ADS)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.; Jayaraj, M. K.

    2016-05-01

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  17. Deterministic growth of AgTCNQ and CuTCNQ nanowires on large-area reduced graphene oxide films for flexible optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Lu, Zhufeng; Gu, Li; Cai, Liling; Cao, Xuebo

    2013-11-01

    We describe a synchronous reduction and assembly procedure to directly produce large-area reduced graphene oxide (rGO) films sandwiched by a high density of metal nanoparticles (silver and copper). Further, by using the sandwiched metal NPs as sources, networks consisting of AgTCNQ and CuTCNQ nanowires were deterministically grown from the rGO films, forming structurally and functionally integrated rGO/metal-TCNQ hybrid films with outstanding flexibility, bending endurance, and electrical stability. Interestingly, due to the p-type nature of the rGO film and the n-type nature of the metal-TCNQ NWs, the hybrid films are essentially thin-film p-n junctions which are useful in ubiquitous electronics and optoelectronics. Measurements of the optoelectronic properties demonstrate that the rGO/metal-TCNQ hybrid films exhibit substantial photoconductivity and highly reproducible photoswitching behaviours. The present approach may open the door to the versatile and deterministic integration of functional nanostructures into flexible conducting substrates and provide an important step towards producing low-cost and high-performance soft electronic and optoelectronic devices.

  18. Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor.

    PubMed

    Han, Jin-Woo; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M

    2015-09-30

    Gas sensors based on metal-oxide-semiconductor transistor with the polysilicon gate replaced by a gas sensitive thin film have been around for over 50 years. These are not suitable for the emerging mobile and wearable sensor platforms due to operating voltages and powers far exceeding the supply capability of batteries. Here we present a novel approach to decouple the chemically sensitive region from the conducting channel for reducing the drive voltage and increasing reliability. This chemically gated field effect transistor uses silicon nanowire for the current conduction channel with a tin oxide film on top of the nanowire serving as the gas sensitive medium. The potential change induced by the molecular adsorption and desorption allows the electrically floating tin oxide film to gate the silicon channel. As the device is designed to be normally off, the power is consumed only during the gas sensing event. This feature is attractive for the battery operated sensor and wearable electronics. In addition, the decoupling of the chemical reaction and the current conduction regions allows the gas sensitive material to be free from electrical stress, thus increasing reliability. The device shows excellent gas sensitivity to the tested analytes relative to conventional metal oxide transistors and resistive sensors.

  19. Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor.

    PubMed

    Han, Jin-Woo; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M

    2015-09-30

    Gas sensors based on metal-oxide-semiconductor transistor with the polysilicon gate replaced by a gas sensitive thin film have been around for over 50 years. These are not suitable for the emerging mobile and wearable sensor platforms due to operating voltages and powers far exceeding the supply capability of batteries. Here we present a novel approach to decouple the chemically sensitive region from the conducting channel for reducing the drive voltage and increasing reliability. This chemically gated field effect transistor uses silicon nanowire for the current conduction channel with a tin oxide film on top of the nanowire serving as the gas sensitive medium. The potential change induced by the molecular adsorption and desorption allows the electrically floating tin oxide film to gate the silicon channel. As the device is designed to be normally off, the power is consumed only during the gas sensing event. This feature is attractive for the battery operated sensor and wearable electronics. In addition, the decoupling of the chemical reaction and the current conduction regions allows the gas sensitive material to be free from electrical stress, thus increasing reliability. The device shows excellent gas sensitivity to the tested analytes relative to conventional metal oxide transistors and resistive sensors. PMID:26381613

  20. Self-Powered Solar-Blind Photodetector with Fast Response Based on Au/β-Ga2O3 Nanowires Array Film Schottky Junction.

    PubMed

    Chen, Xing; Liu, Kewei; Zhang, Zhenzhong; Wang, Chunrui; Li, Binghui; Zhao, Haifeng; Zhao, Dongxu; Shen, Dezhen

    2016-02-17

    Because of the direct band gap of 4.9 eV, β-Ga2O3 has been considered as an ideal material for solar-blind photodetection without any bandgap tuning. Practical applications of the photodetectors require fast response speed, high signal-to-noise ratio, low energy consumption and low fabrication cost. Unfortunately, most reported β-Ga2O3-based photodetectors usually possess a relatively long response time. In addition, the β-Ga2O3 photodetectors based on bulk, the individual 1D nanostructure, and the film often suffer from the high cost, the low repeatability, and the relatively large dark current, respectively. In this paper, a Au/β-Ga2O3 nanowires array film vertical Schottky photodiode is successfully fabricated by a simple thermal partial oxidation process. The device exhibits a very low dark current of 10 pA at -30 V with a sharp cutoff at 270 nm. More interestingly, the 90-10% decay time of our device is only around 64 μs, which is much quicker than any other previously reported β-Ga2O3-based photodetectors. Besides, the self-powering, the excellent stability and the good reproducibility of Au/β-Ga2O3 nanowires array film photodetector are helpful to its commercialization and practical applications.

  1. Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film

    NASA Astrophysics Data System (ADS)

    Sun, Qijun; Lee, Seong Jun; Kang, Hyungseok; Gim, Yuseong; Park, Ho Seok; Cho, Jeong Ho

    2015-04-01

    An ultrathin conductive adhesion promoter using positively charged reduced graphene oxide (rGO-NH3+) has been demonstrated for preparing highly stable silver nanowire transparent conductive electrodes (AgNW TCEs). The adhesion promoter rGO-NH3+, spray coated between the substrate and AgNWs, significantly enhances the chemical and mechanical stabilities of the AgNW TCEs. Besides, the ultrathin thickness of the rGO-NH3+ ensures excellent optical transparency and mechanical flexibility for TCEs. The AgNW films prepared using the adhesion promoter are extremely stable under harsh conditions, including ultrasonication in a variety of solvents, 3M Scotch tape detachment test, mechanical bending up to 0.3% strain, or fatigue over 1000 cycles. The greatly enhanced adhesion force is attributed to the ionic interactions between the positively charged protonated amine groups in rGO-NH3+ and the negatively charged hydroxo- and oxo-groups on the AgNWs. The positively charged GO-NH3+ and commercial polycationic polymer (poly allylamine hydrochloride) are also prepared as adhesion promoters for comparison with rGO-NH3+. Notably, the closely packed hexagonal atomic structure of rGO offers better barrier properties to water permeation and demonstrates promising utility in durable waterproof electronics. This work offers a simple method to prepare high-quality TCEs and is believed to have great potential application in flexible waterproof electronics.An ultrathin conductive adhesion promoter using positively charged reduced graphene oxide (rGO-NH3+) has been demonstrated for preparing highly stable silver nanowire transparent conductive electrodes (AgNW TCEs). The adhesion promoter rGO-NH3+, spray coated between the substrate and AgNWs, significantly enhances the chemical and mechanical stabilities of the AgNW TCEs. Besides, the ultrathin thickness of the rGO-NH3+ ensures excellent optical transparency and mechanical flexibility for TCEs. The AgNW films prepared using the adhesion

  2. Photovoltaic performance of Gallium-doped ZnO thin film/Si nanowires heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Aksoy Akgul, Funda; Emrah Unalan, Husnu; Turan, Rasit

    2016-04-01

    In this work, photovoltaic performance of Ga-doped ZnO thin film/Si NWs heterojunction diodes was investigated. Highly dense and vertically well-aligned Si NW arrays were successfully synthesised on a p-type (1 0 0)-oriented Si wafer through cost-effective metal-assisted chemical etching technique. Ga-doped ZnO thin films were deposited onto Si NWs via radio frequency magnetron sputtering to construct three-dimensional heterostructures. Photovoltaic characteristics of the fabricated diodes were determined with current density (J)-voltage (V) measurements under simulated solar irradiation of AM 1.5 G. The optimal open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were found to be 0.37 V, 3.30 mA cm-2, 39.00 and 0.62%, respectively. Moreover, photovoltaic diodes exhibited relatively high external quantum efficiency over the broadband wavelengths between 350 and 1100 nm interval of the spectrum. The observed photovoltaic performance in this study clearly indicates that the investigated device structure composed of Ga-doped ZnO thin film/Si NWs heterojunctions could facilitate an alternative pathway for optoelectronic applications in future, and be a promising alternative candidate for high-performance low-cost new-generation photovoltaic diodes.

  3. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors

    NASA Astrophysics Data System (ADS)

    Song, Hao; Fu, Jijiang; Ding, Kang; Huang, Chao; Wu, Kai; Zhang, Xuming; Gao, Biao; Huo, Kaifu; Peng, Xiang; Chu, Paul K.

    2016-10-01

    The hybrid Li-ion electrochemical supercapacitor (Li-HSC) combining the battery-like anode with capacitive cathode is a promising energy storage device boasting large energy and power densities. Orthorhombic Nb2O5 is a good anode material in Li-HSCs because of its large pseudocapacitive Li-ion intercalation capacity. Herein, we report a high-performance, binder-free and flexible anode consisting of long Nb2O5 nanowires and graphene (L-Nb2O5 NWs/rGO). The paper-like L-Nb2O5 NWs/rGO film electrode has a large mass loading of Nb2O5 of 93.5 wt% as well as short solid-state ion diffusion length, and enhanced conductivity (5.1 S cm-1). The hybrid L-Nb2O5 NWs/rGO paper electrode shows a high reversible specific capacity of 160 mA h g-1 at a current density of 0.2 A g-1, superior rate capability with capacitance retention of 60% when the current density increases from 0.2 to 5 A g-1, as well as excellent cycle stability. The Li-HSC device based on the L-Nb2O5/rGO anode and the cathode of biomass-derived carbon nanosheets delivers an energy density of 106 Wh kg-1 at 580 W kg-1 and 32 Wh kg-1 at a large power density of 14 kW kg-1. Moreover, the Li-HSC device exhibits excellent cycling performance without obvious capacitance decay after 1000 cycles.

  4. Nanowire liquid pumps

    NASA Astrophysics Data System (ADS)

    Huang, Jian Yu; Lo, Yu-Chieh; Niu, Jun Jie; Kushima, Akihiro; Qian, Xiaofeng; Zhong, Li; Mao, Scott X.; Li, Ju

    2013-04-01

    The ability to form tiny droplets of liquids and control their movements is important in printing or patterning, chemical reactions and biological assays. So far, such nanofluidic capabilities have principally used components such as channels, nozzles or tubes, where a solid encloses the transported liquid. Here, we show that liquids can flow along the outer surface of solid nanowires at a scale of attolitres per second and the process can be directly imaged with in situ transmission electron microscopy. Microscopy videos show that an ionic liquid can be pumped along tin dioxide, silicon or zinc oxide nanowires as a thin precursor film or as beads riding on the precursor film. Theoretical analysis suggests there is a critical film thickness of ~10 nm below which the liquid flows as a flat film and above which it flows as discrete beads. This critical thickness is the result of intermolecular forces between solid and liquid, which compete with liquid surface energy and Rayleigh-Plateau instability.

  5. Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction

    SciTech Connect

    Shi, Zhifeng; Zhang, Yuantao Cui, Xijun; Wu, Bin; Zhuang, Shiwei; Yang, Fan; Zhang, Baolin; Du, Guotong; Yang, Xiaotian

    2014-03-31

    Heterojunction light-emitting diodes based on n-ZnO nanowires/ZnO single-crystalline films/p-GaN structure have been demonstrated for an improved electroluminescence performance. A highly efficient ultraviolet emission was observed under forward bias. Compared with conventional n-ZnO/p-GaN structure, high internal quantum efficiency and light extraction efficiency were simultaneously considered in the proposed diode. In addition, the diode can work continuously for ∼10 h with only a slight degradation in harsh environments, indicating its good reliability and application prospect in the future. This route opens possibilities for the development of advanced nanoscale devices in which the advantages of ZnO single-crystalline films and nanostructures can be integrated together.

  6. High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique

    PubMed Central

    2014-01-01

    To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and structure were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM), the optical transmittance and sheet resistance were tested by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer and four-point probe technique, and the adhesion was also measured by 3M sticky tape. The results indicate that in this hybrid nanostructure, AgNWs form the main conductive networks and CNTs as assistant conductive networks are filled in the open spaces of AgNWs networks. The sheet resistance of the hybrid films can reach approximately 20.9 to 53.9 Ω/□ with the optical transmittance of approximately 84% to 91%. The second mechanical pressing step can greatly reduce the surface roughness of the hybrid film and enhance the adhesion force between CNTs, AgNWs, and PET substrate. This process is hopeful for large-scale production of high-end flexible transparent conductive films. PMID:25386105

  7. Flexible and free-standing ternary Cd₂GeO₄ nanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance.

    PubMed

    Wang, Linlin; Zhang, Xiaozhu; Shen, Guozhen; Peng, Xia; Zhang, Min; Xu, Jingli

    2016-03-01

    To realize flexible lithium-ion batteries (LIBs), the design of flexible electrode/current collector materials with high mechanical flexibility, superior conductivity and excellent electrochemical performance and electrical stability are highly desirable. In this work, we developed a new ternary Cd2GeO4 nanowire/graphene oxide/carbon nanotube nanocomposite (Cd2GeO4 NW/GO/CNT) film electrode. Benefiting from the efficient combination of GO and Cd2GeO4 NWs, our Cd2GeO4 NW/GO/CNT composite film exhibits a capacity of 784 mA h g(-1) after 30 cycles at 200 mA g(-1), which is 2.7 times higher than that of Cd2GeO4 NW/CNT film (290 mA h g(-1)). At a higher rate of 400 mA g(-1) and 1 A g(-1), the Cd2GeO4 NW/GO/CNT film delivers a stable capacity of 617 and 397 mA h g(-1), respectively. Even at 2.5 A g(-1), it still exhibits a high rate capacity of 180 mA h g(-1). The flexible Cd2GeO4 NW/GO/CNT film clearly demonstrates good cycling stability and rate performance for anode materials in LIBs. This route may be extended to design other flexible free-standing metal germanate nanocomposite anode materials.

  8. Flexible and free-standing ternary Cd2GeO4 nanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Zhang, Xiaozhu; Shen, Guozhen; Peng, Xia; Zhang, Min; Xu, Jingli

    2016-03-01

    To realize flexible lithium-ion batteries (LIBs), the design of flexible electrode/current collector materials with high mechanical flexibility, superior conductivity and excellent electrochemical performance and electrical stability are highly desirable. In this work, we developed a new ternary Cd2GeO4 nanowire/graphene oxide/carbon nanotube nanocomposite (Cd2GeO4 NW/GO/CNT) film electrode. Benefiting from the efficient combination of GO and Cd2GeO4 NWs, our Cd2GeO4 NW/GO/CNT composite film exhibits a capacity of 784 mA h g-1 after 30 cycles at 200 mA g-1, which is 2.7 times higher than that of Cd2GeO4 NW/CNT film (290 mA h g-1). At a higher rate of 400 mA g-1 and 1 A g-1, the Cd2GeO4 NW/GO/CNT film delivers a stable capacity of 617 and 397 mA h g-1, respectively. Even at 2.5 A g-1, it still exhibits a high rate capacity of 180 mA h g-1. The flexible Cd2GeO4 NW/GO/CNT film clearly demonstrates good cycling stability and rate performance for anode materials in LIBs. This route may be extended to design other flexible free-standing metal germanate nanocomposite anode materials.

  9. Ordering Ag nanowire arrays by a glass capillary: a portable, reusable and durable SERS substrate.

    PubMed

    Liu, Jian-Wei; Wang, Jin-Long; Huang, Wei-Ran; Yu, Le; Ren, Xi-Feng; Wen, Wu-Cheng; Yu, Shu-Hong

    2012-01-01

    Assembly of nanowires into ordered macroscopic structures with new functionalities has been a recent focus. In this Letter, we report a new route for ordering hydrophilic Ag nanowires with high aspect ratio by flowing through a glass capillary. The present glass capillary with well-defined silver nanowire films inside can serve as a portable and reusable substrate for surface-enhanced Raman spectroscopy (SERS), which may provide a versatile and promising platform for detecting mixture pollutions. By controlling the flow parameters of nanowire suspensions, initially random Ag nanowires can be aligned to form nanowire arrays with tunable density, forming cambered nanowire films adhered onto the inner wall of the capillary. Compared with the planar ordered Ag nanowire films by the Langmuir-Blodgett (LB) technique, the cambered nanowire films show better SERS performance.

  10. Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate

    PubMed Central

    Liu, Jian-Wei; Wang, Jin-Long; Huang, Wei-Ran; Yu, Le; Ren, Xi-Feng; Wen, Wu-Cheng; Yu, Shu-Hong

    2012-01-01

    Assembly of nanowires into ordered macroscopic structures with new functionalities has been a recent focus. In this Letter, we report a new route for ordering hydrophilic Ag nanowires with high aspect ratio by flowing through a glass capillary. The present glass capillary with well-defined silver nanowire films inside can serve as a portable and reusable substrate for surface-enhanced Raman spectroscopy (SERS), which may provide a versatile and promising platform for detecting mixture pollutions. By controlling the flow parameters of nanowire suspensions, initially random Ag nanowires can be aligned to form nanowire arrays with tunable density, forming cambered nanowire films adhered onto the inner wall of the capillary. Compared with the planar ordered Ag nanowire films by the Langmuir-Blodgett (LB) technique, the cambered nanowire films show better SERS performance. PMID:23248750

  11. Superconducting nanowire single photon detectors fabricated from an amorphous Mo{sub 0.75}Ge{sub 0.25} thin film

    SciTech Connect

    Verma, V. B.; Lita, A. E.; Vissers, M. R.; Marsili, F.; Pappas, D. P.; Mirin, R. P.; Nam, S. W.

    2014-07-14

    We present the characteristics of superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous Mo{sub 0.75}Ge{sub 0.25} thin-films. Fabricated devices show a saturation of the internal detection efficiency at temperatures below 1 K, with system dark count rates below 500 cps. Operation in a closed-cycle cryocooler at 2.5 K is possible with system detection efficiencies exceeding 20% for SNSPDs which have not been optimized for high detection efficiency. Jitter is observed to vary between 69 ps at 250 mK and 187 ps at 2.5 K using room temperature amplifiers.

  12. NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting.

    PubMed

    Tang, Chun; Cheng, Ningyan; Pu, Zonghua; Xing, Wei; Sun, Xuping

    2015-08-01

    Active and stable electrocatalysts made from earth-abundant elements are key to water splitting for hydrogen production through electrolysis. The growth of NiSe nanowire film on nickel foam (NiSe/NF) in situ by hydrothermal treatment of NF using NaHSe as Se source is presented. When used as a 3D oxygen evolution electrode, the NiSe/NF exhibits high activity with an overpotential of 270 mV required to achieve 20 mA cm(-2) and strong durability in 1.0 M KOH, and the NiOOH species formed at the NiSe surface serves as the actual catalytic site. The system is also highly efficient for catalyzing the hydrogen evolution reaction in basic media. This bifunctional electrode enables a high-performance alkaline water electrolyzer with 10 mA cm(-2) at a cell voltage of 1.63 V.

  13. Study on dynamics of photoexcited charge injection and trapping in CdS quantum dots sensitized TiO{sub 2} nanowire array film electrodes

    SciTech Connect

    Pang, Shan; Cheng, Ke; Yuan, Zhanqiang; Xu, Suyun; Cheng, Gang; Du, Zuliang

    2014-05-19

    The photoexcited electrons transfer dynamics of the CdS quantum dots (QDs) deposited in TiO{sub 2} nanowire array films are studied using surface photovoltage (SPV) and transient photovoltage (TPV) techniques. By comparing the SPV results with different thicknesses of QDs layers, we can separate the dynamic characteristics of photoexcited electrons injection and trapping. It is found that the TPV signals of photoexcited electrons trapped in the CdS QDs occur at timescales of about 2 × 10{sup −8} s, which is faster than that of the photoexcited electrons injected from CdS into TiO{sub 2}. More than 90 nm of the thickness of the CdS QDs layer will seriously affect the photoexcited electrons transfer and injection.

  14. Solution-processed copper-nickel nanowire anodes for organic solar cells

    NASA Astrophysics Data System (ADS)

    Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.

    2014-05-01

    This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h

  15. Enhanced Thermochromic Properties and Solar-Heat Shielding Ability of W(x)V(1-x)O2 Thin Films with Ag Nanowires Capping Layers.

    PubMed

    Zhao, Li Li; Miao, Lei; Liu, Cheng Yan; Wang, Hai Long; Tanemura, Sakae; Sun, Li Xian; Gao, Xiang; Zhou, Jian Hua

    2015-11-01

    Considerable efforts have been made to shift the phase transition temperature of metal-doped vanadium dioxide (VO2) films nearer the ambient temperature while maintain the excellent thermochromic properties simultaneously. Here, we describe a facile and economic solution-based method to fabricate W-doped VO2 (V(1-x)W(x)O2) thin films with excellent thermochromic properties for the application of smart windows. The substitutional doping of tungsten atoms notably reduces the phase transition temperature to the ambient temperature and retains the excellent thermochromic property. Furthermore, Ag nanowires (NWs) are employed as capping layers to effectively decrease the thermal emissivity from 0.833 to 0.603, while the original near infrared region (NIR) modulation ability is not severely affected. Besides, the Ag NWs layers further depress the phase transition temperature as well as the hysteresis loop width, which is important to the fenestration application. These solution-grown Ag NWs/V(1-x)W(x)O2 thin films exhibit excellent solar modulation ability, narrowed hysteresis loop width as well as low thermal emissivity, which provide a promising perspective into the practical application of VO2-based smart windows.

  16. Enhanced Thermochromic Properties and Solar-Heat Shielding Ability of W(x)V(1-x)O2 Thin Films with Ag Nanowires Capping Layers.

    PubMed

    Zhao, Li Li; Miao, Lei; Liu, Cheng Yan; Wang, Hai Long; Tanemura, Sakae; Sun, Li Xian; Gao, Xiang; Zhou, Jian Hua

    2015-11-01

    Considerable efforts have been made to shift the phase transition temperature of metal-doped vanadium dioxide (VO2) films nearer the ambient temperature while maintain the excellent thermochromic properties simultaneously. Here, we describe a facile and economic solution-based method to fabricate W-doped VO2 (V(1-x)W(x)O2) thin films with excellent thermochromic properties for the application of smart windows. The substitutional doping of tungsten atoms notably reduces the phase transition temperature to the ambient temperature and retains the excellent thermochromic property. Furthermore, Ag nanowires (NWs) are employed as capping layers to effectively decrease the thermal emissivity from 0.833 to 0.603, while the original near infrared region (NIR) modulation ability is not severely affected. Besides, the Ag NWs layers further depress the phase transition temperature as well as the hysteresis loop width, which is important to the fenestration application. These solution-grown Ag NWs/V(1-x)W(x)O2 thin films exhibit excellent solar modulation ability, narrowed hysteresis loop width as well as low thermal emissivity, which provide a promising perspective into the practical application of VO2-based smart windows. PMID:26726666

  17. Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks

    SciTech Connect

    Rathmall, Aaron; Nguyen, Minh; Wiley, Benjamin J

    2012-01-01

    Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.

  18. High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film.

    PubMed

    Duan, Ya-Hui; Duan, Yu; Chen, Ping; Tao, Ye; Yang, Yong-Qiang; Zhao, Yi

    2015-01-01

    As material for flexible transparent electrodes for organic photoelectric devices, the silver nanowires (AgNWs) have been widely studied. In this work, we propose a hybrid flexible anode with photopolymer substrate, which is composed of spin-coating-processed AgNW meshes and of zinc oxide (ZnO) prepared by low-temperature (60°C) atomic layer deposition. ZnO effectively fills in the voids of the AgNW mesh electrode, which is thus able to contact to the device all over the active area, to allow for efficient charge extraction/injection. Furthermore, ZnO grown by low temperature mainly relies on hole conduction to make the anode play a better role. Hole-only devices are fabricated to certify the functionality of the low-temperature ZnO film. Finally, we confirm that the ZnO film grown at a low temperature bring a significant contribution to the performance of the modified AgNW anode.

  19. High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film

    NASA Astrophysics Data System (ADS)

    Duan, Ya-Hui; Duan, Yu; Chen, Ping; Tao, Ye; Yang, Yong-Qiang; Zhao, Yi

    2015-02-01

    As material for flexible transparent electrodes for organic photoelectric devices, the silver nanowires (AgNWs) have been widely studied. In this work, we propose a hybrid flexible anode with photopolymer substrate, which is composed of spin-coating-processed AgNW meshes and of zinc oxide (ZnO) prepared by low-temperature (60°C) atomic layer deposition. ZnO effectively fills in the voids of the AgNW mesh electrode, which is thus able to contact to the device all over the active area, to allow for efficient charge extraction/injection. Furthermore, ZnO grown by low temperature mainly relies on hole conduction to make the anode play a better role. Hole-only devices are fabricated to certify the functionality of the low-temperature ZnO film. Finally, we confirm that the ZnO film grown at a low temperature bring a significant contribution to the performance of the modified AgNW anode.

  20. Failure of silver nanowire transparent electrodes under current flow

    PubMed Central

    2013-01-01

    Silver nanowire transparent electrodes have received much attention as a replacement for indium tin oxide, particularly in organic solar cells. In this paper, we show that when silver nanowire electrodes conduct current at levels encountered in organic solar cells, the electrodes can fail in as little as 2 days. Electrode failure is caused by Joule heating which causes the nanowires to breakup and thus create an electrical discontinuity in the nanowire film. More heat is created, and thus failure occurs sooner, in more resistive electrodes and at higher current densities. Suggestions to improve the stability of silver nanowire electrodes are given. PMID:23680014

  1. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.

    PubMed

    Li, Changli; Yamahara, Hiroyasu; Lee, Yaerim; Tabata, Hitoshi; Delaunay, Jean-Jacques

    2015-07-31

    CuO nanowire/microflower structure on Cu foil is synthesized by annealing a Cu(OH)2 nanowire/CuO microflower structure at 250 °C in air. The nanowire/microflower structure with its large surface area leads to an efficient catalysis and charge transfer in glucose detection, achieving a high sensitivity of 1943 μA mM(-1) cm(-2), a wide linear range up to 4 mM and a low detection limit of 4 μM for amperometric glucose sensing in alkaline solution. With a second consecutive growth of CuO nanowires on the microflowers, the sensitivity of the obtained CuO nanowire/microflower/nanowire structure further increases to 2424 μA mM(-1) cm(-2), benefiting from an increased number of electrochemically active sites. The enhanced electrocatalytic performance of the CuO nanowire/microflower/nanowire electrode compared to the CuO nanowire/microflower electrode, CuO nanowire electrode and CuxO film electrode provides evidence for the significant role of available surface area for electrocatalysis. The rational combination of CuO nanowire and microflower nanostructures into a nanowire supporting microflower branching nanowires structure makes it a promising composite nanostructure for use in CuO based electrochemical sensors with promising analytical properties. PMID:26159235

  2. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.

    PubMed

    Li, Changli; Yamahara, Hiroyasu; Lee, Yaerim; Tabata, Hitoshi; Delaunay, Jean-Jacques

    2015-07-31

    CuO nanowire/microflower structure on Cu foil is synthesized by annealing a Cu(OH)2 nanowire/CuO microflower structure at 250 °C in air. The nanowire/microflower structure with its large surface area leads to an efficient catalysis and charge transfer in glucose detection, achieving a high sensitivity of 1943 μA mM(-1) cm(-2), a wide linear range up to 4 mM and a low detection limit of 4 μM for amperometric glucose sensing in alkaline solution. With a second consecutive growth of CuO nanowires on the microflowers, the sensitivity of the obtained CuO nanowire/microflower/nanowire structure further increases to 2424 μA mM(-1) cm(-2), benefiting from an increased number of electrochemically active sites. The enhanced electrocatalytic performance of the CuO nanowire/microflower/nanowire electrode compared to the CuO nanowire/microflower electrode, CuO nanowire electrode and CuxO film electrode provides evidence for the significant role of available surface area for electrocatalysis. The rational combination of CuO nanowire and microflower nanostructures into a nanowire supporting microflower branching nanowires structure makes it a promising composite nanostructure for use in CuO based electrochemical sensors with promising analytical properties.

  3. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing

    NASA Astrophysics Data System (ADS)

    Li, Changli; Yamahara, Hiroyasu; Lee, Yaerim; Tabata, Hitoshi; Delaunay, Jean-Jacques

    2015-07-01

    CuO nanowire/microflower structure on Cu foil is synthesized by annealing a Cu(OH)2 nanowire/CuO microflower structure at 250 °C in air. The nanowire/microflower structure with its large surface area leads to an efficient catalysis and charge transfer in glucose detection, achieving a high sensitivity of 1943 μA mM-1 cm-2, a wide linear range up to 4 mM and a low detection limit of 4 μM for amperometric glucose sensing in alkaline solution. With a second consecutive growth of CuO nanowires on the microflowers, the sensitivity of the obtained CuO nanowire/microflower/nanowire structure further increases to 2424 μA mM-1 cm-2, benefiting from an increased number of electrochemically active sites. The enhanced electrocatalytic performance of the CuO nanowire/microflower/nanowire electrode compared to the CuO nanowire/microflower electrode, CuO nanowire electrode and CuxO film electrode provides evidence for the significant role of available surface area for electrocatalysis. The rational combination of CuO nanowire and microflower nanostructures into a nanowire supporting microflower branching nanowires structure makes it a promising composite nanostructure for use in CuO based electrochemical sensors with promising analytical properties.

  4. Large area in situ fabrication of poly(pyrrole)-nanowires on flexible thermoplastic films using nanocontact printing

    NASA Astrophysics Data System (ADS)

    Garcia-Cruz, Alvaro; Lee, Michael; Marote, Pedro; Zine, Nadia; Sigaud, Monique; Bonhomme, Anne; Pruna, Raquel; Lopez, Manuel; Bausells, Joan; Jaffrezic, Nicole; Errachid, Abdelhamid

    2016-08-01

    Highly efficient nano-engineering tools will certainly revolutionize the biomedical and sensing devices research and development in the years to come. Here, we present a novel high performance conducting poly(pyrrole) nanowires (PPy-NW) patterning technology on thermoplastic surfaces (poly(ethylene terephthalate (PETE), poly(ethylene 2,6-naphthalate (PEN), polyimide (PI), and cyclic olefin copolymer) using nanocontact printing and controlled chemical polymerization (nCP-CCP) technique. The technique uses a commercial compact disk as a template to produce nanopatterned polydimethylsiloxane (PDMS) stamps. The PDMS nanopatterned stamp was applied to print the PPy-NWs and the developed technology of nCP-CCP produced 3D conducting nanostructures. This new and very promising nanopatterning technology was achieved in a single step and with a low cost of fabrication over large areas.

  5. Fabrication and characterization of copper oxide-silicon nanowire heterojunction photodiodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Aksoy Akgul, Funda; Mulazimoglu, Emre; Emrah Unalan, Husnu; Turan, Rasit

    2014-02-01

    In this study, copper oxide (CuO) thin film/silicon (Si) nanowire heterojunctions have been fabricated and their optoelectronic performances have been investigated. Vertically aligned n-type Si nanowires have been fabricated using metal-assisted etching (MAE) technique. CuO thin films were synthesized by the sol-gel method and deposited onto the nanowires through spin-coating. Fabricated nanowire heterojunction devices exhibited excellent diode behaviour compared to the planar heterojunction control device. The rectification ratios were found to be 105 and 101 for nanowire and planar heterojunctions, respectively. The improved electrical properties and photosensitivity of the nanowire heterojunction diode was observed, which was related to the three-dimensional nature of the interface between the Si nanowires and the CuO film. Results obtained in this work reveal the potential of Si nanowire-based heterojunctions for various optoelectronic devices.

  6. Scaling and Graphical Transport-Map Analysis of Ambipolar Schottky-Barrier Thin-Film Transistors Based on a Parallel Array of Si Nanowires.

    PubMed

    Jeon, Dae-Young; Pregl, Sebastian; Park, So Jeong; Baraban, Larysa; Cuniberti, Gianaurelio; Mikolajick, Thomas; Weber, Walter M

    2015-07-01

    Si nanowire (Si-NW) based thin-film transistors (TFTs) have been considered as a promising candidate for next-generation flexible and wearable electronics as well as sensor applications with high performance. Here, we have fabricated ambipolar Schottky-barrier (SB) TFTs consisting of a parallel array of Si-NWs and performed an in-depth study related to their electrical performance and operation mechanism through several electrical parameters extracted from the channel length scaling based method. Especially, the newly suggested current-voltage (I-V) contour map clearly elucidates the unique operation mechanism of the ambipolar SB-TFTs, governed by Schottky-junction between NiSi2 and Si-NW. Further, it reveals for the first-time in SB based FETs the important internal electrostatic coupling between the channel and externally applied voltages. This work provides helpful information for the realization of practical circuits with ambipolar SB-TFTs that can be transferred to different substrate technologies and applications.

  7. P-si nanowires/n-ZnO thin film based core-shell heterojunction diodes with improved effective Richardson constant.

    PubMed

    Hazra, Purnima; Jit, S

    2014-07-01

    This paper reports the temperature dependent electrical parameters of p-Silicon nanowires (SiNWs)/n-ZnO thin film based core-shell heterojunction diodes fabricated by conformally deposited zinc oxide (ZnO) by atomic layer deposition (ALD) technique on metal-assisted chemically etched SiNWs. The temperature-dependent current-voltage characteristics of the device have been estimated using the modified thermionic emission model in which a Gaussian distributed barrier height function is assumed to include the effects of barrier inhomogeneity phenomenon at the p-SiNW /n-ZnO heterojunction interface. Various parameters such as the turn-on voltage, ideality factor (eta), barrier height (phi(b)) and reverse saturation current are estimated over the operating temperature range of 303 K to 423 K of the diode. The value of the Richardson constant is observed to be largely changed from an impractical value of 1.989 x 10(-6) A cm(-2) K-2 to a realistic value of 36.6 A cm(-2) K-2 once the barrier inhogeneity phenomenon is taken into consideration in the analysis. The estimated value of the Richardson constant is believed to be the best among the reported results. The study is also believed to be the first in case of p-SiNWs/n-ZnO core-shell heterojunction diodes.

  8. Multifunctional Nanowire/film Composites based Bi-modular Sensors for In-situ and Real-time High Temperature Gas Detection

    SciTech Connect

    Gao, Pu-Xian; Lei, Yu

    2013-06-01

    This final report to the Department of Energy/National Energy Technology Laboratory for DE-FE0000870 covers the period from 2009 to June, 2013 and summarizes the main research accomplishments, which can be divided in sensing materials innovation, bimodular sensor demonstration, and new understanding and discoveries. As a matter of fact, we have successfully completed all the project tasks in June 1, 2013, and presented the final project review presentation on the 9th of July, 2013. Specifically, the major accomplishments achieved in this project include: 1) Successful development of a new class of high temperature stable gas sensor nanomaterials based on composite nano-array strategy in a 3D or 2D fashion using metal oxides and perovskite nanostructures. 2) Successful demonstration of bimodular nanosensors using 2D nanofibrous film and 3D composite nanowire arrays using electrical resistance mode and electrochemical electromotive force mode. 3) Series of new discoveries and understandings based on the new composite nanostructure platform toward enhancing nanosensor performance in terms of stability, selectivity, sensitivity and mass flux sensing. In this report, we highlight some results toward these accomplishments.

  9. Lithographically patterned nanowire electrodeposition

    NASA Astrophysics Data System (ADS)

    Xiang, Chengxiang

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M1 = silver or nickel) layer, 5 - 100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut ≈300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of theM1 layer. Within this trench, a nanowire of metal M2 is electrodeposited (M2 = gold, platinum, palladium, or bismuth). Finally the PR layer and M1 layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 um sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowirenanowire junctions. The resistance, R, of single gold nanowires was measured in situ during electrooxidation in aqueous 0.10 M sulfuric acid. Electrooxidation caused the formation of a gold oxide that is approximately 0.8 monolayers (ML) in thickness at +1.1 V vs saturated mercurous sulfate reference electrode (MSE) based upon coulometry and ex situ X-ray photoelectron spectroscopic analysis. As the gold nanowires were electrooxidized, R increased by an amount that depended on the wire thickness, ranging from

  10. Nanowire-based All Oxide Solar Cells

    SciTech Connect

    Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong

    2008-12-07

    We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

  11. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric

    PubMed Central

    Liang, Jiajie; Li, Lu; Chen, Dustin; Hajagos, Tibor; Ren, Zhi; Chou, Shu-Yu; Hu, Wei; Pei, Qibing

    2015-01-01

    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ∼30 cm2 V−1 s−1, on/off ratio of 103–104, switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays. PMID:26173436

  12. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric

    NASA Astrophysics Data System (ADS)

    Liang, Jiajie; Li, Lu; Chen, Dustin; Hajagos, Tibor; Ren, Zhi; Chou, Shu-Yu; Hu, Wei; Pei, Qibing

    2015-07-01

    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ~30 cm2 V-1 s-1, on/off ratio of 103-104, switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays.

  13. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.

    PubMed

    Xiang, Chenxiang; Kung, Sheng-Chin; Taggart, David K; Yang, Fan; Thompson, Michael A; Güell, Aleix G; Yang, Yongan; Penner, Reginald M

    2008-09-23

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M(1)=silver or nickel) layer, 5-100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A (+) photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut approximately 300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of the M(1) layer. Within this trench, a nanowire of metal M(2) is electrodeposited (M(2)=gold, platinum, palladium, or bismuth). Finally the PR layer and M(1) layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 microm sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowire-nanowire junctions. PMID:19206435

  14. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.

    PubMed

    Xiang, Chenxiang; Kung, Sheng-Chin; Taggart, David K; Yang, Fan; Thompson, Michael A; Güell, Aleix G; Yang, Yongan; Penner, Reginald M

    2008-09-23

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M(1)=silver or nickel) layer, 5-100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A (+) photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut approximately 300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of the M(1) layer. Within this trench, a nanowire of metal M(2) is electrodeposited (M(2)=gold, platinum, palladium, or bismuth). Finally the PR layer and M(1) layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 microm sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowire-nanowire junctions.

  15. Inhomogeneous critical current in nanowire superconducting single-photon detectors

    SciTech Connect

    Gaudio, R. Hoog, K. P. M. op 't; Zhou, Z.; Sahin, D.; Fiore, A.

    2014-12-01

    A superconducting thin film with uniform properties is the key to realize nanowire superconducting single-photon detectors (SSPDs) with high performance and high yield. To investigate the uniformity of NbN films, we introduce and characterize simple detectors consisting of short nanowires with length ranging from 100 nm to 15 μm. Our nanowires, contrary to meander SSPDs, allow probing the homogeneity of NbN at the nanoscale. Experimental results, endorsed by a microscopic model, show the strongly inhomogeneous nature of NbN films on the sub-100 nm scale.

  16. Effect of ion beam energy and polymer weight on the thickness of nanowires produced by ion bombardment of polystyrene thin films

    SciTech Connect

    Tsukuda, Satoshi; Seki, Shu; Tagawa, Seiichi; Sugimoto, Masaki

    2005-12-05

    Exposure of polystyrene to MeV-order heavy-ion beams produces nanowires by cross-linking along ion tracks. The chemical core of these ion tracks is visualized, and the dependence of the diameter of the nanowires on the linear energy transfer of the ion beam and molecular weight of the polymer are investigated precisely based on the model of transformation of a nanowire cross section into an ellipse. an equation is derived to predict the radius (5.6-27.6 nm) of the chemical core considering the energy density required for gelation of the polymer, and the validity of the relation is confirmed against experimental results.

  17. Photoelectrochemistry of Semiconductor Nanowire Arrays

    SciTech Connect

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  18. Mesoporous metal and semiconductor nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Luo, Hongmei

    Nanowires and nanotubes are central elements in nanoscience and nanotechnology for applications such as nanoelectronic devices, chemical sensors, and high-density data storage. Among various synthesis methods, the template assisted electrodeposition is particularly attractive because it provides an efficient route to fabricate arrays of nanomatenals of desired composition, size, and aspect ratio. Advanced applications need morphological control. Mesoporous materials with uniform and arranged pores with pore diameters between 2 and 50 nm have attracted much attention due to their unique structures and applications. This dissertation presents the fabrication, structure, and property investigation of magnetic, superconducting metal, and semiconductor nanostructures. We will report three-dimensional (3D) macroporous magnetic and superconducting metal films using opal templates, 2D hexagonal and 3D cubic metal nanowire thin films with tunable 3-10 nm wire diameters using mesoporous silica as templates, mesoporous cobalt and nickel films with hexagonal and lamellar structures direct templated by lyotropic liquid crystal phases. Compared with bulk and dense films, the porous magnetic films show higher coercivities. The cobalt nanowire thin films exhibit enhanced coercivities and controllable magnetic anisotropy through tuning the mesostructure and dimension of the nanowires. We will present a novel method, confined-assembly-template assisted (CATA) electrodeposition, by combination of nanoconfinement, supramolecular templating and electrodeposition technique to prepare mesoporous metal and semiconductor nanowires and nanotubes. Mesoporous palladium and cobalt nanowires are obtained by electrodeposition of hexagonal liquid crystal in porous membranes, mesoporous platinum and nickel nanotubes with controlled length are obtained by electrodeposition of lamellar liquid crystal, mesoporous zinc oxide nanowires are obtained by electrodeposition of interfacial SDS surfactant

  19. High-density gold nanowire arrays by lithographically patterned nanowire electrodeposition.

    PubMed

    Hujdic, Justin E; Sargisian, Alan P; Shao, Jingru; Ye, Tao; Menke, Erik J

    2011-07-01

    Here we describe a new method for preparing multiple arrays of parallel gold nanowires with dimensions and separation down to 50 nm. This method uses photolithography to prepare an electrode consisting of a patterned nickel film on glass, onto which a gold and nickel nanowire array is sequentially electrodeposited. After the electrodeposition, the nickel is stripped away, leaving behind a gold nanowire array, with dimensions governed by the gold electrodeposition parameters, spacing determined by the nickel electrodeposition parameters, and overall placement and shape dictated by the photolithography.

  20. Nanowire Optoelectronics

    NASA Astrophysics Data System (ADS)

    Wang, Zhihuan; Nabet, Bahram

    2015-12-01

    Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs), lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with subwavelength diameters identifies radial resonant modes, such as Leaky Mode Resonances, or Whispering Gallery modes. The two-dimensional treatment should incorporate axial variations in "volumetric modes,"which have so far been presented in terms of Fabry-Perot (FP), and helical resonance modes. We report on finite-difference timedomain (FDTD) simulations with the aim of identifying the dependence of these modes on geometry (length, width), tapering, shape (cylindrical, hexagonal), core-shell versus core-only, and dielectric cores with semiconductor shells. This demonstrates how nanowires (NWs) form excellent optical cavities without the need for top and bottommirrors. However, optically equivalent structures such as hexagonal and cylindrical wires can have very different optoelectronic properties meaning that light management alone does not sufficiently describe the observed enhancement in upward (absorption) and downward transitions (emission) of light inNWs; rather, the electronic transition rates should be considered. We discuss this "rate management" scheme showing its strong dimensional dependence, making a case for photonic integrated circuits (PICs) that can take advantage of the confluence of the desirable optical and electronic properties of these nanostructures.

  1. Electrospun metallic nanowires: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Khalil, Abdullah; Singh Lalia, Boor; Hashaikeh, Raed; Khraisheh, Marwan

    2013-11-01

    Metals are known to have unique thermal, mechanical, electrical, and catalytic properties. On the other hand, metallic nanowires are promising materials for variety of applications such as transparent conductive film for photovoltaic devices, electrodes for batteries, as well as nano-reinforcement for composite materials. Whereas varieties of methods have been explored to synthesize metal nanowires with different characteristics, electrospinning has also been found to be successful for that purpose. Even though electrospinning of polymeric nanofibers is a well-established field, there are several challenges that need to be overcome to use the electrospinning technique for the fabrication of metallic nanowires. These challenges are mainly related to the multi-steps fabrication process and its relation to the structure evolution of the nanowires. In addition to reviewing the literature, this article identifies promising avenues for further research in this area with particular emphasis on the applications that nonwoven metal wires confined in a nano-scale can open.

  2. Synthesis of Cu Nanowires with Polycarbonate Template

    SciTech Connect

    Naderi, N.; Hashim, M. R.

    2011-03-30

    Copper nanowires were fabricated into arrays of pores on ion-track etched polycarbonate membrane, using electrodeposition technique. We coated Au thin film layer on one side of membrane in order to have electrical contact. X-ray diffraction analysis shows that the Au layer has a strong (111) texture. The pores which have cylindrical shape with 6 micron length and 30 nm diameter were filled by copper atoms, fabricating Cu nanowires. Energy Disperse Spectrometry (EDS) indicated the picks of copper which filled the pores of substrate. The morphology and structure of Cu nanowires were characterized by SEM, TEM and XRD, respectively. The results show that although all the nanowires do not have uniform diameter, but all of them are continuous along the length.

  3. Fabrication and properties of silicon carbide nanowires

    NASA Astrophysics Data System (ADS)

    Shim, Hyun Woo

    2008-12-01

    (compressive) normal loads. Here, we show that the friction forces of SiC nanowires films is 5--12 that of macroscopic solids. For nanowires films, the maximum static frictional force varies linearly with, but is not proportional to, normal load; it increases linearly with interface area; and it is independent of loading speed. To summarize, the combined experimental and theoretical studies in this thesis demonstrated unique structures and surface properties of SiC nanowires, including: (1) Periodical twinning, surface faceting, and structure transition, [Shim & Huang, Appl. Phy. Lett. 90, 083106] (2) Twinning growth mechanism, [Shim, Zhang & Huang, J. Appl. Phys., submitted; Zhang, Shim, & Huang, Appl. Phys. Lett. 92, 261908] (3) Self-integration (nanowebs formation) during growth, [Shim & Huang, Nanotechnology 18, 335607] (4) Thermal stability and self-integration by annealing, [Shim, Kuppers & Huang, J. Nanosci. Nanotech. 8, 3999] and (5) Strong friction of nanowires film. [Shim, Kuppers & Huang, NATURE Nanotech., submitted] The collection of these results enhances the understanding of SiC nanowires growth, the better control of their microstructure and integration, and the application of ceramic nanowires as friction material at high temperature.

  4. Energy harvesting from vertically aligned PZT nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Zhou, Zhi; Sodano, Henry A.

    2016-04-01

    In this paper, a nanostructured piezoelectric beam is fabricated using vertically aligned lead zirconate titanate (PZT) nanowire arrays and its capability of continuous power generation is demonstrated through direct vibration tests. The lead zirconate titanate nanowires are grown on a PZT thin film coated titanium foil using a hydrothermal reaction. The PZT thin film serves as a nucleation site while the titanium foil is used as the bottom electrode. Electromechanical frequency response function (FRF) analysis is performed to evaluate the power harvesting efficiency of the fabricated device. Furthermore, the feasibility of the continuous power generation using the nanostructured beam is demonstrated through measuring output voltage from PZT nanowires when beam is subjected to a sinusoidal base excitation. The effect of tip mass on the voltage generation of the PZT nanowire arrays is evaluated experimentally. The final results show the great potential of synthesized piezoelectric nanowire arrays in a wide range of applications, specifically power generation at nanoscale.

  5. Organic surface-grown nanowires for functional devices.

    PubMed

    Kjelstrup-Hansen, Jakob; Simbrunner, Clemens; Rubahn, Horst-Günter

    2013-12-01

    Discontinuous organic thin film growth on the surface of single crystals results in crystalline nanowires with extraordinary morphological and optoelectronic properties. By way of being generated at the interface of organic and inorganic materials, these nanowires combine the advantages of flexible organic films with the defectless character of inorganic crystalline substrates. The development of destruction-free transfer and direct growth methods allows one to integrate the organic nanowires into semiconductor, metallic electronic or photonic platforms. This article details the mechanisms that lead to the growth of these nanowires and exemplifies some of the linear as well as non-linear photonic properties, such as optical wave guiding, lasing and frequency conversion. The article also highlights future potential by showing that organic nanowires can be integrated into optoelectronic devices or hybrid photonic/plasmonic platforms as passive and active nanoplasmonic elements.

  6. Ultrathin W18O49 nanowire assemblies for electrochromic devices.

    PubMed

    Liu, By Jian-Wei; Zheng, Jing; Wang, Jin-Long; Xu, Jie; Li, Hui-Hui; Yu, Shu-Hong

    2013-08-14

    Ordered W18O49 nanowire thin films were fabricated by Langmuir-Blodgett (LB) technique in the presence of poly(vinyl pyrrolidone) coating. The well-organized monolayer of W18O49 nanowires with periodic structures can be readily used as electrochromic sensors, showing reversibly switched electrochromic properties between the negative and positive voltage. Moreover, the electrochromism properties of the W18O49 nanowire films exhibit significant relationship with their thickness. The coloration/bleaching time was around 2 s for the W18O49 nanowire monolayer, which is much faster than the traditional tungsten oxide nanostructures. Moreover, the nanowire devices display excellent stability when color switching continues, which may provide a versatile and promising platform for electrochromism device, smart windows, and other applications. PMID:23869487

  7. Long-range superconducting proximity effect in template-fabricated single-crystal nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Haidong; Ye, Zuxin; Luo, Zhiping; Rathnayaka, K. D. D.; Wu, Wenhao

    2012-12-01

    A long-range superconducting proximity effect is investigated in single-crystal nanowires of Zn, Sn, and Pb, of length up to 60 μm, electrochemically deposited into the pores of anodic aluminum oxide membranes and polycarbonate membranes. Using an in situ self-contacting method, single nanowires are electrically contacted on both ends to a pair of macroscopic film electrodes of Au, Sn, or Pb pre-fabricated on both surfaces of the membranes. Superconductivity in the nanowires is strongly suppressed when Au electrodes are used. When electrodes having higher superconducting transition temperatures are used, the nanowires become superconducting at the transition temperatures of the electrodes. Microscopy analyses of the structure and the chemical composition of the nanowires are presented, which demonstrate a sharp interface between the nanowires and the macroscopic film electrodes. Measurements of the I-V characteristics provide evidence that this proximity effect occurs along the length of the nanowires.

  8. Coupled Array of Superconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Ursache, Andrei

    2005-03-01

    We present experiments that investigate the collective behavior of arrays of superconducting lead nanowires with diameters smaller than the coherence length. The ultrathin (˜15nm) nanowires are grown by pulse electrodeposition into porous self-assembled P(S-b-MMA) diblock copolymer templates. The closely packed (˜24 nm spacing) 1-D superconducting nanowires stand vertically upon a thin normal (Au or Pt) film in a brush-like geometry. Thereby, they are coupled to each other by Andreev reflection at the S-N (Pb-Au) point contact interfaces. Magnetization measurements reveal that the ZFC/FC magnetic response of the coupled array system can be irreversible or reversible, depending on the orientation, perpendicular or parallel, of the applied magnetic field with respect to the coupling plane. As found by electric transport measurements, the coupled array system undergoes an in plane superconducting resistive transition at a temperature smaller than the Tc of an individual nanowire. Current-voltage characteristics throughout the transition region are also discussed. This work was supported by NSF grant DMI-0103024 and DMR-0213695.

  9. Chemical Sensing with Nanowires

    NASA Astrophysics Data System (ADS)

    Penner, Reginald M.

    2012-07-01

    Transformational advances in the performance of nanowire-based chemical sensors and biosensors have been achieved over the past two to three years. These advances have arisen from a better understanding of the mechanisms of transduction operating in these devices, innovations in nanowire fabrication, and improved methods for incorporating receptors into or onto nanowires. Nanowire-based biosensors have detected DNA in undiluted physiological saline. For silicon nanowire nucleic acid sensors, higher sensitivities have been obtained by eliminating the passivating oxide layer on the nanowire surface and by substituting uncharged protein nucleic acids for DNA as the capture strands. Biosensors for peptide and protein cancer markers, based on both semiconductor nanowires and nanowires of conductive polymers, have detected these targets at physiologically relevant concentrations in both blood plasma and whole blood. Nanowire chemical sensors have also detected several gases at the parts-per-million level. This review discusses these and other recent advances, concentrating on work published in the past three years.

  10. Chemiresistive response of silicon nanowires to trace vapor of nitro explosives.

    PubMed

    Wang, Danling; Sun, Haishan; Chen, Antao; Jang, Sei-Hum; Jen, Alex K-Y; Szep, Attila

    2012-04-21

    Silicon nanowires are observed to behave as chemically modulated resistors and exhibit sensitive and fast electrical responses to vapors of common nitro explosives and their degradation by-products. The nanowires were prepared with a top-down nano-fabrication process on a silicon-on-insulator wafer. The surface of the silicon nanowires was modified by plasma treatments. Both hydrogen and oxygen plasma treatments can significantly improve the responses, and oxygen plasma changes the majority carrier from p- to n-type on the surface of silicon nanowire thin films. The sensitivity is found to increase when the cross-section of the nanowires decreases.

  11. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Growth mechanism and photoluminescence of the SnO2 nanotwists on thin film and the SnO2 short nanowires on nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Xu, Ping

    2009-01-01

    SnO2 nanotwists on thin film and SnO2 short nanowires on nanorods have been grown on single silicon substrates by using Au-Ag alloying catalyst assisted carbothermal evaporation of SnO2 and active carbon powders. The morphology and the structure of the prepared nanostructures are determined on the basis of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electronic diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD), Raman and photoluminescence (PL) spectra analysis. The new peaks at 356, 450, and 489 nm in the measured PL spectra of two kinds of SnO2 nanostructures are observed, implying that more luminescence centres exist in these SnO2 nanostructures due to nanocrystals and defects. The growth mechanism of these nanostructures belongs to the vapour-liquid-solid (VLS) mechanism.

  12. Semiconductor Nanowires for Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Hwang, Yun Jeong

    Photolysis of water with semiconductor materials has been investigated intensely as a clean and renewable energy resource by storing solar energy in chemical bonds such as hydrogen. One-dimensional (1D) nanostructures such as nanowires can provide several advantages for photoelectrochemical (PEC) water splitting due to their high surface areas and excellent charge transport and collection efficiency. This dissertation discusses various nanowire photoelectrodes for single or dual semiconductor systems, and their linked PEC cells for self-driven water splitting. After an introduction of solar water splitting in the first chapter, the second chapter demonstrates water oxidative activities of hydrothermally grown TiO2 nanowire arrays depending on their length and surface properties. The photocurrents with TiO2 nanowire arrays approach saturation due to their poor charge collection efficiency with longer nanowires despite increased photon absorption efficiency. Epitaxial grains of rutile atomic layer deposition (ALD) shell on TiO2 nanowire increase the photocurrent density by 1.5 times due to improved charge collection efficiency especially in the short wavelength region. Chapter three compares the photocurrent density of the planar Si and Si nanowire arrays coated by anatase ALD TiO 2 thin film as a model system of a dual bandgap system. The electroless etched Si nanowire coated by ALD TiO2 (Si EENW/TiO2) shows 2.5 times higher photocurrent density due to lower reflectance and higher surface area. Also, this chapter illustrates that n-Si/n-TiO2 heterojunction is a promising structure for the photoanode application of a dual semiconductor system, since it can enhance the photocurrent density compared to p-Si/n-TiO 2 junction with the assistance of bend banding at the interface. Chapter four demonstrates the charge separation and transport of photogenerated electrons and holes within a single asymmetric Si/TiO2 nanowire. Kelvin probe force microscopy measurements show

  13. Electrical breakdown of nanowires.

    PubMed

    Zhao, Jiong; Sun, Hongyu; Dai, Sheng; Wang, Yan; Zhu, Jing

    2011-11-01

    Instantaneous electrical breakdown measurements of GaN and Ag nanowires are performed by an in situ transmission electron microscopy method. Our results directly reveal the mechanism that typical thermally heated semiconductor nanowires break at the midpoint, while metallic nanowires breakdown near the two ends due to the stress induced by electromigration. The different breakdown mechanisms for the nanowires are caused by the different thermal and electrical properties of the materials.

  14. Nanowire-based detector

    DOEpatents

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  15. Detecting Airborne Mercury by Use of Gold Nanowires

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Soler, Jessica; Mung, Nosang; Nix, Megan

    2009-01-01

    Like the palladium chloride (PdCl2) films described in the immediately preceding article, gold nanowire sensors have been found to be useful for detecting airborne elemental mercury at concentrations on the order of parts per billion (ppb). Also like the PdCl2 films, gold nanowire sensors can be regenerated under conditions much milder than those necessary for regeneration of gold films that have been used as airborne-Hg sensors. The interest in nanowire sensors in general is prompted by the expectation that nanowires of a given material covering a given surface may exhibit greater sensitivity than does a film of the same material because nanowires have a greater surface area. In preparation for experiments to demonstrate this sensor concept, sensors were fabricated by depositing gold nanowires, variously, on microhotplate or microarray sensor substrates. In the experiments, the electrical resistances were measured while the sensors were exposed to air at a temperature of 25 C and relative humidity of about 30 percent containing mercury at various concentrations from 2 to 70 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury at ppb concentrations in room-temperature air and can be regenerated by exposure to clean flowing air at temperatures <40 C.

  16. The Electrodeposition of Lead Telluride Nanowires for Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Hillman, Peter

    The electrodeposition of PbTe nanowires for thermoelectric applications is presented in this thesis. The Pb-Te electrochemical system was investigated to determine the optimal conditions for deposition. It was found that citric acid complexed tellurium in solution shifting its reduction potential cathodically. The shift in reduction potential led to the deposition of pure PbTe without any observable excess tellurium. Nanowires of PbTe were doped p-type and n-type through the addition of thallium and indium to the plating solution. Indium-doped nanowire arrays showed a linear relation between lattice parameter and atomic percent indium confirming successful incorporation. The lattice parameter trend in thallium-doped nanowire arrays was linear only after annealing. In the case of thallium doping, thallium tellurides were formed, which upon annealing formed a solid solution with PbTe. The results of the thallium doping study led to the investigation of the Tl-Te electrochemical system. Cyclic voltammagrams were used to determine the deposition mechanism of TlTe and Tl5Te3. Thin films and nanowire arrays of these compounds were deposited. This was the first study of the electrochemical Tl-Te system and the first report of the electrodeposition of TlTe and Tl5Te3. Thermoelectric measurements were conducted on thin films and nanowire arrays of PbTe. The Seebeck coefficient and resistivity of PbTe thin film were measured. Results from thin films were complicated by the Pt substrate on which PbTe was deposited. Subtracting the effects of the Pt layer suggested PbTe thin films could have a large zT, however further work is needed to confirm this result. Resistivity measurements on nanowire arrays were also conducted. Despite efforts to minimize the oxidation of PbTe nanowires, good electrical contacts could not be created. The resistivity of nanowire arrays were orders of magnitude higher than expected. As a result of their low conductivity, the thermoelectric efficiency

  17. Templated Synthesis of Uniform Perovskite Nanowire Arrays.

    PubMed

    Ashley, Michael J; O'Brien, Matthew N; Hedderick, Konrad R; Mason, Jarad A; Ross, Michael B; Mirkin, Chad A

    2016-08-17

    While the chemical composition of semiconducting metal halide perovskites can be precisely controlled in thin films for photovoltaic devices, the synthesis of perovskite nanostructures with tunable dimensions and composition has not been realized. Here, we describe the templated synthesis of uniform perovskite nanowires with controlled diameter (50-200 nm). Importantly, by providing three examples (CH3NH3PbI3, CH3NH3PbBr3, and Cs2SnI6), we show that this process is composition general and results in oriented nanowire arrays on transparent conductive substrates. PMID:27501464

  18. Electron beam irradiated silver nanowires for a highly transparent heater

    PubMed Central

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-01-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters. PMID:26639760

  19. Electron beam irradiated silver nanowires for a highly transparent heater

    NASA Astrophysics Data System (ADS)

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-12-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters.

  20. Fabrication of graphitic nanowire structure by electron beam lithography

    NASA Astrophysics Data System (ADS)

    Takai, Kazuyuki; Enoki, Toshiaki

    2007-12-01

    The graphitic nanowire structure was fabricated by local graphitization induced by direct electron-beam irradiation or the annealing treatment of wire-shaped nano-sized pattern, where glassy carbon film was used as the precursor materials. The direct irradiation of the 50 keV electron beam hardly causes the local graphitization of the sample, while the annealing of nanowire-patterned glassy carbon with 50 nm width successfully gives graphitic nanowire structure. The electrical conductivity of the fabricated nanowire structure shows metallic temperature dependence. However, the graphitic domain size of the wire was found to be very small (ca. 5 nm) by using Raman spectroscopy and the magnetoresistance. Higher temperature annealing is expected to improve the crystallinity of the graphitic nanowire.

  1. Fabrication of multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-05-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  2. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates

    NASA Astrophysics Data System (ADS)

    Mebed, A. M.; Abd-Elnaiem, Alaa M.; Al-Hosiny, Najm M.

    2016-06-01

    Mechanically stable nickel (Ni) nanowires array and nanowires network were synthesized by pulse electrochemical deposition using 2D and 3D porous anodic alumina (PAA) templates. The structures and morphologies of as-prepared films were characterized by X-ray diffraction and scanning electron microscopy, respectively. The grown Ni nanowire using 3D PAA revealed more strength and larger surface area than has grown Ni use 2D PAA template. The prepared nanowires have a face-centered cubic crystal structure with average grain size 15 nm, and the preferred orientation of the nucleation of the nanowires is (111). The diameter of the nanowires is about 50-70 nm with length 3 µm. The resulting 3D Ni nanowire lattice, which provides enhanced mechanical stability and an increased surface area, benefits energy storage and many other applications which utilize the large surface area.

  3. Direct electrical transport measurement on a single thermoelectric nanowire embedded in an alumina template.

    PubMed

    Ben Khedim, Meriam; Cagnon, Laurent; Garagnon, Christophe; Serradeil, Valerie; Bourgault, Daniel

    2016-04-28

    Electrical conductivity is a key parameter to increase the performance of thermoelectric materials. However, the measurement of such performance remains complex for 1D structures, involving tedious processing. In this study, we present a non-destructive, rapid and easy approach for the characterization of electrical conductivity of Bi2Te3 based single nanowires. By controlling the nanowire overgrowth, each nanowire emerges in the form of a micrometric hemisphere constituting a unique contact zone for direct nanoprobing. As nanowires need no preliminary preparation and remain in their template during measurement, we avoid oxidation effects and time-consuming processing. Electrical transport results show a low nanowire resistivity for compact nanowires obtained at low overpotential. Such values are comparable to bulk materials and thin films. This method not only confirmed its reliability, but it could also be adopted for other semiconducting or metallic electrodeposited nanowires. PMID:27086560

  4. Microchip for the Measurement of Seebeck Coefficients of Single Nanowires

    NASA Astrophysics Data System (ADS)

    Völklein, F.; Schmitt, M.; Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.

    2009-07-01

    Bismuth nanowires were electrochemically grown in ion track-etched polycarbonate membranes. Micromachining and microlithography were employed to realize a newly developed microchip for Seebeck coefficient measurements on individual nanowires. By anisotropic etching of a (100) Si wafer, an 800-nm-thick SiO2/Si3N4 membrane was prepared in the chip center. The low thermal conductivity of the membrane is crucial to obtain the required temperature difference Δ T along the nanowire. The wire is electrically contacted to thin metal pads which are patterned by a new method of microscopic exposure of photoresist and a lift-off process. A Δ T between the two pairs of contact pads, located on the membrane, is established by a thin-film heater. Applying the known Seebeck coefficient of a reference film, the temperature difference at this gap is determined. Using Δ T and the measured Seebeck voltage U of the nanowire, its Seebeck coefficient can be calculated.

  5. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method

    SciTech Connect

    Lin, Jian-Yang; Hsueh, Yu-Lee; Huang, Jung-Jie

    2014-06-01

    Silver nanowires were synthesized by the polyol method employing ethylene glycol, Poly(N-vinylpyrrolidone) (PVP) and silver nitrate (AgNO{sub 3}) as the precursors. Most of the studies used metal salts (PtCl{sub 2}, NaCl) as seed precursor to synthesize the silver nanowires. In the study, the metal salts were not used and the concentration of capping agent was changed to observe the aspect ratio of silver nanowires. The experimental results showed that controlling synthesis temperature, Poly(N-vinylpyrrolidone) (PVP) molecular weight, reactant concentrations, and addition rates of AgNO{sub 3} affects the growth characteristics of silver nanowires. Field-emission scanning electron microscopy, UV–vis spectrophotometry, and X-ray diffractometry were employed to characterize the silver nanowires. As increasing the concentration of PVP, the silver nanowire diameter widened and resulted in a smaller aspect ratio. We successfully prepared silver nanowires (diameter: 170 nm, length: 20 μm). The silver nanowire thin film suspension showed high transmittance, low sheet resistance, and may be used for transparent conductive film applications. - Graphical abstract: The FE-SEM image shows that nanostructures with considerable quantities of silver nanowires can also be produced when the PVP (Mw=360 K)/AgNO{sub 3} molar ratio was 2.5. - Highlights: • The polyol method was used to synthesize of silver nanowire. • The metal seed precursors were not used before synthesizing the silver nanowires. • The silver nanowire diameter and length was 170 nm and 20 μm, respectively. • Silver nanowire film with high transmittance (>85%) and low sheet resistance (<110 Ω/sq)

  6. Polypyrrole nanowire-based enzymatic biofuel cells.

    PubMed

    Kim, Jihun; Kim, Sung In; Yoo, Kyung-Hwa

    2009-10-15

    Glucose/O(2) biofuel cells with an improved power density were developed, using polypyrrole (PPy) nanowires containing glucose oxidase and 8-hydroxyquinoline-5-sulfonic acid hydrate as an anode. The PPy nanowire anode was made by electropolymerizing within the nanopores of an anodized aluminum oxide (AAO) template, and then dissolving the AAO template. The nanowire-type biofuel cell exhibited a higher power density than the film-type biofuel cell by two orders of magnitude; this was likely due to an increase in surface area and enzyme loading. Additionally, we constructed a glucose/O(2) biofuel cell covered with a fluidic channel. Biofuel cells with and without a fluidic channel had comparable performance, demonstrating the feasibility of integrated biofuel cells within a fluidic cell.

  7. Silicon Nanowire Devices

    NASA Astrophysics Data System (ADS)

    Kamins, Theodore

    2006-03-01

    Metal-catalyzed, self-assembled, one-dimensional semiconductor nanowires are being considered as possible device elements to augment and supplant conventional electronics and to extend the use of CMOS beyond the physical and economic limits of conventional technology. Such nanowires can create nanostructures without the complexity and cost of extremely fine scale lithography. The well-known and controllable properties of silicon make silicon nanowires especially attractive. Easy integration with conventional electronics will aid their acceptance and incorporation. For example, connections can be formed to both ends of a nanowire by growing it laterally from a vertical surface formed by etching the top silicon layer of a silicon-on-insulator structure into isolated electrodes. Field-effect structures are one class of devices that can be readily built in silicon nanowires. Because the ratio of surface to volume in a thin nanowire is high, conduction through the nanowire is very sensitive to surface conditions, making it effective as the channel of a field-effect transistor or as the transducing element of a gas or chemical sensor. As the nanowire diameter decreases, a greater fraction of the mobile charge can be modulated by a given external charge, increasing the sensitivity. Having the gate of a nanowire transistor completely surround the nanowire also enhances the sensitivity. For a field-effect sensor to be effective, the charge must be physically close to the nanowire so that the majority of the compensating charge is induced in the nanowire and so that ions in solution do not screen the charge. Because only induced charge is being sensed, a coating that selectively binds the target species should be added to the nanowire surface to distinguish between different species in the analyte. The nanowire work at Hewlett-Packard Laboratories was supported in part by the Defense Advanced Research Projects Agency.

  8. Defect-free thin InAs nanowires grown using molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2016-01-21

    In this study, we designed a simple method to achieve the growth of defect-free thin InAs nanowires with a lateral dimension well below their Bohr radius on different substrate orientations. By depositing and annealing a thin layer of Au thin film on a (100) substrate surface, we have achieved the growth of defect-free uniform-sized thin InAs nanowires. This study provides a strategy to achieve the growth of pure defect-free thin nanowires.

  9. Nanowire-templated lateral epitaxial growth of non-polar group III nitrides

    DOEpatents

    Wang, George T.; Li, Qiming; Creighton, J. Randall

    2010-03-02

    A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.

  10. FDTD modeling of solar energy absorption in silicon branched nanowires.

    PubMed

    Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen

    2013-05-01

    Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.

  11. Electronic band structure calculations of bismuth-antimony nanowires

    NASA Astrophysics Data System (ADS)

    Levin, Andrei; Dresselhaus, Mildred

    2012-02-01

    Alloys of bismuth and antimony received initial interest due to their unmatched low-temperature thermoelectric performance, and have drawn more recent attention as the first 3D topological insulators. One-dimensional bismuth-antimony (BiSb) nanowires display interesting quantum confinement effects, and are expected to exhibit even better thermoelectric properties than bulk BiSb. Due to the small, anisotropic carrier effective masses, the electronic properties of BiSb nanowires show great sensitivity to nanowire diameter, crystalline orientation, and alloy composition. We develop a theoretical model for calculating the band structure of BiSb nanowires. For a given crystalline orientation, BiSb nanowires can be in the semimetallic, direct semiconducting, or indirect semiconducting phase, depending on nanowire diameter and alloy composition. These ``phase diagrams'' turn out to be remarkably similar among the different orientations, which is surprising in light of the anisotropy of the bulk BiSb Fermi surface. We predict a novel direct semiconducting phase for nanowires with diameter less than ˜15 nm, over a narrow composition range. We also find that, in contrast to the bulk and thin film BiSb cases, a gapless state with Dirac dispersion cannot be realized in BiSb nanowires.

  12. Silicon nanowires: Growth, transport and device physics

    NASA Astrophysics Data System (ADS)

    Garnett, Erik Christian

    2009-11-01

    Silicon is the second most abundant element in the earth's crust and has been the backbone of the information technology revolution. It is the most well-studied material in all of solid-state chemistry and physics and has been used to make a variety of devices including transistors, resonators, and solar cells. Nanowires could provide advantages over bulk silicon; however, there are many fundamental challenges that must be overcome in order to use them in high-performance, reproducible devices. The first chapter of this dissertation gives an introduction to nanoscience with an emphasis on the working principles of the nanowire devices that are discussed later and the problems that face nanowire implementation. Chapter two demonstrates that platinum nanoparticles can be substituted for gold as the nanowire growth catalyst without sacrificing crystalline quality, epitaxial growth or electrical properties. Replacing gold with a clean-room compatible material such as platinum is important to allow for nanowire integration into microfabricated devices. Chapter three focuses on making horizontal surround-gate field effect transistors for capacitance-voltage measurements. These devices are used to extract the dopant profile and density of interface states from individual nanowires, showing results consistent with planar control samples and simulations. The results are encouraging because they suggest low surface recombination velocities (similar to bulk planar wafers) should be possible as long as the nanowire surface is smooth and well-faceted. Chapter four demonstrates two low-cost, scalable methods for fabricating silicon nanowire photovoltaics. Because of the rough surface induced by the electroless etching process and the poor junction quality from the nanocrystalline chemical vapor deposition film, the efficiency of cells made with the first approach is relatively low at about 0.5%. The second approach, using an assembly of silica beads, deep reactive ion etching

  13. Preparation and characterization of electrodeposited cobalt nanowires

    NASA Astrophysics Data System (ADS)

    Irshad, M. I.; Ahmad, F.; Mohamed, N. M.; Abdullah, M. Z.

    2014-10-01

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl2˙6H 2 O salt solution was used, which was buffered with H3BO3 and acidified by dilute H2SO4 to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.

  14. Preparation and characterization of electrodeposited cobalt nanowires

    SciTech Connect

    Irshad, M. I. Mohamed, N. M.; Ahmad, F. Abdullah, M. Z.

    2014-10-24

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl{sub 2}Ðœ‡6H2O salt solution was used, which was buffered with H{sub 3}BO{sub 3} and acidified by dilute H{sub 2}SO{sub 4} to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.

  15. Growth Mechanism of Nanowires: Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Hopkins, R. H.; Su, Ching Hua; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    In the past two decades there has been a large rise in the investment and expectations for nanotechnology use. Almost every area of research has projected improvements in sensors, or even a promise for the emergence of some novel device technologies. For these applications major focuses of research are in the areas of nanoparticles and graphene. Although there are some near term applications with nanowires in photodetectors and other low light detectors, there are few papers on the growth mechanism and fabrication of nanowire-based devices. Semiconductor nanowires exhibit very favorable and promising optical properties, including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here an overview of the mechanism of nanowire growth from the melt, and some preliminary results for the thallium arsenic selenide material system. Thallium arsenic selenide (TAS) is a multifunctional material combining excellent acousto-optical, nonlinear and radiation detection properties. We observed that small units of (TAS) nanocubes arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. In some cases very long wires (less than mm) are formed. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places.

  16. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    SciTech Connect

    Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.; Sodano, Henry A.

    2015-06-01

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.

  17. Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity.

    PubMed

    Cho, Boram; Park, Kyung S; Baek, Jangmi; Oh, Hyun S; Koo Lee, Yong-Eun; Sung, Myung M

    2014-06-11

    We developed single-crystal poly(3,4-ethylenedioxythiopene) (PEDOT) nanowires with ultrahigh conductivity using liquid-bridge-mediated nanotransfer printing with vapor phase polymerization. The single-crystal PEDOT nanowires are formed from 3,4-ethylenedioxythiophene (EDOT) monomers that are self-assembled and crystallized during vapor phase polymerization process within nanoscale channels of a mold having FeCl3 catalysts. These PEDOT nanowires, aligned according to the pattern in the mold, are then directly transferred to specific positions on a substrate to generate a nanowire array by a direct printing process. The PEDOT nanowires have closely packed single-crystalline structures with orthorhombic lattice units. The conductivity of the single-crystal PEDOT nanowires is an average of 7619 S/cm with the highest up to 8797 S/cm which remarkably exceeds literature values of PEDOT nanostructures/thin films. Such distinct conductivity enhancement of single-crystal PEDOT nanowires can be attributed to improved carrier mobility in PEDOT nanowires. To demonstrate usefulness of single-crystal PEDOT nanowires, we fabricated an organic nanowire field-effect transistor array contacting the ultrahigh conductive PEDOT nanowires as metal electrodes.

  18. From nanodiamond to nanowires.

    SciTech Connect

    Barnard, A.; Materials Science Division

    2005-01-01

    Recent advances in the fabrication and characterization of semiconductor and metallic nanowires are proving very successful in meeting the high expectations of nanotechnologists. Although the nanoscience surrounding sp{sup 3} bonded carbon nanotubes has continued to flourish over recent years the successful synthesis of the sp{sup 3} analogue, diamond nanowires, has been limited. This prompts questions as to whether diamond nanowires are fundamentally unstable. By applying knowledge obtained from examining the structural transformations in nanodiamond, a framework for analyzing the structure and stability of diamond nanowires may be established. One possible framework will be discussed here, supported by results of ab initio density functional theory calculations used to study the structural relaxation of nanodiamond and diamond nanowires. The results show that the structural stability and electronic properties of diamond nanowires are dependent on the surface morphology, crystallographic direction of the principal axis, and the degree of surface hydrogenation.

  19. Multicolored Vertical Silicon Nanowires

    SciTech Connect

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  20. Elastic properties of nanowires

    NASA Astrophysics Data System (ADS)

    da Fonseca, Alexandre F.; Malta, C. P.; Galva~O, Douglas S.

    2006-05-01

    We present a model to study Young's modulus and Poisson's ratio of the composite material of amorphous nanowires. It is an extension of the model derived by two of us [da Fonseca and Galva~o, Phys. Rev. Lett. 92, 175502 (2004)] to study the elastic properties of amorphous nanosprings. The model is based on twisting and tensioning a straight nanowire and we propose an experimental setup to obtain the elastic parameters of the nanowire. We used the Kirchhoff rod model to obtain the expressions for the elastic constants of the nanowire.

  1. Nanowire-Based Electrode for Acute In Vivo Neural Recordings in the Brain

    PubMed Central

    Suyatin, Dmitry B.; Wallman, Lars; Thelin, Jonas; Prinz, Christelle N.; Jörntell, Henrik; Samuelson, Lars; Montelius, Lars; Schouenborg, Jens

    2013-01-01

    We present an electrode, based on structurally controlled nanowires, as a first step towards developing a useful nanostructured device for neurophysiological measurements in vivo. The sensing part of the electrode is made of a metal film deposited on top of an array of epitaxially grown gallium phosphide nanowires. We achieved the first functional testing of the nanowire-based electrode by performing acute in vivo recordings in the rat cerebral cortex and withstanding multiple brain implantations. Due to the controllable geometry of the nanowires, this type of electrode can be used as a model system for further analysis of the functional properties of nanostructured neuronal interfaces in vivo. PMID:23431387

  2. Bi nanowire-based thermal biosensor for the detection of salivary cortisol using the Thomson effect

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Hyun Lee, Jung; Kim, MinGin; Kim, Jeongmin; Song, Min-Jung; Jung, Hyo-Il; Lee, Wooyoung

    2013-09-01

    We present a study of a thermal biosensor based on bismuth nanowire that is fabricated for the detection of the human stress hormone cortisol using the Thomson effect. The Bi nanowire was grown using the On-Film Formation of Nanowires (OFF-ON) method. The thermal device was fabricated using photolithography, and the sensing area was modified with immobilized anti-cortisol antibodies conjugated with protein G for the detection of cortisol. The voltages were measured with two probe tips during surface modification to investigate the biochemical reactions in the fabricated thermal biosensor. The Bi nanowire-based thermal biosensor exhibited low detection limit and good selectivity for the detection of cortisol.

  3. Superlattice nanowire pattern transfer (SNAP).

    PubMed

    Heath, James R

    2008-12-01

    During the past 15 years or so, nanowires (NWs) have emerged as a new and distinct class of materials. Their novel structural and physical properties separate them from wires that can be prepared using the standard methods for manufacturing electronics. NW-based applications that range from traditional electronic devices (logic and memory) to novel biomolecular and chemical sensors, thermoelectric materials, and optoelectronic devices, all have appeared during the past few years. From a fundamental perspective, NWs provide a route toward the investigation of new physics in confined dimensions. Perhaps the most familiar fabrication method is the vapor-liquid-solid (VLS) growth technique, which produces semiconductor nanowires as bulk materials. However, other fabrication methods exist and have their own advantages. In this Account, I review a particular class of NWs produced by an alternative method called superlattice nanowire pattern transfer (SNAP). The SNAP method is distinct from other nanowire preparation methods in several ways. It can produce large NW arrays from virtually any thin-film material, including metals, insulators, and semiconductors. The dimensions of the NWs can be controlled with near-atomic precision, and NW widths and spacings can be as small as a few nanometers. In addition, SNAP is almost fully compatible with more traditional methods for manufacturing electronics. The motivation behind the development of SNAP was to have a general nanofabrication method for preparing electronics-grade circuitry, but one that would operate at macromolecular dimensions and with access to a broad materials set. Thus, electronics applications, including novel demultiplexing architectures; large-scale, ultrahigh-density memory circuits; and complementary symmetry nanowire logic circuits, have served as drivers for developing various aspects of the SNAP method. Some of that work is reviewed here. As the SNAP method has evolved into a robust nanofabrication

  4. Superlattice nanowire pattern transfer (SNAP).

    PubMed

    Heath, James R

    2008-12-01

    During the past 15 years or so, nanowires (NWs) have emerged as a new and distinct class of materials. Their novel structural and physical properties separate them from wires that can be prepared using the standard methods for manufacturing electronics. NW-based applications that range from traditional electronic devices (logic and memory) to novel biomolecular and chemical sensors, thermoelectric materials, and optoelectronic devices, all have appeared during the past few years. From a fundamental perspective, NWs provide a route toward the investigation of new physics in confined dimensions. Perhaps the most familiar fabrication method is the vapor-liquid-solid (VLS) growth technique, which produces semiconductor nanowires as bulk materials. However, other fabrication methods exist and have their own advantages. In this Account, I review a particular class of NWs produced by an alternative method called superlattice nanowire pattern transfer (SNAP). The SNAP method is distinct from other nanowire preparation methods in several ways. It can produce large NW arrays from virtually any thin-film material, including metals, insulators, and semiconductors. The dimensions of the NWs can be controlled with near-atomic precision, and NW widths and spacings can be as small as a few nanometers. In addition, SNAP is almost fully compatible with more traditional methods for manufacturing electronics. The motivation behind the development of SNAP was to have a general nanofabrication method for preparing electronics-grade circuitry, but one that would operate at macromolecular dimensions and with access to a broad materials set. Thus, electronics applications, including novel demultiplexing architectures; large-scale, ultrahigh-density memory circuits; and complementary symmetry nanowire logic circuits, have served as drivers for developing various aspects of the SNAP method. Some of that work is reviewed here. As the SNAP method has evolved into a robust nanofabrication

  5. Development of palladium nanowires

    NASA Astrophysics Data System (ADS)

    Cheng, Chuanding

    Inherent limitations of traditional lithography have prompted the search for means of achieving self-assembly of nano-scale structures and networks for the next generation of electronic and photonic devices. The nanowire, the basic building block of a nanocircuit, has recently become the focus of intense research. Reports on nanowire synthesis and assembly have appeared in the scientific literature, which include Vapor-Liquid-Solid mechanism, template-based electrochemical fabrication, solvothermal or wet chemistry, and assembly by fluid alignment or microchannel networks. An ideal approach for practical application of nanowires would circumvent technical and economic constraints of templating. Here we report on the self-assembly of highly-ordered metallic nanowires directly from a palladium acetate solution under an applied alternating current (AC) electric field of relatively high intensity and frequency. DNA-templated nanowires are first presented here. DNA molecules were stretched and positioned by electric field, followed by metallization by palladium acetate solution. Palladium nanowire arrays have been found to grow directly between microelectrodes without any template, under an alternating electric field of relatively high intensity and frequency. The wires grew spontaneously along the direction of the electric field and have high uniformity and conductivity. Single 75 nm-diameter palladium nanowires have also been self-assembled from aqueous solution at predefined locations between 15 mum-gap electrodes built on a SiO2 substrate. Nanowire assembly was initiated by application an electric field, and it occurred only along the direction of field lines where the field is strongest. Related metals did not support single nanowire assembly under comparable conditions. Current-limiting circuits for controlled nanowire synthesis, electric field simulation, and growth mechanism were studied. The simple and straightforward approach to nanowire assembly outlined here

  6. Anomalous Long-Range Proximity Effect in Template-Fabricated Single-Crystal Superconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Wenhao; Liu, Haidong; Ye, Zuxin; Luo, Zhiping; Rathnayaka, K. D. D.

    2008-03-01

    We report an anomalous proximity effect observed in single-crystal nanowires of Zn, Sn, and Pb of length up to 60 μm. These nanowires were electrochemically deposited into the pores of anodic aluminum oxide membranes and polycarbonate membranes. Using an in situ self-contacting method, single nanowires were electrically contacted on both ends to a pair of macroscopic film electrodes of Au, Sn, and Pb pre-fabricated on both surfaces of the membranes. We observed that superconductivity in the nanowires was strongly suppressed when Au electrodes were used. When superconducting electrodes with higher transition temperatures were used, the nanowires became superconducting at the transition temperatures of the electrodes. We will present measurements of the sample resistance and the I-V characteristics at various temperatures and magnetic fields. Scanning electron microscopy and transmission electron microscopy analyses of the structure and the composition of the nanowires will also be presented.

  7. Hydrogen gas sensing with networks of ultra-small palladium nanowires formed on filtration membranes.

    SciTech Connect

    Zeng, X. Q.; Latimer, M. L.; Xiao, Z. L.; Panuganti, S.; Welp, U.; Kwok, W. K.; Xu, T.

    2010-11-29

    Hydrogen sensors based on single Pd nanowires show promising results in speed, sensitivity, and ultralow power consumption. The utilization of single Pd nanowires, however, face challenges in nanofabrication, manipulation, and achieving ultrasmall transverse dimensions. We report on hydrogen sensors that take advantage of single palladium nanowires in high speed and sensitivity and that can be fabricated conveniently. The sensors are based on networks of ultrasmall (<10 nm) palladium nanowires deposited onto commercially available filtration membranes. We investigated the sensitivities and response times of these sensors as a function of the thickness of the nanowires and also compared them with a continuous reference film. The superior performance of the ultrasmall Pd nanowire network based sensors demonstrates the novelty of our fabrication approach, which can be directly applied to palladium alloy and other hydrogen sensing materials.

  8. Hydrogen gas sensing with networks of ultrasmall palladium nanowires formed on filtration membranes.

    PubMed

    Zeng, X Q; Latimer, M L; Xiao, Z L; Panuganti, S; Welp, U; Kwok, W K; Xu, T

    2011-01-12

    Hydrogen sensors based on single Pd nanowires show promising results in speed, sensitivity, and ultralow power consumption. The utilization of single Pd nanowires, however, face challenges in nanofabrication, manipulation, and achieving ultrasmall transverse dimensions. We report on hydrogen sensors that take advantage of single palladium nanowires in high speed and sensitivity and that can be fabricated conveniently. The sensors are based on networks of ultrasmall (<10 nm) palladium nanowires deposited onto commercially available filtration membranes. We investigated the sensitivities and response times of these sensors as a function of the thickness of the nanowires and also compared them with a continuous reference film. The superior performance of the ultrasmall Pd nanowire network based sensors demonstrates the novelty of our fabrication approach, which can be directly applied to palladium alloy and other hydrogen sensing materials.

  9. Structural characterization of nanowires and nanowire arrays

    NASA Astrophysics Data System (ADS)

    Becker, Catherine Rose

    Nanowires, which have diameter less than a few hundred nanometers and high aspect ratios, may have the same properties as their corresponding bulk materials, or may exhibit unique properties due to their confined dimensions and increased surface to volume ratios. They are a popular field of technological investigation in applications that depend on the transport of charge carriers, because of expectations that microcircuit miniaturization will lead to the next boom in the electronics industry. In this work, the high spatial resolution afforded by transmission electron microscopy (TEM) is used to study nanowires formed by electrochemical deposition into porous alumina templates. The goal is to determine the effect of the synthesis and subsequent processing on the microstructure and crystallinity of the wires. A thorough understanding of the microstructural features of a material is vital for optimizing its performance in a desired application. Two material systems were studied in this work. The first is bismuth telluride (Bi 2Te3), which is used in thermoelectric applications. The second is metallic copper, the electrochemical deposition of which is of interest for interconnects in semiconductor devices. The first part of this work utilized TEM to obtain a thorough characterization of the microstructural features of individual Bi2Te3 nanowires following release from the templates. As deposited, the nanowires are fine grained and exhibit significant lattice strain. Annealing increases the grain size and dislocations are created to accommodate the lattice strain. The degree of these microstructural changes depends on the thermal treatment. However, no differences were seen in the nanowire microstructure as a function of the synthetic parameters. The second part of this work utilized a modified dark field TEM technique in order to obtain a spatially resolved, semi-quantitative understanding of the evolution of preferred orientation as a function of the electrochemical

  10. Nanocrystalline nanowires: I. Structure.

    PubMed

    Allen, Philip B

    2007-01-01

    Geometric constructions of possible atomic arrangements are suggested for inorganic nanowires. These are fragments of bulk crystals, and can be called "nanocrystalline" nanowires (NCNW). To minimize surface polarity, nearly one-dimensional formula units, oriented along the growth axis, generate NCNWs by translation and rotation.

  11. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  12. Nanowire Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  13. Electrodeposition of platinum-iridium alloy nanowires for hermetic packaging of microelectronics.

    PubMed

    Petrossians, Artin; Whalen, John J; Weiland, James D; Mansfeld, Florian

    2012-01-01

    An electrodeposition technique was applied for fabrication of dense platinum-iridium alloy nanowires as interconnect structures in hermetic microelectronic packaging to be used in implantable devices. Vertically aligned arrays of platinum-iridium alloy nanowires with controllable length and a diameter of about 200 nm were fabricated using a cyclic potential technique from a novel electrodeposition bath in nanoporous aluminum oxide templates. Ti/Au thin films were sputter deposited on one side of the alumina membranes to form a base material for electrodeposition. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to characterize the morphology and the chemical composition of the nanowires, respectively. SEM micrographs revealed that the electrodeposited nanowires have dense and compact structures. EDS analysis showed a 60:40% platinum-iridium nanowire composition. Deposition rates were estimated by determining nanowire length as a function of deposition time. High Resolution Transmission Electron Microscopy (HRTEM) images revealed that the nanowires have a nanocrystalline structure with grain sizes ranging from 3 nm to 5 nm. Helium leak tests performed using a helium leak detector showed leak rates as low as 1 × 10(-11) mbar L s(-1) indicating that dense nanowires were electrodeposited inside the nanoporous membranes. Comparison of electrical measurements on platinum and platinum-iridium nanowires revealed that platinum-iridium nanowires have improved electrical conductivity.

  14. Control of the micrometric scale morphology of silicon nanowires through ion irradiation-induced metal dewetting

    NASA Astrophysics Data System (ADS)

    Lo Savio, R.; Repetto, L.; Guida, P.; Angeli, E.; Firpo, G.; Volpe, A.; Ierardi, V.; Valbusa, U.

    2016-08-01

    We propose ion-induced dewetting of Au thin films as a mechanism to modify and control the morphology of Si nanowires formed through metal-assisted chemical etching. We show that the patterns formed upon irradiation resemble those typical of dewetting phenomena, with a characteristic length in the nanometer range. Irradiated Au films are then used as a template for the fabrication of Si nanowires, and we show that a long-range order exists also in etched substrates, although at much longer length scales in the micrometer range. Investigation of the optical properties reveals that the Si nanowires emit broadband photoluminescence peaked at 700 nm. The proposed synthesis method allows tuning the morphological features of the nanowire bundles at the nanoscale without affecting the optical properties. This approach can be exploited for the engineering of nanowires-based devices where the morphological features become important.

  15. Semiconductor nanowire lasers

    NASA Astrophysics Data System (ADS)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  16. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode

    NASA Astrophysics Data System (ADS)

    Jiang, C. Y.; Sun, X. W.; Tan, K. W.; Lo, G. Q.; Kyaw, A. K. K.; Kwong, D. L.

    2008-04-01

    We report a high-bendability flexible dye-sensitized solar cell (DSSC) based on a ZnO-nanowire photoelectrode, which was fabricated on polyethylene terephtalate/indium tin oxide substrate by low-temperature hydrothermal growth. Nanowire morphology shows preferable in crack resistance due to its efficient release of bending stress. The ZnO-nanowire film can be bended to an extreme radius of 2mm with no crack observed. Flexible DSSCs based on this kind of ZnO-nanowire photoelectrodes showed good bending stability. With a ZnO-nanoparticle modification on the nanowires, the flexible DSSC fabricated showed a much improved power conversion efficiency. Meanwhile, the good bendablility of this nanoparticle-modified nanowire electrode is maintained. The results demonstrate that high quality ZnO nanowires fabricated by the low-temperature method is promising for efficient and flexible plastic solar cells.

  17. A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor

    PubMed Central

    Asres, Georgies Alene; Dombovari, Aron; Sipola, Teemu; Puskás, Robert; Kukovecz, Akos; Kónya, Zoltán; Popov, Alexey; Lin, Jhih-Fong; Lorite, Gabriela S.; Mohl, Melinda; Toth, Geza; Lloyd Spetz, Anita; Kordas, Krisztian

    2016-01-01

    In this work, WS2 nanowire-nanoflake hybrids are synthesized by the sulfurization of hydrothermally grown WO3 nanowires. The influence of temperature on the formation of products is optimized to grow WS2 nanowires covered with nanoflakes. Current-voltage and resistance-temperature measurements carried out on random networks of the nanostructures show nonlinear characteristics and negative temperature coefficient of resistance indicating that the hybrids are of semiconducting nature. Bottom gated field effect transistor structures based on random networks of the hybrids show only minor modulation of the channel conductance upon applied gate voltage, which indicates poor electrical transport between the nanowires in the random films. On the other hand, the photo response of channel current holds promise for cost-efficient solution process fabrication of photodetector devices working in the visible spectral range. PMID:27180902

  18. A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor

    NASA Astrophysics Data System (ADS)

    Asres, Georgies Alene; Dombovari, Aron; Sipola, Teemu; Puskás, Robert; Kukovecz, Akos; Kónya, Zoltán; Popov, Alexey; Lin, Jhih-Fong; Lorite, Gabriela S.; Mohl, Melinda; Toth, Geza; Lloyd Spetz, Anita; Kordas, Krisztian

    2016-05-01

    In this work, WS2 nanowire-nanoflake hybrids are synthesized by the sulfurization of hydrothermally grown WO3 nanowires. The influence of temperature on the formation of products is optimized to grow WS2 nanowires covered with nanoflakes. Current-voltage and resistance-temperature measurements carried out on random networks of the nanostructures show nonlinear characteristics and negative temperature coefficient of resistance indicating that the hybrids are of semiconducting nature. Bottom gated field effect transistor structures based on random networks of the hybrids show only minor modulation of the channel conductance upon applied gate voltage, which indicates poor electrical transport between the nanowires in the random films. On the other hand, the photo response of channel current holds promise for cost-efficient solution process fabrication of photodetector devices working in the visible spectral range.

  19. Spatially controlled growth of highly crystalline ZnO nanowires by an inkjet-printing catalyst-free method

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Khachadorian, Sevak; Zamani, Reza R.; Franke, Alexander; Hoffmann, Axel; Wagner, Markus R.; Santana, Guillermo

    2016-02-01

    High-density arrays of uniform ZnO nanowires with a high-crystal quality have been synthesized by a catalyst-free vapor-transport method. First, a thin ZnO film was deposited on a Si substrate as nucleation layer for the ZnO nanowires. Second, spatially selective and mask-less growth of ZnO nanowires was achieved using inkjet-printed patterned islands as the nucleation sites on a SiO2/Si substrate. Raman scattering and low temperature photoluminescence measurements were applied to characterize the structural and optical properties of the ZnO nanowires. The results reveal negligible amounts of strain and defects in the mask-less ZnO nanowires as compared to the ones grown on the ZnO thin film, which underlines the potential of the inkjet-printing approach for the growth of high-crystal quality ZnO nanowires.

  20. Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures

    PubMed Central

    2013-01-01

    Large-scale vertically aligned ZnO nanowires with high crystal qualities were fabricated on thin graphene oxide films via a low temperature hydrothermal method. Room temperature photoluminescence results show that the ultraviolet emission of nanowires grown on graphene oxide films was greatly enhanced and the defect-related visible emission was suppressed, which can be attributed to the improved crystal quality and possible electron transfer between ZnO and graphene oxide. Electrochemical property measurement results demonstrated that the ZnO nanowires/graphene oxide have large integral area of cyclic voltammetry loop, indicating that such heterostructure is promising for application in supercapacitors. PMID:23522184

  1. Vertical Ge/Si Core/Shell Nanowire Junctionless Transistor.

    PubMed

    Chen, Lin; Cai, Fuxi; Otuonye, Ugo; Lu, Wei D

    2016-01-13

    Vertical junctionless transistors with a gate-all-around (GAA) structure based on Ge/Si core/shell nanowires epitaxially grown and integrated on a ⟨111⟩ Si substrate were fabricated and analyzed. Because of efficient gate coupling in the nanowire-GAA transistor structure and the high density one-dimensional hole gas formed in the Ge nanowire core, excellent P-type transistor behaviors with Ion of 750 μA/μm were obtained at a moderate gate length of 544 nm with minimal short-channel effects. The experimental data can be quantitatively modeled by a GAA junctionless transistor model with few fitting parameters, suggesting the nanowire transistors can be fabricated reliably without introducing additional factors that can degrade device performance. Devices with different gate lengths were readily obtained by tuning the thickness of an etching mask film. Analysis of the histogram of different devices yielded a single dominate peak in device parameter distribution, indicating excellent uniformity and high confidence of single nanowire operation. Using two vertical nanowire junctionless transistors, a PMOS-logic inverter with near rail-to-rail output voltage was demonstrated, and device matching in the logic can be conveniently obtained by controlling the number of nanowires employed in different devices rather than modifying device geometry. These studies show that junctionless transistors based on vertical Ge/Si core/shell nanowires can be fabricated in a controlled fashion with excellent performance and may be used in future hybrid, high-performance circuits where bottom-up grown nanowire devices with different functionalities can be directly integrated with an existing Si platform.

  2. Vertical Ge/Si Core/Shell Nanowire Junctionless Transistor.

    PubMed

    Chen, Lin; Cai, Fuxi; Otuonye, Ugo; Lu, Wei D

    2016-01-13

    Vertical junctionless transistors with a gate-all-around (GAA) structure based on Ge/Si core/shell nanowires epitaxially grown and integrated on a ⟨111⟩ Si substrate were fabricated and analyzed. Because of efficient gate coupling in the nanowire-GAA transistor structure and the high density one-dimensional hole gas formed in the Ge nanowire core, excellent P-type transistor behaviors with Ion of 750 μA/μm were obtained at a moderate gate length of 544 nm with minimal short-channel effects. The experimental data can be quantitatively modeled by a GAA junctionless transistor model with few fitting parameters, suggesting the nanowire transistors can be fabricated reliably without introducing additional factors that can degrade device performance. Devices with different gate lengths were readily obtained by tuning the thickness of an etching mask film. Analysis of the histogram of different devices yielded a single dominate peak in device parameter distribution, indicating excellent uniformity and high confidence of single nanowire operation. Using two vertical nanowire junctionless transistors, a PMOS-logic inverter with near rail-to-rail output voltage was demonstrated, and device matching in the logic can be conveniently obtained by controlling the number of nanowires employed in different devices rather than modifying device geometry. These studies show that junctionless transistors based on vertical Ge/Si core/shell nanowires can be fabricated in a controlled fashion with excellent performance and may be used in future hybrid, high-performance circuits where bottom-up grown nanowire devices with different functionalities can be directly integrated with an existing Si platform. PMID:26674542

  3. Single conducting polymer nanowire based conductometric sensors

    NASA Astrophysics Data System (ADS)

    Bangar, Mangesh Ashok

    The detection of toxic chemicals, gases or biological agents at very low concentrations with high sensitivity and selectivity has been subject of immense interest. Sensors employing electrical signal readout as transduction mechanism offer easy, label-free detection of target analyte in real-time. Traditional thin film sensors inherently suffered through loss of sensitivity due to current shunting across the charge depleted/added region upon analyte binding to the sensor surface, due to their large cross sectional area. This limitation was overcome by use of nanostructure such as nanowire/tube as transducer where current shunting during sensing was almost eliminated. Due to their benign chemical/electrochemical fabrication route along with excellent electrical properties and biocompatibility, conducting polymers offer cost-effective alternative over other nanostructures. Biggest obstacle in using these nanostructures is lack of easy, scalable and cost-effective way of assembling these nanostructures on prefabricated micropatterns for device fabrication. In this dissertation, three different approaches have been taken to fabricate individual or array of single conducting polymer (and metal) nanowire based devices and using polymer by itself or after functionalization with appropriate recognition molecule they have been applied for gas and biochemical detection. In the first approach electrochemical fabrication of multisegmented nanowires with middle functional Ppy segment along with ferromagnetic nickel (Ni) and end gold segments for better electrical contact was studied. This multi-layered nanowires were used along with ferromagnetic contact electrode for controlled magnetic assembly of nanowires into devices and were used for ammonia gas sensing. The second approach uses conducting polymer, polypyrrole (Ppy) nanowires using simple electrophoretic alignment and maskless electrodeposition to anchor nanowire which were further functionalized with antibodies against

  4. Printing nanotube/nanowire for flexible microsystems

    NASA Astrophysics Data System (ADS)

    Tortorich, Ryan P.; Choi, Jin-Woo

    2014-04-01

    Printing has become an emerging manufacturing technology for mechanics, electronics, and consumer products. Additionally, both nanotubes and nanowires have recently been used as materials for sensors and electrodes due to their unique electrical and mechanical properties. Printed electrodes and conductive traces particularly offer versatility of fabricating low-cost, disposable, and flexible electrical devices and microsystems. While various printing methods such as screen printing have been conventional methods for printing conductive traces and electrodes, inkjet printing has recently attracted great attention due to its unique advantages including no template requirement, rapid printing at low cost, on-demand printing capability, and precise control of the printed material. Computer generated conductive traces or electrode patterns can simply be printed on a thin film substrate with proper conductive ink consisting of nanotubes or nanowires. However, in order to develop nanotube or nanowire ink, there are a few challenges that need to be addressed. The most difficult obstacle to overcome is that of nanotube/nanowire dispersion within a solution. Other challenges include adjusting surface tension and controlling viscosity of the ink as well as treating the surface of the printing substrate. In an attempt to pave the way for nanomaterial inkjet printing, we present a method for preparing carbon nanotube ink as well as its printing technique. A fully printed electrochemical sensor using inkjet-printed carbon nanotube electrodes is also demonstrated as an example of the possibilities for this technology.

  5. Polyelectrolyte multilayers impart healability to highly electrically conductive films.

    PubMed

    Li, Yang; Chen, Shanshan; Wu, Mengchun; Sun, Junqi

    2012-08-28

    Healable, electrically conductive films are fabricated by depositing Ag nanowires on water-enabled healable polyelectrolyte multilayers. The easily achieved healability of the polyelectrolyte multilayers is successfully imparted to the Ag nanowire layer. These films conveniently restore electrical conductivity lost as a result of damage by cuts several tens of micrometers wide when water is dropped on the cuts. PMID:22807199

  6. Electrical Conductivity in Transparent Silver Nanowire Networks: Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Sherrott, Michelle; Mutiso, Rose; Rathmell, Aaron; Wiley, Benjamin; Winey, Karen

    2012-02-01

    We model and experimentally measure the electrical conductivity of two-dimensional networks containing finite, conductive cylinders with aspect ratio ranging from 33 to 333. We have previously used our simulations to explore the effects of cylinder orientation and aspect ratio in three-dimensional composites, and now extend the simulation to consider two-dimensional silver nanowire networks. Preliminary results suggest that increasing the aspect ratio and area fraction of these rods significantly decreases the sheet resistance of the film. For all simulated aspect ratios, this sheet resistance approaches a constant value for high area fractions of rods. This implies that regardless of aspect ratio, there is a limiting minimum sheet resistance that is characteristic of the properties of the nanowires. Experimental data from silver nanowire networks will be incorporated into the simulations to define the contact resistance and corroborate experimentally measured sheet resistances of transparent thin films.

  7. Silver nanowire array-polymer composite as thermal interface material

    NASA Astrophysics Data System (ADS)

    Xu, Ju; Munari, Alessio; Dalton, Eric; Mathewson, Alan; Razeeb, Kafil M.

    2009-12-01

    Silver nanowire arrays embedded inside polycarbonate templates are investigated as a viable thermal interface material for electronic cooling applications. The composite shows an average thermal diffusivity value of 1.89×10-5 m2 s-1, which resulted in an intrinsic thermal conductivity of 30.3 W m-1 K-1. The nanowires' protrusion from the film surface enables it to conform to the surface roughness to make a better thermal contact. This resulted in a 61% reduction in thermal impedance when compared with blank polymer. An ˜30 nm Au film on the top of the composite was found to act as a heat spreader, reducing the thermal impedance further by 35%. A contact impedance model was employed to compare the contact impedance of aligned silver nanowire-polymer composites with that of aligned carbon nanotubes, which showed that the Young's modulus of the composite is the defining factor in the overall thermal impedance of these composites.

  8. Fabrication of highly-specific SERS substrates by co-precipitation of functional nanomaterials during the self-sedimentation of silver nanowires into a nanoporous film.

    PubMed

    Liu, Rui; Sun, Jie-fang; Cao, Dong; Zhang, Li-qiang; Liu, Jing-fu; Jiang, Gui-bin

    2015-01-25

    In this report, we propose and demonstrate the fabrication of a highly-specific SERS substrate, which was achieved by the co-precipitation of functional materials, such as nanosorbents and nanocatalysts, into Ag nanoporous films. Based on the nanostructures developed, we performed the ultrasensitive detection of arsenic ions by SERS and monitored the catalyzed reactions using real-time SERS.

  9. Microbial nanowires for bioenergy applications.

    PubMed

    Malvankar, Nikhil S; Lovley, Derek R

    2014-06-01

    Microbial nanowires are electrically conductive filaments that facilitate long-range extracellular electron transfer. The model for electron transport along Shewanella oneidensis nanowires is electron hopping/tunneling between cytochromes adorning the filaments. Geobacter sulfurreducens nanowires are comprised of pili that have metal-like conductivity attributed to overlapping pi-pi orbitals of aromatic amino acids. The nanowires of Geobacter species have been implicated in direct interspecies electron transfer (DIET), which may be an important mode of syntrophy in the conversion of organic wastes to methane. Nanowire networks confer conductivity to Geobacter biofilms converting organic compounds to electricity in microbial fuel cells (MFCs) and increasing nanowire production is the only genetic manipulation shown to yield strains with improved current-producing capabilities. Introducing nanowires, or nanowire mimetics, might improve other bioenergy strategies that rely on extracellular electron exchange, such as microbial electrosynthesis. Similarities between microbial nanowires and synthetic conducting polymers suggest additional energy-related applications.

  10. Evaporation-Induced Self-Assembly of Ultrathin Tungsten Oxide Nanowires over a Large Scale for Ultraviolet Photodetector.

    PubMed

    Cheng, Wei; Niederberger, Markus

    2016-03-15

    Self-assembly of inorganic nanowires on a large scale directly on a substrate represents a great challenge. Starting from colloidally stable dispersions of ultrathin tungsten oxide nanowires, we successfully assemble the nanowires on a centimeter scale on flat or patterned substrates by a simple evaporation-induced self-assembly method. The capillary flow generated during the evaporation is responsible for the assembly of the nanowires. The concentration of the nanowire dispersion has a significant influence on the self-assembly behavior. Well-aligned tungsten oxide nanowire thin films are achieved when the concentration of the dispersion is in the range from 0.5 to 3.0 mg/mL. While at higher concentrations disordered nanowire thin films with cracks are formed, lower concentrations do not result in the formation of a continuous thin film. A macroscopic device based on the self-assembled tungsten oxide nanowires is fabricated, exhibiting good performance for UV light detection. Our results may pave the road for integrating aligned ultrathin semiconductor nanowires into macroscopic devices for optoelectronic applications. PMID:26900019

  11. Stress induced growth of Sn nanowires in a single step by sputtering method

    SciTech Connect

    Yadav, A. Kothari, D. C.; Patel, N.; Miotello, A.

    2015-06-24

    Sn nanowires in aluminum film have been synthesized in a single step by co-sputtering of Al and Sn targets. Due to immiscibility of Sn and Al, co-sputtering leads to generation of stress in the composite film. In order to attain thermodynamic equilibrium, Sn separates from Al and diffuses towards the grain boundaries. External perturbation due to ambient atmosphere leads to corrosion at the grain boundaries forming pits which provide path for Sn to evolve. Owing to this, extrusion of Sn nanowires from Al film occurs to release the residual stress in the film.

  12. Semiconductor Nanowires: What's Next?

    SciTech Connect

    Yang, Peidong; Yan, Ruoxue; Fardy, Melissa

    2010-04-28

    In this perspective, we take a critical look at the research progress within the nanowire community for the past decade. We discuss issues on the discovery of fundamentally new phenomena versus performance benchmarking for many of the nanowire applications. We also notice that both the bottom-up and top-down approaches have played important roles in advancing our fundamental understanding of this new class of nanostructures. Finally we attempt to look into the future and offer our personal opinions on what the future trends will be in nanowire research.

  13. Directed deposition of silicon nanowires using neopentasilane as precursor and gold as catalyst.

    PubMed

    Kämpken, Britta; Wulf, Verena; Auner, Norbert; Winhold, Marcel; Huth, Michael; Rhinow, Daniel; Terfort, Andreas

    2012-01-01

    In this work the applicability of neopentasilane (Si(SiH(3))(4)) as a precursor for the formation of silicon nanowires by using gold nanoparticles as a catalyst has been explored. The growth proceeds via the formation of liquid gold/silicon alloy droplets, which excrete the silicon nanowires upon continued decomposition of the precursor. This mechanism determines the diameter of the Si nanowires. Different sources for the gold nanoparticles have been tested: the spontaneous dewetting of gold films, thermally annealed gold films, deposition of preformed gold nanoparticles, and the use of "liquid bright gold", a material historically used for the gilding of porcelain and glass. The latter does not only form gold nanoparticles when deposited as a thin film and thermally annealed, but can also be patterned by using UV irradiation, providing access to laterally structured layers of silicon nanowires.

  14. As-Grown Gallium Nitride Nanowire Electromechanical Resonators

    NASA Astrophysics Data System (ADS)

    Montague, Joshua R.

    Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size. In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values---in vacuum at room temperature---indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors. We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of

  15. Optical and field emission properties of layer-structure GaN nanowires

    SciTech Connect

    Cui, Zhen; Li, Enling; Shi, Wei; Ma, Deming

    2014-08-15

    Highlights: • The layer-structure GaN nanowires with hexagonal-shaped cross-sections are produced via a process based on the CVD method. • The diameter of the layer-structure GaN nanowire gradually decreases from ∼500 nm to ∼200 nm along the wire axis. • The layer-structure GaN nanowire film possesses good field emission property. - Abstract: A layer-structure gallium nitride (GaN) nanowires, grown on Pt-coated n-type Si (1 1 1) substrate, have been synthesized using chemical vapor deposition (CVD). The results show: (1) SEM indicates that the geometry structure is layer-structure. HRTEM indicates that GaN nanowire’s preferential growth direction is along [0 0 1] direction. (2) The room temperature PL emission spectrum of the layer-structure GaN nanowires has a peak at 375 nm, which proves that GaN nanowires have potential application in light-emitting nano-devices. (3) Field-emission measurements show that the layer-structure GaN nanowires film has a low turn-on field of 4.39 V/μm (at room temperature), which is sufficient for electron emission devices, field emission displays and vacuum nano-electronic devices. The growth mechanism for GaN nanowires has also been discussed briefly.

  16. Enhanced synthesis of Sn nanowires with aid of Se atom via physical vapor transport

    NASA Astrophysics Data System (ADS)

    Cai, Huacheng; Wang, Wendong; Liu, Peiwen; Wang, Guangming; Liu, Ankang; He, Zhe; Cheng, Zhaofang; Zhang, Shengli; Xia, Minggang

    2015-06-01

    We demonstrate tin (Sn) nanowires growth enhanced by Selenium (Se) atoms via physical vapor transport (PVT) method. The Raman spectroscopy, X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy show that Sn nanowires are synthesized with a large quantity, good quality and high purity of Sn. The growth of Sn nanowires is attributed to Solid-Vapor-Liquid mechanism. The effects of gold nanoparticles catalyst, Si substrate, and Se atoms on Sn nanowires growth are discussed in detail. We find that Se atom plays a key role in the growth of Sn nanowires. The gaseous Sn atoms are absorbed by the eutectic alloy droplets of Se-Au at first. Then Sn atoms precipitate at the liquid-solid phase interface due to a supersaturated solution and form a one-dimensional nanostructure. In all, this PVT method could provide a simple and quick way to synthesize monocrystalline Sn nanowires with an advantage in both quality and quantity. The optical transmittance of Sn nanowires thin film with 2 μm2 density approaches 85-90% in visible wavelength. Therefore, the Sn nanowires thin film can be applied to transparent electrode along with their metallic property.

  17. Electrochemically deposited BiTe-based nanowires for thermoelectric applications

    SciTech Connect

    Ng, Inn-Khuan; Kok, Kuan-Ying; Rahman, Che Zuraini Che Ab; Saidin, Nur Ubaidah; Ilias, Suhaila Hani; Choo, Thye-Foo

    2014-02-12

    Nanostructured materials systems such as thin-films and nanowires (NWs) are promising for thermoelectric power generation and refrigeration compared to traditional counterparts in bulk, due to their enhanced thermoelectric figures-of-merit. BiTe and its derivative compounds, in particular, are well-known for their near-room temperature thermoelectric performance. In this work, both the binary and ternary BiTe-based nanowires namely, BiTe and BiSbTe, were synthesized using template-assisted electrodeposition. Diameters of the nanowires were controlled by the pore sizes of the anodised alumina (AAO) templates used. Systematic study on the compositional change as a function of applied potential was carried out via Linear Sweep Voltanmetry (LSV). Chemical compositions of the nanowires were studied using Energy Dispersive X-ray Spectrometry (EDXS) and their microstructures evaluated using diffraction and imaging techniques. Results from chemical analysis on the nanowires indicated that while the Sb content in BiSbTe nanowires increased with more negative deposition potentials, the formation of Te{sup 0} and Bi{sub 2}Te{sub 3} were favorable at more positive potentials.

  18. Solution-Grown Nanowire Devices for Sensitive and Fast Photodetection.

    PubMed

    Littig, Alexander; Lehmann, Hauke; Klinke, Christian; Kipp, Tobias; Mews, Alf

    2015-06-10

    Highly sensitive and fast photodetector devices with CdSe quantum nanowires as active elements have been developed exploiting the advantages of electro- and wet-chemical routes. Bismuth nanoparticles electrochemically synthesized directly onto interdigitating platinum electrodes serve as catalysts in the following solution-liquid-solid synthesis of quantum nanowires directly on immersed substrates under mild conditions at low temperature. This fast and simple preparation process leads to a photodetector device with a film of nanowires of limited thickness bridging the electrode gaps, in which a high fraction of individual nanowires are electrically contacted and can be exposed to light at the same time. The high sensitivity of the photodetector device can be expressed by its on/off ratio or its photosensitivity of more than 10(7) over a broad wavelength range up to about 700 nm. The specific detectivity and responsivity are determined to D* = 4 × 10(13) Jones and R = 0.32 A/W, respectively. The speed of the device reflects itself in a 3 dB frequency above 1 MHz corresponding to rise and fall times below 350 ns. The remarkable combination of a high sensitivity and a fast response is attributed to depletion regions inside the nanowires, tunnel-junction barriers between nanowires, and Schottky contacts at the electrodes, where all of these features are strongly influenced by the number of photogenerated charge carriers.

  19. Enhanced photoluminescence in Au-embedded ITO nanowires.

    PubMed

    Kim, Hyunsu; Park, Sunghoon; Jin, Changhyun; Lee, Chongmu

    2011-12-01

    Gold (Au)-embedded indium tin oxide (ITO) nanowires were synthesized by thermal evaporation of a mixture of In(2)O(3,) SnO(2) and graphite powders on Si (100) substrates coated with Au thin films followed by annealing. At the initial stages of annealing, Au formed a continuous linear core located along the long axis of each ITO nanowire. The morphology of the Au core changed from a continuous line to a discrete line, and then to a droplet-like chain, finally evolving into a peapod in which crystalline Au nanoparticles were encapsulated in crystalline ITO with increasing annealing temperature. The ITO nanowires with the Au core showed an emission band at ~380 nm in the ultraviolet region. The ultraviolet emission intensity increased rapidly with increasing annealing temperature. The intensity of emission from the Au-peapod ITO nanowires (annealed at 750 °C) was approximately 20 times higher than that of the emission from the Au-core/ITO-shell ITO nanowires with a continuous linear shaped-Au core (annealed at 550 °C). This ultraintense ultraviolet emission might have originated mainly from the enhanced crystalline quality of the annealed ITO nanowires. PMID:22087582

  20. Growth mechanism of nanowires: binary and ternary chalcogenides

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Coriell, S. R.; Su, Ching Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-05-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acoustooptical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  1. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    PubMed Central

    Feng, Ping; Shao, Feng; Shi, Yi; Wan, Qing

    2014-01-01

    One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed. PMID:25232915

  2. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  3. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-01

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  4. Fabrication and characterization of ZnO nanowire structure on flexible substrate with different solution molarities

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Hang; Hur, Shin; Kim, Wan-Doo; Choi, Hongsoo

    2010-08-01

    Zinc Oxide nanostructures are capable of applying numerous applications such as optoelectronics, sensors, varistors, and electronic devices. There are several techniques to gorw ZnO nanostructures, including vapor-liquid-solid method, chemical vapor deposition, physical vapor deposition, metal organic chemical vapor deposition and solution process. Recently reported solution method is a simple way to grow ZnO nanowires at a low temperature. One distinctive advantage with the solution method is low processing temperature so that flexible polymer materials can be used as a substrate to grow ZnO nanowires. In this study, ZnO nanowires have been fabricated on PET film by solution method with various molarities to see the effect of different molarities on ZnO nanowire growth. The solution temperature was 80°C and ZnO nanowires were grown for 6 hours for each case. The ZnO seed layer was sputtered at room temperature for 33 min. prior to ZnO nanowire growth. These ZnO nanowires were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and photoluminescence (PL) measurements at room temperature using a He-Cd 325-nm laser as the excitation source. We also measured the current using current Atomic Force Microscopy (I-AFM) and presented the possibility to use ZnO nanowires as a power source for micro/nano scale devices. As a result, we found that the characterization of ZnO nanowires changes according to the solution molarity.

  5. Synthesis of silicon nanowires using tin catalyst by hot wire chemical vapor processing

    SciTech Connect

    Meshram, Nagsen; Kumbhar, Alka; Dusane, R.O.

    2013-06-01

    Highlights: ► Silicon nanowires are grown by hot wire chemical vapor processing at 400 °C using Sn as catalyst material via VLS. ► For nanowire synthesis Sn nanotemplates are formed with hot wire generated atomic hydrogen. ► The TEM image reveals the crystalline nature of nanowire. - Abstract: Silicon nanowires (SiNWs) have been synthesized at temperatures in the range 300–400 °C by the hot wire chemical vapor processing (HWCVP) using tin nanotemplate. The tin nano-template is formed by hot wire atomic hydrogen treatment of thermally evaporated Sn films (∼300 nm thick) on glass substrates. Silicon nanowires are then grown using hot wire induced dissociation of SiH{sub 4} gas over the nanotemplate. Growth conditions like growth time and temperature were varied to study their effect on the tin nanoparticle size and on the silicon nanowire dimensions thereafter. From the observations, it is clear that the nanowire diameters and lengths depend on the size of nanoparticles and the growth time respectively. Though SiNWs were observed to grow at temperatures as low as 300 °C, nanowires with a narrow diameter distribution were achieved at 400 °C. Raman spectra and transmission electron microscope (TEM) reveal the crystalline nature of the silicon nanowires.

  6. Low field magnetoresistance of gadolinium nanowire

    SciTech Connect

    Chakravorty, Manotosh Raychaudhuri, A. K.

    2014-02-07

    We report low field (μ{sub 0}H < 0.2 T) magnetoresistance (MR) studies on a single Gd nanowire patterned from a nano-structured film (average grain size ∼ 35 nm) by focused ion beam. For comparison, we did similar MR measurements on a polycrystalline sample with large crystallographic grains (∼4 μm). It is observed that in the low field region where the MR is due to motion of magnetic domains, the MR in the large grained sample shows a close relation to the characteristic temperature dependent magnetocrystalline anisotropy including a sharp rise in MR at the spin reorientation transition at 235 K. In stark contrast, in the nanowire, the MR shows complete suppression of the above behaviours and it shows predominance of the grain boundary and spin disorder controlling the domain response.

  7. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-01

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag+ at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO3 nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO3 nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  8. Nanowire Electron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano

    2009-01-01

    Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.

  9. Highly Robust Silver Nanowire Network for Transparent Electrode.

    PubMed

    Song, Tze-Bin; Rim, You Seung; Liu, Fengmin; Bob, Brion; Ye, Shenglin; Hsieh, Yao-Tsung; Yang, Yang

    2015-11-11

    Solution-processed silver nanowire networks are one of the promising candidates to replace a traditional indium tin oxide as next-generation transparent and flexible electrodes due to their ease of processing, moderate flexibility, high transparency, and low sheet resistance. To date, however, high stability of the nanowire networks remains a major challenge because the long-term usages of these electrodes are limited by their poor thermal and chemical stabilities. Existing methods for addressing this challenge mainly focus on protecting the nanowire network with additional layers that require vacuum processes, which can lead to an increment in manufacturing cost. Here, we report a straightforward strategy of a sol-gel processing as a fast and robust way to improve the stabilities of silver nanowires. Compared with reported nanoparticles embedded in nanowire networks, better thermal and chemical stabilities are achieved via sol-gel coating of TiO2 over the silver nanowire networks. The conformal surface coverage suppressed surface diffusion of silver atoms and prevented chemical corrosion from the environment. These results highlight the important role of the functional layer in providing better thermal and chemical stabilities along with improved electrical properties and mechanical robustness. The silver nanowire/TiO2 composite electrodes were applied as the source and drain electrodes for In2O3 thin-film transistors (TFTs) and the devices exhibited improved electrical performance annealed at 300 °C without the degradation of the electrodes. These key findings not only demonstrated a general and effective method to improve the thermal and chemical stabilities of metal nanowire networks but also provided a basic guideline toward rational design of highly efficient and robust composite electrodes.

  10. A review on germanium nanowires.

    PubMed

    Pei, Li Z; Cai, Zheng Y

    2012-01-01

    Ge nanowires exhibit wide application potential in the fields of nanoscale devices due to their excellently optical and electrical properties. This article reviews the recent progress and patents of Ge nanowires. The recent progress and patents for the synthesis of Ge nanowires using chemical vapor deposition, laser ablation, thermal evaporation, template method and supercritical fluid-liquid-solid method are demonstrated. Amorphous germanium oxide layer and defects existing in Ge nanowires result in poor Ohmic contact between Ge nanowires and electrodes. Therefore, Ge nanowires should be passivated in order to deposit connecting electrodes before applied in nanoelectronic devices. The experimental progress and patents on the application of Ge nanowires as field effect transistors, lithium batteries, photoresistors, memory cell and fluid sensors are discussed. Finally, the future development of Ge nanowires for the synthesis and practical application is also discussed.

  11. Nanowire structures and electrical devices

    DOEpatents

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  12. Arsenic Sulfide Nanowire Formation on Fused Quartz Surfaces

    SciTech Connect

    Olmstead, J.; Riley, B.J.; Johnson, B.R.; Sundaram, S.K.

    2005-01-01

    Arsenic sulfide (AsxSy) nanowires were synthesized by an evaporation-condensation process in evacuated fused quartz ampoules. During the deposition process, a thin, colored film of AsxSy was deposited along the upper, cooler portion of the ampoule. The ampoule was sectioned and the deposited film analyzed using scanning electron microscopy (SEM) to characterize and semi-quantitatively evaluate the microstructural features of the deposited film. A variety of microstructures were observed that ranged from a continuous thin film (warmer portion of the ampoule), to isolated micron- and nano-scale droplets (in the intermediate portion), as well as nanowires (colder portion of the ampoule). Experiments were conducted to evaluate the effects of ampoule cleaning methods (e.g. modify surface chemistry) and quantity of source material on nanowire formation. The evolution of these microstructures in the thin film was determined to be a function of initial pressure, substrate temperature, substrate surface treatment, and initial volume of As2S3 glass. In a set of two experiments where the initial pressure, substrate thermal gradient, and surface treatment were the same, the initial quantity of As2S3 glass per internal ampoule volume was doubled from one test to the other. The results showed that AsxSy nanowires were only formed in the test with the greater initial quantity of As2S3 per internal ampoule volume. The growth data for variation in diameter (e.g. nanowire or droplet) as a function of substrate temperature was fit to an exponential trendline with the form y = Aekx, where y is the structure diameter, A = 1.25×10-3, k = 3.96×10-2, and x is the temperature with correlation coefficient, R2 = 0.979, indicating a thermally-activated process.

  13. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  14. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  15. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  16. Nanowire Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Borshchevsky, Alexander; Fleurial, Jean-Pierre; Herman, Jennifer; Ryan, Margaret

    2005-01-01

    Nanowire thermoelectric devices, now under development, are intended to take miniaturization a step beyond the prior state of the art to exploit the potential advantages afforded by shrinking some device features to approximately molecular dimensions (of the order of 10 nm). The development of nanowire-based thermoelectric devices could lead to novel power-generating, cooling, and sensing devices that operate at relatively low currents and high voltages. Recent work on the theory of thermoelectric devices has led to the expectation that the performance of such a device could be enhanced if the diameter of the wires could be reduced to a point where quantum confinement effects increase charge-carrier mobility (thereby increasing the Seebeck coefficient) and reduce thermal conductivity. In addition, even in the absence of these effects, the large aspect ratios (length of the order of tens of microns diameter of the order of tens of nanometers) of nanowires would be conducive to the maintenance of large temperature differences at small heat fluxes. The predicted net effect of reducing diameters to the order of tens of nanometers would be to increase its efficiency by a factor of .3. Nanowires made of thermoelectric materials and devices that comprise arrays of such nanowires can be fabricated by electrochemical growth of the thermoelectric materials in templates that contain suitably dimensioned pores (10 to 100 nm in diameter and 1 to 100 microns long). The nanowires can then be contacted in bundles to form devices that look similar to conventional thermoelectric devices, except that a production version may contain nearly a billion elements (wires) per square centimeter, instead of fewer than a hundred as in a conventional bulk thermoelectric device or fewer than 100,000 as in a microdevice. It is not yet possible to form contacts with individual nanowires. Therefore, in fabricating a nanowire thermoelectric device, one forms contacts on nanowires in bundles of the

  17. Copper oxide thin-flim and nanowire for e-textile applications

    NASA Astrophysics Data System (ADS)

    Han, Jin-Woo; Lohn, Andrew; Kobayashi, Nobuhiko P.; Meyyappan, M.

    2011-10-01

    Devices fabricated using nanowire structures can provide performance enhancement as well as open new applications. Integration of electronics into textile, referred to as e-textile, offers an opportunity for future electronics. Herein, copper and copper oxide based nanostructures are embedded for e-textile. Metallic copper wire is utilized as a growth substrate, which is simultaneously used as the fiber of mesh textiles. Among various metals, copper is promising as it is non-toxic and relatively abundant on earth. The motivating factor is ease of growth of nanostructures; the nanowire and thin-film forms are synthesized by self-catalytic vapor-solid growth. Simply heating with oxygen gas can form copper oxide nanowires or thin-film depending on the growth conditions. As key building blocks in e-textile, memory, transistor, and interconnect are presented. The resistive memory is comprised of copper oxide thin-film sandwiched within two orthogonal fibers. For a metal semiconductor field effect transistor (MESFET), a Schottky junction is used as the gate to channel barrier. The copper fiber and copper oxide thin-film are devoted to the gate and channel, respectively. For an interconnection, the neighboring fibers are electrically connected by transforming copper oxide nanowires into copper nanowires. Hydrogen thermal reduction of copper oxide is proved to be effective to make conductive nanowires.Inp

  18. Imaging nanowire plasmon modes with two-photon polymerization

    SciTech Connect

    Gruber, Christian; Trügler, Andreas; Hohenester, Ulrich; Ditlbacher, Harald; Hohenau, Andreas; Krenn, Joachim R.; Hirzer, Andreas; Schmidt, Volker

    2015-02-23

    Metal nanowires sustain propagating surface plasmons that are strongly confined to the wire surface. Plasmon reflection at the wire end faces and interference lead to standing plasmon modes. We demonstrate that these modes can be imaged via two-photon (plasmon) polymerization of a thin film resist covering the wires and subsequent electron microscopy. Thereby, the plasmon wavelength and the phase shift of the nanowire mode picked up upon reflection can be directly retrieved. In general terms, polymerization imaging is a promising tool for the imaging of propagating plasmon modes from the nano- to micro-scale.

  19. Cabrera-Mott kinetics of oxidation of metal nanowires

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.; Kasemo, Bengt

    2012-06-01

    The Cabrera-Mott model, implying that oxidation of a metal is limited by the field-facilitated activated jumps of metal ions at the metal-oxide interface, was originally proposed to interpret growth of thin oxide films on planar metal surfaces. Recently, the model was used to describe oxidation of spherical nanoparticles with small radius of curvature. Here, we analyze oxidation of nanowires. The increase of the oxide thickness with increasing time for a nanowire is shown to be slower than that for a nanoparticle with the same radius, but faster than in the case of a planar surface.

  20. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction.

    PubMed

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-01-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750-900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843

  1. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction

    NASA Astrophysics Data System (ADS)

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-12-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750-900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature.

  2. Fabrication of Pt nanoparticle incorporated polymer nanowires by high energy ion and electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Tsukuda, Satoshi; Takahasi, Ryouta; Seki, Shu; Sugimoto, Masaki; Idesaki, Akira; Yoshikawa, Masahito; Tanaka, Shun-Ichiro

    2016-01-01

    Polyvinylpyrrolidone (PVP)-Pt nanoparticles (NPs) hybrid nanowires were fabricated by high energy ion beam irradiation to PVP thin films including H2PtCl6. Single ion hitting caused crosslinking reactions of PVP and reduction of Pt ions within local cylindrical area along an ion trajectory (ion track); therefore, the PVP nanowires including Pt NPs were formed and isolated on Si substrate after wet-development procedure. The number of Pt NPs was easily controlled by the mixed ratio of PVP and H2PtCl6. However, increasing the amount of H2PtCl6 led to decreasing the radial size and separation of the hybrid nanowires during the wet-development. Additional electron beam irradiation after ion beam improved separation of the nanowires and controlled radial sizes due to an increase in the density of crosslinking points inner the nanowires.

  3. Controlled fabrication of silicon nanowires via nanosphere lithograph and metal assisted chemical etching.

    PubMed

    Sun, Bo; Shi, Tielin; Sheng, Wenjun; Liao, Guanglan

    2013-08-01

    We investigated the controlled fabrication of uniform vertical aligned silicon nanowires with desired length, diameter and location by combining nanosphere lithograph and metal assisted chemical etching techniques. The close-packed polystyrene nanospheres array was obtained by self-assemble technique, followed by reactive ion etching to acquire a non-close-packed monolayer template. Subsequently, the template was used to create a metal film with nanoholes array, which enable the controlled fabrication of ordered silicon nanowires via metal assisted chemical etching technique. By adjusting the monolayer of polystyrene nanospheres and the conditions for the metal assisted chemical etching, we obtained uniform distributed silicon nanowires with desired morphology. The aspect ratio of the silicon nanowires can reach to about 86:1. Furthermore, we have obtained the double-layer silicon nanowires by slight modifying the process. The influences of various conditions during etching were also discussed for improving the controlled fabrication.

  4. High yield formation of lipid bilayer shells around silicon nanowires in aqueous solution.

    PubMed

    Römhildt, Lotta; Gang, Andreas; Baraban, Larysa; Opitz, Jörg; Cuniberti, Gianaurelio

    2013-09-01

    The combination of nanoscaled materials and biological self-assembly is a key step for the development of novel approaches for biotechnology and bionanoelectronic devices. Here we propose a route to merge these two subsystems and report on the formation of highly concentrated aqueous solutions of silanized silicon nanowires wrapped in a lipid bilayer shell. We developed protocols and investigated the dynamics of lipid films on both planar surfaces and silicon nanowires using fluorescence recovery after photobleaching, demonstrating fully intact and fluid bilayers without the presence of a lipid molecule reservoir. Finally, the experimental setup allowed for in situ observation of spontaneous bilayer formation around the nanowire by lipid diffusion from a vesicle to the nanowire. Such aqueous solutions of lipid coated nanowires are a versatile tool for characterization purposes and are relevant for newly emerging bioinspired electronics and nanosensorics.

  5. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction

    PubMed Central

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-01-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750–900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843

  6. GaN nanowire arrays by a patterned metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Wang, K. C.; Yuan, G. D.; Wu, R. W.; Lu, H. X.; Liu, Z. Q.; Wei, T. B.; Wang, J. X.; Li, J. M.; Zhang, W. J.

    2016-04-01

    We developed an one-step and two-step metal-assisted chemical etching method to produce self-organized GaN nanowire arrays. In one-step approach, GaN nanowire arrays are synthesized uniformly on GaN thin film surface. However, in a two-step etching processes, GaN nanowires are formed only in metal uncovered regions, and GaN regions with metal-covering show nano-porous sidewalls. We propose that nanowires and porous nanostructures are tuned by sufficient and limited etch rate, respectively. PL spectra shows a red-shift of band edge emission in GaN nanostructures. The formation mechanism of nanowires was illustrated by two separated electrochemical reactions occur simultaneously. The function of metals and UV light was illustrated by the scheme of potential relationship between energy bands in Si, GaN and standard hydrogen electrode potential of solution and metals.

  7. Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates.

    PubMed

    Morin, Stephen A; Jin, Song

    2010-09-01

    In the current examples of dislocation-driven nanowire growth, the screw dislocations that propagate one-dimensional growth originate from spontaneously formed highly defective "seed" crystals. Here we intentionally utilize screw dislocations from defect-rich gallium nitride (GaN) thin films to propagate dislocation-driven growth, demonstrating epitaxial growth of zinc oxide (ZnO) nanowires directly from aqueous solution. Atomic force microscopy confirms screw dislocations are present on the native GaN surface and ZnO nanowires grow directly from dislocation etch pits of heavily etched GaN surfaces. Furthermore, transmission electron microscopy confirms the existence of axial dislocations. Eshelby twist in the resulting ZnO nanowires was confirmed using bright-/dark-field imaging and twist contour analysis. These results further confirm the connection between dislocation source and nanowire growth. This may eventually lead to defect engineering strategies for rationally designed catalyst-free dislocation-driven nanowire growth for specific applications.

  8. Selective patterned growth of single-crystal organic nanowires of Ag-TCNQ with chemical raction method

    SciTech Connect

    Xiao, Kai; Tao, Jing; Puretzky, Alexander A; Ivanov, Ilia N; Retterer, Scott T; Pennycook, Stephen J; Geohegan, David B

    2008-01-01

    Abstract: We report for the selective-area chemical synthesis of semiconductor single-crystal organic nanowires of silver-tetracyanoquinodimethane (Ag-TCNQ). Straight and smooth Ag-TCNQ nanowires can be produced and patterned on micrometer and nanometer scale on silicon substrates covered with a thin layer of Ag film through the reaction of TCNQ and Ag in a simple gas-solid chemical reaction process. Ag-TCNQ nanowires are characterized by UV-vis, IR and Raman spectroscopy, respectively. The Ag-TCNQ nanowires grows preferentially along the [100] direction of strong - stacking of Ag-TCNQ molecules. Nanodevices based on these nanowires are fabricated using focus ion beam (FIB) technique. Electrical properties are characterized and I-V hysteresis is observed, which shows memory effect with electrical switching of three orders on-off ratio. These nanowires could be potential for use in optical storage, ultrahigh-density nanoscale memory and logic devices.

  9. Self-seeded, position-controlled InAs nanowire growth on Si: A growth parameter study

    PubMed Central

    Mandl, Bernhard; Dey, Anil W.; Stangl, Julian; Cantoro, Mirco; Wernersson, Lars-Erik; Bauer, Günther; Samuelson, Lars; Deppert, Knut; Thelander, Claes

    2011-01-01

    In this work, the nucleation and growth of InAs nanowires on patterned SiO2/Si(111) substrates is studied. It is found that the nanowire yield is strongly dependent on the size of the etched holes in the SiO2, where openings smaller than 180 nm lead to a substantial decrease in nucleation yield, while openings larger than ≈500nm promote nucleation of crystallites rather than nanowires. We propose that this is a result of indium particle formation prior to nanowire growth, where the size of the indium particles, under constant growth parameters, is strongly influenced by the size of the openings in the SiO2 film. Nanowires overgrowing the etched holes, eventually leading to a merging of neighboring nanowires, shed light into the growth mechanism. PMID:22053114

  10. The Self- and Directed Assembly of Nanowires

    NASA Astrophysics Data System (ADS)

    Smith, Benjamin David

    nanowires rapidly sedimented due to gravity onto a glass cover slip to concentrate and form a dense film. Particles and assemblies were imaged using inverted optical microscopy. We quantitatively analyzed the images and movies captured in order to track and classify particles and classify the overall arrays formed. We then correlated how particle characteristics, e.g., materials, size, segmentation, etc. changed the ordering and alignment observed. With that knowledge, we hope to be able to form new and interesting structures. We began our studies by examining the assembly of single component nanowires. Chapter 2 describes this work, in which solid Au nanowires measuring 2-7 mum in length and 290 nm in diameter self-assembled into smectic rows. By both experiment and theory, we determined that these rows formed due to a balance of electrostatic repulsions and van der Waals attractions. Final assemblies were stable for at least several days. Monte Carlo methods were used to simulate assemblies and showed structures that mirrored those experimentally observed. Simulations indicated that the smectic phase was preferred over others, i.e., nematic, when an additional small charge was added to the ends of the nanowires. Our particles have rough tips, which might create these additional electrostatic repulsions. To increase the particle and array complexity, two-component, metallic nanowire assembly was explored in Chapter 3. We examined numerous types of nanowires by changing the segment length, ratio, and material, the nanowire length, the surface coating, and the presence of small third segments. These segmented nanowires were generally Au-Ag and also ordered into smectic rows. Segmented wires arranged in rows, however, can be aligned in two possible ways with respect to a neighboring particle. The Au segments on neighboring particles can be oriented in the same direction or opposed to each other. Orientation was quantified in terms of an order parameter that took into account

  11. Indium tin oxide nanowires grown by one-step thermal evaporation-deposition process at low temperature.

    PubMed

    Dong, Haibo; Zhang, Xiaoxian; Niu, Zhiqiang; Zhao, Duan; Li, Jinzhu; Cai, Le; Zhou, Weiya; Xie, Sishen

    2013-02-01

    Indium tin oxide (ITO), as one of the most important transparent conducting oxide, is widely used in electro-optical field. We have developed a simple one-step method to synthesize ITO nanowires at low temperature of 600 degrees C. In detail, mixtures of InN nanowires and SnO powder, with the molar ratio of 10:1, have been used as precursors for the thermal evaporation-deposition of ITO nanowires on silicon/quartz slices. During the growth process, the evaporation temperature is maintained at 600 degrees C, which favors the decomposition of InN and oxidation of In, with a limited incorporation of Sn in the resulting compound (In:Sn approximately 11:1 in atomic ratio). As far as we know, this is the lowest growth temperature reported on the thermal deposition of ITO nanowires. The diameters of the nanowires are about 120 nm and the lengths are up to tens of micrometers. XRD characterization indicates the high crystallization of the nanowires. HRTEM results show the nanowires grow along the [200] direction. The transmittance of the nanowire film on quartz slice is more than 75% in the visible region. Based on photolithography and lift-off techniques, four-terminal measurement was utilized to test the resistivity of individual nanowire (6.11 x 10(-4) omega x cm). The high crystallization quality, good transmittance and low resistivity make as-grown ITO nanowires a promising candidate as transparent electrodes of nanoscale devices. PMID:23646624

  12. Diameter-dependent thermoelectric figure of merit in single-crystalline Bi nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Jeongmin; Lee, Seunghyun; Brovman, Yuri M.; Kim, Philip; Lee, Wooyoung

    2015-03-01

    The diameter-dependent thermoelectric properties of individual single-crystalline Bi nanowires grown by the on-film formation of nanowires method have been investigated. The electrical resistivity, Seebeck coefficient, and thermal conductivity were measured as functions of the nanowire diameter using an individual nanowire device. The thermoelectric figure of merit (ZT) calculated from the measured thermoelectric properties shows an increase from the bulk value to a maximum value of 0.28 at 109 nm-diameter, followed by a decrease upon further decreasing the diameter. This non-monotonic diameter dependence of ZT in Bi nanowires reveals simultaneous positive and negative contributions to the thermoelectric efficiency, driven by the change in intrinsic properties, which originates from the diameter-dependent classical and quantum size effects.The diameter-dependent thermoelectric properties of individual single-crystalline Bi nanowires grown by the on-film formation of nanowires method have been investigated. The electrical resistivity, Seebeck coefficient, and thermal conductivity were measured as functions of the nanowire diameter using an individual nanowire device. The thermoelectric figure of merit (ZT) calculated from the measured thermoelectric properties shows an increase from the bulk value to a maximum value of 0.28 at 109 nm-diameter, followed by a decrease upon further decreasing the diameter. This non-monotonic diameter dependence of ZT in Bi nanowires reveals simultaneous positive and negative contributions to the thermoelectric efficiency, driven by the change in intrinsic properties, which originates from the diameter-dependent classical and quantum size effects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06412g

  13. Nanowire mesh solar fuels generator

    DOEpatents

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  14. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: The effect of substrate on magnetic properties of Co/Cu multilayer nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ren, Yong; Wang, Jian-Bo; Liu, Qing-Fang; Han, Xiang-Hua; Xue, De-Sheng

    2009-08-01

    Ordered Co/Cu multilayer nanowire arrays have been fabricated into anodic aluminium oxide templates with Ag and Cu substrate by direct current electrodeposition. This paper studies the morphology, structure and magnetic properties by transmission electron microscopy, selective area electron diffraction, x-ray diffraction, and vibrating sample magnetometer. X-ray diffraction patterns reveal that both as-deposited nanowire arrays films exhibit face-centred cubic structure. Magnetic measurements indicate that the easy magnetization direction of Co/Cu multilayer nanowire arrays films on Ag substrate is perpendicular to the long axis of nanowire, whereas the easy magnetization direction of the sample with Cu substrate is parallel to the long axis of nanowire. The change of easy magnetization direction attributed to different substrates, and the magnetic properties of the nanowire arrays are discussed.

  15. Mechanical Properties of Silicon Nanowires.

    PubMed

    Sohn, Young-Soo; Park, Jinsung; Yoon, Gwonchan; Song, Jiseok; Jee, Sang-Won; Lee, Jung-Ho; Na, Sungsoo; Kwon, Taeyun; Eom, Kilho

    2009-10-27

    Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm.

  16. Mechanical Properties of Silicon Nanowires

    PubMed Central

    2010-01-01

    Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm. PMID:20652130

  17. Piezoresistive boron doped diamond nanowire

    DOEpatents

    Sumant, Anirudha V.; Wang, Xinpeng

    2016-09-13

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  18. Superconducting nanowire single photon detector on diamond

    SciTech Connect

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lončar, Marko; Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A.

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310 nm and 632 nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300 pm Root Mean Square surface roughness are obtained.

  19. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  20. Atmospheric-Pressure Processed Silver Nanowire (Ag-NW)/ZnO Composite Transparent Conducting Contacts

    SciTech Connect

    Perkins, John D.; Aggarwal, Shruti; van Hest, Maikel F. A. M.; Ginley, David S.

    2015-06-14

    Composite transparent contacts (TCs) based on metal nanowires and metal oxide matrix materials hold great promise for high performance transparent contacts for photovoltaics and opto-electronic technologies with the potential of all-atmospheric pressure processing. The metal nanowire mesh can provide both electrical conductivity and mechanical robustness against bending while the matrix material can both control the electrical interface and protect the metal nanowires. Here, we demonstrate all atmospheric pressure processed Ag-NW/ZnO composite TCs that are 90% transparent in the visible with sheet resistance Rs ~= 10 Ohms/sq. In addition, the composite TCs have higher infrared transmission than conventional TCO films with the same sheet resistance.

  1. Coffee ring effect resulted conductive nanowire patterns by evaporating colloidal suspension droplets without sintering process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Seong, Baekhoon; Yudistira, Hadi Teguh; Byun, Doyoung

    2015-11-01

    Drying colloidal suspensions containing non-volatile solute will form a ring like pattern, which is called ``coffee ring effect.'' Here, we present the coffee ring effect with silver nanowires dispersing into DI water, resulting in a highly dense-packed nanowire ring patterns. The effect of nanowire length, concentration, droplet size, and substrate temperature were investigated. With shorter nanowires, a distinct ring could be obtained. Meanwhile, the concentration of the colloidal suspension was found to affect the ring width. The droplet size and nanowire length played a significant role in affecting the occurrence of the coffee ring effect. When smaller droplets (i.e., less than 150 μm) containing long nanowires (~ 20 μm), the coffee ring effect was suppressed. While smaller droplets containing short nanowires (~ 1 μm), the coffee ring effect was not affected. By increasing the temperature of the substrate, multi-ring pattern was formed inside the original ring. The resistivity of the semi-circle of the nanowire ring was measured, and had a minimum value of 1.32 × 10-6 Ωm without any sintering process. These findings could be exploited to basic study of ring stain effect as well as the practical use, such as evaporative lithography and ink-jet printing for conductive film and display. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) (Grant number: 2014-023284).

  2. Beam-deposited platinum as versatile catalyst for bottom-up silicon nanowire synthesis

    SciTech Connect

    Hibst, N.; Strehle, S.; Knittel, P.; Kranz, C.; Mizaikoff, B.

    2014-10-13

    The controlled localized bottom-up synthesis of silicon nanowires on arbitrarily shaped surfaces is still a persisting challenge for functional device assembly. In order to address this issue, electron beam and focused ion beam-assisted catalyst deposition have been investigated with respect to platinum expected to form a PtSi alloy catalyst for a subsequent bottom-up nanowire synthesis. The effective implementation of pure platinum nanoparticles or thin films for silicon nanowire growth has been demonstrated recently. Beam-deposited platinum contains significant quantities of amorphous carbon due to the organic precursor and gallium ions for a focused ion beam-based deposition process. Nevertheless, silicon nanowires could be grown on various substrates regardless of the platinum purity. Additionally, p-type doping could be realized with diborane whereas n-type doping suppressed a nanowire growth. The rational utilization of this beam-assisted approach enables us to control the localized synthesis of single silicon nanowires at planar surfaces but succeeded also in single nanowire growth at the three-dimensional apex of an atomic force microscopy tip. Therefore, this catalyst deposition method appears to be a unique extension of current technologies to assemble complex nanowire-based devices.

  3. Growth of Catalyst-Free Epitaxial InAs Nanowires on Si Wafers Using Metallic Masks.

    PubMed

    Soo, M Teng; Zheng, Kun; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Zou, Jin

    2016-07-13

    Development of heteroepitaxy growth of catalyst-free vertical III-V nanowires on Si wafers is highly desirable for future nanoscale Si-based electronic and optoelectronic devices. In this study, a proof-of-concept approach is developed for catalyst-free heteroepitaxy growth of InAs nanowires on Si wafers. Before the growth of InAs nanowires, a Si-compatible metallic film with a thickness of several tens of nanometers was predeposited on a Si wafer and then annealed to form nanosize openings so as to obtain a metallic mask. These nano-openings exposed the surface of the Si wafer, which allowed subsequent nucleation and growth of epitaxial InAs nanowires directly on the surface of the Si wafer. The small size of the nano-openings limits the lateral growth of the nanostructures but promotes their axial growth. Through this approach, catalyst-free InAs nanowires were grown on both Si (111) and (001) wafers successfully at different growth temperatures. In particular, ultralong defect-free InAs nanowires with the wurtzite structure were grown the Si (111) wafers at 550 °C using the Ni mask. This study offers a simple, cost-effective, and scalable method to grow catalyst-free III-V nanowires on Si wafers. The simplicity of the approach opens a new avenue for the growth and integration of catalyst-free high-quality heteroepitaxial III-V nanowires on Si wafers.

  4. Growth of Catalyst-Free Epitaxial InAs Nanowires on Si Wafers Using Metallic Masks.

    PubMed

    Soo, M Teng; Zheng, Kun; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Zou, Jin

    2016-07-13

    Development of heteroepitaxy growth of catalyst-free vertical III-V nanowires on Si wafers is highly desirable for future nanoscale Si-based electronic and optoelectronic devices. In this study, a proof-of-concept approach is developed for catalyst-free heteroepitaxy growth of InAs nanowires on Si wafers. Before the growth of InAs nanowires, a Si-compatible metallic film with a thickness of several tens of nanometers was predeposited on a Si wafer and then annealed to form nanosize openings so as to obtain a metallic mask. These nano-openings exposed the surface of the Si wafer, which allowed subsequent nucleation and growth of epitaxial InAs nanowires directly on the surface of the Si wafer. The small size of the nano-openings limits the lateral growth of the nanostructures but promotes their axial growth. Through this approach, catalyst-free InAs nanowires were grown on both Si (111) and (001) wafers successfully at different growth temperatures. In particular, ultralong defect-free InAs nanowires with the wurtzite structure were grown the Si (111) wafers at 550 °C using the Ni mask. This study offers a simple, cost-effective, and scalable method to grow catalyst-free III-V nanowires on Si wafers. The simplicity of the approach opens a new avenue for the growth and integration of catalyst-free high-quality heteroepitaxial III-V nanowires on Si wafers. PMID:27248817

  5. Single-nanowire photoelectrochemistry

    NASA Astrophysics Data System (ADS)

    Su, Yude; Liu, Chong; Brittman, Sarah; Tang, Jinyao; Fu, Anthony; Kornienko, Nikolay; Kong, Qiao; Yang, Peidong

    2016-07-01

    Photoelectrochemistry is one of several promising approaches for the realization of efficient solar-to-fuel conversion. Recent work has shown that photoelectrodes made of semiconductor nano-/microwire arrays can have better photoelectrochemical performance than their planar counterparts because of their unique properties, such as high surface area. Although considerable research effort has focused on studying wire arrays, the inhomogeneity in the geometry, doping, defects and catalyst loading present in such arrays can obscure the link between these properties and the photoelectrochemical performance of the wires, and correlating performance with the specific properties of individual wires is difficult because of ensemble averaging. Here, we show that a single-nanowire-based photoelectrode platform can be used to reliably probe the current–voltage (I–V) characteristics of individual nanowires. We find that the photovoltage output of ensemble array samples can be limited by poorly performing individual wires, which highlights the importance of improving nanowire homogeneity within an array. Furthermore, the platform allows the flux of photogenerated electrons to be quantified as a function of the lengths and diameters of individual nanowires, and we find that the flux over the entire nanowire surface (7–30 electrons nm–2 s–1) is significantly reduced as compared with that of a planar analogue (∼1,200 electrons nm–2 s–1). Such characterization of the photogenerated carrier flux at the semiconductor/electrolyte interface is essential for designing nanowire photoelectrodes that match the activity of their loaded electrocatalysts.

  6. Single-nanowire photoelectrochemistry

    NASA Astrophysics Data System (ADS)

    Su, Yude; Liu, Chong; Brittman, Sarah; Tang, Jinyao; Fu, Anthony; Kornienko, Nikolay; Kong, Qiao; Yang, Peidong

    2016-07-01

    Photoelectrochemistry is one of several promising approaches for the realization of efficient solar-to-fuel conversion. Recent work has shown that photoelectrodes made of semiconductor nano-/microwire arrays can have better photoelectrochemical performance than their planar counterparts because of their unique properties, such as high surface area. Although considerable research effort has focused on studying wire arrays, the inhomogeneity in the geometry, doping, defects and catalyst loading present in such arrays can obscure the link between these properties and the photoelectrochemical performance of the wires, and correlating performance with the specific properties of individual wires is difficult because of ensemble averaging. Here, we show that a single-nanowire-based photoelectrode platform can be used to reliably probe the current-voltage (I-V) characteristics of individual nanowires. We find that the photovoltage output of ensemble array samples can be limited by poorly performing individual wires, which highlights the importance of improving nanowire homogeneity within an array. Furthermore, the platform allows the flux of photogenerated electrons to be quantified as a function of the lengths and diameters of individual nanowires, and we find that the flux over the entire nanowire surface (7-30 electrons nm-2 s-1) is significantly reduced as compared with that of a planar analogue (˜1,200 electrons nm-2 s-1). Such characterization of the photogenerated carrier flux at the semiconductor/electrolyte interface is essential for designing nanowire photoelectrodes that match the activity of their loaded electrocatalysts.

  7. Single-nanowire photoelectrochemistry.

    PubMed

    Su, Yude; Liu, Chong; Brittman, Sarah; Tang, Jinyao; Fu, Anthony; Kornienko, Nikolay; Kong, Qiao; Yang, Peidong

    2016-07-01

    Photoelectrochemistry is one of several promising approaches for the realization of efficient solar-to-fuel conversion. Recent work has shown that photoelectrodes made of semiconductor nano-/microwire arrays can have better photoelectrochemical performance than their planar counterparts because of their unique properties, such as high surface area. Although considerable research effort has focused on studying wire arrays, the inhomogeneity in the geometry, doping, defects and catalyst loading present in such arrays can obscure the link between these properties and the photoelectrochemical performance of the wires, and correlating performance with the specific properties of individual wires is difficult because of ensemble averaging. Here, we show that a single-nanowire-based photoelectrode platform can be used to reliably probe the current-voltage (I-V) characteristics of individual nanowires. We find that the photovoltage output of ensemble array samples can be limited by poorly performing individual wires, which highlights the importance of improving nanowire homogeneity within an array. Furthermore, the platform allows the flux of photogenerated electrons to be quantified as a function of the lengths and diameters of individual nanowires, and we find that the flux over the entire nanowire surface (7-30 electrons nm(-2) s(-1)) is significantly reduced as compared with that of a planar analogue (∼1,200 electrons nm(-2) s(-1)). Such characterization of the photogenerated carrier flux at the semiconductor/electrolyte interface is essential for designing nanowire photoelectrodes that match the activity of their loaded electrocatalysts. PMID:27018660

  8. EDITORIAL: Nanowires for energy Nanowires for energy

    NASA Astrophysics Data System (ADS)

    LaPierre, Ray; Sunkara, Mahendra

    2012-05-01

    This special issue of Nanotechnology focuses on studies illustrating the application of nanowires for energy including solar cells, efficient lighting and water splitting. Over the next three decades, nanotechnology will make significant contributions towards meeting the increased energy needs of the planet, now known as the TeraWatt challenge. Nanowires in particular are poised to contribute significantly in this development as presented in the review by Hiralal et al [1]. Nanowires exhibit light trapping properties that can act as a broadband anti-reflection coating to enhance the efficiency of solar cells. In this issue, Li et al [2] and Wang et al [3] present the optical properties of silicon nanowire and nanocone arrays. In addition to enhanced optical properties, core-shell nanowires also have the potential for efficient charge carrier collection across the nanowire diameter as presented in the contribution by Yu et al [4] for radial junction a-Si solar cells. Hybrid approaches that combine organic and inorganic materials also have potential for high efficiency photovoltaics. A Si-based hybrid solar cell is presented by Zhang et al [5] with a photoconversion efficiency of over 7%. The quintessential example of hybrid solar cells is the dye-sensitized solar cell (DSSC) where an organic absorber (dye) coats an inorganic material (typically a ZnO nanostructure). Herman et al [6] present a method of enhancing the efficiency of a DSSC by increasing the hetero-interfacial area with a unique hierarchical weeping willow ZnO structure. The increased surface area allows for higher dye loading, light harvesting, and reduced charge recombination through direct conduction along the ZnO branches. Another unique ZnO growth method is presented by Calestani et al [7] using a solution-free and catalyst-free approach by pulsed electron deposition (PED). Nanowires can also make more efficient use of electrical power. Light emitting diodes, for example, will eventually become the

  9. Nanowires as Building Blocks to Fabricate Flexible Thermoelectric Fabric: The Case of Copper Telluride Nanowires.

    PubMed

    Zhou, Chongjian; Dun, Chaochao; Wang, Qiong; Wang, Ke; Shi, Zhongqi; Carroll, David L; Liu, Guiwu; Qiao, Guanjun

    2015-09-30

    A general approach to fabricate nanowires based inorganic/organic composite flexible thermoelectric fabric using a simple and efficacious five-step vacuum filtration process is proposed. As an excellent example, the performance of freestanding flexible thermoelectric thin film using copper telluride nanowires/polyvinylidene fluoride (Cu1.75Te NWs/PVDF = 2:1) as building block is demonstrated. By burying the Cu1.75Te NWs into the PVDF polymer agent, the flexible fabric exhibits room-temperature Seebeck coefficient and electric conductivity of 9.6 μV/K and 2490 S/cm, respectively, resulting in a power factor of 23 μW/(mK(2)) that is comparable to the bulk counterpart. Furthermore, this NW-based flexible fabric can endure hundreds of cycles of bending tests without significant performance degradation. PMID:26376703

  10. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    NASA Astrophysics Data System (ADS)

    Irshad, M. I.; Ahmad, F.; Mohamed, N. M.; Abdullah, M. Z.; Yar, A.

    2015-07-01

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO4.6H2O buffered with H3BO3 and acidized by dilute H2SO4. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (˜ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  11. Thermal and transport properties of a single nickel nanowire

    NASA Astrophysics Data System (ADS)

    Ou, Min-Nan; Chen, Yang-Yuan; Wu, Maw-Kuen; Yang, Tzong-Jer; Lee, P. C.; Harutyunyan, S. R.; Chen, C. D.; Lai, S. J.

    2008-03-01

    Starting with a 100 nm nickel film grown on a Si3N4/Si substrate by thermal evaporator, a suspended nickel nanowire (Ni-NW) was fabricated through e-beam lithography and etching processes. The Ni-NW was a part of 4-probes circuit which is designed for electrical, thermal and thermopower measurements. The resistivity (ρ) and thermal conductivity (κ) of a single nickel nanowire have been measured in the temperature range from 4 to 300 K by 4-probes method and the self-heating-3φ technique. At 300 K the thermal conductivity of nanowire is ˜ 20% of the bulk, it diminishes to lower value as temperature decreases, the consequence is opposite to that in the bulk in which it decreases with temperature increase. The result might be explained by the restriction of mean free paths of electron/phonon--phonon interactions due to the grain boundaries. The small relative resistivity ratio (RRR ˜ 2) confirms the polycrystalline characteristic of the nanowire. The thermopower (Seedbeck coefficient S) was also investigated by temperature gradient built up between two ends of the nanowire. The figure of merit ZT=S^2σ/κ in the one-dimension specimen will be discussed.

  12. Metallic nanowire networks: effects of thermal annealing on electrical resistance.

    PubMed

    Langley, D P; Lagrange, M; Giusti, G; Jiménez, C; Bréchet, Y; Nguyen, N D; Bellet, D

    2014-11-21

    Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq(-1). Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays.

  13. Metallic nanowire networks: effects of thermal annealing on electrical resistance.

    PubMed

    Langley, D P; Lagrange, M; Giusti, G; Jiménez, C; Bréchet, Y; Nguyen, N D; Bellet, D

    2014-11-21

    Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq(-1). Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays. PMID:25267592

  14. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    SciTech Connect

    Irshad, M. I. Mohamed, N. M. Yar, A.; Ahmad, F. Abdullah, M. Z.

    2015-07-22

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO{sub 4.}6H{sub 2}O buffered with H{sub 3}BO{sub 3} and acidized by dilute H{sub 2}SO{sub 4}. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (∼ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  15. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating

    PubMed Central

    Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin

    2015-01-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. PMID:26527570

  16. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating.

    PubMed

    Rickey, Kelly M; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S Venkataprasad; Wu, Yue; Cheng, Gary J; Ruan, Xiulin

    2015-01-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~10(5) Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films.

  17. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating

    NASA Astrophysics Data System (ADS)

    Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin

    2015-11-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films.

  18. Virus-templated iridium oxide-gold hybrid nanowires for electrochromic application

    NASA Astrophysics Data System (ADS)

    Nam, Yoon Sung; Park, Heechul; Magyar, Andrew P.; Yun, Dong Soo; Pollom, Thomas S.; Belcher, Angela M.

    2012-05-01

    A highly porous electrode comprised of biologically templated iridium oxide-gold (IrO2-Au) hybrid nanowires is introduced for electrochromic applications. A filamentous M13 virus is genetically engineered to display IrO2-binding peptides on the viral surface and used as a template for the self-assembly of IrO2 nanoclusters into a nanowire. The open porous morphology of the prepared nanowire film facilitates ion transport. Subsequently, the redox kinetics of the IrO2 nanowires seems to be limited by the electric resistance of the nanowire film. To increase the electron mobility in the nanowires, gold nanoparticles are chemically linked to the virus prior to the IrO2 mineralization, forming a gold nanostring structure along the long axis of the virus. The resulting IrO2-Au hybrid nanowires exhibit a switching time of 35 ms for coloration and 25 ms for bleaching with a transmission change of about 30.5% at 425 nm. These values represent almost an order of magnitude faster switching responses than those of an IrO2 nanowire film having the similar optical contrast. This work shows that genetically engineered viruses can serve as versatile templates to co-assemble multiple functional molecules, enabling control of the electrochemical properties of nanomaterials.A highly porous electrode comprised of biologically templated iridium oxide-gold (IrO2-Au) hybrid nanowires is introduced for electrochromic applications. A filamentous M13 virus is genetically engineered to display IrO2-binding peptides on the viral surface and used as a template for the self-assembly of IrO2 nanoclusters into a nanowire. The open porous morphology of the prepared nanowire film facilitates ion transport. Subsequently, the redox kinetics of the IrO2 nanowires seems to be limited by the electric resistance of the nanowire film. To increase the electron mobility in the nanowires, gold nanoparticles are chemically linked to the virus prior to the IrO2 mineralization, forming a gold nanostring

  19. Improved mechanical stability of acetoxypropyl cellulose upon blending with ultranarrow PbS nanowires in Langmuir monolayer matrix.

    PubMed

    Maji, Subrata; Kundu, Sudarshan; Pinto, L F V; Godinho, M H; Khan, Ali Hossain; Acharya, Somobrata

    2013-12-10

    Cellulose and cellulose derivatives have long been used as membrane fabrication. Langmuir monolayer behavior, which naturally mimics membranes, of acetoxypropyl cellulose (APC) and lead sulfide (PbS) nanowire mixtures at different volume ratios is reported. Surface pressure (π)-area (A) isotherms of APC and PbS nanowires mixtures at different volume ratios show a gradual decrease in the monolayer area with increasing volume fraction of PbS nanowires. Change of surface potential with monolayer area at different volume ratios also reveals a gradual increase in the surface potential indicating incorporation of PbS nanowires within APC matrix. The compressibility and elastic constants measurements reveal an enhancement of the elasticity upon incorporation of PbS nanowires up to certain volume fractions. An enhancement in stability of the blend is observed upon PbS nanowire incorporation to the APC matrix. Rheological measurements also support the robustness of the mixture of APC and PbS nanowires in 3D bulk phase. Such robust ultrathin films of cellulose based-nanowire blend obtained by means of the Langmuir technique may lead to novel routes for designing cellulosic-based thin films and membranes.

  20. Reduced Joule heating in nanowires

    NASA Astrophysics Data System (ADS)

    Léonard, François

    2011-03-01

    The temperature distribution in nanowires due to Joule heating is studied analytically using a continuum model and a Green's function approach. We show that the temperatures reached in nanowires can be much lower than that predicted by bulk models of Joule heating, due to heat loss at the nanowire surface that is important at nanoscopic dimensions, even when the thermal conductivity of the environment is relatively low. In addition, we find that the maximum temperature in the nanowire scales weakly with length, in contrast to the bulk system. A simple criterion is presented to assess the importance of these effects. The results have implications for the experimental measurements of nanowire thermal properties, for thermoelectric applications, and for controlling thermal effects in nanowire electronic devices.

  1. Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors.

    PubMed

    Dou, Letian; Cui, Fan; Yu, Yi; Khanarian, Garo; Eaton, Samuel W; Yang, Qin; Resasco, Joaquin; Schildknecht, Christian; Schierle-Arndt, Kerstin; Yang, Peidong

    2016-02-23

    Copper nanowire (Cu NW) based transparent conductors are promising candidates to replace ITO (indium-tin-oxide) owing to the high electrical conductivity and low-cost of copper. However, the relatively low performance and poor stability of Cu NWs under ambient conditions limit the practical application of these devices. Here, we report a solution-based approach to wrap graphene oxide (GO) nanosheets on the surface of ultrathin copper nanowires. By mild thermal annealing, GO can be reduced and high quality Cu r-GO core-shell NWs can be obtained. High performance transparent conducting films were fabricated with these ultrathin core-shell nanowires and excellent optical and electric performance was achieved. The core-shell NW structure enables the production of highly stable conducting films (over 200 days stored in air), which have comparable performance to ITO and silver NW thin films (sheet resistance ∼28 Ω/sq, haze ∼2% at transmittance of ∼90%). PMID:26820809

  2. Electrochemically Grown Single Nanowire Sensors

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Penner, Reginald; Bangar, Mangesh; Mulchandani, Ashok; Myung, Nosang V.

    2004-01-01

    We report a fabrication technique that is potentially capable of producing arrays of individually addressable nanowire sensors with controlled dimensions, positions, alignments, and chemical compositions. The concept has been demonstrated with electrodeposition of palladium wires with 75 nm to 350 nm widths. We have also fabricated single and double conducting polymer nanowires (polyaniline and polypyrrole) with 100nm and 200nm widths using electrochemical direct growth. Using single Pd nanowires, we have also demonstrated hydrogen sensing. It is envisioned that these are the first steps towards nanowire sensor arrays capable of simultaneously detecting multiple chemical species.

  3. Melting and superheating of nanowires--a nanotube approach.

    PubMed

    Sar, Dillip Kumar; Nanda, Karuna Kar

    2010-05-21

    We have investigated the size-dependent melting of nanotubes based on a thermodynamic approach and shown that the melting temperature of nanotubes depends on the outer radius and on the inner radius through the thickness of the nanotubes. Size-dependent melting of nanowires and thin films has been derived from that of nanotubes. We validate the size-dependent melting of nanotubes, nanowires and thin films by comparing the results with available molecular dynamic simulations and experimental results. It has also been inferred that superheating occurs when the melting starts from the inner surface and proceeds towards the outer surface, while melting point depression occurs when the melting starts from the outer surface and proceeds towards the inner surface. PMID:20413835

  4. Self-assembled ZnO agave-like nanowires and anomalous superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Yang, Y. H.; Li, Z. Y.; Wang, B.; Wang, C. X.; Chen, D. H.; Yang, G. W.

    2005-09-01

    Thin films of ZnO agave-like nanowires were prepared on amorphous carbon thin layers on silicon substrates using thermal chemical vapour transport and condensation without any metal catalysts. The unusual superhydrophobicity of the fabricated surface was measured; the water contact angle reaches 151.1°. On the basis of experimental and theoretical analyses, it appears likely that the biomimetic microcomposite and nanocomposite surfaces of the prepared thin films of ZnO agave-like nanowires are responsible for the excellent superhydrophobicity.

  5. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation.

    PubMed

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-01-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching. PMID:27600368

  6. Long-Range Superconducting Proximity Effect in Template-Fabricated Single-Crystal Nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Wenhao; Liu, Haidong; Wei, Zhiyuan; Schultz, Isabel

    2011-03-01

    We study a superconducting proximity effect observed in single-crystal nanowires of Zn, Sn, and Pb of length up to 60 μ m. These nanowires are electrochemically deposited into the pores of anodic aluminum oxide membranes and polycarbonate membranes. Using an in situ self-contacting method, single nanowires are electrically contacted on both ends to a pair of macroscopic film electrodes of Au, Sn, or Pb pre-fabricated on both surfaces of the membranes. Superconductivity in the nanowires is strongly suppressed when Au electrodes are used. When electrodes having higher superconducting transition temperatures are used, the nanowires become superconducting at the transition temperatures of the electrodes. Microscopy analyses of the structure and the chemical composition of the nanowires will be presented. Measurements of sample resistance and I - V characteristics at various temperatures and magnetic fields will also be presented. Furthermore, the effects of the length, the diameter, and the residual resistance ratio of the nanowires on the proximity induced superconductivity will be analyzed and discussed. Supported by NSF DMR-0551813 and DMR-0606529.

  7. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation

    PubMed Central

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-01-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching. PMID:27600368

  8. Doped GaN nanowires on diamond: Structural properties and charge carrier distribution

    NASA Astrophysics Data System (ADS)

    Schuster, Fabian; Winnerl, Andrea; Weiszer, Saskia; Hetzl, Martin; Garrido, Jose A.; Stutzmann, Martin

    2015-01-01

    In this work, we present a detailed study on GaN nanowire doping, which is vital for device fabrication. The nanowires (NWs) are grown by means of molecular beam epitaxy on diamond (111) substrates. Dopant atoms are found to facilitate nucleation, thus an increasing NW density is observed for increasing dopant fluxes. While maintaining nanowire morphology, we demonstrate the incorporation of Si and Mg up to concentrations of 9 × 1020cm-3 and 1 × 1020cm-3 , respectively. The dopant concentration in the nanowire cores is determined by the thermodynamic solubility limit, whereas excess dopants are found to segregate to the nanowire surface. The strain state of the NWs is investigated by X-ray diffraction, which confirms a negligible strain compared to planar thin films. Doping-related emissions are identified in low-temperature photoluminescence spectroscopy and the temperature quenching yields ionization energies of Si donors and Mg acceptors of 17 meV and 167 meV, respectively. At room temperature, luminescence and absorption spectra are found to coincide and the sub-band gap absorption is suppressed in n-type NWs. The charge carrier distribution in doped GaN nanowires is simulated under consideration of surface states at the non-polar side facets. For doping concentrations below 1017cm-3 , the nanowires are depleted of charge carriers, whereas they become highly conductive above 1019cm-3 .

  9. Solution-Phase Epitaxial Growth of Quasi-Monocrystalline Cuprous Oxide on Metal Nanowires

    PubMed Central

    2014-01-01

    The epitaxial growth of monocrystalline semiconductors on metal nanostructures is interesting from both fundamental and applied perspectives. The realization of nanostructures with excellent interfaces and material properties that also have controlled optical resonances can be very challenging. Here we report the synthesis and characterization of metal–semiconductor core–shell nanowires. We demonstrate a solution-phase route to obtain stable core–shell metal–Cu2O nanowires with outstanding control over the resulting structure, in which the noble metal nanowire is used as the nucleation site for epitaxial growth of quasi-monocrystalline Cu2O shells at room temperature in aqueous solution. We use X-ray and electron diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, and absorption spectroscopy, as well as density functional theory calculations, to characterize the core–shell nanowires and verify their structure. Metal–semiconductor core–shell nanowires offer several potential advantages over thin film and traditional nanowire architectures as building blocks for photovoltaics, including efficient carrier collection in radial nanowire junctions and strong optical resonances that can be tuned to maximize absorption. PMID:25233392

  10. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation.

    PubMed

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-01-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching.

  11. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts.

    PubMed

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-12-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 10(17)/m(3) orders of magnitude, which is practicable for most discharging applications.

  12. Formation of nanowires via single particle-triggered linear polymerization of solid-state aromatic molecules.

    PubMed

    Horio, Akifumi; Sakurai, Tsuneaki; Lakshmi, G B V S; Kumar Avasthi, Devesh; Sugimoto, Masaki; Yamaki, Tetsuya; Seki, Shu

    2016-08-11

    Nanowires occupy a prestigious place in nanoelectronics, nanomechanics, and biomimetics. Although there are notable methods to grow nanowires via self-assembly, there is a key drawback in the need to find out the specific conditions appropriate for each system. In this sense, universal techniques to fabricate such nanowires from various organic materials have been sought for the continued progress of the related research field. Here we report one of the promising and facile methodologies to quantitatively produce nanowires with controlled geometrical parameters. In this method, referred to as "Single Particle-Triggered Linear Polymerization (STLiP)", organic thin films on a supporting substrate were irradiated with high-energy charged particles, accelerated by particle accelerators. Each particle penetrates from the top of the films to the substrate while gradually releasing kinetic energy along its trajectory (ion track), generating reactive intermediates such as radical species that eventually induce propagation reactions. The resulting polymerized products were integrated into nanowires with uniform diameter and length that can be isolated via development with appropriate organic solvents. Considering the widely applicable nature of STLiP to organic materials, the present technique opens a new door for access to a number of functional nanowires and their assembly.

  13. Fabrication of superconducting NbN meander nanowires by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Li-Hua, Liu; Lu-Hui, Ning; Yi-Rong, Jin; Hui, Deng; Jie, Li; Yang, Li; Dong-Ning, Zheng

    2016-01-01

    Superconducting nanowire single photon detector (SNSPD), as a new type of superconducting single photon detector (SPD), has a broad application prospect in quantum communication and other fields. In order to prepare SNSPD with high performance, it is necessary to fabricate a large area of uniform meander nanowires, which is the core of the SNSPD. In this paper, we demonstrate a process of patterning ultra-thin NbN films into meander-type nanowires by using the nano-imprint technology. In this process, a combination of hot embossing nano-imprint lithography (HE-NIL) and ultraviolet nano-imprint lithography (UV-NIL) is used to transfer the meander nanowire structure from the NIL Si hard mold to the NbN film. We have successfully obtained a NbN nanowire device with uniform line width. The critical temperature (Tc) of the superconducting NbN meander nanowires is about 5 K and the critical current (Ic) is about 3.5 μA at 2.5 K. Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00106 and 2009CB929102) and the National Natural Science Foundation of China (Grant Nos. 11104333 and 10974243).

  14. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    SciTech Connect

    Liu Suwen; Wehmschulte, Rudolf J. . E-mail: rwehmsch@fit.edu; Lian Guoda; Burba, Christopher M.

    2006-03-15

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 {mu}m, some even more than 100 {mu}m, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)

  15. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts.

    PubMed

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-12-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 10(17)/m(3) orders of magnitude, which is practicable for most discharging applications. PMID:26880727

  16. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-02-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 1017/m3 orders of magnitude, which is practicable for most discharging applications.

  17. Formation of nanowires via single particle-triggered linear polymerization of solid-state aromatic molecules.

    PubMed

    Horio, Akifumi; Sakurai, Tsuneaki; Lakshmi, G B V S; Kumar Avasthi, Devesh; Sugimoto, Masaki; Yamaki, Tetsuya; Seki, Shu

    2016-08-11

    Nanowires occupy a prestigious place in nanoelectronics, nanomechanics, and biomimetics. Although there are notable methods to grow nanowires via self-assembly, there is a key drawback in the need to find out the specific conditions appropriate for each system. In this sense, universal techniques to fabricate such nanowires from various organic materials have been sought for the continued progress of the related research field. Here we report one of the promising and facile methodologies to quantitatively produce nanowires with controlled geometrical parameters. In this method, referred to as "Single Particle-Triggered Linear Polymerization (STLiP)", organic thin films on a supporting substrate were irradiated with high-energy charged particles, accelerated by particle accelerators. Each particle penetrates from the top of the films to the substrate while gradually releasing kinetic energy along its trajectory (ion track), generating reactive intermediates such as radical species that eventually induce propagation reactions. The resulting polymerized products were integrated into nanowires with uniform diameter and length that can be isolated via development with appropriate organic solvents. Considering the widely applicable nature of STLiP to organic materials, the present technique opens a new door for access to a number of functional nanowires and their assembly. PMID:27355341

  18. Soluble polymer-based, blown bubble assembly of single- and double-layer nanowires with shape control.

    PubMed

    Wu, Shiting; Huang, Kai; Shi, Enzheng; Xu, Wenjing; Fang, Ying; Yang, Yanbing; Cao, Anyuan

    2014-04-22

    We present here an efficient blown bubble method for large-scale assembly of semiconducting nanowires, with simultaneous control on the material shape. As-synthesized Te nanowires in powder form are dispersed in a polymethylmethacrylate (PMMA) solution, assembled in a large size bubble blown from the solution, and then transferred (repeatedly) to arbitrary substrates. By this way, we have obtained single-layer (aligned) and double-layer (crossed) Te nanowires as well as buckled Te nanosprings which are converted from initially straight nanowires in situ during bubble blowing. The PMMA bubble film can be removed by direct dissolution in acetone to expose nanostructures with clean surface while maintaining original configuration. After matrix removal, these clean nanowire and nanospring arrays can be fabricated into functional nanoelectronic devices such as photodetectors and gas sensors with high performance.

  19. Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors.

    PubMed

    Cui, Fan; Yu, Yi; Dou, Letian; Sun, Jianwei; Yang, Qin; Schildknecht, Christian; Schierle-Arndt, Kerstin; Yang, Peidong

    2015-11-11

    Colloidal metal nanowire based transparent conductors are excellent candidates to replace indium-tin-oxide (ITO) owing to their outstanding balance between transparency and conductivity, flexibility, and solution-processability. Copper stands out as a promising material candidate due to its high intrinsic conductivity and earth abundance. Here, we report a new synthetic approach, using tris(trimethylsilyl)silane as a mild reducing reagent, for synthesizing high-quality, ultrathin, and monodispersed copper nanowires, with an average diameter of 17.5 nm and a mean length of 17 μm. A study of the growth mechanism using high-resolution transmission electron microscopy reveals that the copper nanowires adopt a five-fold twinned structure and evolve from decahedral nanoseeds. Fabricated transparent conducting films exhibit excellent transparency and conductivity. An additional advantage of our nanowire transparent conductors is highlighted through reduced optical haze factors (forward light scattering) due to the small nanowire diameter.

  20. Electrodeposited germanium nanowires.

    PubMed

    Mahenderkar, Naveen K; Liu, Ying-Chau; Koza, Jakub A; Switzer, Jay A

    2014-09-23

    Germanium (Ge) is a group IV semiconductor with superior electronic properties compared with silicon, such as larger carrier mobilities and smaller effective masses. It is also a candidate anode material for lithium-ion batteries. Here, a simple, one-step method is introduced to electrodeposit dense arrays of Ge nanowires onto indium tin oxide (ITO) substrates from aqueous solution. The electrochemical reduction of ITO produces In nanoparticles that act as a reduction site for aqueous Ge(IV) species, and as a solvent for the crystallization of Ge nanowires. Nanowires deposited at 95 °C have an average diameter of 100 nm, whereas those deposited at room temperature have an average diameter of 35 nm. Both optical absorption and Raman spectroscopy suggest that the electrodeposited Ge is degenerate. The material has an indirect bandgap of 0.90-0.92 eV, compared with a value of 0.67 eV for bulk, intrinsic Ge. The blue shift is attributed to the Moss-Burstein effect, because the material is a p-type degenerate semiconductor. On the basis of the magnitude of the blue shift, the hole concentration is estimated to be 8 × 10(19) cm(-3). This corresponds to an In impurity concentration of about 0.2 atom %. The resistivity of the wires is estimated to be 4 × 10(-5) Ω·cm. The high conductivity of the wires should make them ideal for lithium-ion battery applications. PMID:25157832

  1. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Sibirev, N. V.; Berdnikov, Y.; Gomes, U. P.; Ercolani, D.; Zannier, V.; Sorba, L.

    2016-09-01

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.

  2. Interplay between the magnetic and magneto-transport properties of 3D interconnected nanowire networks

    NASA Astrophysics Data System (ADS)

    da Câmara Santa Clara Gomes, Tristan; De La Torre Medina, Joaquín; Velázquez-Galván, Yenni G.; Martínez-Huerta, Juan Manuel; Encinas, Armando; Piraux, Luc

    2016-07-01

    We have explored the interplay between the magnetic and magneto-transport properties of 3D interconnected nanowire networks made of various magnetic metals by electrodeposition into nanoporous membranes with crossed channels and controlled topology. The close relationship between their magnetic and structural properties has a direct impact on their magneto-transport behavior. In order to accurately and reliably describe the effective magnetic anisotropy and anisotropic magnetoresistance, an analytical model inherent to the topology of 3D nanowire networks is proposed and validated. The feasibility to obtain magneto-transport responses in nanowire network films based on interconnected nanowires makes them very attractive for the development of mechanically stable superstructures that are suitable for potential technological applications.

  3. Liquid-like instabilities in gold nanowires fabricated by focused ion beam lithography

    NASA Astrophysics Data System (ADS)

    Naik, J. P.; Das, K.; Prewett, P. D.; Raychaudhuri, A. K.; Chen, Yifang

    2012-10-01

    Observation of liquid-like instabilities is reported in Au nanowires formed by nanopatterning of Au films using focused ion beam (FIB) on different types of Si substrates including those passivated with SiO2 or Si3N4 surfaces. The onset of the instability, which can ultimately lead to break up of the FIB patterned nanowires into gold islands, occurs when the diameter of the nanowire is below a critical range, which depends on the conductivity of the substrate and the extent of native oxide present on it. We also observe the formation of Taylor cones on very narrow nanowires grown on insulating substrates at the onset of instabilities. This effect is further strong evidence of liquid behaviour and is the result of charging of the wires during FIB nanofabrication.

  4. Decoupling single nanowire mobilities limited by surface scattering and bulk impurity scattering

    SciTech Connect

    Khanal, D. R.; Levander, A. X.; Wu, J.; Yu, K. M.; Liliental-Weber, Z.; Walukiewicz, W.; Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.

    2011-08-01

    We demonstrate the isolation of two free carrier scattering mechanisms as a function of radial band bending in InN nanowires via universal mobility analysis, where effective carrier mobility is measured as a function of effective electric field in a nanowire field-effect transistor. Our results show that Coulomb scattering limits effective mobility at most effective fields, while surface roughness scattering only limits mobility under very high internal electric fields. High-energy {alpha} particle irradiation is used to vary the ionized donor concentration, and the observed decrease in mobility and increase in donor concentration are compared to Hall effect results of high-quality InN thin films. Our results show that for nanowires with relatively high doping and large diameters, controlling Coulomb scattering from ionized dopants should be given precedence over surface engineering when seeking to maximize nanowire mobility.

  5. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires.

    PubMed

    Dubrovskii, V G; Sibirev, N V; Berdnikov, Y; Gomes, U P; Ercolani, D; Zannier, V; Sorba, L

    2016-09-16

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.

  6. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires.

    PubMed

    Dubrovskii, V G; Sibirev, N V; Berdnikov, Y; Gomes, U P; Ercolani, D; Zannier, V; Sorba, L

    2016-09-16

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires. PMID:27501469

  7. Electrospinning of superconducting YBCO nanowires

    NASA Astrophysics Data System (ADS)

    Duarte, Edgar A.; Rudawski, Nicholas G.; Quintero, Pedro A.; Meisel, Mark W.; Nino, Juan C.

    2015-01-01

    YBa2Cu3O7-δ (YBCO) nanowires with critical transition temperature Tc = 91.7 K were synthesized by an electrospinning process with the use of sol-gel precursors. A homogeneous polymeric solution containing Y, Ba, and Cu acetates was electrospun, resulting in collections of randomly oriented nanowires as well as bundles of aligned nanowires. Fully crystallized YBCO nanowires were obtained after calcination at temperatures as low as 820 °C. The morphology, microstructure, and crystal structure were investigated, and the diameters of the polycrystalline nanowires varied between 120 and 550 nm depending on the viscosity of the precursors. Thinner individual wires, with diameters in the 50-80 nm range, were synthesized with a single grain structure across the entire wire cross-section.

  8. Scalable flame synthesis of SiO2 nanowires: dynamics of growth.

    PubMed

    Tricoli, Antonio; Righettoni, Marco; Krumeich, Frank; Stark, Wendelin J; Pratsinis, Sotiris E

    2010-11-19

    Silica nanowire arrays were grown directly onto plain glass substrates by scalable flame spray pyrolysis of organometallic solutions (hexamethyldisiloxane or tetraethyl orthosilicate). The silicon dioxide films consisted of a network of interwoven nanowires from a few to several hundred nanometres long (depending on the process conditions) and about 20 nm in diameter, as determined by scanning electron microscopy. These films were formed rapidly (within 10-20 s) at high growth rates (ca 11-30 nm s(-1)) by chemical vapour deposition (surface growth) at ambient conditions on the glass substrate as determined by thermophoretic sampling of the flame aerosol and microscopy. In contrast, on high purity quartz nearly no nanowires were grown while on steel substrates porous SiO(2) films were formed. Functionalization with perfluorooctyl triethoxysilane converted the nanowire surface from super-hydrophilic to hydrophobic. Additionally, their hermetic coating by thin carbon layers was demonstrated also revealing their potential as substrates for synthesis of other functional 1D composite structures. This approach is a significant step towards large scale synthesis of SiO(2) nanowires facilitating their utilization in several applications. PMID:20972311

  9. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.

    PubMed

    El Mel, A A; Buffière, M; Bouts, N; Gautron, E; Tessier, P Y; Henzler, K; Guttmann, P; Konstantinidis, S; Bittencourt, C; Snyders, R

    2013-07-01

    The growth of single-crystal CuO nanowires by thermal annealing of copper thin films in air is studied. We show that the density, length, and diameter of the nanowires can be controlled by tuning the morphology and structure of the copper thin films deposited by DC magnetron sputtering. After identifying the optimal conditions for the growth of CuO nanowires, chemical bath deposition is employed to coat the CuO nanowires with CdS in order to form p-n nanojunction arrays. As revealed by high-resolution TEM analysis, the thickness of the polycrystalline CdS shell increases when decreasing the diameter of the CuO core for a given time of CdS deposition. Near-edge x-ray absorption fine-structure spectroscopy combined with transmission x-ray microscopy allows the chemical analysis of isolated nanowires. The absence of modification in the spectra at the Cu L and O K edges after the deposition of CdS on the CuO nanowires indicates that neither Cd nor S diffuse into the CuO phase. We further demonstrate that the core-shell nanowires exhibit the I-V characteristic of a resistor instead of a diode. The electrical behavior of the device was found to be photosensitive, since increasing the incident light intensity induces an increase in the collected electrical current.

  10. Effect of substrate temperature on the microstructural properties of titanium nitride nanowires grown by pulsed laser deposition

    SciTech Connect

    Gbordzoe, S. Kotoka, R.; Craven, Eric; Kumar, D.; Wu, F.; Narayan, J.

    2014-08-14

    The current work reports on the growth and microstructural characterization of titanium nitride (TiN) nanowires on single crystal silicon substrates using a pulsed laser deposition method. The physical and microstructural properties of the nanowires were characterized using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The corrosion properties of the TiN nanowires compared to TiN thin film were evaluated using Direct Current potentiodynamic and electrochemical impedance spectroscopy. The nanowires corroded faster than the TiN thin film, because the nanowires have a larger surface area which makes them more reactive in a corrosive environment. It was observed from the FESEM image analyses that as the substrate temperature increases from 600 °C to 800 °C, there was an increase in both diameter (25 nm–50 nm) and length (150 nm–250 nm) of the nanowire growth. There was also an increase in spatial density with an increase of substrate temperature. The TEM results showed that the TiN nanowires grow epitaxially with the silicon substrate via domain matching epitaxy paradigm, despite a large misfit.

  11. Large-area alignment of tungsten oxide nanowires over flat and patterned substrates for room-temperature gas sensing.

    PubMed

    Cheng, Wei; Ju, Yanrui; Payamyar, Payam; Primc, Darinka; Rao, Jingyi; Willa, Christoph; Koziej, Dorota; Niederberger, Markus

    2015-01-01

    Alignment of nanowires over a large area of flat and patterned substrates is a prerequisite to use their collective properties in devices such as gas sensors. In this work, uniform single-crystalline ultrathin W18 O49 nanowires with diameters less than 2 nm and aspect ratios larger than 100 have been synthesized, and, despite their flexibility, assembled into thin films with high orientational order over a macroscopic area by the Langmuir-Blodgett technique. Alignment of the tungsten oxide nanowires was also possible on top of sensor substrates equipped with electrodes. Such sensor devices were found to exhibit outstanding sensitivity to H2 at room temperature. PMID:25412600

  12. III-Nitride Nanowire Lasers

    SciTech Connect

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit

  13. III-nitride nanowire lasers

    NASA Astrophysics Data System (ADS)

    Wright, Jeremy Benjamin

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key figure of merit that allows for nanowire lasing is the relatively high optical confinement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve single-mode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode operation. The first method involves reducing the diameter of individual nanowires to the cut-off condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter efficiency. Advances in nanowire fabrication, specifically a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip

  14. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    PubMed Central

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  15. An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks

    PubMed Central

    2011-01-01

    Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman. PMID:21849077

  16. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kuo, Shou-Yi; Lin, Hsin-I.

    2014-02-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol-gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol-gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices.

  17. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays.

    PubMed

    Kuo, Shou-Yi; Lin, Hsin-I

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol-gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol-gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  18. Nonequilibrium microstructures for Ag-Ni nanowires.

    PubMed

    Rai, Rajesh K; Srivastava, Chandan

    2015-04-01

    This work illustrates that a variety of nanowire microstructures can be obtained either by controlling the nanowire formation kinetics or by suitable thermal processing of as-deposited nanowires with nonequilibrium metastable microstructure. In the present work, 200-nm diameter Ag-Ni nanowires with similar compositions, but with significantly different microstructures, were electrodeposited. A 15 mA deposition current produced nanowires in which Ag-rich crystalline nanoparticles were embedded in a Ni-rich amorphous matrix. A 3 mA deposition current produced nanowires in which an Ag-rich crystalline phase formed a backbone-like configuration in the axial region of the nanowire, whereas the peripheral region contained Ni-rich nanocrystalline and amorphous phases. Isothermal annealing of the nanowires illustrated a phase evolution pathway that was extremely sensitive to the initial nanowire microstructure.

  19. Catalyzed oxidation for nanowire growth

    NASA Astrophysics Data System (ADS)

    Tai, Kaiping; Sun, Ke; Huang, Bo; Dillon, Shen J.

    2014-04-01

    A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600 °C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.

  20. Catalyzed oxidation for nanowire growth.

    PubMed

    Tai, Kaiping; Sun, Ke; Huang, Bo; Dillon, Shen J

    2014-04-11

    A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600 °C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.

  1. Nanocrystalline nanowires: III. Electrons.

    PubMed

    Allen, Philip B

    2007-05-01

    Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction and typically have some rotational symmetry around this direction. Electron eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number) are discussed. The rotational quantum number simplifies discussion of optical properties. For m not equal 0, the +/-m degeneracy allows orbital magnetism. The simplest sensible model which is more complex than a one-dimensional chain is solved. Methods are suggested for incorporating rotational symmetry into preexisting codes with three-dimensional translations.

  2. Nanocrystalline nanowires: 2. Phonons.

    PubMed

    Allen, Philip B

    2007-01-01

    Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction. A construction is given for calculating eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number). Vibrational harmonic eigenstates are worked out explicitly for a simple model, illustrating the general results: the LA mode has m=0, while with sufficient rotational symmetry, the TA branch is doubly degenerate, has m=+/-1, and has quadratic dispersion with k for k less than the reciprocal diameter of the NCNW. The twiston branch (a fourth Goldstone boson) is an acoustic m=0 branch, additional to the LA and two TA branches.

  3. Nanoantennas for nanowire photovoltaics

    SciTech Connect

    Alisafaee, Hossein; Fiddy, Michael A.

    2014-09-15

    We consider the use of plasmonic nanoantenna elements, hemispherical and cylindrical, for application in semiconductor nanowire (NW) vertical arrays. Using Mie theory and a finite element method, scattering and absorption efficiencies are obtained for the desired enhancement of interaction with light in the NWs. We find an optimal mixture of nanoantennae for efficient scattering of solar spectrum in the NW array. Spectral radiation patterns of scattered light are computed, and, for representing the total response of the nanoantenna-equipped NWs to the solar AM1.5G spectrum, the weighted average of scattering patterns for unpolarized normal incidence is obtained showing an advantageous overall directivity toward the NWs.

  4. Thickness dependent self limiting 1-D tin oxide nanowire arrays by nanosecond pulsed laser irradiation

    SciTech Connect

    Shirato, N.; Strader, J.; Kumar, Amit; Vincent, A.; Zhang, P.; Karakoti, Ajay S.; Nachimuthu, Ponnusamy; Cho, H-J.; Seal, Sudipta; Kalyanaraman, R.

    2011-01-23

    Fast, sensitive and discriminating detection of hydrogen at room temperature is crucial for storage, transportation, and distribution of hydrogen as an energy source. One dimensional nanowires of SnO2 are potential candidates for improved H2 sensor performance. The single directional conducting continuous nanowires can decrease electrical noise, and their large active surface area could improve the response and recovery time of the sensor. In this work we discuss synthesis and characterization of nanowire arrays made using nanosecond ultraviolet wavelength (266 nm) laser interference processing of ultrathin SnO2 films on SiO2 substrates. The laser energy was chosen to be above the melting point of the films. The results show that the final nanowire formation is dominated by preferential evaporation as compared to thermocapillary flow. The nanowire height (and hence wire aspect ratio) increased with increasing initial film thickness ho and with increasing laser energy density Eo. Furthermore, a self-limiting effect was observed where-in the wire formation ceased at a specific final remaining thickness of SnO2 that was almost independent of ho for a given Eo. To understand these effects, finite element modeling of the nanoscale laser heating was performed. This showed that the temperature rise under laser heating was a strong non-monotonic function of film thickness. As a result, the preferential evaporation rate varies as wire formation occurs, eventually leading to a shut-off of evaporation at a characteristic thickness. This results in the stoppage of wire formation. This combination of nanosecond pulsed laser experiments and thermal modeling shows that several unique synthesis approaches can be utilized to control the nanowire characteristics.

  5. Terahertz sensing using ferroelectric nanowires.

    PubMed

    Herchig, R; Schultz, Kimberly; McCash, Kevin; Ponomareva, I

    2013-02-01

    Molecular dynamics simulations are used to study the interaction of ferroelectric nanowires with terahertz (THz) Gaussian-shaped pulses of electric field. The computational data indicate the existence of two interaction scenarios that are associated with 'lossless' and dissipative, or 'lossy', interaction mechanisms. A thermodynamical approach is used to analyze the computational data for a wide range of THz pulses. The analysis establishes the foundation for understanding the nanowires' response to the THz pulses and reveals the potential of ferroelectric nanowires to function as nanoscale sensors of THz radiation. Various aspects of this THz nanosensing are analyzed and discussed.

  6. Fivefold twinned boron carbide nanowires.

    PubMed

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  7. Conducting polyaniline nanowire electrode junction

    NASA Astrophysics Data System (ADS)

    Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Koinkar, Pankaj; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In this paper, a synthesis of conducting polyaniline nanowires electrode junction (CPNEJ) has been reported. Conducting polyaniline nanowires electrode junction on Si/SiO2 substrate (having 3 μm gap between two gold microelectrodes) is prepared. Polyaniline nanowires with diameter (ca. 140 nm to 160 nm) were synthesized by one step electrochemical polymerization using galvanostatic (constant current) technique to bridge this gap. The surface morphology of CPNEJ was studied by scanning electron microscope (SEM). The synthesized CPNEJ is an excellent platform for biosensor applications.

  8. Nanowire terahertz quantum cascade lasers

    SciTech Connect

    Grange, Thomas

    2014-10-06

    Quantum cascade lasers made of nanowire axial heterostructures are proposed. The dissipative quantum dynamics of their carriers is theoretically investigated using non-equilibrium Green functions. Their transport and gain properties are calculated for varying nanowire thickness, from the classical-wire regime to the quantum-wire regime. Our calculation shows that the lateral quantum confinement provided by the nanowires allows an increase of the maximum operation temperature and a strong reduction of the current density threshold compared to conventional terahertz quantum cascade lasers.

  9. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  10. Polyaniline nanowire synthesis templated by DNA

    NASA Astrophysics Data System (ADS)

    Nickels, Patrick; Dittmer, Wendy U.; Beyer, Stefan; Kotthaus, Jörg P.; Simmel, Friedrich C.

    2004-11-01

    DNA-templated polyaniline nanowires and networks are synthesized using three different methods. The resulting DNA/polyaniline hybrids are fully characterized using atomic force microscopy, UV-vis spectroscopy and current-voltage measurements. Oxidative polymerization of polyaniline at moderate pH values is accomplished using ammonium persulfate as an oxidant, or alternatively in an enzymatic oxidation by hydrogen peroxide using horseradish peroxidase, or by photo-oxidation using a ruthenium complex as photo-oxidant. Atomic force microscopy shows that all three methods lead to the preferential growth of polyaniline along DNA templates. With ammonium persulfate, polyaniline can be grown on DNA templates already immobilized on a surface. Current-voltage measurements are successfully conducted on DNA/polyaniline networks synthesized by the enzymatic method and the photo-oxidation method. The conductance is found to be consistent with values measured for undoped polyaniline films.

  11. Interactions between semiconductor nanowires and living cells.

    PubMed

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  12. Thermally induced percolational transition and thermal stability of silver nanowire networks studied by THz spectroscopy.

    PubMed

    Chen, Jing-Zhi; Ahn, Hyeyoung; Yen, Shin-Chun; Tsai, Yao-Jiun

    2014-12-10

    Great demand toward flexible optoelectronic devices finds metal nanowires (NWs) the most promising flexible transparent conducting material with superior mechanical properties. However, ultrathin metal nanowires suffer from relatively poor thermal stability and sheet conductance, attributed to the poor adhesivity of the ohmic contact between nanowires. Thermal heating and annealing at 200 °C increase the conductivity of the metal network, but prolonged annealing accelerates the breakage of NWs near the NW junction and the formation of Ag droplets. In this study, the thermal stability of silver NW (AgNW) films is investigated through the in situ measurements of sheet resistance and terahertz (THz) conductivity. With the improved ohmic contact at the NW junctions by heating, a characteristic transition from the subpercolative to percolative network is observed by in situ THz spectroscopy. It is found that stamp-transferred graphene incorporated with a near-percolative AgNW network can dramatically enhance the thermal stability of the graphene-AgNW (GAgNW) hybrid film. In both in situ measurements, little variation of physical parameters in GAgNW film is observed for up to 3 h of annealing. The presented results offer the potential of graphene-incorporated metal nanowire film as a highly conductive electrode that also has high thermal stability and excellent transparency for next-generation electronics and optoelectronics on flexible substrates. PMID:25402346

  13. Silicide Nanowires for Low-Resistance CMOS Transistor Contacts.

    NASA Astrophysics Data System (ADS)

    Zollner, Stefan

    2007-03-01

    Transition metal (TM) silicide nanowires are used as contacts for modern CMOS transistors. (Our smallest wires are ˜20 nm thick and ˜50 nm wide.) While much research on thick TM silicides was conducted long ago, materials perform differently at the nanoscale. For example, the usual phase transformation sequences (e.g., Ni, Ni2Si, NiSi, NiSi2) for the reaction of thick metal films on Si no longer apply to nanostructures, because the surface and interface energies compete with the bulk energy of a given crystal structure. Therefore, a NiSi film will agglomerate into hemispherical droplets of NiSi by annealing before it reaches the lowest-energy (NiSi2) crystalline structure. These dynamics can be tuned by addition of impurities (such as Pt in Ni). The Si surface preparation is also a more important factor for nanowires than for silicidation of thick TM films. Ni nanowires formed on Si surfaces that were cleaned and amorphized by sputtering with Ar ions have a tendency to form NiSi2 pyramids (``spikes'') even at moderate temperatures (˜400^oC), while similar Ni films formed on atomically clean or hydrogen-terminated Si form uniform NiSi nanowires. Another issue affecting TM silicides is the barrier height between the silicide contact and the silicon transistor. For most TM silicides, the Fermi level of the silicide is aligned with the center of the Si band gap. Therefore, silicide contacts experience Schottky barrier heights of around 0.5 eV for both n-type and p-type Si. The resulting contact resistance becomes a significant term for the overall resistance of modern CMOS transistors. Lowering this contact resistance is an important goal in CMOS research. New materials are under investigation (for example PtSi, which has a barrier height of only 0.3 eV to p-type Si). This talk will describe recent results, with special emphasis on characterization techniques and electrical testing useful for the development of silicide nanowires for CMOS contacts. In collaboration

  14. Actuation of polypyrrole nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Alexander S.; Peteu, Serban F.; Ly, James V.; Requicha, Aristides A. G.; Thompson, Mark E.; Zhou, Chongwu

    2008-04-01

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  15. Actuation of polypyrrole nanowires.

    PubMed

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou, Chongwu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  16. Silicon nanowire Esaki diodes.

    PubMed

    Schmid, Heinz; Bessire, Cedric; Björk, Mikael T; Schenk, Andreas; Riel, Heike

    2012-02-01

    We report on the fabrication and characterization of silicon nanowire tunnel diodes. The silicon nanowires were grown on p-type Si substrates using Au-catalyzed vapor-liquid-solid growth and in situ n-type doping. Electrical measurements reveal Esaki diode characteristics with peak current densities of 3.6 kA/cm(2), peak-to-valley current ratios of up to 4.3, and reverse current densities of up to 300 kA/cm(2) at 0.5 V reverse bias. Strain-dependent current-voltage (I-V) measurements exhibit a decrease of the peak tunnel current with uniaxial tensile stress and an increase of 48% for 1.3 GPa compressive stress along the <111> growth direction, revealing the strain dependence of the Si band structure and thus the tunnel barrier. The contributions of phonons to the indirect tunneling process were probed by conductance measurements at 4.2 K. These measurements show phonon peaks at energies corresponding to the transverse acoustical and transverse optical phonons. In addition, the low-temperature conductance measurements were extended to higher biases to identify potential impurity states in the band gap. The results demonstrate that the most likely impurity, namely, Au from the catalyst particle, is not detectable, a finding that is also supported by the excellent device properties of the Esaki diodes reported here.

  17. Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode.

    PubMed

    Baratto, C; Kumar, R; Comini, E; Faglia, G; Sberveglieri, G

    2015-07-27

    In the current paper we apply catalyst assisted vapour phase growth technique to grow ZnO nanowires (ZnO nws) on p-GaN thin film obtaining EL emission in reverse bias regime. ZnO based LED represents a promising alternative to III-nitride LEDs, as in free devices: the potential is in near-UV emission and visible emission. For ZnO, the use of nanowires ensures good crystallinity of the ZnO, and improved light extraction from the interface when the nanowires are vertically aligned. We prepared ZnO nanowires in a tubular furnace on GaN templates and characterized the p-n ZnO nws/GaN heterojunction for LED applications. SEM microscopy was used to study the growth of nanowires and device preparation. Photoluminescence (PL) and Electroluminescence (EL) spectroscopies were used to characterize the heterojunction, showing that good quality of PL emission is observed from nanowires and visible emission from the junction can be obtained from the region near ZnO contact, starting from onset bias of 6V.

  18. Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode.

    PubMed

    Baratto, C; Kumar, R; Comini, E; Faglia, G; Sberveglieri, G

    2015-07-27

    In the current paper we apply catalyst assisted vapour phase growth technique to grow ZnO nanowires (ZnO nws) on p-GaN thin film obtaining EL emission in reverse bias regime. ZnO based LED represents a promising alternative to III-nitride LEDs, as in free devices: the potential is in near-UV emission and visible emission. For ZnO, the use of nanowires ensures good crystallinity of the ZnO, and improved light extraction from the interface when the nanowires are vertically aligned. We prepared ZnO nanowires in a tubular furnace on GaN templates and characterized the p-n ZnO nws/GaN heterojunction for LED applications. SEM microscopy was used to study the growth of nanowires and device preparation. Photoluminescence (PL) and Electroluminescence (EL) spectroscopies were used to characterize the heterojunction, showing that good quality of PL emission is observed from nanowires and visible emission from the junction can be obtained from the region near ZnO contact, starting from onset bias of 6V. PMID:26367556

  19. Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator.

    PubMed

    Jung, Jong Hoon; Lee, Minbaek; Hong, Jung-Il; Ding, Yong; Chen, Chih-Yen; Chou, Li-Jen; Wang, Zhong Lin

    2011-12-27

    Perovskite ferroelectric nanowires have rarely been used for the conversion of tiny mechanical vibrations into electricity, in spite of their large piezoelectricity. Here we present a lead-free NaNbO(3) nanowire-based piezoelectric device as a high output and cost-effective flexible nanogenerator. The device consists of a NaNbO(3) nanowire-poly(dimethylsiloxane) (PDMS) polymer composite and Au/Cr-coated polymer films. High-quality NaNbO(3) nanowires can be grown by hydrothermal method at low temperature and can be poled by an electric field at room temperature. The NaNbO(3) nanowire-PDMS polymer composite device shows an output voltage of 3.2 V and output current of 72 nA (current density of 16 nA/cm(2)) under a compressive strain of 0.23%. These results imply that NaNbO(3) nanowires should be quite useful for large-scale lead-free piezoelectric nanogenerator applications.

  20. Printed silver nanowire antennas with low signal loss at high-frequency radio.

    PubMed

    Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji

    2012-05-21

    Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.

  1. Large-scale solution-phase growth of Cu-doped ZnO nanowire networks.

    PubMed

    Xu, Chunju; Koo, Tae-Woong; Kim, Byung-Sung; Lee, Jae-Hyun; Hwang, Sung Woo; Whang, Dongmok

    2011-07-01

    Film-like networks of Cu-doped (0.8-2.5 at.%) ZnO nanowires were successfully synthesized through a facile solution process at a low temperature (<100 degrees C). The pH value of solution plays a key role in controlling the density and quality of the Cu-doped ZnO nanowires and the dopant concentration of ZnO nanowires was controlled by adjusting the Cu2+/Zn2+ concentration ratio during the synthesis. The structural study showed that the as-prepared Cu-doped ZnO nanowires with a narrow diameter range of 20-30 nm were single crystal and grew along [0001] direction. Photoluminescence and electrical conductivity measurements showed that Cu doping can lead to a redshift in bandgap energy and an increase in the resistivity of ZnO. The thermal annealing of the as-grown nanowires at a low temperature (300 degrees C) decreased the defect-related emission within the visible range and increased the electrical conductivity. The high-quality ZnO nanowire network with controlled doping will enable further application to flexible and transparent electronics.

  2. Selective Laser Direct Patterning of Silver Nanowire Percolation Network Transparent Conductor for Capacitive Touch Panel.

    PubMed

    Hong, Sukjoon; Yeo, Junyeob; Lee, Jinhwan; Lee, Habeom; Lee, Phillip; Lee, Seung S; Ko, Seung Hwan

    2015-03-01

    We introduce a facile method to enhance the functionality of a patterned metallic transparent conductor through selective laser ablation of metal nanowire percolation network. By scanning focused nanosecond pulsed laser on silver nanowire percolation network, silver nanowires are selectively ablated and patterned without using any conventional chemical etching or photolithography steps. Various arbitrary patterns of silver nanowire transparent conductors are readily created on the percolation network by changing various laser parameters such as repetition rate and power. The macroscopic optical and electrical properties of the percolation network transparent conductor can be easily tuned by changing the conductor pattern design via digital selective laser ablation. Further investigation on the silver nanowire based electrode line prepared by the ablation process substantiates that the general relation for a conducting thin film fails at a narrow width, which should be considered for the applications that requires a high resolution patterns. Finally, as a proof of concept, a capacitive touch sensor with diamond patterns has been demonstrated by selective laser ablation of metal nanowire percolation network.

  3. Printed silver nanowire antennas with low signal loss at high-frequency radio.

    PubMed

    Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji

    2012-05-21

    Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film. PMID:22522460

  4. Surface Passivation of Germanium Nanowires

    SciTech Connect

    Adhikari, Hemant; Sun, Shiyu; Pianetta, Piero; Chidsey, Chirstopher E.D.; McIntyre, Paul C.; /SLAC, SSRL

    2005-05-13

    The surface of single crystal, cold-wall CVD-grown germanium nanowires was studied by synchrotron radiation photoemission spectroscopy (SR-PES) and also by conventional XPS. The as-grown germanium nanowires seem to be hydrogen terminated. Exposure to laboratory atmosphere leads to germanium oxide growth with oxidation states of Ge{sup 1+}, Ge{sup 2+}, Ge{sup 3+}, while exposure to UV light leads to a predominance of the Ge{sup 4+} oxidation state. Most of the surface oxide could be removed readily by aqueous HF treatment which putatively leaves the nanowire surface hydrogen terminated with limited stability in air. Alternatively, chlorine termination could be achieved by aq. HCl treatment of the native oxide-coated nanowires. Chlorine termination was found to be relatively more stable than the HF-last hydrogen termination.

  5. Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications

    NASA Astrophysics Data System (ADS)

    Gaggero, A.; Nejad, S. Jahanmiri; Marsili, F.; Mattioli, F.; Leoni, R.; Bitauld, D.; Sahin, D.; Hamhuis, G. J.; Nötzel, R.; Sanjines, R.; Fiore, A.

    2010-10-01

    We demonstrate efficient nanowire superconducting single photon detectors (SSPDs) based on NbN thin films grown on GaAs. NbN films ranging from 3 to 5 nm in thickness have been deposited by dc magnetron sputtering on GaAs substrates at 350 °C. These films show superconducting properties comparable to similar films grown on sapphire and MgO. In order to demonstrate the potential for monolithic integration, SSPDs were fabricated and measured on GaAs/AlAs Bragg mirrors, showing a clear cavity enhancement, with a peak quantum efficiency of 18.3% at λ =1300 nm and T=4.2 K.

  6. Plasma-produced phase-pure cuprous oxide nanowires for methane gas sensing

    SciTech Connect

    Cheng, Qijin Zhang, Fengyan; Yan, Wei; Randeniya, Lakshman; Ostrikov, Kostya

    2014-03-28

    Phase-selective synthesis of copper oxide nanowires is warranted by several applications, yet it remains challenging because of the narrow windows of the suitable temperature and precursor gas composition in thermal processes. Here, we report on the room-temperature synthesis of small-diameter, large-area, uniform, and phase-pure Cu{sub 2}O nanowires by exposing copper films to a custom-designed low-pressure, thermally non-equilibrium, high-density (typically, the electron number density is in the range of 10{sup 11}–10{sup 13} cm{sup −3}) inductively coupled plasmas. The mechanism of the plasma-enabled phase selectivity is proposed. The gas sensors based on the synthesized Cu{sub 2}O nanowires feature fast response and recovery for the low-temperature (∼140 °C) detection of methane gas in comparison with polycrystalline Cu{sub 2}O thin film-based gas sensors. Specifically, at a methane concentration of 4%, the response and the recovery times of the Cu{sub 2}O nanowire-based gas sensors are 125 and 147 s, respectively. The Cu{sub 2}O nanowire-based gas sensors have a potential for applications in the environmental monitoring, chemical industry, mining industry, and several other emerging areas.

  7. Pulse electrodeposition and electrochemical quartz crystal microbalance techniques for high perpendicular magnetic anisotropy cobalt nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ursache, Andrei; Goldbach, James T.; Russell, Thomas P.; Tuominen, Mark T.

    2005-05-01

    This research is focused on the development of pulse electrodeposition techniques to fabricate a high-density array of vertically oriented, high-magnetic anisotropy cobalt nanowires using a porous polymer film template. This type of array is a competitive candidate for future perpendicular magnetic media capable of storage densities exceeding 1Terabit/in.2 The polymer template, derived from a self-assembling P(S-b-MMA) diblock copolymer film, provides precise control over the nanowire diameter (15nm) and interwire spacing (24nm), whereas nanowire length (typically 50to1000nm) is controlled accurately with the aid of real-time electrochemical quartz crystal monitoring. Pulse and pulse-reversed electrodeposition techniques, as compared to dc, are shown to significantly enhance the perpendicular magnetic anisotropy of the magnetic nanowire array and ultimately result in coercivity as large as 2.7kOe at 300K. Magnetic and structural characterizations suggest that these properties arise from an improved degree of magnetocrystalline anisotropy (due to c-axis oriented crystal growth and improvements in crystal quality) that strongly supplements the basic shape anisotropy of the nanowires. Low temperature magnetometry is used to investigate exchange bias effects due to the incorporation of CoO antiferromagnetic impurities during the electrodeposition process and subsequent Co oxidation in air.

  8. Controllable synthesis of branched ZnO/Si nanowire arrays with hierarchical structure

    PubMed Central

    2014-01-01

    A rational approach for creating branched ZnO/Si nanowire arrays with hierarchical structure was developed based on a combination of three simple and cost-effective synthesis pathways. The crucial procedure included growth of crystalline Si nanowire arrays as backbones by chemical etching of Si substrates, deposition of ZnO thin film as a seed layer by magnetron sputtering, and fabrication of ZnO nanowire arrays as branches by hydrothermal growth. The successful synthesis of ZnO/Si heterogeneous nanostructures was confirmed by morphologic, structural, and optical characterizations. The roles of key experimental parameters, such as the etchant solution, the substrate direction, and the seed layer on the hierarchical nanostructure formation, were systematically investigated. It was demonstrated that an etchant solution with an appropriate redox potential of the oxidant was crucial for a moderate etching speed to achieve a well-aligned Si nanowire array with solid and round surface. Meanwhile, the presence of gravity gradient was a key issue for the growth of branched ZnO nanowire arrays. The substrate should be placed vertically or facedown in contrast to the solution surface during the hydrothermal growth. Otherwise, only the condensation of the ZnO nanoparticles took place in a form of film on the substrate surface. The seed layer played another important role in the growth of ZnO nanowire arrays, as it provided nucleation sites and determined the growing direction and density of the nanowire arrays for reducing the thermodynamic barrier. The results of this study might provide insight on the synthesis of hierarchical three-dimensional nanostructure materials and offer an approach for the development of complex devices and advanced applications. PMID:25024688

  9. Energy harvesting performance of piezoelectric ceramic and polymer nanowires

    NASA Astrophysics Data System (ADS)

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-01

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  10. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.

    PubMed

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-28

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  11. ZnO nanowire lasers.

    PubMed

    Vanmaekelbergh, Daniël; van Vugt, Lambert K

    2011-07-01

    The pathway towards the realization of optical solid-state lasers was gradual and slow. After Einstein's paper on absorption and stimulated emission of light in 1917 it took until 1960 for the first solid state laser device to see the light. Not much later, the first semiconductor laser was demonstrated and lasing in the near UV spectral range from ZnO was reported as early as 1966. The research on the optical properties of ZnO showed a remarkable revival since 1995 with the demonstration of room temperature lasing, which was further enhanced by the first report of lasing by a single nanowire in 2001. Since then, the research focussed increasingly on one-dimensional nanowires of ZnO. We start this review with a brief description of the opto-electronic properties of ZnO that are related to the wurtzite crystal structure. How these properties are modified by the nanowire geometry is discussed in the subsequent sections, in which we present the confined photon and/or polariton modes and how these can be investigated experimentally. Next, we review experimental studies of laser emission from single ZnO nanowires under different experimental conditions. We emphasize the special features resulting from the sub-wavelength dimensions by presenting our results on single ZnO nanowires lying on a substrate. At present, the mechanism of lasing in ZnO (nanowires) is the subject of a strong debate that is considered at the end of this review. PMID:21552596

  12. Magnetic properties of electrodeposited nanowires

    NASA Astrophysics Data System (ADS)

    Heydon, G. P.; Hoon, S. R.; Farley, A. N.; Tomlinson, S. L.; Valera, M. S.; Attenborough, K.; Schwarzacher, W.

    1997-04-01

    Electrodeposited multilayered nanowires grown within a polycarbonate membrane constitute a new medium in which giant magnetoresistance (GMR) perpendicular to the plane of the multilayers can be measured. These structures can exhibit a perpendicular GMR of at least 22% at ambient temperature. We performed detailed studies both of reversible magnetization and of irreversible remanent magnetization curves for CoNiCu/Cu/CoNiCu multilayered and CoNiCu pulse-deposited nanowire systems with Co:Ni ratios of 6:4 and 7:3 respectively in the range 10 - 290 K, allowing the magnetic phases of these structures to be identified. Shape anisotropy in the pulse-deposited nanowire and inter-layer coupling in the multilayered nanowire are shown to make important contributions to the magnetic properties. Dipolar-like interactions are found to predominate in both nanowire systems. Magnetic force microscope (MFM) images of individual multilayered nanowires exhibit a contrast consistent with there being a soft magnetization parallel to the layers. Switching of the magnetic layers in the multilayered structure into the direction of the MFM tip's stray field is observed.

  13. Synthesis of metal nanowires using nanocracks and DNA-templates and their characterization

    NASA Astrophysics Data System (ADS)

    Mani, Sathyanarayanan

    A major challenge in the field of nanotechnology is the synthesis and testing of nanostructures, such as nanowires, in a cost effective manner. Currently, there are two general approaches for fabricating nanowires, namely top-down and bottom-up. While the top-down approach that uses nano-lithography is controlled but expensive, the bottom-up approach that uses self-assembly is inexpensive but uncontrolled. This research, describes the mechanism behind an innovative and inexpensive method that combines both the top-down and bottom-up approaches to produce metal nanowires. The method uses cracks in PECVD silicon dioxide thin films on silicon substrate as molds to produce electroless deposited nickel nanowires. The cracks are initiated from voids formed due to nonconformal deposition of oxide on RIE etched trenches in silicon substrate. A model was developed to characterize void formation and the stress response of these oxide films during a thermal ramp, and identify the operating conditions such as film deposit thickness, trench dimensions and annealing temperature for controlled crack pattern formation. The nickel nanowires (50-250 nm wide) are polycrystalline with grain size ranging between 10 to 50 nm. Electrical characterization revealed that the resistivity of these wires decreased 10 times on sintering. However, this resistivity was still twice that of their bulk counterpart. This higher resistivity can be explained by the enhanced scattering of conductive electrons by grain boundaries and phosphorous impurities. An alternate nanowire fabrication technique that simplifies their testing by enabling their direct integration with MEMS test-beds has also been presented. In this approach, commercially available lambda DNA's (16.1 microns long and 2 nm wide) are used as templates to form nanowires of various metals through sputter deposition or evaporation. The test-bed is compatible with commercially available TEM stages for conducting in situ nanostructural

  14. Electrochemical synthesis of highly crystalline copper nanowires

    SciTech Connect

    Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup

    2015-05-15

    Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits.

  15. Nanowires enabling strained photovoltaics

    SciTech Connect

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ∼5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  16. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.

    PubMed

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-08-24

    The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films. PMID:27455379

  17. Carbonization-assisted integration of silica nanowires to photoresist-derived three-dimensional carbon microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Shi, Tielin; Tang, Zirong; Zhang, Lei; Xi, Shuang; Li, Xiaoping; Lai, Wuxing

    2011-11-01

    We propose a novel technique of integrating silica nanowires to carbon microelectrode arrays on silicon substrates. The silica nanowires were grown on photoresist-derived three-dimensional carbon microelectrode arrays during carbonization of patterned photoresist in a tube furnace at 1000 °C under a gaseous environment of N2 and H2 in the presence of Cu catalyst, sputtered initially as a thin layer on the structure surface. Carbonization-assisted nucleation and growth are proposed to extend the Cu-catalyzed vapor-liquid-solid mechanism for the nanowire integration behaviour. The growth of silica nanowires exploits Si from the etched silicon substrate under the Cu particles. It is found that the thickness of the initial Cu coating layer plays an important role as catalyst on the morphology and on the amount of grown silica nanowires. These nanowires have lengths of up to 100 µm and diameters ranging from 50 to 200 nm, with 30 nm Cu film sputtered initially. The study also reveals that the nanowire-integrated microelectrodes significantly enhance the electrochemical performance compared to blank ones. A specific capacitance increase of over 13 times is demonstrated in the electrochemical experiment. The platform can be used to develop large-scale miniaturized devices and systems with increased efficiency for applications in electrochemical, biological and energy-related fields.

  18. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    PubMed Central

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-01-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755

  19. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes.

    PubMed

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-01-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755

  20. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    NASA Astrophysics Data System (ADS)

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-08-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process.

  1. Plasmon-controlled excitonic emission from vertically-tapered organic nanowires

    NASA Astrophysics Data System (ADS)

    Chikkaraddy, Rohit; Patra, Partha Pratim; Tripathi, Ravi P. N.; Dasgupta, Arindam; Kumar, G. V. Pavan

    2016-08-01

    Organic molecular nanophotonics has emerged as an important avenue to harness molecular aggregation and crystallization on various functional platforms to obtain nano-optical devices. To this end, there is growing interest to combine organic molecular nanostructures with plasmonic surfaces and interfaces. Motivated by this, herein we introduce a unique geometry: vertically-tapered organic nanowires grown on a plasmonic thin film. A polarization-sensitive plasmon-polariton on a gold thin-film was harnessed to control the exciton-polariton propagation and subsequent photoluminescence from an organic nanowire made of diaminoanthraquinone (DAAQ) molecules. We show that the exciton-polariton emission from individual DAAQ nanowires can be modulated up to a factor of 6 by varying the excitation polarization state of surface plasmons. Our observations were corroborated with full-wave three-dimensional finite-difference time-domain calculations performed on vertically-tapered nanowire geometry. Our work introduces a new optical platform to study coupling between propagating plasmons and propagating excitons, and may have implications in emerging fields such as hybrid-polariton based light emitting devices and vertical-cavity nano-optomechanics.Organic molecular nanophotonics has emerged as an important avenue to harness molecular aggregation and crystallization on various functional platforms to obtain nano-optical devices. To this end, there is growing interest to combine organic molecular nanostructures with plasmonic surfaces and interfaces. Motivated by this, herein we introduce a unique geometry: vertically-tapered organic nanowires grown on a plasmonic thin film. A polarization-sensitive plasmon-polariton on a gold thin-film was harnessed to control the exciton-polariton propagation and subsequent photoluminescence from an organic nanowire made of diaminoanthraquinone (DAAQ) molecules. We show that the exciton-polariton emission from individual DAAQ nanowires can be

  2. Proton irradiation effects on the thermoelectric properties in single-crystalline Bi nanowires

    SciTech Connect

    Chang, Taehoo; Kim, Jeongmin; Song, Min-Jung; Lee, Wooyoung

    2015-05-15

    The effects of proton irradiation on the thermoelectric properties of Bi nanowires (Bi-NWs) were investigated. Single crystalline Bi-NWs were grown by the on-film formation of nanowires method. The devices based on individual Bi-NWs were irradiated with protons at different energies. The total number of displaced atoms was estimated using the Kinchin-Pease displacement model. The electric conductivity and Seebeck coefficient in the Bi-NW devices were investigated before and after proton irradiation at different temperatures. Although the Seebeck coefficient remained stable at various irradiation energies, the electrical conductivity significantly declined with increasing proton energy up to 40 MeV.

  3. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    SciTech Connect

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  4. Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Masuda, Kohei; Moriyama, Satoshi; Morita, Yoshifumi; Komatsu, Katsuyoshi; Takagi, Tasuku; Hashimoto, Takayuki; Miki, Norihisa; Tanabe, Takasumi; Maki, Hideyuki

    2016-05-01

    Superconducting nanowires have attracted considerable attention due to their unique quantum-mechanical properties, as well as their potential as next-generation quantum nanodevices, such as single-photon detectors, phase-slip (PS) qubits, and other hybrid structures. In this study, we present the results of one-dimensional (1D) superconductivity in nanowires fabricated by coating suspended carbon nanotubes with a superconducting thin niobium nitride (NbN) film. In the resistance-temperature characteristic curves, hallmarks of 1D superconductivity with PS events are observed with unconventional negative magnetoresistance. We also confirm that a crossover occurs between thermal and quantum PSs as the temperature is lowered.

  5. Electrical spin injection and transport in semiconductor nanowires: challenges, progress and perspectives

    NASA Astrophysics Data System (ADS)

    Tang, Jianshi; Wang, Kang L.

    2015-02-01

    Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics.

  6. Modified silver nanowire transparent electrodes with exceptional stability against oxidation.

    PubMed

    Idier, J; Neri, W; Labrugère, C; Ly, I; Poulin, P; Backov, R

    2016-03-11

    We report an easy method to prepare thin, flexible and transparent electrodes that show enhanced inertness toward oxidation using modified silver nanowires (Ag NWs). Stabilization is achieved through the adsorption of triphenylphosphine (PPh3) onto the Ag NW hybrid dispersions prior to their 2D organization as transparent electrodes on polyethylene terephtalate (PET) films. After 110 days in air (20 °C) under atmospheric conditions, the transmittance of the PET/Ag NW/PPh3 based films is nearly unchanged, while the transmittance of the PET/Ag NW-based films decreases by about 5%. The sheet resistance increases for both materials as time elapses, but the rate of increase is more than four times slower for films stabilized by PPh3. The improved transmittance and conductivity results in a significantly enhanced stability for the figure of merit σ dc/σ op. This phenomenon is highlighted in highly oxidative nitric acid vapor. The tested stabilized films in such conditions exhibit a decrease to σ dc/σ op of only 38% after 75 min, whereas conventional materials exhibit a relative loss of 71%. In addition, by contrast to other classes of stabilizers, such as polymer or graphene-based encapsulants, PPh3 does not alter the transparency or conductivity of the modified films. While the present films are made by membrane filtration, the stabilization method could be implemented directly in other liquid processes, including industrially scalable ones. PMID:26866415

  7. Modified silver nanowire transparent electrodes with exceptional stability against oxidation

    NASA Astrophysics Data System (ADS)

    Idier, J.; Neri, W.; Labrugère, C.; Ly, I.; Poulin, P.; Backov, R.

    2016-03-01

    We report an easy method to prepare thin, flexible and transparent electrodes that show enhanced inertness toward oxidation using modified silver nanowires (Ag NWs). Stabilization is achieved through the adsorption of triphenylphosphine (PPh3) onto the Ag NW hybrid dispersions prior to their 2D organization as transparent electrodes on polyethylene terephtalate (PET) films. After 110 days in air (20 °C) under atmospheric conditions, the transmittance of the PET/Ag NW/PPh3 based films is nearly unchanged, while the transmittance of the PET/Ag NW-based films decreases by about 5%. The sheet resistance increases for both materials as time elapses, but the rate of increase is more than four times slower for films stabilized by PPh3. The improved transmittance and conductivity results in a significantly enhanced stability for the figure of merit σ dc/σ op. This phenomenon is highlighted in highly oxidative nitric acid vapor. The tested stabilized films in such conditions exhibit a decrease to σ dc/σ op of only 38% after 75 min, whereas conventional materials exhibit a relative loss of 71%. In addition, by contrast to other classes of stabilizers, such as polymer or graphene-based encapsulants, PPh3 does not alter the transparency or conductivity of the modified films. While the present films are made by membrane filtration, the stabilization method could be implemented directly in other liquid processes, including industrially scalable ones.

  8. Star-shaped cyclic-twinning nanowires

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Cao, Minghe; Sun, Yuekui; Wu, Peiwen; Yuan, Jun

    2006-04-01

    We report the discovery of a new class of nanowires with a star-shaped cross section. Unlike most nanowires, it shows a prominent regular reentrant surface profile. The electron diffraction and electron energy loss spectroscopy analyses indicate that the nanowire is composed of superhard boron suboxide (B6O). The fivefold symmetry of the star-shaped nanowire could be understood as a cyclic twinning structure. The crystallographic analysis further suggested that it could be a common occurrence in boron-rich compounds. Star-shaped nanowires with regular reentrant surfaces are attractive for applications in nanotechnology.

  9. A Fabrication Method for Highly Stretchable Conductors with Silver Nanowires.

    PubMed

    Chang, Chia-Wei; Chen, Shih-Pin; Liao, Ying-Chih

    2016-01-01

    Stretchable electronics are identified as a key technology for electronic applications in the next generation. One of the challenges in fabrication of stretchable electronic devices is the preparation of stretchable conductors with great mechanical stability. In this study, we developed a simple fabrication method to chemically solder the contact points between silver nanowire (AgNW) networks. AgNW nanomesh was first deposited on a glass slide via spray coating method. A reactive ink composed of silver nanoparticle (AgNPs) precursors was applied over the spray coated AgNW thin films. After heating for 40 min, AgNPs were preferentially generated over the nanowire junctions to solder the AgNW nanomesh, and reinforced the conducting network. The chemically modified AgNW thin film was then transferred to polyurethane (PU) substrates by casting method. The soldered AgNW thin films on PU exhibited no obvious change in electrical conductivity under stretching or rolling process with elongation strains up to 120%. PMID:26862843

  10. Electrodeposited, Transverse Nanowire Electroluminescent Junctions.

    PubMed

    Qiao, Shaopeng; Xu, Qiang; Dutta, Rajen K; Le Thai, Mya; Li, Xiaowei; Penner, Reginald M

    2016-09-27

    The preparation by electrodeposition of transverse nanowire electroluminescent junctions (tn-ELJs) is described, and the electroluminescence (EL) properties of these devices are characterized. The lithographically patterned nanowire electrodeposition process is first used to prepare long (millimeters), linear, nanocrystalline CdSe nanowires on glass. The thickness of these nanowires along the emission axis is 60 nm, and the width, wCdSe, along the electrical axis is adjustable from 100 to 450 nm. Ten pairs of nickel-gold electrical contacts are then positioned along the axis of this nanowire using lithographically directed electrodeposition. The resulting linear array of nickel-CdSe-gold junctions produces EL with an external quantum efficiency, EQE, and threshold voltage, Vth, that depend sensitively on wCdSe. EQE increases with increasing electric field and also with increasing wCdSe, and Vth also increases with wCdSe and, therefore, the electrical resistance of the tn-ELJs. Vth down to 1.8(±0.2) V (for wCdSe ≈ 100 nm) and EQE of 5.5(±0.5) × 10(-5) (for wCdSe ≈ 450 nm) are obtained. tn-ELJs produce a broad EL emission envelope, spanning the wavelength range from 600 to 960 nm.

  11. Electrically Injected UV-Visible Nanowire Lasers

    SciTech Connect

    Wang, George T.; Li, Changyi; Li, Qiming; Liu, Sheng; Wright, Jeremy Benjamin; Brener, Igal; Luk, Ting -Shan; Chow, Weng W.; Leung, Benjamin; Figiel, Jeffrey J.; Koleske, Daniel D.; Lu, Tzu-Ming

    2015-09-01

    There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

  12. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  13. Fabrication and characterization of porous silicon nanowires

    NASA Astrophysics Data System (ADS)

    Jung, Daeyoon; Cho, Soo Gyeong; Moon, Taeho; Sohn, Honglae

    2016-01-01

    We report the synthesis of porous silicon nanowires through the metalassisted chemical etching of porous silicon in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of porous silicon nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The etch rate of the porous silicon nanowires was faster than that of silicon nanowires, but slower than that of porous silicon. The porous silicon nanowires distributed uniformly on the entire porous silicon layer and the tips of the porous silicon nanowires congregated together. The single crystalline and sponge-like porous structure with the pore diameters of less than 5 nm was confirmed for the porous silicon nanowires. [Figure not available: see fulltext.

  14. Duality picture of Superconductor-insulator transitions on Superconducting nanowire.

    PubMed

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-01-01

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory.

  15. Elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide.

    PubMed

    Zhang, Li; Xiong, Qiulin; Li, Xiaopeng; Ma, Junxian

    2015-08-10

    We researched an elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide and evaluated its mode characteristics using the finite element method software COMSOL. The waveguide consists of three parts: an elliptic cylindrical silicon nanowire, a silver film layer, and a silica covering layer between them. All of the components are surrounded by air. After optimizing the geometrical parameters of the waveguide, we can achieve the waveguide's strong field confinement (ranging from λ2/270 to λ2/27) and long propagation distances (119-485 μm). In order to further understand the impact of the waveguide's architecture on its performance, we also studied the ridge hybrid waveguide. The results show that the ridge waveguide has moderate local field confinement ranging from λ2/190 to λ2/20 and its maximum propagation distance is about 340 μm. We compared the elliptic cylindrical and ridge nanowire hybrid waveguides with the cylindrical hybrid waveguide that we studied before. The elliptic cylindrical waveguide achieves a better trade-off between reasonable mode confinement and maximum propagation length in the three waveguides. The researched hybrid surface plasmon polaritons waveguides are useful to construct devices such as a directional coupler and may find potential applications in photonic integrated circuits or other novel SPP devices.

  16. Duality picture of Superconductor-insulator transitions on Superconducting nanowire

    PubMed Central

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-01-01

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory. PMID:27311595

  17. Anti-counterfeit nanoscale fingerprints based on randomly distributed nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Jangbae; Yun, Je Moon; Jung, Jongwook; Song, Hyunjoon; Kim, Jin-Baek; Ihee, Hyotcherl

    2014-04-01

    Counterfeiting is conducted in almost every industry, and the losses caused by it are growing as today’s world trade continues to increase. In an attempt to provide an efficient method to fight such counterfeiting, we herein demonstrate anti-counterfeit nanoscale fingerprints generated by randomly distributed nanowires. Specifically, we prepare silver nanowires coated with fluorescent dyes and cast them onto the surface of transparent PET film. The resulting non-repeatable patterns characterized by the random location of the nanowires and their fluorescent colors provide unique barcodes suitable for anti-counterfeit purposes. Counterfeiting such a fingerprint pattern is impractical and expensive; the cost of replicating it would be higher than the value of the typical target item being protected. Fingerprint patterns can be visually authenticated in a simple and straightforward manner by using an optical microscope. The concept of generating unique patterns by randomness is not limited to the materials shown in this paper and should be readily applicable to other types of materials.

  18. A Nanowire-Based Plasmonic Quantum Dot Laser.

    PubMed

    Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-13

    Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics. PMID:27030886

  19. Elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide.

    PubMed

    Zhang, Li; Xiong, Qiulin; Li, Xiaopeng; Ma, Junxian

    2015-08-10

    We researched an elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide and evaluated its mode characteristics using the finite element method software COMSOL. The waveguide consists of three parts: an elliptic cylindrical silicon nanowire, a silver film layer, and a silica covering layer between them. All of the components are surrounded by air. After optimizing the geometrical parameters of the waveguide, we can achieve the waveguide's strong field confinement (ranging from λ2/270 to λ2/27) and long propagation distances (119-485 μm). In order to further understand the impact of the waveguide's architecture on its performance, we also studied the ridge hybrid waveguide. The results show that the ridge waveguide has moderate local field confinement ranging from λ2/190 to λ2/20 and its maximum propagation distance is about 340 μm. We compared the elliptic cylindrical and ridge nanowire hybrid waveguides with the cylindrical hybrid waveguide that we studied before. The elliptic cylindrical waveguide achieves a better trade-off between reasonable mode confinement and maximum propagation length in the three waveguides. The researched hybrid surface plasmon polaritons waveguides are useful to construct devices such as a directional coupler and may find potential applications in photonic integrated circuits or other novel SPP devices. PMID:26368373

  20. Deformation behavior and mechanical properties of amyloid protein nanowires.

    PubMed

    Solar, Max; Buehler, Markus J

    2013-03-01

    Amyloid fibrils are most often associated with their pathological role in diseases like Alzheimer's disease and Parkinson's disease, but they are now increasingly being considered for uses in functional engineering materials. They are among the stiffest protein fibers known but they are also rather brittle, and it is unclear how this combination of properties affects the behavior of amyloid structures at larger length scales, such as in films, wires or plaques. Using a coarse-grained model for amyloid fibrils, we study the mechanical response of amyloid nanowires and examine fundamental mechanical properties, including mechanisms of deformation and failure under tensile loading. We also explore the effect of varying the breaking strain and adhesion strength of the constituent amyloid fibrils on the properties of the larger structure. We find that deformation in the nanowires is controlled by a combination of fibril sliding and fibril failure and that there exists a transition from brittle to ductile behavior by either increasing the fibril failure strain or decreasing the strength of adhesion between fibrils. Furthermore, our results reveal that the mechanical properties of the nanowires are quite sensitive to changes in the properties of the individual fibrils, and the larger scale structures are found to be more mechanically robust than the constituent fibrils, for all cases considered. More broadly, this work demonstrates the promise of utilizing self-assembled biological building blocks in the development of hierarchical nanomaterials. PMID:23290516

  1. A Nanowire-Based Plasmonic Quantum Dot Laser.

    PubMed

    Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-13

    Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.

  2. Duality picture of Superconductor-insulator transitions on Superconducting nanowire.

    PubMed

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-01-01

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory. PMID:27311595

  3. Duality picture of Superconductor-insulator transitions on Superconducting nanowire

    NASA Astrophysics Data System (ADS)

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-06-01

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory.

  4. Pulsed laser deposition of single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 core/shell nanowires

    PubMed Central

    2014-01-01

    Single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 (CI/CIGS) core/shell nanowires are fabricated by pulsed laser deposition with Ni nanoparticles as catalyst. The CI/CIGS core/shell nanowires are made up of single-crystalline CI cores surrounded by single-crystalline CIGS shells. The CI/CIGS nanowires are grown at a considerably low temperature (350°C ~ 450°C) by vapor-liquid-solid mode combined with vapor-solid mode. The distribution density of the nanowires increases with the increasing of the deposition duration, and the substrate temperature determines the lengths of the nanowires. The U-V absorption spectra of the CIGS thin films with and without the CI/CIGS core/shell nanowires demonstrate that the CI/CIGS nanowires can remarkably enhance the absorption of CIGS thin films in the spectrum range of 300 to 900 nm. PACS 61.46. + w; 61.41.e; 81.15.Fg; 81.07.b PMID:25520597

  5. Pulsed laser deposition of single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Li, Hui; Zhu, Yan-Yan; Guan, Lei-Lei; Li, Yan-Li; Sun, Jian; Ying, Zhi-Feng; Wu, Jia-Da; Xu, Ning

    2014-12-01

    Single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 (CI/CIGS) core/shell nanowires are fabricated by pulsed laser deposition with Ni nanoparticles as catalyst. The CI/CIGS core/shell nanowires are made up of single-crystalline CI cores surrounded by single-crystalline CIGS shells. The CI/CIGS nanowires are grown at a considerably low temperature (350°C ~ 450°C) by vapor-liquid-solid mode combined with vapor-solid mode. The distribution density of the nanowires increases with the increasing of the deposition duration, and the substrate temperature determines the lengths of the nanowires. The U-V absorption spectra of the CIGS thin films with and without the CI/CIGS core/shell nanowires demonstrate that the CI/CIGS nanowires can remarkably enhance the absorption of CIGS thin films in the spectrum range of 300 to 900 nm.

  6. "High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires"

    SciTech Connect

    GARGAS, DANIEL; GAO, HANWEI; WANG, HUNGTA; PEIDONG, YANG

    2010-12-01

    External quantum efficiency (EQE) of photoluminescence as high as 20 percent from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials.

  7. Subband engineering in n-type silicon nanowires using strain and confinement.

    PubMed

    Stanojević, Zlatan; Sverdlov, Viktor; Baumgartner, Oskar; Kosina, Hans

    2012-04-01

    We present a model based on k · p theory which is able to capture the subband structure effects present in ultra-thin strained silicon nanowires. For electrons, the effective mass and valley minima are calculated for different crystal orientations, thicknesses, and strains. The actual enhancement of the transport properties depends highly on the crystal orientation of the nanowire axis; for certain orientations strain and confinement can play together to give a significant increase of the electron mobility. We also show that the effects of both strain and confinement on mobility are generally more pronounced in nanowires than in thin films. We show that optimal transport properties can be expected to be achieved through a mix of confinement and strain. Our results are in good agreement with recent experimental findings.

  8. Morphology-dependent field emission properties and wetting behavior of ZnO nanowire arrays

    PubMed Central

    2011-01-01

    The fabrication of three kinds of ZnO nanowire arrays with different structural parameters over Au-coated silicon (100) by facile thermal evaporation of ZnS precursor is reported, and the growth mechanism are proposed based on structural analysis. Field emission (FE) properties and wetting behavior were revealed to be strongly morphology dependent. The nanowire arrays in small diameter and high aspect ratio exhibited the best FE performance showing a low turn-on field (4.1 V/μm) and a high field-enhancement factor (1745.8). The result also confirmed that keeping large air within the films was an effective way to obtain super water-repellent properties. This study indicates that the preparation of ZnO nanowire arrays in an optimum structural model is crucial to FE efficiency and wetting behavior. PMID:21711609

  9. Solution-grown germanium nanowire anodes for lithium-ion batteries.

    PubMed

    Chockla, Aaron M; Klavetter, Kyle C; Mullins, C Buddie; Korgel, Brian A

    2012-09-26

    Solution-grown germanium (Ge) nanowires were tested as high capacity anodes in lithium ion (Li-ion) batteries. Nanowire films were formulated and cast as slurries with conductive carbon (7:1 Ge:C w/w), PVdF binder and 1.0 M LiPF(6) dissolved in various solvents as electrolyte. The addition of fluorethylene carbonate (FEC) to the electrolyte was critical to achieving stable battery cycling and reversible capacities as high as 1248 mA h g(-1) after 100 cycles, which is close to the theoretical capacity of 1,384 mA h g(-1). Ge nanowire anodes also exhibited high rate capability, with reversible cycling above 600 mA h g(-1) for 1200 cycles at a rate of 1C. The batteries could also be discharged at 10C with a capacity of 900 mA h g(-1) when charged at 1C.

  10. A novel approach to titania nanowire arrays as photoanodes of back-illuminated dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tao, Ru-Hua; Wu, Jin-Ming; Xue, Hong-Xing; Song, Xiao-Mei; Pan, Xu; Fang, Xia-Qin; Fang, Xiao-Dong; Dai, Song-Yuan

    Titania nanowire arrays have been deposited on Ti foils through direct oxidizing the Ti substrate with aqueous hydrogen peroxide solutions containing melamine and nitric acid, and the applicability of such nanowire arrays to back-illuminated dye-sensitized solar cells studied in parallel with titania nanotube arrays on Ti foils. The low-temperature nitrogen adsorption measurement reveals that the film with nanowires 25 nm in diameter and 1 μm in length possesses a BET specific surface area of 59.0 m 2 g -1, a value much larger than 26 m 2 g -1 calculated for the nanotube with an inner diameter of 80 nm, an outer diameter of 120 nm and a total length of 3 μm. Assuming an indirect transition between band gaps, the nanowire film exhibits a bandgap of 3.1 eV, slightly larger than that of 3.0 eV for the nanotube one. A detailed electrochemical study suggests that, in comparison with the nanotube film, the nanowire one exhibits much lower saturated photocurrent and poorer conductivity under the Xe-lamp irradiation. However, when utilized to construct back-side illuminated dye-sensitized solar cells, the cell with the 2 μm-thick nanowire photoanode possesses significantly higher efficiency than the one with the 3 μm-thick nanotube photoanode. The relatively high energy conversion efficiency is contributed to the high specific surface area and the unique mesoporous structure of the titania nanowire arrays, which favors the adsorption of dye molecules.

  11. Electrochemical synthesis of multisegmented nanowires

    SciTech Connect

    Kok, Kuan-Ying; Ng, Inn-Khuan; Saidin, Nur Ubaidah

    2012-11-27

    Electrochemical deposition has emerged as a promising route for nanostructure fabrication in recent years due to the many inherent advantages it possesses. This study focuses on the synthesis of high-aspect-ratio multisegmented Au/Ni nanowires using template-directed sequential electrochemical deposition techniques. By selectively removing the Ni segments in the nanowires, high-yield of pure gold nanorods of predetermined lengths was obtained. Alternatively, the sacrificial Ni segments in the nanowires can be galvanically displaced with Bi and Te to form barbells structures with Bi{sub x}Te{sub y} nanotubes attached to neighbouring gold segments. Detailed studies on the nanostructures obtained were carried out using various microscopy, diffraction and probebased techniques for structural, morphological and chemical characterizations.

  12. Controlled fabrication of nanowire sensors.

    SciTech Connect

    Leonard, Francois

    2007-10-01

    We present a simple top down approach based on nanoimprint lithography to create dense arrays of silicon nanowires over large areas. Metallic contacts to the nanowires and a bottom gate allow the operation of the array as a field-effect transistor with very large on/off ratios. When exposed to ammonia gas or cyclohexane solutions containing nitrobenzene or phenol, the threshold voltage of the field-effect transistor is shifted, a signature of charge transfer between the analytes and the nanowires. The threshold voltage shift is proportional to the Hammett parameter and the concentration of the nitrobenzene and phenol analytes. For the liquid analytes considered, we find binding energies of 400 meV, indicating strong physisorption. Such values of the binding energies are ideal for stable and reusable sensors.

  13. Optical absorption of silicon nanowires

    SciTech Connect

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-08-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  14. III-Nitride nanowire optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  15. Synthesis and characterization of cadmium telluride nanowire

    NASA Astrophysics Data System (ADS)

    Kum, Maxwell C.; Yoo, Bong Young; Rheem, Young Woo; Bozhilov, Krassimir N.; Chen, Wilfred; Mulchandani, Ashok; Myung, Nosang V.

    2008-08-01

    CdTe nanowires with controlled composition were cathodically electrodeposited using track-etched polycarbonate membrane as scaffolds and their material and electrical properties were systematically investigated. As-deposited CdTe nanowires show nanocrystalline cubic phase structures with grain sizes of up to 60 nm. The dark-field images of nanowires reveal that the crystallinity of nanowires was greatly improved from nanocrystalline to a few single crystals within nanowires upon annealing at 200 °C for 6 h in a reducing environment (5% H2+95% N2). For electrical characterization, a single CdTe nanowire was assembled across microfabricated gold electrodes using the drop-casting method. In addition to an increase in grain size, the electrical resistivity of an annealed single nanowire (a few 105 Ω cm) was one order of magnitude greater than in an as-deposited nanowire, indicating that crystallinity of nanowires improved and defects within nanowires were reduced during annealing. By controlling the dopants levels (e.g. Te content of nanowires), the resistivity of nanowires was varied from 104 to 100 Ω cm. Current-voltage (I-V) characteristics of nanowires indicated the presence of Schottky barriers at both ends of the Au/CdTe interface. Temperature-dependent I-V measurements show that the electron transport mode was determined by a thermally activated component at T>-50 °C and a temperature-independent component below -50 °C. Under optical illumination, the single CdTe nanowire exhibited enhanced conductance.

  16. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  17. Doped GaN nanowires on diamond: Structural properties and charge carrier distribution

    SciTech Connect

    Schuster, Fabian Winnerl, Andrea; Weiszer, Saskia; Hetzl, Martin; Garrido, Jose A.; Stutzmann, Martin

    2015-01-28

    In this work, we present a detailed study on GaN nanowire doping, which is vital for device fabrication. The nanowires (NWs) are grown by means of molecular beam epitaxy on diamond (111) substrates. Dopant atoms are found to facilitate nucleation, thus an increasing NW density is observed for increasing dopant fluxes. While maintaining nanowire morphology, we demonstrate the incorporation of Si and Mg up to concentrations of 9× 10{sup 20}cm{sup −3} and 1 × 10{sup 20}cm{sup −3}, respectively. The dopant concentration in the nanowire cores is determined by the thermodynamic solubility limit, whereas excess dopants are found to segregate to the nanowire surface. The strain state of the NWs is investigated by X-ray diffraction, which confirms a negligible strain compared to planar thin films. Doping-related emissions are identified in low-temperature photoluminescence spectroscopy and the temperature quenching yields ionization energies of Si donors and Mg acceptors of 17 meV and 167 meV, respectively. At room temperature, luminescence and absorption spectra are found to coincide and the sub-band gap absorption is suppressed in n-type NWs. The charge carrier distribution in doped GaN nanowires is simulated under consideration of surface states at the non-polar side facets. For doping concentrations below 10{sup 17}cm{sup −3}, the nanowires are depleted of charge carriers, whereas they become highly conductive above 10{sup 19}cm{sup −3}.

  18. Multimode Silicon Nanowire Transistors

    PubMed Central

    2014-01-01

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 104 is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 107 whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  19. Multimode silicon nanowire transistors.

    PubMed

    Glassner, Sebastian; Zeiner, Clemens; Periwal, Priyanka; Baron, Thierry; Bertagnolli, Emmerich; Lugstein, Alois

    2014-11-12

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 10(4) is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 10(7) whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  20. Electrowetting properties of atomic layer deposited Al{sub 2}O{sub 3} decorated silicon nanowires

    SciTech Connect

    Rajkumar, K.; Rajavel, K.; Cameron, D. C.; Mangalaraj, D.; Rajendrakumar, R. T.

    2015-06-24

    This paper reports the electrowetting properties of liquid droplet on superhydrophobic silicon nanowires with Atomic layer deposited (ALD) Al{sub 2}O{sub 3} as dielectric layer. Silicon wafer were etched by metal assisted wet chemical etching with silver as catalyst. ALD Al{sub 2}O{sub 3} films of 10nm thickness were conformally deposited over silicon nanowires. Al{sub 2}O{sub 3} dielectric film coated silicon nanowires was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane to make it superhydrophobic(SHP). The contact angle was measured and all the samples exhibited superhydrophobic nature with maximum contact angles of 163° and a minimum contact angle hysteresis of 6°. Electrowetting induced a maximum reversible decrease of the contact angle of 20°at 150V in air.

  1. Detection of current-driven magnetic domains in [Co/Pd] nanowire by tunneling magnetoresistive sensor

    NASA Astrophysics Data System (ADS)

    Okuda, Mitsunobu; Miyamoto, Yasuyoshi; Miyashita, Eiichi; Saito, Nobuo; Hayashi, Naoto; Nakagawa, Shigeki

    2015-05-01

    Current-driven magnetic domain walls in magnetic nanowires have attracted a great deal of interest in terms of both physical studies and engineering applications. The anomalous Hall effect measurement is widely used for detecting the magnetization direction of current-driven magnetic domains in a magnetic nanowire. However, the problem with this measurement is that the detection point for current-driven domain wall motion is fixed at only the installed sensing wire across the specimen nanowire. A potential solution is the magnetic domain scope method, whereby the distribution of the magnetic flux leaking from the specimen can be analyzed directly by contact-scanning a tunneling magnetoresistive field sensor on a sample. In this study, we fabricated specimen nanowires consisting of [Co (0.3)/Pd (1.2)]21/Ta(3) films (units in nm) with perpendicular magnetic anisotropy on Si substrates. A tunneling magnetoresistive sensor was placed on the nanowire surface and a predetermined current pulse was applied. Real-time detection of the current-driven magnetic domain motion was successful in that the resistance of the tunneling magnetoresistive sensor was changed with the magnetization direction beneath the sensor. This demonstrates that magnetic domain detection using a tunneling magnetoresistive sensor is effective for the direct analysis of micro magnetic domain motion.

  2. Electrical characterization of HgTe nanowires using conductive atomic force microscopy

    SciTech Connect

    Gundersen, P.; Kongshaug, K. O.; Selvig, E.; Haakenaasen, R.

    2010-12-01

    Self-organized HgTe nanowires grown by molecular beam epitaxy (MBE) have been characterized using conductive atomic force microscopy. As HgTe will degrade or evaporate at normal baking temperatures for electron beam lithography (EBL) resists, an alternative method was developed. Using low temperature optical lithography processes, large Au contacts were deposited on a sample covered with randomly oriented, lateral HgTe nanowires. Nanowires partly covered by the large electrodes were identified with a scanning electron microscope and then localized in the atomic force microscope (AFM). The conductive tip of the AFM was then used as a movable electrode to measure current-voltage curves at several locations on HgTe nanowires. The measurements revealed that polycrystalline nanowires had diffusive electron transport, with resistivities two orders of magnitude larger than that of an MBE-grown HgTe film. The difference can be explained by scattering at the rough surface walls and at the grain boundaries in the wires. The method can be a solution when EBL is not available or requires too high temperature, or when measurements at several positions along a wire are required.

  3. Microfabricated environmental barrier using ZnO nanowire on metal mesh

    NASA Astrophysics Data System (ADS)

    Shin, Young-Min; Lee, Seung-Ki; Lee, Joo-Yong; Kim, Jun-Ho; Park, Jae-Hyoung; Ji, Chang-Hyeon

    2013-12-01

    In this study, a waterproof environmental barrier for microsensor package has been developed using metal mesh covered with zinc oxide (ZnO) nanowire. A near superhydrophobic surface with two-dimensional array of holes has been fabricated by hydrothermal growth of ZnO nanowire on an off-the-shelf steel use stainless (SUS) mesh. For a twill-woven SUS wire mesh having wire thickness of 30 µm and gap of 33 µm, a maximum contact angle of 160.40° and a minimum contact angle hysteresis of 15.23° have been achieved using ZnO nanowire grown on the wire surface and further deposition of FC film. The mesh was able to withstand a maximum water pressure of 2,459.8 Pa. The measured height of ZnO nanowire was approximately 2-3 µm. The fabricated SUS mesh covered with ZnO nanowire has been assembled with a microphone package, and waterproof characteristics have been measured by cyclic dipping test at various water levels. For a microphone package having two acoustic ports on top and bottom covered with fabricated mesh, no visible change in acoustic characteristics has been observed up to 1,372.9 Pa of water pressure. Total volume of the package was 6.8 × 9.8 × 1.9 mm3.

  4. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-01

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution

  5. High frequency III–V nanowire MOSFETs

    NASA Astrophysics Data System (ADS)

    Lind, Erik

    2016-09-01

    III–V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  6. II-VI nanowire radial heterostructures

    NASA Astrophysics Data System (ADS)

    Kahen, K. B.; Goldthorpe, Irene A.; Holland, M.

    2013-11-01

    There are many reports of ZnSe nanowire synthesis, but photoluminescence measurements on these nanowires indicate weak band-edge and high sub-bandgap defect emission. The two main contributors to the non-optimal photoluminescence are nanowire growth at high temperatures and unpassivated surface states. In this paper, the synthesis of II-VI core-shell nanowires by metal organic vapor phase epitaxy is reported. We demonstrate that larger bandgap shells that passivate the nanowire surface states can be deposited around the nanowires by increasing the partial pressures of the shell reactants without a large increase in growth temperature, allowing high quality material to be obtained. The deposition of nearly lattice-matched ZnMgSSe shells on the ZnSe nanowires increases the band-edge luminescent intensity of the ZnSe nanowires by more than four orders of magnitude and improves the band-edge to defect photoluminescence intensity ratio to 12 000:1. The corresponding full widths at half maximum of the band-edge exciton peaks of the core-shell nanowires can be as narrow as 2.8 nm. It is also shown that magnesium and chlorine can be incorporated into the ZnSe nanowire cores, which shortens the emission wavelength and is known to act as an n-type dopant, respectively.

  7. High frequency III-V nanowire MOSFETs

    NASA Astrophysics Data System (ADS)

    Lind, Erik

    2016-09-01

    III-V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  8. Influence of metal deposition on exciton-surface plasmon polariton coupling in GaAs/AlAs/GaAs core-shell nanowires studied with time-resolved cathodoluminescence.

    PubMed

    Estrin, Yevgeni; Rich, Daniel H; Kretinin, Andrey V; Shtrikman, Hadas

    2013-04-10

    The coupling of excitons to surface plasmon polaritons (SPPs) in Au- and Al-coated GaAs/AlAs/GaAs core-shell nanowires, possessing diameters of ~100 nm, was probed using time-resolved cathodoluminescence (CL). Excitons were generated in the metal coated nanowires by injecting a pulsed high-energy electron beam through the thin metal films. The Purcell enhancement factor (FP) was obtained by direct measurement of changes in the temperature-dependent radiative lifetime caused by the nanowire exciton-SPP coupling and compared with a model that takes into account the dependence of FP on the distance from the metal film and the thickness of the film covering the GaAs nanowires.

  9. Suppression of Low-Frequency Electronic Noise in Polymer Nanowire Field-Effect Transistors.

    PubMed

    Lezzi, Francesca; Ferrari, Giorgio; Pennetta, Cecilia; Pisignano, Dario

    2015-11-11

    The authors report on the reduction of low-frequency noise in semiconductor polymer nanowires with respect to thin-films made of the same organic material. Flicker noise is experimentally investigated in polymer nanowires in the range of 10-10(5) Hz by means of field-effect transistor architectures. The noise in the devices is well described by the Hooge empirical model and exhibits an average Hooge constant, which describes the current power spectral density of fluctuations, suppressed by 1-2 orders of magnitude compared to thin-film devices. To explain the Hooge constant reduction, a resistor network model is developed, in which the organic semiconducting nanostructures or films are depicted through a two-dimensional network of resistors with a square-lattice structure, accounting for the different anisotropy and degree of structural disorder of the active nanowires and films. Results from modeling agree well with experimental findings. These results support enhanced structural order through size-confinement in organic nanostructures as effective route to improve the noise performance in polymer electronic devices. PMID:26479330

  10. Self-assembling of molecular nanowires for enhancing the conducting properties of discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyun; Kim, Kyung Ho; Takanishi, Yoichi; Yamamoto, Jun; Park, Yung Woo; Kim, Youn Sang; Scalia, Giusy

    2015-08-01

    The self-organization of discotic liquid crystal molecules in columns has enormous interest for soft nanoelectronic applications. A great advantage of discotic liquid crystal is that defects can be self-annealed in contrast to typical organic materials. Through the overlap of molecular orbitals, the aromatic cores assemble into long range ordered one-dimensional structures. Very thin structured films can be obtained by spin-coating from solution and the resulting morphologies are strongly dependent on the interaction between discotics and solvent molecules. Toluene produces films formed by very long nanowires, spontaneously aligned along a common direction and over fairly large areas. These nanostructured films are a result of the interplay between liquid crystal self-organization and solvent driven assembly. The ordered nanowire structures exhibit improvement in the electrical properties compared to misaligned structures and even to pristine HAT5, deposited without the aid of solvent. In this study we show that the toluene-based deposition of discotic liquid crystals is advantageous because it allows a uniform coverage of the substrate, unlike pristine HAT5 but also thanks to the type of induced structures exhibiting one order of magnitude higher conductivity, in the aligned nanowire films, compared to bare HAT5 ones.

  11. Printed silver nanowire antennas with low signal loss at high-frequency radio

    NASA Astrophysics Data System (ADS)

    Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji

    2012-05-01

    Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those

  12. Surface physics of semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Amato, Michele; Rurali, Riccardo

    2016-02-01

    Semiconducting nanowires (NWs) are firm candidates for novel nanoelectronic devices and a fruitful playground for fundamental physics. Ultra-thin nanowires, with diameters below 10 nm, present exotic quantum effects due to the confinement of the wave functions, e.g. widening of the electronic band-gap, deepening of the dopant states. However, although several reports of sub-10 nm wires exist to date, the most common NWs have diameters that range from 20 to 200 nm, where these quantum effects are absent or play a very minor role. Yet, the research activity on this field is very intense and these materials still promise to provide an important paradigm shift for the design of emerging electronic devices and different kinds of applications. A legitimate question is then: what makes a nanowire different from bulk systems? The answer is certainly the large surface-to-volume ratio. In this article we discuss the most salient features of surface physics and chemistry in group-IV semiconducting nanowires, focusing mostly on Si NWs. First we review the state-of-the-art of NW growth to achieve a smooth and controlled surface morphology. Next we discuss the importance of a proper surface passivation and its role on the NW electronic properties. Finally, stressing the importance of a large surface-to-volume ratio and emphasizing the fact that in a NW the surface is where most of the action takes place, we discuss molecular sensing and molecular doping.

  13. Plasmon-controlled excitonic emission from vertically-tapered organic nanowires.

    PubMed

    Chikkaraddy, Rohit; Patra, Partha Pratim; Tripathi, Ravi P N; Dasgupta, Arindam; Kumar, G V Pavan

    2016-08-21

    Organic molecular nanophotonics has emerged as an important avenue to harness molecular aggregation and crystallization on various functional platforms to obtain nano-optical devices. To this end, there is growing interest to combine organic molecular nanostructures with plasmonic surfaces and interfaces. Motivated by this, herein we introduce a unique geometry: vertically-tapered organic nanowires grown on a plasmonic thin film. A polarization-sensitive plasmon-polariton on a gold thin-film was harnessed to control the exciton-polariton propagation and subsequent photoluminescence from an organic nanowire made of diaminoanthraquinone (DAAQ) molecules. We show that the exciton-polariton emission from individual DAAQ nanowires can be modulated up to a factor of 6 by varying the excitation polarization state of surface plasmons. Our observations were corroborated with full-wave three-dimensional finite-difference time-domain calculations performed on vertically-tapered nanowire geometry. Our work introduces a new optical platform to study coupling between propagating plasmons and propagating excitons, and may have implications in emerging fields such as hybrid-polariton based light emitting devices and vertical-cavity nano-optomechanics. PMID:27444822

  14. Spin-wave instabilities of ferromagnetic nanowire stripes under parallel pumping.

    PubMed

    Haghshenasfard, Zahra; Cottam, Michael G

    2016-05-11

    A microscopic (or Hamiltonian-based) theory is presented for the spin-wave instability thresholds in ferromagnetic nanowires under conditions of parallel pumping with a microwave field. A dipole-exchange Hamiltonian is employed in which the external magnetic field is either longitudinal or transverse to the length of the nanowire. This contrasts with most previous work on nonlinear spin waves which concentrate on situations where a macroscopic (or continuum) theory is appropriate. In nanowire stripes with lateral dimensions of order 100 nm or less, the quantization of the eigenmodes becomes modified due to strong spatial confinement and edge effects, making it appropriate to employ a microscopic dipole-exchange approach analogous to that used recently for ultrathin films. Numerical applications are presented for the dependence of the threshold microwave field amplitude for instability on the static applied field (the analog of the butterfly curves). The cases of longitudinal and transverse applied fields are found to lead to distinctly different behaviors, which are illustrated using EuS and permalloy as materials with different ratios of dipolar to exchange interactions. Structural effects due to the discrete spin-wave branches lead to structural aspects of the butterfly curves that are significantly modified compared with those for ultrathin films due to the edge modes in the nanowires. PMID:27049482

  15. Spin-wave instabilities of ferromagnetic nanowire stripes under parallel pumping

    NASA Astrophysics Data System (ADS)

    Haghshenasfard, Zahra; Cottam, Michael G.

    2016-05-01

    A microscopic (or Hamiltonian-based) theory is presented for the spin-wave instability thresholds in ferromagnetic nanowires under conditions of parallel pumping with a microwave field. A dipole-exchange Hamiltonian is employed in which the external magnetic field is either longitudinal or transverse to the length of the nanowire. This contrasts with most previous work on nonlinear spin waves which concentrate on situations where a macroscopic (or continuum) theory is appropriate. In nanowire stripes with lateral dimensions of order 100 nm or less, the quantization of the eigenmodes becomes modified due to strong spatial confinement and edge effects, making it appropriate to employ a microscopic dipole-exchange approach analogous to that used recently for ultrathin films. Numerical applications are presented for the dependence of the threshold microwave field amplitude for instability on the static applied field (the analog of the butterfly curves). The cases of longitudinal and transverse applied fields are found to lead to distinctly different behaviors, which are illustrated using EuS and permalloy as materials with different ratios of dipolar to exchange interactions. Structural effects due to the discrete spin-wave branches lead to structural aspects of the butterfly curves that are significantly modified compared with those for ultrathin films due to the edge modes in the nanowires.

  16. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    PubMed

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions.

  17. Thermal stability of Ti and Pt nanowires manufactured by Ga+ focused ion beam.

    PubMed

    Inkson, B J; Dehm, G; Wagner, T

    2004-06-01

    Ti and Pt nanowires have been produced by ultra high-vacuum molecular beam epitaxy deposition of Ti thin films and focused ion beam (FIB) deposition of Pt thin films, followed by cross-sectional FIB sputtering to form electron-transparent nanowires. The thermal stability of the nanowires has been investigated by in situ thermal cycling in a transmission electron microscope. Epitaxial single crystal Ti nanowires on (0001)Al(2)O(3) substrates are microstructurally stable up to 550-600 degrees C, above which limited dislocation motion is activated shortly before the Ti-wires oxidize. The amorphous FIB-deposited Pt wires are stable up to 580-650 degrees C where partial crystallization is observed in vacuum. Faceted nanoparticles grow on the wire surface, growing into free space by surface diffusion and minimizing contact area with the underlying wire. The particles are face-centred cubic (fcc) Pt with some dissolved Ga. Continued heating results in particle spheroidization, coalescence and growth, retaining the fcc structure.

  18. Nanowire-density-dependent field emission of n-type 3C-SiC nanoarrays

    SciTech Connect

    Wang, Lin; Gao, Fengmei; Chen, Shanliang; Yang, Weiyou; Li, Chengming

    2015-09-21

    The density of the nanowires is one of the key issues for their field emission (FE) properties of the nanoarrays, since it plays an important role on the electron emission sites and field screening effect. Here, we reported the nanowire-density-dependent FE properties of the n-type 3C-SiC nanoarrays. The highly oriented and large-scale SiC nanoarrays were grown on the 6H-SiC wafer via pyrolysis of polyureasilazane by adjusting the thicknesses of Au films used as the catalysts. The densities of the nanoarrays were tunable to be ∼2.9 × 10{sup 7}, ∼4.0 × 10{sup 7}, and ∼5.7 × 10{sup 7} nanowires/cm{sup 2} by controlling the Au film thicknesses of 50, 70, and 90 nm, respectively. The measured FE characteristics disclosed that the turn-on fields of the samples could be tailored to be of ∼1.79, 1.57, and 1.95 V/μm with the increase of the densities, suggesting that a suitable nanowire density could favor the enhanced electron emission from the SiC nanoarrays with improved emission sites and limited field screening effects.

  19. The effect of rod orientation on electrical anisotropy in silver nanowire networks for ultra-transparent electrodes

    PubMed Central

    Ackermann, Thomas; Neuhaus, Raphael; Roth, Siegmar

    2016-01-01

    Two-dimensional networks made of metal nanowires are excellent paradigms for the experimental observation of electrical percolation caused by continuous jackstraw-like physical pathways. Such systems became very interesting as alternative material in transparent electrodes, which are fundamental components in display devices. This work presents the experimental characterization of low-haze and ultra-transparent electrodes based on silver nanowires. The films are created by dip-coating, a feasible and scalable liquid film coating technique. We have found dominant alignment of the silver nanowires in withdrawal direction. The impact of this structural anisotropy on electrical anisotropy becomes more pronounced for low area coverage. The rod alignment does not influence the technical usability of the films as significant electrical anisotropy occurs only at optical transmission higher than 99 %. For films with lower transmission, electrical anisotropy becomes negligible. In addition to the experimental work, we have carried out computational studies in order to explain our findings further and compare them to our experiments and previous literature. This paper presents the first experimental observation of electrical anisotropy in two-dimensional silver nanowire networks close at the percolation threshold. PMID:27677947

  20. TOPICAL REVIEW: DNA nanowire fabrication

    NASA Astrophysics Data System (ADS)

    Gu, Qun; Cheng, Chuanding; Gonela, Ravikanth; Suryanarayanan, Shivashankar; Anabathula, Sathish; Dai, Kun; Haynie, Donald T.

    2006-01-01

    Deoxyribonucleic acid (DNA) has been a key building block in nanotechnology since the earliest work on what is now called DNA-templated self-assembly (Alivisatos et al 1996 Nature 382 609; Mirkin et al 1996 Nature 382 607; Braun et al 1998 Nature 391 775). A range of different nanoparticles and nanoclusters have been assembled on single DNA molecules for a variety of purposes (Braun et al 1998 Nature 391 775; Richter et al 2001 Appl. Phys. Lett. 78 536; Park et al 2002 Science 295 1503; Mirkin 2000 Inorg. Chem. 39 2258; Keren et al 2003 Science 302 1380). Electrically conductive silver (Braun et al 1998 Nature 391 775) and palladium (Richter et al 2001 Appl. Phys. Lett. 78 536) nanowires, for example, have been fabricated by DNA templating for the development of interconnection of nanoelectric elements, and field effect transistors have been built by assembly of a single carbon nanotube and DNA-templated nanowires (Keren et al 2003 Science 302 1380). DNA is well suited for nanowire assembly because of its size, well organized structure, and exquisite molecular-recognition-ability-specific base pairing. This property has been used to detect nucleic acids (Park et al 2002 Science 295 1503) and anthrax (Mirkin 2000 Inorg. Chem. 39 2258) with high sensitivity and specificity. Molecular recognition can also be used to localize nanowires in electronics. Various methods, for example molecular combing, electrophoretic stretching, and hydrodynamic stretching, have been developed to orient DNA molecules on a solid support. This review focuses on methods used to manipulate and metallize DNA in nanowire fabrication. A novel approach based on a single-stranded DNA template and molecular recognition is also discussed.

  1. Synthesis and Characterization of Nanowires

    SciTech Connect

    Musket, R.G.; Felter, T.; Quong, A.

    2000-03-01

    With the dimensions of components in microelectronic circuits shrinking, the phenomena associated with electronic conduction through wires and with device operation can be expected to change. For example, as the length of electrical conductors is reduced, ballistic transport will become the main mode of conduction. Sufficient reduction in the cross sectional area of conductors can lead to quantum confinement effects. Prior knowledge of the phenomena associated with decreasing size should help guide the designers of future, smaller devices in terms of geometry and materials. However, prior knowledge requires the availability of sufficiently small nanowires for experiments. To date, the smallest nanowires that have been fabricated and investigated had diameters of 8 nm. We propose to extend the investigation of these size-related phenomena by synthesizing, using a novel version of nuclear, or ion, track lithography and characterizing, physically and electrically, nanowires with diameters D of 1 to 5 nm and lengths L of 2 to 250 nm. Thus, by varying the dimensions of the nanowires, we will be able to determine experimentally when the ideas of macroscopic conductance break down and the conductance becomes dominated by quantum and ballistic effects. In our approach the nature of the small-diameter nanostructure formed can be controlled: Nanowires are formed when L/D is large, and quantum dots are formed when both L and D are small. Theoretical calculations will be performed to both guide and understand the experimental studies. We have examined several aspects of this challenging problem and generated some promising results, but the project was not extended for the second year as planned. Thus, we did not have sufficient resources to complete the proof of concept.

  2. Fabrication of Si/ZnS radial nanowire heterojunction arrays for white light emitting devices on Si substrates.

    PubMed

    Katiyar, Ajit K; Sinha, Arun Kumar; Manna, Santanu; Ray, Samit K

    2014-09-10

    Well-separated Si/ZnS radial nanowire heterojunction-based light-emitting devices have been fabricated on large-area substrates by depositing n-ZnS film on p-type nanoporous Si nanowire templates. Vertically oriented porous Si nanowires on p-Si substrates have been grown by metal-assisted chemical etching catalyzed using Au nanoparticles. Isolated Si nanowires with needle-shaped arrays have been made by KOH treatment before ZnS deposition. Electrically driven efficient white light emission from radial heterojunction arrays has been achieved under a low forward bias condition. The observed white light emission is attributed to blue and green emission from the defect-related radiative transition of ZnS and Si/ZnS interface, respectively, while the red arises from the porous surface of the Si nanowire core. The observed white light emission from the Si/ZnS nanowire heterojunction could open up the new possibility to integrate Si-based optical sources on a large scale.

  3. The study of optical band edge property of bismuth oxide nanowires α-Bi2O3.

    PubMed

    Ho, Ching-Hwa; Chan, Ching-Hsiang; Huang, Ying-Sheng; Tien, Li-Chia; Chao, Liang-Chiun

    2013-05-20

    The α-phase Bi(2)O(3) (α-Bi(2)O(3)) is a crucial and potential visiblelight photocatalyst material needless of intentional doping on accommodating band gap. The understanding on fundamental optical property of α-Bi(2)O(3) is important for its extended applications. In this study, bismuth oxide nanowires with diameters from tens to hundreds nm have been grown by vapor transport method driven with vapor-liquid-solid mechanism on Si substrate. High-resolution transmission electron microscopy and Raman measurement confirm α phase of monoclinic structure for the as-grown nanowires. The axial direction for the as-grown nanowires was along < 122 >. The band-edge structure of α-Bi(2)O(3) has been probed experimentally by thermoreflectance (TR) spectroscopy. The direct band gap was determined accurately to be 2.91 eV at 300 K. Temperaturedependent TR measurements of 30-300 K were carried out to evaluate temperature-energy shift and line-width broadening effect for the band edge of α-Bi(2)O(3) thin-film nanowires. Photoluminescence (PL) experiments at 30 and 300 K were carried out to identify band-edge emission as well as defect luminescence for the α-Bi(2)O(3) nanowires. On the basis of experimental analyses of TR and PL, optical characteristics of direct band edge of α-Bi(2)O(3) nanowires have thus been realized.

  4. Effect of gas flow rate on structural properties of zinc oxide nanowires grown by vapor-solid mechanism

    NASA Astrophysics Data System (ADS)

    Sakrani, S.; Jamaludin, N.; Muhammad, R.; Wahab, Y.; Ismail, A. K.; Suhaimi, S.; Mohammed, Y. H.

    2016-07-01

    ZnO nanowires have been grown on pre-coated (ZnO thin film) silicon (100) substrates with special attention on the effect of gas flow rate. The samples were fabricated using a simple thermal evaporation method within a horizontal quartz tube under controlled supply of Ar and O2 gas where ZnO powder source were previously weighed and heated at 960 °C for 2 h, allowing the reactant vapors to deposit onto substrate to form the nanowires. FESEM images revealed the randomly-oriented nanowires in which the shapes varied with increasing gas flow rates from varied from 90 to 130 sccm. According, both diameter and aspect ratio of the nanowires was observed to shift at 110 sccm where optimum growth condition was expected at this gas flow rate. From EDX spectrum analysis, ZnO nanowires appeared to have uniform composition and purity and confirming the hexagonal wurtzite crystal structure. These measured parameters in combination with unique properties made the possibility of ZnO nanowires potentially useful for functional nanodevices.

  5. Bacterial Nanowires Facilitate Extracellular Electron Transfer

    NASA Astrophysics Data System (ADS)

    Gorby, Y.

    2005-12-01

    Dissimilatory metal reducing bacteria, including Shewanella oneidensis and Geobacter sulfurreducens, produce electrically conductive nanowires that facilitate electron transfer to solid phase iron oxides. Nanowires produced by S. oneidensis strain MR-1 are functionalized by decaheme cytochromes MtrC and OmcA that are distributed along the length of the nanowires, as confirmed by immunolocalization experiments using peptide specific antibodies. Mutants lacking MtrC and OmcA produce nanowires that were poorly conductive, are unable to reduce solid phase iron oxides, and do not produce electric current in microbial fuel cells. Although less completely characterized, nanowires are also produced by organisms throughout a broad metabolic spectrum, from sulfate reducing bacteria to oxygenic, phototrophic cyanobacteria. Our research suggests that electrically conductive nanowires may be common throughout the microbial world and may serve as structures for efficient electron transfer and energy dissemination in complex communities such as microbial mats and biofilms.

  6. Thermoporometry characterization of silica microparticles and nanowires.

    PubMed

    Wu, Jiaxin; Zheng, Han; Cheng, He; Zhou, L; Leong, K C; Rajagopalan, R; Too, H P; Choi, W K

    2014-03-01

    We present the results of a systematic study on the porosity of silica microparticles and nanowires prepared by glancing angle deposition-metal-assisted chemical etching (GLAD-MACE) and interference lithography-metal-assisted chemical etching (IL-MACE) techniques using the thermoporometry (TPM) method. Good agreement was obtained between our TPM results and published data provided by the suppliers of silica microparticles. TPM characterization of the GLAD-MACE and IL-MACE nanowires was carried out on the basis of parameters obtained from TPM experiments on microparticles. Our nanowires showed a similar trend but lower values of the pore volume and surface area than nanowires prepared by MACE with AgNO3 solution. We attribute the enhanced bioanalysis performance of the GLAD-MACE nanowires based devices to the increased pore volume and total surface area of the nanowires.

  7. Photocatalytic Properties of Porous Silicon Nanowires.

    PubMed

    Qu, Yongquan; Zhong, Xing; Li, Yujing; Liao, Lei; Huang, Yu; Duan, Xiangfeng

    2010-01-01

    Porous silicon nanowires are synthesized through metal assisted wet-chemical etch of highly-doped silicon wafer. The resulted porous silicon nanowires exhibit a large surface area of 337 m(2)·g(-1) and a wide spectrum absorption across the entire ultraviolet, visible and near infrared regime. We further demonstrate that platinum nanoparticles can be loaded onto the surface of the porous silicon nanowires with controlled density. These combined advancements make the porous silicon nanowires an interesting material for photocatalytic applications. We show that the porous silicon nanowires and platinum nanoparticle loaded porous silicon nanowires can be used as effective photocatalysts for photocatalytic degradation of organic dyes and toxic pollutants under visible irradiation, and thus are of significant interest for organic waste treatment and environmental remediation.

  8. Chalcogenide nanowires by evaporation-condensation

    SciTech Connect

    Johnson, Bradley R.; Schweiger, Michael J.; Sundaram, S. K.

    2005-02-02

    Chalcogenide (arsenic sulfide) nanowires have been successfully synthesized from As2S3 under near-equilibrium conditions via evaporation-condensation process in evacuated glass ampoules. The as-synthesized nanowires were pure, nearly stoichiometric, and amorphous. The nanowires had diameters ranging from 40 to 140 nm and lengths up to a few millimeters. Distinct joints of the crisscrossing nanowires indicate potential for forming structural networks. They have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Raman spectroscopy, and X-ray diffraction (XRD) to determine their structure, composition, and morphology. Selected area diffraction (SAD) in the TEM and XRD confirmed their amorphous nature. The As-S nanowires could make an ideal system for understanding the carrier transport and photonic properties in nanoscale for this family of materials (IV-V compounds). Chalcogenide nanowires show promise for integrated nanoelectronics and biophotonics.

  9. Organophosphorous modifications of multifunctional magnetic nanowires.

    PubMed

    Kalska-Szostko, B; Orzechowska, E; Wykowska, U

    2013-11-01

    In the presented study, efforts have been undertaken to obtain the magnetic nanowires of multisegmental internal structure by AC and DC electrodeposition methods. The core-shell nanowires were obtained by wetting chemical deposition followed by thermal crystallization and electrodeposition. Such nanowires were tested to obtain functionalization by organophosphorous compounds and finally immobilize enzymes like trypsin. All obtained nanostructures were tested by X-ray diffraction, infrared spectroscopy and transmission electron microscopy.

  10. Nanowire growth process modeling and reliability models for nanodevices

    NASA Astrophysics Data System (ADS)

    Fathi Aghdam, Faranak

    . This work is an early attempt that uses a physical-statistical modeling approach to studying selective nanowire growth for the improvement of process yield. In the second research work, the reliability of nano-dielectrics is investigated. As electronic devices get smaller, reliability issues pose new challenges due to unknown underlying physics of failure (i.e., failure mechanisms and modes). This necessitates new reliability analysis approaches related to nano-scale devices. One of the most important nano-devices is the transistor that is subject to various failure mechanisms. Dielectric breakdown is known to be the most critical one and has become a major barrier for reliable circuit design in nano-scale. Due to the need for aggressive downscaling of transistors, dielectric films are being made extremely thin, and this has led to adopting high permittivity (k) dielectrics as an alternative to widely used SiO2 in recent years. Since most time-dependent dielectric breakdown test data on bilayer stacks show significant deviations from a Weibull trend, we have proposed two new approaches to modeling the time to breakdown of bi-layer high-k dielectrics. In the first approach, we have used a marked space-time self-exciting point process to model the defect generation rate. A simulation algorithm is used to generate defects within the dielectric space, and an optimization algorithm is employed to minimize the Kullback-Leibler divergence between the empirical distribution obtained from the real data and the one based on the simulated data to find the best parameter values and to predict the total time to failure. The novelty of the presented approach lies in using a conditional intensity for trap generation in dielectric that is a function of time, space and size of the previous defects. In addition, in the second approach, a k-out-of-n system framework is proposed to estimate the total failure time after the generation of more than one soft breakdown.

  11. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGES

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; Naalla, Mahesh

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  12. Electrochemically grown single-nanowire sensors

    NASA Astrophysics Data System (ADS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Penner, Reginald M.; Bangar, Mangesh; Mulchandani, Ashok; Myung, Nosang V.

    2004-12-01

    We report a fabrication technique that is potentially capable of producing arrays of individually addressable nanowire sensors with controlled dimensions, positions, alignments, and chemical compositions. The concept has been demonstrated with electrodeposition of palladium wires with 75 nm to 350 nm widths. We have also fabricated single and double conducting polymer nanowires (polyaniline and polypyrrole) with 100nm and 200nm widths using electrochemical direct growth. Using single Pd nanowires, we have also demonstrated hydrogen sensing. It is envisioned that these are the first steps towards nanowire sensor arrays capable of simultaneously detecting multiple chemical species.

  13. Maskless electrodeposited contact for conducting polymer nanowires

    NASA Astrophysics Data System (ADS)

    Hangarter, Carlos M.; Bangar, Mangesh; Hernandez, Sandra C.; Chen, Wilfred; Deshusses, Marc A.; Mulchandani, Ashok; Myung, Nosang V.

    2008-02-01

    This letter reports a simple and scalable method to create mechanical joints and electrical contacts of conducting polymer nanowires to electrodes by selective maskless metal electrodeposition on electrodes. This is an attractive route for contacting nanowires as it bypasses harsh processing conditions of conventional methods. The electrodeposition conditions and initial resistance of the nanowires were found to have a significant impact on the selective maskless deposition. Different dopants were also investigated to understand the polymer reduction during cathodic deposition of metal. A single dodecyl sulfate doped polypyrrole nanowire with maskless electrodeposited nickel contacts was shown to have improved sensitivity toward ammonia gas.

  14. Constricted nanowire with stabilized magnetic domain wall

    NASA Astrophysics Data System (ADS)

    Sbiaa, R.; Al Bahri, M.

    2016-08-01

    Domain wall (DW)-based magnetic memory offers the possibility for increasing the storage capacity. However, stability of DW remains the major drawback of this scheme. In this letter, we propose a stepped nanowire for pinning DW in a desirable position. From micromagnetic simulation, the proposed design applied to in-plane magnetic anisotropy materials shows that by adjusting the nanowire step size and its width it is possible to stabilize DW for a desirable current density range. In contrast, only a movement of DW could be seen for conventional nanowire. An extension to a multi-stepped nanowire could be used for multi-bit per cell magnetic memory.

  15. Enhanced ionized impurity scattering in nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  16. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    DOEpatents

    Yang, Peidong; Choi, Heonjin; Lee, Sangkwon; He, Rongrui; Zhang, Yanfeng; Kuykendal, Tevye; Pauzauskie, Peter

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  17. Catalyst-Free Synthesis of ZnO Nanowires on Oxidized Silicon Substrate for Gas Sensing Applications.

    PubMed

    Behera, B; Chandra, S

    2015-06-01

    In the present work, we report the synthesis of nanostructured ZnO by oxidation of zinc film without using a seed or catalyst layer. The zinc films were deposited on oxidized Si substrates by RF magnetron sputtering process. These were oxidized in dry and wet air/oxygen ambient. The optimized process yielded long nanowires of ZnO having diameter of around 60-70 nm and spread uniformly over the surface. The effect of oxidation temperature, time, Zn film thickness and the ambient has strong influence on the morphology of resulting nanostruxctured ZnO film. The films were characterized by scanning electron microscopy for morphological studies and X-ray diffraction (XRD) analysis to study the phase of the nanostructured ZnO. Room temperature photoluminescence (PL) measurements of the nanowires show UV and green emission. A sensor was designed and fabricated using nanostructured ZnO film, incorporating inter-digital-electrode (IDE) for the measurement of resistance of the sensing layer. The gas sensing properties were investigated from the measurement of change in resistance when exposed to vapours of different volatile organic compound (VOC) such as acetone, ethanol, methanol and 2-propanol. The results suggest that ZnO nanowires fabricated by this method have potential application in gas sensors.

  18. Room temperature synthesis and characterization of CdO nanowires by chemical bath deposition (CBD) method

    NASA Astrophysics Data System (ADS)

    Dhawale, D. S.; More, A. M.; Latthe, S. S.; Rajpure, K. Y.; Lokhande, C. D.

    2008-03-01

    A chemical synthesis process for the fabrication of CdO nanowires is described. In the present work, transparent and conductive CdO films were synthesized on the glass substrate using chemical bath deposition (CBD) at room temperature. These films were annealed in air at 623 K and characterized for the structural, morphological, optical and electrical properties were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical and electrical resistivity. The XRD analysis showed that the as-deposited amorphous can be converted in to polycrystalline after annealing. Annealed CdO nanowires are 60-65 nm in diameter and length ranges typically from 2.5 to 3 μm. The optical properties revealed the presence of direct and indirect band gaps with energies 2.42 and 2.04 eV, respectively. Electrical resistivity measurement showed semiconducting behavior and thermoemf measurement showed n-type electrical conductivity.

  19. Optimization of Aluminum Anodization Conditions for the Fabrication of Nanowires by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Fucsko, Viola

    2005-01-01

    Anodized alumina nanotemplates have a variety of potential applications in the development of nanotechnology. Alumina nanotemplates are formed by oxidizing aluminum film in an electrolyte solution.During anodization, aluminum oxidizes, and, under the proper conditions, nanometer-sized pores develop. A series of experiments was conducted to determine the optimal conditions for anodization. Three-micrometer thick aluminum films on silicon and silicon oxide substrates were anodized using constant voltages of 13-25 V. 0.1-0.3M oxalic acid was used as the electrolyte. The anodization time was found to increase and the overshooting current decreased as both the voltage and the electrolyte concentrations were decreased. The samples were observed under a scanning electron microscope. Anodizing with 25V in 0.3M oxalic acid appears to be the best process conditions. The alumina nanotemplates are being used to fabricate nanowires by electrodeposition. The current-voltage characteristics of copper nanowires have also been studied.

  20. Subsurface imaging of silicon nanowire circuits and iron oxide nanoparticles with sub-10 nm spatial resolution.

    PubMed

    Perrino, A P; Ryu, Y K; Amo, C A; Morales, M P; Garcia, R

    2016-07-01

    Non-destructive subsurface characterization of nanoscale structures and devices is of significant interest in nanolithography and nanomanufacturing. In those areas, the accurate location of the buried structures and their nanomechanical properties are relevant for optimization of the nanofabrication process and the functionality of the system. Here we demonstrate the capabilities of bimodal and trimodal force microscopy for imaging silicon nanowire devices buried under an ultrathin polymer film. We resolve the morphology and periodicities of silicon nanowire pairs. We report a spatial resolution in the sub-10 nm range for nanostructures buried under a 70 nm thick polymer film. By using numerical simulations we explain the role of the excited modes in the subsurface imaging process. Independent of the bimodal or trimodal atomic force microscopy approach, the fundamental mode is the most suitable for tracking the topography while the higher modes modulate the interaction of the tip with the buried nanostructures and provide subsurface contrast.

  1. Subsurface imaging of silicon nanowire circuits and iron oxide nanoparticles with sub-10 nm spatial resolution

    NASA Astrophysics Data System (ADS)

    Perrino, A. P.; Ryu, Y. K.; Amo, C. A.; Morales, M. P.; Garcia, R.

    2016-07-01

    Non-destructive subsurface characterization of nanoscale structures and devices is of significant interest in nanolithography and nanomanufacturing. In those areas, the accurate location of the buried structures and their nanomechanical properties are relevant for optimization of the nanofabrication process and the functionality of the system. Here we demonstrate the capabilities of bimodal and trimodal force microscopy for imaging silicon nanowire devices buried under an ultrathin polymer film. We resolve the morphology and periodicities of silicon nanowire pairs. We report a spatial resolution in the sub-10 nm range for nanostructures buried under a 70 nm thick polymer film. By using numerical simulations we explain the role of the excited modes in the subsurface imaging process. Independent of the bimodal or trimodal atomic force microscopy approach, the fundamental mode is the most suitable for tracking the topography while the higher modes modulate the interaction of the tip with the buried nanostructures and provide subsurface contrast.

  2. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze

    SciTech Connect

    Kiran Kumar, A.B.V.; Wan Bae, Chang; Piao, Longhai Kim, Sang-Ho

    2013-08-01

    Graphical abstract: This graphical abstract illustrates the schematic representation of the main drawbacks and rectifications for AgNWs based transparent electrodes. - Highlights: • Films exhibited low sheet resistance and optical properties with R{sub s} ≤ 30 Ω/□ and T ≥ 90%. • We decreased haze to 2% by controlling AgNWs length, diameter, and concentration. • We achieved good adhesion for AgNWs on PET film. • There is no significant change in resistance in the bending angle from 0° to 180°, and on twisting. - Abstract: Recent work has been focusing on solution processable transparent electrodes for various applications including solar cells and displays. As well as, the research aims majorly at silver nanowires (AgNWs) to replace ITO. We enhance the transparent electrode performance as a function of optical and mechanical properties with low sheet resistance, by controlling the AgNWs accept ratios, ink composition, and processing conditions. The nanowire network of transparent films agrees with the 2D percolation law. The film transmittance values at 550 nm are coping with a reference ITO film. Sheet resistance and haze values are suitable for flexible electronic applications. We fabricate transparent flexible film using a low-cost processing technique.

  3. Nanowire NMOS Logic Inverter Characterization.

    PubMed

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly. PMID:27427653

  4. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting

    NASA Astrophysics Data System (ADS)

    Sun, Ke; Madsen, Kristian; Andersen, Pål; Bao, Weining; Sun, Zhelin; Wang, Deli

    2012-05-01

    We report a systematic study of Si|ZnO and Si|ZnO| metal photocathodes for effective photoelectrochemical cells and hydrogen generation. Both ZnO nanocrystalline thin films and vertical nanowire arrays were studied. Si|ZnO electrodes showed increased cathodic photocurrents due to improved charge separation by the formation of a p/n junction, and Si|ZnO:Al (n+-ZnO) and Si|ZnO(N2) (thin films prepared in N2/Ar gas) lead to a further increase in cathodic photocurrents. Si|ZnONW (nanowire array) photocathodes dramatically increased the photocurrents and thus photoelectrochemical conversion efficiency due to the enhanced light absorption and enlarged surface area. The ZnO film thickness and ZnO nanowire length were important to the enhancements. A thin metal coating on ZnO showed increased photocurrent due to a catalyzed hydrogen evolution reaction and Ni metal showed comparable catalytic activities to those of Pt and Pd. Moreover, photoelectrochemical instability of Si|ZnO electrodes was minimized by metal co-catalysts. Our results indicate that the metal and ZnO on p-type Si serve as co-catalysts for photoelectrochemical water splitting, which can provide a possible low-cost and scalable method to fabricate high efficiency photocathodes for practical applications in clean solar energy harvesting.

  5. Nanoscale contact engineering for Silicon/Silicide nanowire devices

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chen

    Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at nanoscale have indicated possible deviations from the bulk and the thin film system. Here we studied growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction. We have grown single crystal PtSi nanowires and PtSi/Si/PtSi nanowire heterostructures through solid state reaction. TEM studies show that the heterostructures have atomically sharp interfaces free of defects. Electrical measurement of PtSi nanowires shows a low resistivity of ˜28.6 μΩ·cm and a high breakdown current density beyond 108 A/cm2. Furthermore, using single-crystal PtSi/Si/PtSi nanowire heterostructures with atomically clean interfaces, we have fabricated p-channel enhancement mode transistors with the best reported performance for intrinsic silicon nanowires to date. In our results, silicide can provide a clean and no Fermi level pinning interface and then silicide can form Ohmic-contact behavior by replacing the source/drain metal with PtSi. It has been proven by our experiment by contacting PtSi with intrinsic Si nanowires (no extrinsic doping) to achieve high performance p-channel device. By utilizing the same approach, single crystal MnSi nanowires and MnSi/Si/MnSi nanowire heterojunction with atomically sharp interfaces can also been grown. Electrical transport studies on Mn

  6. Development of self-assembling nanowires containing electronically active oligothiophenes

    NASA Astrophysics Data System (ADS)

    Tsai, Wei-Wen

    This dissertation discusses the development of conductive one-dimensional nanowires from self-assembling oligothiophene molecules. Self-assembly has been demonstrated to be a promising alternative approach towards high performance, solution processable, and low-cost organic electronics. One of the many challenges in this field is the control of supramolecular morphologies of ordered structures containing pi-conjugated moieties. This research demonstrated several successful strategies to achieve self assembly of conductive nanowires using synergistic interactions combining pi stacking and hydrogen bonding. The first approach used was to develop a hairpin-shaped sexithiophene molecule, which features two arms of the conjugated structure. The diamidocyclohexyl headgroup of this molecule successfully directs the self-assembly from hydrogen bonding among the amides, forming high-aspect-ratio one-dimensional nanowires with well-defined diameters of 3.0 +/- 0.3 nm. The molecular orientation in the nanostructures promotes formation of sexithiophene H and J aggregates that facilitate efficient charge transport. Organic field-effect transistors were fabricated to reveal improved intrinsic hole mobility from films of the nanostructures, 3.46 x 10-6 cm2V-1s-1, which is one order of magnitude higher than films cast from unassembled molecules. Bulk heterojunction solar cells were developed from this molecule and fullerenes utilizing solution-phase fabrication methods. Intimate mix of the molecule and phenyl-C61-butyric acid methyl ester creates structured interfaces for efficient exciton splitting. The charge carrier mobilities of each material are improved by self-assembly in solution and thermal-energy assisted phase separation.The photovoltaic devices achieved the highest open-circuit voltage of 0.62 V, short-circuit current of 1.79 mA/cm2, fill factor of 35%, and power conversion efficiency of 0.48%. Another strategy to one-dimensional nanowires studied here involved the

  7. Nanowire sensors and arrays for chemical/biomolecule detection

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  8. Effects of the physical properties of atomic layer deposition grown seeding layers on the preparation of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Ladanov, Mikhail; Algarin-Amaris, Paula; Villalba, Pedro; Emirov, Yusuf; Matthews, Garrett; Thomas, Sylvia; Ram, Manoj K.; Kumar, Ashok; Wang, Jing

    2013-11-01

    Zinc oxide (ZnO) nanowires are growing in interest as the number of devices for which they are well suited increases. Success in these applications requires defined and controlled geometric incorporation of the wires into the various platforms. Therefore, establishing the ability to tailor the growth ZnO nanowires to produce specified sizes, surface densities, and orientation will be important. In the reported work, the effects of the seeding layer on these factors were accessed. Atomic layer deposition (ALD) was used to produce thin films of ZnO under varying growth and post-processing conditions. These films were fully characterized, including their thickness, surface roughness, and crystalline orientation. Using these well-defined films as the seeding layer, ZnO nanowires were grown and subsequently characterized in terms of morphology and crystalline properties. It was shown that the resulting nanowire properties are dependent upon the nature of the seeding layer, and careful production of the seeding layer allows for some control over these properties.

  9. Compact Nanowire Sensors Probe Microdroplets.

    PubMed

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector.

  10. Tunable nanowire nonlinear optical probe

    SciTech Connect

    Nakayama, Yuri; Pauzauskie, Peter J.; Radenovic, Aleksandra; Onorato, Robert M.; Saykally, Richard J.; Liphardt, Jan; Yang, Peidong

    2008-02-18

    One crucial challenge for subwavelength optics has been thedevelopment of a tunable source of coherent laser radiation for use inthe physical, information, and biological sciences that is stable at roomtemperature and physiological conditions. Current advanced near-fieldimaging techniques using fiber-optic scattering probes1,2 have alreadyachieved spatial resolution down to the 20-nm range. Recently reportedfar-field approaches for optical microscopy, including stimulatedemission depletion (STED)3, structured illumination4, and photoactivatedlocalization microscopy (PALM)5, have also enabled impressive,theoretically-unlimited spatial resolution of fluorescent biomolecularcomplexes. Previous work with laser tweezers6-8 has suggested the promiseof using optical traps to create novel spatial probes and sensors.Inorganic nanowires have diameters substantially below the wavelength ofvisible light and have unique electronic and optical properties9,10 thatmake them prime candidates for subwavelength laser and imagingtechnology. Here we report the development of an electrode-free,continuously-tunable coherent visible light source compatible withphysiological environments, from individual potassium niobate (KNbO3)nanowires. These wires exhibit efficient second harmonic generation(SHG), and act as frequency converters, allowing the local synthesis of awide range of colors via sum and difference frequency generation (SFG,DFG). We use this tunable nanometric light source to implement a novelform of subwavelength microscopy, in which an infrared (IR) laser is usedto optically trap and scan a nanowire over a sample, suggesting a widerange of potential applications in physics, chemistry, materials science,and biology.

  11. Compact Nanowire Sensors Probe Microdroplets.

    PubMed

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector. PMID:27417510

  12. Rapid nanosheets and nanowires formation by thermal oxidation of iron in water vapour and their applications as Cr(VI) adsorbent

    NASA Astrophysics Data System (ADS)

    Budiman, Faisal; Bashirom, Nurulhuda; Tan, Wai Kian; Razak, Khairunisak Abdul; Matsuda, Atsunori; Lockman, Zainovia

    2016-09-01

    Thermal oxidation of iron foil was done at 400 °C and 500 °C in for 2 h to form multilayered oxide scale with outer oxide layer of α-Fe2O3 comprising of nanowires and nanosheets respectively. Iron oxidized at 300 °C formed a rather compact film with no noticeable nanostructures. The morphologies of oxide formed in different oxidation environment (water vapour or dry air) were compared; densely packed nanostructures were produced in water vapour compared to dry air. Time variation study indicated rapid growth of nanostructure whereby for 1 min at 500 °C dense nanowires with some noticeable nanosheets were already observed. The nanowires and nanosheets were used to adsorb Cr(VI) from aqueous solution. Adsorption of 10 ppm of Cr(VI) on the nanowires and nanosheets was found to be successful with much faster removal efficiency for the nanosheets. Both samples displayed complete adsorption for less than 1 h.

  13. Nanowire sensor, sensor array, and method for making the same

    NASA Technical Reports Server (NTRS)

    Yun, Minhee (Inventor); Myung, Nosang (Inventor); Vasquez, Richard (Inventor); Homer, Margie (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  14. Facile synthesis of vanadium oxide nanowires

    NASA Astrophysics Data System (ADS)

    Kysar, Jesse; Sekhar, Praveen Kumar

    2016-10-01

    A simple growth process is reported for the synthesis of vanadium (II) oxide nanowires with an average width of 65 nm and up to 5 μm in length for growth at 1000 °C for 3 h. The vanadium (II) oxide nanowires were grown on a gold-coated silicon substrate at ambient pressure using a single heat zone furnace with Ar as the carrier gas. Gold was utilized as a catalyst for the growth of the nanowires. The growth temperature and heating time were varied to observe the nanowire morphology. An increase in nanowire width was observed with an increase in the heating temperature. A ninefold increase in the number density of the nanowires was observed when the heating time was changed from 30 min to 3 h. This is the first time a simple growth process for producing VO nanowires at ambient pressure has been demonstrated. Such a scheme enables wider use of VO nanowires in critical applications such as energy storage, gas sensors, and optical devices.

  15. Novel nanowire heterostructures for nanoelectronic applications

    NASA Astrophysics Data System (ADS)

    Yan, Hao

    Semiconductor nanowires are promising candidates for future nanoelectronic devices. Integration of functional materials into nanowires in the form of nanowire heterostructures can give them unique properties and novel device applications. This thesis deals with the synthesis, characterization and electronic application of core/shell nanowire heterostructures. First, a novel approach to the core/shell heterostructure, namely the atomic layer deposition (ALD) is introduced to deposit high-dielectric-constant (high-k) oxide, perovskite oxide and metal. The excellent conformality of ALD allows these materials to form uniform shells on semiconductor nanowire cores. The electrical and magnetic properties of Si/ZrO2/Ni core/shell/shell nanowires are further investigated, which shows metallic conductivity and axial alignment in a magnetic field. Next, we study the performance of semiconductor/high-k-oxide core/shell nanowires as nanowire field effect transistors (NW-FETs). The fabrication strategies are first evaluated. Then high-performance NW-FET devices with large ON/OFF ratio, sharp switching and low leakage current are demonstrated. These devices show significant gate enhancement compared to the back-gated devices and are promising to outperform state-of-the-art planar MOSFETs fabricated with top-down methods. Subsequently, a charge-trapping nanowire (CTNW) with semiconductor/multidielectric core/shell heterostructure is demonstrated. Charge-trapping in the nanowire heterostructure gives it memory function with large ON/OFF ratio and reliable switching. Charge-trapping also defines the gate response of the CTNW-FET, making it a programmable logic unit. Furthermore, the application of the CTNW heterostructure in neuromorphic circuit is investigated. CTNWs are then built into crossbar array architecture to carry out complex functions. Programming different active node patterns into the array allows it to carry out different logic operations such as XOR, adder

  16. Segmented nanowires displaying locally controllable properties

    SciTech Connect

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2013-03-05

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  17. Superconductive silicon nanowires using gallium beam lithography.

    SciTech Connect

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  18. Conductive Nanowires Templated by Molecular Brushes.

    PubMed

    Raguzin, Ivan; Stamm, Manfred; Ionov, Leonid

    2015-10-21

    In this paper, we report the fabrication of conductive nanowires using polymer bottle brushes as templates. In our approach, we synthesized poly(2-dimethylamino)ethyl methacrylate methyl iodide quaternary salt brushes by two-step atom transfer radical polymerization, loaded them with palladium salt, and reduced them in order to form metallic nanowires with average lengths and widths of 300 and 20 nm, respectively. The obtained nanowires were deposited between conductive gold pads and were connected to them by sputtering of additional pads to form an electric circuit. We connected the nanowires in an electric circuit and demonstrated that the conductivity of these nanowires is around 100 S·m(-1). PMID:26418290

  19. Nanowires for thermal energy conversion and management

    NASA Astrophysics Data System (ADS)

    Chen, Renkun

    This dissertation presents the application of nanowires in two aspects of thermal energy conversion and management: (i) silicon (Si) nanowires as efficient and scalable thermoelectric materials due to the reduced thermal conductivity (k), and (ii) Si and copper (Cu) nanowire arrays for enhanced phase change heat transfer including boiling and evaporation and their applications in thermal management of microelectronics. In the first half of the thesis (chapter 2 and 3), we describe thermal and thermoelectric measurements of individual Si nanowires for studying phonon transport properties and their potential application in thermoelectrics. A theoretical model based on coherent phonon scattering was developed to explain the experiemental data, which suggests that phonon-boundary scattering is highly frequency dependent. For low frequency (long wavelength) phonons, the transport is nearly ballistic, whereas high frequency or short wavelength phonons scatter diffusively at nanowire boundary. The competition between the two phonon transmission regimes results in the unusual linear behavior of the thermal conductance of thin VLS Si nanowires at low temperature. Next, the thermal conductivity of EE Si nanowires, which have much rougher surface compared to VLS nanowires, was measured and found to be five-eight times lower than that of VLS counterparts with similar diameters. The substantial reduction in k is presumably due to the higher surface roughness, since both types of nanowires have single crystalline cores. In particular, for ˜ 50 nm EE Si nanowires etched from 0.1 O-cm B-doped p-Si <111> (˜2 x 1017 cm-3 dopant concentration), the k is around 1.6 Wm-1K-1 and the kL is ˜1.2 Wm-1 K-1 at room temperature, approaching that of amorphous Si. The single nanowire measurements show the great promise of using Si nanowire arrays as high-performance, scalable thermoelectric materials. As the second focus of the thesis (chapter 4 and 5), nanowire arrays were used for enhanced

  20. Nanowires, nanostructures and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).