Sample records for n-glucuronide conjugated metabolites

  1. Determination of n-hexane metabolites by liquid chromatography/mass spectrometry. 2. Glucuronide-conjugated metabolites in untreated urine samples by electrospray ionization.

    PubMed

    Manini, P; Andreoli, R; Mutti, A; Bergamaschi, E; Niessen, W M

    1998-01-01

    A liquid chromatography atmospheric pressure electrospray mass spectrometry (ESI-LC/MS) system was evaluated for the identification and characterization of n-hexane conjugated metabolites (glucuronides) in untreated urine samples. Chromatography of glucuronides was obtained under ion-suppressed reversed-phase conditions, by using high-speed (3 cm, 3 microns) columns and formic acid (2 mM) as modifier in the mobile phase. The mass spectrometer was operated in negative ion (NI) mode. For the first time, four glucuronides were identified by ESI-LC/MS in untreated urine samples of rats exposed to n-hexane: 2-hexanol-glucuronide, 5-hydroxy-2-hexanone-glucuronide, 2,5-hexanediol-glucuronide and 4,5-dihydroxy-2-hexanone-glucuronide. Confirmation of the conjugated metabolites was obtained by LC/MS/MS experiments. Gas chromatography/mass spectrometry (GC/MS) and atmospheric pressure chemical ionization (APCI) LC/MS analyses were performed on the same samples. An integrated approach GC/MS-LC/MS for the semi-quantitative analysis of n-hexane glucuronides, whose standards are not commercially available, is discussed and proposed here. In order to understand the fate of the metabolites during sample pre-treatment, a study about the effects of enzymatic and acid hydrolysis on urine samples was conducted on glucuronides isolated by solid-phase extraction. Combined analyses by GC/MS and LC/MS enabled us to distinguish 'true' n-hexane metabolites from compounds resulting from sample treatment and handling (i.e. enzymatic and acid hydrolysis, extraction and GC injection).

  2. Buprenorphine metabolites, buprenorphine-3-glucuronide and norbuprenorphine-3-glucuronide, are biologically active

    PubMed Central

    Brown, Sarah M.; Holtzman, Michael; Kim, Thomas; Kharasch, Evan D.

    2012-01-01

    Background The long-lasting high affinity opioid buprenorphine has complex pharmacology including ceiling effects with respect to analgesia and respiratory depression. Plasma concentrations of the major buprenorphine metabolites norbuprenorphine, buprenorphine-3-glucuronide, and norbuprenorphine-3-glucuronide approximate or exceed those of the parent drug. Buprenorphine glucuronide metabolites pharmacology is undefined. This investigation determined binding and pharmacological activity of the two glucuronide metabolites, and in comparison with buprenorphine and norbuprenorphine. Methods Competitive inhibition of radioligand binding to human mu, kappa, delta opioid and nociceptin receptors was used to determine glucuronide binding affinities for these receptors. Common opiate effects were assessed in vivo in Swiss Webster mice. Antinociception was assessed using a tail-flick assay, respiratory effects were measured using unrestrained whole-body plethysmography, and sedation was assessed by inhibition of locomotion measured by open-field testing. Results Buprenorphine-3-glucuronide had high affinity for human mu (Ki = 4.9±2.7 pM), delta (Ki = 270±0.4 nM), and nociceptin (Ki = 36±0.3 μM) but not kappa receptors. Norbuprenorphine-3-glucuronide had affinity for human kappa (Ki = 300±0.5 nM) and nociceptin (Ki= 18±0.2 μM) but not mu or delta receptors. At the dose tested, buprenorphine-3-glucuronide had a small antinociceptive effect. Neither glucuronide had significant effects on respiratory rate, but norbuprenorphine-3-glucuronide decreased tidal volume. Norbuprenorphine-3-glucuronide also caused sedation. Conclusions Both glucuronide metabolites of buprenorphine are biologically active at doses relevant to metabolite exposures which occur after buprenorphine. Activity of the glucuronides may contribute to the overall pharmacology of buprenorphine. PMID:22037640

  3. Direct detection of glucuronide metabolites of lidocaine in sheep urine.

    PubMed

    Doran, Gregory S; Smith, Alistair K; Rothwell, Jim T; Edwards, Scott H

    2018-02-15

    The anaesthetic lidocaine is metabolised quickly to produce a series of metabolites, including several hydroxylated metabolites, which are further metabolised by addition of a glucuronic acid moiety. Analysis of these glucuronide metabolites in urine is performed indirectly by cleaving the glucuronic acid group using β-glucuronidase. However, direct analysis of intact glucuronide conjugates is a more straightforward approach as it negates the need for long hydrolysis incubations, and minimises the oxidation of sensitive hydrolysis products, while also distinguishing between the two forms of hydroxylated metabolites. A method was developed to identify three intact glucuronides of lidocaine in sheep urine using LC-MS/MS, which was further confirmed by the synthesis of glucuronide derivatives of 3OH-MEGX and 4OH-LIDO. Direct analysis of urine allowed the detection of the glucuronide metabolites of hydroxylidocaine (OH-LIDO), hydroxyl-monoethylglycinexylidide (OH-MEGX), and hydroxy-2,6-xylidine (OH-XYL). Analysis of urine before and after β-glucuronidase digestion showed that the efficiency of hydrolysis of these glucuronide metabolites may be underestimated in some studies. Analysis of urine in the current study from three different sheep with similar glucuronide metabolite concentrations resulted in different hydrolysis efficiencies, which may have been a result of different levels of substrate binding by matrix components, preventing enzyme cleavage. The use of direct analysis of intact glucuronides has the benefit of being less influenced by these matrix effects, while also allowing analysis of unstable metabolites like 4OH-XYL, which rapidly oxidises after hydrolysis. Additionally, direct analysis is less expensive and less time consuming, while providing more information about the status of hydroxylated metabolites in urine. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  4. Determination of Serotonin and Dopamine Metabolites in Human Brain Microdialysis and Cerebrospinal Fluid Samples by UPLC-MS/MS: Discovery of Intact Glucuronide and Sulfate Conjugates

    PubMed Central

    Suominen, Tina; Uutela, Päivi; Ketola, Raimo A.; Bergquist, Jonas; Hillered, Lars; Finel, Moshe; Zhang, Hongbo; Laakso, Aki; Kostiainen, Risto

    2013-01-01

    An UPLC-MS/MS method was developed for the determination of serotonin (5-HT), dopamine (DA), their phase I metabolites 5-HIAA, DOPAC and HVA, and their sulfate and glucuronide conjugates in human brain microdialysis samples obtained from two patients with acute brain injuries, ventricular cerebrospinal fluid (CSF) samples obtained from four patients with obstructive hydrocephalus, and a lumbar CSF sample pooled mainly from patients undergoing spinal anesthesia in preparation for orthopedic surgery. The method was validated by determining the limits of detection and quantification, linearity, repeatability and specificity. The direct method enabled the analysis of the intact phase II metabolites of 5-HT and DA, without hydrolysis of the conjugates. The method also enabled the analysis of the regioisomers of the conjugates, and several intact glucuronide and sulfate conjugates were identified and quantified for the first time in the human brain microdialysis and CSF samples. We were able to show the presence of 5-HIAA sulfate, and that dopamine-3-O-sulfate predominates over dopamine-4-O-sulfate in the human brain. The quantitative results suggest that sulfonation is a more important phase II metabolism pathway than glucuronidation in the human brain. PMID:23826355

  5. Identification of Phase II Metabolites of Thiol-conjugated [6]-Shogaol in Mouse Urine Using High-Performance Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Chen, Huadong; Sang, Shengmin

    2012-01-01

    Ginger is frequently consumed as a spice and has numerous medicinal properties. Extensive research has characterized the anti-inflammatory, antioxidant, and antitumor activities of ginger. Previously, we reported the mercapturic acid pathway as a major metabolic route of [6]-shogaol in mice and the thiol conjugates of [6]-shogaol existed in the glucuronidated and sulfated forms in mouse urine. However, their structures are still unknown. In the present study, we further investigated the phase II metabolism of thiol-conjugated [6]-shogaol in mouse urine, in which we identified sixteen phase II metabolites of thiol-conjugated [6]-shogaol: 5-cysteinyl-[6]-shogaol glucuronide (9), 5-N-acetylcysteinyl-[6]-shogaol glucuronide (10), 5-cysteinylglycinyl-[6]-shogaol glucuronide (11), 5-methylthio-[6]-shogaol glucuronide (12), 5-cysteinyl-M6 glucuronide (13 and 14), 5-cysteinyl-M6 sulfate (15 and 16), 5-N-acetylcysteinyl-M6 glucuronide (17 and 18), 5-cysteinylglycinyl-M6 glucuronide (19 and 20), 5-cysteinylglycinyl-M6 sulfate (21 and 22), and 5-methylthio-M6 glucuronide (23 and 24) using liquid chromatography/electrospray ionization tandem mass spectrometry. The structures of these metabolites were confirmed by analyzing their MSn (n =1! 4) spectra as well as comparing with the tandem mass spectra of authentic standards. To our knowledge, this is the first report involving identification of phase II urinary metabolites of [6]-shogaol in mice. PMID:23031413

  6. Identification of phase II metabolites of thiol-conjugated [6]-shogaol in mouse urine using high-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Chen, Huadong; Sang, Shengmin

    2012-10-15

    Ginger is frequently consumed as a spice and has numerous medicinal properties. Extensive research has characterized the anti-inflammatory, antioxidant, and antitumor activities of ginger. Previously, we reported the mercapturic acid pathway as a major metabolic route of [6]-shogaol in mice and the thiol conjugates of [6]-shogaol existed in the glucuronidated and sulfated forms in mouse urine. However, their structures are still unknown. In the present study, we further investigated the phase II metabolism of thiol-conjugated [6]-shogaol in mouse urine, in which we identified sixteen phase II metabolites of thiol-conjugated [6]-shogaol: 5-cysteinyl-[6]-shogaol glucuronide (9), 5-N-acetylcysteinyl-[6]-shogaol glucuronide (10), 5-cysteinylglycinyl-[6]-shogaol glucuronide (11), 5-methylthio-[6]-shogaol glucuronide (12), 5-cysteinyl-M6 glucuronide (13 and 14), 5-cysteinyl-M6 sulfate (15 and 16), 5-N-acetylcysteinyl-M6 glucuronide (17 and 18), 5-cysteinylglycinyl-M6 glucuronide (19 and 20), 5-cysteinylglycinyl-M6 sulfate (21 and 22), and 5-methylthio-M6 glucuronide (23 and 24) using liquid chromatography/electrospray ionization tandem mass spectrometry. The structures of these metabolites were confirmed by analyzing their MS(n) (n=1-4) spectra as well as comparing with the tandem mass spectra of authentic standards. To the best of our knowledge, this is the first report involving identification of phase II urinary metabolites of [6]-shogaol in mice. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Biosynthesis of Drug Glucuronide Metabolites in the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Ikushiro, Shinichi; Nishikawa, Miyu; Masuyama, Yuuka; Shouji, Tadashi; Fujii, Miharu; Hamada, Masahiro; Nakajima, Noriyuki; Finel, Moshe; Yasuda, Kaori; Kamakura, Masaki; Sakaki, Toshiyuki

    2016-07-05

    Glucuronidation is one of the most common pathways in mammals for detoxification and elimination of hydrophobic xenobiotic compounds, including many drugs. Metabolites, however, can form active or toxic compounds, such as acyl glucuronides, and their safety assessment is often needed. The absence of efficient means for in vitro synthesis of correct glucuronide metabolites frequently limits such toxicological analyses. To overcome this hurdle we have developed a new approach, the essence of which is a coexpression system containing a human, or another mammalian UDP-glucuronosyltransferases (UGTs), as well as UDP-glucose-6-dehydrogenase (UGDH), within the budding yeast, Saccharomyces cerevisiae. The system was first tested using resting yeast cells coexpressing UGDH and human UGT1A6, 7-hydroxycoumarin as the substrate, in a reaction medium containing 8% glucose, serving as a source of UDP-glucuronic acid. Glucuronides were readily formed and recovered from the medium. Subsequently, by selecting suitable mammalian UGT enzyme for the coexpression system we could obtain the desired glucuronides of various compounds, including molecules with multiple conjugation sites and acyl glucuronides of several carboxylic acid containing drugs, namely, mefenamic acid, flufenamic acid, and zomepirac. In conclusion, a new and flexible yeast system with mammalian UGTs has been developed that exhibits a capacity for efficient production of various glucuronides, including acyl glucuronides.

  8. Glucuronidation of deoxynivalenol (DON) by different animal species: identification of iso-DON glucuronides and iso-deepoxy-DON glucuronides as novel DON metabolites in pigs, rats, mice, and cows.

    PubMed

    Schwartz-Zimmermann, Heidi E; Hametner, Christian; Nagl, Veronika; Fiby, Iris; Macheiner, Lukas; Winkler, Janine; Dänicke, Sven; Clark, Erica; Pestka, James J; Berthiller, Franz

    2017-12-01

    The Fusarium mycotoxin deoxynivalenol (DON) is a frequent contaminant of cereal-based food and feed. Mammals metabolize DON by conjugation to glucuronic acid (GlcAc), the extent and regioselectivity of which is species-dependent. So far, only DON-3-glucuronide (DON-3-GlcAc) and DON-15-GlcAc have been unequivocally identified as mammalian DON glucuronides, and DON-7-GlcAc has been proposed as further DON metabolite. In the present work, qualitative HPLC-MS/MS analysis of urine samples of animals treated with DON (rats: 2 mg/kg bw, single bolus, gavage; mice: 1 mg/kg bw, single i.p. injection; pigs: 74 µg/kg bw, single bolus, gavage; cows: 5.2 mg DON/kg dry mass, oral for 13 weeks) revealed additional DON and deepoxy-DON (DOM) glucuronides. To elucidate their structures, DON and DOM were incubated with human (HLM) and rat liver microsomes (RLM). Besides the expected DON/DOM-3- and 15-GlcAc, minor amounts of four DON- and four DOM glucuronides were formed. Isolation and enzymatic hydrolysis of four of these compounds yielded iso-DON and iso-DOM, the identities of which were eventually confirmed by NMR. Incubation of iso-DON and iso-DOM with RLM and HLM yielded two main glucuronides for each parent compound, which were isolated and identified as iso-DON/DOM-3-GlcAc and iso-DON/DOM-8-GlcAc by NMR. Iso-DON-3-GlcAc, most likely misidentified as DON-7-GlcAc in the literature, proved to be a major DON metabolite in rats and a minor metabolite in pigs. In addition, iso-DON-8-GlcAc turned out to be one of the major DON metabolites in mice. DOM-3-GlcAc was the dominant DON metabolite in urine of cows and an important DON metabolite in rat urine. Iso-DOM-3-GlcAc was detected in urine of DON-treated rats and cows. Finally, DON-8,15-hemiketal-8-glucuronide, a previously described by-product of DON-3-GlcAc production by RLM, was identified in urine of DON-exposed mice and rats. The discovery of several novel DON-derived glucuronides in animal urine requires adaptation of

  9. Detection of pentachlorophenol and its glucuronide and sulfate conjugates in fish bile and exposure water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stehly, G.R.; Hayton, W.L.

    1988-08-01

    The glucuronide and sulfate conjugates of pentachlorophenol (PCP) that were present in the bile and exposure water of goldfish (Carassius auratus) were used to develop methodology to quantify PCP and its metabolites. Reverse phase HPLC with radioactivity detection separated PCP and its metabolites, and was used to verify a method of quantification that used differential extraction and scintillation counting. Extractions of aqueous phase at pH 2 or 8, with butanol, ethyl acetate, or ether indicated that ether at pH 8 best separated PCP from its metabolites. The sulfate conjugate of PCP was the major metabolite produced when goldfish were exposedmore » to 125 micrograms UC-PCP/l. It was present primarily in the exposure water, but also appeared in the bile.« less

  10. Analysis of intact glucuronides and sulfates of serotonin, dopamine, and their phase I metabolites in rat brain microdialysates by liquid chromatography-tandem mass spectrometry.

    PubMed

    Uutela, Päivi; Reinilä, Ruut; Harju, Kirsi; Piepponen, Petteri; Ketola, Raimo A; Kostiainen, Risto

    2009-10-15

    A method for the analysis of intact glucuronides and sulfates of common neurotransmitters serotonin (5-HT) and dopamine (DA) as well as of 5-hydroxy-3-indoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in rat brain microdialysates by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. Enzyme-assisted synthesis using rat liver microsomes as a biocatalyst was employed for the production of 5-HT-, 5-HIAA-, DOPAC-, and HVA-glucuronides for reference compounds. The sulfate conjugates were synthesized either chemically or enzymatically using a rat liver S9 fraction. The LC-MS/MS method was validated by determining the limits of detection and quantitation, linearity, and repeatability for the quantitative analysis of 5-HT and DA and their glucuronides, as well as of 5-HIAA, DOPAC, and HVA and their sulfate-conjugates. In this study, 5-HT-glucuronide was for the first time detected in rat brain. The concentration of 5-HT-glucuronide (1.0-1.7 nM) was up to 2.5 times higher than that of free 5-HT (0.4-2.1 nM) in rat brain microdialysates, whereas the concentration of DA-glucuronide (1.0-1.4 nM) was at the same level or lower than the free DA (1.2-2.4 nM). The acidic metabolites of neurotransmitters, 5-HIAA, HVA, and DOPAC, were found in free and sulfated form, whereas their glucuronidation was not observed.

  11. Soy isoflavone metabolism in cats compared with other species: Urinary metabolite concentrations and glucuronidation by liver microsomes

    PubMed Central

    Redmon, Joanna M.; Shrestha, Binu; Cerundolo, Rosario; Court, Michael H.

    2016-01-01

    Soybean is a common source of protein in many pet foods. Slow glucuronidation of soy-derived isoflavones in cats has been hypothesized to result in accumulation with adverse health consequences. Here we evaluated species’ differences in soy isoflavone glucuronidation using urine samples from cats and dogs fed a soy-based diet and liver microsomes from cats compared with microsomes from 12 other species.Significant concentrations of conjugated (but not unconjugated) genistein, daidzein, and glycitein, and the gut microbiome metabolites, dihydrogenistein and dihydrodaidzein were found in cat and dog urine samples. Substantial amounts of conjugated equol were also found in cat urine but not in dog urine.β-glucuronidase treatment showed that all these compounds were significantly glucuronidated in dog urine while only daidzein (11%) and glycitein (37%) showed any glucuronidation in cat urine suggesting that alternate metabolic pathways including sulfation predominate in cats.Glucuronidation rates of genistein, daidzein, and equol by cat livers were consistently ranked within the lowest three out of 13 species’ livers evaluated. Ferret and mongoose livers were also ranked in the lowest four species.Our results demonstrate that glucuronidation is a minor pathway for soy isoflavone metabolism in cats compared with most other species. PMID:26366946

  12. Soy isoflavone metabolism in cats compared with other species: urinary metabolite concentrations and glucuronidation by liver microsomes.

    PubMed

    Redmon, Joanna M; Shrestha, Binu; Cerundolo, Rosario; Court, Michael H

    2016-01-01

    1. Soybean is a common source of protein in many pet foods. Slow glucuronidation of soy-derived isoflavones in cats has been hypothesized to result in accumulation with adverse health consequences. Here, we evaluated species' differences in soy isoflavone glucuronidation using urine samples from cats and dogs fed a soy-based diet and liver microsomes from cats compared with microsomes from 12 other species. 2. Significant concentrations of conjugated (but not unconjugated) genistein, daidzein and glycitein, and the gut microbiome metabolites, dihydrogenistein and dihydrodaidzein, were found in cat and dog urine samples. Substantial amounts of conjugated equol were also found in cat urine but not in dog urine. 3. β-Glucuronidase treatment showed that all these compounds were significantly glucuronidated in dog urine while only daidzein (11%) and glycitein (37%) showed any glucuronidation in cat urine suggesting that alternate metabolic pathways including sulfation predominate in cats. 4. Glucuronidation rates of genistein, daidzein and equol by cat livers were consistently ranked within the lowest 3 out of 13 species' livers evaluated. Ferret and mongoose livers were also ranked in the lowest four species. 5. Our results demonstrate that glucuronidation is a minor pathway for soy isoflavone metabolism in cats compared with most other species.

  13. Safety Assessment of Acyl Glucuronides-A Simplified Paradigm.

    PubMed

    Smith, Dennis A; Hammond, Timothy; Baillie, Thomas A

    2018-06-01

    While simple O - (ether-linked) and N -glucuronide drug conjugates generally are unreactive and considered benign from a safety perspective, the acyl glucuronides that derive from metabolism of carboxylic acid-containing xenobiotics can exhibit a degree of chemical reactivity that is dependent upon their molecular structure. As a result, concerns have arisen over the safety of acyl glucuronides as a class, several members of which have been implicated in the toxicity of their respective parent drugs. However, direct evidence in support of these claims remains sparse, and due to frequently encountered species differences in the systemic exposure to acyl glucuronides (both of the parent drug and oxidized derivatives thereof), coupled with their instability in aqueous media and potential to undergo chemical rearrangement (acyl migration), qualification of these conjugates by traditional safety assessment methods can be very challenging. In this Commentary, we discuss alternative (non-acyl glucuronide) mechanisms by which carboxylic acids may cause serious adverse reactions, and propose a novel, practical approach to compare systemic exposure to acyl glucuronide metabolites in humans to that in animal species used in preclinical safety assessment based on relative estimates of the total body burden of these circulating conjugates. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Direct detection of boldenone sulfate and glucuronide conjugates in horse urine by ion trap liquid chromatography-mass spectrometry.

    PubMed

    Pu, Fan; McKinney, Andrew R; Stenhouse, Allen M; Suann, Craig J; McLeod, Malcolm D

    2004-12-25

    A study of the equine phase II metabolism of the anabolic agent boldenone is reported. Boldenone sulfate, boldenone glucuronide and their C17-epimers were synthesised as reference standards in our lab and a method was developed for their detection in a horse urine matrix. Solid phase extraction was used to purify the analytes, which were then detected by ion trap LC/MS. Negative and positive ionisation mode MS(2) were used for the detection of sulfate and glucuronide conjugates, respectively. Boldenone sulfate and 17-epiboldenone glucuronide were detected as the major and minor phase II metabolites, respectively, in horse urine samples collected following the administration of boldenone undecylenate by intramuscular injection.

  15. Detection and characterization of urinary metabolites of boldione by LC-MS/MS. Part I: Phase I metabolites excreted free, as glucuronide and sulfate conjugates, and released after alkaline treatment of the urine.

    PubMed

    Gómez, C; Pozo, O J; Fabregat, A; Marcos, J; Deventer, K; Van Eenoo, P; Segura, J; Ventura, R

    2012-10-01

    Boldione (1,4-androstadien-3,17-dione) is included in the list of prohibited substances, issued by the World Anti-Doping Agency (WADA). Endogenous production of low concentrations of boldione has also been reported. The objective of this study was to assess boldione metabolism in humans. Detection of boldione metabolites was accomplished by analysis by liquid chromatography coupled to tandem mass spectrometry of urine samples obtained after administration of the drug and subjected to different sample preparation procedures to analyze the different metabolic fractions (free, glucuronides, sulpfates and released in basic media). In addition to boldione, eight metabolites were detected in the free fraction. Four of them were identified by comparison with standards: 6β-hydroxy-boldenone (M3), androsta-1,4,6-triene-3,17-dione (M5), (5α)-1-androstenedione (M6) and (5α)-1-testosterone (M8). Metabolite M7 was identified as the 5β-isomer of 1-androstenedione, and metabolites M1, M2 and M4 were hydroxylated metabolites and tentative structures were proposed based on mass spectrometric data. After β-glucuronidase hydrolysis, five additional metabolites excreted only as conjugates with glucuronic acid were detected: boldenone, (5β)-1-testosterone (M9), and three metabolites resulting from reduction of the 3-keto group. Boldenone, epiboldenone, and hydroxylated metabolites of boldione, boldenone and 1-testosterone were detected as conjugates with sulfate. In addition, boldione and seven metabolites (boldenone, M2, M3, M4, M5, M7 and M9) increased their concentration in urine after treatment of the urine in alkaline conditions. In summary, 15 boldione metabolites were detected in all fractions. The longer detection time was observed for metabolite M4 after alkaline treatment of the urine, which was detected up to 5 days after boldione administration. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Pharmacokinetics of 6-, 8-, 10-Gingerols and 6-Shogaol and Conjugate Metabolites in Healthy Human Subjects

    PubMed Central

    Zick, Suzanna M.; Djuric, Zora; Ruffin, Mack T.; Litzinger, Amie J.; Normolle, Daniel P.; Feng, Meihua Rose; Brenner, Dean E.

    2009-01-01

    Background Ginger demonstrates promising anticancer properties. No research has examined the pharmacokinetics of the ginger constituents 6-, 8-, 10-gingerol and 6-shogaol in humans. We conducted a clinical trial with 6-, 8-, 10-gingerol and 6-shogaol examining the pharmacokinetics and tolerability of these analytes and their conjugate metabolites Methods Human volunteers were given ginger at doses from 100 mg, to 2.0 g (N=27), and blood samples were obtained at 15 minutes to 72 hours after a single oral dose. Participants were allocated in a dose-escalation manner starting with 100 mg. There was a total of three participants at each dose except for 1.0 g (N=6) and 2.0 g (N=9). Results No participant had detectable free 6-, 8-, 10-gingerol or 6-shogaol, but 6-, 8-, 10-gingerol and 6-shogaol glucuronides were detected. The 6-gingerol sulfate conjugate was detected above the 1.0 g dose but there were no detectable 10-gingerol or 6-shogaol sulfates except for one participant with detectable 8-gingerol sulfate. The Cmax and AUC values (Mean±SE) estimated for the 2.0 g dose are 0.85±0.43, 0.23±0.16, 0.53±0.40, and 0.15±0.12 μg/mL ; and 65.6.33±44.4, 18.1±20.3, 50.1±49.3, and 10.9±13.0 μg·hr/mL for 6-, 8-, 10-gingerol, and 6-shogaol. The corresponding tmax values are 65.6±44.4, 73.1±29.4, 75.0±27.8, and 65.6±22.6 minutes and the analytes had elimination half-lives < 2hr. The 8-, 10-gingerol and 6-shogaol conjugates were present as either glucuronide or sulfate conjugates, not as mixed conjugates, although 6-, 10-gingerol were an exception. Conclusion Six-, 8-, 10-gingerol and 6-shogaol is absorbed after oral dosing and can be detected as glucuronide and sulfate conjugates. PMID:18708382

  17. Human hydroxylated metabolites of BDE-47 and BDE-99 are glucuronidated and sulfated in vitro.

    PubMed

    Erratico, Claudio; Zheng, Xiaobo; Ryden, Andreas; Marsh, Goran; Maho, Walid; Covaci, Adrian

    2015-07-16

    Polybrominated diphenyl ethers (PBDEs) were used worldwide as additive flame retardants and are classified as persistent, bioaccumulable and toxic environmental pollutants. In humans, the hydroxylated metabolites of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) formed in vitro have also been detected in vivo. To further characterize the metabolism of BDE-47 and BDE-99 and to identify candidate markers for monitoring the human exposure to PBDEs using non-invasive approaches, glucuronidation and sulfation of hydroxylated metabolites of BDE-47 and BDE-99 were investigated using human liver microsomes and cytoplasm, respectively. The formed Phase II metabolites were analyzed by liquid chromatography-tandem mass spectrometry using a novel approach to develop analytical methods in absence of authentic standards. All available standards for hydroxylated metabolites of BDE-47 and BDE-99 were glucuronidated and sulfated, showing that glucuronidation and sulfation are part of the metabolism pathway of BDE-47 and BDE-99 in vitro. The major glucuronidated and sulfated analogs of hydroxylated metabolites of BDE-47 were (a) 2,4-DBP-Gluc and 5-Gluc-BDE-47, and (b) 2'-Sulf-BDE-28, 4-Sulf-BDE-42 and 3-Sulf-BDE-47, respectively. The major glucuronidated and sulfated analogs of hydroxylated metabolites of BDE-99 were (a) 2,4,5-TBP-Gluc and 6'-Gluc-BDE-99, and (b) 3'-Sulf-BDE-99 and 5'-Sulf-BDE-99, respectively. Apparent Km values associated with the formation of sulfated metabolites of BDE-47 and BDE-99 were ten times lower than those of the corresponding glucuronidated metabolites, suggesting that sulfated rather than glucuronidated metabolites of OH-PBDEs might be used as markers of human exposure to PBDEs using a non-invasive approach based on urine sample collection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Fate of glucuronide conjugated estradiol in the environment

    USDA-ARS?s Scientific Manuscript database

    The fate and transport of conjugated reproductive hormones, which are polar compared to parent hormones, are little understood. Laboratory bench-scale soil (Hamar; Sandy, mixed, frigid typic Endoaquolls) sorption studies were conducted using [14C] 17ß-estradiol-3-glucuronide for a range of concentra...

  19. Confirmation of diosmetin 3-O-glucuronide as major metabolite of diosmin in humans, using micro-liquid-chromatography-mass spectrometry and ion mobility mass spectrometry.

    PubMed

    Silvestro, Luigi; Tarcomnicu, Isabela; Dulea, Constanta; Attili, Nageswara Rao B N; Ciuca, Valentin; Peru, Dan; Rizea Savu, Simona

    2013-10-01

    Diosmin is a flavonoid often administered in the treatment of chronic venous insufficiency, hemorrhoids, and related affections. Diosmin is rapidly hydrolized in the intestine to its aglicone, diosmetin, which is further metabolized to conjugates. In this study, the development and validations of three new methods for the determination of diosmetin, free and after enzymatic deconjugation, and of its potential glucuronide metabolites, diosmetin-3-O-glucuronide, diosmetin-7-O-glucuronide, and diosmetin-3,7-O-glucuronide from human plasma and urine are presented. First, the quantification of diosmetin, free and after deconjugation, was carried out by high-performance liquid chromatography coupled with tandem mass spectrometry, on an Ascentis RP-Amide column (150 × 2.1 mm, 5 μm), in reversed-phase conditions, after enzymatic digestion. Then glucuronide metabolites from plasma were separated by micro-liquid chromatography coupled with tandem mass spectrometry on a HALO C18 (50 × 0.3 mm, 2.7 μm, 90 Å) column, after solid-phase extraction. Finally, glucuronides from urine were measured using a Discovery HSF5 (100 × 2.1 mm, 5 μm) column, after simple dilution with mobile phase. The methods were validated by assessing linearity, accuracy, precision, low limit of quantification, selectivity, extraction recovery, stability, and matrix effects; results in agreement with regulatory (Food and Drug Administration and European Medicines Agency) guidelines acceptance criteria were obtained in all cases. The methods were applied to a pharmacokinetic study with diosmin (450 mg orally administered tablets). The mean C max of diosmetin in plasma was 6,049.3 ± 5,548.6 pg/mL. A very good correlation between measured diosmetin and glucuronide metabolites concentrations was obtained. Diosmetin-3-O-glucuronide was identified as a major circulating metabolite of diosmetin in plasma and in urine, and this finding was confirmed by supplementary experiments with differential ion

  20. Metabolism of isotretinoin. Biliary excretion of isotretinoin glucuronide in the rat.

    PubMed

    Meloche, S; Besner, J G

    1986-01-01

    The biliary metabolites of isotretinoin were examined after iv administration of 4-20-mg/kg doses to vitamin A-normal bile duct-cannulated rats. Analysis of bile by reverse phase high performance liquid chromatography showed that injection of isotretinoin is followed by a rapid excretion of metabolites in bile. Isotretinoin glucuronide was identified as the major metabolite in bile. A specific high performance liquid chromatography method based on the assay of generated isotretinoin in beta-glucuronidase-treated bile was developed for the determination of isotretinoin glucuronide in bile samples. The excretion rate of isotretinoin glucuronide increased rapidly to reach a maximum 55 min after dosing and then declined exponentially. After 330 min of collection, biliary excretion of isotretinoin glucuronide was almost complete, and the metabolite accounted for 34.8-37.9% of the dose. These results indicate that conjugation with glucuronic acid represents a major pathway for the metabolism of pharmacological doses of isotretinoin. The maximum excretion rate of isotretinoin glucuronide in bile increased in a linear manner with the dose of isotretinoin, and no delay was observed after the larger doses. These data suggest that glucuronidation and biliary excretion are not saturated at high pharmacological doses of isotretinoin.

  1. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects.

    PubMed

    Zick, Suzanna M; Djuric, Zora; Ruffin, Mack T; Litzinger, Amie J; Normolle, Daniel P; Alrawi, Sara; Feng, Meihua Rose; Brenner, Dean E

    2008-08-01

    Ginger shows promising anticancer properties. No research has examined the pharmacokinetics of the ginger constituents 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol in humans. We conducted a clinical trial with 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol, examining the pharmacokinetics and tolerability of these analytes and their conjugate metabolites. Human volunteers were given ginger at doses from 100 mg to 2.0 g (N = 27), and blood samples were obtained at 15 minutes to 72 hours after a single p.o. dose. The participants were allocated in a dose-escalation manner starting with 100 mg. There was a total of three participants at each dose except for 1.0 g (N = 6) and 2.0 g (N = 9). No participant had detectable free 6-gingerol, 8-gingerol, 10-gingerol, or 6-shogaol, but 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol glucuronides were detected. The 6-gingerol sulfate conjugate was detected above the 1.0-g dose, but there were no detectable 10-gingerol or 6-shogaol sulfates except for one participant with detectable 8-gingerol sulfate. The C(max) and area under the curve values (mean +/- SE) estimated for the 2.0-g dose are 0.85 +/- 0.43, 0.23 +/- 0.16, 0.53 +/- 0.40, and 0.15 +/- 0.12 microg/mL; and 65.6.33 +/- 44.4, 18.1 +/- 20.3, 50.1 +/- 49.3, and 10.9 +/- 13.0 microg x hr/mL for 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol. The corresponding t(max) values are 65.6 +/- 44.4, 73.1 +/- 29.4, 75.0 +/- 27.8, and 65.6 +/- 22.6 minutes, and the analytes had elimination half-lives <2 hours. The 8-gingerol, 10-gingerol, and 6-shogaol conjugates were present as either glucuronide or sulfate conjugates, not as mixed conjugates, although 6-gingerol and 10-gingerol were an exception. Six-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol are absorbed after p.o. dosing and can be detected as glucuronide and sulfate conjugates.

  2. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause Toll-like receptor 4 activation and enhanced pain

    PubMed Central

    Lewis, Susannah S.; Hutchinson, Mark R.; Zhang, Yingning; Hund, Dana K.; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R.

    2013-01-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects. PMID:23348028

  3. Studies on the disturbance of glucuronide formation in infectious hepatitis

    PubMed Central

    Vest, M. F.; Fritz, E.

    1961-01-01

    The ability of the liver to form glucuronides was measured in 10 patients with infectious hepatitis. One test was done at the onset and another about four weeks later after the clinical symptoms had disappeared. N-acetyl-p-aminophenol (N.A.P.A.) or acetanilide was administered in doses ranging from 10 to 20 mg. per kg. body weight, either orally or by intravenous injection. N.A.P.A. is conjugated by the liver at the hydroxyl group and excreted in the urine as sulphuric and glucuronic acid conjugates. Total conjugated p-aminophenol, free N.A.P.A., and N.A.P.A. glucuronide were estimated in the urine of our patients. In the blood the disappearance of N.A.P.A. (free form) and the formation of N.A.P.A. glucuronide were traced. During the acute phase of hepatitis the excretion of total conjugated p-aminophenol and of N.A.P.A. glucuronide in the urine is lower than after recovery from the disease. Likewise free N.A.P.A. disappears more slowly from the circulation and the peak concentration of N.A.P.A. glucuronide in the serum remains lower at the onset of hepatitis than after clinical cure. These results indicate that glucuronide formation during the acute stage of infectious hepatitis is depressed, as are other transformation mechanisms, i.e., of hippuric acid. PMID:13925655

  4. Human Metabolite Lamotrigine-N(2)-glucuronide Is the Principal Source of Lamotrigine-Derived Compounds in Wastewater Treatment Plants and Surface Water.

    PubMed

    Zonja, Bozo; Pérez, Sandra; Barceló, Damià

    2016-01-05

    Wastewater and surface water samples, extracted with four solid-phase extraction cartridges of different chemistries, were suspect-screened for the anticonvulsant lamotrigine (LMG), its metabolites, and related compounds. LMG, three human metabolites, and a LMG synthetic impurity (OXO-LMG) were detected. Preliminary results showed significantly higher concentrations of OXO-LMG in wastewater effluent, suggesting its formation in the wastewater treatment plants (WWTPs). However, biodegradation experiments with activated sludge demonstrated that LMG is resistant to degradation and that its human metabolite lamotrigine-N(2)-glucuronide (LMG-N2-G) is the actual source of OXO-LMG in WWTPs. In batch reactors, LMG-N2-G was transformed, following pseudo-first-order kinetics to OXO-LMG and LMG, but kinetic experiments suggested an incomplete mass balance. A fragment ion search applied to batch-reactor and environmental samples revealed another transformation product (TP), formed by LMG-N2-G oxidation, which was identified by high-resolution mass spectrometry. Accounting for all TPs detected, a total mass balance at two concentration levels in batch reactors was closed at 86% and 102%, respectively. In three WWTPs, the total mass balance of LMG-N2-G ranged from 71 to 102%. Finally, LMG-N2-G and its TPs were detected in surface water samples with median concentration ranges of 23-139 ng L(-1). The results of this study suggest that glucuronides of pharmaceuticals might also be sources of yet undiscovered, but environmentally relevant, transformation products.

  5. Biotransformation of Bisphenol AF to Its Major Glucuronide Metabolite Reduces Estrogenic Activity

    PubMed Central

    Yin, Jie; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings. PMID:24349450

  6. Glucuronidated Quercetin Lowers Blood Pressure in Spontaneously Hypertensive Rats via Deconjugation

    PubMed Central

    Galindo, Pilar; Rodriguez-Gómez, Isabel; González-Manzano, Susana; Dueñas, Montserrat; Jiménez, Rosario; Menéndez, Carmen; Vargas, Félix; Tamargo, Juan; Santos-Buelga, Celestino; Pérez-Vizcaíno, Francisco; Duarte, Juan

    2012-01-01

    Background Chronic oral quercetin reduces blood pressure and restores endothelial dysfunction in hypertensive animals. However, quercetin (aglycone) is usually not present in plasma, because it is rapidly metabolized into conjugated, mostly inactive, metabolites. The aim of the study is to analyze whether deconjugation of these metabolites is involved in the blood pressure lowering effect of quercetin. Methodology/Principal Findings We have analyzed the effects on blood pressure and vascular function in vitro of the conjugated metabolites of quercetin (quercetin-3-glucuronide, Q3GA; isorhamnetin-3-glucuronide, I3GA; and quercetin-3′-sulfate, Q3'S) in spontaneously hypertensive rats (SHR). Q3GA and I3GA (1 mg/kg i.v.), but not Q3'S, progressively reduced mean blood pressure (MBP), measured in conscious SHR. The hypotensive effect of Q3GA was abolished in SHR treated with the specific inhibitor of β-glucuronidase, saccharic acid 1,4-lactone (SAL, 10 mg/ml). In mesenteric arteries, unlike quercetin, Q3GA had no inhibitory effect in the contractile response to phenylephrine after 30 min of incubation. However, after 1 hour of incubation Q3GA strongly reduced this contractile response and this effect was prevented by SAL. Oral administration of quercetin (10 mg/Kg) induced a progressive decrease in MBP, which was also suppressed by SAL. Conclusions Conjugated metabolites are involved in the in vivo antihypertensive effect of quercetin, acting as molecules for the plasmatic transport of quercetin to the target tissues. Quercetin released from its glucuronidated metabolites could be responsible for its vasorelaxant and hypotensive effect. PMID:22427863

  7. Simultaneous Quantification of Multiple Urinary Naphthalene Metabolites by Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Ayala, Daniel C.; Morin, Dexter; Buckpitt, Alan R.

    2015-01-01

    Naphthalene is an environmental toxicant to which humans are exposed. Naphthalene causes dose-dependent cytotoxicity to murine airway epithelial cells but a link between exposure and human pulmonary disease has not been established. Naphthalene toxicity in rodents depends on P450 metabolism. Subsequent biotransformation results in urinary elimination of several conjugated metabolites. Glucuronide and sulfate conjugates of naphthols have been used as markers of naphthalene exposure but, as the current studies demonstrate, these assays provide a limited view of the range of metabolites generated from the parent hydrocarbon. Here, we present a liquid chromatography tandem mass spectrometry method for measurement of the glucuronide and sulfate conjugates of 1-naphthol as well as the mercapturic acids and N-acetyl glutathione conjugates from naphthalene epoxide. Standard curves were linear over 2 log orders. On column detection limits varied from 0.91 to 3.4 ng; limits of quantitation from 1.8 to 6.4 ng. The accuracy of measurement of spiked urine standards was -13.1 to + 5.2% of target and intra-day and inter-day variability averaged 7.2 (± 4.5) and 6.8 (± 5.0) %, respectively. Application of the method to urine collected from mice exposed to naphthalene at 15 ppm (4 hrs) showed that glutathione-derived metabolites accounted for 60-70% of the total measured metabolites and sulfate and glucuronide conjugates were eliminated in equal amounts. The method is robust and directly measures several major naphthalene metabolites including those derived from glutathione conjugation of naphthalene epoxide. The assays do not require enzymatic deconjugation, extraction or derivatization thus simplifying sample work up. PMID:25853821

  8. Mass spectrometric characterization of glucuronides formed by a new concept, combining Cunninghamella elegans with TEMPO.

    PubMed

    Rydevik, Axel; Bondesson, Ulf; Thevis, Mario; Hedeland, Mikael

    2013-10-01

    A new concept for the production of drug glucuronides is presented and the products formed were characterized using ultra high performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). Glucuronic acid conjugates are important phase II metabolites of a wide range of drugs. There is a lack of commercially available glucuronides and classic synthetic methods are tedious and expensive. Thus, new methods of glucuronide synthesis are needed. Selective androgen receptor modulators (SARMs) of the aryl propionamide class were used as model compounds and were incubated with the fungus Cunninghamella elegans which was previously known to conjugate drugs with glucose. The resulting glucoside metabolites were then oxidized with tetramethylpiperidinyl-1-oxy (TEMPO). UPLC-HRMS analysis showed that the peaks corresponding to the glucosides had disappeared after the reaction and were replaced by peaks with m/z consistent with the corresponding glucuronic acid conjugates. The MS/MS spectra of the reaction products were investigated and the observed fragment ion pattern corroborated the suggested structural change. A comparison in terms of retention times and product ion spectra between the glucuronides formed by the new method and those produced by liver microsomes indicated that the conjugates from the two different sources were identical, thus demonstrating the human relevance of the presented technique. Furthermore, the glucuronides formed by the presented method were readily hydrolyzed by β-glucuronidase which further gave evidence as to the fact that they were of β configuration. The investigated method was easy to perform, required a low input of work and had a low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Disposition of flavonoids via recycling: Direct biliary excretion of enterically or extrahepatically derived flavonoid glucuronides.

    PubMed

    Zeng, Min; Sun, Rongjin; Basu, Sumit; Ma, Yong; Ge, Shufan; Yin, Taijun; Gao, Song; Zhang, Jun; Hu, Ming

    2016-05-01

    Enterohepatic recycling is often thought to involve mostly phase II metabolites generated in the liver. This study aims to determine if direct biliary excretion of extrahepatically generated glucuronides would also enable recycling. Conventional and modified intestinal perfusion models along with intestinal and liver microsomes were used to determine the contribution of extrahepatically derived glucuronides. Glucuronidation of four flavonoids (genistein, biochanin A, apigenin, and chrysin at 2.5-20 μM) were generally more rapid in the hepatic than intestinal microsomes. Furthermore, when aglycones (at 10 μM each) were perfused, larger (1.7-9 fold) amounts of glucuronides were found in the bile than in the luminal perfusate. However, higher concentrations of glucuronides were not found in jugular vein than portal vein, and apigenin glucuronide actually displayed a significantly lower concentration in jugular vein (<1 nM) than portal vein (≈4 nM). A direct portal infusion of four flavonoid glucuronides (5.9-10.4 μM perfused at 2 mL/h) showed that the vast majority (>65%) of the glucuronides (except for biochanin A glucuronide) administered were efficiently excreted into the bile. Direct biliary excretion of extrahepatically generated flavonoid glucuronides is a highly efficient clearance mechanism, which should enable enterohepatic recycling of flavonoids without hepatic conjugating enzymes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Complementing the characterization of in vivo generated N-glucuronic acid conjugates of stanozolol by collision cross section computation and analysis.

    PubMed

    Thevis, Mario; Dib, Josef; Thomas, Andreas; Höppner, Sebastian; Lagojda, Andreas; Kuehne, Dirk; Sander, Mark; Opfermann, Georg; Schänzer, Wilhelm

    2015-01-01

    Detailed structural information on metabolites serving as target analytes in clinical, forensic, and sports drug testing programmes is of paramount importance to ensure unequivocal test results. In the present study, the utility of collision cross section (CCS) analysis by travelling wave ion mobility measurements to support drug metabolite characterization efforts was tested concerning recently identified glucuronic acid conjugates of the anabolic-androgenic steroid stanozolol. Employing travelling-wave ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry, drift times of five synthetically derived and fully characterized steroid glucuronides were measured and subsequently correlated to respective CCSs as obtained in silico to form an analyte-tailored calibration curve. The CCSs were calculated by equilibrium structure minimization (density functional theory) using the programmes ORCA with the data set B3LYP/6-31G and MOBCAL utilizing the trajectory method (TM) with nitrogen as drift gas. Under identical experimental conditions, synthesized and/or urinary stanozolol-N and O-glucuronides were analyzed to provide complementary information on the location of glucuronidation. Finally, the obtained data were compared to CCS results generated by the system's internal algorithm based on a calibration employing a polyalanine analyte mixture. The CCSs ΩN2 calculated for the five steroid glucuronide calibrants were found between 180 and 208 Å(2) , thus largely covering the observed and computed CCSs for stanozolol-N1'-, stanozolol-N2'-, and stanozolol-O-glucuronide found at values between 195.1 and 212.4 Å(2) . The obtained data corroborated the earlier suggested N- and O-glucuronidation of stanozolol, and demonstrate the exploit of ion mobility and CCS computation in structure characterization of phase-II metabolic products; however, despite reproducibly measurable differences in ion mobility of stanozolol-N1'-, N2'-, and O-glucuronides, the

  11. Neonatal Maturation of Paracetamol (Acetaminophen) Glucuronidation, Sulfation, and Oxidation Based on a Parent-Metabolite Population Pharmacokinetic Model

    PubMed Central

    Cook, Sarah F.; Stockmann, Chris; Samiee-Zafarghandy, Samira; King, Amber D.; Deutsch, Nina; Williams, Elaine F.; Wilkins, Diana G.; van den Anker, John N.

    2017-01-01

    Objectives This study aimed to model the population pharmacokinetics of intravenous paracetamol and its major metabolites in neonates and to identify influential patient characteristics, especially those affecting the formation clearance (CLformation) of oxidative pathway metabolites. Methods Neonates with a clinical indication for intravenous analgesia received five 15-mg/kg doses of paracetamol at 12-h intervals (<28 weeks’ gestation) or seven 15-mg/kg doses at 8-h intervals (≥28 weeks’ gestation). Plasma and urine were sampled throughout the 72-h study period. Concentration-time data for paracetamol, paracetamol-glucuronide, paracetamol-sulfate, and the combined oxidative pathway metabolites (paracetamol-cysteine and paracetamol-N-acetylcysteine) were simultaneously modeled in NONMEM 7.2. Results The model incorporated 259 plasma and 350 urine samples from 35 neonates with a mean gestational age of 33.6 weeks (standard deviation 6.6). CLformation for all metabolites increased with weight; CLformation for glucuronidation and oxidation also increased with postnatal age. At the mean weight (2.3 kg) and postnatal age (7.5 days), CLformation estimates (bootstrap 95% confidence interval; between-subject variability) were 0.049 L/h (0.038–0.062; 62 %) for glucuronidation, 0.21 L/h (0.17–0.24; 33 %) for sulfation, and 0.058 L/h (0.044–0.078; 72 %) for oxidation. Expression of individual oxidation CLformation as a fraction of total individual paracetamol clearance showed that, on average, fractional oxidation CLformation increased <15 % when plotted against weight or postnatal age. Conclusions The parent-metabolite model successfully characterized the pharmacokinetics of intravenous paracetamol and its metabolites in neonates. Maturational changes in the fraction of paracetamol undergoing oxidation were small relative to between-subject variability. PMID:27209292

  12. Identification and characterization of metabolites of ASP015K, a novel oral Janus kinase inhibitor, in rats, chimeric mice with humanized liver, and humans.

    PubMed

    Nakada, Naoyuki; Oda, Kazuo

    2015-01-01

    1. Here, we elucidated the structure of metabolites of novel oral Janus kinase inhibitor ASP015K in rats and humans and evaluated the predictability of human metabolites using chimeric mice with humanized liver (PXB mice). 2. Rat biological samples collected after oral dosing of (14)C-labelled ASP015K were examined using a liquid chromatography-radiometric detector and mass spectrometer (LC-RAD/MS). The molecular weight of metabolites in human and the liver chimeric mouse biological samples collected after oral dosing of non-labelled ASP015K was also investigated via LC-MS. Metabolites were also isolated from rat bile samples and analyzed using nuclear magnetic resonance. 3. Metabolic pathways of ASP015K in rats and humans were found to be glucuronide conjugation, methyl conjugation, sulfate conjugation, glutathione conjugation, hydroxylation of the adamantane ring and N-oxidation of the 1H-pyrrolo[2,3-b]pyridine ring. The main metabolite of ASP015K in rats was the glucuronide conjugate, while the main metabolite in humans was the sulfate conjugate. Given that human metabolites were produced by human hepatocytes in chimeric mice with humanized liver, this human model mouse was believed to be useful in predicting the human metabolic profile of various drug candidates.

  13. Characterization of proflavine metabolites in rainbow trout.

    PubMed

    Yu, Z; Hayton, W L; Chan, K K

    1997-04-01

    Proflavine (3,6-diaminoacridine) has potential for use as an antiinfective in fish, and its metabolism by rainbow trout was therefore studied. Fourteen hours after intraarterial bolus administration of 10 mg/kg of proflavine, three metabolites were found in liver and bile, and one metabolite was found in plasma using reversed-phase HPLC with UV detection at 262 nm. Treatment with hydrochloric acid converted the three metabolites to proflavine, which suggested that the metabolites were proflavine conjugates. Treatment with beta-glucuronidase and saccharic acid 1,4-lactone, a specific beta-glucuronidase inhibitor, revealed that two metabolites were proflavine glucuronides. For determination of UV-VIS absorption and mass spectra, HPLC-purified metabolites were isolated from liver. Data from these experiments suggested that the proflavine metabolites were 3-N-glucuronosyl proflavine (PG), 3-N-glucuronosyl,6-N-acetyl proflavine (APG), and 3-N-acetylproflavine (AP). The identities of the metabolites were verified by chemical synthesis. When synthetic PG and AP were compared with the two metabolites isolated from trout, they had the same molecular weight as determined by matrix-assisted, laser desorption ionization, time-of-flight MS. In addition, they coeluted on HPLC under different mobile phase conditions. Finally, the in vitro incubation with liver subcellular preparations confirmed this characterization and provided the evidence that APG can be formed by glucuronidation of AP or acetylation of PG.

  14. Profile of plasma and urine metabolites after the intake of almond [Prunus dulcis (Mill.) D.A. Webb] polyphenols in humans.

    PubMed

    Urpi-Sarda, Mireia; Garrido, Ignacio; Monagas, María; Gómez-Cordovés, Carmen; Medina-Remón, Alexander; Andres-Lacueva, Cristina; Bartolomé, Begoña

    2009-11-11

    Nut skins are considered to be a rich source of polyphenols and may be partially responsible for the numerous health effects associated with nut consumption. However, more bioavailability studies of nut skin polyphenols are needed to understand the health effects derived from nut consumption. The aim of the present study was to determine the profiles of both phase II and microbial-derived phenolic metabolites in plasma and urine samples before and after the intake of almond skin polyphenols by healthy human subjects (n = 2). Glucuronide, O-methyl glucuronide, sulfate, and O-methyl sulfate derivatives of (epi)catechin, as well as the glucuronide conjugates of naringenin and glucuronide and sulfate conjugates of isorhamnetin, were detected in plasma and urine samples after consumption of almond skin polyphenols. The main microbial-derived metabolites of flavanols, such as 5-(dihydroxyphenyl)-gamma-valerolactone and 5-(hydroxymethoxyphenyl)-gamma-valerolactone, were also detected in their glucuronide and sulfate forms. In addition, numerous metabolites derived from further microbial degradation of hydroxyphenylvalerolactones, including hydroxyphenylpropionic, hydroxyphenylacetic, hydroxycinnamic, hydroxybenzoic, and hydroxyhippuric acids, registered major changes in urine after the consumption of almond skin polyphenols. The urinary excretion of these microbial metabolites was estimated to account for a larger proportion of the total polyphenol ingested than phase II metabolites of (epi)catechin, indicating the important role of intestinal bacteria in the metabolism of highly polymerized almond skin polyphenols. To the authors' knowledge this study constitutes the most complete report of the absorption of almond skin polyphenols in humans.

  15. Neonatal Maturation of Paracetamol (Acetaminophen) Glucuronidation, Sulfation, and Oxidation Based on a Parent-Metabolite Population Pharmacokinetic Model.

    PubMed

    Cook, Sarah F; Stockmann, Chris; Samiee-Zafarghandy, Samira; King, Amber D; Deutsch, Nina; Williams, Elaine F; Wilkins, Diana G; Sherwin, Catherine M T; van den Anker, John N

    2016-11-01

    This study aimed to model the population pharmacokinetics of intravenous paracetamol and its major metabolites in neonates and to identify influential patient characteristics, especially those affecting the formation clearance (CL formation ) of oxidative pathway metabolites. Neonates with a clinical indication for intravenous analgesia received five 15-mg/kg doses of paracetamol at 12-h intervals (<28 weeks' gestation) or seven 15-mg/kg doses at 8-h intervals (≥28 weeks' gestation). Plasma and urine were sampled throughout the 72-h study period. Concentration-time data for paracetamol, paracetamol-glucuronide, paracetamol-sulfate, and the combined oxidative pathway metabolites (paracetamol-cysteine and paracetamol-N-acetylcysteine) were simultaneously modeled in NONMEM 7.2. The model incorporated 259 plasma and 350 urine samples from 35 neonates with a mean gestational age of 33.6 weeks (standard deviation 6.6). CL formation for all metabolites increased with weight; CL formation for glucuronidation and oxidation also increased with postnatal age. At the mean weight (2.3 kg) and postnatal age (7.5 days), CL formation estimates (bootstrap 95% confidence interval; between-subject variability) were 0.049 L/h (0.038-0.062; 62 %) for glucuronidation, 0.21 L/h (0.17-0.24; 33 %) for sulfation, and 0.058 L/h (0.044-0.078; 72 %) for oxidation. Expression of individual oxidation CL formation as a fraction of total individual paracetamol clearance showed that, on average, fractional oxidation CL formation increased <15 % when plotted against weight or postnatal age. The parent-metabolite model successfully characterized the pharmacokinetics of intravenous paracetamol and its metabolites in neonates. Maturational changes in the fraction of paracetamol undergoing oxidation were small relative to between-subject variability.

  16. Challenges in the indirect quantitation of acyl-glucuronide metabolites of a cardiovascular drug from complex biological mixtures in the absence of reference standards.

    PubMed

    Srinivasan, Karthik; Nouri, Parya; Kavetskaia, Olga

    2010-07-01

    This paper describes the quantitation of acyl-glucuronide metabolites (M26 and M5) of a cardiovascular-drug (torcetrapib) from monkey urine, in the absence of their reference standards. LC/MS/MS assays for M1 and M4 (aglycones of M26 and M5, respectively) were characterized from normal and base-treated urine, as their respective reference standards were available. The in vivo study samples containing M26 and M5 were treated with 1 n sodium hydroxide to hydrolyze them to their respective aglycones. The study samples were assayed for M1 and M4 before and after alkaline hydrolysis and the difference in the concentrations provided an estimate of the urinary levels of M26 and M5. Prior to the main sample analysis, conditions for alkaline hydrolysis of the glucuronides were optimized by incubating pooled study samples. During incubations, a prolonged increase in M4 levels over time was observed, which is inconsistent with the base-hydrolysis of an acyl-glucuronide (expected to hydrolyze rapidly). Possible interference of the metabolite M9 (an ether-glucuronide metabolite isobaric to M4) was investigated to explain this observation using chromatographic and wet-chemistry approaches. The strategies adopted herein established that the LC/MS/MS assay and our approach were reliable. The metabolite exposure was then correlated to toxicological observations to gain initial insights into the physiological role of these metabolites. Copyright (c) 2009 John Wiley & Sons, Ltd.

  17. Comparison of the effects of curcumin and curcumin glucuronide in human hepatocellular carcinoma HepG2 cells.

    PubMed

    Shoji, Motomu; Nakagawa, Kiyotaka; Watanabe, Akio; Tsuduki, Tsuyoshi; Yamada, Teiko; Kuwahara, Shigefumi; Kimura, Fumiko; Miyazawa, Teruo

    2014-05-15

    Curcumin is a yellow pigment found in turmeric (Curcuma Longa L.), and is reported, in recent studies, to have several pharmacological effects, including anti-oxidant, anti-inflammatory, anti-tumour and lipid-lowering properties. However, as most curcumin is conjugated when absorbed through the intestine, free curcumin is present at extremely low levels inside the body. Therefore, curcumin metabolites have been presumed to be responsible for the curcumin bioactivity. In this study, we first confirmed that curcumin glucuronide is the major metabolite of curcumin found in the plasma after oral administration of curcumin in rats. Next, we synthesised curcumin glucuronide and compared the effects of curcumin and curcumin glucuronide on gene expression in a human hepatoma cell line (HepG2). We found that the effects of curcumin glucuronide are weaker than those of curcumin and that this difference is related to relative absorption rates of curcumin and curcumin glucuronide into HepG2 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Nicotine N-glucuronidation relative to N-oxidation and C-oxidation and UGT2B10 genotype in five ethnic/racial groups

    PubMed Central

    Murphy, Sharon E.; Park, Sung-Shim L.; Thompson, Elizabeth F.; Wilkens, Lynne R.; Patel, Yesha; Stram, Daniel O.; Le Marchand, Loic

    2014-01-01

    Nicotine metabolism influences smoking behavior and differences in metabolism probably contribute to ethnic variability in lung cancer risk. We report here on the proportion of nicotine metabolism by cytochrome P450 2A6-catalyzed C-oxidation, UDP-glucuronosyl transferase 2B10 (UGT2B10)-catalyzed N-glucuronidation and flavin monooxygenase 3-catalyzed N-oxidation in five ethnic/racial groups and the role of UGT2B10 genotype on the metabolic patterns observed. Nicotine and its metabolites were quantified in urine from African American (AA, n = 364), Native Hawaiian (NH, n = 311), White (n = 437), Latino (LA, n = 453) and Japanese American (JA, n = 674) smokers. Total nicotine equivalents, the sum of nicotine and six metabolites, and nicotine metabolism phenotypes were calculated. The relationship of UGT2B10 genotype to nicotine metabolic pathways was determined for each group; geometric means were computed and adjusted for age, sex, creatinine, and body mass index. Nicotine metabolism patterns were unique across the groups, C-oxidation was lowest in JA and NH (P < 0.0001), and N-glucuronidation lowest in AA (P < 0.0001). There was no difference in C-oxidation among Whites and AA and LA. Nicotine and cotinine glucuronide ratios were 2- and 3-fold lower in AA compared with Whites. Two UGT variants, a missense mutation (Asp67Tyr, rs61750900) and a splice variant (rs116294140) accounted for 33% of the variation in glucuronidation. In AA, the splice variant accounted for the majority of the reduced nicotine glucuronidation. UGT2B10 variant allele carriers had increased levels of C-oxidation (P = 0.0099). Our data indicate that the relative importance of nicotine metabolic pathways varies by ethnicity, and all pathways should be considered when characterizing the role of nicotine metabolism on smoking behavior and cancer risk. PMID:25233931

  19. Hepatic disposition of the acyl glucuronide 1-O-gemfibrozil-beta-D-glucuronide: effects of clofibric acid, acetaminophen, and acetaminophen glucuronide.

    PubMed

    Sabordo, L; Sallustio, B C; Evans, A M; Nation, R L

    2000-10-01

    Glucuronidation of carboxylic acid compounds results in the formation of electrophilic acyl glucuronides. Because of their polarity, carrier-mediated hepatic transport systems play an important role in determining both intra- and extrahepatic exposure to these reactive conjugates. We have previously shown that the hepatic membrane transport of 1-O-gemfibrozil-beta-D-glucuronide (GG) is carrier-mediated and inhibited by the organic anion dibromosulfophthalein. In this study, we examined the influence of 200 microM acetaminophen, acetaminophen glucuronide, and clofibric acid on the disposition of GG (3 microM) in the recirculating isolated perfused rat liver preparation. GG was taken up by the liver, excreted into bile, and hydrolyzed within the liver to gemfibrozil, which appeared in perfusate but not in bile. Mean +/- S. D. hepatic clearance, apparent intrinsic clearance, hepatic extraction ratio, and biliary excretion half-life of GG were 10.4 +/- 1.4 ml/min, 94.1 +/- 17.9 ml/min, 0.346 +/- 0.046, and 30.9 +/- 4.9 min, respectively, and approximately 73% of GG was excreted into bile. At the termination of the experiment (t = 90 min), the ratio of GG concentrations in perfusate, liver, and bile was 1:35:3136. Acetaminophen and acetaminophen glucuronide had no effect on the hepatic disposition of GG, suggesting relatively low affinities of acetaminophen conjugates for hepatic transport systems or the involvement of multiple transport systems for glucuronide conjugates. In contrast, clofibric acid increased the hepatic clearance, extraction ratio, and apparent intrinsic clearance of GG (P <.05) while decreasing its biliary excretion half-life (P <.05), suggesting an interaction between GG and hepatically generated clofibric acid glucuronide at the level of hepatic transport. However, the transporter protein(s) involved remains to be identified.

  20. Determination of the sulfate and glucuronide conjugates of levornidazole in human plasma and urine, and levornidazole and its five metabolites in human feces by high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    He, Gaoli; Guo, Beining; Zhang, Jing; Li, Yi; Wu, Xiaojie; Fan, Yaxin; Chen, Yuancheng; Cao, Guoying; Yu, Jicheng

    2018-04-01

    Levornidazole is a novel third-generation nitroimidazoles antibiotic which metabolism and disposition in human are not well known. We have previously developed two methods to quantify levornidazole and its phase I metabolites, Ml (Hydroxylation metabolite), M2 (N-dealkylation metabolite) and M4 (Oxidative dechlorination metabolite), in human plasma and urine. In this study, we developed three novel liquid chromatographic-tandem mass spectrometric (LC-MS/MS) methods and analyzed its phase II metabolites, sulfate conjugate (M6) and glucuronide conjugate (M16), in human plasma and urine, and the parent drug and above-mentioned five metabolites in human feces samples. Analytes and internal standard (IS) in human plasma were extracted by a solid-phase extraction procedure and separated on an ACQUITY UPLC CSH C18 column in gradient elution using acetonitrile and 0.1% formic acid aqueous solution as the mobile phase. The pretreatment procedures for urine and feces homogenate samples involved a protein precipitation followed by liquid-liquid extraction, and chromatographic separations were performed on the Atlantis T3 columns of different lengths and particle sizes (2.1 × 50 mm, 3 μm and 2.1 × 150 mm, 5 μm), respectively. The mobile phases consisted of formic acid and acetonitrile-methanol solution (v/v, 50:50) in gradient elution. The MS/MS analysis was conducted on TSQ Quantum triple quadrupole mass spectrometer using electrospray ionization with selected reaction monitoring (SRM) in the positive ion mode. The calibration curves for all analytes were linear and the validation ranges were as follows: 0.005-0.500 μg/mL for M6 and 0.005-2.500 μg/mL for M16 in plasma; 0.010-10.000 μg/mL for M6 and M16 in urine; 0.005-1.000 μg/mL for levornidazole, M2, M4 and M16, and 0.010-2.000 μg/mL for M1 and M6 in human feces homogenate. Across these matrices, mean intra- and inter- batch accuracy values were in the ranges of 80.0%-120.0%, and intra

  1. Glucuronidation and Sulfation Kinetics of Diflunisal in Man.

    NASA Astrophysics Data System (ADS)

    Loewen, Gordon Rapheal

    Diflunisal is a nonsteroidal anti-inflammatory drug used in the treatment of arthritis and musculoskeletal pain. Diflunisal exhibits concentration- and dose-dependent kinetics, the mechanism of which has not been determined. The purpose of this study was to determine the mechanism(s) responsible for non-linear disposition of diflunisal and to examine environmental factors which may affect the elimination of diflunisal. The metabolites of diflunisal, including a new metabolite, the sulphate conjugate, were purified by column and semi-preparative high pressure liquid chromatography. Assays for the quantitation of diflunisal and conjugates in urine and diflunisal in plasma were developed. Plasma protein binding of diflunisal in blank plasma and in plasma obtained following multiple doses of diflunisal was determined by equilibrium dialysis. Total body clearance of diflunisal decreased when dose increased from 100 to 750 mg. Total clearance increased when dose increased from 750 to 1000 mg. The percent of recovered dose eliminated as the acyl glucuronide decreased and the percent eliminated as the sulphate increased with increasing dose of diflunisal. Plasma protein binding of diflunisal was concentration dependent over a range of diflunisal plasma concentrations of 3 to 257 mug/ml. Total clearance, and to a lesser degree, unbound clearance of diflunisal were decreased following multiple dose administration of 250 and 500 mg diflunisal. Percent of recovered dose eliminated as the acyl glucuronide decreased and percent eliminated as the sulphate conjugate increased following multiple dosing. Plasma protein binding of diflunisal was similar in blank plasma and plasma obtained at steady state. Unbound clearance of diflunisal exceeded liver plasma flow. Frequency distributions of the elimination of the conjugates of diflunisal were normally distributed. Sex, smoking, and use of vitamins or oral contraceptives were identified as factors which may affect the elimination of

  2. Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee.

    PubMed

    Marmet, Cynthia; Actis-Goretta, Lucas; Renouf, Mathieu; Giuffrida, Francesca

    2014-01-01

    Chlorogenic acids and derivatives like phenolic acids are potentially bioactive phenolics, which are commonly found in many foods. Once absorbed, chlorogenic and phenolic acids are highly metabolized by the intestine and the liver, producing glucuronidated and/or sulphated compounds. These metabolites were analyzed in human plasma using a validated liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method. After protein precipitation, phenolic acids and their metabolites were extracted by using ethanol and chromatographic separation was achieved by reversed-phase using an Acquity UPLC BEH C18 column combined with a gradient elution system using 1% acetic acid aqueous solution and 1% acetic acid with 100% acetonitrile. The method was able to quantify 56 different compounds including 24 phenolic acids, 4 lactones, 15 sulfates and 13 glucuronides metabolites between 5 and 1000nM in plasma for most of them, except for m-dihydrocoumaric acid, 5-ferulloylquinic-glucuronide, 4-methoxycinnamic acid, 3-phenylpropionic acid, 3-(4-methoxyphenyl)propionic acid (25 to 1000nM) and p-dihydrocoumaric acid (50-1000nM). Values of repeatability and intermediate reproducibility were below 15% of deviation in general, and maximum 20% for the lowest concentrations. The validated method was successfully applied to quantify phenolic acids and their metabolites in plasma obtained after oral ingestion of soluble coffee. In conclusion, the developed and validated method is proved to be very sensitive, accurate and precise for the quantification of these possible dietary phenols. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. UHPLC-(ESI)QTOF MS/MS profiling of quercetin metabolites in human plasma postconsumption of applesauce enriched with apple peel and onion.

    PubMed

    Lee, Jihyun; Ebeler, Susan E; Zweigenbaum, Jerry A; Mitchell, Alyson E

    2012-08-29

    An ultrahigh pressure liquid chromatography accurate mass quadrupole time-of-flight mass spectrometry with electrospray ionization (UHPLC-(ESI)QTOF MS/MS) method was developed for measuring individual quercetin metabolites in human plasma with high sensitivity and high selectivity. Quercetin (3,3',4',5,7-pentahydroxyflavone) occurs as glycosides in foods. The composition of glycosides is species and cultivar specific. In humans, quercetin undergoes extensive biotransformation, resulting in a range of metabolites. The bioactivity of quercetin metabolites will depend on the type and position of the conjugates. Herein, individual quercetin metabolites (i.e., sulfate, glucuronide or methyl conjugates) were identified by accurate mass MS in human plasma (females = 8 and males = 8) over 24 h after consumption of applesauce enriched with either micronized apple peel (AP) or onion powder (OP). The AP and OP contained ~180 μmol of quercetin glycosides. The relative amounts of quercetin metabolites were quantified in plasma. The complement of identified quercetin metabolites was similar after consumption of AP and OP. Primary metabolites included the following: quercetin sulfate, quercetin glucuronide, and quercetin diglucuronide. A quercetin glutathione adduct was identified in negative ion mode but not apparent in positive ion mode. The pharmacokinetic parameters for AUC0-24 h and Cmax were significantly different for AP and OP. For example, consumption of the AP resulted in Cmax of quercetin sulfate, 4.6 ng/mL; quercetin glucuronide, 15.5 ng/mL; quercetin diglucuronide, 9.3 ng/mL; quercetin glucuronide sulfate, 1.3 ng/mL; methyl quercetin glucuronide, 7.5 ng/mL; and methyl quercetin diglucuronide, 3.6 ng/mL, whereas the OP resulted in Cmax of quercetin sulfate, 37.3 ng/mL; quercetin glucuronide, 212.8 ng/mL; quercetin diglucuronide, 168.8 ng/mL; quercetin glucuronide sulfate, 43.0 ng/mL; methyl quercetin glucuronide, 90.1 ng/mL; methyl quercetin diglucuronide, 65.4 ng

  4. Resveratrol glucuronides as the metabolites of resveratrol in humans: characterization, synthesis, and anti-HIV activity.

    PubMed

    Wang, Lai-Xi; Heredia, Alonso; Song, Haijing; Zhang, Zhaojun; Yu, Biao; Davis, Charles; Redfield, Robert

    2004-10-01

    Resveratrol is a natural product with diverse biological activities. We have previously reported that resveratrol possesses potent synergistic inhibitory activity against human immunodeficiency virus (HIV)-1 infection in combination with nucleoside analogs (Heredia et al. 2000. J Acquir Immune Defic Syndr 25:246-255). As a part of our program in developing resveratrol as a component for anti-HIV chemotherapy, we describe in this article the characterization, chemical synthesis, and biological effects of the human metabolites of resveratrol. We found that resveratrol was metabolized in humans into two metabolites, which were characterized as resveratrol-3-O- and 4'-O-glucuronides. For further biological studies, we reported two simple, alternative methods for the synthesis of the metabolites. The cytotoxic and antiviral activities of resveratrol and its metabolites were compared in cell culture experiments using human peripheral blood mononuclear cells. Whereas resveratrol was cytotoxic at > or =30 microM, no cytotoxicity was observed for the metabolites at concentrations as high as 300 microM. However, resveratrol showed strong synergistic anti-HIV activity with didanosine at 10 microM, but no synergistic effects were observed for either of the metabolites at up to 300 microM. Nevertheless, the in vitro activity of the metabolites (resveratrol glucuronides) may not necessarily reflect their in vivo function, given the fact that the ubiquitously existing human beta-glucuronidase could convert the metabolites back to resveratrol locally or systematically in vivo. The present studies have implications for future development of resveratrol and/or its derivatives as a chemotherapeutic agent. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  5. Almond (Prunus dulcis (Mill.) D.A. Webb) polyphenols: from chemical characterization to targeted analysis of phenolic metabolites in humans.

    PubMed

    Bartolomé, Begoña; Monagas, María; Garrido, Ignacio; Gómez-Cordovés, Carmen; Martín-Alvarez, Pedro J; Lebrón-Aguilar, Rosa; Urpí-Sardà, Mireia; Llorach, Rafael; Andrés-Lacueva, Cristina

    2010-09-01

    In this paper, a survey of our studies on almond polyphenols including their chemical characterization and further bioavailability in humans is reported. Combination of analytical techniques (LC-DAD/fluorescence, LC/ESI-MS and MALDI-TOF-MS) allowed us, for the first time, the identification of A- and B-type procyanidin, propelargonidin and prodelphinidin polymers in almond skins. Glucuronide, O-methyl glucuronide, sulfate and O-methyl sulfate derivatives of (epi)catechin, as well as the glucuronide conjugates of naringenin and isorhamnetin, and sulfate conjugates of isorhamnetin, together with conjugates of hydroxyphenylvalerolactones were detected in plasma and urine samples after the intake of almond skin polyphenols. In addition, numerous microbial-derived metabolites, including hydroxyphenylpropionic, hydroxyphenylacetic, hydroxycinnamic, hydroxybenzoic and hydroxyhippuric acids were also identified. Depending of the type of metabolite, maximum urinary excretion was attained at different time in comparison to the control group in the course of the 24-h period of urine excretion, allowing us to establish the onset of microbial metabolism. 2010 Elsevier Inc. All rights reserved.

  6. Is enzymatic hydrolysis a reliable analytical strategy to quantify glucuronidated and sulfated polyphenol metabolites in human fluids?

    PubMed

    Quifer-Rada, Paola; Martínez-Huélamo, Miriam; Lamuela-Raventos, Rosa M

    2017-07-19

    Phenolic compounds are present in human fluids (plasma and urine) mainly as glucuronidated and sulfated metabolites. Up to now, due to the unavailability of standards, enzymatic hydrolysis has been the method of choice in analytical chemistry to quantify these phase II phenolic metabolites. Enzymatic hydrolysis procedures vary in enzyme concentration, pH and temperature; however, there is a lack of knowledge about the stability of polyphenols in their free form during the process. In this study, we evaluated the stability of 7 phenolic acids, 2 flavonoids and 3 prenylflavanoids in urine during enzymatic hydrolysis to assess the suitability of this analytical procedure, using three different concentrations of β-glucuronidase/sulfatase enzymes from Helix pomatia. The results indicate that enzymatic hydrolysis negatively affected the recovery of the precursor and free-form polyphenols present in the sample. Thus, enzymatic hydrolysis does not seem an ideal analytical strategy to quantify glucuronidated and sulfated polyphenol metabolites.

  7. Fractionation of free and conjugated steroids for the detection of boldenone metabolites in calf urine with ultra-performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Van Poucke, Christof; Van Vossel, Evy; Van Peteghem, Carlos

    2008-08-01

    For over a decade there has been an intensive debate on the possible natural origin of boldenone (androst-1,4-diene-17beta-ol-3-one, 17beta-boldenone) in calf urine and several alternative markers to discriminate between endogenously formed boldenone and exogenously administered boldenone have been suggested. The currently approved method for proving illegal administration of beta-boldenone(ester) is the detection of beta-boldenone conjugates. In the presented method the sulphate, glucuronide and free fractions are separated from each other during cleanup on a SAX column to be able to determine the conjugated status of the boldenone metabolites. The sulphate and glucuronide fractions are submitted to hydrolysis and all three fractions are further cleaned up on a combination of C18/NH2 solid-phase extraction (SPE) columns. Chromatographic separation of the boldenone metabolites was achieved with a Waters Acquity UPLC instrument using a Sapphire C18 (1.7 microm; 2x50 mm) column within 5 min. Detection of the analytes was achieved by electrospray ionisation tandem mass spectrometry. The decision limits of this method, validated according to Commission Decision 2002/657/EC, were 0.08 ng mL(-1) for androsta-1,4-diene-3,17-dione, 0.13 ng mL(-1) for androst-4-ene-3,17-dione, 0.11 ng mL(-1) for 17alpha-boldenone, 0.07 ng mL(-1) for 17beta-boldenone, 0.24 ng mL(-1) for 5beta-androst-1-en-17beta-ol-3-one and 0.58 ng mL(-1) for 6beta-hydroxy-17beta-boldenone. Because of the fractionation approach used in this method there is no need for conjugated reference standards which often are not available. The disadvantage of needing three analytical runs to determine the conjugated status of each of the metabolites was overcome by using fast chromatography. Copyright (c) 2008 John Wiley & Sons, Ltd.

  8. Influence of substrates on the in vitro kinetics of steviol glucuronidation and interaction between steviol glycosides metabolites and UGT2B7.

    PubMed

    Chen, Jun-Ming; Xia, Yong-Mei; Zhang, Yan-Dong; Zhang, Tong-Tong; Peng, Qing-Rui; Fang, Yun

    2018-06-01

    Steviol glycosides, a natural sweetener, may perform bioactivities via steviol, their main metabolite in human digestion. The metabolising kinetics, i.e. glucuronidation kinetics and interaction between steviol glycosides or their metabolites and metabolising enzyme, are important for understanding the bioactivity and cytotoxicity. The present study investigated kinetics of steviol glucuronidation in human liver microsome and a recombinant human UDP-glucuronosyltransferases isomer, UGT2B7, along with molecular docking to analyse interaction between UGT2B7 and steviol or glucose. The active pocket of UGT2B7 is consisted of Arg352, Leu347, Lys343, Phe339, Tyr354, Lys355 and Leu353. The influence of stevioside, rebaudioside A, glucose and some chemotherapy reagents on the glucuronidation was also studied. The predicted hepatic clearence suggested that steviol could be classified as high-clearence drug. The steviol glycosides did not affect the glucuronidation of steviol notably.

  9. Inhibition of ATP synthesis by fenbufen and its conjugated metabolites in rat liver mitochondria.

    PubMed

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-03-01

    Fenbufen is an arylpropionic acid derivative belonging to the group of non-steroidal anti-inflammatory drugs (NSAIDs). Even though fenbufen is considered a safe drug, some adverse reactions including hepatic events have been reported. To investigate whether mitochondrial damage could be involved in the drug induced liver injury (DILI) by fenbufen, the inhibitory effect of fenbufen and its conjugated metabolites on oxidative phosphorylation (ATP synthesis) in rat liver mitochondria was investigated. Fenbufen glucuronide (F-GlcA), fenbufen-N-acetyl cysteine-thioester (F-NAC) and fenbufen-S-glutathione thioester (F-SG) were found to be more potent inhibitors compared to parent fenbufen (F), whereas fenbufen-O-carnitine (F-carn), fenbufen-glycine (F-gly) and fenbufen-N-acetyl lysine amide (F-NAL) were less potent compared to fenbufen. Fenbufen-CoA thioester (F-CoA) was equally potent as fenbufen in inhibiting ATP synthesis. Fenbufen showed time and concentration dependent inhibition of ATP synthesis with Kinact of 4.4 min(-1) and KI of 0.88 μM and Kinact/KI ratio of 5.01 min(-1) μM(-1). Data show that fenbufen did not act through opening MPT pore, nor did incubation of mitochondria with reduced GSH and fenbufen show any protective effect on fenbufen mediated inhibition of oxidative phosphorylation. Inclusion of NADPH in mitochondrial preparations with fenbufen did not modulate the inhibitory effects, suggesting no role of CYP mediated oxidative metabolites on the ATP synthesis in isolated mitochondria. The results from the present experiments provide evidence that fenbufen and its metabolites could be involved in mitochondrial toxicity through inhibition of ATP synthesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Tentative Structural Assignment of a Glucuronide Metabolite of Methyltestosterone in Tilapia Bile by Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry.

    PubMed

    Nishshanka, Upul; Chu, Pak-Sin; Evans, Eric; Reimschuessel, Renate; Hasbrouck, Nicholas; Amarasinghe, Kande; Jayasuriya, Hiranthi

    2015-06-24

    Methyltestosterone (MT), a strong androgenic steroid, is not approved for use in fish aquaculture in the United States. It is used in the U.S. under an investigational new animal drug exemption (INAD) only during the early life stages of fish. There is a possibility that farmers feed fish with MT to enhance production for economic gains. Therefore, there is a need to develop methods for the detection of MT and its metabolite residues in fish tissue for monitoring purposes. Previously, our laboratory developed a liquid chromatography-quadrupole time-of-flight (LC-QTOF) method for characterization of 17-O-glucuronide metabolite (MT-glu) in bile of tilapia dosed with MT. The system used was an Agilent 6530 Q-TOF equipped with electrospray jet stream technology, operating in positive ion mode. Retrospective analysis of the data generated in that experiment by a feature-finding algorithm, combined with a search against an in-house library of possible MT-metabolites, resulted in the discovery of a major glucuronide metabolite of MT in the bile extracts. Preliminary data indicate it to be a glucuronide of a hydroxylated MT (OHMT-glu) which persists in tilapia bile for at least 2 weeks after dosing. We present the tentative structural assignment of the OHMT-glu in tilapia bile and time course of development. This glucuronide can serve as a marker to monitor illegal use of MT in tilapia culture.

  11. Quantification of Cannabinoids and their Free and Glucuronide Metabolites in Whole Blood by Disposable Pipette Extraction and Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Scheidweiler, Karl B.; Newmeyer, Matthew N.; Barnes, Allan J.; Huestis, Marilyn A.

    2016-01-01

    Identifying recent cannabis intake is confounded by prolonged cannabinoid excretion in chronic frequent cannabis users. We previously observed detection times ≤2.1 h for cannabidiol (CBD) and cannabinol (CBN) and THC-glucuronide in whole blood after smoking, suggesting their applicability for identifying recent intake. However, whole blood collection may not occur for up to 4 h during driving under the influence of drugs investigations, making a recent-use marker with a 6-8 h detection window helpful for improving whole blood cannabinoid interpretation. Other minor cannabinoids cannabigerol (CBG), Δ9-tetrahydrocannabivarin (THCV), and its metabolite 11-nor-9-carboxy-THCV (THCVCOOH) might also be useful. We developed and validated a sensitive and specific liquid chromatography-tandem mass spectrometry method for quantification of THC, its phase I and glucuronide phase II metabolites, and 5 five minor cannabinoids. Cannabinoids were extracted from 200 μL whole blood via disposable pipette extraction, separated on a C18 column, and detected via electrospray ionization in negative mode with scheduled multiple reaction mass spectrometric monitoring. Linear ranges were 0.5-100 μg/L for THC and THCCOOH; 0.5-50 μg/L for 11-OH-THC, CBD, CBN, and THC-glucuronide; 1-50 μg/L for CBG, THCV, and THCVCOOH; and 5-500 μg/L for THCCOOH-glucuronide. Inter-day accuracy and precision at low, mid and high quality control (QC) concentrations were 95.1-113% and 2.4-8.5%, respectively (n=25). Extraction recoveries and matrix effects at low and high QC concentrations were 54.0-84.4% and −25.8-30.6%, respectively. By simultaneously monitoring multiple cannabinoids and metabolites, identification of recent cannabis administration or discrimination between licit medicinal and illicit recreational cannabis use can be improved. PMID:27236483

  12. Quantification of cannabinoids and their free and glucuronide metabolites in whole blood by disposable pipette extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Scheidweiler, Karl B; Newmeyer, Matthew N; Barnes, Allan J; Huestis, Marilyn A

    2016-07-01

    Identifying recent cannabis intake is confounded by prolonged cannabinoid excretion in chronic frequent cannabis users. We previously observed detection times ≤2.1h for cannabidiol (CBD) and cannabinol (CBN) and Δ(9)-tetrahydrocannabinol (THC)-glucuronide in whole blood after smoking, suggesting their applicability for identifying recent intake. However, whole blood collection may not occur for up to 4h during driving under the influence of drugs investigations, making a recent-use marker with a 6-8h detection window helpful for improving whole blood cannabinoid interpretation. Other minor cannabinoids cannabigerol (CBG), Δ9-tetrahydrocannabivarin (THCV), and its metabolite 11-nor-9-carboxy-THCV (THCVCOOH) might also be useful. We developed and validated a sensitive and specific liquid chromatography-tandem mass spectrometry method for quantification of THC, its phase I and glucuronide phase II metabolites, and 5 five minor cannabinoids. Cannabinoids were extracted from 200μL whole blood via disposable pipette extraction, separated on a C18 column, and detected via electrospray ionization in negative mode with scheduled multiple reaction mass spectrometric monitoring. Linear ranges were 0.5-100μg/L for THC and 11-nor-9-carboxy-THC (THCCOOH); 0.5-50μg/L for 11-hydroxy-THC (11-OH-THC), CBD, CBN, and THC-glucuronide; 1-50μg/L for CBG, THCV, and THCVCOOH; and 5-500μg/L for THCCOOH-glucuronide. Inter-day accuracy and precision at low, mid and high quality control (QC) concentrations were 95.1-113% and 2.4-8.5%, respectively (n=25). Extraction recoveries and matrix effects at low and high QC concentrations were 54.0-84.4% and -25.8-30.6%, respectively. By simultaneously monitoring multiple cannabinoids and metabolites, identification of recent cannabis administration or discrimination between licit medicinal and illicit recreational cannabis use can be improved. Published by Elsevier B.V.

  13. Competing pathways in drug metabolism. I. Effect of input concentration on the conjugation of gentisamide in the once-through in situ perfused rat liver preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, M.E.; Yuen, V.; Tang, B.K.

    1988-05-01

    Sulfation and glucuronidation are two parallel pathways for the metabolism of phenolic substrates. Gentisamide (GAM) was used as a model compound to examine the effects of parallel competing pathways on drug disappearance and metabolite formation in the once-through perfused rat liver preparation. GAM was found to form one glucuronide (GAM-5G) and two sulfate (GAM-2S and GAM-5S) conjugates. These GAM conjugates were biosynthesized in recirculating rat liver preparations, and were isolated by preparative high-performance liquid chromatography. Specific incorporation of 35S-sodium sulfate and (14C)glucose into GAM sulfate and glucuronide conjugates revealed corresponding elution patterns as labeled GAM metabolites. Their identities were characterizedmore » by enzymatic and acid hydrolyses and by NMR spectroscopy. Gentisamide-5-sulfate (GAM-5S) and gentisamide-5-glucuronide (GAM-5G) are major metabolites, and gentisamide-2-sulfate (GAM-2S) is a minor metabolite. Single-pass rat liver perfusions were used to examine the effect of stepwise increases/decreases of input GAM concentration (CIn) on the extraction ratio (E) of GAM and formation of metabolites. The E of GAM remained constant (about 0.89) at input concentrations from 0.9 to 120 microM and decreased at CIn greater than 120 microM. Metabolite patterns, however, changed with GAM CIn, even when E was constant at CIn up to 120 microM. GAM-5S was present as the major metabolite of GAM at all GAM CInS in most liver preparations but the proportions of GAM-5S and GAM-2S decreased at increasing CIn; the proportion of GAM-5G, a minor metabolite at low CIn, increased with increasing CIn. Biliary excretion rates at steady state accounted for 5.3 +/- 2.7% (mean +/- S.D.) of the input rate: GAM-5G was the predominant metabolite found.« less

  14. Quantification of conjugated metabolites of drugs in biological matrices after the hydrolysis with β-glucuronidase and sufatase: a review of bio-analytical methods.

    PubMed

    Ding, Yue; Peng, Ming; Zhang, Tong; Tao, Jian-Sheng; Cai, Zhen-Zhen; Zhang, Yong

    2013-10-01

    Glucuronidation and sulfation represent two major pathways in phase II drug metabolism in humans and other mammalian species. The great majority of drugs, for example, polyphenols, flavonoids and anthraquinones, could be transformed into sulfated and glucuronidated conjugates simultaneously and extensively in vivo. The pharmacological activities of drug conjugations are normally decreased compared with those of their free forms. However, some drug conjugates may either bear biological activities themselves or serve as excellent sources of biologically active compounds. As the bioactivities of drugs are thought to be relevant to the kinetics of their conjugates, it is essential to study the pharmacokinetic behaviors of the conjugates in more detail. Unfortunately, the free forms of drugs cannot be detected directly in most cases if their glucuronides and sulfates are the predominant forms in biological samples. Nevertheless, an initial enzymatic hydrolysis step using β-glucuronidase and/or sulfatase is usually performed to convert the glucuronidated and/or sulfated conjugates to their free forms prior to the extraction, purification and other subsequent analysis steps in the literature. This review provides fundamental information on drug metabolism pathways, the bio-analytical strategies for the quantification of various drug conjugates, and the applications of the analytical methods to pharmacokinetic studies. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Characterization of biliary conjugates of 4,4'-methylenedianiline in male versus female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kan; Cole, Richard B.; Santa Cruz, Vicente

    2008-10-15

    4,4'-Methylenedianiline (4,4'-diaminodiphenylmethane; DAPM) is an aromatic diamine used in the production of numerous polyurethane foams and epoxy resins. Previous studies in rats revealed that DAPM initially injures biliary epithelial cells of the liver, that the toxicity is greater in female than in male rats, and that the toxic metabolites of DAPM are excreted into bile. Since male and female rats exhibit differences in the expression of both phase I and phase II enzymes, our hypothesis was that female rats either metabolize DAPM to more toxic metabolites or have a decreased capacity to conjugate metabolites to less toxic intermediates. Our objectivemore » was thus to isolate, characterize, and quantify DAPM metabolites excreted into bile in both male and female bile duct-cannulated Sprague Dawley rats. The rats were gavaged with [{sup 14}C]-DAPM, and the collected bile was subjected to reversed-phase HPLC with radioisotope detection. Peaks eluting from HPLC were collected and analyzed using electrospray MS and NMR spectroscopy. HPLC analysis indicated numerous metabolites in both sexes, but male rats excreted greater amounts of glutathione and glucuronide conjugates than females. Electrospray MS and NMR spectra of HPLC fractions revealed that the most prominent metabolite found in bile of both sexes was a glutathione conjugate of an imine metabolite of a 4'-nitroso-DAPM. Seven other metabolites were identified, including acetylated, cysteinyl-glycine, glutamyl-cysteine, glycine, and glucuronide conjugates. While our prior studies demonstrated increased covalent binding of DAPM in the liver and bile of female compared to male rats, in these studies, SDS-PAGE with autoradiography revealed 4-5 radiolabeled protein bands in the bile of rats treated with [{sup 14}C]-DAPM. In addition, these bands were much more prominent in female than in male rats. These studies thus suggest that a plausible mechanism for the increased sensitivity of female rats to DAPM toxicity

  16. High pressure liquid chromatographic method for the separation and quantitation of water-soluble radiolabeled benzene metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, P.J.; Bechtold, W.E.; Henderson, R.F.

    1988-05-01

    The glucuronide and sulfate conjugates of benzene metabolite as well as muconic acid and pre-phenyl- and phenylmercapturic acids were separated by ion-pairing HPLC. The HPLC method developed was suitable for automated analysis of a large number of tissue or excreta samples. p-Nitrophenyl (/sup 14/C)glucuronide was used as an internal standard for quantitation of these water-soluble metabolites. Quantitation was verified by spiking liver tissue with various amounts of phenylsulfate or glucuronides of phenol, catechol, or hydroquinone and analyzing by HPLC. Values determined by HPLC analysis were within 10% of the actual amount with which the liver was spiked. The amount ofmore » metabolite present in urine following exposure to (/sup 3/H)benzene was determined using p-nitrophenyl (/sup 14/C)glucuronide as an internal standard. Phenylsulfate was the major water-soluble metabolite in the urine of F344 rats exposed to 50 ppm (/sup 3/H)benzene for 6 h. Muconic acid and an unknown metabolite which decomposed in acidic media to phenylmercapturic acid were also present. Liver, however, contained a different metabolic profile. This indicates that urinary metabolite profiles may not be a true reflection of what is seen in individual tissues.« less

  17. Hepatic Disposition of Gemfibrozil and Its Major Metabolite Gemfibrozil 1-O-β-Glucuronide.

    PubMed

    Kimoto, Emi; Li, Rui; Scialis, Renato J; Lai, Yurong; Varma, Manthena V S

    2015-11-02

    Gemfibrozil (GEM), which decreases serum triglycerides and low density lipoprotein, perpetrates drug-drug interactions (DDIs) with several drugs. These DDIs are primarily attributed to the inhibition of drug transporters and metabolic enzymes, particularly cytochrome P450 (CYP) 2C8 by the major circulating metabolite gemfibrozil 1-O-β-glucuronide (GG). Here, we characterized the transporter-mediated hepatic disposition of GEM and GG using sandwich-cultured human hepatocytes (SCHH) and transporter-transfect systems. Significant active uptake was noted in SCHH for the metabolite. GG, but not GEM, showed substrate affinity to organic anion transporting polypeptide (OATP) 1B1, 1B3, and 2B1. In SCHH, glucuronidation was characterized affinity constants (Km) of 7.9 and 61.4 μM, and biliary excretion of GG was observed. Furthermore, GG showed active basolateral efflux from preloaded SCHH and ATP-dependent uptake into membrane vesicles overexpressing multidrug resistance-associated protein (MRP) 2, MRP3, and MRP4. A mathematical model was developed to estimate hepatic uptake and efflux kinetics of GEM and GG based on SCHH studies. Collectively, the hepatic transporters play a key role in the disposition and thus determine the local concentrations of GEM and more so for GG, which is the predominant inhibitory species against CYP2C8 and OATP1B1.

  18. Bioactive Androgens and Glucuronidated Androgen Metabolites are Associated with Subcutaneous and Ectopic Skeletal Muscle Adiposity among Older Black Men

    PubMed Central

    Miljkovic, Iva; Cauley, Jane A; Dressen, Amy S; Gordon, Christopher L; Goodpaster, Bret H; Kuller, Lewis H; Bunker, Clareann H; Patrick, Alan L; Wheeler, Victor W; Orwoll, Eric S; Zmuda, Joseph M

    2011-01-01

    Aging is associated with declining serum levels of androgenic hormones and with increased skeletal muscle fat infiltration, an emerging risk factor for type 2 diabetes mellitus (T2DM). Androgens regulate fat mass and glucose homeostasis, but the effect of androgenic hormones on skeletal muscle fat infiltration is largely unknown. Thus, the aim of the current study was to examine the association of serum androgens and their precursors and metabolites with skeletal muscle fat infiltration and T2DM in a black male population group at high risk of T2DM. Serum androgens, estrogens, and androgen precursors and metabolites were measured using mass spectrometry, and calf skeletal muscle fat distribution [subcutaneous and intermuscular fat; skeletal muscle density] were measured using quantitative computed tomography in 472 Afro-Caribbean men aged 65 and older. Bioactive androgens, testosterone, free testosterone and dihydrotestosterone, were associated with less skeletal muscle fat infiltration (r=−0.14 to −0.18, P<0.05) and increased skeletal muscle density (r=0.10 to 0.14, P<0.05), independent of total adiposity. Additionally, glucuronidated androgen metabolites were associated with less subcutaneous fat (r=−0.11 to −0.15, P<0.05). Multivariate logistic regression analysis identified an increased level of 3α-diol-3 glucuronide (OR=1.38, P<0.01) and a decreased level of dihydrotestosterone (OR=0.66, P<0.01) to be significantly associated with T2DM. Our findings suggest that in elderly black men, independent of total adiposity, bioactive androgens and glucuronidated androgen metabolites may play previously unrecognized role in skeletal muscle fat distribution. Longitudinal studies are needed to further evaluate the relationship between androgens and androgen metabolites with changes in skeletal muscle fat distribution with aging and the incidence of T2DM. PMID:21353258

  19. Autism and Phthalate Metabolite Glucuronidation

    ERIC Educational Resources Information Center

    Stein, T. Peter; Schluter, Margaret D.; Steer, Robert A.; Ming, Xue

    2013-01-01

    Exposure to environmental chemicals may precipitate autism spectrum disorders (ASD) in genetically susceptible children. Differences in the efficiency of the glucuronidation process may substantially modulate substrate concentrations and effects. To determine whether the efficiency of this pathway is compromised in children with ASD, we measured…

  20. The metabolism of 2-trifluormethylaniline and its acetanilide in the rat by 19F NMR monitored enzyme hydrolysis and 1H/19F HPLC-NMR spectroscopy.

    PubMed

    Tugnait, M; Lenz, E M; Hofmann, M; Spraul, M; Wilson, I D; Lindon, J C; Nicholson, J K

    2003-01-01

    The urinary excretion profile and identity of the metabolites of 2-trifluoromethyl aniline (2-TFMA) and 2-trifluoromethyl acetanilide (2-TFMAc), following i.p. administration to the rat at 50 mg kg(-1), were determined using a combination of 19F NMR monitored enzyme hydrolysis, SPEC-MS and 19F/1H HPLC-NMR. A total recovery of approximately 96.4% of the dose was excreted into the urine as seven metabolites. The major routes of metabolism were N-conjugation (glucuronidation), and ring-hydroxylation followed by sulphation (and to a lesser extent glucuronidation). The major metabolites excreted into the urine for both compounds were a labile N-conjugated metabolite (a postulated N-glucuronide) and a sulphated ring-hydroxylated metabolite (a postulated 4-amino-5-trifluoromethylphenyl sulphate) following dosing of 2-TFMA. These accounted for approximately 53.0 and 31.5% of the dose, respectively. This study identifies problems on sample component instability in the preparation and analysis procedures.

  1. Identification of hydroxyropivacaine glucuronide in equine urine by ESI+/MS/MS.

    PubMed Central

    Harkins, J D; Karpiesiuk, W; Tobin, T; Dirikolu, L; Lehner, A F

    2000-01-01

    Ropivacaine is a local anesthetic that has a high potential for abuse in racing horses. It can be recovered from urine collected after administration as a hydroxylated metabolite following beta-glucuronidase treatment of the urine. Based on these findings, it has been inferred that ropivacaine is present in equine urine as a glucuronide metabolite; however, these metabolites have never been directly identified. Using ESI+/MS/MS, the presence of a [M+H]+ molecular ion of m/z 467 was demonstrated in urine corresponding to the calculated mass of a hydroxyropivacaine glucuronide +1. The abundance of this ion diminished after glucuronidase treatment with concomitant appearance of a m/z 291 peak, which is consistent with its hydrolysis to hydroxyropivacaine. In further work, the m/z 467 material was fragmented in the MS/MS system, yielding fragments interpretable as hydroxyropivacaine glucuronide. These data are consistent with the presence of a hydroxyropivacaine glucuronide in equine urine and constitute the first direct demonstration of a specific glucuronide metabolite in equine urine. PMID:10935884

  2. Overestimation of Flavonoid Aglycones as a Result of the ex vivo Deconjugation of Glucuronides by the Tissue β-Glucuronidase

    PubMed Central

    Lu, Qing-Yi; Zhang, Lifeng; Eibl, Guido; Go, Vay-Liang W.

    2013-01-01

    Flavonoid glucuronides are the main circulating metabolites of flavonoids in humans and animals. There has been a growing interest in the biological function of glucuronides. In order to differentiate biological activity and to assess efficacy it is essential to accurately determine the levels of flavonoid aglycone and metabolic conjugate in vivo. Many organs and body fluids of humans and animals exhibit β-glucuronidase against flavonoid glucuronides. Studies have shown that β-glucuronidase within the tissues hydrolyzes glucuronides to their aglycones during the tissue extraction, leading to artificially higher reported tissue levels of aglycone than actual in vivo concentrations. The aims of this study were to estimate the extent by which the aglycones were overestimated and to investigate the use of saccharo-1,4-lactone, a β-glucuronidase inhibitor, to block the ex vivo hydrolysis of flavonoid glucuronides. Our data demonstrate that in mouse liver tissues and human tumor xenografts levels of quercetin and methylated quercetin aglycones could be over-estimated by 7 fold. The inhibition of deconjugation of quercetin and baicalein glucuronides by saccharo-1,4-lactone is dose-dependent. The amount of saccharo-1,4-lactone used to produce optimal inhibition of the enzyme activity is in the range of 15 – 24 μmol per gram of liver tissue. The use of β-glucuronidase inhibitor blocks the ex vivo deconjugation resulting in an accurate estimation of tissue levels of aglycone and conjugate. Our study described here can be extended to other animal models and human studies with different types of substrates of β-glucuronidase. PMID:24176739

  3. Identification of three new phase II metabolites of a designer drug methylone formed in rats by N-demethylation followed by conjugation with dicarboxylic acids.

    PubMed

    Židková, Monika; Linhart, Igor; Balíková, Marie; Himl, Michal; Dvořáčková, Veronika; Lhotková, Eva; Páleníček, Tomáš

    2018-06-01

    1. Methylone (3,4-methylenedioxy-N-methylcathinone, MDMC), which appeared on the illicit drug market in 2004, is a frequently abused synthetic cathinone derivative. Known metabolic pathways of MDMC include N-demethylation to normethylone (3,4-methylenedioxycathinone, MDC), aliphatic chain hydroxylation and oxidative demethylenation followed by monomethylation and conjugation with glucuronic acid and/or sulphate. 2. Three new phase II metabolites, amidic conjugates of MDC with succinic, glutaric and adipic acid, were identified in the urine of rats dosed subcutaneously with MDMC.HCl (20 mg/kg body weight) by LC-ESI-HRMS using synthetic reference standards to support identification. 3. The main portion of administered MDMC was excreted unchanged. Normethylone, was a major urinary metabolite, of which a minor part was conjugated with dicarboxylic acids. 4. Previously identified ring-opened metabolites 4-hydroxy-3-methoxymethcathinone (4-OH-3-MeO-MC), 3-hydroxy-4-methoxymeth-cathinone (3-OH-4-MeO-MC) and 3,4-dihydroxymethcathinone (3,4-di-OH-MC) mostly in conjugated form with glucuronic and/or sulphuric acids were also detected. 5. Also, ring-opened metabolites derived from MDC, namely, 4-hydroxy-3-methoxycathinone (4-OH-3-MeO-C), 3-hydroxy-4-methoxycathinone (3-OH-4-MeO-C) and 3,4-dihydroxycathinone (3,4-di-OH-C) were identified for the first time in vivo.

  4. Pharmacokinetics of acetaminophen, codeine, and the codeine metabolites morphine and codeine-6-glucuronide in healthy Greyhound dogs

    PubMed Central

    KuKanich, Butch

    2009-01-01

    The purpose of this study was to determine the pharmacokinetics of codeine and the active metabolites morphine and codeine-6-glucuronide after IV codeine administration and the pharmacokinetics of acetaminophen (APAP), codeine, morphine, and codeine-6-glucuronide after oral administration of combination product containing acetaminophen and codeine to dogs. Six healthy Greyhound dogs were administered 0.734 mg/kg codeine IV and acetaminophen (10.46 mg/kg mean dose) with codeine (1.43 mg/kg mean dose) orally. Blood samples were obtained at predetermined time points for the determination of codeine, morphine, and codeine-6-glucuronide plasma concentrations by LC/MS and acetaminophen by HPLC with UV detection. Codeine was rapidly eliminated after IV administration (T½ =1.22 hr; clearance=29.94 mL/min/kg; volume of distribution=3.17 L/kg) with negligible amounts of morphine present, but large amounts of codeine-6-glucuronide (CMAX=735.75 ng/mL) were detected. The oral bioavailability of codeine was 4%, morphine concentrations were negligible, but large amounts of codeine-6-glucuronide (CMAX=1952.86 ng/mL) were detected suggesting substantial first pass metabolism. Acetaminophen was rapidly absorbed (CMAX=6.74 μg/mL; TMAX=0.85 hr) and eliminated (T½=0.96 hr). In conclusion, the pharmacokinetics of codeine were similar to other opioids in dogs with a short half-life, rapid clearance, large volume of distribution, and poor oral bioavailability. High concentrations of codeine-6-glucuronide were detected after IV and oral administration. PMID:20444020

  5. Pharmacokinetics of acetaminophen, codeine, and the codeine metabolites morphine and codeine-6-glucuronide in healthy Greyhound dogs.

    PubMed

    KuKanich, B

    2010-02-01

    The purpose of this study was to determine the pharmacokinetics of codeine and the active metabolites morphine and codeine-6-glucuronide after i.v. codeine administration and the pharmacokinetics of acetaminophen (APAP), codeine, morphine, and codeine-6-glucuronide after oral administration of combination product containing acetaminophen and codeine to dogs. Six healthy Greyhound dogs were administered 0.734 mg/kg codeine i.v. and acetaminophen (10.46 mg/kg mean dose) with codeine (1.43 mg/kg mean dose) orally. Blood samples were collected at predetermined time points for the determination of codeine, morphine, and codeine-6-glucuronide plasma concentrations by LC/MS and acetaminophen by HPLC with UV detection. Codeine was rapidly eliminated after i.v. administration (T(1/2) = 1.22 h; clearance = 29.94 mL/min/kg; volume of distribution = 3.17 L/kg) with negligible amounts of morphine present, but large amounts of codeine-6-glucuronide (C(max) = 735.75 ng/mL) were detected. The oral bioavailability of codeine was 4%, morphine concentrations were negligible, but large amounts of codeine-6-glucuronide (C(max) = 1952.86 ng/mL) were detected suggesting substantial first pass metabolism. Acetaminophen was rapidly absorbed (C(max) = 6.74 microg/mL; T(max) = 0.85 h) and eliminated (T(1/2) = 0.96 h). In conclusion, the pharmacokinetics of codeine was similar to other opioids in dogs with a short half-life, rapid clearance, large volume of distribution, and poor oral bioavailability. High concentrations of codeine-6-glucuronide were detected after i.v. and oral administration.

  6. Simultaneous LC-MS/MS quantitation of acetaminophen and its glucuronide and sulfate metabolites in human dried blood spot samples collected by subjects in a pilot clinical study.

    PubMed

    Li, Wenkui; Doherty, John P; Kulmatycki, Kenneth; Smith, Harold T; Tse, Francis Ls

    2012-06-01

    In support of a pilot clinical trial using acetaminophen as the model compound to assess dried blood spot (DBS) sampling as the method for clinical pharmacokinetic sample collection, a novel sensitive LC-MS/MS method was developed and validated for the simultaneous determination of acetaminophen and its major metabolites, acetaminophen glucuronide and sulfate, in human DBS samples collected by subjects via fingerprick. The validated assay dynamic range was from 50.0 to 5000 ng/ml for each compound using a 1/8´´ (3-mm) disc punched from a DBS sample. Baseline separation of the three analytes was achieved to eliminate the possible impact of insource fragmentation of the conjugated metabolites on the analysis of the parent. The overall extraction efficiency was from 61.3 to 78.8% for the three analytes by direct extraction using methanol. The validated method was successfully implemented in the pilot clinical study with the obtained pharmacokinetic parameters in agreement with the values reported in literature.

  7. Identification of human UDP-glucuronosyltransferases involved in N-carbamoyl glucuronidation of lorcaserin.

    PubMed

    Sadeque, Abu J M; Usmani, Khawja A; Palamar, Safet; Cerny, Matthew A; Chen, Weichao G

    2012-04-01

    Lorcaserin, a selective serotonin 5-HT(2C) receptor agonist, is a weight management agent in clinical development. Lorcaserin N-carbamoyl glucuronidation governs the predominant excretory pathway of lorcaserin in humans. Human UDP-glucuronosyltransferases (UGTs) responsible for lorcaserin N-carbamoyl glucuronidation are identified herein. Lorcaserin N-carbamoyl glucuronide formation was characterized by the following approaches: metabolic screening using human tissues (liver, kidney, intestine, and lung) and recombinant enzymes, kinetic analyses, and inhibition studies. Whereas microsomes from all human tissues studied herein were found to be catalytically active for lorcaserin N-carbamoyl glucuronidation, liver microsomes were the most efficient. With recombinant UGT enzymes, lorcaserin N-carbamoyl glucuronidation was predominantly catalyzed by three UGT2Bs (UGT2B7, UGT2B15, and UGT2B17), whereas two UGT1As (UGT1A6 and UGT1A9) played a minor role. UGT2B15 was most efficient, with an apparent K(m) value of 51.6 ± 1.9 μM and V(max) value of 237.4 ± 2.8 pmol/mg protein/min. The rank order of catalytic efficiency of human UGT enzymes for lorcaserin N-carbamoyl glucuronidation was UGT2B15 > UGT2B7 > UGT2B17 > UGT1A9 > UGT1A6. Inhibition of lorcaserin N-carbamoyl glucuronidation activities of UGT2B7, UGT2B15, and UGT2B17 in human liver microsomes by mefenamic acid, bisphenol A, and eugenol further substantiated the involvement of these UGT2B isoforms. In conclusion, multiple human UGT enzymes catalyze N-carbamoyl glucuronidation of lorcaserin; therefore, it is unlikely that inhibition of any one of these UGT activities will lead to significant inhibition of the lorcaserin N-carbamoyl glucuronidation pathway. Thus, the potential for drug-drug interaction by concomitant administration of a drug(s) that is metabolized by any of these UGTs is remote.

  8. Overestimation of flavonoid aglycones as a result of the ex vivo deconjugation of glucuronides by the tissue β-glucuronidase.

    PubMed

    Lu, Qing-Yi; Zhang, Lifeng; Eibl, Guido; Go, Vay Liang W

    2014-01-01

    Flavonoid glucuronides are the main circulating metabolites of flavonoids in humans and animals. There has been a growing interest in the biological function of glucuronides. In order to differentiate biological activity and to assess efficacy it is essential to accurately determine the levels of flavonoid aglycone and metabolic conjugate in vivo. Many organs and body fluids of humans and animals exhibit β-glucuronidase against flavonoid glucuronides. Studies have shown that β-glucuronidase within the tissues hydrolyzes glucuronides to their aglycones during the tissue extraction, leading to artificially higher reported tissue levels of aglycone than actual in vivo concentrations. The aims of this study were to estimate the extent by which the aglycones were overestimated and to investigate the use of saccharo-1,4-lactone, a β-glucuronidase inhibitor, to block the ex vivo hydrolysis of flavonoid glucuronides. Our data demonstrate that in mouse liver tissues and human tumor xenografts levels of quercetin and methylated quercetin aglycones could be over-estimated by 7-fold. The inhibition of deconjugation of quercetin and baicalein glucuronides by saccharo-1,4-lactone is dose-dependent. The amount of saccharo-1,4-lactone used to produce optimal inhibition of the enzyme activity is in the range of 15-24μmol per gram of liver tissue. The use of β-glucuronidase inhibitor blocks the ex vivo deconjugation resulting in an accurate estimation of tissue levels of aglycone and conjugate. Our study described here can be extended to other animal models and human studies with different types of substrates of β-glucuronidase. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Profiling and Distribution of Metabolites of Procyanidin B2 in Mice by UPLC-DAD-ESI-IT-TOF-MSn Technique

    PubMed Central

    Xiao, Ying; Hu, Zhongzhi; Yin, Zhiting; Zhou, Yiming; Liu, Taiyi; Zhou, Xiaoli; Chang, Dawei

    2017-01-01

    The metabolite profiles and distributions of procyanidin B2 were qualitatively described using UPLC-DAD-ESI-IT-TOF-MSn without help of reference standards, and a possible metabolic pathway was proposed in the present study. Summarily, 53 metabolites (24 new metabolites) were detected as metabolites of procyanidin B2, and 45 of them were tentatively identified. Twenty seven metabolites were assigned as similar metabolites of (−)-epicatechin by scission of the flavanol interflavanic bond C4–C8, including 16 aromatic metabolites, 5 conjugated metabolites, 3 ring-cleavage metabolites, and 2 phenylvalerolactone metabolites. Additionally, 14 metabolites were conjugates of free procyanidin B2, comprising 9 methylation metabolites, 8 sulfation metabolites, 5 hydration metabolites, 2 hydroxylation metabolites, 1 hydrogenation metabolites, and 1 glucuronidation metabolites. The results of metabolite distributions in organs indicated that the conjugated reaction of free procyanidin B2 mainly occurred in liver and diversified metabolites forms were observed in small intestine. The metabolic components of procyanidin B2 identified in mice provided useful information for further study of the bioactivity and mechanism of its action. PMID:28522973

  10. Isolation, purification, and structural characterization of flunixin glucuronide in the urine of greyhound dogs.

    PubMed

    Brady, T C; Kind, A J; Hyde, W H; Favrow, M; Hill, D W

    1998-04-01

    A urinary metabolite of flunixin in greyhound dogs was isolated and purified by a gradient-elution solid-phase extraction technique. The purified metabolite was shown to be hydrolyzed to free flunixin by strong base and by beta-glucuronidase, suggesting the presence of a C1-beta-glucuronide ester of flunixin. The metabolite was further characterized by positive-ion, tandem MS with electrospray ionization. Mass spectral data showed the presence of a protonated molecular ion (M+1) at m/z 473, which was consistent with the molecular weight of protonated flunixin glucuronide, and a product ion at m/z 297, which was consistent with the molecular weight of protonated flunixin. Collisionally induced dissociation of the m/z 297 product ion showed a fragmentation pattern consistent with that of standard flunixin. These data support the contention that this metabolite of flunixin in greyhound urine is the C1-beta-glucuronide of flunixin. Acyl glucuronide metabolites of some organic acid drugs have been shown to bind covalently to tissue proteins in vitro, in vivo, and ex vivo. The presence of this metabolite may, therefore, have pharmacokinetic and pharmacodynamic implications for flunixin in greyhound dogs, as well as in other animal species in which the acyl glucuronide of flunixin is a metabolite.

  11. Studies to further investigate the inhibition of human liver microsomal CYP2C8 by the acyl-β-glucuronide of gemfibrozil.

    PubMed

    Jenkins, S M; Zvyaga, T; Johnson, S R; Hurley, J; Wagner, A; Burrell, R; Turley, W; Leet, J E; Philip, T; Rodrigues, A D

    2011-12-01

    In previous studies, gemfibrozil acyl-β-glucuronide, but not gemfibrozil, was found to be a mechanism-based inhibitor of cytochrome P450 2C8. To better understand whether this inhibition is specific for gemfibrozil acyl-β-glucuronide or whether other glucuronide conjugates are potential substrates for inhibition of this enzyme, we evaluated several pharmaceutical compounds (as their acyl glucuronides) as direct-acting and metabolism-dependent inhibitors of CYP2C8 in human liver microsomes. Of 11 compounds that were evaluated as their acyl glucuronide conjugates, only gemfibrozil acyl-β-glucuronide exhibited mechanism-based inhibition, indicating that CYP2C8 mechanism-based inhibition is very specific to certain glucuronide conjugates. Structural analogs of gemfibrozil were synthesized, and their glucuronide conjugates were prepared to further examine the mechanism of inhibition. When the aromatic methyl groups on the gemfibrozil moiety were substituted with trifluoromethyls, the resulting glucuronide conjugate was a weaker inhibitor of CYP2C8 and mechanism-based inhibition was abolished. However, the glucuronide conjugates of monomethyl gemfibrozil analogs were mechanism-based inhibitors of CYP2C8, although not as potent as gemfibrozil acyl-β-glucuronide itself. The ortho-monomethyl analog was a more potent inhibitor than the meta-monomethyl analog, indicating that CYP2C8 favors the ortho position for oxidation and potential inhibition. Molecular modeling of gemfibrozil acyl-β-glucuronide in the CYP2C8 active site is consistent with the ortho-methyl position being the favored site of covalent attachment to the heme. Moreover, hydrogen bonding to four residues (Ser100, Ser103, Gln214, and Asn217) is implicated.

  12. Methylation, Glucuronidation, and Sulfonation of Daphnetin in Human Hepatic Preparations In Vitro: Metabolic Profiling, Pathway Comparison, and Bioactivity Analysis.

    PubMed

    Liang, Si-Cheng; Xia, Yang-Liu; Hou, Jie; Ge, Guang-Bo; Zhang, Jiang-Wei; He, Yu-Qi; Wang, Jia-Yue; Qi, Xiao-Yi; Yang, Ling

    2016-02-01

    Our previous study demonstrated that daphnetin is subject to glucuronidation in vitro. However, daphnetin metabolism is still poorly documented. This study aimed to investigate daphnetin metabolism and its consequent effect on the bioactivity. Metabolic profiles obtained by human liver S9 fractions and human hepatocytes showed that daphnetin was metabolized by glucuronidation, sulfonation, and methylation to form 6 conjugates which were synthesized and identified as 7-O-glucuronide, 8-O-glucuronide, 7-O-sulfate and 8-O-sulfate, 8-O-methylate, and 7-O-suflo-8-O-methylate. Regioselective 8-O-methylation of daphnetin was investigated using in silico docking calculations, and the results suggested that a close proximity (2.03 Å) of 8-OH to the critical residue Lysine 144 might be the responsible mechanism. Compared with glucuronidation and sulfonation pathways, the methylation of daphnetin had a high clearance rate (470 μL/min/mg) in human liver S9 fractions and contributed to a large amount (37.3%) of the methyl-derived metabolites in human hepatocyte. Reaction phenotyping studies showed the major role of SULT1A1, -1A2, and -1A3 in daphnetin sulfonation, and soluble COMT in daphnetin 8-O-methylation. Of the metabolites, only 8-O-methyldaphnetin exhibited an inhibitory activity on lymphocyte proliferation comparable to that of daphnetin. In conclusion, methylation is a crucial pathway for daphnetin clearance and might be involved in pharmacologic actions of daphnetin in humans. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Identification of the urinary metabolites of 4-bromoaniline and 4-bromo-[carbonyl-13C]-acetanilide in rat.

    PubMed

    Scarfe, G B; Nicholson, J K; Lindon, J C; Wilson, I D; Taylor, S; Clayton, E; Wright, B

    2002-04-01

    1. The urinary excretion of 4-bromoaniline and its [carbonyl-(13)C]-labelled N-acetanilide, together with their corresponding metabolites, have been investigated in the rat following i.p. administration at 50 mg kg(-1). 2. Metabolite profiling was performed by reversed-phase HPLC with UV detection, whilst identification was performed using a combination of enzymic hydrolysis and directly coupled HPLC-NMR-MS analysis. The urinary metabolite profile was quantitatively and qualitatively similar for both compounds with little of either excreted unchanged. 3. The major metabolite present in urine was 2-amino-5-bromophenylsulphate, but, in addition, a number of metabolites with modification of the N-acetyl moiety were identified (from both the [(13)C]-acetanilide or produced following acetylation of the free bromoaniline). 4. For 4-bromoacetanilide, N-deacetylation was a major route of metabolism, but despite the detection of the acetanilide following the administration of the free aniline, there was no evidence of reacetylation (futile deacetylation). 5. Metabolites resulting from the oxidation of the acetyl group included a novel glucuronide of an N-glycolanilide, an unusual N-oxanilic acid and a novel N-acetyl cysteine conjugate.

  14. Metabolite profiling of carbamazepine and ibuprofen in Solea senegalensis bile using high-resolution mass spectrometry.

    PubMed

    Aceña, Jaume; Pérez, Sandra; Eichhorn, Peter; Solé, Montserrat; Barceló, Damià

    2017-09-01

    The widespread occurrence of pharmaceuticals in the aquatic environment has raised concerns about potential adverse effects on exposed wildlife. Very little is currently known on exposure levels and clearance mechanisms of drugs in marine fish. Within this context, our research was focused on the identification of main metabolic reactions, generated metabolites, and caused effects after exposure of fish to carbamazepine (CBZ) and ibuprofen (IBU). To this end, juveniles of Solea senegalensis acclimated to two temperature regimes of 15 and 20 °C for 60 days received a single intraperitoneal dose of these drugs. A control group was administered the vehicle (sunflower oil). Bile samples were analyzed by ultra-high-performance liquid chromatography-high-resolution mass spectrometry on a Q Exactive (Orbitrap) system, allowing to propose plausible identities for 11 metabolites of CBZ and 13 metabolites of IBU in fish bile. In case of CBZ metabolites originated from aromatic and benzylic hydroxylation, epoxidation, and ensuing O-glucuronidation, O-methylation of a catechol-like metabolite was also postulated. Ibuprofen, in turn, formed multiple hydroxyl metabolites, O-glucuronides, and (hydroxyl)-acyl glucuronides, in addition to several taurine conjugates. Enzymatic responses after drug exposures revealed a water temperature-dependent induction of microsomal carboxylesterases. The metabolite profiling in fish bile provides an important tool for pharmaceutical exposure assessment. Graphical abstract Studies of metabolism of carbamazepine and ibuprofen in fish.

  15. Resveratrol-3-O-glucuronide and resveratrol-4'-O-glucuronide reduce DNA strand breakage but not apoptosis in Jurkat T cells treated with camptothecin.

    PubMed

    Zunino, Susan J; Storms, David H

    2017-08-01

    Resveratrol has been reported to inhibit or induce DNA damage, depending upon the type of cell and the experimental conditions. Dietary resveratrol is present in the body predominantly as metabolites and limited data is available concerning the activities of these metabolic products. In the present study, physiologically obtainable levels of the resveratrol metabolites resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide and resveratrol-3-O-sulfate were evaluated for their ability to protect Jurkat T cells against DNA damage induced by the topoisomerase I inhibitors camptothecin and topotecan. The cells were pretreated for 24 h with 10 µM resveratrol aglycone or each resveratrol metabolite prior to the induction of DNA damage with camptothecin or topotecan. In separate experiments, the cells were co-treated with resveratrol or its metabolites, and a topoisomerase I inhibitor. The detection of histone 2AX phosphorylation and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) were used to determine DNA damage, and apoptosis was measured using an antibody against cleaved poly ADP-ribose polymerase. It was identified that pretreatment of the cells with resveratrol-3-O-glucuronide and resveratrol-4'-O-glucuronide reduced the mean fluorescence intensity of staining for DNA strand breaks following treatment with camptothecin, while the percentage of cells undergoing apoptosis was unchanged. However, pretreatment of the cells with resveratrol aglycone increased the DNA damage and apoptosis induced by the drugs. These results suggest that the glucuronide metabolites of resveratrol partially protected the cells from DNA damage, but did not influence the induction of cell death by camptothecin and topotecan. These data suggest that resveratrol aglycone treatment may be beneficial for treating types of cancer that have direct contact with resveratrol prior to its metabolism, including gastrointestinal cancers, which are routinely treated with

  16. Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms.

    PubMed

    Brill, Shirley S; Furimsky, Anna M; Ho, Mark N; Furniss, Michael J; Li, Yi; Green, Adam G; Bradford, Wallace W; Green, Carol E; Kapetanovic, Izet M; Iyer, Lalitha V

    2006-04-01

    Resveratrol (trans-resveratrol, trans-3,5,4'-trihydroxystilbene) is a naturally occurring stilbene analogue found in high concentrations in red wine. There is considerable research interest to determine the therapeutic potential of resveratrol, as it has been shown to have tumour inhibitory and antioxidant properties. This study was performed to investigate the glucuronidation of resveratrol and possible drug interactions via glucuronidation. Two glucuronide conjugates, resveratrol 3-O-glucuronide and resveratrol 4'-O-glucuronide, were formed by human liver and intestinal microsomes. UGT1A1 and UGT1A9 were predominantly responsible for the formation of the 3-O-glucuronide (Km = 149 microM) and 4'-O-glucuronide (Km = 365 microM), respectively. The glucuronide conjugates were formed at higher levels (up to 10-fold) by intestinal rather than liver microsomes. Resveratrol was co-incubated with substrates of UGT1A1 (bilirubin and 7-ethyl-10-hydroxycamptothecin (SN-38)) and UGT1A9 (7-hydroxytrifluoromethyl coumarin (7-HFC)). No major changes were noted in bilirubin glucuronidation in the presence of resveratrol. Resveratrol significantly inhibited the glucuronidation of SN-38 (Ki = 6.2 +/- 2.1 microM) and 7-HFC (Ki = 0.6 +/- 0.2 microM). Hence, resveratrol has the potential to inhibit the glucuronidation of concomitantly administered therapeutic drugs or dietary components that are substrates of UGT1A1 and UGT1A9.

  17. Detection of Baicalin Metabolites Baicalein and Oroxylin-A in Mouse Pancreas and Pancreatic Xenografts

    PubMed Central

    Lu, Qing-Yi; Zhang, Lifeng; Moro, Aune; Chen, Monica C.; Harris, Diane M.; Eibl, Guido; Go, Vay-Liang W.

    2011-01-01

    Objectives Scutellaria baicalensis has been a subject of research interests due to its potential multiple therapeutic benefits. This study was to examine the distribution of baicalein, wogonin, oroxylin A and their glucuronide/sulfate conjugated metabolites in plasma, colon, small intestine, lung, liver, pancreas, kidney, and prostate tissues and in pancreatic tumor in a xenograft animal model. In addition, we examined metabolic stability of baicalin in these tissues. Methods A mouse xenograft model was prepared by injection of 3×106 human pancreatic cancer MiaPaCa-2 cells subcutaneously into nude mice. Mice were randomly allocated to control diet (AIN76A) and 1% SB diet (n=8 per group) for 13 weeks. Levels of baicalein, wogonin, oroxylin A, and their conjugates in mouce tissues were measured by high-pressure liquid chromatography following enzymatic hydrolysis and then extraction. Results A substantial amount of baicalin (34–63%) was methylated to oroxylin A and its conjugates in various organs during absorption. While plasma contained predominantly conjugates of baicalein, wogonin, and oroxylin A, both aglycones and conjugates were found in all other tissues investigated and in tumor. Conclusions Substantial accumulation of bioactive metabolites are found in target tissues, suggesting strong potential for SB use as a preventive or adjuvant supplement for pancreatic cancer. PMID:22158070

  18. Pharmacokinetics of dextromethorphan and its metabolites in horses following a single oral administration.

    PubMed

    Corado, Carley R; McKemie, Daniel S; Knych, Heather K

    2017-06-01

    Dextromethorphan is an N-methyl-D-aspartate (NMDA) non-competitive antagonist commonly used in human medicine as an antitussive. Dextromethorphan is metabolized in humans by cytochrome P450 2D6 into dextrorphan, which is reported to be more potent than the parent compound. The goal of this study is to describe the metabolism of and determine the pharmacokinetics of dextromethorphan and its major metabolites following oral administration to horses. A total of 23 horses received a single oral dose of 2 mg/kg. Blood samples were collected at time 0 and at various times up to 96 h post drug administration. Urine samples were collected from 12 horses up to 120 h post administration. Plasma and urine samples were analyzed using liquid chromatography-mass spectrometry, and the resulting data analyzed using non-compartmental analysis. The C max , T max , and the t 1/2 of dextromethorphan were 519.4 ng/mL, 0.55 h, and 12.4 h respectively. The area under the curve of dextromethorphan, free dextrorphan, and conjugated dextrorphan were 563.8, 2.19, and 6,691 h*ng/mL respectively. In addition to free and glucuronidated dextrorphan, several additional glucuronide metabolites were identified in plasma, including hydroxyl-desmethyl dextrorphan, desmethyl dextrorphan, and three forms of hydroxylated dextrorphan. Dextromethorphan was found to be eliminated from the urine predominately as the O-demethylated metabolite, dextrorphan. Several additional metabolites including several novel hydroxy-dextrorphan metabolites were also detected in the urine in both free and glucuronidated forms. No significant undesirable behavioural effects were noted throughout the duration of the study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Urinary Excretion of Buprenorphine, Norbuprenorphine, Buprenorphine-Glucuronide, and Norbuprenorphine-Glucuronide in Pregnant Women Receiving Buprenorphine Maintenance Treatment

    PubMed Central

    Kacinko, Sherri L.; Jones, Hendree E.; Johnson, Rolley E.; Choo, Robin E.; Concheiro-Guisan, Marta; Huestis, Marilyn A.

    2011-01-01

    BACKGROUND Buprenorphine (BUP) is under investigation as a medication therapy for opioid-dependent pregnant women. We investigated BUP and metabolite disposition in urine from women maintained on BUP during the second and third trimesters of pregnancy and postpartum. METHODS We measured BUP, norbuprenorphine (NBUP), buprenorphine glucuronide (BUP-Gluc), and NBUP-Gluc concentrations in 515 urine specimens collected thrice weekly from 9 women during pregnancy and postpartum. Specimens were analyzed using a fully validated liquid chromatography-mass spectrometry method with limits of quantification of 5 µg/L for BUP and BUP-Gluc and 25 µg/L for NBUP and its conjugated metabolite. We examined ratios of metabolites across trimesters and postpartum to identify possible changes in metabolism during pregnancy. RESULTS NBUP-Gluc was the primary metabolite identified in urine and exceeded BUP-Gluc concentrations in 99% of specimens. Whereas BUP-Gluc was identified in more specimens than NBUP, NBUP exceeded BUP-Gluc concentrations in 77.9% of specimens that contained both analytes. Among all participants, the mean BUP-Gluc:NBUP-Gluc ratio was significantly higher in the second trimester compared to the third trimester, and there were significant intrasubject differences between trimesters in 71% of participants. In 3 women, the percent daily dose excreted was higher during pregnancy than postpregnancy, consistent with other data indicating increased renal elimination of drugs during pregnancy. CONCLUSIONS These data are the first to evaluate urinary disposition of BUP and metabolites in a cohort of pregnant women. Variable BUP excretion during pregnancy may indicate metabolic changes requiring dose adjustment during later stages of gestation. PMID:19325013

  20. Resveratrol-3-O-glucuronide and resveratrol-4′-O-glucuronide reduce DNA strand breakage but not apoptosis in Jurkat T cells treated with camptothecin

    PubMed Central

    Zunino, Susan J.; Storms, David H.

    2017-01-01

    Resveratrol has been reported to inhibit or induce DNA damage, depending upon the type of cell and the experimental conditions. Dietary resveratrol is present in the body predominantly as metabolites and limited data is available concerning the activities of these metabolic products. In the present study, physiologically obtainable levels of the resveratrol metabolites resveratrol-3-O-glucuronide, resveratrol-4′-O-glucuronide and resveratrol-3-O-sulfate were evaluated for their ability to protect Jurkat T cells against DNA damage induced by the topoisomerase I inhibitors camptothecin and topotecan. The cells were pretreated for 24 h with 10 µM resveratrol aglycone or each resveratrol metabolite prior to the induction of DNA damage with camptothecin or topotecan. In separate experiments, the cells were co-treated with resveratrol or its metabolites, and a topoisomerase I inhibitor. The detection of histone 2AX phosphorylation and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) were used to determine DNA damage, and apoptosis was measured using an antibody against cleaved poly ADP-ribose polymerase. It was identified that pretreatment of the cells with resveratrol-3-O-glucuronide and resveratrol-4′-O-glucuronide reduced the mean fluorescence intensity of staining for DNA strand breaks following treatment with camptothecin, while the percentage of cells undergoing apoptosis was unchanged. However, pretreatment of the cells with resveratrol aglycone increased the DNA damage and apoptosis induced by the drugs. These results suggest that the glucuronide metabolites of resveratrol partially protected the cells from DNA damage, but did not influence the induction of cell death by camptothecin and topotecan. These data suggest that resveratrol aglycone treatment may be beneficial for treating types of cancer that have direct contact with resveratrol prior to its metabolism, including gastrointestinal cancers, which are routinely treated with

  1. Measurement of glucuronidation by isolated rat liver cells using [14C]fructose.

    PubMed

    Dawson, J; Knowles, R G; Pogson, C I

    1992-03-03

    We have developed a simple and sensitive method for the study of the relative rates of glucuronidation of compounds, in isolated liver cells, based on the incorporation of 14C from fructose into glucuronide conjugates. Liver cells from fasted rats are used to minimize any reduction of the specific activity by glycogenolysis. Although rates of glucuronidation are lower in isolated liver cells from fasted rats than in those from fed rats, because of a reduction in the concentration of UDP-glucuronic acid, it is possible to compare the rates of glucuronidation of different compounds. Radiolabelled glucuronides are separated from [14C]fructose and [14C]glucose, produced by the liver cells, by normal-phase HPLC on a polar amino-cyano column. The specific activity of the glucuronide was found to be approximately 50% of that of the [14C]fructose. Absolute amounts of glucuronide can be determined by measuring the specific activity of the [14C]glucose, also produced by liver cells from fructose, which reflects that of the glucose-6-phosphate and hence the UDP-glucuronic acid used for glucuronidation, although for the measurement of relative rates this would not be necessary. We have used this method to examine the kinetics of the glucuronidation of N-acetyl-p-aminophenol (acetaminophen), 4-nitrophenol and 1-naphthol in isolated rat liver cells. The method should be applicable to the study of the rates of glucuronidation of a range of aglycones and, unlike other methods, does not require glucuronide standards or radiolabelled aglycone.

  2. Bioavailability of Bergamot (Citrus bergamia) Flavanones and Biological Activity of Their Circulating Metabolites in Human Pro-Angiogenic Cells

    PubMed Central

    Spigoni, Valentina; Fantuzzi, Federica; Tassotti, Michele; Brighenti, Furio; Bonadonna, Riccardo C.; Dei Cas, Alessandra

    2017-01-01

    Myeloid angiogenic cells (MACs) play a key role in endothelial repairing processes and functionality but their activity may be impaired by the lipotoxic effects of some molecules like stearic acid (SA). Among the dietary components potentially able to modulate endothelial function in vivo, (poly)phenolic compounds represent serious candidates. Here, we apply a comprehensive multidisciplinary approach to shed light on the prospects of Bergamot (Citrus bergamia), a citrus fruit rich in flavanones and other phenolic compounds, in the framework of lipotoxicity-induced MACs impairment. The flavanone profile of bergamot juice was characterized and 16 compounds were identified, with a new 3-hydroxy-3-methylglutaryl (HMG) flavanone, isosakuranetin-7-O-neohesperidoside-6″-O-HMG, described for the first time. Then, a pilot bioavailability study was conducted in healthy volunteers to assess the circulating flavanone metabolites in plasma and urine after consumption of bergamot juice. Up to 12 flavanone phase II conjugates (sulfates and glucuronides of hesperetin, naringenin and eriodyctiol) were detected and quantified. Finally, the effect of some of the metabolites identified in vivo, namely hesperetin-7-O-glucuronide, hesperetin-3′-O-glucuronide, naringenin-7-O-glucuronide and naringenin-4′-O-glucuronide, was tested, at physiological concentrations, on gene expression of inflammatory markers and apoptosis in MACs exposed to SA. Under these conditions, naringenin-4′-O-glucuronide and hesperetin-7-O-glucuronide were able to modulate inflammation, while no flavanone glucuronide was effective in curbing stearate-induced lipoapoptosis. These results demonstrate that some flavanone metabolites, derived from the in vivo transformation of bergamot juice phenolics in humans, may mitigate stearate-induced inflammation in MACs. PMID:29211032

  3. Bioavailability of Bergamot (Citrus bergamia) Flavanones and Biological Activity of Their Circulating Metabolites in Human Pro-Angiogenic Cells.

    PubMed

    Spigoni, Valentina; Mena, Pedro; Fantuzzi, Federica; Tassotti, Michele; Brighenti, Furio; Bonadonna, Riccardo C; Del Rio, Daniele; Dei Cas, Alessandra

    2017-12-06

    Myeloid angiogenic cells (MACs) play a key role in endothelial repairing processes and functionality but their activity may be impaired by the lipotoxic effects of some molecules like stearic acid (SA). Among the dietary components potentially able to modulate endothelial function in vivo, (poly)phenolic compounds represent serious candidates. Here, we apply a comprehensive multidisciplinary approach to shed light on the prospects of Bergamot ( Citrus bergamia ), a citrus fruit rich in flavanones and other phenolic compounds, in the framework of lipotoxicity-induced MACs impairment. The flavanone profile of bergamot juice was characterized and 16 compounds were identified, with a new 3-hydroxy-3-methylglutaryl (HMG) flavanone, isosakuranetin-7- O -neohesperidoside-6″- O -HMG, described for the first time. Then, a pilot bioavailability study was conducted in healthy volunteers to assess the circulating flavanone metabolites in plasma and urine after consumption of bergamot juice. Up to 12 flavanone phase II conjugates (sulfates and glucuronides of hesperetin, naringenin and eriodyctiol) were detected and quantified. Finally, the effect of some of the metabolites identified in vivo, namely hesperetin-7- O -glucuronide, hesperetin-3'- O -glucuronide, naringenin-7- O -glucuronide and naringenin-4'- O -glucuronide, was tested, at physiological concentrations, on gene expression of inflammatory markers and apoptosis in MACs exposed to SA. Under these conditions, naringenin-4'- O -glucuronide and hesperetin-7- O -glucuronide were able to modulate inflammation, while no flavanone glucuronide was effective in curbing stearate-induced lipoapoptosis. These results demonstrate that some flavanone metabolites, derived from the in vivo transformation of bergamot juice phenolics in humans, may mitigate stearate-induced inflammation in MACs.

  4. Urinary Elimination of Bile Acid Glucuronides under Severe Cholestatic Situations: Contribution of Hepatic and Renal Glucuronidation Reactions.

    PubMed

    Perreault, Martin; Wunsch, Ewa; Białek, Andrzej; Trottier, Jocelyn; Verreault, Mélanie; Caron, Patrick; Poirier, Guy G; Milkiewicz, Piotr; Barbier, Olivier

    2018-01-01

    Biliary obstruction, a severe cholestatic complication, causes accumulation of toxic bile acids (BAs) in liver cells. Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes, detoxifies cholestatic BAs. Using liquid chromatography coupled to tandem mass spectrometry, 11 BA glucuronide (-G) species were quantified in prebiliary and postbiliary stenting serum and urine samples from 17 patients with biliary obstruction. Stenting caused glucuronide- and fluid-specific changes in BA-G levels and BA-G/BA metabolic ratios. In vitro glucuronidation assays with human liver and kidney microsomes revealed that even if renal enzymes generally displayed lower K M values, the two tissues shared similar glucuronidation capacities for BAs. By contrast, major differences between the two tissues were observed when four human BA-conjugating UGTs 1A3, 1A4, 2B4, and 2B7 were analyzed for mRNA and protein levels. Notably, the BA-24G producing UGT1A3 enzyme, abundant in the liver, was not detected in kidney microsomes. In conclusion, the circulating and urinary BA-G profiles are hugely impacted under severe cholestasis. The similar BA-glucuronidating abilities of hepatic and renal extracts suggest that both the liver and kidney may contribute to the urine BA-G pool.

  5. Urinary Elimination of Bile Acid Glucuronides under Severe Cholestatic Situations: Contribution of Hepatic and Renal Glucuronidation Reactions

    PubMed Central

    Perreault, Martin; Białek, Andrzej; Trottier, Jocelyn; Verreault, Mélanie; Caron, Patrick; Poirier, Guy G.

    2018-01-01

    Biliary obstruction, a severe cholestatic complication, causes accumulation of toxic bile acids (BAs) in liver cells. Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes, detoxifies cholestatic BAs. Using liquid chromatography coupled to tandem mass spectrometry, 11 BA glucuronide (-G) species were quantified in prebiliary and postbiliary stenting serum and urine samples from 17 patients with biliary obstruction. Stenting caused glucuronide- and fluid-specific changes in BA-G levels and BA-G/BA metabolic ratios. In vitro glucuronidation assays with human liver and kidney microsomes revealed that even if renal enzymes generally displayed lower KM values, the two tissues shared similar glucuronidation capacities for BAs. By contrast, major differences between the two tissues were observed when four human BA-conjugating UGTs 1A3, 1A4, 2B4, and 2B7 were analyzed for mRNA and protein levels. Notably, the BA-24G producing UGT1A3 enzyme, abundant in the liver, was not detected in kidney microsomes. In conclusion, the circulating and urinary BA-G profiles are hugely impacted under severe cholestasis. The similar BA-glucuronidating abilities of hepatic and renal extracts suggest that both the liver and kidney may contribute to the urine BA-G pool. PMID:29850459

  6. Comparative Metabolism of Batracylin (NSC 320846) and N-acetylbatracylin (NSC 611001) Using Human, Dog, and Rat Preparations In Vitro

    PubMed Central

    Covey, Joseph M; Reid, Joel M; Buhrow, Sarah A; Kuffel, Mary; Walden, Chad; Behrsing, Holger; Ames, Matthew M

    2016-01-01

    Background Batracylin is a heterocyclic arylamine topoisomerase inhibitor with preclinical anticancer activity. Marked species differences in sensitivity to the toxicity of batracylin were observed and attributed to differential formation of N-acetylbatracylin by N-acetyltransferase. A Phase I trial of batracylin in cancer patients with slow acetylator genotypes identified a dose-limiting toxicity of hemorrhagic cystitis. To further explore the metabolism of batracylin and N-acetylbatracylin across species, detailed studies using human, rat, and dog liver microsomal and hepatocyte preparations were conducted. Methods Batracylin or N-acetylbatracylin was incubated with microsomes and hepatocytes from human, rat, and dog liver and with CYP-expressing human and rat microsomes. Substrates and metabolites were analyzed by HPLC with diode array, fluorescence, radiochemical, or mass spectrometric detection. Covalent binding of radiolabeled batracylin and N-acetylbatracylin to protein and DNA was measured in 3-methylcholanthrene-induced rat, human, and dog liver microsomes, and with recombinant human cytochromes P450. Results In microsomal preparations, loss of batracylin was accompanied by formation of one hydroxylated metabolite in human liver microsomes and five hydroxylated metabolites in rat liver microsomes. Six mono- or di-hydroxy-N-acetylbatracylin metabolites were found in incubations of this compound with 3MC rat liver microsomes. Hydroxylation sites were identified for some of the metabolites using deuterated substrates. Incubation with recombinant cytochromes P450 identified rCYP1A1, rCYP1A2, hCYP1A1 and hCYP1B1 as the major CYP isoforms that metabolize batracylin and N-acetylbatracylin. Glucuronide conjugates of batracylin were also identified in hepatocyte incubations. NADPH-dependent covalent binding to protein and DNA was detected in all batracylin and most N-acetylbatracylin preparations evaluated. Conclusions Microsomal metabolism of batracylin and N

  7. Urinary pregnandiol-3-glucuronide and estrone conjugates to creatinine ratios in early pregnancies complicated by vaginal bleeding.

    PubMed

    Davidson, B J

    1986-10-01

    There is no simple and rapid test available to predict the outcome of an early pregnancy complicated by vaginal bleeding. In this prospective study, 15 women with normal pregnancies collected a weekly urine sample between 6 and 13 weeks' gestation. A single random urine sample was obtained from 15 women with bleeding who continued to carry their child and 50 women who proceeded to have a spontaneous abortion (SAB). Pregnandiol-3-glucuronide (PDG) was determined with the use of enzyme-multiplied immunoassay technique (EMIT) and estrone conjugates (E1C) were measured by radioimmunoassay (RIA). The ratios of these metabolites to creatinine (C) were calculated. PDG/C ratios in normal women rose gradually from 6 weeks on. All women with bleeding during a normal pregnancy had ratios in the normal range, but 94% of women with a SAB had ratios below the normal range. The E1C/C ratio remained unchanged from 6 to 11 weeks and then rose rapidly. Until 11 weeks, there was no clear separation between the E1C/C ratios of the women with a SAB and the women with bleeding who continued their pregnancies. The prognosis of threatened abortion can be made by a urinary PDG/C ratio but not by an E1C/C ratio. EMIT is simple and quick and uses technology present in many laboratories.

  8. Phenolic metabolites of grape antioxidant dietary fiber in rat urine.

    PubMed

    Touriño, Sonia; Fuguet, Elisabet; Vinardell, María Pilar; Cascante, Marta; Torres, Josep Lluís

    2009-12-09

    Grape antioxidant dietary fiber (GADF) combines the putative health benefits of fiber and polyphenols. Polyphenolic metabolites may play a key role in the overall biological effects of this supplement. We identified phenolic GADF metabolites in rat urine at different times after oral administration, using HPLC-ESI-MS/MS techniques. The phenolic metabolic outcome of GADF is essentially an array of mono- and polyconjugated epicatechins and free or conjugated smaller phenolic acids, some of them never reported before. We have detected 18 mono-, di-, and triconjugates of epicatechin with glucuronide, methyl and sulfate moieties and small phenolic acids both free and conjugated. The results suggest that the procyanidin oligomers are both depolymerized in the digestive tract into epicatechin conjugates and degraded by the colonic microbiota into phenolic acids and their conjugates. For several hours after ingestion of GADF, a great variety of phenolic species, including some with an intact catechol group, are in contact with the digestive tract tissues before, during and after metabolization, and many of them are systemically bioavailable before being excreted.

  9. Use of liquid chromatography hybrid triple-quadrupole mass spectrometry for the detection of emodin metabolites in rat bile and urine.

    PubMed

    Wu, Songyan; Zhang, Yaqing; Zhang, Zunjian; Song, Rui

    2017-10-01

    Emodin is the representative form of rhubarb, which is widely used in traditional Chinese medicine for the treatment of purgative, anti-inflammatory, antioxidative and antiviral, etc. Previous reports demonstrated that emodin glucuronide was the major metabolite in plasma. Owing to the extensive conjugation reactions of polyphenols, the aim of this study was to identify the metabolites of emodin in rat bile and urine. Neutral loss and precursor ion scan methods of triple-quadrupole mass spectrometer revealed 13 conjugated metabolites in rat bile and 22 metabolites in rat urine, which included four phase I and 18 phase II metabolites. The major metabolites in rat biosamples were emodin glucuronoconjugates. Moreover, rhein monoglucuronide, chrysophanol monoglucuronide and rhein sulfate were proposed for the first time after oral administration of emodin. Overall, liquid chromatography hybrid triple-quadrupole mass spectrometry analysis leads to the discovery of several novel emodin metabolites in rat bile and urine and underscores that conjugated with glucuronic acid is the main metabolic pathway. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Disposition of Naringenin via Glucuronidation Pathway Is Affected by Compensating Efflux Transporters of Hydrophilic Glucuronides

    PubMed Central

    Xu, Haiyan; Kulkarni, Kaustubh H.; Singh, Rashim; Yang, Zhen; Wang, Stephen W.J.; Tam, Vincent H.; Hu, Ming

    2010-01-01

    The purposes of this study were to investigate how efflux transporters and UDP-glucuronosyltransferases (UGT) affect the disposition of naringenin. A rat intestinal perfusion model with bile duct cannulation was used along with rat intestinal and liver microsomes. In the intestinal perfusion model, both absorption and subsequent excretion of naringenin metabolites were rapid and site-dependent (p < 0.05). Naringenin was absorbed the most in colon and its glucuronides were excreted the most in duodenum. In metabolism studies, the intrinsic clearance value of naringenin glucuronidation was the highest in jejunum microsomes, followed by liver, ileal and colonic microsomes. The rapid metabolism in microsomes did not always translate into more efficient excretion in the rat perfusion model, however, because of presence of rate-limiting efflux transporters. When used separately, MK-571 (an inhibitor of multidrug resistance-related protein 2 or Mrp2) or dipyridamole (an inhibitor of breast cancer resistance protein or Bcrp1) did not affect excretion of naringenin glucuronides, but when used together, they significantly (p < 0.05) decreased intestinal and biliary excretion of naringenin glucuronides. In conclusion, efflux transporters Mrp2 and Bcrp1 are shown to compensate for each other and enable the intestinal excretion of flavonoid (i.e., naringenin) glucuronides. PMID:19736994

  11. Estimation of phenolic conjugation by colonic mucosa.

    PubMed Central

    Ramakrishna, B S; Gee, D; Weiss, A; Pannall, P; Roberts-Thomson, I C; Roediger, W E

    1989-01-01

    Conjugation of phenol by the colonic mucosa was assessed in vivo using dialysis tubing containing 1.5 ml of 1 mmol/l acetaminophen (paracetamol) and 10 mmol/l butyrate. These were allowed to equilibrate in the rectum for one hour. The glucuronidated and sulphated conjugates of acetaminophen were measured by high pressure liquid chromatography and bicarbonate concentrations by gas analysis. In 21 subjects without colonic disease sulphate conjugation was observed in all cases, with a mean (SE) of 3.86 (0.66) nmol/hour, while glucuronide conjugation was found in seven of 21 cases. Mean (SE) bicarbonate output of 42.9 (3.9) mumol/hour (n = 21) indicated healthy colonic mucosal metabolism and phenolic sulphation in dialysate and agreed with published sulphation rates obtained with cultured cells of colonic epithelium. Acetaminophen sulphation suggests that the colonic mucosa has an important role in the conjugation of phenols, and the method reported here would be useful in assessing the detoxification capacity of the colonic mucosa in diseases of the rectal mucosa. PMID:2738167

  12. The flavonoid paradox: conjugation and deconjugation as key steps for the biological activity of flavonoids.

    PubMed

    Perez-Vizcaino, Francisco; Duarte, Juan; Santos-Buelga, Celestino

    2012-07-01

    Flavonoids have been proposed to exert beneficial effects in the prevention of a large number of diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. Paradoxically, despite the most representative flavonoid--quercetin--exerting biologically demonstrable systemic effects, it is not found in plasma after oral administration and its circulating metabolites show weak activity in vitro. The current available evidence indicates that quercetin is extensively metabolized into methylated and glucurono- and sulfo-conjugated metabolites, which are the plasma circulating forms; and glucurono-, but not sulfo-conjugates, can be hydrolyzed at the vascular level, yielding the parent aglycone which accumulates in tissues. Thus conjugation is a reversible process and, at least regarding the vasodilator and antihypertensive effects, the conjugation-deconjugation cycle appears to be an absolute requirement. Glucuronidated derivatives transport quercetin and its methylated form, and deliver to the tissues the free aglycone, which is the final effector. Copyright © 2012 Society of Chemical Industry.

  13. Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite.

    PubMed

    Dostalek, Miroslav; Court, Michael H; Hazarika, Suwagmani; Akhlaghi, Fatemeh

    2011-03-01

    Mycophenolic acid (MPA) is an immunosuppressive agent commonly used after organ transplantation. Altered concentrations of MPA metabolites have been reported in diabetic kidney transplant recipients, although the reason for this difference is unknown. We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors. Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized. We have found that both diabetic and nondiabetic human liver microsomes and kidney microsomes formed MPAG with similar efficiency; however, AcMPAG formation was significantly lower in diabetic samples. This finding is supported by markedly lower glucuronidation of the UGT2B7 probe zidovudine, UGT2B7 protein, and UGT2B7 mRNA in diabetic tissues. UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation. Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation. These findings suggest that diabetes mellitus is associated with significantly reduced UGT2B7 mRNA expression, protein level, and enzymatic activity of human liver and kidney, explaining in part the relatively low circulating concentrations of AcMPAG in diabetic patients.

  14. Species differences in the formation of vabicaserin carbamoyl glucuronide.

    PubMed

    Tong, Zeen; Chandrasekaran, Appavu; DeMaio, William; Jordan, Ronald; Li, Hongshan; Moore, Robin; Poola, Nagaraju; Burghart, Peter; Hultin, Theresa; Scatina, JoAnn

    2010-04-01

    Vabicaserin is a potent 5-hydroxtryptamine 2C full agonist with therapeutic potential for a wide array of psychiatric disorders. Metabolite profiles indicated that vabicaserin was extensively metabolized via carbamoyl glucuronidation after oral administration in humans. In the present study, the differences in the extent of vabicaserin carbamoyl glucuronide (CG) formation in humans and in animals used for safety assessment were investigated. After oral dosing, the systemic exposure ratios of CG to vabicaserin were approximately 12 and up to 29 in monkeys and humans, respectively, and the ratios of CG to vabicaserin were approximately 1.5 and 1.7 in mice and dogs, respectively. These differences in systemic levels of CG are likely related to species differences in the rate and extent of CG formation and elimination. Whereas CG was the predominant circulating metabolite in humans and a major metabolite in mice, dogs, and monkeys, it was a relatively minor metabolite in rats, in which oxidative metabolism was the major metabolic pathway. Although the CG was not detected in plasma or urine of rats, approximately 5% of the dose was excreted in bile as CG in the 24-h collection postdose, indicating the rat had the metabolic capability of producing the CG. In vitro, in a CO(2)-enriched environment, the CG was the predominant metabolite in dog and human liver microsomes, a major metabolite in monkey and mice, and only a very minor metabolite in rats. Carbamoyl glucuronidation and hydroxylation had similar contributions to vabicaserin metabolism in mouse and monkey liver microsomes. However, only trace amounts of CG were formed in rat liver microsomes, and other metabolites were more prominent than the CG. In conclusion, significant differences in the extent of formation of the CG were observed among the various species examined. The exposure ratios of CG to vabicaserin were highest in humans, followed by monkeys, then mice and dogs, and lowest in rats, and the in vitro

  15. Effects of clofibric acid on the biliary excretion of benoxaprofen glucuronide and taurine conjugate in rats.

    PubMed

    Okada, K; Kanoh, H; Mohri, K

    2011-10-01

    Benoxaprofen (BOP) is a 2-methyl propionic acid derivative with anti-inflammatory activity. BOP has an asymmetric carbon, and receives chiral inversion from R to S in vivo. BOP is metabolized to glucuronide (BOP-G) and taurine conjugate (BOP-T). The configuration of BOP-G is mainly S, and that of BOP-T is R. Chiral inversion of R to S of the propionic acid moiety and amino acid conjugation of carboxyl compounds proceed via an acyl CoA intermediate. It is known that fibrates, used in hyperlipidemia, induce acyl CoA synthetase and increase CoA concentration. We administered racemic BOP (10 mg/kg body weight) to rats (CFA+) pre-administered clofibric acid (CFA, 280 mg/kg/day), and studied BOP, BOP-G, and BOP-T enantiomer concentrations in plasma and bile up to 12 h after administration. The findings were compared with those in rats (CFA-) that had not received CFA. Furthermore, we studied the amounts of BOP-G enantiomer produced by glucuronidation in vitro using microsomes pretreated with CFA. The amounts of (S)-BOP-G in CFA+ rats were 2.7-fold larger than that in CFA- rats. Although (R)-BOP-T was excreted in CFA- rats, BOP-T could not be detected in CFA+ rats. Plasma clearance values of racemic BOP and (S)-BOP in CFA+ rats were 5-fold and 6-fold larger than those in CFA- rats, respectively. (S)-BOP-G formation activities were higher than (R)-BOP-G formation activities in both CFA+and CFA- microsomes. These findings suggest that CFA increases biliary excretion of (S)-BOP-G and facilitates plasma elimination of BOP, and further suggests that CFA predominantly induces chiral inversion to S rather than metabolic reaction to (R)-BOP-T, resulting in an increase of (S)-BOP-G.

  16. Optimised deconjugation of androgenic steroid conjugates in bovine urine.

    PubMed

    Pedersen, Mikael; Frandsen, Henrik L; Andersen, Jens H

    2017-04-01

    After administration of steroids to animals the steroids are partially metabolised in the liver and kidney to phase 2 metabolites, i.e., glucuronic acid or sulphate conjugates. During analysis these conjugated metabolites are normally deconjugated enzymatically with aryl sulphatase and glucuronidase resulting in free steroids in the extract. It is well known that some sulphates are not deconjugated using aryl sulphatase; instead, for example, solvolysis can be used for deconjugation of these aliphatic sulphates. The effectiveness of solvolysis on androgenic steroid sulphates was tested with selected aliphatic steroid sulphates (boldenone sulphate, nortestosteron sulphate and testosterone sulphate), and the method was validated for analysis of androgenic steroids in bovine urine using free steroids, steroid sulphates and steroid glucuronides as standards. Glucuronidase and sulphuric acid in ethyl acetate were used for deconjugation and the extract was purified by solid-phase extraction. The final extract was evaporated to dryness, re-dissolved and analysed by LC-MS/MS.

  17. Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Provencher, Gilles; Bérubé, René; Dumas, Pierre; Bienvenu, Jean-François; Gaudreau, Eric; Bélanger, Patrick; Ayotte, Pierre

    2014-06-27

    Bisphenol A (BPA) and triclosan (TCS) are ubiquitous environmental phenols exhibiting endocrine disrupting activities that may be involved in various health disorders in humans. There is a need to measure separately free forms and conjugated metabolites because only the former are biologically active. We have developed sensitive methods using isotope-dilution liquid chromatography-tandem mass spectrometry for individual measurements of free BPA and TCS as well as their metabolites, BPA glucuronide (BPAG), BPA monosulfate (BPAS), BPA disulfate (BPADS), TCS glucuronide (TCSG) and TCS sulfate (TCSS) in urine. Comparative analyses of urine samples from 46 volunteers living in the Quebec City area using the new methods and a GC-MS/MS method previously used in our laboratory revealed very strong correlations for total BPA (Spearman's rs=0.862, p<0.0001) and total TCS concentrations (rs=0.942, p<0.0001). Glucuronide metabolites were the most abundant BPA and TCS species in urine samples (>94% of total urinary concentrations). Unconjugated TCS concentrations represented a small proportion of total TCS species (median=1.6%) but its concentration was likely underestimated due to losses by adsorption to the surface of polypropylene tubes used for sample storage. To our knowledge, we are the first to report levels of free, sulfated and glucuronidated TCS levels in human urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Chocolate Matrix Factors Modulate Pharmacokinetic Behavior of Cocoa Flavan-3-Ol Phase-II Metabolites Following Oral Consumption by Sprague-Dawley Rats

    PubMed Central

    Neilson, Andrew P.; Sapper, Teryn N.; Janle, Elsa M.; Rudolph, Ralf; Matusheski, Nathan V.; Ferruzzi, Mario G.

    2010-01-01

    The impact of carbohydrates and milk on the bioavailability of catechin (C) and epicatechin (EC) from chocolate has been previously studied. However, little data exists regarding potential modulation of the phase-II metabolism by these chocolate matrix factors. The objectives of this study were to assess the impact of matrix composition on qualitative and quantitative profiles of circulating catechins and their metabolites following administration of commercially relevant chocolate confections. Sprague-Dawley rats were fed 1.5 g of a confection (reference dark, high sucrose, or milk chocolate) by intragastric gavage, and plasma samples were collected over 8 h. HPLC-MS analysis was performed to quantify C, EC and their metabolites. The predominant metabolites were O-glucuronides (2 metabolites), and O-Me-O-glucuronides (3 metabolites). Plasma concentrations of metabolites were generally the highest for high sucrose treatment and lowest for milk treatment, while reference dark treatment generally resulted in intermediate concentrations. The O-Me-(±)-C/EC-O-β-glucuronide (peak 4) was significantly higher for the high sucrose treatment (2325 nM*h) versus the milk treatment (1300 nM*h). Additionally, CMAX values for (±)-C/EC-O-β-glucuronide (peak 3), and two O-Me-(±)-C/EC-O-β-glucuronides (peaks 4 and 6) were significantly higher for high sucrose treatment (4012, 518, and 2518 nM, respectively) versus the milk treatment (2590, 240, and 1670 nM, respectively). Milk and sucrose appear to modulate both metabolism and plasma pharmacokinetics, and to a lesser extent, the overall bioavailability of catechins from chocolate confections. PMID:20446738

  19. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid.

    PubMed

    Piazzon, A; Vrhovsek, U; Masuero, D; Mattivi, F; Mandoj, F; Nardini, M

    2012-12-19

    The main metabolites of caffeic and ferulic acids (ferulic acid-4'-O-sulfate, caffeic acid-4'-O-sulfate, and caffeic acid-3'-O-sulfate), the most representative phenolic acids in fruits and vegetables, and the acyl glucuronide of ferulic acid were synthesized, purified, and tested for their antioxidant activity in comparison with those of their parent compounds and other related phenolics. Both the ferric reducing antioxidant power (FRAP) assay and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging method were used. Ferulic acid-4'-O-sulfate and ferulic acid-4'-O-glucuronide exhibited very low antioxidant activity, while the monosulfate derivatives of caffeic acid were 4-fold less efficient as the antioxidant than caffeic acid. The acyl glucuronide of ferulic acid showed strong antioxidant action. The antioxidant activity of caffeic acid-3'-O-glucuronide and caffeic acid-4'-O-glucuronide was also studied. Our results demonstrate that some of the products of phenolic acid metabolism still retain strong antioxidant properties. Moreover, we first demonstrate the ex vivo synthesis of the acyl glucuronide of ferulic acid by mouse liver microsomes, in addition to the phenyl glucuronide.

  20. Chemoenzymatic Synthesis, Characterization, and Scale-Up of Milk Thistle Flavonolignan Glucuronides

    PubMed Central

    Gufford, Brandon T.; Graf, Tyler N.; Paguigan, Noemi D.; Oberlies, Nicholas H.

    2015-01-01

    Plant-based therapeutics, including herbal products, continue to represent a growing facet of the contemporary health care market. Mechanistic descriptions of the pharmacokinetics and pharmacodynamics of constituents composing these products remain nascent, particularly for metabolites produced following herbal product ingestion. Generation and characterization of authentic metabolite standards are essential to improve the quantitative mechanistic understanding of herbal product disposition in both in vitro and in vivo systems. Using the model herbal product, milk thistle, the objective of this work was to biosynthesize multimilligram quantities of glucuronides of select constituents (flavonolignans) to fill multiple knowledge gaps in the understanding of herbal product disposition and action. A partnership between clinical pharmacology and natural products chemistry expertise was leveraged to optimize reaction conditions for efficient glucuronide formation and evaluate alternate enzyme and reagent sources to improve cost effectiveness. Optimized reaction conditions used at least one-fourth the amount of microsomal protein (from bovine liver) and cofactor (UDP glucuronic acid) compared with typical conditions using human-derived subcellular fractions, providing substantial cost savings. Glucuronidation was flavonolignan-dependent. Silybin A, silybin B, isosilybin A, and isosilybin B generated five, four, four, and three monoglucuronides, respectively. Large-scale synthesis (40 mg of starting material) generated three glucuronides of silybin A: silybin A-7-O-β-d-glucuronide (15.7 mg), silybin A-5-O-β-d-glucuronide (1.6 mg), and silybin A-4´´-O-β-d-glucuronide (11.1 mg). This optimized, cost-efficient method lays the foundation for a systematic approach to synthesize and characterize herbal product constituent glucuronides, enabling an improved understanding of mechanisms underlying herbal product disposition and action. PMID:26316643

  1. Alpha-hydroxytamoxifen, a genotoxic metabolite of tamoxifen in the rat: identification and quantification in vivo and in vitro.

    PubMed

    Boocock, D J; Maggs, J L; White, I N; Park, B K

    1999-01-01

    The metabolic formation of a-hydroxytamoxifen, a reactive metabolite of tamoxifen in rat liver, was characterized and quantified in vitro (hepatic microsomal incubations) and in vivo (bile-duct cannulated animals). This minor metabolite was identified by chromatographic and mass spectral comparisons with the authentic compound. The rates of formation of alpha-hydroxytamoxifen in incubations (30 min) of tamoxifen (25 microM) with liver microsomal preparations from women (pool of six), female CD1 mice or female Sprague-Dawley rats, as quantified by liquid chromatography-mass spectrometry (LC-MS), were 1.15+/-0.03, 0.30+/-0.05 and 2.70+/-0.35 pmol/min/mg protein, respectively. Selective inhibition of microsomal P450 indicated that alpha-hydroxylation was catalysed predominantly by CYP3A in humans. Bile-duct cannulated and anaesthetized female rats and mice given [14C]tamoxifen (43 micromol/kg, i.v.) excreted, respectively, 24 and 21% of the administered radioactivity in bile over 5 and 3.5 h. The major radiolabelled biliary metabolite in rats, characterized by LC-MS after enzymic hydrolysis of conjugates, was the glucuronide of 4-hydroxytamoxifen (10% of dose) and only 0.1% of the dose was recovered as alpha-hydroxytamoxifen. After administration of alpha-hydroxytamoxifen (43 micromol/kg, i.v.) to rats, only 1.19% of the administered compound was recovered from a glucuronide metabolite in bile, indicating a possible 0.84% alpha-hydroxylation of tamoxifen in vivo. There was, however, no indication of the presence in bile of either O-sulphonate or glutathione conjugates derived from alpha-hydroxytamoxifen. This study shows for the first time that alpha-hydroxytamoxifen can be glucuronylated in rat liver. Whereas sulphonation results in electrophilic genotoxic intermediates, glucuronidation may represent a means of detoxifying alpha-hydroxytamoxifen.

  2. In Vitro Glucuronidation and Sulfation of ε-Viniferin, a Resveratrol Dimer, in Humans and Rats.

    PubMed

    Courtois, Arnaud; Jourdes, Michael; Dupin, Adeline; Lapèze, Caroline; Renouf, Elodie; Biais, Benoît; Teissedre, Pierre-Louis; Mérillon, Jean-Michel; Richard, Tristan; Krisa, Stéphanie

    2017-05-03

    ε-Viniferin is a resveratrol dimer that possesses antioxidant or anti-inflammatory activities. However little is known about the metabolism of this oligostilbene. This study was thus undertaken as a first approach to identify and characterize the metabolites of ε-viniferin and to describe the kinetic profile of their appearance in humans and rats. The glucuronides and sulfates of ε-viniferin were first obtained by chemical hemi-synthesis and were fully characterized by UPLC-MS and NMR spectroscopy. Then, ε-viniferin was incubated with human or rat S9 liver fractions that led to the formation of four glucuronoconjugates and four sulfoconjugates. In both species, ε-viniferin was subjected to an intense metabolism as 70 to 80% of the molecule was converted to glucuronides and sulfates. In humans, the hepatic clearance of ε-viniferin (V max /K m ) for glucuronidation and sulfation were 4.98 and 6.35 µL/min/mg protein, respectively, whereas, in rats, the hepatic clearance for glucuronidation was 20.08 vs. 2.59 µL/min/mg protein for sulfation. In humans, three major metabolites were observed: two glucuronides and one sulfate. By contrast, only one major glucuronide was observed in rats. This strong hepatic clearance of ε-viniferin in human and rat could explain its poor bioavailability and could help to characterize its active metabolites.

  3. Chocolate matrix factors modulate the pharmacokinetic behavior of cocoa flavan-3-ol phase II metabolites following oral consumption by Sprague-Dawley rats.

    PubMed

    Neilson, Andrew P; Sapper, Teryn N; Janle, Elsa M; Rudolph, Ralf; Matusheski, Nathan V; Ferruzzi, Mario G

    2010-06-09

    The impact of carbohydrates and milk on the bioavailability of catechin (C) and epicatechin (EC) from chocolate has been previously studied. However, little data exist regarding potential modulation of the phase II metabolism by these chocolate matrix factors. The objectives of this study were to assess the impact of matrix composition on qualitative and quantitative profiles of circulating catechins and their metabolites following administration of commercially relevant chocolate confections. Sprague-Dawley rats were administered 1.5 g of a confection (reference dark, high sucrose, or milk chocolate) by intragastric gavage, and plasma samples were collected over 8 h. High-performance liquid chromatography-mass spectrometry analysis was performed to quantify C, EC, and their metabolites. The predominant metabolites were O-glucuronides (two metabolites) and O-Me-O-glucuronides (three metabolites). Plasma concentrations of metabolites were generally the highest for high sucrose treatment and lowest for milk treatment, while the reference dark treatment generally resulted in intermediate concentrations. The O-Me-(+/-)-C/EC-O-beta-glucuronide (peak 4) was significantly higher for the high sucrose treatment (2325 nM h) versus the milk treatment (1300 nM h). Additionally, C(MAX) values for (+/-)-C/EC-O-beta-glucuronide (peak 3) and two O-Me-(+/-)-C/EC-O-beta-glucuronides (peaks 4 and 6) were significantly higher for the high sucrose treatment (4012, 518, and 2518 nM, respectively) versus the milk treatment (2590, 240, and 1670 nM, respectively). Milk and sucrose appear to modulate both metabolism and plasma pharmacokinetics and, to a lesser extent, the overall bioavailability of catechins from chocolate confections.

  4. Metabolism of 1-nitropyrene in germ-free and conventional rats.

    PubMed

    Kinouchi, T; Morotomi, M; Mutai, M; Fifer, E K; Beland, F A; Ohnishi, Y

    1986-04-01

    The distribution, covalent binding and metabolism of radioactive 1-nitropyrene (1-NP) were examined following its oral administration to conventional and germ-free male Wistar rats. With both groups of animals, the liver, kidney, bladder, adipose tissue and gastrointestinal tract had the highest specific radioactivity. However, the maximum concentration of radioactivity occurred at 12 hr in conventional rats as compared to 24 hr in germ-free animals. This difference may be due to the faster transit time of the intestinal contents through conventional rats. At 48 hr after treatment, the covalent binding of 1-NP metabolites was greatest in liver and kidney of conventional rats, while in germ-free rats, substantial binding was also found in the gastrointestinal tract. The mutagenic activity in Salmonella typhimurium TA98 of fecal extracts and urine from conventional rats was greater in the presence of an S9 mix, whereas similar extracts from germ-free animals were more mutagenic in the absence of S9. The major fecal metabolites in germ-free rats were (in order of decreasing concentration): 3-nitropyrenol greater than 1-NP greater than 4,5-dihydroxy-4,5-dihydro-1-NP greater than 6-nitropyrenol greater than 8-nitropyrenol. With the exception of 1-NP, similar metabolites were found in the urine as their glucuronide conjugates. In the feces from conventional rats, substantial nitro reduction and N-acetylation occurred with the major metabolites being: 1-NP greater than 1-aminopyrene greater than 8-acetylaminopyrenol greater than 6-acetylaminopyrenol greater than 3-acetylaminopyrenol. The major metabolites identified in the urine from conventional rats were glucuronide conjugates of 6- and 8-acetylaminopyrenol, while the major biliary conjugates identified were glucuronide conjugates of 4,5-dihydroxy-4,5-dihydro-1-NP and 3-, 6-, and 8-nitropyrenol, although the relative proportion of glucuronide conjugates of 6- and 8-aminopyrenol and 6- and 8-acetylaminopyrenol increased

  5. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes.

    PubMed

    Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T; Gao, Hongyu; Lin, Hai; Liu, Yunlong; Desta, Zeruesenay; Skaar, Todd C

    2018-04-01

    Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno- and endo-biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA-seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP-glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione-S-transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin-induced (>1.25-fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25-fold) the expression of 3 genes ( P  <   .05). Rifampin-induced miRNA expression changes correlated with mRNA changes and miRNAs were identified that may modulate conjugating enzyme expression. NAT2 gene expression was most strongly repressed (1.3-fold) by rifampin while UGT1A4 and UGT1A1 genes were most strongly induced (7.9- and 4.8-fold, respectively). Physiologically based pharmacokinetic modeling (PBPK) was used to simulate the clinical consequences of rifampin induction of CYP3A4- and UGT1A4-mediated midazolam metabolism. Simulations evaluating isolated UGT1A4 induction predicted increased midazolam N-glucuronide exposure (~4-fold) with minimal reductions in parent midazolam exposure (~10%). Simulations accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10-fold decrease in parent midazolam exposure with only a ~2-fold decrease in midazolam N-glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.

  6. Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1.

    PubMed

    Zhou, Jin; Tracy, Timothy S; Remmel, Rory P

    2010-11-01

    Bilirubin, an end product of heme catabolism, is primarily eliminated via glucuronic acid conjugation by UGT1A1. Impaired bilirubin conjugation, caused by inhibition of UGT1A1, can result in clinical consequences, including jaundice and kernicterus. Thus, evaluation of the ability of new drug candidates to inhibit UGT1A1-catalyzed bilirubin glucuronidation in vitro has become common practice. However, the instability of bilirubin and its glucuronides presents substantial technical challenges to conduct in vitro bilirubin glucuronidation assays. Furthermore, because bilirubin can be diglucuronidated through a sequential reaction, establishment of initial rate conditions can be problematic. To address these issues, a robust high-performance liquid chromatography assay to measure both bilirubin mono- and diglucuronide conjugates was developed, and the incubation conditions for bilirubin glucuronidation by human embryonic kidney 293-expressed UGT1A1 were carefully characterized. Our results indicated that bilirubin glucuronidation should be assessed at very low protein concentrations (0.05 mg/ml protein) and over a short incubation time (5 min) to assure initial rate conditions. Under these conditions, bilirubin total glucuronide formation exhibited a hyperbolic (Michaelis-Menten) kinetic profile with a K(m) of ∼0.2 μM. In addition, under these initial rate conditions, the relative proportions between the total monoglucuronide and the diglucuronide product were constant across the range of bilirubin concentration evaluated (0.05-2 μM), with the monoglucuronide being the predominant species (∼70%). In conclusion, establishment of appropriate incubation conditions (i.e., very low protein concentrations and short incubation times) is necessary to properly characterize the kinetics of bilirubin glucuronidation in a recombinant UGT1A1 system.

  7. Developmental changes rather than repeated administration drive paracetamol glucuronidation in neonates and infants.

    PubMed

    Krekels, Elke H J; van Ham, Saskia; Allegaert, Karel; de Hoon, Jan; Tibboel, Dick; Danhof, Meindert; Knibbe, Catherijne A J

    2015-09-01

    Based on recovered metabolite ratios in urine, it has been concluded that paracetamol glucuronidation may be up-regulated upon multiple dosing. This study investigates paracetamol clearance in neonates and infants after single and multiple dosing using a population modelling approach. A population pharmacokinetic model was developed in NONMEM VI, based on paracetamol plasma concentrations from 54 preterm and term neonates and infants, and on paracetamol, paracetamol-glucuronide and paracetamol-sulphate amounts in urine from 22 of these patients. Patients received either a single intravenous propacetamol dose or up to 12 repeated doses. Paracetamol and metabolite disposition was best described with one-compartment models. The formation clearance of paracetamol-sulphate was 1.46 mL/min/kg(1.4), which was about 5.5 times higher than the formation clearance of the glucuronide of 0.266 mL/min/kg. The renal excretion rate constants of both metabolites was estimated to be 11.4 times higher than the excretion rate constant of unchanged paracetamol, yielding values of 0.580 mL/min/kg. Developmental changes were best described by bodyweight in linear relationships on the distribution volumes, the formation of paracetamol-glucuronide and the unchanged excretion of paracetamol, and in an exponential relationship on the formation of paracetamol-sulphate. There was no evidence for up-regulation or other time-varying changes in any of the model parameters. Simulations with this model illustrate how paracetamol-glucuronide recovery in urine increases over time due to the slower formation of this metabolite and in the absence of up-regulation. Developmental changes, described by bodyweight-based functions, rather than up-regulation, explain developmental changes in paracetamol disposition in neonates and infants.

  8. Chemoenzymatic Synthesis, Characterization, and Scale-Up of Milk Thistle Flavonolignan Glucuronides.

    PubMed

    Gufford, Brandon T; Graf, Tyler N; Paguigan, Noemi D; Oberlies, Nicholas H; Paine, Mary F

    2015-11-01

    Plant-based therapeutics, including herbal products, continue to represent a growing facet of the contemporary health care market. Mechanistic descriptions of the pharmacokinetics and pharmacodynamics of constituents composing these products remain nascent, particularly for metabolites produced following herbal product ingestion. Generation and characterization of authentic metabolite standards are essential to improve the quantitative mechanistic understanding of herbal product disposition in both in vitro and in vivo systems. Using the model herbal product, milk thistle, the objective of this work was to biosynthesize multimilligram quantities of glucuronides of select constituents (flavonolignans) to fill multiple knowledge gaps in the understanding of herbal product disposition and action. A partnership between clinical pharmacology and natural products chemistry expertise was leveraged to optimize reaction conditions for efficient glucuronide formation and evaluate alternate enzyme and reagent sources to improve cost effectiveness. Optimized reaction conditions used at least one-fourth the amount of microsomal protein (from bovine liver) and cofactor (UDP glucuronic acid) compared with typical conditions using human-derived subcellular fractions, providing substantial cost savings. Glucuronidation was flavonolignan-dependent. Silybin A, silybin B, isosilybin A, and isosilybin B generated five, four, four, and three monoglucuronides, respectively. Large-scale synthesis (40 mg of starting material) generated three glucuronides of silybin A: silybin A-7-O-β-D-glucuronide (15.7 mg), silybin A-5-O-β-D-glucuronide (1.6 mg), and silybin A-4´´-O-β-D-glucuronide (11.1 mg). This optimized, cost-efficient method lays the foundation for a systematic approach to synthesize and characterize herbal product constituent glucuronides, enabling an improved understanding of mechanisms underlying herbal product disposition and action. Copyright © 2015 by The American Society

  9. Metabolites identification of harmane in vitro/in vivo in rats by ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Li, Shuping; Liu, Wei; Teng, Liang; Cheng, Xuemei; Wang, Zhengtao; Wang, Changhong

    2014-04-01

    Harmane, a β-carboline alkaloid with a wide spectrum of pharmacological activities, is naturally present in the human diet, in numerous foodstuffs and in hallucinogenic plants such as Peganum harmala, Banisteriopsis caapi and Tribulus terrestris. However, the precise metabolic fate of harmane remains unknown. In order to know whether harmane is extensively metabolized, a rapid and sensitive method using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC/ESI-QTOF-MS) was used to analyze the metabolic profile of harmane in vitro and in vivo in rats. A total of 21 metabolites were identified from the rat liver microsomes and rat liver S9 (9), rat urine (11), feces (16), bile (16), and plasma (10) after a single oral administration of harmane using MetaboLynx™ and MassFragment ™ software tools. It indicated that the biliary and faecal clearance were the major excretion routes for harmane as well as its metabolites. The specific CLogP values combined with different acidic and alkaline mobile phase were helpful and useful for distinguishing N-oxidation and monohydroxylation metabolites. The metabolic transformation pathways of harmane included monohydroxylation, dihydroxylation, N-oxidation, O-glucuronide conjugation, O-sulphate conjugation, and glutathione conjugation. In conclusion, this study showed an insight into the metabolism of harmane. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Bisphenol A glucuronidation in patients with Parkinson's disease.

    PubMed

    Landolfi, Annamaria; Troisi, Jacopo; Savanelli, Maria Cristina; Vitale, Carmine; Barone, Paolo; Amboni, Marianna

    2017-12-01

    Bisphenol A (BPA) is a widely distributed estrogen-mimetic molecule, with well-established effects on the dopaminergic system. It can be found in canned food, dental sealants, thermal paper, etc. BPA undergoes liver conjugation with glucuronic acid and is subsequently excreted in the urine. In the present study we quantified the concentration of free and conjugated Bisphenol A in blood of patients affected by Parkinson Disease, using their spouses as controls. An interview was performed to determine possible confounders in BPA exposure. Free and conjugated BPA were quantified by gas chromatography coupled with mass spectrometry. Parkinson's Disease patients carried a statistically significant lower amount of conjugated Bisphenol A compared to controls. The two populations were mostly homogeneous in terms of exposure to possible Bisphenol A sources. The only exceptions were exposure to canned tuna and canned tomatoes PD patients consumed significantly more of both (p<0.05). Moreover, no difference in Bisphenol A glucuronidation was found after stratification by typology of anti-Parkinson's drug taken and after conversion to the Levodopa Equivalent Daily Dose. BPA glucuronidation was decreased in patients with Parkinson disease. The possible unique mechanisms underlying Bisphenol A metabolism in PD patients deserve further elucidation. Moreover, further study is needed to assess a possible BPA role in Parkinson's Disease pathogenesis, due to its documented dopaminergic toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Plasma pharmacokinetics and metabolism of 13-cis- and all-trans-retinoic acid in the cynomolgus monkey and the identification of 13-cis- and all-trans-retinoyl-beta-glucuronides. A comparison to one human case study with isotretinoin.

    PubMed

    Kraft, J C; Slikker, W; Bailey, J R; Roberts, L G; Fischer, B; Wittfoht, W; Nau, H

    1991-01-01

    In order to compare the disposition and metabolism of 13-cis-retinoic acid (13-cis-RA) and all-trans-retinoic acid (all-trans-RA) in the nonpregnant female cynomolgus monkey, the plasma concentrations of the parent compound, the oxidized metabolites 4-oxo-13-cis-retinoic acid and 4-oxo-all-trans-retinoic acid, and the conjugate metabolites 13-cis-retinoyl-beta-glucuronide (13-cis-RAG) and all trans-retinoyl-beta-glucuronide (all-trans-RAG), were determined on day 1 and day 10 after oral dosing of 2 and 10 mg 13-cis- and all-trans-RA/kg/day. Both 13-cis-RAG and all-trans-RAG have been identified as major plasma metabolites in these studies using thermospray/HPLC/mass-spectrometry of the intact conjugates. AUC comparisons from 0-24 hr after administration indicated that 13-cis-RA treatment resulted in primarily cis metabolites and all-trans-RA treatment resulted in primarily trans metabolites, although low levels of isomerization products were observed. Comparison of the two doses (2 and 10 mg/kg, po) revealed that the AUCs were proportional to the dose administered. Although qualitatively similar, elimination of 13-cis-RA in the monkey was more rapid than in the human, and approximately a 10-fold greater dose of 13-cis-RA was required in the monkey to produce the AUC values comparable to the human. The elimination of all-trans-RA in monkey was faster than that of 13-cis-RA and tended to increase with repeated dosing.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Absorption of N-phenylpropenoyl-L-amino acids in healthy humans by oral administration of cocoa (Theobroma cacao).

    PubMed

    Stark, Timo; Lang, Roman; Keller, Daniela; Hensel, Andreas; Hofmann, Thomas

    2008-10-01

    Besides flavan-3-ols, a family of N-phenylpropenoyl-L-amino acids (NPAs) has been recently identified as polyphenol/amino acid conjugates in the seeds of Theobroma cacao as well as in a variety of herbal drugs. Stimulated by reports on their biological activity, the purpose of this study was to investigate if these amides are absorbed by healthy volunteers after administration of a cocoa drink. For the first time, 12 NPAs were quantified in human urine by means of a stable isotope dilution analysis with LC-MS/MS (MRM) detection. A maximum amount was found in the urine taken 2 h after the cocoa consumption. The highest absolute amount of NPAs excreted with the urine was found for N-[4'-hydroxy-(E)-cinnamoyl]-L-aspartic acid (5), but the highest recovery rate (57.3 and 22.8%), that means the percentage amount of ingested amides excreted with the urine, were determined for N-[4'-hydroxy-(E)-cinnamoyl]-L-glutamic acid (6) and N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-tyrosine (13). In order to gain first insights into the NPA metabolism in vivo, urine samples were analyzed by LC-MS/MS before and after beta-glucuronidase/sulfatase treatment. As independent of the enzyme treatment the same NPA amounts were found in urine, there is strong evidence that these amides are metabolized neither via their O-glucuronides nor their O-sulfates. In order to screen for caffeic acid O-glucuronides as potential NPA metabolites, urine samples were screened by means of LC-MS/MS for caffeic acid 3-O-beta-D-glucuronide and 4-O-beta-D-glucuronide. But not even trace amounts of one of these glucuronides were detectable, thus excluding them as major NPA metabolites and underlining the importance of future investigations on a potential O-methylation or reduction of the N-phenylpropenoyl moiety in NPAs.

  13. Metabolism of para-aminophenol by rat hepatocytes.

    PubMed

    Yan, Z; Nikelly, J G; Killmer, L; Tarloff, J B

    2000-08-01

    Autoxidation of para-aminophenol (PAP) has been proposed to account for the selective nephrotoxicity of this compound. However, other studies suggest that hepatic metabolites of PAP rather than the parent compound may be responsible for renal damage. These studies were designed to investigate PAP metabolism in isolated hepatocytes. We synthesized several proposed metabolites for analysis by HPLC/mass spectrometry and compared those results with HPLC/mass spectrometric analyses of metabolites found after incubating hepatocytes with PAP. Hepatocytes prepared from male Sprague-Dawley rats were incubated in Krebs-Henseleit buffer at 37 degrees C for 5 h with 2.3 mM PAP under an atmosphere of 5% CO2/95% O2. Aliquots were withdrawn at 0.1 h of incubation and then hourly through 5 h of incubation. Reactions were terminated by the addition of acetonitrile. Hepatocyte viability was unaltered with PAP present in the incubation medium. We found that hepatocytes converted PAP to two major metabolites (PAP-GSH conjugates and PAP-N-acetylcysteine conjugates) and several minor metabolites [PAP-O-glucuronide, acetaminophen (APAP), APAP-O-glucuronide, APAP-GSH conjugates, and 4-hydroxyformanilide]. Preincubating hepatoyctes with 1-aminobenzotriazole, an inhibitor of cytochromes P450, did not alter the pattern of PAP metabolism. In conclusion, we found that PAP was metabolized in hepatocytes predominantly to PAP-GSH conjugates and PAP-N-acetylcysteine conjugates in sufficient quantities to account for the nephrotoxicity of PAP.

  14. Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism

    PubMed Central

    Gan, Jinping; Chen, Weiqi; Shen, Hong; Gao, Ling; Hong, Yang; Tian, Yuan; Li, Wenying; Zhang, Yueping; Tang, Yuwei; Zhang, Hongjian; Humphreys, William Griffith; Rodrigues, A David

    2010-01-01

    AIM To further explore the mechanism underlying the interaction between repaglinide and gemfibrozil, alone or in combination with itraconazole. METHODS Repaglinide metabolism was assessed in vitro (human liver subcellular fractions, fresh human hepatocytes, and recombinant enzymes) and the resulting incubates were analyzed, by liquid chromatography-mass spectrometry (LC-MS) and radioactivity counting, to identify and quantify the different metabolites therein. Chemical inhibitors, in addition to a trapping agent, were also employed to elucidate the importance of each metabolic pathway. Finally, a panel of human liver microsomes (genotyped for UGT1A1*28 allele status) was used to determine the importance of UGT1A1 in the direct glucuronidation of repaglinide. RESULTS The results of the present study demonstrate that repaglinide can undergo direct glucuronidation, a pathway that can possibly contribute to the interaction with gemfibrozil. For example, [3H]-repaglinide formed glucuronide and oxidative metabolites (M2 and M4) when incubated with primary human hepatocytes. Gemfibrozil effectively inhibited (∼78%) both glucuronide and M4 formation, but had a minor effect on M2 formation. Concomitantly, the overall turnover of repaglinide was also inhibited (∼80%), and was completely abolished when gemfibrozil was co-incubated with itraconazole. These observations are in qualitative agreement with the in vivo findings. UGT1A1 plays a significant role in the glucuronidation of repaglinide. In addition, gemfibrozil and its glucuronide inhibit repaglinide glucuronidation and the inhibition by gemfibrozil glucuronide is time-dependent. CONCLUSIONS Inhibition of UGT enzymes, especially UGT1A1, by gemfibrozil and its glucuronide is an additional mechanism to consider when rationalizing the interaction between repaglinide and gemfibrozil. PMID:21175442

  15. Hplc-nmr identification of the human urinary metabolites of (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl] cytosine, a nucleoside analogue active against human immunodeficiency virus (HIV).

    PubMed

    Shockcor, J P; Wurm, R M; Frick, L W; Sanderson, P N; Farrant, R D; Sweatman, B C; Lindon, J C

    1996-02-01

    1. Human urine samples from a clinical trial of the anti-HIV compound (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-cyto sin e (BW524W91) have been analysed using 19F-nmr and 1H-hplc-nmr spectroscopy. 2. The identities and relative levels of the xenobiotic species in the urine have been determined by 470-MHz 19F-nmr spectroscopy and by directly coupled 600-MHz 1H-hplc-nmr in the stop-flow mode with confirmation of the metabolite identities being made by comparison with nmr spectra of synthetic standard compounds. 3. The principal urinary xenobiotic was the unchanged drug, but the glucuronide ether conjugate at the 5' position of BW524W91, one of the two diastereomeric sulphoxides and the deaminated metabolite were also characterized. 4. The detection limit of directly coupled hplc-600-MHz 1H-nmr spectroscopy was evaluated by measuring two-dimensional nmr spectra of the glucuronide conjugate of BW524W91 and shown to be approximately 1 microgram material for 1H-1H-TOCSY and 20 micrograms metabolite for 1H-13C-HMQC spectra for overnight (16 h) acquisition.

  16. Validation of a rapid and sensitive LC-MS/MS method for determination of exemestane and its metabolites, 17β-hydroxyexemestane and 17β-hydroxyexemestane-17-O-β-D-glucuronide: application to human pharmacokinetics study.

    PubMed

    Wang, Ling-Zhi; Goh, Sok-Hwei; Wong, Andrea Li-Ann; Thuya, Win-Lwin; Lau, Jie-Ying Amelia; Wan, Seow-Ching; Lee, Soo-Chin; Ho, Paul C; Goh, Boon-Cher

    2015-01-01

    A novel, rapid and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the evaluation of exemestane pharmacokinetics and its metabolites, 17β-dihydroexemestane (active metabolite) and 17β-dihydroexemestane-17-O-β-D-glucuronide (inactive metabolite) in human plasma. Their respective D3 isotopes were used as internal standards. Chromatographic separation of analytes was achieved using Thermo Fisher BDS Hypersil C18 analytic HPLC column (100 × 2.1 mm, 5 μm). The mobile phase was delivered at a rate of 0.5 mL/min by gradient elution with 0.1% aqueous formic acid and acetonitrile. The column effluents were detected by API 4000 triple quadrupole mass spectrometer using electrospray ionisation (ESI) and monitored by multiple reaction monitoring (MRM) in positive mode. Mass transitions 297 > 121 m/z, 300 > 121 m/z, 299 > 135 m/z, 302 > 135 m/z, 475 > 281 m/z, and 478 > 284 m/z were monitored for exemestane, exemestane-d3, 17β-dihydroexemestane, 17β-dihydroexemestane-d3, 17β-dihydroexemestane-17-O-β-D-glucuronide, and 17β-dihydroexemestane-17-O-β-D-glucuronide-d3 respectively. The assay demonstrated linear ranges of 0.4-40.0 ng/mL, for exemestane; and 0.2-15.0 ng/mL, for 17β-dihydroexemestane and 17β-dihydroexemestane-17-O-β-D-glucuronide, with coefficient of determination (r2) of > 0.998. The precision (coefficient of variation) were ≤10.7%, 7.7% and 9.5% and the accuracies ranged from 88.8 to 103.1% for exemestane, 98.5 to 106.1% for 17β-dihydroexemestane and 92.0 to 103.2% for 17β-dihydroexemestane-17-O-β-D-glucuronide. The method was successfully applied to a pharmacokinetics/dynamics study in breast cancer patients receiving exemestane 25 mg daily orally. For a representative patient, 20.7% of exemestane in plasma was converted into 17β-dihydroexemestane and 29.0% of 17β-dihydroexemestane was inactivated as 17β-dihydroexemestane-17-O-β-D-glucuronide 24 hours after ingestion of exemestane

  17. Intestinal disposition of quercetin and its phase-II metabolites after oral administration in healthy volunteers.

    PubMed

    Chalet, Clément; Rubbens, Jari; Tack, Jan; Duchateau, Guus S; Augustijns, Patrick

    2018-05-15

    Quercetin is one of the main dietary flavonoids and undergoes a substantial intestinal phase-II metabolism. Quercetin conjugates have been detected in plasma and in urine, but their presence in the small intestine has not been assessed. This study aimed to investigate the intestinal metabolism and metabolite excretion of quercetin by the human small intestinal wall after oral dosing. Six healthy volunteers were given a capsule of 500 mg of quercetin with 240 ml of water. Duodenal fluids were collected using the intraluminal sampling technique for 4 h and analysed by LC-MS/MS. Phase-II metabolites of quercetin were detected and quantified in aspirated intestinal fluids. Metabolites appeared almost immediately after administration, indicating an intestinal metabolism and apical excretion into the lumen. Quercetin-3'-O-glucuronide was found to be the main intestinal metabolite. Our results could not conclude on the enterohepatic recycling of quercetin or its metabolites, although several individual profiles showed distinctive peaks. This study highlights the intestinal metabolism and excretion of quercetin and its conjugates in humans and gives insights into the relevant concentrations which should be used to investigate potential food-drug interactions in vitro. © 2018 Royal Pharmaceutical Society.

  18. Glucuronidation and its impact on the bioactivity of [6]-shogaol.

    PubMed

    Wang, Pei; Zhao, Yantao; Zhu, Yingdong; Sang, Shengmin

    2017-09-01

    -shogaol (6S) from ginger has been reported to have diverse bioactivities and can be widely metabolized in animals and humans; however, the impact of glucuronidation on its bioactivity is still largely unknown. This study investigates the glucuronidation of 6S and its effect on cell cytotoxicity and Nrf2-inducing activities of 6S. The glucuronidated metabolite of 6S, 4-O-monoglucuronide 6S (6S-G), was synthesized and characterized for the first time. Glucuronidation of 6S in humans was studied using microsomes of the liver and intestine and recombinant UDP-glucuronosyltransferase (UGTs). The kinetics of 6S glucuronidation by human liver and intestinal microsomes followed the substrate inhibition kinetics model. The intrinsic glucuronidation clearance (CL int ) of 6S in human liver microsomes was higher than that in human intestine microsomes. Among the recombinant UGTs examined, UGT1A1, 1A3, 1A6, 1A8, 1A10, 2B7, 2B15, and 2B17 exhibited glucuronidation activity toward 6S, with UGT2B7 being the most potent one. Compared with 6S, the glucuronidation of 6S largely eliminated its cell cytotoxicity against human colon cancer cell lines HT-116 and HT-29, and its Nrf2-inducing activity. The findings from current study provide foundations for understanding the role of glucuronidation in biotransformation and biological activities of 6S. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4 and BCRP.

    PubMed

    Järvinen, Erkka; Deng, Feng; Kidron, Heidi; Finel, Moshe

    2018-04-01

    Estrone, estradiol and estriol are endogenous human estrogens that are rapidly conjugated with glucuronic acid in both intestinal and hepatic epithelial cells. The resulting glucuronides, estrone-3-glucuronide (E 1 -G), estradiol-3- and 17-glucuronides (E 2 -3G and E 2 -17G), as well as estriol-3- and 16-glucuronides (E 3 -3G and E 3 -16G) are found in human plasma and urine. Unlike E 2 -17G, the efflux transport of other estrogen glucuronides by human transporters has not yet been investigated comprehensively. We have studied the transport of E 1 -G, E 2 -3G, E 3 -3G, E 3 -16G and estrone-3-sulfate (E 1 -S), another important estrogen conjugate, using the vesicular transport assay with recombinant human MRP2, MRP3, MRP4, MDR1 and BCRP that were expressed in insect cells. The transport screening assays revealed that whereas E 1 -S was a good and specific substrate for BCRP, the less transporter-specific conjugates, E 1 -G and E 2 -3G, were still transported by BCRP at 10-fold higher rates than E 1 -S. BCRP also transported E 3 -16G at higher rates than the studied MRPs, while it transported E 3 -3G at lower rates than MRP3. MRP2 exhibited lower or equal transport rates of E 1 -G, E 2 -3G, E 3 -3G and E 3 -16G in comparison to MRP3 and BCRP in the screening assays, mainly due to its high K m values, between 180 and 790 μM. MRP3 transported all the tested glucuronides at rather similar rates, at K m values below 20 μM, but lower V max values than other transporters. In the case of E 3 -3G, MRP3 was the most active transporter in the screening assay. MRP4 transported only E 3 -16G at considerable rates, while none of the tested estrogen conjugates was transported by MDR1 at higher rates than control vesicles. These new results, in combination with previously reported in vivo human data, stimulate our understanding on the substrate specificity and role of efflux transporters in disposition of estrogen glucuronides in humans. Copyright © 2017 Elsevier Ltd. All

  20. Impact of glucuronide interferences on therapeutic drug monitoring of posaconazole by tandem mass spectrometry.

    PubMed

    Krüger, Ralf; Vogeser, Michael; Burghardt, Stephan; Vogelsberger, Rita; Lackner, Karl J

    2010-12-01

    Posaconazole is a novel antifungal drug for oral application intended especially for therapy of invasive mycoses. Due to variable gastrointestinal absorption, adverse side effects, and suspected drug-drug interactions, therapeutic drug monitoring (TDM) of posaconazole is recommended. A fast ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for quantification of posaconazole with a run-time <3 min was developed and compared to a LC-MS/MS method and HPLC method with fluorescence detection. During evaluation of UPLC-MS/MS, two earlier eluting peaks were observed in the MRM trace of posaconazole. This was only seen in patient samples, but not in spiked calibrator samples. Comparison with LC-MS/MS disclosed a significant bias with higher concentrations measured by LC-MS/MS, while UPLC-MS/MS showed excellent agreement with the commercially available HPLC method. In the LC-MS/MS procedure, comparably wide and left side shifted peaks were noticed. This could be ascribed to in-source fragmentation of conjugate metabolites during electrospray ionisation. Precursor and product ion scans confirmed the assumption that the additional compounds are posaconazole glucuronides. Reducing the cone voltage led to disappearance of the glucuronide peaks. Slight modification of the LC-MS/MS method enabled separation of the main interference, leading to significantly reduced deviation. These results highlight the necessity to reliably eliminate interference from labile drug metabolites for correct TDM results, either by sufficient separation or selective MS conditions. The presented UPLC-MS/MS method provides a reliable and fast assay for TDM of posaconazole.

  1. Inhibition of UDP-glucuronosyltransferase (UGT)-mediated glycyrrhetinic acid 3-O-glucuronidation by polyphenols and triterpenoids.

    PubMed

    Koyama, Mayuko; Shirahata, Tatsuya; Hirashima, Rika; Kobayashi, Yoshinori; Itoh, Tomoo; Fujiwara, Ryoichi

    2017-08-01

    Glycyrrhetinic acid (GA) is an active metabolite of glycyrrhizin, which is a main constituent in licorice (Glycyrrhiza glabra). While GA exhibits a wide variety of pharmacological activities in the body, it is converted to a toxic metabolite GA 3-O-glucuronide by hepatic UDP-glucuronosyltransferases (UGTs). To avoid the development of the toxic metabolite-induced pseudohyperaldosteronism (pseudoaldosteronism), there is a limitation in maximum daily dosage of licorice and in combined usage of other glycyrrhizin-containing natural medicine. In this study, we investigated the inhibitory effects of various polyphenols and triterpenoids on the UGT-mediated GA 3-O-glucuronidation. In human liver microsomes, UGT-mediated GA glucuronidation was significantly inhibited by protopanaxadiol with an IC 50 value of 59.2 μM. Isoliquiritigenin, rosmarinic acid, alisol B, alisol acetate, and catechin moderately inhibited the GA glucuronidation with IC 50 values of 96.4 μM, 125 μM, 160 μM, 163 μM, and 164 μM. Other tested 19 polyphenols and triterpenoids, including liquiritigenin, did not inhibit UGT-mediated GA glucuronidation in human liver microsomes. Our data indicate that relatively higher dosage of licorice can be used without a risk of developing pseudohyperaldosteronism in combination of natural medicine containing protopanaxadiol such as Panax ginseng. Furthermore, supplemental protopanaxadiol and isoliquiritigenin might be useful in preventing licorice-inducing pseudoaldosteronism. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  2. Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism.

    PubMed

    Gan, Jinping; Chen, Weiqi; Shen, Hong; Gao, Ling; Hong, Yang; Tian, Yuan; Li, Wenying; Zhang, Yueping; Tang, Yuwei; Zhang, Hongjian; Humphreys, William Griffith; Rodrigues, A David

    2010-12-01

    To further explore the mechanism underlying the interaction between repaglinide and gemfibrozil, alone or in combination with itraconazole. Repaglinide metabolism was assessed in vitro (human liver subcellular fractions, fresh human hepatocytes, and recombinant enzymes) and the resulting incubates were analyzed, by liquid chromatography-mass spectrometry (LC-MS) and radioactivity counting, to identify and quantify the different metabolites therein. Chemical inhibitors, in addition to a trapping agent, were also employed to elucidate the importance of each metabolic pathway. Finally, a panel of human liver microsomes (genotyped for UGT1A1*28 allele status) was used to determine the importance of UGT1A1 in the direct glucuronidation of repaglinide. The results of the present study demonstrate that repaglinide can undergo direct glucuronidation, a pathway that can possibly contribute to the interaction with gemfibrozil. For example, [³H]-repaglinide formed glucuronide and oxidative metabolites (M2 and M4) when incubated with primary human hepatocytes. Gemfibrozil effectively inhibited (∼78%) both glucuronide and M4 formation, but had a minor effect on M2 formation. Concomitantly, the overall turnover of repaglinide was also inhibited (∼80%), and was completely abolished when gemfibrozil was co-incubated with itraconazole. These observations are in qualitative agreement with the in vivo findings. UGT1A1 plays a significant role in the glucuronidation of repaglinide. In addition, gemfibrozil and its glucuronide inhibit repaglinide glucuronidation and the inhibition by gemfibrozil glucuronide is time-dependent. Inhibition of UGT enzymes, especially UGT1A1, by gemfibrozil and its glucuronide is an additional mechanism to consider when rationalizing the interaction between repaglinide and gemfibrozil. © 2010 The Authors. British Journal of Clinical Pharmacology © 2010 The British Pharmacological Society.

  3. Transport of the soy isoflavone daidzein and its conjugative metabolites by the carriers SOAT, NTCP, OAT4, and OATP2B1.

    PubMed

    Grosser, Gary; Döring, Barbara; Ugele, Bernhard; Geyer, Joachim; Kulling, Sabine E; Soukup, Sebastian T

    2015-12-01

    Soy isoflavones (IF) are phytoestrogens, which interact with estrogen receptors. They are extensively metabolized by glucuronosyltransferases and sulfotransferases, leading to the modulation of their estrogenic activity. It can be assumed that this biotransformation also has a crucial impact on the uptake of IF by active or passive cellular transport mechanisms, but little is known about the transport of IF phase II metabolites into the cell. Therefore, transport assays for phase II metabolites of daidzein (DAI) were carried out using HEK293 cell lines transfected with five human candidate carriers, i.e., organic anion transporter OAT4, sodium-dependent organic anion transporter (SOAT), Na(+)-taurocholate cotransporting polypeptide (NTCP), apical sodium-dependent bile acid transporter ASBT, and organic anion transporting polypeptide OATP2B1. Cellular uptake was monitored by UHPLC-DAD. DAI monosulfates were transported by the carriers NTCP and SOAT in a sodium-dependent manner, while OAT4-HEK293 cells revealed a partly sodium-dependent transport for these compounds. In contrast, DAI-7,4'-disulfate was only taken up by NTCP-HEK293 cells. DAI-7-glucuronide, but not DAI-4'-glucuronide, was transported exclusively by OATP2B1 in a sodium-independent manner. DAI-7-glucuronide-4'-sulfate, DAI-7-glucoside, and DAI were no substrate of any of the tested carriers. In addition, the inhibitory potency of the DAI metabolites toward estrone-sulfate (E1S) uptake of the above-mentioned carriers was determined. In conclusion, human SOAT, NTCP, OATP2B1, and OAT4 were identified as carriers for the DAI metabolites. Several metabolites were able to inhibit carrier-dependent E1S uptake. These findings might contribute to a better understanding of the bioactivity of IF especially in case of hormone-related cancers.

  4. [Enantioselectivity in the excretion of glucuronides of carprofen in man, dogs and horses].

    PubMed

    Delatour, P; Garnier, F; Maire, R

    1996-10-01

    After administration of the racemic drug, the stereoselective quantification of the enantiomers of free and conjugated carprofen was performed in human plasma and in plasma, urine and bile of dogs and horses. In humans, the plasma profile of free carprofen and its glucuronides is not stereoselective and the glucuronides excreted in urine are close to a racemate. In dogs and horses on the contrary, the R(-) enantiomer of the free drug is predominant in plasma, while urine and/or bile concentrations of the glucuronides are high in comparison to plasma with a strong selectivity for the S(+) enantiomer. Because glucuronidation of carprofen, as a carboxylic compound, is known to be the major metabolic pathway in most species, interspecies discrepancies in the stereoselective disposition of carprofen seem to be mainly related to the stereoselectivity in the excretion of the glucuronides. Finally, the high plasma concentrations of carprofen glucuronides in human in comparison to other animal species suggest that the former could be specifically subjected to immunological side effects in the time course of treatments by this type of compounds.

  5. Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer's disease

    PubMed Central

    Ho, Lap; Ferruzzi, Mario G.; Janle, Elsa M.; Wang, Jun; Gong, Bing; Chen, Tzu-Ying; Lobo, Jessica; Cooper, Bruce; Wu, Qing Li; Talcott, Stephen T.; Percival, Susan S.; Simon, James E.; Pasinetti, Giulio Maria

    2013-01-01

    Epidemiological and preclinical studies indicate that polyphenol intake from moderate consumption of red wines may lower the relative risk for developing Alzheimer's disease (AD) dementia. There is limited information regarding the specific biological activities and cellular and molecular mechanisms by which wine polyphenolic components might modulate AD. We assessed accumulations of polyphenols in the rat brain following oral dosage with a Cabernet Sauvignon red wine and tested brain-targeted polyphenols for potential beneficial AD disease-modifying activities. We identified accumulations of select polyphenolic metabolites in the brain. We demonstrated that, in comparison to vehicle-control treatment, one of the brain-targeted polyphenol metabolites, quercetin-3-O-glucuronide, significantly reduced the generation of β-amyloid (Aβ) peptides by primary neuron cultures generated from the Tg2576 AD mouse model. Another brain-targeted metabolite, malvidin-3-O-glucoside, had no detectable effect on Aβ generation. Moreover, in an in vitro analysis using the photo-induced cross-linking of unmodified proteins (PICUP) technique, we found that quercetin-3-O-glucuronide is also capable of interfering with the initial protein-protein interaction of Aβ1–40 and Aβ1–42 that is necessary for the formation of neurotoxic oligomeric Aβ species. Lastly, we found that quercetin-3-O-glucuronide treatment, compared to vehicle-control treatment, significantly improved AD-type deficits in hippocampal formation basal synaptic transmission and long-term potentiation, possibly through mechanisms involving the activation of the c-Jun N-terminal kinases and the mitogen-activated protein kinase signaling pathways. Brain-targeted quercetin-3-O-glucuronide may simultaneously modulate multiple independent AD disease-modifying mechanisms and, as such, may contribute to the benefits of dietary supplementation with red wines as an effective intervention for AD.—Ho, L., Ferruzzi, M. G

  6. Effects of quercetin and quercetin 3-glucuronide on the expression of bone sialoprotein gene.

    PubMed

    Kim, Dong-Soon; Takai, Hideki; Arai, Masato; Araki, Shouta; Mezawa, Masaru; Kawai, Yoshichika; Murota, Kaeko; Terao, Junji; Ogata, Yorimasa

    2007-06-01

    Quercetin is a typical flavonol-type flavonoid and is present in a variety of vegetables, and their antioxidant effect implies their possible role in the prevention of oxidative stress related chronic diseases. Bone sialoprotein (BSP) is a noncollagenous protein of the extracellular matrix in the mineralized connective tissues that has been implicated in the nucleation of hydroxyapatite crystals. Previously, we reported that isoflavone (genistein) activated BSP gene transcription is mediated through an inverted CCAAT box in the proximal BSP gene promoter. The present study investigates the regulation of BSP transcription in a rat osteoblast-like cell line, ROS 17/2.8 cells, by quercetin and its conjugated metabolite quercetin 3-glucuronide. Quercetin and quercetin 3-glucuronide (5 microM) increased the BSP mRNA levels at 12 h and quercetin upregulated the Cbfa1/Runx2 mRNA expression at 12 h. From transient transfection assays using various sized BSP promoter-luciferase constructs, quercetin increased the luciferase activity of the construct (pLUC3), including the promoter sequence nucleotides -116 to -43. Transcriptional stimulations by quercetin were almost completely abrogated in the constructs that included 2 bp mutations in the inverted CCAAT and FRE elements whereas the CCAAT-protein complex did not change after stimulation by quercetin according to gel shift assays. Quercetin increased the nuclear protein binding to the FRE and 3'-FRE. These data suggest that quercetin and quercetin 3-glucuronide increased the BSP mRNA expression, and that the inverted CCAAT and FRE elements in the promoter of the BSP gene are required for quercetin induced BSP transcription.

  7. Enzymatic sulfation of tocopherols and tocopherol metabolites by human cytosolic sulfotransferases.

    PubMed

    Hashiguchi, Takuyu; Kurogi, Katsuhisa; Sakakibara, Yoichi; Yamasaki, Masao; Nishiyama, Kazuo; Yasuda, Shin; Liu, Ming-Cheh; Suiko, Masahito

    2011-01-01

    Tocopherols are essential micronutrients for mammals widely known as potent lipid-soluble antioxidants that are present in cell membranes. Recent studies have demonstrated that most of the carboxychromanol (CEHC), a tocopherol metabolite, in the plasma exists primarily in sulfate- and glucuronide-conjugated forms. To gain insight into the enzymatic sulfation of tocopherols and their metabolites, a systematic investigation was performed using all 14 known human cytosolic sulfotransferases (SULTs). The results showed that the members of the SULT1 family displayed stronger sulfating activities toward tocopherols and their metabolites. These enzymes showed a substrate preference for γ-tocopherol over α-tocopherol and for γ-CEHC over other CEHCs. Using A549 human lung epithelial cells in a metabolic labeling study, a similar trend in the sulfation of tocopherols and CEHCs was observed. Collectively, the results obtained indicate that SULT-mediated enzymatic sulfation of tocopherols and their metabolites is a significant pathway for regulation of the homeostasis and physiological functions of these important compounds.

  8. Different profiles of quercetin metabolites in rat plasma: comparison of two administration methods.

    PubMed

    Kawai, Yoshichika; Saito, Satomi; Nishikawa, Tomomi; Ishisaka, Akari; Murota, Kaeko; Terao, Junji

    2009-03-23

    The bioavailability of polyphenols in human and rodents has been discussed regarding their biological activity. We found different metabolite profiles of quercetin in rat plasma between two administration procedures. A single intragastric administration (50 mg/kg) resulted in the appearance of a variety of metabolites in the plasma, whereas only a major fraction was detected by free access (1% quercetin). The methylated/non-methylated metabolites ratio was much higher in the free access group. Mass spectrometric analyses showed that the fraction from free access contained highly conjugated quercetin metabolites such as sulfo-glucuronides of quercetin and methylquercetin. The metabolite profile of human plasma after an intake of onion was similar to that with intragastric administration in rats. In vitro oxidation of human low-density lipoprotein showed that methylation of the catechol moiety of quercetin significantly attenuated the antioxidative activity. These results might provide information about the bioavailability of quercetin when conducting animal experiments.

  9. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans

    PubMed Central

    Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H.

    2018-01-01

    More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans. PMID:29079228

  10. Pseudoendogenous presence of β-boldenone sulphate and glucuronide in untreated young bulls from the food chain.

    PubMed

    Chiesa, Luca; Pasquale, Elisa; Panseri, Sara; Cannizzo, Francesca T; Biolatti, Bartolomeo; Pavlovic, Radmila; Arioli, Francesco

    2015-01-01

    The administration of boldenone (bold) to bovines, either for growth promotion or therapeutic purposes, has been banned in the EU since 1981. It is, however, a pseudoendogenous hormone, thus its detection in bovine urine, in the form of α-boldenone conjugates, is considered fully compliant up to 2 ng ml(-1). Greater attention has been placed on β-boldenone, the anabolic active epimer, whose conjugated form must be absent in urine. Recently, the identification of a biomarker representing unquestionable evidence of illicit treatment with bold or its precursor androstadienedione has been a major topic in the literature regarding the detection of residues in bovine urine, and β-boldenone sulphate is a candidate molecule. In this study, we used a method previously validated according to the European Commission Decision 2002/657/EC for the determination of sulphate and glucuronide conjugates of β-boldenone. We assessed the occurrence of these molecules in young bull urine, with the aim of understanding whether they could be of endogenous origin, and to check for a possible relationship with particular environmental and stress conditions. Urine samples from 56 young bulls were collected after transport stress, under non-stressful conditions and after transport and slaughter stress. Histopathological investigation of the hormone target organs, i.e. the bulbourethral and prostate glands, was also performed. The results indicate an inverse relationship between the presence and concentration of β-boldenone sulpho- and gluco-conjugates in urine, and stress conditions, expressed by the absence of detection at the slaughterhouse. No significant macroscopic and histologic lesions were detected. Our study indicates that β-boldenone sulphate could be a biomarker of treatment only at the slaughterhouse, while at the farm, in untreated animals (i.e. after a five-month period under the control of Official Veterinarians), sulphate and glucuronide metabolites were found with a

  11. Development of a fast screening and confirmatory method by liquid chromatography-quadrupole-time-of-flight mass spectrometry for glucuronide-conjugated methyltestosterone metabolite in tilapia.

    PubMed

    Amarasinghe, Kande; Chu, Pak-Sin; Evans, Eric; Reimschuessel, Renate; Hasbrouck, Nicholas; Jayasuriya, Hiranthi

    2012-05-23

    This paper describes the development of a fast method to screen and confirm methyltestosterone 17-O-glucuronide (MT-glu) in tilapia bile. The method consists of solid-phase extraction (SPE) followed by high-performance liquid chromatography-mass spectrometry. The system used was an Agilent 6530 Q-TOF with an Agilent Jet stream electrospray ionization interface. The glucuronide detected in the bile was characterized as MT-glu by comparison with a chemically synthesized standard. MT-glu was detected in bile for up to 7 days after dosing. Semiquantification was done with matrix-matched calibration curves, because MT-glu showed signal suppression due to matrix effects. This method provides a suitable tool to monitor the illegal use of methyltestosterone in tilapia culture.

  12. Characterization of urinary metabolites of testosterone, methyltestosterone, mibolerone and boldebone in greyhound dogs.

    PubMed

    Williams, T M; Kind, A J; Hyde, W G; Hill, D W

    2000-06-01

    Androgenic steroids are used in female greyhound dogs to prevent the onset of estrus; moreover, these steroids also have potent anabolic activity. As anabolic steroids increase muscle mass and aggression in animals, the excessive use of these agents in racing greyhounds gives an unfair performance advantage to treated dogs. The biotransformation of most anabolic steroids has not been determined in greyhound dogs. The objective of the present study was to identify the urinary metabolites of testosterone, methyltestosterone, mibolerone, and boldenone in greyhound dogs. These steroids were administered orally (1 mg/kg) to either male or female greyhound dogs and urine samples were collected pre-administration and at 2, 4, 8, 12, 24, 72, and 96 h post-administration. Urine extracts were analyzed by high-performance liquid chromatography/mass spectrometry (HPLC/MS) to identify major metabolites and to determine their urinary excretion profiles. Major urinary metabolites, primarily glucuronide, conjugated and free, were detected for the selected steroids. Sulfate conjugation did not appear to be a major pathway for steroid metabolism and excretion in the greyhound dog. Phase I biotransformation was also evaluated using greyhound dog liver microsomes from untreated dogs. The identification of several in vivo steroid metabolites generated in this study will be useful in detecting these steroids in urine samples submitted for drug screening.

  13. In silico prediction of acyl glucuronide reactivity

    NASA Astrophysics Data System (ADS)

    Potter, Tim; Lewis, Richard; Luker, Tim; Bonnert, Roger; Bernstein, Michael A.; Birkinshaw, Timothy N.; Thom, Stephen; Wenlock, Mark; Paine, Stuart

    2011-11-01

    Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted 13C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs.

  14. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans.

    PubMed

    Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H

    2018-02-01

    More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  15. Identification of a sulfate metabolite of PCB 11 in human serum

    PubMed Central

    Grimm, Fabian A.; Lehmler, Hans-Joachim; Koh, Wen Xin; DeWall, Jeanne; Teesch, Lynn M.; Hornbuckle, Keri C.; Thorne, Peter S.; Robertson, Larry W.; Duffel, Michael W.

    2016-01-01

    Despite increasing evidence for a major role for sulfation in the metabolism of lower-chlorinated polychlorinated biphenyls in vitro and in vivo, and initial evidence for potential bioactivities of the resulting sulfate ester metabolites, the formation of PCB sulfates in PCB exposed human populations had not been explored. The primary goal of this study was to determine if PCB sulfates, and potentially other conjugated PCB derivatives, are relevant classes of PCB metabolites in the serum of humans with known exposures to PCBs. In order to detect and quantify dichlorinated PCB sulfates in serum samples of 46 PCB-exposed individuals from either rural or urban communities, we developed a high-resolution mass spectrometry-based protocol using 4-PCB 11 sulfate as a model compound. The method also allowed the preliminary analysis of these 46 human serum extracts for the presence of other metabolites, such as glucuronic acid conjugates and hydroxylated PCBs. Sulfate ester metabolites derived from dichlorinated PCBs were detectable and quantifiable in more than 20 % of analyzed serum samples. Moreover, we were able to utilize this method to detect PCB glucuronides and hydroxylated PCBs, albeit at lower frequencies than PCB sulfates. Altogether, our results provide initial evidence for the presence of PCB sulfates in human serum. Considering the inability of previously employed analytical protocols for PCBs to extract these sulfate ester metabolites and the concentrations of these metabolites observed in our current study, our data support the hypothesis that total serum levels of PCB metabolites in exposed individuals may have been underestimated in the past. PMID:27816204

  16. Metabolism of a sea lamprey pesticide by fish liver enzymes part A: identification and synthesis of TFM metabolites.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Buchinger, Tyler; Li, Ke; Smith, Scott A; Jones, A Daniel; Li, Weiming

    2018-02-01

    The sea lamprey (Petromyzon marinus) is a destructive invasive species in the Great Lakes that contributed to the collapse of native fish populations in the mid-1900s. 3-Trifluoromethyl-4-nitrophenol (TFM) is a selective pesticide that has been applied to sea lamprey infested tributaries of the Great Lakes to kill larvae since the 1960s and has reduced the populations by as much as 90%. However, the metabolism of TFM by sea lamprey and non-target species is not fully illuminated. Elucidation of TFM metabolism is critical for understanding its mode of action and possible environmental impact. Here, we describe the screening, identification, synthesis and structural characterization of TFM metabolites in livers from sea lamprey and three non-target species that differ in their ability to survive TFM exposure. We identified glucuronidation, sulfation, N-acetylation, glutathione conjugation, and aromatic nitro group reduction as potential detoxification mechanisms. Seven metabolites were synthesized for use as markers of TFM metabolism in fish. Quantitative 1 H NMR was used to assay synthesized metabolite stock solutions that were then used as standard material to develop a quantitative LC-MS/MS method for TFM metabolites.

  17. Triterpenes and flavonol glucuronides from Oenothera cheiranthifolia.

    PubMed

    Nakanishi, Tsutomu; Inatomi, Yuka; Murata, Hiroko; Ishida, Syun-Suke; Fujino, Yuri; Miura, Kanako; Yasuno, Yoshito; Inada, Akira; Lang, Frank A; Murata, Jin

    2007-02-01

    A new ursane-type triterpene, named as cheiranthic acid (1), was isolated from the MeOH extract of whole plants of Oenothera cheiranthifolia (Onagraceae) along with an isomeric pair of known oleanane- and ursane-type triterpenes (arjunolic acid and asiatic acid) and three flavonol glucuronide analogues (quercetin 3-O-glucuronide, its n-butyl ester, and myricetin 3-O-glucuronide). Their structures were elucidated based on spectroscopic evidence.

  18. Simultaneous Quantification of Free and Glucuronidated Cannabinoids in Human Urine by Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Scheidweiler, Karl B.; Desrosiers, Nathalie A.; Huestis, Marilyn A.

    2012-01-01

    Background Cannabis is the most commonly abused drug of abuse and is commonly quantified during urine drug testing. We conducted a controlled drug administration studies investigating efficacy of urinary cannabinoid glucuronide metabolites for documenting recency of cannabis intake and for determining stability of urinary cannabinoids. Methods A liquid chromatography tandem mass spectrometry method was developed and validated quantifying Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol, cannabinol, THC-glucuronide and THCCOOH-glucuronide in 0.5 ml human urine via supported-liquid extraction. Chromatography was performed on an Ultra Biphenyl column with a gradient of 10 mmol/l ammonium acetate, pH 6.15 and 15% methanol in acetonitrile at 0. 4ml/min. Analytes were monitored by positive and negative mode electrospray ionization and multiple reaction monitoring mass spectrometry. Results Linear ranges were 0.5–50 ng/ml for THC-glucuronide, 1–100 ng/ml for THCCOOH, 11-OH-THC and cannabidiol, 2–100 ng/ml for THC and cannabinol, and 5–500 ng/ml for THCCOOH-glucuronide (R2>0.99). Mean extraction efficiencies were 34–73% with analytical recovery (bias) 80.5–118.0% and total imprecision 3.0–10.2% coefficient of variation. Conclusion This method simultaneously quantifies urinary cannabinoids and phase II glucuronide metabolites, and enables evaluation of urinary cannabinoid glucuronides for documenting recency of cannabis intake and cannabinoid stability. The assay is applicable for routine urine cannabinoid testing. PMID:22771478

  19. Quantitative Rationalization of Gemfibrozil Drug Interactions: Consideration of Transporters-Enzyme Interplay and the Role of Circulating Metabolite Gemfibrozil 1-O-β-Glucuronide.

    PubMed

    Varma, Manthena V S; Lin, Jian; Bi, Yi-an; Kimoto, Emi; Rodrigues, A David

    2015-07-01

    Gemfibrozil has been suggested as a sensitive cytochrome P450 2C8 (CYP2C8) inhibitor for clinical investigation by the U.S. Food and Drug Administration and the European Medicines Agency. However, gemfibrozil drug-drug interactions (DDIs) are complex; its major circulating metabolite, gemfibrozil 1-O-β-glucuronide (Gem-Glu), exhibits time-dependent inhibition of CYP2C8, and both parent and metabolite also behave as moderate inhibitors of organic anion transporting polypeptide 1B1 (OATP1B1) in vitro. Additionally, parent and metabolite also inhibit renal transport mediated by OAT3. Here, in vitro inhibition data for gemfibrozil and Gem-Glu were used to assess their impact on the pharmacokinetics of several victim drugs (including rosiglitazone, pioglitazone, cerivastatin, and repaglinide) by employing both static mechanistic and dynamic physiologically based pharmacokinetic (PBPK) models. Of the 48 cases evaluated using the static models, about 75% and 98% of the DDIs were predicted within 1.5- and 2-fold of the observed values, respectively, when incorporating the interaction potential of both gemfibrozil and its 1-O-β-glucuronide. Moreover, the PBPK model was able to recover the plasma profiles of rosiglitazone, pioglitazone, cerivastatin, and repaglinide under control and gemfibrozil treatment conditions. Analyses suggest that Gem-Glu is the major contributor to the DDIs, and its exposure needed to bring about complete inactivation of CYP2C8 is only a fraction of that achieved in the clinic after a therapeutic gemfibrozil dose. Overall, the complex interactions of gemfibrozil can be quantitatively rationalized, and the learnings from this analysis can be applied in support of future predictions of gemfibrozil DDIs. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse.

    PubMed

    Luo, Yu-Syuan; Furuya, Shinji; Chiu, Weihsueh; Rusyn, Ivan

    2018-01-01

    Trichloroethylene (TCE) is a ubiquitous environmental toxicant that is a liver and kidney carcinogen. Conjugation of TCE with glutathione (GSH) leads to formation of nepthrotoxic and mutagenic metabolites postulated to be critical for kidney cancerdevelopment; however, relatively little is known regarding their tissue levels as previous analytical methods for their detection lacked sensitivity. Here, an LC-MS/MS-based method for simultaneous detection of S-(1,2-dichlorovinyl)-glutathione (DCVG), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC) in multiple mouse tissues was developed. This analytical method is rapid, sensitive (limits of detection (LOD) 3-30 fmol across metabolites and tissues), and robust to quantify all three metabolites in liver, kidneys, and serum. The method was used to characterize inter-tissue and inter-strain variability in formation of conjugative metabolites of TCE. Single oral dose of TCE (24, 240 or 800 mg/kg) was administered to male mice from 20 inbred strains of Collaborative Cross. Inter-strain variability in the levels of DCVG, DCVC, and NAcDCVC (GSD = 1.6-2.9) was observed. Whereas NAcDCVC was distributed equally among analyzed tissues, highest levels of DCVG were detected in liver and DCVC in kidneys. Evidence indicated that inter-strain variability in conjugative metabolite formation of TCE might affect susceptibility to adverse health effects and that this method might aid in filling data gaps in human health assessment of TCE.

  1. Generation of phase II in vitro metabolites using homogenized horse liver.

    PubMed

    Wong, Jenny K Y; Chan, George H M; Leung, David K K; Tang, Francis P W; Wan, Terence S M

    2016-02-01

    The successful use of homogenized horse liver for the generation of phase I in vitro metabolites has been previously reported by the authors' laboratory. Prior to the use of homogenized liver, the authors' laboratory had been using mainly horse liver microsomes for carrying out equine in vitro metabolism studies. Homogenized horse liver has shown significant advantages over liver microsomes for in vitro metabolism studies as the procedures are much quicker and have higher capability for generating more in vitro metabolites. In this study, the use of homogenized liver has been extended to the generation of phase II in vitro metabolites (glucuronide and/or sulfate conjugates) using 17β-estradiol, morphine, and boldenone undecylenate as model substrates. It was observed that phase II metabolites could also be generated even without the addition of cofactors. To the authors' knowledge, this is the first report of the successful use of homogenized horse liver for the generation of phase II metabolites. It also demonstrates the ease with which both phase I and phase II metabolites can now be generated in vitro simply by using homogenized liver without the need for ultracentrifuges or tedious preparation steps. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Urinary Metabolites of the Dietary Carcinogen PhIP are Predictive of Colon DNA Adducts After a Low Dose Exposure in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malfatti, M; Dingley, K; Nowell, S

    2006-04-28

    Epidemiologic evidence indicates that exposure to heterocyclic amines (HAs) in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of HAs which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of HA bioactivation in humans, the most mass abundant HA, 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers were administered a dietary relevant dose of [{sup 14}C]PhIP 48-72 h prior to surgery to remove colon tumors. Urine was collected for 24 h after dosingmore » for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All ten subjects were phenotyped for CYP1A2, NAT2, and SULT1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N{sup 2}-glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide, had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group.« less

  3. Identification of Human UDP-Glucuronosyltransferase 1A4 as the Major Isozyme Responsible for the Glucuronidation of 20(S)-Protopanaxadiol in Human Liver Microsomes

    PubMed Central

    Li, Jia; He, Chunyong; Fang, Lianxiang; Yang, Li; Wang, Zhengtao

    2016-01-01

    20(S)-protopanaxadiol (PPD), one of the representative aglycones of ginsenosides, has a broad spectrum of pharmacological activities. Although phase I metabolism has been investigated extensively, information regarding phase II metabolism of this compound remains to be elucidated. Here, a glucuronidated metabolite of PPD in human liver microsomes (HLMs) and rat liver microsomes (RLMs) was unambiguously identified as PPD-3-O-β-d-glucuronide by nuclear magnetic resonance spectroscopy and high resolution mass spectrometry. The chemical inhibition and recombinant human UDP-Glucuronosyltransferase (UGT) isoforms assay showed that the PPD glucuronidation was mainly catalyzed by UGT1A4 in HLM, whereas UGT1A3 showed weak catalytic activity. In conclusion, PPD-3-O-β-d-glucuronide was first identified as the principal glucuronidation metabolite of PPD in HLMs, which was catalyzed by UGT1A4. PMID:27005621

  4. Benzylic oxidation of gemfibrozil-1-O-beta-glucuronide by P450 2C8 leads to heme alkylation and irreversible inhibition.

    PubMed

    Baer, Brian R; DeLisle, Robert Kirk; Allen, Andrew

    2009-07-01

    Gemfibrozil-1-O-beta-glucuronide (GEM-1-O-gluc), a major metabolite of the antihyperlipidemic drug gemfibrozil, is a mechanism-based inhibitor of P450 2C8 in vitro, and this irreversible inactivation may lead to clinical drug-drug interactions between gemfibrozil and other P450 2C8 substrates. In light of this in vitro finding and the observation that the glucuronide conjugate does not contain any obvious structural alerts, the current study was conducted to determine the potential site of GEM-1-O-gluc bioactivation and the subsequent mechanism of P450 2C8 inhibition (i.e., modification of apoprotein or heme). LC/MS analysis of a reaction mixture containing recombinant P450 2C8 and GEM-1-O-gluc revealed that the substrate was covalently linked to the heme prosthetic heme group during catalysis. A combination of mass spectrometry and deuterium isotope effects revealed that a benzylic carbon on the 2',5'-dimethylphenoxy group of GEM-1-O-gluc was covalently bound to the heme of P450 2C8. The regiospecificity of substrate addition to the heme group was not confirmed experimentally, but computational modeling experiments indicated that the gamma-meso position was the most likely site of modification. The metabolite profile, which consisted of two benzyl alcohol metabolites and a 4'-hydroxy-GEM-1-O-gluc metabolite, indicated that oxidation of GEM-1-O-gluc was limited to the 2',5'-dimethylphenoxy group. These results are consistent with an inactivation mechanism wherein GEM-1-O-gluc is oxidized to a benzyl radical intermediate, which evades oxygen rebound, and adds to the gamma-meso position of heme. Mechanism-based inhibition of P450 2C8 can be rationalized by the formation of the GEM-1-O-gluc-heme adduct and the consequential restriction of additional substrate access to the catalytic iron center.

  5. LC-MS-MS analysis of 2,4-dinitrophenol and its phase I and II metabolites in a case of fatal poisoning.

    PubMed

    Politi, Lucia; Vignali, Claudia; Polettini, Aldo

    2007-01-01

    A liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis of biological fluids (blood, urine, gastric content, and bile) collected at autopsy in a case of suspected 2,4-dinitrophenol (DNP) fatal poisoning allowed the determination of DNP and its known metabolites (2-amino-4-nitrophenol and nitro-4-aminophenol). The tentative identification of three conjugated metabolites (DNP glucuronide, DNP sulfate, and 2-amino-4-nitrophenol glucuronide) could be made on the basis of their pseudomolecular ion, isotopic and fragmentation patterns, and retention characteristics. Another DNP metabolite reported in the literature, 2,4-diaminophenol, was not detected in the samples. Postmortem blood concentrations were 48.4 mg/L for DNP and 1.2 mg/L for 2-amino-4-nitrophenol. Gas chromatography-MS screening and quantification in postmortem blood revealed the presence of toxic concentrations of citalopram and its desmethylated metabolite (0.58 and 0.40 mg/L, respectively) and therapeutic or lower than therapeutic levels of olanzapine (0.04 mg/L), desalkylflurazepam (0.02 mg/L), and nordazepam (0.01 mg/L). Based on LC-MS-MS results and on available literature data on DNP poisonings, it was concluded that DNP poisoning played a contributing role, together with citalopram, in the cause of death.

  6. Biotransformation of the novel inotropic agent toborinone (OPC-18790) in rats and dogs. Evidence for the formation of novel glutathione and two cysteine conjugates.

    PubMed

    Kitani, M; Miyamoto, G; Nagasawa, M; Yamada, T; Matsubara, J; Uchida, M; Odomi, M

    1997-06-01

    The metabolism of toborinone, (+/-)-6-[3-(3,4-dimethoxybenzylamino)-2-hydroxypropoxy]-2(1H)-quin - olinone, a novel inotropic agent, was studied in rats and dogs after intravenous administration. Chemical structures of the 13 metabolites were characterized by direct-probe FAB/MS and field desorption/MS, LC/FAB/MS, and various NMR measurements. After intravenous dosing of 10 mg/kg [14C]toborinone, fecal and urinary recoveries of the 14C dose were approximately 70% and 26-30%, respectively, in both rats and dogs. The predominant component of radioactivity was the unchanged toborinone in every biological specimen in rats and dogs. Although unchanged toborinone was predominantly observed, toborinone underwent extensive conjugations with glucuronic acid, sulfate, and glutathione, either directly or following phase I reaction. Metabolites resulting from oxidative N-C cleavage were minor both in number and in quantity in every biological specimen in rats and dogs. In rats, toborinone underwent O-demethylation to form M-7 and successive phase it reaction to yield the glucuronide M-1 and the sulfoconjugate M-2, and deconjugation to yield M-7, which was a primary metabolite accounted for 35.67% of the radioactivity excreted in the feces by 48 hr. Conjugates M-1 and M-2 were the major metabolites in rat plasma. In dogs, toborinone was metabolized via mercapturic acid pathway to yield the primary metabolites, cysteine conjugates M-10 and M-11 that accounted for 19.10% and 6.70% of the radioactivity excreted in the feces by 48 hr and that were detected species specifically in dogs. The glutathione conjugate M-13, which was isolated from in vitro incubations using dog liver, led us to consider a possible mercapturic acid pathway from the parent compound to M-10. Metabolites in dog plasma and those in urine in both rats and dogs were minor in quantity. The metabolic pathways of toborinone in rats and dogs are proposed herein.

  7. Systematic and comprehensive strategy for metabolite profiling in bioanalysis using software-assisted HPLC-Q-TOF: magnoflorine as an example.

    PubMed

    Tian, Xiaoting; Zhang, Yucheng; Li, Zhixiong; Hu, Pei; Chen, Mingcang; Sun, Zhaolin; Lin, Yunfei; Pan, Guoyu; Huang, Chenggang

    2016-03-01

    Metabolite profiling plays a crucial role in drug discovery and development, and HPLC-Q-TOF has evolved into a powerful and effective high-resolution analytical tool for metabolite detection. However, traditional empirical identification is laborious and incomplete. This paper presents a systematic and comprehensive strategy for elucidating metabolite structures using software-assisted HPLC-Q-TOF that takes full advantage of data acquisition, data processing, and data mining technologies, especially for high-throughput metabolite screening. This strategy has been successfully applied in the study of magnoflorine metabolism based on our previous report of its poor bioavailability and drug-drug interactions. In this report, 23 metabolites of magnoflorine were tentatively identified with detailed fragmentation pathways in rat biological samples (urine, feces, plasma, and various organs) after i.p. or i.g. administration, and for most of these metabolites, the metabolic sites were determined. The phase I biotransformations of magnoflorine (M1-M7, M10-M14) consist of demethylation, dehydrogenation, hydroxylation, methylene to ketone transformation, N-ring opening, and dehydroxylation. The phase II biotransformations (M8, M9, and M15-M23) consist of methylation, acetylation, glucuronidation, and N-acetylcysteine conjugation. The results indicate that the extensive metabolism and wide tissue distribution of magnoflorine and its metabolites may partly contribute to its poor bioavailability and drug-drug interaction, and i.p. administration should thus be a suitable approach for isolating magnoflorine metabolites. In summary, this strategy could provide an efficient, rapid, and reliable method for the structural characterization of drug metabolites and may be applicable for general Q-TOF users.

  8. Biotransformation of Flavokawains A, B, and C, Chalcones from Kava (Piper methysticum), by Human Liver Microsomes.

    PubMed

    Zenger, Katharina; Agnolet, Sara; Schneider, Bernd; Kraus, Birgit

    2015-07-22

    The in vitro metabolism of flavokawains A, B, and C (FKA, FKB, FKC), methoxylated chalcones from Piper methysticum, was examined using human liver microsomes. Phase I metabolism and phase II metabolism (glucuronidation) as well as combined phase I+II metabolism were studied. For identification and structure elucidation of microsomal metabolites, LC-HRESIMS and NMR techniques were applied. Major phase I metabolites were generated by demethylation in position C-4 or C-4' and hydroxylation predominantly in position C-4, yielding FKC as phase I metabolite of FKA and FKB, helichrysetin as metabolite of FKA and FKC, and cardamonin as metabolite of FKC. To an even greater extent, flavokawains were metabolized in the presence of uridine diphosphate (UDP) glucuronic acid by microsomal UDP-glucuronosyl transferases. For all flavokawains, monoglucuronides (FKA-2'-O-glucuronide, FKB-2'-O-glucuronide, FKC-2'-O-glucuronide, FKC-4-O-glucuronide) were found as major phase II metabolites. The dominance of generated glucuronides suggests a role of conjugated chalcones as potential active compounds in vivo.

  9. Biotransformation of aflatoxin B1 and its conjugated metabolites by rat gastrointestinal microfloras.

    PubMed Central

    Wei, C; Macy, J M; Hsieh, D P

    1981-01-01

    Rat cecal microflora from high- and low-fiber-fed animals hydrolyzed aflatoxin conjugates to metabolites indistinguishable from aflatoxin B1 and aflatoxin P1, but aflatoxicol was not a transformation product. PMID:6263185

  10. Identification of a sulfate metabolite of PCB 11 in human serum.

    PubMed

    Grimm, Fabian A; Lehmler, Hans-Joachim; Koh, Wen Xin; DeWall, Jeanne; Teesch, Lynn M; Hornbuckle, Keri C; Thorne, Peter S; Robertson, Larry W; Duffel, Michael W

    2017-01-01

    Despite increasing evidence for a major role for sulfation in the metabolism of lower-chlorinated polychlorinated biphenyls in vitro and in vivo, and initial evidence for potential bioactivities of the resulting sulfate ester metabolites, the formation of PCB sulfates in PCB exposed human populations had not been explored. The primary goal of this study was to determine if PCB sulfates, and potentially other conjugated PCB derivatives, are relevant classes of PCB metabolites in the serum of humans with known exposures to PCBs. In order to detect and quantify dichlorinated PCB sulfates in serum samples of 46 PCB-exposed individuals from either rural or urban communities, we developed a high-resolution mass spectrometry-based protocol using 4-PCB 11 sulfate as a model compound. The method also allowed the preliminary analysis of these 46 human serum extracts for the presence of other metabolites, such as glucuronic acid conjugates and hydroxylated PCBs. Sulfate ester metabolites derived from dichlorinated PCBs were detectable and quantifiable in more than 20% of analyzed serum samples. Moreover, we were able to utilize this method to detect PCB glucuronides and hydroxylated PCBs, albeit at lower frequencies than PCB sulfates. Altogether, our results provide initial evidence for the presence of PCB sulfates in human serum. Considering the inability of previously employed analytical protocols for PCBs to extract these sulfate ester metabolites and the concentrations of these metabolites observed in our current study, our data support the hypothesis that total serum levels of PCB metabolites in exposed individuals may have been underestimated in the past. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. HSCCC-based strategy for preparative separation of in vivo metabolites after administration of an herbal medicine: Saussurea laniceps, a case study.

    PubMed

    Yi, Tao; Zhu, Lin; Zhu, Guo-Yuan; Tang, Yi-Na; Xu, Jun; Fan, Jia-Yi; Zhao, Zhong-Zhen; Chen, Hu-Biao

    2016-09-13

    This paper reports a novel strategy based on high-speed counter-current chromatography (HSCCC) technique to separate in vivo metabolites from refined extract of urine after administration of an herbal medicine. Saussurea laniceps (SL) was chosen as a model herbal medicine to be used to test the feasibility of our proposed strategy. This strategy succeeded in the case of separating four in vivo metabolites of SL from the urine of rats. Briefly, after oral administration of SL extract to three rats for ten days (2.0 g/kg/d), 269.1 mg of umbelliferone glucuronide (M1, purity, 92.5%), 432.5 mg of scopoletin glucuronide (M2, purity, 93.2%), 221.4 mg of scopoletin glucuronide (M3, purity, 92.9%) and 319.0 mg of scopoletin glucuronide (M4, purity, 90.4%) were separated from 420 mL of the rat urine by HSCCC using a two-phase solvent system composed of methyl tert-butyl ether-n-butanol-acetonitrile-water (MTBE-n-BuOH-ACN-H2O) at a volume ratio of 10:30:11:49. The chemical structures of the four metabolites, M1 to M4, were confirmed by MS and (1)H, (13)C NMR. As far as we know, this is the first report of the successful separation of in vivo metabolites by HSCCC after administration of an herbal medicine.

  12. Profiling and identification of chlorogenic acid metabolites in rats by ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometer.

    PubMed

    Wang, Fei; Shang, Zhanpeng; Xu, Lulu; Wang, Zhibin; Zhao, Wenjing; Mei, XiaoDan; Lu, Jianqiu; Zhang, Jia Yu

    2018-06-01

    1. Chlorogenic acids (CGAs), one kind of major bioactive constituents isolated from Flos Lonicera Japonica, possess many biological activities, such as antibacterial, antioxidant and antiviral activities. In this study, we established an efficient strategy using ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS) to profile the in vivo metabolic fate of CGAs in rat urine and plasma. 2. The extract from Flos Lonicera Japonica was orally administrated to Sprague-Dawley (SD) rats at a dose of 1000 mg/kg body weight. Then, a combination of various post-acquisition data mining methods, including high-resolution extracted ion chromatogram (HREIC) and multiple mass defect filters (MMDFs) and diagnostic product ions (DPIs), were adopted to characterize the known and unknown CGA metabolites in SD rats. 3. As a result, a total of 68 CGA metabolites were unambiguously or tentatively screened and characterized. These metabolites, including 18 prototype compounds and 50 metabolites, were deduced to be yielded via methylation, hydrogenation, demethylation, dehydration, sulfate conjugation, glucuronide conjugation, glycosylation conjugation and their composite reactions, which mainly occurred to caffeoylquinic acids, dicaffeoylquinic acids, p-coumaroylquinic acids and feruloylquinic acids. 4. In conclusion, this study profiled CGA metabolites, which are useful in understanding the in vivo metabolic fate, effective forms, and pharmacological and toxic actions of CGAs.

  13. Phenolic metabolites in plasma and tissues of rats fed with a grape pomace extract as assessed by liquid chromatography-tandem mass spectrometry.

    PubMed

    Rodriguez Lanzi, Cecilia; Perdicaro, Diahann J; Antoniolli, Andrea; Piccoli, Patricia; Vazquez Prieto, Marcela A; Fontana, Ariel

    2018-05-31

    Grape pomace extract (GPE) is a rich and relatively low-cost source of phenolic compounds. However, little is known about the main GPE metabolites in mammals, which could help explain the observed health-promoting effects. This study investigated the presence of parent compounds from flavanol, flavonol and stilbene families and their metabolites in rat plasma and tissues after an acute intake of GPE in doses of 300 and 600 mg kg/body weight. The measurement of free compounds and their metabolites was performed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Results showed the presence of epicatechin, epicatechin methyl-glucuronide, epicatechin methyl-sulphate, catechin, catechin-glucuronide, quercetin methyl-glucuronide, resveratrol-3-glucuronide, resveratrol-4-glucuronide and resveratrol-3-sulphate in plasma, which was dose dependent. The most abundant measured compound in plasma was epicatechin-glucuronide. The presence of glucuronidated and methyl-glucuronidated forms of catechin were observed in the liver at both doses, while epicatechin-glucuronide and methyl-glucuronide were detected only upon intake of 600 mg GPE/kg body weight. At this dose epicatechin-glucuronide and methyl-glucuronide were also detected in muscle, and catechin methyl-glucuronide in adipose tissue. Results show the main GPE metabolites present in rat tissues after oral consumption, contributing to better understand the health benefits of GPE and its potential utilization as a functional ingredient. Copyright © 2018. Published by Elsevier Inc.

  14. p-aminophenol nephrotoxicity: biosynthesis of toxic glutathione conjugates.

    PubMed

    Klos, C; Koob, M; Kramer, C; Dekant, W

    1992-07-01

    p-Aminophenol causes necrosis of the pars recta of the proximal tubules in rats, and its nephrotoxicity may be due to glutathione-dependent bioactivation reactions. We have investigated the hepatic metabolism of p-aminophenol in Wistar rats and the cytotoxicity of formed glutathione S-conjugates in rat renal epithelial cells. After ip application of p-aminophenol (100 mg/kg), the following metabolites were identified in rat bile: 4-amino-2-(glutathion-S-yl)phenol, 4-amino-3-(glutathion-S-yl)-phenol, 4-amino-2,5-bis(glutathion-S-yl)phenol, 4-amino-2,3,5(or 6)-tris(glutathion-S-yl)phenol, an aminophenol conjugate (likely a sulfate or glucuronide), acetaminophen glucuronide, and 3-(glutathion-S-yl)acetaminophen. 4-Amino-3-(glutathion-S-yl)phenol, 4-amino-2,5-bis(glutathion-S-yl)phenol, and 4-amino-2,3,5(or 6)-tris(glutathion-S-yl)phenol induced a dose- and time-dependent loss of cell viability in rat kidney cortical cells. Cell killing was significantly reduced by inhibition of gamma-glutamyl transpeptidase with Acivicin. p-Aminophenol was also toxic to renal epithelial cells. Coincubation of p-aminophenol with tetraethylammonium bromide, a competitive inhibitor of the organic cation transporter, and with SKF-525A, an inhibitor of cytochrome P450, protected cells from p-aminophenol-induced toxicity. p-Aminophenol would thus be accumulated in the kidney mainly by organic cation transport systems, which are concentrated in the S-1 segment of the proximal tubule. However, p-aminophenol toxicity in vivo is directed toward the S-2 and S-3 segments, which are rich in gamma-glutamyl transpeptidase. These results and the observation that biliary cannulation and glutathione depletion reduce p-aminophenol nephrotoxicity suggest that the biosynthesis of toxic glutathione conjugates is responsible for p-aminophenol nephrotoxicity in vivo. The aminophenol glutathione S-conjugates formed induce p-aminophenol nephrotoxicity by a pathway dependent on gamma-glutamyl transpeptidase.

  15. Interest of fluorine-19 nuclear magnetic resonance spectroscopy in the detection, identification and quantification of metabolites of anticancer and antifungal fluoropyrimidine drugs in human biofluids.

    PubMed

    Martino, Robert; Gilard, Véronique; Desmoulin, Franck; Malet-Martino, Myriam

    2006-01-01

    The metabolism of fluorouracil and fluorocytosine, two 5-fluoropyrimidine drugs in clinical use, was investigated. (19)F nuclear magnetic resonance (NMR) spectroscopy was used as an analytical technique for the detection, identification and quantification of fluorinated metabolites of these drugs in intact human biofluids as well as fluorinated degradation compounds of fluorouracil in commercial vials. (19)F NMR provides a highly specific tool for the detection and absolute quantification, in a single run, of all the fluorinated species, including unexpected substances, present in biofluids of patients treated with fluorouracil or fluorocytosine. Besides the parent drug and the already known fluorinated metabolites, nine new metabolites were identified for the first time with (19)F NMR in human biofluids. Six of them can only be observed with this technique: fluoride ion, N-carboxy-alpha-fluoro-beta-alanine, alpha-fluoro-beta-alanine conjugate with deoxycholic acid, 2-fluoro-3-hydroxypropanoic acid, fluoroacetic acid, O(2)-beta-glucuronide of fluorocytosine. (19)F NMR studies of biological fluids of patients treated with anticancer fluorouracil or antifungal fluorocytosine have furthered the understanding of their catabolic pathways.

  16. Mitochondrial Dysfunction Leads to Deconjugation of Quercetin Glucuronides in Inflammatory Macrophages

    PubMed Central

    Miki, Satomi; Shiba, Yuko; Minekawa, Shoko; Nishikawa, Tomomi; Mukai, Rie; Terao, Junji; Kawai, Yoshichika

    2013-01-01

    Dietary flavonoids, such as quercetin, have long been recognized to protect blood vessels from atherogenic inflammation by yet unknown mechanisms. We have previously discovered the specific localization of quercetin-3-O-glucuronide (Q3GA), a phase II metabolite of quercetin, in macrophage cells in the human atherosclerotic lesions, but the biological significance is poorly understood. We have now demonstrated the molecular basis of the interaction between quercetin glucuronides and macrophages, leading to deconjugation of the glucuronides into the active aglycone. In vitro experiments showed that Q3GA was bound to the cell surface proteins of macrophages through anion binding and was readily deconjugated into the aglycone. It is of interest that the macrophage-mediated deconjugation of Q3GA was significantly enhanced upon inflammatory activation by lipopolysaccharide (LPS). Zymography and immunoblotting analysis revealed that β-glucuronidase is the major enzyme responsible for the deglucuronidation, whereas the secretion rate was not affected after LPS treatment. We found that extracellular acidification, which is required for the activity of β-glucuronidase, was significantly induced upon LPS treatment and was due to the increased lactate secretion associated with mitochondrial dysfunction. In addition, the β-glucuronidase secretion, which is triggered by intracellular calcium ions, was also induced by mitochondria dysfunction characterized using antimycin-A (a mitochondrial inhibitor) and siRNA-knockdown of Atg7 (an essential gene for autophagy). The deconjugated aglycone, quercetin, acts as an anti-inflammatory agent in the stimulated macrophages by inhibiting the c-Jun N-terminal kinase activation, whereas Q3GA acts only in the presence of extracellular β-glucuronidase activity. Finally, we demonstrated the deconjugation of quercetin glucuronides including the sulfoglucuronides in vivo in the spleen of mice challenged with LPS. These results showed that

  17. Metabolism of oral 9-cis-retinoic acid in the human. Identification of 9-cis-retinoyl-beta-glucuronide and 9-cis-4-oxo-retinoyl-beta-glucuronide as urinary metabolites.

    PubMed

    Sass, J O; Masgrau, E; Saurat, J H; Nau, H

    1995-09-01

    Data from a number of investigators suggest that the 9-cis-isomer of RA1 (9-cis-RA) may be a promising agent in chemoprevention and treatment of certain types of cancer. Therefore, clinical studies on this retinoid have been initiated. However, up to now, no information has been published on the metabolism of 9-cis-RA in the human. Herein, we report the first data on retinoid metabolism after multiple administration of 9-cis-RA (20 mg/day po) to human volunteers. After 2 and 12-13 hr, plasma concentrations of 9-cis-RA and its metabolites 9,13-dicis-RA, 13-cis-RA, and all-trans-RA were low. In contrast, dosing with 13-cis-RA yielded much higher plasma retinoid levels. Effects on plasma retinol concentrations did not become obvious after any drug treatment. Several retinoid metabolites were found in the urine of 9-cis-RA-treated individuals, and 9-cis-RAG, as well as 9-cis-4-oxo-RAG, could be identified. After treatment with 9-cis-RA, high concentrations of the administered drug were found in the feces, along with comparably low concentrations of 13-cis-RA, 9,13-dicis-RA, and all-trans-RA. Our report indicates that 9-cis-RA is either eliminated much more rapidly than 13-cis-RA, or it is poorly absorbed, and presents the characterization of two urinary glucuronides.

  18. The profiling of the metabolites of hirsutine in rat by ultra-high performance liquid chromatography coupled with linear ion trap Orbitrap mass spectrometry: An improved strategy for the systematic screening and identification of metabolites in multi-samples in vivo.

    PubMed

    Wang, Jianwei; Qi, Peng; Hou, Jinjun; Shen, Yao; Yang, Min; Bi, Qirui; Deng, Yanping; Shi, Xiaojian; Feng, Ruihong; Feng, Zijin; Wu, Wanying; Guo, Dean

    2017-02-05

    Drug metabolites identification and construction of metabolic profile are meaningful work for the drug discovery and development. The great challenge during this process is the work of the structural clarification of possible metabolites in the complicated biological matrix, which often resulting in a huge amount data sets, especially in multi-samples in vivo. Analyzing these complex data manually is time-consuming and laborious. The object of this study was to develop a practical strategy for screening and identifying of metabolites from multiple biological samples efficiently. Using hirsutine (HTI), an active components of Uncaria rhynchophylla (Gouteng in Chinese) as a model and its plasma, urine, bile, feces and various tissues were analyzed with data processing software (Metwork), data mining tool (Progenesis QI), and HR-MS n data by ultra-high performance liquid chromatography/linear ion trap-Orbitrap mass spectrometry (U-HPLC/LTQ-Orbitrap-MS). A total of 67 metabolites of HTI in rat biological samples were tentatively identified with established library, and to our knowledge most of which were reported for the first time. The possible metabolic pathways were subsequently proposed, hydroxylation, dehydrogenation, oxidation, N-oxidation, hydrolysis, reduction and glucuronide conjugation were mainly involved according to metabolic profile. The result proved application of this improved strategy was efficient, rapid, and reliable for metabolic profiling of components in multiple biological samples and could significantly expand our understanding of metabolic situation of TCM in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Direct radioimmunoassay of urinary estrogen and pregnanediol glucuronides during the menstrual cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanczyk, F.Z.; Miyakawa, I.; Goebelsmann, U.

    Assays measuring immunoreactive estrone glucuronide (E/sub 1/G), estradiol-3-glucuronide (E/sub 2/-3G), estradiol-17..beta..-glucuronide (E/sub 2/-17G), estriol-3-glucuronide (E/sub 3/-3G), estriol-16..cap alpha..-glucuronide (E/sub 3/-16G), and pregnanediol-3..cap alpha..-glucuronide (Pd-3G) directly in diluted urine were developed and validated. These estrogen and pregnanediol glucuronide fractions were measured in aliquots of 24-hour and overnight samples of urine collected daily from seven women for one menstrual cycle. Urinary hormone excretion was correlated with daily serum estradiol (E/sub 2/), progesterone (P), and lutenizing hormonee (LH) levels. A sharp midcycle LH peak preceded by a preovulatory rise in serum E/sub 2/ and followed by luteal phase serum P levels were notedmore » in each of the seven apparently ovulatory cycles. Twenty-four-hour and overnight urinary excretion patterns of estrogen glucuronides were similar to those of serum E/sub 2/. Of the five estrogen glucuronide fractions tested, excretion of E/sub 2/-17G exhibited the earliest and steepest ascending slope of the preovulatory estrogen surge and correlated best with serum E/sub 2/ levels. Urinary excretion of E/sub 1/-G, E/sub 2/-3G, and E/sub 3/-16G also showed an early and steep preovulatory rise and preceded that of E/sub 3/-3G, whereas urinary excretion of E/sub 3/-3G exhibited the poorest correlation with serum E/sub 2/ concentrations. The urinary excretion of Pd-3G rose parallel to serum P levels and was markedly elevated 2 to 3 days after the midcycle LH peak in both 24-hour and overnight collections of urine. These results indicate that among the urinary estrogen conjugate fractions tested, E/sub 2/-17G is the one that most suitably predicts ovulation.« less

  20. Evidence for differences in regioselective and stereoselective glucuronidation of silybin diastereomers from milk thistle (Silybum marianum) by human UDP-glucuronosyltransferases.

    PubMed

    Jančová, Petra; Siller, Michal; Anzenbacherová, Eva; Křen, Vladimír; Anzenbacher, Pavel; Simánek, Vilím

    2011-09-01

    The flavonolignan silybin, the main component of silymarin, extract from the seeds of Silybum marianum, is used mostly as a hepatoprotectant. Silybin is almost 1:1 mixture of two diastereomers A and B. The individual UDP-glucuronosyltransferases (UGTs) contributing to the metabolism of silybin diastereomers have not been identified yet. In this study, the contribution of UGTs to silybin metabolism was examined. The potential silybin metabolites were formed in vitro by incubating silybin (i) with the human liver microsomal fraction, (ii) with human hepatocytes and finally (iii) with 12 recombinant UGTs (UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15 and 2B17). High-performance liquid chromatographic (HPLC) techniques with UV detection and additionally MS detection were used for metabolite identification. Hepatocytes and microsomes formed silybin A-7-O-β-D-glucuronides, B-7-O-β-D-glucuronides, A-20-O-β-D-glucuronides and B-20-O-β-D-glucuronides. With recombinant UGTs, the major role of the UGT1A1, 1A3, 1A8 and 1A10 enzymes but also of the UGT1A6, 1A7, 1A9, 2B7 and 2B15 in the stereoselective reactions leading to the respective silybin glucuronides was confirmed. UGT1A4, UGT2B4 and UGT2B17 did not participate in silybin glucuronidation. The predominant formation of 7-O-β-D-glucuronides and the preferential glucuronidation of silybin B diastereomer in vitro by human UGTs were confirmed.

  1. Application of LC-MS analysis to the characterisation of the in vitro and in vivo metabolite profiles of RGH-1756 in the rat.

    PubMed

    Gémesi, L I; Kapás, M; Szeberényi, S

    2001-03-01

    RGH-1756, 1-(2-methoxy-phenyl)-4-(4-[4-(6-imidazol[2,1-b] thiazolyl)-phenoxy]-butyl-4-(14)C)-piperazine dimethane is a novel atypical antipsychotic drug candidate of Gedeon Richter Ltd. The metabolic pathways of the compound have been investigated by profiling the metabolites present in plasma, bile, and faeces samples of rats treated with (14)C-RGH-1756. The metabolites formed in vitro by rat liver microsomes have also been analysed. Good separation of the compounds has been achieved by gradient HPLC method on Zorbax/Bonus RP-C18 column. Radiometry and mass spectrometry have been applied to detect and characterise the metabolites. The metabolite formed by oxidative cleavage of the chain at the carbon atom adjacent to the piperazine nitrogen has been identified as the major plasma metabolite. Glucuronide conjugate of hydroxy-RGH-1756 has been found as one of the main metabolites excreted in the bile where the unchanged compound has not been detected.

  2. Novel type of ornithine-glutathione double conjugate excreted as a major metabolite into the bile of rats administered clebopride.

    PubMed

    Ishizuka, T; Komiya, I; Hiratsuka, A; Watabe, T

    1990-06-01

    Rats orally given radioactive Clebopride [[14C]CP; N-(1'-benzyl-4'-piperidyl)-2-[14C]methoxy-4-amino-5-chlorobenzamide++ +], an antiulcer agent, excreted a novel type of ornithine (Orn)-GSH double conjugate in the bile as a major metabolite [( 14C]BMCP), corresponding to 18% of the dose. The present study provides the first evidence for Orn conjugation of a xenobiotic in mammals and demonstrates that the structure of the radioactive conjugate differs fundamentally from those known in birds and reptiles. The structure of the biliary metabolite, [14C]BMCP, purified to homogeneity by silica gel thin layer and reverse phase high pressure liquid chromatography, was elucidated as S-[2-ornithylamino-4-[14C]methoxy-5-(1'-methyl-4'-piperidylamin o) carboxyphenyl]glutathione, based mainly on the following facts: 1) BMCP showed a protonated molecular ion (M + H)+ peak at m/z 683 in the secondary ion mass spectrum and 2) [14C]BMCP afforded Orn, glutamic acid, glycine, S-(2-amino-4-[14C]methoxy-5-carboxyphenyl)cysteine [( 14C]AMCC), and 1-methyl-4-aminopiperidine (MAP) quantitatively, in an equal molar ratio, by complete hydrolysis with peptidase. Thus, BMCP was a metabolite with three enzymatically hydrolyzable amide bonds in addition to the one existing originally in the parent structure of the drug, which produces MAP by peptic digestion. Of the three additional amide bonds of BMCP, one was a novel type of bond formed by condensation of the alpha-carboxylic acid group of Orn with the primary aromatic amino group of the drug and the other two were in the S-glutathionyl residue, substituted for the chlorine atom vicinal to the Orn-conjugating primary amino group in the aromatic ring and affording glutamic acid, glycine, and the S-cysteine conjugate AMCC by hydrolysis of BMCP with the peptidase. Substitution of a methyl group for the benzyl group at the piperidine ring nitrogen atom, leading to the formation of MAP by peptic digestion, also occurred during metabolism of CP to

  3. Formation of the Thiol Conjugates and Active Metabolite of Clopidogrel by Human Liver Microsomes

    PubMed Central

    Lau, Wei C.; Hollenberg, Paul F.

    2012-01-01

    We reported previously the formation of a glutathionyl conjugate of the active metabolite (AM) of clopidogrel and the covalent modification of a cysteinyl residue of human cytochrome P450 2B6 in a reconstituted system (Mol Pharmacol 80:839–847, 2011). In this work, we extended our studies of the metabolism of clopidogrel to human liver microsomes in the presence of four reductants, namely, GSH, l-Cys, N-acetyl-l-cysteine (NAC), and ascorbic acid. Our results demonstrated that formation of the AM was greatly affected by the reductant used and the relative amounts of the AM formed were increased in the following order: NAC (17%) < l-Cys (53%) < ascorbic acid (61%) < GSH (100%). AM-thiol conjugates were observed in the presence of NAC, l-Cys, and GSH. In the case of GSH, the formation of both the AM and the glutathionyl conjugate was dependent on the GSH concentrations, with similar Km values of ∼0.5 mM, which indicates that formation of the thiol conjugates constitutes an integral part of the bioactivation processes for clopidogrel. It was observed that the AM was slowly converted to the thiol conjugate, with a half-life of ∼10 h. Addition of dithiothreitol to the reaction mixture reversed the conversion, which resulted in a decrease in AM-thiol conjugate levels and a concomitant increase in AM levels, whereas addition of NAC led to the formation of AM-NAC and a concomitant decrease in AM-GSH levels. These results not only confirm that the AM is formed through oxidative opening of the thiolactone ring but also suggest the existence of an equilibrium between the AM, the thiol conjugates, and the reductants. These factors may affect the effective concentrations of the AM in vivo. PMID:22584220

  4. New drostanolone metabolites in human urine by liquid chromatography time-of-flight tandem mass spectrometry and their application for doping control.

    PubMed

    Liu, Yang; Lu, Jianghai; Yang, Sheng; Zhang, Qingying; Xu, Youxuan

    2016-04-01

    Drostanolone is one of the most frequently detected anabolic androgenic steroids in doping control analysis. Here, we studied drostanolone urinary metabolic profiles using liquid chromatography quadruple time of flight mass spectrometry (LC-QTOF-MS) in full scan and targeted MS/MS modes with accurate mass measurement. The drug was administered to one healthy male volunteer and liquid-liquid extraction along with direct-injection were used to analyze urine samples. Chromatographic peaks for potential metabolites were identified with the theoretical [M-H](-) as a target ion in a full scan experiment and actual deprotonated ions were analyzed in targeted MS/MS mode. Eleven metabolites including five new sulfates, five glucuronide conjugates, and one free metabolite were confirmed for drostanolone. Due to the absence of useful fragment ions to illustrate the steroid ring structure of drostanolone phase II metabolites, gas chromatography mass spectrometry (GC-MS) was used to obtain structural details of the trimethylsilylated phase I metabolite released after enzymatic hydrolysis and a potential structure was proposed using a combined MS approach. Metabolite detection times were recorded and S4 (2α-methyl-5α-androstan-17-one-6β-ol-3α-sulfate) and G1 (2α-methyl-5α-androstan-17-one-3α-glucuronide) were thought to be new potential biomarkers for drostanolone misuse which can be detected up to 24days by liquid-liquid extraction and 7days by direct-injection analysis after intramuscular injection. S4 and G1 were also detected in two drostanolone-positive routine urine samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effects of clofibrate and indocyanine green on the hepatobiliary disposition of acetaminophen and its metabolites in male CD-1 mice.

    PubMed

    Chen, C; Hennig, G E; McCann, D J; Manautou, J E

    2000-11-01

    1. The effects of clofibrate (CFB) and indocyanine green (ICG) on the biliary excretion of acetaminophen (APAP) and its metabolites were investigated. 2. Male CD-1 mice were pretreated with 500 mg CFB/kg, i.p. for 10 days. Controls received corn oil vehicle only. After overnight fasting, common bile duct-cannulated mice were challenged with a non-toxic dose of APAP (1 mmol/kg, i.v.). 3. CFB pretreatment did not affect bile flow rate, nor did it affect the cumulative biliary excretion of APAP and its conjugated metabolites. 4. Additional CFB or corn oil pretreated mice were given 30 mumol indocyanine green (ICG)/kg, i.v., immediately before APAP dosing. ICG is a non-metabolizable organic anion that is completely excreted into the bile through a canalicular transport process for organic anions. 5. ICG significantly decreased the bile flow rate and biliary concentration of APAP-glutathione, APAP-glucuronide and APAP-mercapturate within the first hour after dosing without affecting the biliary concentration of APAP. 6. The results indicate that CFB pretreatment does not affect the total amount of APAP and its metabolites excreted in bile. They also suggest that the biliary excretion of several conjugated metabolites of APAP share the same excretory pathway with the organic anion ICG.

  6. Curcumin β-D-Glucuronide Plays an Important Role to Keep High Levels of Free-Form Curcumin in the Blood.

    PubMed

    Ozawa, Hitomi; Imaizumi, Atsushi; Sumi, Yoshihiko; Hashimoto, Tadashi; Kanai, Masashi; Makino, Yuji; Tsuda, Takanori; Takahashi, Nobuaki; Kakeya, Hideaki

    2017-01-01

    Curcumin, a polyphenol derived from the rhizome of the naturally occurring plant Curcuma longa, has various pharmacological actions such as antioxidant and anti-inflammatory effects. In this paper, we evaluated the role of its internal metabolite, curcumin β-D-glucuronide (curcumin monoglucuronide, CMG), by investigating curcumin kinetics and metabolism in the blood. Firstly, we orally administered highly bioavailable curcumin to rats to elucidate its kinetics, and observed not only the free-form of curcumin, but also, curcumin in a conjugated form, within the portal vein. We confirmed that curcumin is conjugated when it passes through the intestinal wall. CMG, one of the metabolites, was then orally administered to rats. Despite its high aqueous solubility compared to free-form curcumin, it was not well absorbed. In addition, CMG was injected intravenously into rats in order to assess its metabolic behavior in the blood. Interestingly, high levels of free-form curcumin, thought to be sufficiently high to be pharmacologically active, were observed. The in vivo antitumor effects of CMG following intravenous injection were then evaluated in tumor-bearing mice with the HCT116 human colon cancer cell line. The tumor volume within the CMG group was significantly less than that of the control group. Moreover, there was no significant loss of body weight in the CMG group compared to the control group. These results suggest that CMG could be used as an anticancer agent without the serious side effects that most anticancer agents have.

  7. Development and validation of an UPLC-MS/MS method for the quantification of irinotecan, SN-38 and SN-38 glucuronide in plasma, urine, feces, liver and kidney: Application to a pharmacokinetic study of irinotecan in rats.

    PubMed

    Basu, Sumit; Zeng, Min; Yin, Taijun; Gao, Song; Hu, Ming

    2016-03-15

    The objective of this research is to develop and validate a sensitive and reproducible UPLC-MS/MS method to quantify irinotecan, its active metabolite SN-38 and SN-38 glucuronide (phase II metabolite of SN-38) simultaneously in different bio-matrices (plasma, urine, feces), tissues (liver and kidney) and to use the method to investigate its pharmacokinetic behavior in rats. Irinotecan, SN-38 and SN-38 glucuronide has been resolved and separated by C18 column using acetonitrile and 0.1% formic acid in water used as the mobile phases. Triple quadruple mass spectrometer using multiple reaction monitoring (MRM) with positive scan mode were employed to perform mass analysis. The results showed that the linear response range of irinotecan and SN-38 in plasma, feces, liver and kidney is 4.88-10000 nM, 39-5000 nM, 48.8-6250 nM and 48.8-6250 nM, respectively (R(2)>0.99). In case of SN-38 glucuronide, the standard curves were linear in the concentration range of 6.25-2000 nM, 4.88-1250 nM, 9.8-1250 nM and 9.8-1250 nM in plasma, feces, liver and kidney homogenates, respectively. The lower limit of detection (LLOD) of irinotecan, SN-38 and SN-38 glucuronide was determined to be less than 25 nM in all bio-matrices as well as tissue homogenates. Recoveries of irinotecan, SN-38 and SN-38 glucuronide at three different concentrations (low, medium and high) were not less than 85% at three different concentrations in plasma and feces. The percentage matrix factors in different bio-matrices and tissues were within 20%. The UPLC-MS/MS method was validated with intra-day and inter-day precision of less than 15% in plasma, feces, liver and kidney. Owing to the high sensitivity of this method, only 20 μl of plasma, urine and homogenates of liver, kidney and feces is needed. The validated method has been successfully employed for pharmacokinetic evaluation of irinotecan in male wistar rats to quantify irinotecan, SN-38 and SN-38 glucuronide in plasma, feces, and urine samples. Published

  8. Development and validation of an UPLC-MS/MS method for the quantification of irinotecan, SN 38 and SN-38 glucuronide in plasma, urine, feces, liver and kidney: Application to a pharmacokinetic study of irinotecan in rats

    PubMed Central

    Basu, Sumit; Zeng, Min; Yin, Taijun; Gao, Song; Hu, Ming

    2016-01-01

    The objective of this research is to develop and validate a sensitive and reproducible UPLC-MS/MS method to quantify irinotecan, its active metabolite SN-38 and SN-38 glucuronide (phase II metabolite of SN-38) simultaneously in different bio-matrices (plasma, urine, feces), tissues (liver and kidney) and to use the method to investigate its pharmacokinetic behavior in rats. Irinotecan, SN-38 and SN-38 glucuronide has been resolved and separated by C18 column using acetonitrile and 0.1% formic acid in water used as the mobile phases. Triple quadruple mass spectrometer using multiple reaction monitoring (MRM) with positive scan mode were employed to perform mass analysis. The results showed that the linear response range of irinotecan and SN-38 in plasma, feces, liver and kidney is 4.88 –10000 nM, 39 – 5000 nM, 48.8 –6250 nM and 48.8 – 6250 nM, respectively (R2 > 0.99). In case of SN-38 glucuronide, the standard curves were linear in the concentration range of 6.25 – 2000 nM, 4.88 – 1250 nM, 9.8 – 1250 nM and 9.8 – 1250 nM in plasma, feces, liver and kidney homogenates, respectively. The lower limit of detection (LLOD) of irinotecan, SN-38 and SN-38 glucuronide was determined to be less than 25 nM in all bio-matrices as well as tissue homogenates. Recoveries of irinotecan, SN-38 and SN-38 glucuronide at three different concentrations (low, medium and high) were not less than 85% at three different concentrations in plasma and feces. The percentage matrix factors in different bio-matrices and tissues were within 20%. The UPLC-MS/MS method was validated with intra-day and inter-day precision of less than 15% in plasma, feces, liver and kidney. Owing to the high sensitivity of this method, only 20 µl of plasma, urine and homogenates of liver, kidney and feces is needed. The validated method has been successfully employed for pharmacokinetic evaluation of irinotecan in male wistar rats to quantify irinotecan, SN-38 and SN-38 glucuronide in plasma, feces

  9. Evaluation of equine urine reactivity towards phase II metabolites of 17-hydroxy steroids by liquid chromatography/tandem mass spectrometry.

    PubMed

    Fidani, M; Gamberini, M C; Pasello, E; Palazzoli, F; De Iuliis, P; Montana, M; Arioli, F

    2009-01-01

    Proper storage conditions of biological samples are fundamental to avoid microbiological contamination that can cause chemical modifications of the target analytes. A simple liquid chromatography/tandem mass spectrometry (LC/MS/MS) method through direct injection of diluted samples, without prior extraction, was used to evaluate the stability of phase II metabolites of boldenone and testosterone (glucuronides and sulphates) in intentionally poorly stored equine urine samples. We also considered the stability of some deuterated conjugated steroids generally used as internal standards, such as deuterated testosterone and epitestosterone glucuronides, and deuterated boldenone and testosterone sulphates. The urines were kept for 1 day at room temperature, to mimic poor storage conditions, then spiked with the above steroids and kept at different temperatures (-18 degrees C, 4 degrees C, room temperature). It has been possible to confirm the instability of glucuronide compounds when added to poorly stored equine urine samples. In particular, both 17beta- and 17alpha-glucuronide steroids were exposed to hydrolysis leading to non-conjugated steroids. Only 17beta-hydroxy steroids were exposed to oxidation to their keto derivatives whereas the 17alpha-hydroxy steroids were highly stable. The sulphate compounds were completely stable. The deuterated compounds underwent the same behaviour as the unlabelled compounds. The transformations were observed in urine samples kept at room temperature and at a temperature of 4 degrees C (at a slower rate). No modifications were observed in frozen urine samples. In the light of the latter results, the immediate freezing at -18 degrees C of the collected samples and their instant analysis after thawing is the proposed procedure for preventing the transformations that occur in urine, usually due to microbiological contamination. (c) 2008 John Wiley & Sons, Ltd.

  10. Identification of BVT.2938 metabolites by LC/MS and LC/MS/MS after in vitro incubations with liver microsomes and hepatocytes.

    PubMed

    Edlund, Per Olof; Baranczewski, Pawel

    2004-03-10

    The metabolism of the 5HT2c agonist BVT.2938, 1-(3-[2-[(2-ethoxy-3-pyridinyl)oxy]ethoxy]-2-pyrazinyl)-2(R)-methylpiperazine, was studied in vitro by incubation with rat, monkey and human liver microsomes as well as cryopreserved hepatocytes, followed by liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS analysis on a quadrupole-time of flight mass spectrometer for structural elucidation. Deuterium exchange on column was used to differentiate between hydroxylation and N-oxidation. Liver microsomes were incubated in two different buffer systems with optimum conditions for cytochrome P450 activity or UDP-glucuronosyltransferase activity. The major phase I metabolites of BVT.2938 originated from O-deethylation of the pyridine ring, O-dealkylation of the ethylene bridge, pyrazine ring hydroxylation, hydroxylation of pyridine ring and piperazine ring N-hydroxylation. When a hydrogen carbonate buffer system was supplemented with UDPGA, the piperazine carbamoyl-glucuronide from the parent compound was identified together with several glucuronides of the phase I metabolites. The metabolite pattern in hepatocytes was similar to microsomes except that the sulphate at the N-position of the piperazine ring of BVT.2938 was identified, while the carbamoyl-glucuronide was missing. Excellent correlation was obtained between radioactivity detection and the chemiluminescent nitrogen detector when the nitrogen content of the analytes was taken into account.

  11. Metabolism of pentachlorophenol by fish

    USGS Publications Warehouse

    Stehly, G.R.; Hayton, W.L.

    1989-01-01

    Interspecies variability in the metabolism of pentachlorophenol (PCP) was investigated by exposing rainbow trout, fathead minnows, sheepshead minnow, firemouth, and goldfish to water-borne super(14)C-PCP for 64 h. The amounts of metabolites in bile and exposure water were species-dependent; all of the metabolites excreted into the water were sulphate conjugates while bile was enriched in glucuronide conjugates. Biliary excretion accounted for less than 30% of the total PCP metabolites. Biliary metabolites alone were a poor indication of the metabolites produced and of the major routes of elimination.

  12. Correlation between the cellular metabolism of quercetin and its glucuronide metabolite and oxidative stress in hypertrophied 3T3-L1 adipocytes.

    PubMed

    Herranz-López, María; Borrás-Linares, Isabel; Olivares-Vicente, Mariló; Gálvez, Julio; Segura-Carretero, Antonio; Micol, Vicente

    2017-02-15

    Quercetin (Q) is one of the most abundant flavonoids in human dietary sources and has been related to the capacity to ameliorate obesity-related pathologies. Quercetin-3-O-β-d-glucuronide (Q3GA) is supposed to be the main metabolite in blood circulation, but the intracellular final effectors for its activity are still unknown. To identify and quantitate the intracellular metabolites in hypertrophied adipocytes incubated with Q or Q3GA and to correlate them with the intracellular generation of oxygen radical species (ROS). Cytoplasmic fractions were obtained and quercetin metabolites were determined by liquid chromatography coupled to a time-of-flight mass detector with electrospray ionization (HPLC-DAD-ESI-TOF). Intracellular ROS generation was measured by a ROS-sensitive fluorescent probe. Both Q and Q3GA were absorbed by hypertrophied adipocytes and metabolized to some extent to Q3GA and Q, respectively, but Q absorption was more efficient (1.92 ± 0.03µg/µg protein) and faster than that of Q3GA (0.12 ± 0.0015µg/µg protein), leading to a higher intracellular concentration of the aglycone. Intracellular decrease of ROS correlated with the presence of the most abundant quercetin metabolite. Q and Q3GA are efficiently absorbed by hypertrophied adipocytes and metabolized to some extent to Q3GA and Q, respectively. The intracellular decrease of ROS in a hypertrophied adipocyte model treated with Q or Q3GA is correlated with the most abundant intracellular metabolite for the first time. Both compounds might be able to reach other intracellular targets, thus contributing to their bioactivity. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Identification of Sulfated Metabolites of 4-Chlorobiphenyl (PCB3) in the Serum and Urine of Male Rats

    PubMed Central

    Dhakal, Kiran; He, Xianran; Lehmler, Hans-Joachim; Teesch, Lynn M.; Duffel, Michael W.; Robertson, Larry W.

    2012-01-01

    Polychlorinated biphenyls (PCBs) are legacy pollutants that exert toxicities through various mechanisms. In the recent years exposure to PCBs via inhalation has been recognized as a hazard. Those PCBs with lower numbers of chlorine atoms (LC-PCBs) are semi-volatile, and have been reported in the urban air, as well as in the indoor air of older buildings. LC-PCBs are bioactivated to phenols and further to quinone electrophiles with genotoxic/carcinogenic potential. We hypothesized that phenolic LC-PCBs are subject to conjugation and excretion in the urine. PCB3, often present in high concentrations in air, is a prototypical congener for the study of the metabolism and toxicity of LC-PCBs. Our objective was to identify metabolites of PCB3 in urine that could be potentially employed in the estimation of exposure to LC-PCBs. Male Sprague Dawley rats (150–175 g) were housed in metabolism cages and received a single intraperitoneal injection of 600 µmol/kg body weight of PCB3. Urine was collected every four hours; rats were euthanized at 36 h and serum was collected. LC-MS analysis of urine before and after incubation with β-glucuronidase and sulfatase showed that sulfate conjugates were in higher concentrations than glucuronide conjugates and free phenolic forms. At least two major metabolites, and two minor metabolites were identified in urine that could be attributed to mercapturic acid metabolites of PCB3. Quantitation by authentic standards confirmed that approximately 3% of the dose was excreted in the urine as sulfates over 36 hours; with peak excretion occurring at 10–20 h after exposure. The major metabolites were 4’PCB3 sulfate, 3’PCB3 sulfate, 2’PCB3 sulfate, and presumably a catechol sulfate. The serum concentration of 4’PCB3 sulfate was 6.18±2.16 µg/mL. This is the first report that sulfated metabolites of PCBs are formed in vivo. These findings suggest a prospective approach for exposure assessment of LC- PCBs by analysis of phase II

  14. Determination of a novel nonfluorinated quinolone, nemonoxacin, in human feces and its glucuronide conjugate in human urine and feces by high-performance liquid chromatography-triple quadrupole mass spectrometry.

    PubMed

    He, Gaoli; Guo, Beining; Yu, Jicheng; Zhang, Jing; Wu, Xiaojie; Cao, Guoying; Shi, Yaoguo; Tsai, Cheng-Yuan

    2015-05-01

    Three methods were developed and validated for determination of nemonoxacin in human feces and its major metabolite, nemonoxacin acyl-β- d-glucuronide, in human urine and feces. Nemonoxacin was extracted by liquid-liquid extraction in feces homogenate samples and nemonoxacin acyl-β- d-glucuronide by a solid-phase extraction procedure for pretreatment of both urine and feces homogenate sample. Separation was performed on a C18 reversed-phase column under isocratic elution with the mobile phase consisting of acetonitrile and 0.1% formic acid. Both analytes were determined by liquid chromatography-tandem mass spectrometry with positive electrospray ionization in selected reaction monitoring mode and gatifloxacin as the internal standard. The lower limit of quantitation (LLOQ) of nemonoxacin in feces was 0.12 µg/g and the calibration curve was linear in the concentration range of 0.12-48.00 µg/g. The LLOQ of the metabolite was 0.0010 µg/mL and 0.03 µg/g in urine and feces matrices, while the linear range was 0.0010-0.2000 µg/mL and 0.03-3.00 µg/g, respectively. Validation included selectivity, accuracy, precision, linearity, recovery, matrix effect, carryover, dilution integrity and stability, indicating that the methods can quantify the corresponding analytes with excellent reliability. The validated methods were successfully applied to an absolute bioavailability clinical study of nemonoxacin malate capsule. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Formation of the accumulative human metabolite and human-specific glutathione conjugate of diclofenac in TK-NOG chimeric mice with humanized livers.

    PubMed

    Kamimura, Hidetaka; Ito, Satoshi; Nozawa, Kohei; Nakamura, Shota; Chijiwa, Hiroyuki; Nagatsuka, Shin-ichiro; Kuronuma, Miyuki; Ohnishi, Yasuyuki; Suemizu, Hiroshi; Ninomiya, Shin-ichi

    2015-03-01

    3'-Hydroxy-4'-methoxydiclofenac (VI) is a human-specific metabolite known to accumulate in the plasma of patients after repeated administration of diclofenac sodium. Diclofenac also produces glutathione-conjugated metabolites, some of which are human-specific. In the present study, we investigated whether these metabolites could be generated in humanized chimeric mice produced from TK-NOG mice. After a single oral administration of diclofenac to humanized mice, the unchanged drug in plasma peaked at 0.25 hour and then declined with a half-life (t1/2) of 2.4 hours. 4'-Hydroxydiclofenac (II) and 3'-hydroxydiclofenac also peaked at 0.25 hour and were undetectable within 24 hours. However, VI peaked at 8 hours and declined with a t1/2 of 13 hours. When diclofenac was given once per day, peak and trough levels of VI reached plateau within 3 days. Studies with administration of II suggested VI was generated via II as an intermediate. Among six reported glutathione-conjugated metabolites of diclofenac, M1 (5-hydroxy-4-(glutathion-S-yl)diclofenac) to M6 (2'-(glutathion-S-yl)monoclofenac), we found three dichlorinated conjugates [M1, M2 (4'-hydroxy-3'-(glutathion-S-yl)diclofenac), and M3 (5-hydroxy-6-(glutathion-S-yl)diclofenac)], and a single monochlorinated conjugate [M4 (2'-hydroxy-3'-(glutathion-S-yl)monoclofenac) or M5 (4'-hydroxy-2'-(glutathion-S-yl)monoclofenac)], in the bile of humanized chimeric mice. M4 and M5 are positional isomers and have been previously reported as human-specific in vitro metabolites likely generated via arene oxide and quinone imine-type intermediates, respectively. The biliary monochlorinated metabolite exhibited the same mass spectrum as those of M4 and M5, and we discuss whether this conjugate corresponded to M4 or M5. Overall, humanized TK-NOG chimeric mice were considered to be a functional tool for the study of drug metabolism of diclofenac in humans. Copyright © 2015 by The American Society for Pharmacology and Experimental

  16. Validation of a LC-MS/MS Method for Quantifying Urinary Nicotine, Six Nicotine Metabolites and the Minor Tobacco Alkaloids—Anatabine and Anabasine—in Smokers' Urine

    PubMed Central

    McGuffey, James E.; Wei, Binnian; Bernert, John T.; Morrow, John C.; Xia, Baoyun; Wang, Lanqing; Blount, Benjamin C.

    2014-01-01

    Tobacco use is a major contributor to premature morbidity and mortality. The measurement of nicotine and its metabolites in urine is a valuable tool for evaluating nicotine exposure and for nicotine metabolic profiling—i.e., metabolite ratios. In addition, the minor tobacco alkaloids—anabasine and anatabine—can be useful for monitoring compliance in smoking cessation programs that use nicotine replacement therapy. Because of an increasing demand for the measurement of urinary nicotine metabolites, we developed a rapid, low-cost method that uses isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneously quantifying nicotine, six nicotine metabolites, and two minor tobacco alkaloids in smokers' urine. This method enzymatically hydrolyzes conjugated nicotine (primarily glucuronides) and its metabolites. We then use acetone pretreatment to precipitate matrix components (endogenous proteins, salts, phospholipids, and exogenous enzyme) that may interfere with LC-MS/MS analysis. Subsequently, analytes (nicotine, cotinine, hydroxycotinine, norcotinine, nornicotine, cotinine N-oxide, nicotine 1′-N-oxide, anatabine, and anabasine) are chromatographically resolved within a cycle time of 13.5 minutes. The optimized assay produces linear responses across the analyte concentrations typically found in urine collected from daily smokers. Because matrix ion suppression may influence accuracy, we include a discussion of conventions employed in this procedure to minimize matrix interferences. Simplicity, low cost, low maintenance combined with high mean metabolite recovery (76–99%), specificity, accuracy (0–10% bias) and reproducibility (2–9% C.V.) make this method ideal for large high through-put studies. PMID:25013964

  17. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters.

    PubMed

    Heleno, Sandrina A; Ferreira, Isabel C F R; Esteves, Ana P; Ćirić, Ana; Glamočlija, Jasmina; Martins, Anabela; Soković, Marina; Queiroz, Maria João R P

    2013-08-01

    Mushroom extracts or isolated compounds may be useful in the search of new potent antimicrobial agents. Herein, it is described the synthesis of protected (acetylated) glucuronide derivatives of p-hydroxybenzoic and cinnamic acids, two compounds identified in the medicinal mushroom Ganoderma lucidum. Their antimicrobial and demelanizing activities were evaluated and compared to the parent acids and G. lucidum extract. p-Hydroxybenzoic and cinnamic acids, as also their protected glucuronide derivatives revealed high antimicrobial (antibacterial and antifungal) activity, even better than the one showed by commercial standards. Despite the variation in the order of parent acids and the protected glucuronide derivatives, their antimicrobial activity was always higher than the one revealed by the extract. Nevertheless, the extract was the only one with demelanizing activity against Aspergillus niger. The acetylated glucuronide derivatives could be deprotected to obtain glucuronide metabolites, which circulate in the human organism as products of the metabolism of the parent compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    PubMed

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  19. 13-cis-retinoic acid metabolism in vivo. The major tissue metabolites in the rat have the all-trans configuration.

    PubMed

    McCormick, A M; Kroll, K D; Napoli, J L

    1983-08-02

    The liver and intestinal metabolites of orally dosed 13-cis-[11-3H]retinoic acid were analyzed in normal and 13-cis-retinoic acid treated rats 3 h after administration of the radiolabeled retinoid. all-trans-Retinoic acid was identified as a liver and intestinal mucosa metabolite in normal rats given physiological doses of 13-cis-[3H]retinoic acid. all-trans-Retinoyl glucuronide was identified as the most abundant radiolabeled metabolite in mucosa and a prominent liver metabolite under the same conditions. Thus, the major 13-cis-retinoic acid metabolites retained in liver and mucosa, two retinoid target tissues, had the all-trans configuration. These data indicate that the isomerization of 13-cis-retinoic acid to all-trans-retinoic acid and the subsequent conversion to all-trans-retinoyl glucuronide are central events in the in vivo metabolism of 13-cis-retinoic acid in the rat. Moreover, the all-trans-retinoic acid detected in vivo could account for a significant fraction of the physiological activity of 13-cis-retinoic acid. The tissue disposition and metabolism of orally dosed 13-cis-[3H]retinoic acid are modulated by retinoid treatment. Chronic 13-cis-retinoic acid treatment apparently increased the intestinal accumulation of all-trans-retinoic acid, all-trans-retinoyl glucuronide, and 13-cis-retinoyl glucuronide. The liver concentrations of tritiated all-trans-retinoic acid and all-trans-retinoyl glucuronide were also elevated in 13-cis-retinoic acid treated rats.

  20. Diethylstilbestrol can effectively accelerate estradiol-17-O-glucuronidation, while potently inhibiting estradiol-3-O-glucuronidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liangliang; Xiao, Ling; Xia, Yangliu

    This in vitro study investigates the effects of diethylstilbestrol (DES), a widely used toxic synthetic estrogen, on estradiol-3- and 17-O- (E2-3/17-O) glucuronidation, via culturing human liver microsomes (HLMs) or recombinant UDP-glucuronosyltransferases (UGTs) with DES and E2. DES can potently inhibit E2-3-O-glucuronidation in HLM, a probe reaction for UGT1A1. Kinetic assays indicate that the inhibition follows a competitive inhibition mechanism, with the Ki value of 2.1 ± 0.3 μM, which is less than the possible in vivo level. In contrast to the inhibition on E2-3-O-glucuronidation, the acceleration is observed on E2-17-O-glucuronidation in HLM, in which cholestatic E2-17-O-glucuronide is generated. In themore » presence of DES (0–6.25 μM), K{sub m} values for E2-17-O-glucuronidation are located in the range of 7.2–7.4 μM, while V{sub max} values range from 0.38 to 1.54 nmol/min/mg. The mechanism behind the activation in HLM is further demonstrated by the fact that DES can efficiently elevate the activity of UGT1A4 in catalyzing E2-17-O-glucuronidation. The presence of DES (2 μM) can elevate V{sub max} from 0.016 to 0.81 nmol/min/mg, while lifting K{sub m} in a much lesser extent from 4.4 to 11 μM. Activation of E2-17-O-glucuronidation is well described by a two binding site model, with K{sub A}, α, and β values of 0.077 ± 0.18 μM, 3.3 ± 1.1 and 104 ± 56, respectively. However, diverse effects of DES towards E2-3/17-O-glucuronidation are not observed in liver microsomes from several common experimental animals. In summary, this study issues new potential toxic mechanisms for DES: potently inhibiting the activity of UGT1A1 and powerfully accelerating the formation of cholestatic E2-17-O-glucuronide by UGT1A4. - Highlights: • E2-3-O-glucuronidation in HLM is inhibited when co-incubated with DES. • E2-17-O-glucuronidation in HLM is stimulated when co-incubated with DES. • Acceleration of E2-17-O-glucuronidationin in HLM by DES is via

  1. Systematic considerations for a multicomponent pharmacokinetic study of Epimedii wushanensis herba: From method establishment to pharmacokinetic marker selection.

    PubMed

    Wang, Caihong; Wu, Caisheng; Zhang, Jinlan; Jin, Ying

    2015-04-15

    Prenylflavonoids are major active components of Epimedii wushanensis herba (EWH). The global pharmacokinetics of prenylflavonoids are unclear, as these compounds yield multiple, often unidentified metabolites. This study successfully elucidated the pharmacokinetic profiles of EWH extract and five EWH-derived prenylflavonoid monomers in rats. The study was a comprehensive analysis of metabolic pathways and pharmacokinetic markers. Major plasma compounds identified after oral administration of EWH-derived prototypes or extract included: (1) prenylflavonoid prototypes, (2) deglycosylated products, and (3) glucuronide conjugates. To select appropriate EWH-derived pharmacokinetic markers, a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was established to simultaneously monitor 14 major compounds in unhydrolyzed plasma and 10 potential pharmacokinetic markers in hydrolyzed plasma. The pharmacokinetic profiles indicated that the glucuronide conjugates of icaritin were the principle circulating metabolites and that total icaritin accounted for ∼99% of prenylflavonoid exposure after administration of EWH-derived materials to rats. To further investigate icaritin as a prospective pharmacokinetic marker, correlation analysis was performed between total icaritin and its glucuronide conjugates, and a strong correlation (r > 0.5) was found, indicating that total icaritin content accurately reflected changes in the exposure levels of the glucuronide conjugates over time. Therefore, icaritin is a sufficient pharmacokinetic marker for evaluating dynamic prenylflavonoid exposure levels. Next, a mathematical model was developed based on the prenylflavonoid content of EWH and the exposure levels in rats, using icaritin as the pharmacokinetic marker. This model accurately predicted exposure levels in vivo, with similar predicted vs. experimental area under the curve (AUC)(0-96 h) values for total icaritin (24.1 vs. 32.0 mg/L h). Icaritin in

  2. Tissue and species differences in the glucuronidation of glabridin with UDP-glucuronosyltransferases.

    PubMed

    Guo, Bin; Fang, Zhongze; Yang, Lu; Xiao, Ling; Xia, Yangliu; Gonzalez, Frank J; Zhu, Liangliang; Cao, Yunfeng; Ge, Guangbo; Yang, Ling; Sun, Hongzhi

    2015-04-25

    Glabridin (GA) has gained wide application in the cosmetics and food industry. This study was performed to investigate its metabolic inactivation and elimination by glucuronidation by use of liver and intestine microsomes from humans (HLM and HIM) and rats (RLM and RIM), and liver microsomes from cynomolgus monkeys and beagle dogs (CyLM and DLM). Both hydroxyl groups at the C2 and C4 positions of the B ring are conjugated to generate two mono-glucuronides (M1 and M2). HIM, RIM and RLM showed the most robust activity in catalyzing M2 formation with intrinsic clearance values (Clint) above 2000 μL/min/mg, with little measurable M1 formation activity. DLM displayed considerable activity both in M1 and M2 formation, with Clint values of 71 and 214 μL/min/mg, respectively, while HLM and CyLM exhibited low activities in catalyzing M1 and M2 formation, with Clint values all below 20 μL/min/mg. It is revealed that UGT1A1, 1A3, 1A9, 2B7, 2B15 and extrahepatic UGT1A8 and 1A10 are involved in GA glucuronidation. Nearly all UGTs preferred M2 formation except for UGT1A1. Notably, UGT1A8 displayed the highest activity with a Clint value more than 5-fold higher than the other isoforms. Chemical inhibition studies, using selective inhibitors of UGT1A1, 1A9, 2B7 and 1A8, further revealed that UGT1A8 contributed significantly to intestinal GA glucuronidation in humans. In summary, this in vitro study demonstrated large species differences in GA glucuronidation by liver and intestinal microsomes, and that intestinal UGTs are important for the pathway in humans. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Maternal Buprenorphine Dose, Placenta Buprenorphine and Metabolite Concentrations and Neonatal Outcomes

    PubMed Central

    Concheiro, Marta; Jones, Hendreé E.; Johnson, Rolley E.; Choo, Robin; Shakleya, Diaa M.; Huestis, Marilyn A.

    2010-01-01

    Buprenorphine is approved as pharmacotherapy for opioid dependence in non-pregnant patients in multiple countries, and is currently under investigation for pregnant women in the US and Europe. This research evaluates the disposition of buprenorphine, opiates, cocaine, and metabolites in 5 term placentas from a US cohort. Placenta and matched meconium concentrations were compared, and relationships between maternal buprenorphine dose, placenta concentrations, and neonatal outcomes following controlled administration during gestation were investigated. Buprenorphine and/or metabolites were detected in all placenta specimens and were uniformly distributed across this tissue (CV<27.5%, 4 locations), except for buprenorphine in 3 placentas. In 2 of these, buprenorphine was not detected in some locations and, in the 3rd placenta, was totally absent. Median (range) concentrations were buprenorphine 1.6ng/g (not detected to 3.2), norbuprenorphine 14.9ng/g (6.2 to 24.2), buprenorphine-glucuronide 3ng/g (1.3 to 5.0) and norbuprenorphine-glucuronide 14.7ng/g (11.4 to 25.8). Placenta is a potential alternative matrix for detecting in utero buprenorphine exposure, but at lower concentrations (15–70 fold) than in meconium. Statistically significant correlations were observed for mean maternal daily dose from enrollment to delivery and placenta buprenorphine-glucuronide concentration, and for norbuprenorphine-glucuronide concentrations and time to neonatal abstinence syndrome (NAS) onset and duration, and for norbuprenorphine/norbuprenorphine-glucuronide ratio and maximum NAS score, and newborn length. Analysis of buprenorphine and metabolites in this alternative matrix, an abundant waste product available at the time of delivery, may be valuable for prediction of neonatal outcomes for clinicians treating newborns of buprenorphine-exposed women. PMID:20216119

  4. Impact of trans-resveratrol-sulfates and -glucuronides on endothelial nitric oxide synthase activity, nitric oxide release and intracellular reactive oxygen species.

    PubMed

    Ladurner, Angela; Schachner, Daniel; Schueller, Katharina; Pignitter, Marc; Heiss, Elke H; Somoza, Veronika; Dirsch, Verena M

    2014-10-17

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a polyphenolic natural product mainly present in grape skin, berries and peanuts. In the vasculature resveratrol is thought to boost endothelial function by increasing endothelial nitric oxide synthase (eNOS) expression, by enhancing eNOS activity, and by reduction of reactive oxygen species (ROS) levels. Recent studies show that dietary resveratrol is metabolized in the liver and intestine into resveratrol-sulfate and -glucuronide derivatives questioning the relevance of multiple reported mechanistic in vitro data on resveratrol. In this study, we compare side by side different physiologically relevant resveratrol metabolites (resveratrol sulfates- and -glucuronides) and their parent compound in their influence on eNOS enzyme activity, endothelial NO release, and intracellular ROS levels. In contrast to resveratrol, none of the tested resveratrol metabolites elevated eNOS enzyme activity and endothelial NO release or affected intracellular ROS levels, leaving the possibility that not tested metabolites are active and able to explain in vivo findings.

  5. Impact of Trans-Resveratrol-Sulfates and -Glucuronides on Endothelial Nitric Oxide Synthase Activity, Nitric Oxide Release and Intracellular Reactive Oxygen Species

    PubMed Central

    Ladurner, Angela; Schachner, Daniel; Schueller, Katharina; Pignitter, Marc; Heiss, Elke H.; Somoza, Veronika; Dirsch, Verena M.

    2015-01-01

    Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenolic natural product mainly present in grape skin, berries and peanuts. In the vasculature resveratrol is thought to boost endothelial function by increasing endothelial nitric oxide synthase (eNOS) expression, by enhancing eNOS activity, and by reduction of reactive oxygen species (ROS) levels. Recent studies show that dietary resveratrol is metabolized in the liver and intestine into resveratrol-sulfate and -glucuronide derivatives questioning the relevance of multiple reported mechanistic in vitro data on resveratrol. In this study, we compare side by side different physiologically relevant resveratrol metabolites (resveratrol sulfates- and -glucuronides) and their parent compound in their influence on eNOS enzyme activity, endothelial NO release, and intracellular ROS levels. In contrast to resveratrol, none of the tested resveratrol metabolites elevated eNOS enzyme activity and endothelial NO release or affected intracellular ROS levels, leaving the possibility that not tested metabolites are active and able to explain in vivo findings. PMID:25329867

  6. Characterization of thiol-conjugated metabolites of ginger components shogaols in mouse and human rrine and modulation of the glutathione levels in cancer cells by [6]-shogaol

    PubMed Central

    Chen, Huadong; Soroka, Dominique N.; Hu, Yuhui; Chen, Xiaoxin; Sang, Shengmin

    2013-01-01

    Scope Shogaols, a series of major constituents in dried ginger with the most abundant being [6]-, [8]-, and [10]-shogaols, show much higher anti-cancer potencies than gingerols. Previously, we reported the mercapturic acid pathway as a major metabolic route for [6]-shogaol in mice. However, it is still unclear how the side chain length affects the metabolism of shogaols and how shogaols are metabolized in humans. Methods and results We first investigate the metabolism of [10]-shogaol in mouse urine, and then investigate the biotransformation of shogaols in human urine. Our results show that eight major thiol-conjugated metabolites of [10]-shogaol were detected in mouse urine, while six major thiol-conjugated metabolites of [6]-shogaol, two thiol-conjugated metabolites of [8]-shogaol, and two thiol-conjugated metabolites of [10]-shogaol were detected in urine collected from human after drinking ginger tea, using liquid chromatography/electrospray ionization tandem mass spectrometry. Our results clearly indicate the mercapturic acid pathway is a major metabolic route for [10]-shogaol in mice and for shogaols in human. Furthermore, we also investigated the regulation of glutathione (GSH) by [6]-shogaol in human colon cancer cells HCT-116. Our results show [6]-shogaol, after initially depleting glutathione levels, can subsequently restore and increase GSH levels over time. Conclusion Shogaols are metabolized extensively in mouse and human to form thiol-conjugated metabolites and GSH might play an important role in the cancer preventative activity of ginger. PMID:23322393

  7. Characterization of thiol-conjugated metabolites of ginger components shogaols in mouse and human urine and modulation of the glutathione levels in cancer cells by [6]-shogaol.

    PubMed

    Chen, Huadong; Soroka, Dominique N; Hu, Yuhui; Chen, Xiaoxin; Sang, Shengmin

    2013-03-01

    Shogaols, a series of major constituents in dried ginger with the most abundant being [6]-, [8]-, and [10]-shogaols, show much higher anticancer potencies than gingerols. Previously, we reported the mercapturic acid pathway as a major metabolic route for [6]-shogaol in mice. However, it is still unclear how the side chain length affects the metabolism of shogaols and how shogaols are metabolized in humans. We first investigate the metabolism of [10]-shogaol in mouse urine, and then investigate the biotransformation of shogaols in human urine. Our results show that eight major thiol-conjugated metabolites of [10]-shogaol were detected in mouse urine, while six major thiol-conjugated metabolites of [6]-shogaol, two thiol-conjugated metabolites of [8]-shogaol, and two thiol-conjugated metabolites of [10]-shogaol were detected in urine collected from human after drinking ginger tea, using LC/ESI-MS/MS. Our results clearly indicate the mercapturic acid pathway is a major metabolic route for [10]-shogaol in mice and for shogaols in human. Furthermore, we also investigated the regulation of glutathione (GSH) by [6]-shogaol in human colon cancer cells HCT-116. Our results show [6]-shogaol, after initially depleting glutathione levels, can subsequently restore and increase GSH levels over time. Shogaols are metabolized extensively in mouse and human to form thiol-conjugated metabolites and GSH might play an important role in the cancer-preventive activity of ginger. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract.

    PubMed

    Wen, Zhiming; Dumas, Todd E; Schrieber, Sarah J; Hawke, Roy L; Fried, Michael W; Smith, Philip C

    2008-01-01

    Silymarin, a mixture of polyphenolic flavonoids extracted from milk thistle (Silybum marianum), is composed mainly of silychristin, silydianin, silybin A, silybin B (SB(B)), isosilybin A (ISB(A)), and isosilybin B. In this study, the plasma concentrations of free (unconjugated), conjugated (sulfated and glucuronidated), and total (free and conjugated) silymarin flavonolignans were measured using liquid chromatography-electrospray ionization-mass spectrometry, after a single oral dose of 600 mg of standardized milk thistle extracts to three healthy volunteers. Pharmacokinetic analysis indicated that silymarin flavonolignans were rapidly eliminated with short half-lives (1-3 and 3-8 h for free and conjugated, respectively). The AUC(0-->infinity) values of the conjugated silymarin flavonolignans were 4- to 30-fold higher than those of their free fractions, with SB(B) (mean AUC(0-->infinity) = 51 and 597 microg x h/l for free and conjugated, respectively) and ISB(A) (mean AUC(0-->infinity) = 30 and 734 microg x h/l for free and conjugated, respectively) exhibiting higher AUC(0-->infinity) values in comparison with other flavonolignans. Near the plasma peak times (1-3 h), the free, sulfated, and glucuronidated flavonolignans represented approximately 17, 28, and 55% of the total silymarin, respectively. In addition, the individual silymarin flavonolignans exhibited quite different plasma profiles for both the free and conjugated fractions. These data suggest that, after oral administration, silymarin flavonolignans are quickly metabolized to their conjugates, primarily forming glucuronides, and the conjugates are primary components present in human plasma.

  9. Determination of sulfates and glucuronides of endogenic steroids in biofluids by high-performance liquid chromatography/orbitrap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Semenistaya, E. N.; Virus, E. D.; Rodchenkov, G. M.

    2009-04-01

    the possibility of selective determination of testosterone and epitestosterone glucuronides in urine by high-performance liquid chromatography/high-resolution mass spectrometry using solid phase microextraction on a meps cartridge was studied. the effect of the biological matrix on the spectra of conjugated steroids can be taken into account by using the spectra of conjugates recorded for urine samples after hydrolysis as reference spectra. the conditions of fragmentation in the ion source were optimized for separate analytes. this method was used for analyzing real samples with different testosterone/epitestosterone ratios. variations in conjugate contents and qualitative changes in the steroid profile of endogenic compounds were observed.

  10. Development of an on-line solid phase extraction ultra-high-performance liquid chromatography technique coupled to tandem mass spectrometry for quantification of bisphenol S and bisphenol S glucuronide: Applicability to toxicokinetic investigations.

    PubMed

    Grandin, Flore; Picard-Hagen, Nicole; Gayrard, Véronique; Puel, Sylvie; Viguié, Catherine; Toutain, Pierre-Louis; Debrauwer, Laurent; Lacroix, Marlène Z

    2017-12-01

    Regulatory measures and public concerns regarding bisphenol A (BPA) have led to its replacement by structural analogues, such as Bisphenol S (BPS), in consumer products. At present, no toxicokinetic investigations have been conducted to assess the factors determining human internal exposure to BPS for subsequent risk assessment. Toxicokinetic studies require reliable analytical methods to measure the plasma concentrations of BPS and its main conjugated metabolite, BPS-glucuronide (BPS-G). An efficient on-line SPE-UPLC-MS/MS method for the simultaneous quantification of BPS and BPS-G in ovine plasma was therefore developed and validated in accordance with the European Medicines Agency guidelines for bioanalytical method validation. This method has a limit of quantification of 3ngmL -1 for BPS and 10ngmL -1 for BPS-G, an analytical capacity of 200 samples per day, and is particularly well suited to toxicokinetic studies. Use of this method in toxicokinetic studies in sheep showed that BPS, like BPA, is efficiently metabolized into its glucuronide form. However, the clearances and distributions of BPS and BPS-G were lower than those of the corresponding unconjugated and glucuroconjugated forms of BPA. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Identification and analysis of chemical constituents and rat serum metabolites in Suan-Zao-Ren granule using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with multiple data processing approaches.

    PubMed

    Du, Yiyang; He, Bosai; Li, Qing; He, Jiao; Wang, Di; Bi, Kaishun

    2017-07-01

    Suan-Zao-Ren granule is widely used to treat insomnia in China. However, because of the complexity and diversity of the chemical compositions in traditional Chinese medicine formula, the comprehensive analysis of constituents in vitro and in vivo is rather difficult. In our study, an ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and the PeakView® software, which uses multiple data processing approaches including product ion filter, neutral loss filter, and mass defect filter, method was developed to characterize the ingredients and rat serum metabolites in Suan-Zao-Ren granule. A total of 101 constituents were detected in vitro. Under the same analysis conditions, 68 constituents were characterized in rat serum, including 35 prototype components and 33 metabolites. The metabolic pathways of main components were also illustrated. Among them, the metabolic pathways of timosaponin AI were firstly revealed. The bioactive compounds mainly underwent the phase I metabolic pathways including hydroxylation, oxidation, hydrolysis, and phase II metabolic pathways including sulfate conjugation, glucuronide conjugation, cysteine conjugation, acetycysteine conjugation, and glutathione conjugation. In conclusion, our results showed that this analysis approach was extremely useful for the in-depth pharmacological research of Suan-Zao-Ren granule and provided a chemical basis for its rational. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biotransformation and detectability of the new psychoactive substances N,N-diallyltryptamine (DALT) derivatives 5-fluoro-DALT, 7-methyl-DALT, and 5,6-methylenedioxy-DALT in urine using GC-MS, LC-MSn, and LC-HR-MS/MS.

    PubMed

    Michely, Julian A; Brandt, Simon D; Meyer, Markus R; Maurer, Hans H

    2017-02-01

    Derivatives of N,N-diallyltryptamine (DALT) can be classified as new psychoactive substances. Biotransformation and detectability of 5-fluoro-DALT (5-F-DALT), 7-methyl-DALT (7-Me-DALT), and 5,6-methylenedioxy-DALT (5,6-MD-DALT) are described here. Their metabolites detected in rat urine and pooled human liver microsomes were identified by liquid chromatography (LC)-high resolution (HR)-tandem mass spectrometry (MS/MS). In addition, the human cytochrome-P450 (CYP) isoenzymes involved in the main metabolic steps were identified and detectability tested in urine by the authors' urine screening approaches using GC-MS, LC-MS n , or LC-HR-MS/MS. Aromatic and aliphatic hydroxylations, N-dealkylation, N-oxidation, and combinations could be proposed for all compounds as main pathways. Carboxylation after initial hydroxylation of the methyl group could also be detected for 7-Me-DALT and O-demethylenation was observed for 5,6-MD-DALT. All phase I metabolites were extensively glucuronidated or sulfated. Initial phase I reactions were catalyzed by CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5. Rat urine samples were analyzed following two different low-dose administrations. GC-MS was not able to monitor consumption reliably, but all three compounds are predicted to be detectable in cases of overdose. The LC-MS n and LC-HR-MS/MS approaches were suitable for detecting an intake of all three compounds mainly via their metabolites. However, after the lowest dose, a reliable monitoring could only be achieved for 5-F-DALT via LC-MS n and LC-HR-MS/MS and for 7-Me-DALT via LC-HR-MS/MS. The most abundant targets in both LC-MS screenings were one of two hydroxy-aryl metabolites and both corresponding glucuronides for 5-F-DALT, one N-deallyl hydroxy-aryl, the carboxy, and one dihydroxy-aryl metabolite for 7-Me-DALT, and the demethylenyl metabolite, its oxo metabolite, and glucuronide for 5,6-MD-DALT.

  13. Human and Rat ABC Transporter Efflux of Bisphenol A and Bisphenol A Glucuronide: Interspecies Comparison and Implications for Pharmacokinetic Assessment

    EPA Science Inventory

    Significant interspecies differences exist between human and rodent with respect to absorption, distribution, and excretion of bisphenol A (BPA) and its primary metabolite, BPA-glucuronide (BPA-G). ATP-Binding Cassette (ABC) transporter enzymes play important roles in these physi...

  14. Biotransformation and mass balance of the SGLT2 inhibitor empagliflozin in healthy volunteers.

    PubMed

    Chen, Lin-Zhi; Jungnik, Arvid; Mao, Yanping; Philip, Elsy; Sharp, Dale; Unseld, Anna; Seman, Leo; Woerle, Hans-Jürgen; Macha, Sreeraj

    2015-01-01

    1. The absorption, biotransformation and excretion of empagliflozin, an SGLT2 inhibitor, were evaluated in eight healthy subjects following a single 50 mg oral dose of empagliflozin containing ∼100 µCi [(14)C]-empagliflozin. 2. Radioactivity was rapidly absorbed, with plasma levels peaking 1 h post-dose. Total exposure was lower in blood versus plasma, consistent with moderate (28.6-36.8%) red blood cell partitioning. Protein binding was 80.3-86.2%. 3. Most of the radioactive dose was recovered in urine (54.4%) and faeces (41.1%). Unchanged empagliflozin was the most abundant drug-related component in plasma, representing 75.5-77.4% of plasma radioactivity and 79.6% plasma radioactivity AUC0-12 h. Unchanged empagliflozin was the most abundant drug-related component in urine and faeces, representing 43.5% (23.7% of dose) and 82.9% (34.1% of dose) of radioactivity in urine and faeces, respectively. Six metabolites were identified in plasma: three glucuronide conjugates representing 4.7-7.1% of AUC0-12 h and three less abundant metabolites (<0.2-1.9% AUC0-12 h). The most abundant metabolites in urine were two glucuronide conjugates (7.8-13.2% of dose) and in faeces was a tetrahydrofuran ring-opened carboxylic acid metabolite (1.9% of dose). 4. To conclude, empagliflozin was rapidly absorbed and excreted primarily unchanged in urine and faeces. Unchanged parent was the major drug-related component in plasma. Metabolism was primarily via glucuronide conjugation.

  15. In vitro metabolism of [14C]-benalaxyl in hepatocytes of rats, dogs and humans.

    PubMed

    Nallani, Gopinath C; ElNaggar, Shaaban F; Shen, Li; Chandrasekaran, Appavu

    2017-03-01

    The in vitro comparative animal metabolism study is now a data requirement under EU Directive 1107/2009 for registration of plant protection products. This type of study helps determine the extent of metabolism of a chemical in each surrogate species and whether any unique human metabolite(s) are formed. In the present study, metabolism of racemic [ 14 C]-benalaxyl, a fungicide was investigated in cryopreserved rat, dog and human hepatocytes. The metabolites generated were identified/characterized by LC/MS/MS with radiometric detection and comparison with reference standards. [ 14 C]-glucuronide conjugates of benalaxyl metabolites in rat, dog and human hepatocytes were confirmed via additional experiments in which known reference standards were incubated with dog liver microsomes in the presence of UDPGA. After 4 h of incubation, benalaxyl was extensively metabolized in all the species with the following trend: dog (100%) > human (86%) > rat (75%). In all species, the major metabolic pathways consisted of hydroxylation of the methyl group in the xylene moiety to 2-hydroxymethyl-benalaxyl, further oxidation to its carboxylic acid analogue (benalaxyl-2-benzoic acid), and hydrolysis of the methyl ester to yield benalaxyl acid or 2-hydroxymethyl benalaxyl acid. In addition, glucuronidation of phase I metabolites occurred in all species, to a higher extent in dog hepatocytes in which 2-hydroxymethyl-benalaxyl-glucuronide conjugate constituted the most significant metabolite. No major unique metabolite was observed in human hepatocytes. Also, benalaxyl did not undergo stereo-selective metabolism in rat or human hepatocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Simultaneous quantification of major cannabinoids and metabolites in human urine and plasma by HPLC-MS/MS and enzyme-alkaline hydrolysis.

    PubMed

    Aizpurua-Olaizola, Oier; Zarandona, Iratxe; Ortiz, Laura; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz

    2017-04-01

    A high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) method for simultaneous quantification of Δ9-tetrahydrocannabinol (THC), its two metabolites 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), and four additional cannabinoids (cannabidiol (CBD), cannabigerol (CBG), tetrahydrocannabivarin (THCV), and cannabinol (CBN)) in 1 mL of human urine and plasma was developed and validated. The hydrolysis process was studied to ensure complete hydrolysis of glucuronide conjugates and the extraction of a total amount of analytes. Initially, urine and plasma blank samples were spiked with THC-COOH-glucuronide and THC-glucuronide, and four different pretreatment methods were compared: hydrolysis-free method, enzymatic hydrolysis with Escherichia Coli β-glucuronidase, alkaline hydrolysis with 10 M NaOH, and enzyme-alkaline tandem hydrolysis. The last approach assured the maximum efficiencies (close to 100%) for both urine and plasma matrices. Regarding the figures of merit, the limits of detection were below 1 ng/mL for all analytes, the accuracy ranged from 84% to 115%, and both within-day and between-day precision were lower than 12%. Finally, the method was successfully applied to real urine and plasma samples from cannabis users. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  18. Oral coadministration of β-glucuronidase to increase exposure of extensively glucuronidated drugs that undergo enterohepatic recirculation.

    PubMed

    Eichenbaum, Gary; Hsu, C-P; Subrahmanyam, Vangala; Chen, Jing; Scicinski, Jan; Galemmo, Robert A; Tuman, Robert W; Johnson, Dana L

    2012-07-01

    Extensive first-pass metabolism can significantly limit a drug's oral exposure levels. In this work, we introduce an innovative approach for increasing the oral bioavailability of a drug that undergoes extensive reversible glucuronidation and enterohepatic recirculation through intraduodenal coadministration of the deconjugating enzyme β-glucuronidase. Intraduodenal administration of JNJ-10198409 (10 mg/kg) with β-glucuronidase (34,000-140,000 units/kg) to catheterized rats resulted in a significant increase (p < 0.005) in the mean area under the plasma concentration versus time curve (AUC; approx. threefold) and maximum plasma concentration (C(max); approx. twofold) of JNJ-10198409. The AUC and C(max) were 60 ± 18 ng h/mL and 76 ± 29 ng/mL, respectively, with no enzyme and 177 ± 55 ng h/mL and 129 ± 41 ng/mL, respectively, with β-glucuronidase coadministered. Moreover, the AUC of the primary glucuronide metabolite increased approximately sevenfold from 1173 ± 361 (ng h)/mL with no enzyme coadministered to 8723 ± 2133 ng h/mL with coadministered enzyme. These pharmacokinetic data support the hypothesis that when the primary glucuronide is secreted into the duodenum via the bile duct, the glucuronide is converted by β-glucuronidase back to the parent compound. The parent compound is then reabsorbed and reconjugated, resulting in elevated systemic exposures to both parent and glucuronide. Potential clinical and preclinical applications and considerations for this approach are discussed. Copyright © 2012 Wiley Periodicals, Inc.

  19. Reactive aldehyde metabolites from the anti-HIV drug abacavir: amino acid adducts as possible factors in abacavir toxicity.

    PubMed

    Charneira, Catarina; Godinho, Ana L A; Oliveira, M Conceição; Pereira, Sofia A; Monteiro, Emília C; Marques, M Matilde; Antunes, Alexandra M M

    2011-12-19

    Abacavir is a nucleoside reverse transcriptase inhibitor marketed since 1999 for the treatment of infection with the human immunodeficiency virus type 1 (HIV). Despite its clinical efficacy, abacavir administration has been associated with serious and sometimes fatal toxic events. Abacavir has been reported to undergo bioactivation in vitro, yielding reactive species that bind covalently to human serum albumin, but the haptenation mechanism and its significance to the toxic events induced by this anti-HIV drug have yet to be elucidated. Abacavir is extensively metabolized in the liver, resulting in inactive glucuronide and carboxylate metabolites. The metabolism of abacavir to the carboxylate involves a two-step oxidation via an unconjugated aldehyde, which under dehydrogenase activity isomerizes to a conjugated aldehyde. Concurrently with metabolic oxidation, the two putative aldehyde metabolites may be trapped by nucleophilic side groups in proteins yielding covalent adducts, which can be at the onset of the toxic events associated with abacavir. To gain insight into the role of aldehyde metabolites in abacavir-induced toxicity and with the ultimate goal of preparing reliable and fully characterized prospective biomarkers of exposure to the drug, we synthesized the two putative abacavir aldehyde metabolites and investigated their reaction with the α-amino group of valine. The resulting adducts were subsequently stabilized by reduction with sodium cyanoborohydride and derivatized with phenyl isothiocyanate, leading in both instances to the formation of the same phenylthiohydantoin, which was fully characterized by NMR and MS. These results suggest that the unconjugated aldehyde, initially formed in vivo, rapidly isomerizes to the thermodynamically more stable conjugated aldehyde, which is the electrophilic intermediate mainly involved in reaction with bionucleophiles. Moreover, we demonstrated that the reaction of the conjugated aldehyde with nitrogen

  20. In vitro characterization of potential CYP- and UGT-derived metabolites of the psychoactive drug 25B-NBOMe using LC-high resolution MS.

    PubMed

    Boumrah, Yacine; Humbert, Luc; Phanithavong, Melodie; Khimeche, Kamel; Dahmani, Abdallah; Allorge, Delphine

    2016-02-01

    One of the main challenges posed by the emergence of new psychoactive substances is their identification in human biological samples. Trying to detect the parent drug could lead to false-negative results when the delay between consumption and sampling has been too long. The identification of their metabolites could then improve their detection window in biological matrices. Oxidative metabolism by cytochromes P450 and glucuronidation are two major detoxification pathways in humans. In order to characterize possible CYP- and UGT-dependent metabolites of the 2-(4-bromo-2,5-dimethoxy-phenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe), a synthetic psychoactive drug, analyses of human liver microsome (HLM) incubates were performed using an ultra-high performance liquid chromatography system coupled with a quadrupole-time of flight mass spectrometry detector (UHPLC-Q-TOF/MS). On-line analyses were performed using a Waters OASIS HLB column (30 x 2.1 mm, 20 µm) for the automatic sample loading and a Waters ACQUITY HSS C18 column (150 x 2 mm, 1.8 µm) for the chromatographic separation. Twenty-one metabolites, consisting of 12 CYP-derived and 9 UGT-derived metabolites, were identified. O-Desmethyl metabolites were the most abundant compounds after the phase I process, which appears to be in accordance with data from previously published NBOMe-intoxication case reports. Although other important metabolic transformations, such as sulfation, acetylation, methylation or glutathione conjugation, were not studied and artefactual metabolites might have been produced during the HLM incubation process, the record of all the metabolite MS spectra in our library should enable us to characterize relevant metabolites of 25B-NBOMe and allow us to detect 25B-MBOMe users. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Chemical fingerprint and metabolic profile analysis of Citrus reticulate 'Chachi' decoction by HPLC-PDA-IT-MS(n) and HPLC-Quadrupole-Orbitrap-MS method.

    PubMed

    Ye, Xiaolan; Cao, Di; Zhao, Xin; Song, Fenyun; Huang, Qinghua; Fan, Guorong; Wu, Fuhai

    2014-11-01

    A method incorporating HPLC-PDA-IT-MS(n) with HPLC-Quadrupole-Orbitrap-MS was developed for the investigation of chemical fingerprint of Citrus reticulate 'Chachi' decoction (CRCD) and metabolic profile of SD rat plasma sample after oral administration of CRCD (1.5 g herb/kg). A total of 27 chemical constituents of CRCD were identified from their MW, UV spectra, MS(n) data and retention behavior by comparing the results with those of the reference standards or literature. And 43 compounds were detected in dosed SD rat plasma samples, including 9 prototypes which were identified as hesperetin, isosinensetin, sinensetin, tetramethyl-O-isoscutellarein, nobiletin, tetramethyl-O-scutellarein, HMF (3,5,6,7,8,3',4'-heptamethoxyflavone), tangeretin and 5-demethylnobiletin and 34 metabolites underwent metabolic process of demethylation, glucuronide conjugation, sulfate conjugation or mixed modes. This is the first research for the metabolic profile of CRCD in SD rats, which could lay a foundation for the further studies of CRC or its formulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Verification of propofol sulfate as a further human propofol metabolite using LC-ESI-QQQ-MS and LC-ESI-QTOF-MS analysis.

    PubMed

    Maas, Alexandra; Maier, Christoph; Michel-Lauter, Beate; Broecker, Sebastian; Madea, Burkhard; Hess, Cornelius

    2017-03-01

    Propofol (2,6-diisopropylphenol) is a water-insoluble, intravenous anesthetic that is widely used for the induction and maintenance of anesthesia as well as for endoscopic and pediatric sedation. After admission, propofol undergoes extensive hepatic and extrahepatic metabolism, including direct conjugation to propofol glucuronide and hydroxylation to 2,6-diisopropyl-1,4-quinol. The latter substance subsequently undergoes phase II metabolism, resulting in the formation of further metabolites (1quinolglucuronide, 4quinolglucuronide and 4quinol-sulfate). Further minor phase I propofol metabolites (2-(ω-propanol)-6-isopropylphenol and 2-(ω-propanol)-6-isopropyl-1,4-quinol)) are also described. Due to its chemical structure with the phenolic hydroxyl group, propofol is also an appropriate substrate for sulfation by sulfotransferases. The existence of propofol sulfate was investigated by liquid chromatography electrospray ionization triple quadrupole mass spectrometry (LCESIQQQ-MS) and liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LCESI-QTOF-MS). A propofol sulfate reference standard was used for identification and method development, yielding a precursor at m/z 257 (deprotonated propofol sulfate) and product ions at m/z 177 (deprotonated propofol) and m/z 80 ([SO3]-). Propofol sulfate - a further phase II metabolite of propofol - was verified in urine samples by LC-ESI-QQQ-MS and LC-ESI-QTOF-MS. Analyses of urine samples from five volunteers collected before and after propofol-induced sedation verified the presence of propofol sulfate in urine following propofol administration, whereas ascertained concentrations of this metabolite were significantly lower compared with detected propofol glucuronide concentrations. The existence of propofol sulfate as a further phase II propofol metabolite in humans could be verified by two different detection techniques (LCESIQQQ-MS and LC-ESI-QTOFMS) on the basis of a propofol sulfate

  3. Metabolism by conjugation appears to confer resistance to paracetamol (acetaminophen) hepatotoxicity in the cynomolgus monkey.

    PubMed

    Yu, Hong; Barrass, Nigel; Gales, Sonya; Lenz, Eva; Parry, Tony; Powell, Helen; Thurman, Dale; Hutchison, Michael; Wilson, Ian D; Bi, Luke; Qiao, Junwen; Qin, Qiuping; Ren, Jin

    2015-03-01

    1. Paracetamol overdose remains the leading cause of acute liver failure in humans. This study was undertaken in cynomolgus monkeys to study the pharmacokinetics, metabolism and the potential for hepatotoxic insult from paracetamol administration as a possible model for human toxicity. 2. No adverse effects were observed for doses of up to 900 mg/kg/d for 14 d. Only minor sporadic increases in alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase in a number of animals were observed, with no clear dose response. 3. Toxicokinetic analysis showed good plasma exposure, albeit with less than proportional rises in Cmax and AUC, with increasing dose. The Cmax values in monkey were up to 3.5 times those associated with human liver toxicity and the AUC approx. 1000 times those associated with liver enzyme changes in 31-44% of human subjects. 4. Metabolite profiling of urine by (1)H NMR spectroscopy revealed paracetamol and its glucuronide and sulphate metabolites. Glutathione-derived metabolites, e.g. the cysteinyl conjugate, were only present in very low concentrations whilst the mercapturate was not detected. 5. These in vivo observations demonstrated that the cynomolgus monkey is remarkably resistant to paracetamol-induced toxicity and a poor model for investigating paracetamol-related hepatotoxicity in humans.

  4. Generic method for the absolute quantification of glutathione S-conjugates: Application to the conjugates of acetaminophen, clozapine and diclofenac.

    PubMed

    den Braver, Michiel W; Vermeulen, Nico P E; Commandeur, Jan N M

    2017-03-01

    Modification of cellular macromolecules by reactive drug metabolites is considered to play an important role in the initiation of tissue injury by many drugs. Detection and identification of reactive intermediates is often performed by analyzing the conjugates formed after trapping by glutathione (GSH). Although sensitivity of modern mass spectrometrical methods is extremely high, absolute quantification of GSH-conjugates is critically dependent on the availability of authentic references. Although 1 H NMR is currently the method of choice for quantification of metabolites formed biosynthetically, its intrinsically low sensitivity can be a limiting factor in quantification of GSH-conjugates which generally are formed at low levels. In the present study, a simple but sensitive and generic method for absolute quantification of GSH-conjugates is presented. The method is based on quantitative alkaline hydrolysis of GSH-conjugates and subsequent quantification of glutamic acid and glycine by HPLC after precolumn derivatization with o-phthaldialdehyde/N-acetylcysteine (OPA/NAC). Because of the lower stability of the glycine OPA/NAC-derivate, quantification of the glutamic acid OPA/NAC-derivate appeared most suitable for quantification of GSH-conjugates. The novel method was used to quantify the concentrations of GSH-conjugates of diclofenac, clozapine and acetaminophen and quantification was consistent with 1 H NMR, but with a more than 100-fold lower detection limit for absolute quantification. Copyright © 2017. Published by Elsevier B.V.

  5. In vitro Drug Metabolism Investigation of 7-Ethoxycoumarin in Human, Monkey, Dog and Rat Hepatocytes by High Resolution LC-MS/MS.

    PubMed

    Feng, Wan-Yong; Wen, Jenny; Stauber, Kathe

    2018-04-18

    Recently, it has been an increasing concern on the bioactivation and adverse reactions associated with consumption of herbal and nature products such as coumarin family. 7-ethoxycoumarin is one of coumarin family compounds, but little information is available regarding its potential reactive metabolites. In this study, we investigated its metabolism in cryopreserved male/female mixed human, male Cynomolgus monkey, male Beagle dog and male Sprague Dawley rat hepatocytes. Following the incubation of 7-ethoxylcoumarin in the hepatocytes for 2 hr, 28 metabolites were detected and identified using high resolution LC-Q-Exactive system in the positive ion and negative ion modes. O-deethylation, glucuronidation, sulfation, oxygenation, oxidative ring-opening, hydrogenation, glutathionation, dehydrogenation, cysteination, glucosidation, methylation, and hydrolysis were observed. At least sixteen metabolites were newly identified. M1 (O-deethylation, mono-oxygenation and glucuronidation), M3 (O-deethylation and glucuronidation), M5 (hydrolysis and mono-oxygenation), M14 (Odeethylation), M16 (hydrolysis), M22 (oxidative ring-opening and oxygenation) and M27 (mono-oxygenation) appeared to be major metabolites in human hepatocytes. M3, M5, M8, M13 (mono-oxygenation), M14, M16, M18 (O-deethylation and sulfation), M22 and M27 appeared to be major metabolites in monkey hepatocytes. M14, M16, M18, M20 (glutathionation and dehydrogenation) and M27 appeared to be major metabolites in dog hepatocytes. M1 (O-deethylation, mono-oxygenation and glucuronidation), M3, M5, M13, M14, M16, M17 (cysteination), M18, M20, and M22 appeared to be major metabolites in rat hepatocytes. Species differences in metabolism of 7-ethoxylcoumarin in hepatocytes were observed across humans, monkeys, dogs and rats. The analysis of metabolites suggests that 7-ethoxylcoumarin may undergo 3,4-epoxidation responsible for formation of glutathione and its derived cysteine conjugates, and carboxylic acid and its

  6. Non-targeted metabolomic approach reveals urinary metabolites linked to steroid biosynthesis pathway after ingestion of citrus juice.

    PubMed

    Medina, S; Ferreres, F; García-Viguera, C; Horcajada, M N; Orduna, J; Savirón, M; Zurek, G; Martínez-Sanz, J M; Gil, J I; Gil-Izquierdo, A

    2013-01-15

    Citrus juice intake has been highlighted because of its health-promoting effects. LC-MS based metabolomics approaches are applied to obtain a better knowledge on changes in the concentration of metabolites due to its dietary intake and allow a better understanding of involved metabolic pathways. Eight volunteers daily consumed 400 mL of juice for four consecutive days and urine samples were collected before intake and 24h after each citrus juice intake. Urine samples were analysed by nanoHPLC-q-TOF, followed by principal component analysis (PCA) and Student's t-test (p<0.05). PCA showed a separation between two groups (before and after citrus juice consumption). This approach allowed the identification of four endocrine compounds (tetrahydroaldosterone-3-glucuronide, cortolone-3-glucuronide, testosterone-glucuronide and 17-hydroxyprogesterone), which belonged to the steroid biosynthesis pathway as significant metabolites upregulated by citrus juice intake. Additionally, these results confirmed the importance of using the non-targeted metabolomics technique to identify new endogenous metabolites, up- or down-regulated as a consequence of food intake. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Quantitative Measurement of JWH-018 and JWH-073 Metabolites Excreted in Human Urine

    PubMed Central

    Moran, Cindy L.; Le, Vi-Huyen; Chimalakonda, Krishna C.; Smedley, Amy L.; Lackey, Felisia D.; Owen, Suzanne N.; Kennedy, Paul D.; Endres, Gregory W.; Ciske, Fred L.; Kramer, James B.; Kornilov, Andrei M.; Bratton, L. D.; Dobrowolski, Paul J.; Wessinger, William D.; Fantegrossi, William E.; Prather, Paul P.; James, Laura P.; Radominska-Pandya, Anna; Moran, Jeffery H.

    2011-01-01

    'K2/SPICE' products are commonly laced with aminoalkylindole synthetic cannabinoids (i.e., JWH-018 and JWH-073) and are touted as ‘legal’ marijuana substitutes. Here we validate a liquid chromatography tandem mass spectrometry (LC-MS/MS) methsod for measuring urinary concentrations of JWH-018, JWH-073, and several potential metabolites of each. The analytical procedure has high capacity for sample throughput and does not require solid phase or liquid extraction. Evaluation of human urine specimens collected after the subjects reportedly administered JWH-018 or a mixture of JWH-018 and JWH-073 provides preliminary evidence of clinical utility. Two subjects that consumed JWH-018 primarily excreted glucuronidated conjugates of 5-(3-(1-naphthoyl)-1H-indol-1-yl)-pentanoic acid (> 50 ng/ml) and (1-(5-hydroxypentyl)- 1H -indol-3-yl)(naphthalene-1-yl)-methanone (> 30 ng/ml). Interestingly, oxidized metabolites of both JWH-018 and JWH-073 were detected in these specimens, suggesting either metabolic demethylation of JWH-018 to JWH-073 or a non-reported, previous JWH-073 exposure. Metabolic profiles generated from a subject who consumed a mixture of JWH-018 and JWH-073 were similar to profiles generated from subjects who presumably consumed JWH-018 exclusively. Oxidized metabolites of JWH-018 and JWH-073 were of the same pattern, but JWH-018 metabolites were excreted at lower concentrations. These results begin clinically validating the LC-MS/MS assay for detecting and quantifying aminoalkylindole metabolites. Full validation awaits further testing. PMID:21506519

  8. Isolation and identification of metabolites of osthole in rats.

    PubMed

    Lv, X; Wang, C-Y; Hou, J; Zhang, B-J; Deng, S; Tian, Y; Huang, S-S; Zhang, H-L; Shu, X-H; Zhen, Y-H; Liu, K-X; Yao, J-H; Ma, X-C

    2012-11-01

    Osthole (Ost), one of the major components of Cnidium monnieri (L.) Cusson, is had the structure of an isopentenoxy-coumarin with a range of pharmacological activities. In the present study, the metabolism of Ost in male Sprague-Dawley rats was investigated by identifying Ost metabolites excreted in rat urine. Following an oral dose of 40 mg/kg Ost, 10 phase I and 3 phase II metabolites were isolated from the urine of rats, and their structures identified on the basis of a range of spectroscopic data, including 2D-NMR techniques. These metabolites were fully characterized as 5'-hydroxyl-osthole (M-1), osthenol (M-2), 4'-hydroxyl-osthole (M-3), 3, 5'-dihydroxyl-osthole (M-4), 5'-hydroxyl-osthenol (M-5), 4'-hydroxyl-2', 3'-dihydro-osthenol (M-6), 4'-hydroxyl-osthenol (M-7), 3, 4'-dihydroxyl-osthole (M-8), 2', 3'-dihydroxyl-osthole (M-9), 5'-hydroxyl-2', 3'-dihydroosthole (M-10), osthenol-7-O-β-D-glucuronide (M-11), osthole-4'-O-β-D-glucuronide (M-12) and osthole-5'-O-β-D-glycuronate (M-13). This is the first identification of M-1, M-3 to M-13 in vivo. On the basis of the metabolites profile, a possible metabolic pathway for Ost metabolism in rats has been proposed. This is the first systematic study on the phases I and II metabolites of 8-isopentenoxy-coumarin derivative.

  9. Mass spectrometric characterization of the hypoxia-inducible factor (HIF) stabilizer drug candidate BAY 85-3934 (molidustat) and its glucuronidated metabolite BAY-348, and their implementation into routine doping controls.

    PubMed

    Dib, Josef; Mongongu, Cynthia; Buisson, Corinne; Molina, Adeline; Schänzer, Wilhelm; Thuss, Uwe; Thevis, Mario

    2017-01-01

    The development of new therapeutics potentially exhibiting performance-enhancing properties implicates the risk of their misuse by athletes in amateur and elite sports. Such drugs necessitate preventive anti-doping research for consideration in sports drug testing programmes. Hypoxia-inducible factor (HIF) stabilizers represent an emerging class of therapeutics that allows for increasing erythropoiesis in patients. BAY 85-3934 is a novel HIF stabilizer, which is currently undergoing phase-2 clinical trials. Consequently, the comprehensive characterization of BAY 85-3934 and human urinary metabolites as well as the implementation of these analytes into routine doping controls is of great importance. The mass spectrometric behaviour of the HIF stabilizer drug candidate BAY 85-3934 and a glucuronidated metabolite (BAY-348) were characterized by electrospray ionization-(tandem) mass spectrometry (ESI-MS(/MS)) and multiple-stage mass spectrometry (MS n ). Subsequently, two different laboratories established different analytical approaches (one each) enabling urine sample analyses by employing either direct urine injection or solid-phase extraction. The methods were cross-validated for the metabolite BAY-348 that is expected to represent an appropriate target analyte for human urine analysis. Two test methods allowing for the detection of BAY-348 in human urine were applied and cross-validated concerning the validation parameters specificity, linearity, lower limit of detection (LLOD; 1-5 ng/mL), ion suppression/enhancement (up to 78%), intra- and inter-day precision (3-21%), recovery (29-48%), and carryover. By means of ten spiked test urine samples sent blinded to one of the participating laboratories, the fitness-for-purpose of both assays was provided as all specimens were correctly identified applying both testing methods. As no post-administration study samples were available, analyses of authentic urine specimens remain desirable. Copyright © 2016 John Wiley

  10. Monitoring of ovarian activity by measurement of urinary excretion rates of estrone glucuronide and pregnanediol glucuronide using the Ovarian Monitor, Part II: reliability of home testing.

    PubMed

    Blackwell, Leonard F; Vigil, Pilar; Gross, Barbara; d'Arcangues, Catherine; Cooke, Delwyn G; Brown, James B

    2012-02-01

    The UNDP/WHO/World Bank/Special Programme of Research, Development and Research Training in Human Reproduction (Geneva) set up a study to determine whether it is feasible for women to monitor their ovarian activity reliably by home testing. Daily self-monitoring of urinary hormone metabolites for menstrual cycle assessment was evaluated by comparison of results obtained with the Home Ovarian Monitor by untrained users both at home and in study centres. Women collected daily data for urinary estrone glucuronide (E1G) and pregnanediol glucuronide (PdG) for two cycles, then the procedure was repeated in the women's local centre (in Chile, Australia or New Zealand) giving a total of 113 duplicate cycles. The tests were performed without the benefit of replicates or quality controls. The home and centre cycles were normalized and compared to identify assay errors, and the resulting home and centre menstrual cycle profiles were averaged. Reliable mean cycle profiles were obtained with the home and centre excretion rates agreeing to within 36 ± 21 nmol/24 h for E1G and 0.77 ± 0.28 µmol/24 h for baseline PdG values (1-5 µmol/24 h). The cycles had a mean length of 28.1 ± 3.1 days (n = 112; 5th and 95th percentiles: 24 and 35 days, respectively), a mean follicular phase of 14.8 ± 3.1 days (n = 107; 5th and 95th percentiles: 11 and 21 days) and a mean luteal phase length of 13.3 ± 1.5 days (n = 106; 5th and 95th percentiles: 11 and 17 days), calculated from the day of the LH peak. The study confirmed that the Ovarian Monitor pre-coated assay tubes worked well even in the hands of lay users, without standard curves, quality controls or replicates. Point-of-care monitoring to give reliable fertility data is feasible.

  11. Identification of N-Acetyltaurine as a Novel Metabolite of Ethanol through Metabolomics-guided Biochemical Analysis*

    PubMed Central

    Shi, Xiaolei; Yao, Dan; Chen, Chi

    2012-01-01

    The influence of ethanol on the small molecule metabolome and the role of CYP2E1 in ethanol-induced hepatotoxicity were investigated using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics platform and Cyp2e1-null mouse model. Histological and biochemical examinations of ethanol-exposed mice indicated that the Cyp2e1-null mice were more resistant to ethanol-induced hepatic steatosis and transaminase leakage than the wild-type mice, suggesting CYP2E1 contributes to ethanol-induced toxicity. Metabolomic analysis of urinary metabolites revealed time- and dose-dependent changes in the chemical composition of urine. Along with ethyl glucuronide and ethyl sulfate, N-acetyltaurine (NAT) was identified as a urinary metabolite that is highly responsive to ethanol exposure and is correlated with the presence of CYP2E1. Subsequent stable isotope labeling analysis using deuterated ethanol determined that NAT is a novel metabolite of ethanol. Among three possible substrates of NAT biosynthesis (taurine, acetyl-CoA, and acetate), the level of taurine was significantly reduced, whereas the levels of acetyl-CoA and acetate were dramatically increased after ethanol exposure. In vitro incubation assays suggested that acetate is the main precursor of NAT, which was further confirmed by the stable isotope labeling analysis using deuterated acetate. The incubations of tissues and cellular fractions with taurine and acetate indicated that the kidney has the highest NAT synthase activity among the tested organs, whereas the cytosol is the main site of NAT biosynthesis inside the cell. Overall, the combination of biochemical and metabolomic analysis revealed NAT is a novel metabolite of ethanol and a potential biomarker of hyperacetatemia. PMID:22228769

  12. Metabolic profile of salidroside in rats using high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Han, Fei; Li, Yan-ting; Mao, Xin-juan; Zhang, Xiao-shu; Guan, Jiao; Song, Ai-hua; Yin, Ran

    2016-03-01

    A high-performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (HPLC-FT-ICR MS) method was developed to study the in vivo metabolism of salidroside for the first time. Plasma, urine, bile, and feces samples were collected from male rats after a single intragastric gavage of salidroside at a dose of 50 mg/kg. Besides the parent drug, a total of seven metabolites (three phase I and four phase II metabolites) were detected and tentatively identified by comparing their mass spectrometry profiles with those of salidroside. Results indicated that metabolic pathways of salidroside in male rats included hydroxylation, dehydrogenation, glucuronidation, and sulfate conjugation. Among them, glucuronidation and sulfate conjugation were the major metabolic reactions. And most important, the detection of the sulfation metabolite of p-tyrosol provides a clue for whether the deglycosylation of salidroside occurs in vivo after intragastric gavage. In summary, results obtained in this study may contribute to the better understanding of the safety and mechanism of action of salidroside.

  13. Diphenamid metabolism in pepper and an ozone effect. II. Herbicide metabolite characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, R.H.; Hoffer, B.L.

    Metabolites of diphenamid (N,N-dimethyl-2,2-diphenyl-acetamide) were purified from extracts of pepper plants (Capsicum frutescens L. Early Calwonder) treated via nutrient solution with the herbicide or several of its analogs. The major metabolites were characterized. Diphenamid was metabolized partially via a previously unreported pathway to N,N-dimethyl-2-phenyl-2-((hydroxyphenyl)-..beta..-0-D-glucosyl) acetamide and its monomethyl analog, and to N-hydroxy-methyl glycosides previously reported in other species. Ozone fumigation stimulated the production of both types of glycoside-conjugates. Leaves of plants that had been treated with 30 ..mu..M diphenamid and fumigated with ozone for 146 to 149 h contained 304 and 560 nmoles per gram of fresh weight of themore » hydroxyphenyl and N-hydroxymethyl conjugates, respectively. 7 references, 1 figure, 3 tables.« less

  14. Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor

    PubMed Central

    Maria, Iuliana Petruta; Uguz, Ilke

    2018-01-01

    The inherent specificity and electrochemical reversibility of enzymes poise them as the biorecognition element of choice for a wide range of metabolites. To use enzymes efficiently in biosensors, the redox centers of the protein should have good electrical communication with the transducing electrode, which requires either the use of mediators or tedious biofunctionalization approaches. We report an all-polymer micrometer-scale transistor platform for the detection of lactate, a significant metabolite in cellular metabolic pathways associated with critical health care conditions. The device embodies a new concept in metabolite sensing where we take advantage of the ion-to-electron transducing qualities of an electron-transporting (n-type) organic semiconductor and the inherent amplification properties of an ion-to-electron converting device, the organic electrochemical transistor. The n-type polymer incorporates hydrophilic side chains to enhance ion transport/injection, as well as to facilitate enzyme conjugation. The material is capable of accepting electrons of the enzymatic reaction and acts as a series of redox centers capable of switching between the neutral and reduced state. The result is a fast, selective, and sensitive metabolite sensor. The advantage of this device compared to traditional amperometric sensors is the amplification of the input signal endowed by the electrochemical transistor circuit and the design simplicity obviating the need for a reference electrode. The combination of redox enzymes and electron-transporting polymers will open up an avenue not only for the field of biosensors but also for the development of enzyme-based electrocatalytic energy generation/storage devices.

  15. Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor.

    PubMed

    Pappa, Anna Maria; Ohayon, David; Giovannitti, Alexander; Maria, Iuliana Petruta; Savva, Achilleas; Uguz, Ilke; Rivnay, Jonathan; McCulloch, Iain; Owens, Róisín M; Inal, Sahika

    2018-06-01

    The inherent specificity and electrochemical reversibility of enzymes poise them as the biorecognition element of choice for a wide range of metabolites. To use enzymes efficiently in biosensors, the redox centers of the protein should have good electrical communication with the transducing electrode, which requires either the use of mediators or tedious biofunctionalization approaches. We report an all-polymer micrometer-scale transistor platform for the detection of lactate, a significant metabolite in cellular metabolic pathways associated with critical health care conditions. The device embodies a new concept in metabolite sensing where we take advantage of the ion-to-electron transducing qualities of an electron-transporting (n-type) organic semiconductor and the inherent amplification properties of an ion-to-electron converting device, the organic electrochemical transistor. The n-type polymer incorporates hydrophilic side chains to enhance ion transport/injection, as well as to facilitate enzyme conjugation. The material is capable of accepting electrons of the enzymatic reaction and acts as a series of redox centers capable of switching between the neutral and reduced state. The result is a fast, selective, and sensitive metabolite sensor. The advantage of this device compared to traditional amperometric sensors is the amplification of the input signal endowed by the electrochemical transistor circuit and the design simplicity obviating the need for a reference electrode. The combination of redox enzymes and electron-transporting polymers will open up an avenue not only for the field of biosensors but also for the development of enzyme-based electrocatalytic energy generation/storage devices.

  16. Effects of model traumatic injury on hepatic drug metabolism in the rat. IV. Glucuronidation.

    PubMed

    Griffeth, L K; Rosen, G M; Rauckman, E J

    1985-01-01

    A previously validated small mammal trauma model, hind-limb ischemia secondary to infrarenal aortic ligation in the rat, was utilized to investigate the effects of traumatic injury on hepatic glucuronidation activity. As was previously observed with hepatic oxidative drug metabolism, model trauma resulted in a significant decrease in the in vivo glucuronidation of chloramphenicol, with a 23% drop in clearance of this drug. The effect on in vivo pharmacokinetics appeared to result from a complex interaction between trauma's differential influences on conjugating enzyme(s), deconjugating enzyme(s), and hepatic UDP-glucuronic acid levels, as well as the relative physiological importance of these variables. Hepatic UDP-glucuronyltransferase activities towards both p-nitrophenol and chloramphenicol were elevated (44-54%) after model injury when measured in native hepatic microsomes. However, microsomes which had been "activated" by treatment with Triton X-100 showed no significant difference between control and traumatized animals. Serum beta-glucuronidase activities were elevated by 58%, while hepatic beta-glucuronidase rose by about 16%. Nevertheless, in vivo deconjugation showed no significant change. Model trauma also resulted in a 46% decrease in hepatic UDP-glucuronic acid content. Thus, the observed post-traumatic depression of in vivo chloramphenicol glucuronidation could be due either to a diminished availability of a necessary cofactor (UDP-glucuronic acid) or to an alteration in enzyme kinetics or function in vivo.

  17. 5α-Androst-16-en-3α-ol β-D-glucuronide, precursor of 5α-androst-16-en-3α-ol in human sweat.

    PubMed

    Starkenmann, Christian; Mayenzet, Fabienne; Brauchli, Robert; Troccaz, Myriam

    2013-12-01

    5α-Androst-16-en-3α-ol (α-androstenol) is an important contributor to human axilla sweat odor. It is assumed that α-andostenol is excreted from the apocrine glands via a H2 O-soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2 O-soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α-androstenol, β-androstenol sulfates, 5α-androsta-5,16-dien-3β-ol (β-androstadienol) sulfate, α-androstenol β-glucuronide, α-androstenol α-glucuronide, β-androstadienol β-glucuronide, and α-androstenol β-glucuronide furanose. The occurrence of α-androstenol β-glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative-ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α-androstenol was observed after incubation of the sterile human sweat or α-androstenol β-glucuronide with a commercial glucuronidase enzyme, the urine-isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β-glucuronidase activities. We demonstrated that if α- and β-androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2 O-soluble precursor of α-androstenol in apocrine secretion should be a β-glucuronide. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  18. Fenofibrate Metabolism in the Cynomolgus Monkey using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based MetabolomicsS⃞

    PubMed Central

    Liu, Aiming; Patterson, Andrew D.; Yang, Zongtao; Zhang, Xinying; Liu, Wei; Qiu, Fayang; Sun, He; Krausz, Kristopher W.; Idle, Jeffrey R.; Gonzalez, Frank J.; Dai, Renke

    2009-01-01

    Fenofibrate, widely used for the treatment of dyslipidemia, activates the nuclear receptor, peroxisome proliferator-activated receptor α. However, liver toxicity, including liver cancer, occurs in rodents treated with fibrate drugs. Marked species differences occur in response to fibrate drugs, especially between rodents and humans, the latter of which are resistant to fibrate-induced cancer. Fenofibrate metabolism, which also shows species differences, has not been fully determined in humans and surrogate primates. In the present study, the metabolism of fenofibrate was investigated in cynomolgus monkeys by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS)-based metabolomics. Urine samples were collected before and after oral doses of fenofibrate. The samples were analyzed in both positive-ion and negative-ion modes by UPLC-QTOFMS, and after data deconvolution, the resulting data matrices were subjected to multivariate data analysis. Pattern recognition was performed on the retention time, mass/charge ratio, and other metabolite-related variables. Synthesized or purchased authentic compounds were used for metabolite identification and structure elucidation by liquid chromatographytandem mass spectrometry. Several metabolites were identified, including fenofibric acid, reduced fenofibric acid, fenofibric acid ester glucuronide, reduced fenofibric acid ester glucuronide, and compound X. Another two metabolites (compound B and compound AR), not previously reported in other species, were characterized in cynomolgus monkeys. More importantly, previously unknown metabolites, fenofibric acid taurine conjugate and reduced fenofibric acid taurine conjugate were identified, revealing a previously unrecognized conjugation pathway for fenofibrate. PMID:19251819

  19. Pleiotropic mechanisms facilitated by resveratrol and its metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamini, Barbara; Ratia, Kiira; Malkowski, Michael G.

    2010-07-01

    Resveratrol has demonstrated cancer chemopreventive activity in animal models and some clinical trials are underway. In addition, resveratrol was shown to promote cell survival, increase lifespan and mimic caloric restriction, thereby improving health and survival of mice on high-calorie diet. All of these effects are potentially mediated by the pleiotropic interactions of resveratrol with different enzyme targets including COX-1 (cyclo-oxygenase-1) and COX-2, NAD{sup +}-dependent histone deacetylase SIRT1 (sirtuin 1) and QR2 (quinone reductase 2). Nonetheless, the health benefits elicited by resveratrol as a direct result of these interactions with molecular targets have been questioned, since it is rapidly and extensivelymore » metabolized to sulfate and glucuronide conjugates, resulting in low plasma concentrations. To help resolve these issues, we tested the ability of resveratrol and its metabolites to modulate the function of some known targets in vitro. In the present study, we have shown that COX-1, COX-2 and QR2 are potently inhibited by resveratrol, and that COX-1 and COX-2 are also inhibited by the resveratrol 4{prime}-O-sulfate metabolite. We determined the X-ray structure of resveratrol bound to COX-1 and demonstrate that it occupies the COX active site similar to other NSAIDs (non-steroidal anti-inflammatory drugs). Finally, we have observed that resveratrol 3- and 4?-O-sulfate metabolites activate SIRT1 equipotently to resveratrol, but that activation is probably a substrate-dependent phenomenon with little in vivo relevance. Overall, the results of this study suggest that in vivo an interplay between resveratrol and its metabolites with different molecular targets may be responsible for the overall beneficial health effects previously attributed only to resveratrol itself.« less

  20. Interaction between rhein acyl glucuronide and methotrexate based on human organic anion transporters.

    PubMed

    Yuan, Yuan; Yang, Hua; Kong, Linghua; Li, Yuan; Li, Ping; Zhang, Hongjian; Ruan, Jianqing

    2017-11-01

    Rhein, a major bioactive compound of many medicinal herbs and the prodrug of diacerein, is often used with low dose of methotrexate as drug combination to treat rheumatoid arthritis. In this study, potential drug-drug interaction between methotrexate and rhein was investigated based on organic anion transporters (OAT). Our study demonstrated that rhein acyl glucuronide (RAG), the major metabolite of rhein in the human blood circulation, significantly inhibited the uptake of p-aminohippurate in hOAT1 transfected cells with IC 50 value of 691 nM and estrone sulfate uptake in hOAT3 transfected cells with IC 50 value of 78.5 nM. As the substrate of both hOAT1 and hOAT3, the methotrexate transport was significantly inhibited by RAG in hOAT1 transfected cells at 50 μM and hOAT3 transfected cells at 1 μM by 69% and 87%, respectively. Further in vivo study showed that after co-administrated with RAG in rats the AUC 0-24 values of methotrexate increased from 3109 to 5370 ng/mL*hr and the t 1/2 was prolonged by 40.5% (from 7.4 to 10.4 h), demonstrating the inhibitory effect of RAG on methotrexate excretion. In conclusion, rhein acyl glucuronide could significantly decrease the transport of methotrexate by both hOAT1 and hOAT3. The combination use of rhein, diacerein or other rhein-containing herbs with methotrexate may cause obvious drug-drug interaction and require close monitoring for potential drug interaction in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Separation and characterization of gall bladder bile metabolites from speckled trout, Salvelinus fontinalis, exposed to individual polycyclic aromatic compounds.

    PubMed

    Leonard, J D; Hellou, J

    2001-03-01

    Speckled trout, Salvelinus fontinalis, were orally exposed to individual polycyclic aromatic compounds (PACs) represented by benzo[a]pyrene, carbazole, chrysene, dibenzofuran, dibenzothiophene, fluorene, phenanthrene, and pyrene. Fish were sacrificed 7 d after exposure and the gall bladder removed for bile analysis. High pressure liquid chromatography (HPLC) with fluorescence (F) and ultraviolet (UV) detection was used to determine the presence of PAC derivatives in the bile without pretreatment. Glucuronide conjugates were predominant in all exposures with variable amounts (0-53%) of phenols and starting material. Identification of compounds was confirmed by selective extraction of less polar nonconjugated PACs and enzymatic hydrolysis of water-soluble material. This was followed by HPLC and/or gas chromatography-mass spectrometry (GCMS) characterization of the produced phenols. Total metabolite levels varied widely among compounds.

  2. Cysteine-Conjugated Metabolites of Ginger Components, Shogaols, Induce Apoptosis through Oxidative Stress-Mediated p53 Pathway in Human Colon Cancer Cells

    PubMed Central

    2015-01-01

    Shogaols, the major constituents of thermally processed ginger, have been proven to be highly effective anticancer agents. Our group has identified cysteine-conjugated shogaols (M2, M2′, and M2″) as the major metabolites of [6]-, [8]-, and [10]-shogaol in human and found that M2 is a carrier of its parent molecule [6]-shogaol in cancer cells and in mice, while being less toxic to normal colon fibroblast cells. The objectives of this study are to determine whether M2′ and M2″ behave in a similar manner to M2, in both metabolism and efficacy as anticancer agents, and to further explore the biological pro-apoptotic mechanisms of the cysteine-conjugated shogaols against human colon cancer cells HCT-116 and HT-29. Our results show that [8]- and [10]-shogaol have similar metabolic profiles to [6]-shogaol and exhibit similar toxicity toward human colon cancer cells. M2′ and M2″ both show low toxicity against normal colon cells but retain potency against colon cancer cells, suggesting that they have similar activity to M2. We further demonstrate that the cysteine-conjugated shogaols can cause cancer cell death through the activation of the mitochondrial apoptotic pathway. Our results show that oxidative stress activates a p53 pathway that ultimately leads to p53 up-regulated modulator of apoptosis (PUMA) induction and down-regulation of B-cell lymphoma 2 (Bcl-2), followed by cytochrome c release, perturbation of inhibitory interactions of X-linked inhibitor of apoptosis protein (XIAP) with caspases, and finally caspase 9 and 3 activation and cleavage. A brief screen of the markers attenuated by the proapoptotic activity of M2 revealed similar results for [8]- and [10]-shogaol and their respective cysteine-conjugated metabolites M2′ and M2″. This study highlights the cysteine-conjugated metabolites of shogaols as novel dietary colon cancer preventive agents. PMID:24786146

  3. Metabolites of hirsuteine and hirsutine, the major indole alkaloids of Uncaria rhynchophylla, in rats.

    PubMed

    Nakazawa, Takahiro; Banba, Koh-ichi; Hata, Kazumasa; Nihei, Yutaka; Hoshikawa, Ayumi; Ohsawa, Keisuke

    2006-08-01

    The metabolic fate of hirsuteine (HT) and hirsutine (HS), the major indole alkaloids of Uncaria rhynchophylla, was investigated using rats. On HPLC analysis, urine from rats orally administered HT were found to contain two metabolites (HT1 and HT2) together with unchanged HT. Similarly HS also was metabolized to two compounds (HS1 and HS2). Metabolite structures were determined to be 11-hydroxyhirsuteine-11-O-beta-D-glucuronide (HT1), 11-hydroxyhirsuteine (HT2), 11-hydroxyhirsutine-11-O-beta-D-glucuronide (HS1) and 11-hydroxyhirsutine (HS2), based on spectroscopic and chemical data. HT1 and HS1 were also detected in bile from rats administered HT and HS, respectively. Total cumulative urinary excretion within 72 h of oral administration was approximately 14% and 26% of the HT and HS doses, respectively, while total cumulative biliary excretion was 35% and 46%, respectively. HT and HS 11-hydroxylation were catalyzed by rat liver microsomes. This 11-hydroxylation activity was inhibited by addition of SKF-525A (a nonselective CYP inhibitor) or cimetidine (a CYP2C inhibitor). These results indicate that orally administered HT and HS are converted to 11-hydroxy metabolites in rats, and that the metabolites are predominantly excreted in bile rather than urine following glucuronidation. Furthermore, the results suggest that CYP2C enzymes are involved, at least in part, in the specific 11-hydroxylation of HT and HS.

  4. In vivo metabolism of clebopride in three animal species and in man.

    PubMed

    Segura, J; Bakke, O M; Huizing, G; Beckett, A H

    1980-01-01

    Clebopride is extensively metabolized in the rat, rabbit, dog, and man. By use of chromatographic methods, up to 25 metabolites in hydrolyzed and nonhydrolyzed urine have been detected. All four species produced the same main metabolites, as indicated by thin-layer chromatography. These, isolated from urine of the three animal species, were identified as N-(4'-piperidyl)-2-methoxy-4-amino-5-chlorobenzamide, N-(4'-piperidyl-2'-one)-2-methoxy-4-amino-5-chlorobenzamide, and N-(1'-alpha-hydroxybenzyl-4'-piperidyl)-2-methoxy-4-amino-5-chlorobenzamide (tentative structure of a carbinolamine more stable than expected). In the dog, 2-methoxy-4-amino-5-chlorobenzoic acid was also detected. N4-glucuronidation of clebopride and some of its metabolites has been shown to occur in the three animal species. The rabbit produced large amounts of these conjugates. Clebopride N4-sulfonate was not present in the urine of any of the species investigated.

  5. Bisphenol-A (BPA), BPA glucuronide, and BPA sulfate in mid-gestation umbilical cord serum in a Northern and Central California population

    PubMed Central

    Gerona, Roy R.; Woodruff, Tracey J.; Dickenson, Carrie A.; Pan, Janet; Schwartz, Jackie M.; Sen, Saunak; Friesen, Matthew M.; Fujimoto, Victor Y.; Hunt, Patricia A.

    2013-01-01

    Bisphenol-A (BPA) is an endocrine disrupting chemical used in numerous consumer products, resulting in universal exposure in the United States. Prenatal exposure to BPA is associated with numerous reproductive and developmental effects in animals. However, little is known about human fetal exposure or metabolism of BPA during mid-gestation. In the present study, we present a new liquid chromatography-tandem mass spectrometry method to directly measure concentrations of BPA and two predominant metabolic conjugates – BPA glucuronide and BPA sulfate – in umbilical cord serum collected from elective 2nd trimester pregnancy terminations. We detected at least one form of BPA in all umbilical cord serum samples: BPA (GM 0.16; range glucuronide (GM 0.14; range conjugated form. Although levels of BPA in conjugated form exceeded BPA levels in about 3/4 of the samples, BPA levels were higher in samples with Total BPA above the median. Our findings suggest universal fetal exposure to BPA in our study population, with some at relatively high levels, and we provide the first evidence of detectable BPA sulfate in mid-gestation fetuses. PMID:23941471

  6. Curcumin Affects Phase II Disposition of Resveratrol Through Inhibiting Efflux Transporters MRP2 and BCRP

    PubMed Central

    Ge, Shufan; Yin, Taijun; Xu, Beibei; Gao, Song; Hu, Ming

    2015-01-01

    Purpose To evaluate the impact of curcumin on the disposition of resveratrol phase II metabolites in vivo, and explain the observations by performing in vitro studies in transporter-overexpressed cells. Methods Pharmacokinetic studies of resveratrol with and without the co-administration of curcumin were performed in both FVB wild-type and Bcrp1 (−/−) mice. Human UGT1A9-overexpressing HeLa cells and human MRP2-overexpressing MDCK II-UGT1A1 cells were used as in vitro tools to further determine the impact of curcumin as a transporter inhibitor on resveratrol metabolites. Results We observed higher exposure of resveratrol conjugates in Bcrp1 (−/−) mice compared to wild-type mice. In wild-type mice, curcumin increased the AUC of resveratrol glucuronide by 4-fold compared to the mice treated without curcumin. The plasma levels of resveratrol and its sulfate conjugate also increased moderately. In Bcrp1 (−/−) mice, there was a further increase (6-fold increase) in AUC of resveratrol glucuronide observed when curcumin was co-administered compared to AUC values obtained in wild-type mice without curcumin treatment. In the presence of 50nM curcumin, the clearance of resveratrol-3-O-glucuronide and resveratrol-3-O-sulfate reduced in both MRP2-overexpressing MDCKII-UGT1A1 cells and Human UGT1A9-overexpressing HeLa cells. Conclusions These results suggest that curcumin alters the phase II distribution of resveratrol through inhibiting efflux transporters including MRP2 and BCRP. PMID:26502886

  7. Cysteine-conjugated metabolite of ginger component [6]-shogaol serves as a carrier of [6]-shogaol in cancer cells and in mice

    PubMed Central

    Chen, Huadong; Soroka, Dominique N.; Zhu, Yingdong; Hu, Yuhui; Chen, Xiaoxin; Sang, Shengmin

    2013-01-01

    Shogaols, a series of major constituents in dried ginger (Zingiber officinale), show high anti-cancer potencies. Previously, we reported that a major metabolite resulting from the mercapturic acid pathway, 5-cysteinyl-[6]-shogaol (M2), showed comparable growth inhibitory effects towards cancer cells to [6]-shogaol (6S). Here we probe the mechanism by which M2 exerts its bioactivity. We utilized a series of chemical stability tests in conjunction with bioassays to show that thiol-conjugates display chemopreventative potency by acting as carriers of active ginger component 6S. M2 chemical degradation to 6S was observed in an environment most resembling physiological conditions, with a pH of 7.4 at 37°C. The metabolic profiles of M2 in cancer cells HCT-116 and H-1299 resembled those of 6S, indicating that its biotransformation route was initiated by deconjugation. Further, the presence of excess glutathione significantly delayed 6S and M2 metabolism and counteracted cell death induced by 6S and M2, suggesting that increasing available free thiols exogenously both promoted formation of 5-glutathionyl-[6]-shogaol (M13) and inhibited the production of free 6S from M2 deconjugation, resulting in delayed 6S cell entry and bioactivity. Given the chemopreventative properties of M2 and our observations in vitro, we investigated its metabolism in mice. M2 and 6S showed similar metabolic profiles in mouse urine and fecal samples. Six new thiol-conjugated metabolites (M16–M21), together with previously reported ones, were identified by LC/MS. In particular, the increase of 5-N-acetylcystenyl-[6]-shogaol (M5) and its 3′-demethylated product (M16) abundance in mouse feces after treatment with M2 indicate that in addition to acting as a carrier of 6S, M2 is also directly acetylated to M5, which is further demethylated to M16 in vivo. In conclusion, cysteine-conjugated metabolite of [6]-shogaol M2 exerts its bioactivity by acting as a carrier of 6S in both cancer cells and in

  8. Cysteine-conjugated metabolite of ginger component [6]-shogaol serves as a carrier of [6]-shogaol in cancer cells and in mice.

    PubMed

    Chen, Huadong; Soroka, Dominique N; Zhu, Yingdong; Hu, Yuhui; Chen, Xiaoxin; Sang, Shengmin

    2013-06-17

    Shogaols, a series of major constituents in dried ginger (Zingiber officinale), show high anticancer potencies. Previously, we reported that a major metabolite resulting from the mercapturic acid pathway, 5-cysteinyl-[6]-shogaol (M2), showed comparable growth inhibitory effects toward cancer cells to [6]-shogaol (6S). Here, we probe the mechanism by which M2 exerts its bioactivity. We utilized a series of chemical stability tests in conjunction with bioassays to show that thiol-conjugates display chemopreventative potency by acting as carriers of active ginger component 6S. M2 chemical degradation to 6S was observed in an environment most resembling physiological conditions, with a pH of 7.4 at 37 °C. The metabolic profiles of M2 in cancer cells HCT-116 and H-1299 resembled those of 6S, indicating that its biotransformation route was initiated by deconjugation. Further, the presence of excess glutathione significantly delayed 6S and M2 metabolism and counteracted cell death induced by 6S and M2, suggesting that increasing available free thiols exogenously both promoted the formation of 5-glutathionyl-[6]-shogaol (M13) and inhibited the production of free 6S from M2 deconjugation, resulting in delayed 6S cell entry and bioactivity. Given the chemopreventative properties of M2 and our observations in vitro, we investigated its metabolism in mice. M2 and 6S showed similar metabolic profiles in mouse urine and fecal samples. Six new thiol-conjugated metabolites (M16-M21), together with previously reported ones, were identified by LC/MS. In particular, the increase of 5-N-acetylcystenyl-[6]-shogaol (M5) and its 3'-demethylated product (M16) abundance in mouse feces after treatment with M2 indicates that in addition to acting as a carrier of 6S, M2 is also directly acetylated to M5, which is further demethylated to M16 in vivo. In conclusion, the cysteine-conjugated metabolite of [6]-shogaol M2 exerts its bioactivity by acting as a carrier of 6S in both cancer cells and

  9. Hepatic and intestinal glucuronidation of mono(2-ethylhexyl) phthalate, an active metabolite of di(2-ethylhexyl) phthalate, in humans, dogs, rats, and mice: an in vitro analysis using microsomal fractions.

    PubMed

    Hanioka, Nobumitsu; Isobe, Takashi; Kinashi, Yu; Tanaka-Kagawa, Toshiko; Jinno, Hideto

    2016-07-01

    Mono(2-ethylhexyl) phthalate (MEHP) is an active metabolite of di(2-ethylhexyl) phthalate (DEHP) and has endocrine-disrupting effects. MEHP is metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, the hepatic and intestinal glucuronidation of MEHP in humans, dogs, rats, and mice was examined in an in vitro system using microsomal fractions. The kinetics of MEHP glucuronidation by liver microsomes followed the Michaelis-Menten model for humans and dogs, and the biphasic model for rats and mice. The K m and V max values of human liver microsomes were 110 µM and 5.8 nmol/min/mg protein, respectively. The kinetics of intestinal microsomes followed the biphasic model for humans, dogs, and mice, and the Michaelis-Menten model for rats. The K m and V max values of human intestinal microsomes were 5.6 µM and 0.40 nmol/min/mg protein, respectively, for the high-affinity phase, and 430 µM and 0.70 nmol/min/mg protein, respectively, for the low-affinity phase. The relative levels of V max estimated by Eadie-Hofstee plots were dogs (2.0) > mice (1.4) > rats (1.0) ≈ humans (1.0) for liver microsomes, and mice (8.5) > dogs (4.1) > rats (3.1) > humans (1.0) for intestinal microsomes. The percentages of the V max values of intestinal microsomes to liver microsomes were mice (120 %) > rats (57 %) > dogs (39 %) > humans (19 %). These results suggest that the metabolic abilities of UGT enzymes expressed in the liver and intestine toward MEHP markedly differed among species, and imply that these species differences are strongly associated with the toxicity of DEHP.

  10. CHEMICAL MODIFICATION MODULATES ESTROGENIC ACTIVITY, OXIDATIVE REACTIVITY, & METABOLIC STABILITY IN 4′F-DMA, A NEW BENZOTHIOPHENE SELECTIVE ESTROGEN RECEPTOR MODULATOR

    PubMed Central

    Liu, Hong; Bolton, Judy L.; Thatcher, Gregory R. J.

    2008-01-01

    The benzothiophene SERMs raloxifene and arzoxifene, in the clinic or clinical trials for treatment of breast cancer and postmenopausal symptoms, are highly susceptible to oxidative metabolism and formation of electrophilic metabolites. 4′F-DMA, fluoro-substituted desmethyl arzoxifene (DMA), showed attenuated oxidation to quinoids in incubation with rat hepatocytes as well as in rat and human liver microsomes. Incubations of 4′F-DMA with hepatocytes yielded only one glucuronide conjugate and no GSH conjugates; whereas DMA underwent greater metabolism giving two glucuronide conjugates, one sulfate conjugate, and two GSH conjugates. Phase I and phase II metabolism was further evaluated in human small intestine microsomes and in human intestinal Caco-2 cells. In comparison to DMA, 4′F-DMA formed significantly less glucuronide and sulfate conjugates. The formation of quinoids was futher explored in hepatocytes in which DMA was observed to give concentration and time dependent depletion of GSH accompanied by damage to DNA which showed inverse dependence on GSH; in contrast, GSH depletion and DNA damage were almost completely abrogated in incubations with 4′F-DMA. 4′F-DMA shows ligand binding affinity to ERα and ERβ with similarity to both raloxifene and to DMA. ER-mediated biological activity was measured with the ERE-luciferase reporter system in transfected MCF-7 cells and Ishikawa cells, and in MCF-7 cells proliferation was measured. In all systems, 4′F-DMA exhibited anitestrogenic acitivty of comparable potency to raloxifene, but did not manifest estrogenic properties, mirroring previous results on inhibition of estradiol-mediated induction of alkaline phosphatase activity in Ishikawa cells. These results suggest that 4′F-DMA might be an improved benzothiophene SERM with similar antiestrogenic activity to raloxifene, but improved metabolic stability and attenuated toxicity; showing that simple chemical modification can abrogate oxidative bioactivation

  11. The Inhibitory Effect of Ciprofloxacin on the β-Glucuronidase-mediated Deconjugation of the Irinotecan Metabolite SN-38-G.

    PubMed

    Kodawara, Takaaki; Higashi, Takashi; Negoro, Yutaka; Kamitani, Yukio; Igarashi, Toshiaki; Watanabe, Kyohei; Tsukamoto, Hitoshi; Yano, Ryoichi; Masada, Mikio; Iwasaki, Hiromichi; Nakamura, Toshiaki

    2016-05-01

    The enterohepatic recycling of a drug consists of its biliary excretion and intestinal reabsorption, which is sometimes accompanied by hepatic conjugation and intestinal deconjugation reactions. β-Glucuronidase, an intestinal bacteria-produced enzyme, can break the bond between a biliary excreted drug and glucuronic acid. Antibiotics such as ciprofloxacin can reduce the enterohepatic recycling of glucuronide-conjugated drugs. In this study, we established an in vitro system to evaluate the β-glucuronidase-mediated deconjugation of the irinotecan metabolite SN-38-G to its active SN-38 form and the effect of ciprofloxacin thereon. SN-38 formation increased in a time-dependent manner from 5 to 30 min. in the presence of β-glucuronidase. Ciprofloxacin and phenolphthalein-β-D-glucuronide (PhePG), a typical β-glucuronidase substrate, significantly decreased SN-38-G deconjugation and, hence SN-38 formation. Similarly, the antibiotics enoxacin and gatifloxacin significantly inhibited the conversion of SN-38-G to SN-38, which was not observed for levofloxacin, streptomycin, ampicillin and amoxicillin/clavulanate. Ciprofloxacin showed a dose-dependent inhibitory effect on the β-glucuronidase-mediated conversion of SN-38-G to SN-38 with a half-maximal inhibitory concentration (IC50 ) value of 83.8 μM. PhePG and ciprofloxacin afforded the inhibition in a competitive and non-competitive manner, respectively. These findings suggest that the reduction in the serum SN-38 concentration following co-administration of ciprofloxacin during irinotecan treatment is due, at least partly, to the decreased enterohepatic circulation of SN-38 through the non-competitive inhibition of intestinal β-glucuronidase-mediated SN-38-G deconjugation. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  12. Identification of phase I and II metabolites of the new designer drug α-pyrrolidinohexiophenone (α-PHP) in human urine by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS).

    PubMed

    Paul, Michael; Bleicher, Sergej; Guber, Susanne; Ippisch, Josef; Polettini, Aldo; Schultis, Wolfgang

    2015-11-01

    Pyrrolidinophenones represent one emerging class of newly encountered drugs of abuse, also known as 'new psychoactive substances', with stimulating psychoactive effects. In this work, we report on the detection of the new designer drug α-pyrrolidinohexiophenone (α-PHP) and its phase I and II metabolites in a human urine sample of a drug abuser. Determination and structural elucidation of these metabolites have been achieved by liquid chromatography electrospray ionisation quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS). By tentative identification, the exact and approximate structures of 19 phase I metabolites and nine phase II glucuronides were elucidated. Major metabolic pathways revealed the reduction of the ß-keto moieties to their corresponding alcohols, didesalkylation of the pyrrolidine ring, hydroxylation and oxidation of the aliphatic side chain leading to n-hydroxy, aldehyde and carboxylate metabolites, and oxidation of the pyrrolidine ring to its lactam followed by ring cleavage and additional hydroxylation, reduction and oxidation steps and combinations thereof. The most abundant phase II metabolites were glucuronidated ß-keto-reduced alcohols. Besides the great number of metabolites detected in this sample, α-PHP is still one of the most abundant ions together with its ß-keto-reduced alcoholic dihydro metabolite. Monitoring of these metabolites in clinical and forensic toxicology may unambiguously prove the abuse of the new designer drug α-PHP. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Glutathione conjugation and contaminant transformation

    USGS Publications Warehouse

    Field, Jennifer A.; Thurman, E.M.

    1996-01-01

    The recent identification of a novel sulfonated metabolite of alachlor in groundwater and metolachlor in soil is likely the result of glutathione conjugation. Glutathione conjugation is an important biochemical reaction that leads, in the case of alachlor, to the formation of a rather difficult to detect, water-soluble, and therefore highly mobile, sulfonated metabolite. Research from weed science, toxicology, and biochemistry is discussed to support the hypothesis that glutathione conjugation is a potentially important detoxification pathway carried out by aquatic and terrestrial plants and soil microorganisms. A brief review of the biochemical basis for glutathione conjugation is presented. We recommend that multidisciplinary research focus on the occurrence and expression of glutathione and its attendant enzymes in plants and microorganisms, relationships between electrophilic substrate structure and enzyme activity, and the potential exploitation of plants and microorganisms that are competent in glutathione conjugation for phytoremediation and bioremediation.

  14. Development and validation of LC-HRMS and GC-NICI-MS methods for stereoselective determination of MDMA and its phase I and II metabolites in human urine

    PubMed Central

    Schwaninger, Andrea E.; Meyer, Markus R.; Huestis, Marilyn A.; Maurer, Hans H.

    2013-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a racemic drug of abuse and its R- and S-enantiomers are known to differ in their dose-response curve. The S-enantiomer was shown to be eliminated at a higher rate than the R-enantiomer most likely explained by stereoselective metabolism that was observed in various in vitro experiments. The aim of this work was the development and validation of methods for evaluating the stereoselective elimination of phase I and particularly phase II metabolites of MDMA in human urine. Urine samples were divided into three different methods. Method A allowed stereoselective determination of the 4-hydroxy-3-methoxymethamphetamine (HMMA) glucuronides and only achiral determination of the intact sulfate conjugates of HMMA and 3,4-dihydroxymethamphetamine (DHMA) after C18 solid-phase extraction by liquid chromatography–high-resolution mass spectrometry with electrospray ionization. Method B allowed the determination of the enantiomer ratios of DHMA and HMMA sulfate conjugates after selective enzymatic cleavage and chiral analysis of the corresponding deconjugated metabolites after chiral derivatization with S-heptafluorobutyrylprolyl chloride using gas chromatography–mass spectrometry with negativeion chemical ionization. Method C allowed the chiral determination of MDMA and its unconjugated metabolites using method B without sulfate cleavage. The validation process including specificity, recovery, matrix effects, process efficiency, accuracy and precision, stabilities and limits of quantification and detection showed that all methods were selective, sensitive, accurate and precise for all tested analytes. PMID:21656610

  15. Disposition and metabolism of [14C]-levomilnacipran, a serotonin and norepinephrine reuptake inhibitor, in humans, monkeys, and rats

    PubMed Central

    Brunner, Valérie; Maynadier, Bernadette; Chen, Laishun; Roques, Louise; Hude, Isabelle; Séguier, Sébastien; Barthe, Laurence; Hermann, Philippe

    2015-01-01

    Levomilnacipran is approved in the US for the treatment of major depressive disorder in adults. We characterized the metabolic profile of levomilnacipran in humans, monkeys, and rats after oral administration of [14C]-levomilnacipran. In vitro binding of levomilnacipran to human plasma proteins was also studied. Unchanged levomilnacipran was the major circulating compound after dosing in all species. Within 12 hours of dosing in humans, levomilnacipran accounted for 52.9% of total plasma radioactivity; the circulating metabolites N-desethyl levomilnacipran N-carbamoyl glucuronide, N-desethyl levomilnacipran, and levomilnacipran N-carbamoyl glucuronide accounted for 11.3%, 7.5%, and 5.6%, respectively. Similar results were seen in monkeys. N-Desethyl levomilnacipran and p-hydroxy levomilnacipran were the main circulating metabolites in rats. Mass balance results indicated that renal excretion was the major route of elimination with 58.4%, 35.5%, and 40.2% of total radioactivity being excreted as unchanged levomilnacipran in humans, monkeys, and rats, respectively. N-Desethyl levomilnacipran was detected in human, monkey, and rat urine (18.2%, 12.4%, and 7.9% of administered dose, respectively). Human and monkey urine contained measurable quantities of levomilnacipran glucuronide (3.8% and 4.1% of administered dose, respectively) and N-desethyl levomilnacipran glucuronide (3.2% and 2.3% of administered dose, respectively); these metabolites were not detected in rat urine. The metabolites p-hydroxy levomilnacipran and p-hydroxy levomilnacipran glucuronide were detected in human urine (≤1.2% of administered dose), and p-hydroxy levomilnacipran glucuronide was found in rat urine (4% of administered dose). None of the metabolites were pharmacologically active. Levomilnacipran was widely distributed with low plasma protein binding (22%). PMID:26150694

  16. 17alpha- and 17beta-boldenone 17-glucuronides: synthesis and complete characterization by 1H and 13C NMR.

    PubMed

    Casati, Silvana; Ottria, Roberta; Ciuffreda, Pierangela

    2009-02-01

    Boldenone is an androgenic anabolic steroid intensively used for growth promoting purposes in animals destined for meat production and as a performance enhancer in athletics. Therefore its use is officially banned either in animals intended for consumption or in humans. Because most anabolic steroids are completely metabolized and usually no parent steroid is excreted, metabolite identification is crucial to detect the illegal use of anabolic steroids either in humans or in livestock. 17alpha- and 17beta-boldenone 17-glucuronides were synthesized, purified and characterized in order to provide suitable standards for the identification and quantification of these metabolites.

  17. Physiologically-Based Toxicokinetic Modeling of Zearalenone and Its Metabolites: Application to the Jersey Girl Study

    PubMed Central

    Mukherjee, Dwaipayan; Royce, Steven G.; Alexander, Jocelyn A.; Buckley, Brian; Isukapalli, Sastry S.; Bandera, Elisa V.; Zarbl, Helmut; Georgopoulos, Panos G.

    2014-01-01

    Zearalenone (ZEA), a fungal mycotoxin, and its metabolite zeranol (ZAL) are known estrogen agonists in mammals, and are found as contaminants in food. Zeranol, which is more potent than ZEA and comparable in potency to estradiol, is also added as a growth additive in beef in the US and Canada. This article presents the development and application of a Physiologically-Based Toxicokinetic (PBTK) model for ZEA and ZAL and their primary metabolites, zearalenol, zearalanone, and their conjugated glucuronides, for rats and for human subjects. The PBTK modeling study explicitly simulates critical metabolic pathways in the gastrointestinal and hepatic systems. Metabolic events such as dehydrogenation and glucuronidation of the chemicals, which have direct effects on the accumulation and elimination of the toxic compounds, have been quantified. The PBTK model considers urinary and fecal excretion and biliary recirculation and compares the predicted biomarkers of blood, urinary and fecal concentrations with published in vivo measurements in rats and human subjects. Additionally, the toxicokinetic model has been coupled with a novel probabilistic dietary exposure model and applied to the Jersey Girl Study (JGS), which involved measurement of mycoestrogens as urinary biomarkers, in a cohort of young girls in New Jersey, USA. A probabilistic exposure characterization for the study population has been conducted and the predicted urinary concentrations have been compared to measurements considering inter-individual physiological and dietary variability. The in vivo measurements from the JGS fall within the high and low predicted distributions of biomarker values corresponding to dietary exposure estimates calculated by the probabilistic modeling system. The work described here is the first of its kind to present a comprehensive framework developing estimates of potential exposures to mycotoxins and linking them with biologically relevant doses and biomarker measurements

  18. Studies of metabolic pathways of trimebutine by simultaneous administration of trimebutine and its deuterium-labeled metabolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Y.; Chishima, S.; Takeyama, S.

    1989-07-01

    Trimebutine maleate (I), (+-)-2-dimethylamino-2-phenylbutyl 3,4,5-trimethoxybenzoate hydrogen maleate, and a deuterium-labeled sample of its hydrolyzed metabolite, 2-dimethylamino-2-phenylbutanol-d3 (II-d3), were simultaneously administered to experimental animals at an oral dose of 10 or 50 mumol/kg, and distribution ratios of the two alternative initial metabolic steps, i.e., ester hydrolysis and N-demethylation, were estimated by determining the composition of the urinary alcohol-moiety metabolites, II, and its mono- and di-demethylated metabolites, III and IV, by GC/MS. In dogs, the order of quantities of the metabolites from II-d3 was II much greater than III much greater than IV, showing predominance of conjugation over N-demethylation. However, this ordermore » was reversed when the amounts of the metabolites from I were compared, indicating that I was preferentially metabolized by N-demethylation followed by ester hydrolysis and conjugation in this order. In rats, a considerable proportion of I was presumed to be metabolized by ester hydrolysis before N-demethylation. In in vitro experiments employing the liver microsomes and homogenates of liver and small intestine from rats and dogs, it was found that both ester-hydrolizing and N-demethylating activities were higher in rats than in dogs, and the conjugating activity was higher in dogs than in rats. It was also found that I, having a high lipophilicity, was more susceptible to N-demethylation than less lipophilic II. These results from the in vitro experiments could account for the species differences in the distribution ratio of the metabolic pathways of I in vivo.« less

  19. Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia.

    PubMed

    Sarkanj, Bojan; Warth, Benedikt; Uhlig, Silvio; Abia, Wilfred A; Sulyok, Michael; Klapec, Tomislav; Krska, Rudolf; Banjari, Ines

    2013-12-01

    In this pilot survey the levels of various mycotoxin biomarkers were determined in third trimester pregnant women from eastern Croatia. First void urine samples were collected and analysed using a "dilute and shoot" LC-ESI-MS/MS multi biomarker method. Deoxynivalenol (DON) and its metabolites: deoxynivalenol-15-glucuronide and deoxynivalenol-3-glucuronide were detected in 97.5% of the studied samples, partly at exceptionally high levels, while ochratoxin A was found in 10% of the samples. DON exposure was primarily reflected by the presence of deoxynivalenol-15-glucuronide with a mean concentration of 120 μg L(-1), while free DON was detected with a mean concentration of 18.3 μg L(-1). Several highly contaminated urine samples contained a third DON conjugate, tentatively identified as deoxynivalenol-7-glucuronide by MS/MS scans. The levels of urinary DON and its metabolites measured in this study are the highest ever reported, and 48% of subjects were estimated to exceed the provisional maximum tolerable daily intake (1 μg kg(-1) b.w.). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Bisphenol A and its analogs: Do their metabolites have endocrine activity?

    PubMed

    Gramec Skledar, Darja; Peterlin Mašič, Lucija

    2016-10-01

    Structural analogs of bisphenol A are commonly used as its alternatives in industrial and commercial applications. Nevertheless, the question arises whether the use of other bisphenols is justified as replacements for bisphenol A in mass production of plastic materials. To evaluate the influence of metabolic reactions on endocrine activities of bisphenols, we conducted a systematic review of the literature. Knowledge about the metabolic pathways and enzymes involved in metabolic biotransformations is essential for understanding and predicting mechanisms of toxicity. Bisphenols are metabolized predominantly by the glucuronidation reaction, which is considered their most important detoxification pathway, as based on current knowledge, glucuronides do not have activity on endocrine receptors. In contrast, several oxidative metabolites of bisphenols with enhanced endocrine activities are presented, and these findings indicate that oxidative metabolites of bisphenols can still have endocrine activities in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Pharmacokinetics and Biliary Excretion of Fisetin in Rats.

    PubMed

    Huang, Miao-Chan; Hsueh, Thomas Y; Cheng, Yung-Yi; Lin, Lie-Chwen; Tsai, Tung-Hu

    2018-06-14

    The hypothesis of this study is that fisetin and phase II conjugated forms of fisetin may partly undergo biliary excretion. To investigate this hypothesis, male Sprague-Dawley rats were used for the experiment, and their bile ducts were cannulated with polyethylene tubes for bile sampling. The pharmacokinetic results demonstrated that the average area-under-the-curve (AUC) ratios ( k (%) = AUC conjugate /AUC free-form ) of fisetin, its glucuronides, and its sulfates were 1:6:21 in plasma and 1:4:75 in bile, respectively. Particularly, the sulfated metabolites were the main forms that underwent biliary excretion. The biliary excretion rate ( k BE (%) = AUC bile /AUC plasma ) indicates the amount of fisetin eliminated by biliary excretion. The biliary excretion rates of fisetin, its glucuronide conjugates, and its sulfate conjugates were approximately 144, 109, and 823%, respectively, after fisetin administration (30 mg/kg, iv). Furthermore, biliary excretion of fisetin is mediated by P-glycoprotein.

  2. Bioavailability study of a polyphenol-enriched extract from Hibiscus sabdariffa in rats and associated antioxidant status.

    PubMed

    Fernández-Arroyo, Salvador; Herranz-López, María; Beltrán-Debón, Raúl; Borrás-Linares, Isabel; Barrajón-Catalán, Enrique; Joven, Jorge; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio; Micol, Vicente

    2012-10-01

    The aqueous extracts of Hibiscus sabdariffa have been commonly used in folk medicine. Nevertheless, the compounds or metabolites responsible for its healthy effects have not yet been identified. The major metabolites present in rat plasma after acute ingestion of a polyphenol-enriched Hibiscus sabdariffa extract were characterized and quantified in order to study their bioavailability. The antioxidant status of the plasma samples was also measured through several complementary antioxidant techniques. High-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) was used for the bioavailability study. The antioxidant status was measured by ferric reducing ability of plasma method, thiobarbituric acid reactive substances assay, and superoxide dismutase activity assay. Seventeen polyphenols and metabolites have been detected and quantified. Eleven of these compounds were metabolites. Although phenolic acids were found in plasma without any modification in their structures, most flavonols were found as quercetin or kaempferol glucuronide conjugates. Flavonol glucuronide conjugates, which show longer half-life elimination values, are proposed to contribute to the observed lipid peroxidation inhibitory activity in the cellular membranes. By contrast, phenolic acids appear to exert their antioxidant activity through ferric ion reduction and superoxide scavenging at shorter times. We propose that flavonol-conjugated forms (quercetin and kaempferol) may be the compounds responsible for the observed antioxidant effects and contribute to the healthy effects of H. sabdariffa polyphenolic extract. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of N-peptide-6-amino-D-luciferin Conjugates.

    PubMed

    Kovács, Anita K; Hegyes, Péter; Szebeni, Gábor J; Nagy, Lajos I; Puskás, László G; Tóth, Gábor K

    2018-01-01

    A general strategy for the synthesis of N -peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N -Z-Asp-Glu-Val-Asp-6-amino-D-luciferin ( N -Z-DEVD-aLuc). N -Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N -peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system.

  4. Synthesis of N-peptide-6-amino-D-luciferin Conjugates

    PubMed Central

    Kovács, Anita K.; Hegyes, Péter; Szebeni, Gábor J.; Nagy, Lajos I.; Puskás, László G.; Tóth, Gábor K.

    2018-01-01

    A general strategy for the synthesis of N-peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N-Z-Asp-Glu-Val-Asp-6-amino-D-luciferin (N-Z-DEVD-aLuc). N-Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N-peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system. PMID:29725588

  5. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohara, Kazuaki, E-mail: Kazuaki_Ohara@kirin.co.jp; Wakabayashi, Hideyuki; Taniguchi, Yoshimasa

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found thatmore » quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.« less

  6. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers.

    PubMed

    Sanyakamdhorn, S; Agudelo, D; Bekale, L; Tajmir-Riahi, H A

    2016-09-01

    Conjugation of antitumor drug tamoxifen and its metabolites, 4-hydroxytamxifen and ednoxifen with synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3) and polyamidoamine (PAMAM-G4) dendrimers was studied in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize the drug binding process to synthetic polymers. Structural analysis showed that drug-polymer binding occurs via both H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4>mPEG-PAMAM-G3>PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Transmission electron microscopy showed significant changes in carrier morphology with major changes in the shape of the polymer aggregate as drug encapsulation occurred. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with the free binding energy of -3.79 for tamoxifen, -3.70 for 4-hydroxytamoxifen and -3.69kcal/mol for endoxifen, indicating of spontaneous drug-polymer interaction at room temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Oral pharmacokinetics of baicalin, wogonoside, oroxylin A 7-O-β-d-glucuronide and their aglycones from an aqueous extract of Scutellariae Radix in the rat.

    PubMed

    Cai, Yu; Li, Sai; Li, Ting; Zhou, Ruina; Wai, Alfred Tai-Seng; Yan, Ru

    2016-07-15

    Scutellariae Radix (SR) has been extensively prescribed in folk medicines due to its notable beneficial activities. The flavonoid glucuronides baicalin (BG), wogonoside (WG), oroxylin A 7-O-β-d-glucuronide (OG) and their aglycones baicalein, wogonin and oroxylin A, are the main components of the herb. So far, majority of previous studies failed to report the pharmacokinetics and none offered an explanation for the systemic exposures of these six flavonoids when the herbal extract was orally administered. In this study, when a SR extract was orally dosed to rats (800mg/kg, equivalent to BG 324.80, WG 124.00, OG 43.04, baicalein 25.36, wogonin 24.40, and oroxylin A 5.79mg/kg), all six flavonoids were detectable throughout the experimental period (48h) using an LC-MS/MS method with the Cmax and AUC0-48h of the glucuronides 10-130 times that of respective aglycones. As the lowest among the three glucuronides in the herb, OG was the most abundant in vivo, while the systemic exposure of wogonin was the highest amongst the three aglycones. The dose-normalized AUC0-48h descended in orders of OG/oroxylin A, WG/wogonin and BG/baicalein. Two di-conjugates of baicalein (BG glucuronide and BG glucoside), two BG isomers (minor BM1 and major BM2), and one WG isomer (wogonin 5-O-glucuronide) were detected in rat plasma. Semi-quantitation of the isomers with peak area data revealed that the AUPs (area under peak area ratio-time curves) of BG isomers were ∼3 times that of BG, yet the AUP of wogonin 5-O-glucuronide was only one seventh of WG. BM2, tentatively assigned as baicalein 6-O-glucuronide, was formed from both microbial isomerization of BG and hepatic glucuronidation of baicalein. Wogonin 5-O-glucuronide was only formed in hepatic glucuronidation of wogonin. Demethylated wogonin was observed in gut bacteria, offering an optional origin of BM1 apart from baicalein glucuronidation. Microbial isomerization of BG and extensive hepatic glucuronidation of baicalein to form BM2as

  8. Effect of UDP-Glucuronosyltransferase (UGT) 1A Polymorphism (rs8330 and rs10929303) on Glucuronidation Status of Acetaminophen

    PubMed Central

    Tahir, Imtiaz Mahmood; Iqbal, Tahira; Saleem, Sadaf; Perveen, Sofia; Farooqi, Aboubakker

    2017-01-01

    Interindividual variability in polymorphic uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) ascribed to genetic diversity is associated with relative glucuronidation level among individuals. The present research was aimed to study the effect of 2 important single nucleotide polymorphisms (SNPs; rs8330 and rs10929303) of UGT1A1 gene on glucuronidation status of acetaminophen in healthy volunteers (n = 109). Among enrolled volunteers, 54.13% were male (n = 59) and 45.87% were female (n = 50). The in vivo activity of UGT1A1 was investigated by high-performance liquid chromatography-based analysis of glucuronidation status (ie, acetaminophen and acetaminophen glucuronide) in human volunteers after oral intake of a single dose (1000 mg) of acetaminophen. The TaqMan SNP genotyping assay was used for UGT1A1 genotyping. The wild-type genotype (C/C) was observed the most frequent one for both SNPs (rs8330 and rs10929303) and associated with fast glucuronidator phenotypes. The distribution of variant genotype (G/G) for SNP rs8330 was observed in 5% of male and 8% of the female population; however, for SNP rs10929303, the G/G genotype was found in 8% of both genders. A trimodal distribution (fast, intermediate, and slow) based on phenotypes was observed. Among the male participants, the glucuronidation phenotypes were observed as 7% slow, 37% intermediate, and 56% fast glucuronidators; however, these findings for the females were slightly different as 8%, 32%, and 60% respectively. The k-statistics revealed a compelling evidence for good concordance between phenotype and genotype with a k value of 1.00 for SNP rs8330 and 0.966 for SNP rs10929303 in our population. PMID:28932176

  9. Metabolism of 1-fluoro-1,1,2-trichloroethane, 1,2-dichloro-1,1-difluoroethane, and 1,1,1-trifluoro-2-chloroethane.

    PubMed

    Yin, H; Jones, J P; Anders, M W

    1995-03-01

    1-Fluoro-1,1,2-trichloroethane (HCFC-131a), 1,2-dichloro-1,1-difluoroethane (HCFC-132b), and 1,1,1-trifluoro-2-chloroethane (HCFC-133a) were chosen as models for comparative metabolism studies on 1,1,1,2-tetrahaloethanes, which are under consideration as replacements for ozone-depleting chlorofluorocarbons (CFCs). Male Fischer 344 rats were given 10 mmol/kg ip HCFC-131a or HCFC-132b or exposed by inhalation to 1% HCFC-133a for 2 h. Urine collected in the first 24 h after exposure was analyzed by 19F NMR and GC/MS and with a fluoride-selective ion electrode for the formation of fluorine-containing metabolites. Metabolites of HCFC-131a included 2,2-dichloro-2-fluoroethyl glucuronide, 2,2-dichloro-2-fluoroethyl sulfate, dichlorofluoroacetic acid, and inorganic fluoride. Metabolites of HCFC-132b were characterized as 2-chloro-2,2-difluoroethyl glucuronide, 2-chloro-2,2-difluoroethyl sulfate, chlorodifluoroacetic acid, chlorodifluoroacetaldehyde hydrate, chlorodifluoroacetaldehyde-urea adduct, and inorganic fluoride. HCFC-133a was metabolized to 2,2,2-trifluoroethyl glucuronide, trifluoroacetic acid, trifluoroacetaldehyde hydrate, trifluoroacetaldehyde-urea adduct, inorganic fluoride, and a minor, unidentified metabolite. With HCFC-131a and HCFC-132b, glucuronide conjugates of 2,2,2-trihaloethanols were the major urinary metabolites, whereas with HCFC-133a, a trifluoroacetaldehyde-urea adduct was the major urinary metabolite. Analysis of metabolite distribution in vivo indicated that aldehydic metabolites increased as fluorine substitution increased in the order HCFC-131a < HCFC-132b < HCFC-133a. With NADPH-fortified rat liver microsomes, HCFC-133a and HCFC-132b were biotransformed to trifluoroacetaldehyde and chlorodifluoroacetaldehyde, respectively, whereas HCFC-131a was converted to dichlorofluoroacetic acid. No covalently bound metabolites were detected by 19F NMR spectroscopy.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Determination of species-difference in microsomal metabolism of amitriptyline using a predictive MRM-IDA-EPI method.

    PubMed

    Lee, Ji-Yoon; Lee, Sang Yoon; Lee, KiHo; Oh, Soo Jin; Kim, Sang Kyum

    2015-03-05

    We investigated to compare species differences in amitriptyline (AMI) metabolism among mouse, rat, dog, and human liver microsomes. We developed a method for simultaneous determination of metabolic stability and metabolite profiling using predictive multiple reaction monitoring information-dependent acquisition-enhanced product ion (MRM-IDA-EPI) scanning. In the cofactor-dependent microsomal metabolism study, AMI was metabolized more rapidly in rat and human liver microsomes incubated with NADPH than UDPGA. AMI incubated with NADPH+UDPGA in rat, dog, or mouse liver microsomes disappeared rapidly with a half-life of 3.5, 8.4, or 9.2 min, respectively, but slowly in human liver microsomes with a half-life of 96 min. In total, 9, 10, 11, and 6 putative metabolites of AMI were detected in mouse, rat, dog, and human liver microsomes, respectively, based on mass spectrometric analyses. Kinetic analysis of metabolites in liver microsomes from each species over 120 min showed common metabolic routes of AMI, such as N-demethylation, hydroxylation, and glucuronidation, and subtle interspecies differences in AMI metabolism. The main metabolic routes in mouse, rat, dog, and human liver microsomes were hydroxylation followed by glucuronide conjugation, methyl hydroxylation, and N-demethylation, respectively. The MRM-IDA-EPI method can provide quantitative and qualitative information about metabolic stability and metabolite profiling simultaneously. Moreover, time course analysis of metabolites can not only eliminate false identification of metabolites, but also provide a rationale for proposed metabolic pathways. The MRM-IDA-EPI method combined with time course analysis of metabolites is useful for investigating drug metabolism at the early drug discovery stage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Effective Synthesis of Sulfate Metabolites of Chlorinated Phenols

    PubMed Central

    Lehmler, Hans-Joachim; He, Xianran; Li, Xueshu; Duffel, Michael W.; Parkin, Sean

    2013-01-01

    Chlorophenols are an important class of persistent environmental contaminants and have been implicated in a range of adverse health effects, including cancer. They are readily conjugated and excreted as the corresponding glucuronides and sulfates in the urine of humans and other species. Here we report the synthesis and characterization of a series of ten chlorophenol sulfates by sulfation of the corresponding chlorophenols with 2,2,2-trichloroethyl (TCE) chlorosulfate using N,N-dimethylaminopyridine (DMAP) as base. Deprotection of the chlorophenol diesters with zinc powder/ammonium formate yielded the respective chlorophenol sulfate ammonium salts in good yield. The molecular structure of three TCE-protected chlorophenol sulfate diesters and one chlorophenol sulfate monoester were confirmed by X-ray crystal structure analysis. The chlorophenol sulfates were stable for several months if stored at −20 °C and, thus, are useful for future toxicological, environmental and human biomonitoring studies. PMID:23906814

  12. A two-step ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry with mass defect filtering method for rapid identification of analogues from known components of different chemical structure types in Fructus Gardeniae-Fructus Forsythiae herb pair extract and in rat's blood.

    PubMed

    Zhou, Wei; Shan, Jinjun; Meng, Minxin

    2018-08-17

    Fructus Gardeniae-Fructus Forsythiae herb pair is an herbal formula used extensively to treat inflammation and fever, but few systematic identification studies of the bioactive components have been reported. Herein, the unknown analogues in the first-step screening were rapidly identified from representative compounds in different structure types (geniposide as iridoid type, crocetin as crocetin type, jasminoside B as monocyclic monoterpene type, oleanolic acid as saponin type, 3-caffeoylquinic acid as organic acid type, forsythoside A as phenylethanoid type, phillyrin as lignan type and quercetin 3-rutinoside as flavonoid type) by UPLC-Q-Tof/MS combined with mass defect filtering (MDF), and further confirmed with reference standards and published literatures. Similarly, in the second step, other unknown components were rapidly discovered from the compounds identified in the first step by MDF. Using the two-step screening method, a total of 58 components were characterized in Fructus Gardeniae-Fructus Forsythiae (FG-FF) decoction. In rat's blood, 36 compounds in extract and 16 metabolites were unambiguously or tentatively identified. Besides, we found the principal metabolites were glucuronide conjugates, with the glucuronide conjugates of caffeic acid, quercetin and kaempferol confirmed as caffeic acid 3-glucuronide, quercetin 3-glucuronide and kaempferol 3-glucuronide by reference standards, respectively. Additionally, most of them bound more strongly to human serum albumin than their respective prototypes, predicted by Molecular Docking and Simulation, indicating that they had lower blood clearance in vivo and possibly more contribution to pharmacological effects. This study developed a novel two-step screening method in addressing how to comprehensively screen components in herbal medicine by UPLC-Q-Tof/MS with MDF. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Detection of novel metabolites of flaxseed lignans in vitro and in vivo.

    PubMed

    Quartieri, Andrea; García-Villalba, Rocío; Amaretti, Alberto; Raimondi, Stefano; Leonardi, Alan; Rossi, Maddalena; Tomàs-Barberàn, Francisco

    2016-07-01

    This study aimed to improve the knowledge of secoisolariciresinol diglucoside (SDG) transformation by human gut microbiota. SDG-supplemented microbiota cultures were inoculated with the feces of five subjects. The same volunteers received a flaxseed supplement for 7 days. SDG metabolites in cultures, feces, and urine were monitored by LC-ESI-QTOF and LC-DAD. In all cultures, SDG was deglycosylated to secoisolariciresinol (SECO) within 12 h. SECO underwent successive dehydroxylations and demethylations yielding enterodiol (4-18% conversion) and enterolactone (0.2-6%) after 24 h. Novel intermediates related to SECO, matairesinol (MATA), and anhydrosecoisolariciresinol (AHS) were identified in fecal cultures. These metabolites were also found after flaxseed consumption in feces and urine (in approximate amounts between 0.01-47.03 μg/g and 0.01-13.49 μg/mL, respectively) in their native form and/or modified by phase II human enzymes (glucuronide, sulfate and sulfoglucuronide conjugates). Derivatives of MATA and AHS are described for the first time as intermediates of SDG biotransformation by intestinal bacteria, providing a more comprehensive knowledge of lignan intestinal metabolism. The transformations observed in vitro seem to occur in vivo as well. The detection in urine of SDG intermediates indicates their gut absorption, opening new perspectives on the study of their systemic biological effects. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and Evaluation of Vitamin D Receptor-Mediated Activities of Cholesterol and Vitamin D Metabolites

    PubMed Central

    Teske, Kelly A.; Bogart, Jonathan W.; Sanchez, Luis M.; Yu, Olivia B.; Preston, Joshua V.; Cook, James M.; Silvaggi, Nicholas R.; Bikle, Daniel D.; Arnold, Leggy A.

    2016-01-01

    A systematic study with phase 1 and phase 2 metabolites of cholesterol and vitamin D was conducted to determine whether their biological activity is mediated by the vitamin D receptor (VDR). The investigation necessitated the development of novel synthetic routes for lithocholic acid (LCA) glucuronides (Gluc). Biochemical and cell-based assays were used to demonstrate that hydroxylated LCA analogs were not able to bind VDR. This excludes VDR from mediating their biological and pharmacological activities. Among the synthesized LCA conjugates a novel VDR agonist was identified. LCA Gluc II increased the expression of CYP24A1 in DU145 cancer cells especially in the presence of the endogenous VDR ligand 1,25(OH)2D3. Furthermore, the methyl ester of LCA was identified as novel VDR antagonist. For the first time, we showed that calcitroic acid, the assumed inactive final metabolite of vitamin D, was able to activate VDR-mediated transcription to a higher magnitude than bile acid LCA. Due to a higher metabolic stability in comparison to vitamin D, a very low toxicity, and high concentration in bile and intestine, calcitroic acid is likely to be an important mediator of the protective vitamin D properties against colon cancer. PMID:26774929

  15. Resveratrol Metabolism in a Non-Human Primate, the Grey Mouse Lemur (Microcebus murinus), Using Ultra-High-Performance Liquid Chromatography–Quadrupole Time of Flight

    PubMed Central

    Menet, Marie-Claude; Marchal, Julia; Dal-Pan, Alexandre; Taghi, Méryam; Nivet-Antoine, Valérie; Dargère, Delphine; Laprévote, Olivier; Beaudeux, Jean-Louis; Aujard, Fabienne; Epelbaum, Jacques; Cottart, Charles-Henry

    2014-01-01

    The grey mouse lemur (Microcebus murinus) is a non-human primate used to study the ageing process. Resveratrol is a polyphenol that may increase lifespan by delaying age-associated pathologies. However, no information about resveratrol absorption and metabolism is available for this primate. Resveratrol and its metabolites were qualitatively and quantitatively analyzed in male mouse-lemur plasma (after 200 mg.kg−1 of oral resveratrol) by ultra-high performance liquid chromatography (UHPLC), coupled to a quadrupole-time-of-flight (Q-TOF) mass spectrometer used in full-scan mode. Data analyses showed, in MSE mode, an ion common to resveratrol and all its metabolites: m/z 227.072, and an ion common to dihydro-resveratrol metabolites: m/z 229.08. A semi-targeted study enabled us to identify six hydrophilic resveratrol metabolites (one diglucurono-conjugated, two monoglucurono-conjugated, one monosulfo-conjugated and two both sulfo- and glucurono-conjugated derivatives) and three hydrophilic metabolites of dihydro-resveratrol (one monoglucurono-conjugated, one monosulfo-conjugated, and one both sulfo- and glucurono-conjugated derivatives). The presence of such metabolites has been already detected in the mouse, rat, pig, and humans. Free resveratrol was measurable for several hours in mouse-lemur plasma, and its two main metabolites were trans-resveratrol-3-O-glucuronide and trans-resveratrol-3-sulfate. Free dihydro-resveratrol was not measurable whatever the time of plasma collection, while its hydrophilic metabolites were present at 24 h after intake. These data will help us interpret the effect of resveratrol in mouse lemurs and provide further information on the inter-species characteristics of resveratrol metabolism. PMID:24663435

  16. Metabolism of the new psychoactive substances N,N-diallyltryptamine (DALT) and 5-methoxy-DALT and their detectability in urine by GC-MS, LC-MSn, and LC-HR-MS-MS.

    PubMed

    Michely, Julian A; Helfer, Andreas G; Brandt, Simon D; Meyer, Markus R; Maurer, Hans H

    2015-10-01

    N,N-Diallyltryptamine (DALT) and 5-methoxy-DALT (5-MeO-DALT) are synthetic tryptamine derivatives commonly referred to as so-called new psychoactive substances (NPS). They have psychoactive effects that may be similar to those of other tryptamine derivatives. The objectives of this work were to study the metabolic fate and detectability, in urine, of DALT and 5-MeO-DALT. For metabolism studies, rat urine obtained after high-dose administration was prepared by precipitation and analyzed by liquid chromatography-high-resolution mass spectrometry (LC-HR-MS-MS). On the basis of the metabolites identified, several aromatic and aliphatic hydroxylations, N-dealkylation, N-oxidation, and combinations thereof are proposed as the main metabolic pathways for both compounds. O-Demethylation of 5-MeO-DALT was also observed, in addition to extensive glucuronidation or sulfation of both compounds after phase I transformation. The cytochrome P450 (CYP) isoenzymes predominantly involved in DALT metabolism were CYP2C19, CYP2D6, and CYP3A4; those mainly involved in 5-MeO-DALT metabolism were CYP1A2, CYP2C19, CYP2D6, and CYP3A4. For detectability studies, rat urine was screened by GC-MS, LC-MS(n), and LC-HR-MS-MS after administration of low doses. LC-MS(n) and LC-HR-MS-MS were deemed suitable for monitoring consumption of both compounds. The most abundant targets were a ring hydroxy metabolite of DALT, the N,O-bis-dealkyl metabolite of 5-MeO-DALT, and their glucuronides. GC-MS enabled screening of DALT by use of its main metabolites only.

  17. Plasma Pharmacokinetic Determination of Canagliflozin and Its Metabolites in a Type 2 Diabetic Rat Model by UPLC-MS/MS.

    PubMed

    Dong, Song-Tao; Niu, Hui-Min; Wu, Yin; Jiang, Jia-Lei; Li, Ying; Jiang, Kun-Yu; Wang, Xin; Zhang, Mao-Fan; Han, Ming-Feng; Meng, Sheng-Nan

    2018-05-20

    Canagliflozin is a novel, orally selective inhibitor of sodium-dependent glucose co-transporter-2 (SGLT2) for the treatment of patients with type 2 diabetes mellitus. In this study, a sensitive and efficient UPLC-MS/MS method for the quantification of canagliflozin and its metabolites in rat plasma was established and applied to pharmacokinetics in a type 2 diabetic rat model. We firstly investigated the pharmacokinetic changes of canagliflozin and its metabolites in type 2 diabetic rats in order to use canagliflozin more safely, reasonably and effectively. We identified three types of O-glucuronide metabolites (M5, M7 and M17), two kinds of oxidation metabolites (M8 and M9) and one oxidation and glucuronide metabolite (M16) using API 5600 triple-TOF-MS/MS. Following liquid⁻liquid extraction by tert-butyl methyl ether, chromatographic separation of canagliflozin and its metabolites were performed on a Waters XBridge BEH C18 column (100 × 2.1 mm, 2.5 μm) using 0.1% acetonitrile⁻formic acid (75:15, v / v ) as the mobile phase at a flow rate of 0.7 mL/min. Selected ion monitoring transitions of m / z 462.00→191.10, 451.20→153.10, 638.10→191.10 and 478.00→267.00 were chosen to quantify canagliflozin, empagliflozin (IS), O-glucuronide metabolites (M5, M7 and M17), and oxidation metabolites (M9) using an API 5500-triple-MS/MS in the positive electrospray ionization mode. The validation of the method was found to be of sufficient specificity, accuracy and precision. The pathological condition of diabetes could result in altered pharmacokinetic behaviors of canagliflozin and its metabolites. The pharmacokinetic parameters (AUC 0⁻t , AUC 0⁻∞ , CL z /F, and V z /F) of canagliflozin were significantly different between the CTRL and DM group rats ( p < 0.05 or p < 0.01), which may subsequently cause different therapeutic effects.

  18. Metabolite profiling of bendamustine in urine of cancer patients after administration of [14C]bendamustine.

    PubMed

    Dubbelman, Anne-Charlotte; Jansen, Robert S; Rosing, Hilde; Darwish, Mona; Hellriegel, Edward; Robertson, Philmore; Schellens, Jan H M; Beijnen, Jos H

    2012-07-01

    Bendamustine is an alkylating agent consisting of a mechlorethamine derivative, a benzimidazole group, and a butyric acid substituent. A human mass balance study showed that bendamustine is extensively metabolized and subsequently excreted in urine. However, limited information is available on the metabolite profile of bendamustine in human urine. The objective of this study was to elucidate the metabolic pathways of bendamustine in humans by identification of its metabolites excreted in urine. Human urine samples were collected up to 168 h after an intravenous infusion of 120 mg/m(2) (80-95 μCi) [(14)C]bendamustine. Metabolites of [(14)C]bendamustine were identified using liquid chromatography (high-resolution)-tandem mass spectrometry with off-line radioactivity detection. Bendamustine and a total of 25 bendamustine-related compounds were detected. Observed metabolic conversions at the benzimidazole and butyric acid moiety were N-demethylation and γ-hydroxylation. In addition, various other combinations of these conversions with modifications at the mechlorethamine moiety were observed, including hydrolysis (the primary metabolic pathway), cysteine conjugation, and subsequent biotransformation to mercapturic acid and thiol derivatives, N-dealkylation, oxidation, and conjugation with phosphate, creatinine, and uric acid. Bendamustine-derived products containing phosphate, creatinine, and uric acid conjugates were also detected in control urine incubated with bendamustine. Metabolites that were excreted up to 168 h after the infusion included products of dihydrolysis and cysteine conjugation of bendamustine and γ-hydroxybendamustine. The range of metabolic reactions is generally consistent with those reported for rat urine and bile, suggesting that the overall processes involved in metabolic elimination are qualitatively the same in rats and humans.

  19. Validation of a sensitive LC-MS assay for quantification of glyburide and its metabolite 4-transhydroxy glyburide in plasma and urine: an OPRU Network study

    PubMed Central

    Naraharisetti, Suresh Babu; Kirby, Brian J.; Hebert, Mary F.; Easterling, Thomas R.; Unadkat, Jashvant D.

    2009-01-01

    Glyburide (glibenclamide, INN), a second generation sulfonylurea is widely used in the treatment of gestational diabetes mellitus (GDM). None of the previously reported analytical methods provide adequate sensitivity for the expected sub-nanogram/mL maternal and umbilical cord plasma concentrations of glyburide during pregnancy. We developed and validated a sensitive and low sample volume liquid chromatographic-mass spectrometric (LC-MS) method for simultaneous determination of glyburide (GLY) and its metabolite, 4-transhydroxy glyburide (M1) in human plasma (0.5 ml) or urine (0.1 ml). The limits of quantitation (LOQ) for GLY and M1 in plasma were 0.25 and 0.40 ng/mL, respectively whereas it was 1.06 ng/mL for M1 in urine. As measured by quality control samples, precision (% coefficient of variation) of the assay was < 15% whereas the accuracy (% deviation from expected) ranged from −10.1–14.3%. We found that the GLY metabolite, M1 is excreted in the urine as the glucuronide-conjugate. PMID:17980680

  20. Identification of major xanthones and steroidal saponins in rat urine by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry technology following oral administration of Rhizoma Anemarrhenae decoction.

    PubMed

    Ma, Chunhui; Wang, Longxing; Tang, Yihong; Fan, Mingsong; Xiao, Hongbin; Huang, Chenggang

    2008-10-01

    Rhizoma Anemarrhenae (Zhimu in Chinese), the dried rhizome of Anemarrhena asphodeloides Bge. (Fam. Liliaceae), is a well-known traditional Chinese medicinal herb and has been used clinically in China for centuries to cure various diseases. However, like other traditional Chinese medicines, the effective constituents of this medicine, especially the assimilation and metabolites in vivo, which are very important to show their effects, have not been systematically studied. In this paper, solid-phase extraction and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry technologies were used to study the constituents absorbed into rat urine and their metabolites after oral administration of Rhizoma Anemarrhenae decoction. A total of 11 compounds, including two xanthones, three of their metabolites and six steroidal saponins, were identified in rat urine sample. They were neomangiferin (1), glucuronide and monomethyl conjugate of mangiferin (2), mangiferin (3), monomethyl conjugate of mangiferin (4), dimethyl conjugate of mangiferin (5), timosaponin N or timosaponin E1 (6), timosaponin BII (7), timosaponin BIII (8), anemarrhenasaponin I or anemarrhenasaponin II (9), timosaponin AII (10) and timosaponin AIII (11). The results would efficaciously narrow the potentially active compounds range in Rhizoma Anemarrhenae decoction, and pave a helpful way for follow-up mechanism of action research.

  1. False-positive ethyl glucuronide immunoassay screening caused by a propyl alcohol-based hand sanitizer.

    PubMed

    Arndt, Torsten; Grüner, Joachim; Schröfel, Stefanie; Stemmerich, Karsten

    2012-11-30

    Urine ethyl glucuronide (EtG) is considered as a specific marker of recent ethanol consumption. We describe false-positive DRI(®) EIA EtG enzyme immunoassay results caused by propyl glucuronides in urine after using a propanol-based hand sanitizer. EtG screening was done with the DRI(®) EIA EtG assay (Microgenics), using a cut-off of 0.5 mg/L as recommended by the manufacturer and of 0.1 mg/L as demanded by the German Regulations for Reissuing Drivers Licenses. Confirmatory EtG analysis was done with the ClinMass(®) EtG LC-MS/MS testkit (Recipe), extended by the mass transitions 235.1→75.1, 235.1→85.1, and 235.1→113.1 for the detection of the 1- and 2-propyl glucuronides. Self-experiments were done by staff members of our lab (n=7), using 3 mL Sterillium(®) Classic Pure (30 g/100 g 1-propanol and 45 g/100 g 2-propanol) for hand sanitation every quarter of an hour for 8 h according to DIN EN 1500:2011-05 with and without an exhauster and by passive inhalation of the sanitizer vapor. Spot urine samples were taken immediately before and up to 24 h after the first sanitizer use. False-positive immunoassay results of up to 4 mg/L or 2.3 mg/g creatinine were obtained after normal use of the sanitizer and also after passive inhalation of the sanitizer vapor (up to 0.89 mg/L or 0.61 mg/g). Immunoassay results were positive even after 4-fold use of the sanitizer (up to 0.14 mg/L or 0.38 mg/g) and up to 6 h after the last sanitizer contact (maximum 0.63 mg/L and 0.33 mg/g for sanitizer users and 0.25 mg/g after passive inhalation). Spiking of EtG-free urine with 1-propyl glucuronide (Athena Environmental Sciences) between 0.05 and 10 mg/L clearly demonstrated a cross reaction of the immunoassay of approx. 10% as compared to EtG. LC-MS/MS of urines with a positive immunoassay EtG result did not show EtG signals, but distinct signals of 1-propyl glucuronide (n-propyl glucuronide) and 2-propyl glucuronide (iso-propyl glucuronide). An exhauster effectively prevented

  2. Direct measurement of the glucuronide conjugate of 1-hydroxypyrene in human urine by using liquid chromatography with tandem mass spectrometry.

    PubMed

    Kakimoto, Kensaku; Toriba, Akira; Ohno, Takanori; Ueno, Mariko; Kameda, Takayuki; Tang, Ning; Hayakawa, Kazuichi

    2008-05-15

    To evaluate human exposure to polycyclic aromatic hydrocarbons (PAHs), we developed a rapid, simple and sensitive method for determining 1-hydroxypyrene-glucuronide (1-OHP-G) in human urine. To improve precision, a deuterated glucuronide was used as an internal standard. The method requires only 1 mL of urine. The urine was treated with a mixed-mode anion-exchange and reversed-phase solid-phase extraction cartridge (Oasis MAX). The analytes were analyzed with a C(18) reversed-phase column with a gradient elution, followed by tandem mass spectrometry with electrospray ionization in negative ion mode. The detection limit of 1-OHP-G (corresponding to a signal-to-noise ratio of 3) was 0.13 fmol/injection. Urinary concentrations of 1-OHP-G determined by this method were strongly correlated (r(2)=0.961) with concentrations of 1-hydroxypyrene by conventional HPLC with fluorescence detection.

  3. Pharmacokinetics, Metabolism, and Excretion of the Antiviral Drug Arbidol in Humans

    PubMed Central

    Deng, Pan; Zhong, Dafang; Yu, Kate; Zhang, Yifan; Wang, Ting

    2013-01-01

    Arbidol is a broad-spectrum antiviral drug that is used clinically to treat influenza. In this study, the pharmacokinetics, metabolism, and excretion of arbidol were investigated in healthy male Chinese volunteers after a single oral administration of 200 mg of arbidol hydrochloride. A total of 33 arbidol metabolites were identified in human plasma, urine, and feces. The principal biotransformation pathways included sulfoxidation, dimethylamine N-demethylation, glucuronidation, and sulfate conjugation. The major drug-related component in the plasma was sulfinylarbidol (M6-1), followed by unmetabolized arbidol, N-demethylsulfinylarbidol (M5), and sulfonylarbidol (M8). The exposures of M5, M6-1, and M8, as determined by the metabolite-to-parent area under the plasma concentration-time curve from 0 to t (AUC0-t) ratio, were 0.9 ± 0.3, 11.5 ± 3.6, and 0.5 ± 0.2, respectively. In human urine, glucuronide and sulfate conjugates were detected as the major metabolites, accounting for 6.3% of the dose excreted within 0 to 96 h after drug administration. The fecal specimens mainly contained the unchanged arbidol, accounting for 32.4% of the dose. Microsomal incubation experiments demonstrated that the liver and intestines were the major organs that metabolize arbidol in humans. CYP3A4 was the major isoform involved in arbidol metabolism, whereas the other P450s and flavin-containing monooxygenases (FMOs) played minor roles. These results indicated possible drug interactions between arbidol and CYP3A4 inhibitors and inducers. Further investigations are needed to understand the importance of M6-1 in the efficacy and safety of arbidol, because of its high plasma exposure and long elimination half-life (25.0 h). PMID:23357765

  4. Automated software-guided identification of new buspirone metabolites using capillary LC coupled to ion trap and TOF mass spectrometry.

    PubMed

    Fandiño, Anabel S; Nägele, Edgar; Perkins, Patrick D

    2006-02-01

    The identification and structure elucidation of drug metabolites is one of the main objectives in in vitro ADME studies. Typical modern methodologies involve incubation of the drug with subcellular fractions to simulate metabolism followed by LC-MS/MS or LC-MS(n) analysis and chemometric approaches for the extraction of the metabolites. The objective of this work was the software-guided identification and structure elucidation of major and minor buspirone metabolites using capillary LC as a separation technique and ion trap MS(n) as well as electrospray ionization orthogonal acceleration time-of-flight (ESI oaTOF) mass spectrometry as detection techniques. Buspirone mainly underwent hydroxylation, dihydroxylation and N-oxidation in S9 fractions in the presence of phase I co-factors and the corresponding glucuronides were detected in the presence of phase II co-factors. The use of automated ion trap MS/MS data-dependent acquisition combined with a chemometric tool allowed the detection of five small chromatographic peaks of unexpected metabolites that co-eluted with the larger chromatographic peaks of expected metabolites. Using automatic assignment of ion trap MS/MS fragments as well as accurate mass measurements from an ESI oaTOF mass spectrometer, possible structures were postulated for these metabolites that were previously not reported in the literature. Copyright 2006 John Wiley & Sons, Ltd.

  5. The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products.

    PubMed

    Kay, Colin D; Kroon, Paul A; Cassidy, Aedin

    2009-05-01

    To date the in vitro mechanistic bioactivity of anthocyanins has been exclusively explored using aglycones and glycoside conjugates, despite a lack of evidence establishing these as the biologically available forms. We conducted intestinal epithelial cell (Caco-2 cells) culture experiments, which indicated that after a 4 h incubation of anthocyanins in cell-free culture media (DMEM), 57% of the initial cyanidin-3-glucoside (C3G) and 96% of cyanidin had degraded. The level of degradation was not statistically different from that of cultured cell incubations, suggesting that degradation was spontaneous. Degradation products were identified as protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), and were confirmed in two other buffer matrices (phosphate and Hank's buffers). In cultured cell media the degradation products PCA and PGA were metabolised to glucuronide and sulphate conjugates, as indicated by both enzyme hydrolysis (sulphatase and glucuronidase treatments) and MS (PCA and PGA m/z = 155; sulphate = 235; glucuronide = 331). These data suggest a significant proportion of intestinal metabolites of anthocyanins are likely to be conjugates of their degradation products. Future efforts to establish the biological activities of anthocyanins should therefore include the investigation of phenolic acid and aldehyde products of degradation, along with their respective metabolites.

  6. Assessment of human deoxynivalenol exposure using an LC-MS/MS based biomarker method.

    PubMed

    Warth, Benedikt; Sulyok, Michael; Fruhmann, Philipp; Berthiller, Franz; Schuhmacher, Rainer; Hametner, Christian; Adam, Gerhard; Fröhlich, Johannes; Krska, Rudolf

    2012-05-20

    The Fusarium toxin deoxynivalenol (DON) is one of the most abundant mycotoxins worldwide and poses many adverse health effects to human and animals. Consequently, regulatory limits and a provisional maximum tolerable daily intake (PMTDI) for this important type B-trichothecene were assigned. We conducted a pilot survey to investigate the level of DON exposure in Austrian adults by measurements of DON and its glucuronide conjugates (DON-GlcA's), as biomarkers of exposure, in first morning urine. The average concentration of total DON (free DON+DON-GlcA's) was estimated to be 20.4±2.4 μg L⁻¹ (max. 63 μg L⁻¹). Surprisingly, we found that one third of the volunteers (n=27) exceeded the established PMTDI when consuming regular diet. DON-GlcA's were directly quantified by LC-MS/MS and the results were compared with indirect quantification after enzymatic hydrolysis and confirmed the suitability of the direct method. Moreover, we investigated the in vivo metabolism of DON in humans and were able to determine two closely eluting DON-GlcA's in naturally contaminated urine samples for the first time. In contrast to previous findings we have tentatively identified DON-15-glucuronide as a major DON metabolite in human urine based on the analysis of these samples. About 75% of total glucuronides were derived from this metabolite while DON-3-glucuronide accounted for approximately 25%. The reported new findings clearly demonstrate the great potential of suitable biomarkers to critically assess exposure of humans and animals to DON. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Metabolism of boldenone in man: gas chromatographic/mass spectrometric identification of urinary excreted metabolites and determination of excretion rates.

    PubMed

    Schänzer, W; Donike, M

    1992-01-01

    Urinary metabolites of boldenone (androsta-1,4-dien-17 beta-ol-3-one) following oral administration of boldenone (doses from 11 to 80 mg) to man were isolated from urine via XAD-2 adsorption and enzymatic hydrolysis with beta-glucuronidase from Escherichia coli. The isolated metabolites were derivatized with N-methyl-N-trimethylsilyltri- fluoroacetamide/trimethyliodosilane and analysed by gas chromatography/mass spectrometry with electron impact (EI) ionization at 70 eV. Boldenone (I) and four metabolites were identified after hydrolysis of the urine with beta-glucuronidase: 5 beta-androst-1-en-17 beta-ol-3-one (II), 5 beta-androst-1-ene-3 alpha, 17 beta-diol (III), 5 beta-androst-1-en-3 alpha-ol-17-one (IV) and 5 beta-androst-1-en-6 beta-ol-3,17-dione (V). Five further metabolites in low concentration were identified without enzymatic hydrolysis after treatment of the urine with potassium carbonate: 5 beta-androst-1-ene-3,17-dione (VI), 5 alpha-androst-1-ene-3,17-dione (VII), androsta-1,4-diene-3,17-dione (VIII), androsta-1,4-diene-6 beta,17 beta-diol-3-one (IX) and androsta-1,4-dien-6 beta-ol-3,17-dione (X). The identification of the metabolites is based on the gas chromatography retention index, high-performance liquid chromatography retention, EI mass spectrum, chemical reactions of the isolated metabolites, and synthesis of metabolites II, III, IV, VI and VII. The EI mass spectra of the bis-trimethylsilyl derivatives of boldenone and its metabolites display all intense molecular ions, M-15 ions and fragment ions originating from cleavage of the B-ring. The excreted metabolites can be separated in basic extractable labile conjugates and in stable conjugates. More than 95% of metabolites are excreted as stable conjugates.

  8. The Contribution of Common UGT2B10 and CYP2A6 Alleles to Variation in Nicotine Glucuronidation among European Americans

    PubMed Central

    Bloom, A. Joseph; von Weymarn, Linda B.; Martinez, Maribel; Bierut, Laura J.; Goate, Alison; Murphy, Sharon E.

    2014-01-01

    UDP-glucuronosytransferase-2B10 (UGT2B10) is the primary catalyst of nicotine glucuronidation. To develop a predictive genetic model of nicotine metabolism, the conversion of deuterated (D2)-nicotine to D2-nicotine-glucuronide, D2-cotinine, D2-cotinine-glucuronide, and D2-trans-3'-hydroxycotinine were quantified in 188 European Americans, and the contribution of UGT2B10 genotype to variability in first-pass nicotine glucuronidation assessed, following a procedure previously applied to nicotine C-oxidation. The proportion of total nicotine converted to nicotine-glucuronide (D2-nicotine-glucuronide/ (D2-nicotine +D2-nicotine-glucuronide +D2-cotinine +D2-cotinine-glucuronide +D2-trans-3'-hydroxycotinine)) was the primary phenotype. The variant, rs61750900T (D67Y) (minor allele frequency (MAF) = 10%), is confirmed to abolish nicotine glucuronidation activity. Another variant, rs112561475G (N397D) (MAF = 2%), is significantly associated with enhanced glucuronidation. rs112561475G is the ancestral allele of a well-conserved amino acid, indicating that the majority of human UGT2B10 alleles are derived hypomorphic alleles. CYP2A6 and UGT2B10 genotype explain 53% of the variance in oral nicotine glucuronidation in this sample. CYP2A6 and UGT2B10 genetic variants are also significantly associated with un-deuterated (D0) nicotine glucuronidation in subjects smoking ad libitum. We find no evidence for further common variation markedly influencing hepatic UGT2B10 expression in European Americans. PMID:24192532

  9. Detection and identification of 2-nitro-morphine and 2-nitro-morphine-6-glucuronide in nitrite adulterated urine specimens containing morphine and its glucuronides.

    PubMed

    Luong, Susan; Fu, Shanlin

    2014-03-01

    In vitro urine adulteration is a well-documented practice adopted by individuals aiming to evade detection of drug use, when required to undergo mandatory sports and workplace drug testing. Potassium nitrite is an effective urine adulterant due to its oxidizing potential, and has been shown to mask the presence of many drugs of abuse. However, limited research has been conducted to understand its mechanism of action, and to explore the possibility of the drugs undergoing direct oxidation to form stable reaction products. In this study, opiates including morphine, codeine, morphine-3-glucuronide and morphine-6-glucuronide were exposed to potassium nitrite in water and urine to mimic the process of nitrite adulteration. It was found that two stable reaction products were detected by liquid chromatography-mass spectrometry (LC-MS) when morphine and morphine-6-glucuronide were exposed to nitrite. Isolation and elucidation using spectrometric and spectroscopic techniques revealed that they were 2-nitro-morphine and 2-nitro-morphine-6-glucuronide, respectively. These reaction products were also formed when an authentic morphine-positive urine specimen was fortified with nitrite. 2-Nitro-morphine was found to be stable enough to undergo the enzymatic hydrolysis procedure and also detectable by gas chromatography-mass spectrometry (GC-MS) after forming a trimethylsilyl derivative. On the contrary, morphine-3-glucuronide did not appear to be chemically manipulated when exposed to potassium nitrite in urine. These reaction products are not endogenously produced, are relatively stable and can be monitored with both LC-MS and GC-MS confirmatory techniques. As a result, these findings have revealed the possibility for the use of 2-nitro-morphine and 2-nitro-morphine-6-glucuronide as markers for the indirect monitoring of morphine and morphine-6-glucuronide in urine specimens adulterated with nitrite. Copyright © 2013 John Wiley & Sons, Ltd.

  10. New secondary metabolites of phenylbutyrate in humans and rats.

    PubMed

    Kasumov, Takhar; Brunengraber, Laura L; Comte, Blandine; Puchowicz, Michelle A; Jobbins, Kathryn; Thomas, Katherine; David, France; Kinman, Renee; Wehrli, Suzanne; Dahms, William; Kerr, Douglas; Nissim, Itzhak; Brunengraber, Henri

    2004-01-01

    Phenylbutyrate is used to treat inborn errors of ureagenesis, malignancies, cystic fibrosis, and thalassemia. High-dose phenylbutyrate therapy results in toxicity, the mechanism of which is unexplained. The known metabolites of phenylbutyrate are phenylacetate, phenylacetylglutamine, and phenylbutyrylglutamine. These are excreted in urine, accounting for a variable fraction of the dose. We identified new metabolites of phenylbutyrate in urine of normal humans and in perfused rat livers. These metabolites result from interference between the metabolism of phenylbutyrate and that of carbohydrates and lipids. The new metabolites fall into two categories, glucuronides and phenylbutyrate beta-oxidation side products. Two questions are raised by these data. First, is the nitrogen-excreting potential of phenylbutyrate diminished by ingestion of carbohydrates or lipids? Second, does competition between the metabolism of phenylbutyrate, carbohydrates, and lipids alter the profile of phenylbutyrate metabolites? Finally, we synthesized glycerol esters of phenylbutyrate. These are partially bioavailable in rats and could be used to administer large doses of phenylbutyrate in a sodium-free, noncaustic form.

  11. Human metabolism and excretion kinetics of aniline after a single oral dose.

    PubMed

    Modick, Hendrik; Weiss, Tobias; Dierkes, Georg; Koslitz, Stephan; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger Martin

    2016-06-01

    Aniline is an important source material in the chemical industry (e.g., rubber, pesticides, and pharmaceuticals). The general population is known to be ubiquitously exposed to aniline. Thus, assessment of aniline exposure is of both occupational and environmental relevance. Knowledge on human metabolism of aniline is scarce. We orally dosed four healthy male volunteers (two fast and two slow acetylators) with 5 mg isotope-labeled aniline, consecutively collected all urine samples over a period of 2 days, and investigated the renal excretion of aniline and its metabolites by LS-MS/MS and GC-MS. After enzymatic hydrolysis of glucuronide and sulfate conjugates, N-acetyl-4-aminophenol was the predominant urinary aniline metabolite representing 55.7-68.9 % of the oral dose, followed by the mercapturic acid conjugate of N-acetyl-4-aminophenol accounting for 2.5-6.1 %. Acetanilide and free aniline were found only in minor amounts accounting for 0.14-0.36 % of the dose. Overall, these four biomarkers excreted in urine over 48 h post-dose represented 62.4-72.1 % of the oral aniline dose. Elimination half-times were 3.4-4.3 h for N-acetyl-4-aminophenol, 4.1-5.5 h for the mercapturic acid conjugate, and 1.3-1.6 and 0.6-1.2 h for acetanilide and free aniline, respectively. Urinary maximum concentrations of N-acetyl-4-aminophenol were reached after about 4 h and maximum concentrations of the mercapturic acid conjugate after about 6 h, whereas concentrations of acetanilide and free aniline peaked after about 1 h. The present study is one of the first to provide reliable urinary excretion factors for aniline and its metabolites in humans after oral dosage, including data on the predominant urinary metabolite N-acetyl-4-aminophenol, also known as an analgesic under the name paracetamol/acetaminophen.

  12. Studies of paracetamol/phenacetin toxicity: isolation and characterization of p-aminophenol-glutathione conjugate.

    PubMed

    Eyanagi, R; Hisanari, Y; Shigematsu, H

    1991-06-01

    1. p-Aminophenol, a minor metabolite of phenacetin, is a potent nephrotoxic agent. 2. We have examined the binding of p-aminophenol to glutathione (GSH), a model amino acid, in the presence of horseradish peroxidase, which catalyses one electron oxidation. 3. The reaction product was purified by preparative h.p.l.c., and its structure was determined by FAB mass spectrometry and 1H-n.m.r. to be a p-aminophenol-GSH conjugate. The conjugate was formed between the ortho carbon of the amino group of p-aminophenol and the SH group of GSH. 4. It was confirmed by h.p.l.c. and 1H-n.m.r. that formation of the conjugate was catalysed in vitro by rat liver microsomes and cumene hydroperoxide.

  13. Decoy peptide targeted to Toll-IL-1R domain inhibits LPS and TLR4-active metabolite morphine-3 glucuronide sensitization of sensory neurons.

    PubMed

    Allette, Yohance M; Kim, Youngsook; Randolph, Aaron L; Smith, Jared A; Ripsch, Matthew S; White, Fletcher A

    2017-06-16

    Accumulating evidence indicates that Toll-like receptor (TLR) signaling adapter protein interactions with Toll/Interleukin-1 Receptor (TIR) domains present in sensory neurons may modulate neuropathic pain states. Following ligand interaction with TLRs, TIR serves to both initiate intracellular signaling and facilitate recruitment of signaling adapter proteins to the intracytoplasmic domain. Although TLR TIR is central to a number of TLR signaling cascades, its role in sensory neurons is poorly understood. In this study we investigated the degree to which TLR TIR decoy peptide modified to include a TAT sequence (Trans-Activator of Transcription gene in HIV; TAT-4BB) affected LPS-induced intracellular calcium flux and excitation in sensory neurons, and behavioral changes due to TLR4 active metabolite, morphine-3-glucuronide (M3G) exposure in vivo. TAT-4BB inhibited LPS-induced calcium changes in a majority of sensory neurons and decreased LPS-dependent neuronal excitability in small diameter neurons. Acute systemic administration of the TAT-4BB reversed M3G-induced tactile allodynia in a dose-dependent manner but did not affect motor activity, anxiety or responses to noxious thermal stimulus. These data suggest that targeting TLR TIR domains may provide novel pharmacological targets to reduce or reverse TLR4-dependent pain behavior in the rodent.

  14. Lymphatic metabolites of quercetin after intestinal administration of quercetin-3-glucoside and its aglycone in rats.

    PubMed

    Nakamura, Toshiyuki; Kinjo, Chinatsu; Nakamura, Yoshimasa; Kato, Yoji; Nishikawa, Miyu; Hamada, Masahiro; Nakajima, Noriyuki; Ikushiro, Shinichi; Murota, Kaeko

    2018-05-01

    Quercetin is a major flavonoid, present as its glycosidic forms in plant foods. In this study, quercetin-3-glucoside (Q3G) was administered intraduodenally to thoracic lymph-cannulated rats, and its lymphatic transport was investigated. The resulting lymphatic and plasma metabolites were identified with LC-MS/MS and compared with those after administration of quercetin aglycone. The total concentration of quercetin metabolites in the lymph was about four times lower than that in the plasma, and quercetin and its methylated form isorhamnetin were detected as their glucuronides, sulfates and diglucuronides both in the lymph and the plasma after Q3G and quercetin administrations. The lymph levels of the glucuronides after Q3G administration were lower than those after quercetin administration, whereas those in the plasma showed the opposite pattern. Both the lymph and plasma levels of the sulfates after Q3G administration were lower than those after quercetin administration. Some of the intestinal metabolites like quercetin monoglucuronides were transported directly into the lymph and the hepatic metabolites like the diglucuronides were eventually transferred from the plasma into the lymph. These results indicate that the absorbed Q3G is partly transported into the intestinal lymph as quercetin metabolites. Deglycosylation in the enterocyte is also suggested to affect the subsequent metabolic pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. In Vitro Stability of Free and Glucuronidated Cannabinoids in Urine Following Controlled Smoked Cannabis

    PubMed Central

    Desrosiers, Nathalie A.; Lee, Dayong; Scheidweiler, Karl B.; Concheiro-Guisan, Marta; Gorelick, David A.; Huestis, Marilyn A.

    2014-01-01

    Analyte stability is an important factor in urine test interpretation, yet cannabinoid stability data are limited. A comprehensive study of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol, cannabinol, THC-glucuronide, and THCCOOH-glucuronide stabilities in authentic urine was completed. Urine samples after ad libitum cannabis smoking were pooled to prepare low and high pools for each study participant; baseline concentrations were measured within 24h at room temperature (RT), 4°C and −20°C. Stability at RT, 4°C and −20°C was evaluated by Friedman tests for up to 1 year. THCCOOH, THC-glucuronide, and THCCOOH-glucuronide were quantified in baseline pools. RT THCCOOH baseline concentrations were significantly higher than −20°C, but not 4°C baseline concentrations. After 1 week at RT, THCCOOH increased, THCCOOH-glucuronide decreased, but THC-glucuronide was unchanged. In RT low pool, total THCCOOH (THCCOOH+THCCOOH-glucuronide) was significantly lower after 1 week. At 4°C, THCCOOH was stable 2 weeks, THCCOOH-glucuronide 1 month and THC-glucuronide for at least 6 months. THCCOOH was stable frozen for 1 year, but 6 months high pool results were significantly higher than baseline; THC-glucuronide and THCCOOH-glucuronide were stable for 6 months. Total THCCOOH was stable 6 months at 4°C, and frozen 6 months (low) and 1 year (high). THC, cannabidiol and cannabinol were never detected in urine; although not detected initially, 11-OH-THC was detected in 2 low and 3 high pools after one week at RT. Substantial THCCOOH-glucuronide deconjugation was observed at RT and 4°C. Analysis should be conducted within 3 months if non-hydrolyzed THCCOOH or THCCOOH-glucuronide quantification is required. PMID:24292435

  16. ARISTOLOCHIC ACID I METABOLISM IN THE ISOLATED PERFUSED RAT KIDNEY

    PubMed Central

    Priestap, Horacio A.; Torres, M. Cecilia; Rieger, Robert A.; Dickman, Kathleen G.; Freshwater, Tomoko; Taft, David R.; Barbieri, Manuel A.; Iden, Charles R.

    2012-01-01

    Aristolochic acids are natural nitro-compounds found globally in the plant genus Aristolochia that have been implicated in the severe illness in humans termed aristolochic acid nephropathy (AAN). Aristolochic acids undergo nitroreduction, among other metabolic reactions, and active intermediates arise that are carcinogenic. Previous experiments with rats showed that aristolochic acid I (AA-I), after oral administration or injection, is subjected to detoxication reactions to give aristolochic acid Ia, aristolactam Ia, aristolactam I and their glucuronide and sulfate conjugates that can be found in urine and faeces. Results obtained with whole rats do not clearly define the role of liver and kidney in such metabolic transformation. In this study, in order to determine the specific role of the kidney on the renal disposition of AA-I and to study the biotransformations suffered by AA-I in this organ, isolated kidneys of rats were perfused with AA-I. AA-I and metabolite concentrations were determined in perfusates and urines using HPLC procedures. The isolated perfused rat kidney model showed that AA-I distributes rapidly and extensively in kidney tissues by uptake from the peritubular capillaries and the tubules. It was also established that the kidney is able to metabolize AA-I into aristolochic acid Ia, aristolochic acid Ia O-sulfate, aristolactam Ia, aristolactam I and aristolactam Ia O-glucuronide. Rapid demethylation and sulfation of AA-I in the kidney generate aristolochic acid Ia and its sulfate conjugate that are voided to the urine. Reduction reactions to give the aristolactam metabolites occur to a slower rate. Renal clearances showed that filtered AA-I is reabsorbed at the tubules whereas the metabolites are secreted. The unconjugated metabolites produced in the renal tissues are transported to both urine and perfusate whereas the conjugated metabolites are almost exclusively secreted to the urine. PMID:22118289

  17. The roasting process does not influence the extent of conjugation of coffee chlorogenic and phenolic acids.

    PubMed

    Sanchez-Bridge, Belén; Renouf, Mathieu; Sauser, Julien; Beaumont, Maurice; Actis-Goretta, Lucas

    2016-05-01

    Understanding the bioavailability and metabolism of coffee compounds will contribute to identify the unknown biological mechanism(s) linked to their beneficial effects. The influence of the roasting process on the metabolism of coffee chlorogenic acids in humans was evaluated. In a randomized, double-blind, crossover study, 12 healthy volunteers consumed four instant coffees namely, high roasted coffee (HRC), low roasted coffee (LRC), unroasted coffee (URC), and in vitro hydrolyzed unroasted coffee (HURC). The sum of areas under the curve (AUC) ranged from 8.65-17.6 to 30.9-126 µM/h (P < 0.05) for HRC, LRC, URC, and HURC, respectively. The AUC of HRC, LRC, and URC was correlated with the initial level of phenolic acids in the coffee drinks. Despite different absorption rates, the extent of conjugation was comparable between HRC, LRC, and URC coffees but different for HURC. The most abundant circulating metabolites during the first 5 H were dihydroferulic acid (DHFA), caffeic acid-3'-O-sulfate (CA3S) and isoferulic-3'-O-glucuronide (iFA3G). DHFA and 5-4-dihydro-m-coumaric acid (mDHCoA) were the main metabolites in the period of 5-24 H. The phenolic compounds after consumption of HURC were most rapidly absorbed (Tmax 1 H) compared with the other coffees (Tmax between 9 and 11 H). Using coffees with different degrees of roasting we highlighted that in spite of different absorption rates the extent of conjugation of phenolic acids was comparable. In addition, by using a hydrolyzed unroasted coffee we demonstrated an increased absorption of phenolic acids in the small intestine. © 2016 BioFactors, 42(3):259-267, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  18. The influence of paroxetine on the pharmacokinetics of atomoxetine and its main metabolite.

    PubMed

    Todor, Ioana; Popa, Adina; Neag, Maria; Muntean, Dana; Bocsan, Corina; Buzoianu, Anca; Vlase, Laurian; Gheldiu, Ana-Maria; Chira, Ruxandra; Briciu, Corina

    2015-01-01

    To evaluate the effects of paroxetine on the pharmacokinetics of atomoxetine and its main metabolite, 4-hydroxyatomoxetine-O-glucuronide, after coadministration of atomoxetine and paroxetine in healthy volunteers. 22 healthy volunteers, extensive metabolizers, took part in this open-label, non-randomized, clinical trial. The study consisted of two periods: Reference, when a single oral dose of 25 mg atomoxetine was administrated to each subject and Test, when 25 mg atomoxetine and 20 mg paroxetine were coadministered. Between the two periods, the volunteers received an oral daily dose of 20-40 mg paroxetine, for 6 days. Atomoxetine and 4-hydroxyatomoxetine-O-glucuronide plasma concentrations were determined within the first 48 hours following drug administration. The pharmacokinetic parameters of both compounds were assessed using a non-compartmental method and the analysis of variance aimed at identifying any statistical significant differences between the pharmacokinetic parameters of atomoxetine and its main metabolite, corresponding to each study period. Paroxetine modified the pharmacokinetic parameters of atomoxetine. Cmax increased from 221.26±94.93 to 372.53±128.28 ng/mL, while AUC0-t and AUC0-∞ also increased from 1151.19±686.52 to 6452.37±3388.76 ng*h/mL, and from 1229.15±751.04 to 7111.74±4195.17 ng*h/mL respectively. The main metabolite pharmacokinetics was also influenced by paroxetine intake, namely Cmax, AUC0-t and AUC0-∞ decreased from 688.76±270.27 to 131.01±100.43 ng*h/mL, and from 4810.93±845.06 to 2606.04±923.88 and from 4928.55±853.25 to 3029.82 ±941.84 respectively. Multiple-dose paroxetine intake significantly influenced atomoxetine and its active metabolite pharmacokinetics, causing a 5.8-fold increased exposure to atomoxetine and 1.6-fold reduced exposure to 4-hydroxyatomoxetine-O-glucuronide.

  19. Age-related increases in F344 rat intestine microsomal quercetin glucuronidation

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to establish the extent age modifies intestinal quercetin glucuronidation capacity. Pooled microsomal fractions of three equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats (n=8/group) were employed to model the enzyme kinetics of UDP-gl...

  20. Flavonoid metabolites reduce tumor necrosis factor‐α secretion to a greater extent than their precursor compounds in human THP‐1 monocytes

    PubMed Central

    di Gesso, Jessica L.; Kerr, Jason S.; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D.; O'Connell, Maria A.

    2015-01-01

    1 Scope Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti‐inflammatory effects of flavonoid metabolites relative to their precursor structures. 2 Methods and results Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1–10 μM) were screened for their ability to reduce LPS‐induced tumor necrosis factor‐α (TNF‐α) secretion in THP‐1 monocytes. One micromolar peonidin‐3‐glucoside, cyanidin‐3‐glucoside, and the metabolites isovanillic acid (IVA), IVA‐glucuronide, vanillic acid‐glucuronide, protocatechuic acid‐3‐sulfate, and benzoic acid‐sulfate significantly reduced TNF‐α secretion when in isolation, while there was no effect on TNF‐α mRNA expression. Four combinations of metabolites that included 4‐hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF‐α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS‐induced IL‐1β and IL‐10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL‐1β secretion but none of the flavonoids or metabolites significantly modified IL‐10 secretion. 3 Conclusion This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. PMID:25801720

  1. Development and validation of an analytical method for regorafenib and its metabolites in mouse plasma.

    PubMed

    Fu, Qiang; Chen, Mingqing; Hu, Shuiying; McElroy, Craig A; Mathijssen, Ron H; Sparreboom, Alex; Baker, Sharyn D

    2018-05-05

    An analytical method was developed for measuring the effect of OATP1B2 deficiency on plasma levels of the kinase inhibitor regorafenib and its metabolites regorafenib-N-oxide, N-desmethyl-regorafenib-N-oxide, and regorafenib-N-β-glucuronide (RG) in mice. Compounds were separated by liquid chromatography and monitored by a triple quadrupole mass spectrometer in the selected reaction monitoring mode after positive electrospray ionization. All calibration curves were linear in the selected concentration range (R 2  ≥ 0.99). The lower limit of quantification was 5 ng/mL for the four analytes. Within-day precisions, between-day precisions, and accuracies were 2.59-6.82%, 3.97-11.3%, and 94.5-111%, respectively. The identification and structure elucidation of RG, isolated from human urine, was performed by NMR. Compared with wild-type mice given regorafenib (10 mg/kg), deficiency of the drug transporter OATP1B2 in vivo had minimal effects on plasma levels of parent drug and the metabolite regorafenib-N-oxide, and N-desmethyl-regorafenib-N-oxide. However, the area under the curve and peak levels of RG were increased by 5.6-fold and 5.1-fold, respectively, in OATP1B2-knockout mice. In conclusion, our analytical method allowed accurate and precise quantitation of regorafenib and its main metabolites in mouse plasma, and is suitable for evaluation of transporter-dependent pharmacokinetic properties of these agents in vivo. Published by Elsevier B.V.

  2. Pharmacokinetic study of tianeptine and its active metabolite MC5 in rats following different routes of administration using a novel liquid chromatography tandem mass spectrometry analytical method.

    PubMed

    Szafarz, Małgorzata; Wencel, Agnieszka; Pociecha, Krzysztof; Fedak, Filip A; Wlaź, Piotr; Wyska, Elżbieta

    2018-02-01

    Tianeptine is an atypical antidepressant with a unique mechanism of action and recently it has been also reported that its major metabolite, compound MC5, possesses pharmacological activity similar to that of the parent drug. The current study aims to investigate the pharmacokinetics (PK) of both tianeptine and MC5 after intravenous or intraperitoneal administration of the parent drug as well as the metabolic ratio of MC5 in rats. To achieve these goals an LC-MS/MS method using the small sample volume for the quantitation of tianeptine and its active metabolite MC5 in rat plasma and liver perfusate has been developed and validated. Following an intravenous administration of tianeptine pharmacokinetic parameters were calculated by non-compartmental analysis. The average tianeptine volume of distribution at steady state was 2.03 L/kg and the systemic clearance equaled 1.84 L/h/kg. The mean elimination half-lives of tianeptine and MC5 metabolite were 1.16 and 7.53 h, respectively. The hepatic clearance of tianeptine determined in the isolated rat liver perfusion studies was similar to the perfusate flow rate despite the low metabolic ratio of MC5. Mass spectrometric analysis of rat bile indicated that tianeptine and MC5 metabolite are eliminated with bile as glucuronide and glutamine conjugates. Bioavailability of tianeptine after its intraperitoneal administration was 69%. The PK model with a metabolite compartment developed in this study for both tianeptine and MC5 metabolite after two routes of administration may facilitate tianeptine dosage selection for the prospective pharmacological experiments.

  3. Conjugation and deconjugation reactions within the fetoplacental compartment in a sheep model: a key factor determining bisphenol A fetal exposure.

    PubMed

    Corbel, Tanguy; Perdu, Elisabeth; Gayrard, Véronique; Puel, Sylvie; Lacroix, Marlène Z; Viguié, Catherine; Toutain, Pierre-Louis; Zalko, Daniel; Picard-Hagen, Nicole

    2015-04-01

    The widespread human exposure to bisphenol A (BPA), an endocrine disruptor targeting developmental processes, underlines the need to better understand the mechanisms of fetal exposure. Animal studies have shown that at a late stage of pregnancy BPA is efficiently conjugated by the fetoplacental unit, mainly into BPA-glucuronide (BPA-G), which remains trapped within the fetoplacental unit. Fetal exposure to BPA-G might in turn contribute to in situ exposure to bioactive BPA, following its deconjugation into parent BPA at the level of fetal sensitive tissues. The objectives of our study were 1) to characterize the BPA glucurono- and sulfoconjugation capabilities of the ovine fetal liver at different developmental stages, 2) to compare hepatic conjugation activities in human and sheep, and 3) to evaluate the extent of BPA conjugation and deconjugation processes in placenta and fetal gonads. At an early stage of pregnancy, and despite functional sulfoconjugation activity, ovine fetuses expressed low hepatic BPA conjugation capabilities, suggesting that this stage of development represents a critical window in terms of BPA exposure. Conversely, the late ovine fetus expressed an efficient detoxification system that metabolized BPA into BPA-G. Hepatic glucuronidation activities were quantitatively similar in adult sheep and humans. In placenta, BPA conjugation and BPA-G deconjugation activities were relatively balanced, whereas BPA-G hydrolysis was systematically higher than BPA conjugation in gonads. The possible reactivation of BPA-G into BPA could contribute to an increased exposure of fetal sensitive tissues to bioactive BPA in situ. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Metabolic profiles of pomalidomide in human plasma simulated with pharmacokinetic data in control and humanized-liver mice.

    PubMed

    Shimizu, Makiko; Suemizu, Hiroshi; Mitsui, Marina; Shibata, Norio; Guengerich, F Peter; Yamazaki, Hiroshi

    2017-10-01

    1. Pomalidomide has been shown to be potentially teratogenic in thalidomide-sensitive animal species such as rabbits. Screening for thalidomide analogs devoid of teratogenicity/toxicity - attributable to metabolites formed by cytochrome P450 enzymes - but having immunomodulatory properties is a strategic pathway towards development of new anticancer drugs. 2. In this study, plasma concentrations of pomalidomide, its primary 5-hydroxylated metabolite, and its glucuronide conjugate(s) were investigated in control and humanized-liver mice. Following oral administration of pomalidomide (100 mg/kg), plasma concentrations of 7-hydroxypomalidomide and 5-hydroxypomalidomide glucuronide were slightly higher in humanized-liver mice than in control mice. 3. Simulations of human plasma concentrations of pomalidomide were achieved with simplified physiologically-based pharmacokinetic models in both groups of mice in accordance with reported pomalidomide concentrations after low dose administration in humans. 4. The results indicate that pharmacokinetic profiles of pomalidomide were roughly similar between control mice and humanized-liver mice and that control and humanized-liver mice mediated pomalidomide 5-hydroxylation in vivo. Introducing one aromatic amino group into thalidomide resulted in less species differences in in vivo pharmacokinetics in control and humanized-liver mice.

  5. Genetic polymorphism of UDP-glucuronosyltransferase (UGT2B15) and glucuronidation of paracetamol in healthy population.

    PubMed

    Mehboob, Huma; Iqbal, Tahira; Jamil, Amer; Khaliq, Tanweer

    2016-05-01

    Inter individual variability in polymorphic UDP-glucuronosyltransferase (UGT2B15) has been associated with varied glucuronidation level. The present project was designed to determine the genetic polymorphism of UDP-glucuronosyltransferase (UGT2B15) and glucuronidation of paracetamol in healthy (male=59 and female=50) population. The association between genotype (UGT2B15) and phenotype (paracetamol glucuronidation) has been evaluated. According to trimodal model, genotypes and phenotypes were categorized as fast, intermediate and slow glucuronidators. Presence of wild type allele illustrated a UGT2B15 genotype as fast glucuronidator. The glucuronidation status was investigated by HPLC analysis of paracetamol. Ratio of paracetamol glucuronide to paracetamol was determined with two antimodes at glucuronidation ratio of 0.3 and 1.8. In our study, 7% and 12% of population was distributed as slow glucuronidators by phenotype and genotype, respectively and association between phenotype and genotype was good for analysis of glucuronidation status as displayed by kappa value (0.792).

  6. Toxicokinetics of 1,2-diethylbenzene in male Sprague-Dawley rats-part 1: excretion and metabolism of [(14)C]1,2-diethylbenzene.

    PubMed

    Payan, J P; Beydon, D; Cossec, B; Ensminger, A; Fabry, J P; Ferrari, E

    1999-12-01

    The excretion and metabolism of neurotoxic 1,2-diethylbenzene (1, 2-DEB) was studied in male Sprague-Dawley rats after i.v. (1 mg/kg) or oral (1 or 100 mg/kg) administration of 1,2-diethyl[U-(14)C]benzene ([(14)C]1,2-DEB). Whatever the treatment, radioactivity was mainly excreted in urine (65-76% of the dose) and to a lower extent in feces (15-23% of the dose), or via exhaled air (3-5% of the dose). However, experiments with rats fitted with a biliary cannula demonstrated that about 52 to 64% of the administered doses (1 or 100 mg/kg) were initially excreted in bile. Biliary metabolites were extensively reabsorbed from the gut and ultimately excreted in urine after several enterohepatic circulations. Insignificant amounts of unchanged 1,2-DEB were recovered in the different excreta (urine, bile, and feces). As reported previously, presence of 1-(2'-ethylphenyl)ethanol (EPE) was confirmed in urine and demonstrated in bile and feces. The two main [(14)C]1,2-DEB metabolites accounted for 57 to 79% of urinary and biliary radioactivity, respectively. Beta-Glucuronidase hydrolysis and electron impact mass spectra results strongly supported their glucuronide structure. Additionally, these two main metabolites were thought to be the glucuronide conjugates of the two potential enantiomers of EPE. The results indicate that the main initial conversion step of the primary metabolic pathway of 1,2-DEB appears to be the hydroxylation of the alpha-carbon atom of the side chain. The presence of two glucuronide conjugates of EPE in the urine in a ratio different from one suggests that the metabolic conversion of 1, 2-DEB is under stereochemical control.

  7. Assessing cannabis consumption frequency: Is the combined use of free and glucuronidated THCCOOH blood levels of diagnostic utility?

    PubMed

    Hädener, Marianne; Martin Fabritius, Marie; König, Stefan; Giroud, Christian; Weinmann, Wolfgang

    2017-07-01

    Heavy cannabis consumption is considered incompatible with safe driving. In Swiss traffic policy, drivers suspected of regular cannabis use are therefore required to undergo medical assessment of their long-term fitness to drive. A whole blood concentration of the cannabis metabolite 11-nor-9-carboxy-Δ 9 -tetrahydrocannabinol (THCCOOH) of 40 µg/L is currently used by Swiss forensic experts as the decision limit for regular cannabis consumption. The present study aimed to investigate the suitability of THCCOOH-glucuronide blood levels as an additional and/or better marker for the frequency of cannabis use. Whole blood samples collected from 23 heavy (≥10 joints/month) and 25 occasional smokers (≥1 joint/month, but ≤ 1 joint/week) enrolled in a placebo-controlled cannabis smoking study were analyzed for THCCOOH and THCCOOH-glucuronide. Based on receiver operating characteristic (ROC) curve analysis, concentration thresholds could be established for distinguishing between these two groups. Proposed thresholds for heavy use were THCCOOH-glucuronide > 52 µg/L (100% specificity; 41% sensitivity) and/or total THCCOOH > 58 µg/L (100% specificity; 43% sensitivity). Optimum thresholds for occasional use were THCCOOH-glucuronide < 5 µg/L (73% specificity; 97% sensitivity) and/or total THCCOOH < 5 µg/L (62% specificity; 98% sensitivity). Our results indicate that the THCCOOH-glucuronide whole blood concentration is a useful parameter that complements the free THCCOOH level to assess the frequency of cannabis consumption. The consideration of the blood concentrations of both free and glucuronidated THCCOOH improves the identification of heavy users whose fitness to drive has to be carefully assessed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Acetylation of aromatic cysteine conjugates by recombinant human N-acetyltransferase 8.

    PubMed

    Deol, Reema; Josephy, P David

    2017-03-01

    1. The mercapturic acid (MA) pathway is a metabolic route for the processing of glutathione conjugates to MA (N-acetylcysteine conjugates). An N-acetyltransferase enzyme, NAT8, catalyzes the transfer of an acetyl group from acetyl-CoA to the cysteine amino group, producing a MA, which is excreted in the urine. We expressed human NAT8 in HEK293T cells and developed an HPLC-MS method for the quantitation of the S-aryl-substituted cysteine conjugates and their MA. 2. We measured the activity of the enzyme for acetylation of benzyl-, 4-nitrobenzyl-, and 1-menaphthylcysteine substrates. 3. NAT8 catalyzed the acetylation of all three cysteine conjugates with similar Michaelis-Menten kinetics.

  9. Metabolism of 1-Fluro-1,1,2-trichloroethane, 1,2-dichloro-1,1-difluoroethane, and 1,1,1-trifluoro-2-chloroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, H.; Jones, J.P.; Anders, M.W.

    1995-03-01

    1-Fluoro-1,1,2-trichloroethane (HCFC-131a), 1,2-dichloro-1,1-difluoroethane (HCFC-132b), and 1,1,1-trifluoro-2-chloroethane (HCFC-133a) were chosen as models for comparative metabolism studies on 1,1,1,2-tetrahaloethanes, which are under consideration as replacements for ozone-depleting chlorofluorocarbons (CFCs). Male Fischer 344 rats were given 10 mmol/kg ip HCFC-131a or HCFC-132b or exposed by inhalation to 1% HCFC-133a for 2 h. Urine collected in the first 24 h after exposure was analyzed by {sup 19}F NMR and GC/MS and with a fluoride-selective ion electrode for the formation of fluorine-containing metabolites. Metabolites of HCFC-131a included 2,2-dichloro-2-fluoroethyl glucuronide, 2,2-dichloro-2-fluorethyl sulfate, dichlorofluoroacetic acid, and inorganic fluoride. Metabolites of HCFC-132b were characterized as 2-chloro-2,2-difluoroethyl glucuronide, 2-chloro-2,2-difluoroethylmore » sulfate, chlorodifluoroacetic acid, chlorodifluoroacetaldehyde hydrate, chlorodifluoroacetaldehyde-urea adduct, inorganic fluoride, and a minor, unidentified metabolite. With HCFC-131a and HCFC-132b, glucuronide conjugates of 2,2,2-trihaloethanols were the major urinary metabolites, whereas with HCFC-133a, a trifluroacetaldehyde-urea adduct was the major urinary metabolite. Analysis of metabolite distribution in vivo indicated that aldehydic metabolites increased as fluorine substitution increased in the order HCFC-131a < HCFC-132b < HCFC-133a. With NADPH-fortified rat liver microsomes, HCFC-133a and HCFC-133a and HCFC-132b were biotransformed to trifluoroacetaldehyde and chlorodifluoroacetaldehyde, respectively, whereas HCFC-131a was converted to dichlorofluoroacetic acid. No covalently bound metabolites of HCFC-131a and HCFC-133a metabolites were detected by {sup 19}F NMR spectroscopy. 18 refs., 2 figs., 3 tabs.« less

  10. Challenges and Opportunities with Predicting in Vivo Phase II Metabolism via Glucuronidation from in Vitro Data

    PubMed Central

    Ge, Shufan; Tu, Yifan; Hu, Ming

    2017-01-01

    Glucuronidation is the most important phase II metabolic pathway which is responsible for the clearance of many endogenous and exogenous compounds. To better understand the elimination process for compounds undergoing glucuronidation and identify compounds with desirable in vivo pharmacokinetic properties, many efforts have been made to predict in vivo glucuronidation using in vitro data. In this article, we reviewed typical approaches used in previous predictions. The problems and challenges in prediction of glucuronidation were discussed. Besides that different incubation conditions can affect the prediction accuracy, other factors including efflux / uptake transporters, enterohepatic recycling, and deglucuronidation reactions also contribute to the disposition of glucuronides and make the prediction more difficult. PBPK modeling, which can describe more complicated process in vivo, is a promising prediction strategy which may greatly improve the prediction of glucuronidation and potential DDIs involving glucuronidation. Based on previous studies, we proposed a transport-glucuronidation classification system, which was built based on the kinetics of both glucuronidation and transport of the glucuronide. This system could be a very useful tool to achieve better in vivo predictions. PMID:28966903

  11. The formation of estrogen-like tamoxifen metabolites and their influence on enzyme activity and gene expression of ADME genes.

    PubMed

    Johänning, Janina; Kröner, Patrick; Thomas, Maria; Zanger, Ulrich M; Nörenberg, Astrid; Eichelbaum, Michel; Schwab, Matthias; Brauch, Hiltrud; Schroth, Werner; Mürdter, Thomas E

    2018-03-01

    Tamoxifen, a standard therapy for breast cancer, is metabolized to compounds with anti-estrogenic as well as estrogen-like action at the estrogen receptor. Little is known about the formation of estrogen-like metabolites and their biological impact. Thus, we characterized the estrogen-like metabolites tamoxifen bisphenol and metabolite E for their metabolic pathway and their influence on cytochrome P450 activity and ADME gene expression. The formation of tamoxifen bisphenol and metabolite E was studied in human liver microsomes and Supersomes™. Cellular metabolism and impact on CYP enzymes was analyzed in upcyte® hepatocytes. The influence of 5 µM of tamoxifen, anti-estrogenic and estrogen-like metabolites on CYP activity was measured by HPLC MS/MS and on ADME gene expression using RT-PCR analyses. Metabolite E was formed from tamoxifen by CYP2C19, 3A and 1A2 and from desmethyltamoxifen by CYP2D6, 1A2 and 3A. Tamoxifen bisphenol was mainly formed from (E)- and (Z)-metabolite E by CYP2B6 and CYP2C19, respectively. Regarding phase II metabolism, UGT2B7, 1A8 and 1A3 showed highest activity in glucuronidation of tamoxifen bisphenol and metabolite E. Anti-estrogenic metabolites (Z)-4-hydroxytamoxifen, (Z)-endoxifen and (Z)-norendoxifen inhibited the activity of CYP2C enzymes while tamoxifen bisphenol consistently induced CYPs similar to rifampicin and phenobarbital. On the transcript level, highest induction up to 5.6-fold was observed for CYP3A4 by tamoxifen, (Z)-4-hydroxytamoxifen, tamoxifen bisphenol and (E)-metabolite E. Estrogen-like tamoxifen metabolites are formed in CYP-dependent reactions and are further metabolized by glucuronidation. The induction of CYP activity by tamoxifen bisphenol and the inhibition of CYP2C enzymes by anti-estrogenic metabolites may lead to drug-drug-interactions.

  12. Relationships between serum bilirubins and production and conjugation of bilirubin. Studies in Gilbert's syndrome, Crigler-Najjar disease, hemolytic disorders, and rat models.

    PubMed

    Muraca, M; Fevery, J; Blanckaert, N

    1987-02-01

    The pattern of serum bilirubins was determined in serum of humans and rats with unconjugated hyperbilirubinemia due to increased pigment load or defective hepatic conjugation. Bilirubin ester conjugates were present in all serum samples tested and were identified as bilirubin 1-O-acyl glucuronides. In Gilbert's syndrome, the concentration of total conjugates was comparable to the values in healthy control subjects. Because the concentration of unconjugated pigment was increased, the fraction of conjugated relative to total bilirubins was markedly decreased. Sera from patients with Crigler-Najjar disease differed from those with Gilbert's syndrome by the higher unconjugated bilirubin levels and the undetectability of diconjugated bilirubins. A striking finding was that in hemolytic disease, the concentration of both monoconjugates and diconjugates was enhanced in parallel with the increase of unconjugated pigment. Therefore, the fraction of conjugated relative to total bilirubins remained within the normal range. As in Gilbert's syndrome, heterozygote R/APfd-j/+ rats with impaired hepatic bilirubin conjugation exhibit an increased unconjugated bilirubin level in serum, whereas the concentration of total conjugates was comparable to the values in normal rats. In serum of normal rats loaded intraperitoneally with unconjugated bilirubin, both unconjugated and mono- and diconjugated bilirubins were increased in parallel so that the ratio of unconjugated to esterified pigment remained unaffected. Decreased hepatic conjugation or increased bilirubin load was associated with a lower percentage of diconjugates relative to total conjugates both in human and rat serum. The present results are consistent with a compartmental model in which there is bidirectional transfer across the sinusoidal membrane for unconjugated bilirubin as well as for the bilirubin glucuronides. Because typical patterns of serum bilirubins are found in Gilbert's syndrome and patients with hemolytic

  13. Species-Associated Differences in the Inhibition of Propofol Glucuronidation by Magnolol

    PubMed Central

    Yang, Lu; Zhu, Liangliang; Ge, Guangbo; Xiao, Ling; Wu, Yan; Liang, Sicheng; Cao, Yunfeng; Yang, Ling; Wang, Dong

    2014-01-01

    Magnolol, a major active constituent in herbal medicine, potently inhibits propofol glucuronidation in human liver microsomes, with inhibition constants in the nanomolar range. This study was conducted to investigate magnolol-induced inhibition of propofol glucuronidation in liver microsomes from Swiss–Hauschka mice, Sprague–Dawley rats, Chinese Bama pigs, and cynomolgus macaques. Results indicated that magnolol (10 μM) inhibited propofol glucuronidation in liver microsomes from Bama pigs and cynomolgus macaques but not in those from mice or rats. Data from liver microsomes from Bama pigs indicated a competitive inhibition mechanism, with a Ki of 1.7 μM. In contrast to that of pig liver microsomes, the inhibition of microsomes from cynomolgus macaques followed a noncompetitive mechanism, with a Ki of 3.4 μM. In summary, this study indicates that magnolol-induced inhibition of propofol glucuronidation varies substantially among species, and the Ki values determined by using liver microsomes from various experimental animal species far exceed that for human liver microsomes. The inhibition of propofol glucuronidation by magnolol in liver microsomes from all animal species tested was significantly lower than the inhibition previously demonstrated in human liver microsomes. Hepatic microsomes from Swiss–Hauschka mice, Sprague–Dawley rats, Chinese Bama pigs, and cynomolgus macaques are not effective models of the inhibition of glucuronidation induced by magnolol in humans. PMID:25199099

  14. Species-associated differences in the inhibition of propofol glucuronidation by magnolol.

    PubMed

    Yang, Lu; Zhu, Liangliang; Ge, Guangbo; Xiao, Ling; Wu, Yan; Liang, Sicheng; Cao, Yunfeng; Yang, Ling; Wang, Dong

    2014-07-01

    Magnolol, a major active constituent in herbal medicine, potently inhibits propofol glucuronidation in human liver microsomes, with inhibition constants in the nanomolar range. This study was conducted to investigate magnolol-induced inhibition of propofol glucuronidation in liver microsomes from Swiss-Hauschka mice, Sprague-Dawley rats, Chinese Bama pigs, and cynomolgus macaques. Results indicated that magnolol (10 μM) inhibited propofol glucuronidation in liver microsomes from Bama pigs and cynomolgus macaques but not in those from mice or rats. Data from liver microsomes from Bama pigs indicated a competitive inhibition mechanism, with a Ki of 1.7 μM. In contrast to that of pig liver microsomes, the inhibition of microsomes from cynomolgus macaques followed a noncompetitive mechanism, with a Ki of 3.4 μM. In summary, this study indicates that magnolol-induced inhibition of propofol glucuronidation varies substantially among species, and the Ki values determined by using liver microsomes from various experimental animal species far exceed that for human liver microsomes. The inhibition of propofol glucuronidation by magnolol in liver microsomes from all animal species tested was significantly lower than the inhibition previously demonstrated in human liver microsomes. Hepatic microsomes from Swiss-Hauschka mice, Sprague-Dawley rats, Chinese Bama pigs, and cynomolgus macaques are not effective models of the inhibition of glucuronidation induced by magnolol in humans.

  15. Liquid microjunction surface sampling of acetaminophen, terfenadine and their metabolites in thin tissue sections

    DOE PAGES

    Kertesz, Vilmos; Paranthaman, Nithya; Moench, Paul; ...

    2014-10-01

    The aim of this paper was to evaluate the analytical performance of a fully automated droplet-based surface-sampling system for determining the distribution of the drugs acetaminophen and terfenadine, and their metabolites, in rat thin tissue sections. The following are the results: The rank order of acetaminophen concentration observed in tissues was stomach > small intestine > liver, while the concentrations of its glucuronide and sulfate metabolites were greatest in the liver and small intestine. Terfenadine was most concentrated in the liver and kidney, while its major metabolite, fexofenadine, was found in the liver and small intestine. In conclusion, the spatialmore » distributions of both drugs and their respective metabolites observed in this work were consistent with previous studies using radiolabeled drugs.« less

  16. Application of dried spot cards as a rapid sample treatment method for determining hydroxytyrosol metabolites in human urine samples. Comparison with microelution solid-phase extraction.

    PubMed

    Serra, Aida; Rubió, Laura; Macià, Alba; Valls, Rosa-M; Catalán, Úrsula; de la Torre, Rafael; Motilva, Maria-José

    2013-11-01

    Two different rapid sample pretreatment strategies, dried spot cards, and microelution solid-phase extraction plates (μSPE), with ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) have been developed and validated for the determination of hydroxytyrosol and its metabolites in spiked human urine samples. Hydroxytyrosol, hydroxytyrosol-3'-O-glucuronide, hydroxytyrosol-4'-O-glucuronide, hydroxytyrosol-3-O-sulphate, and homovanillic alcohol-4'-O-glucuronide were used as the target compounds. Using the FTA DMPK-A dried urine spot card under optimum conditions, with 5 μL of preconcentrated urine volume and 100 μL of methanol/water (50/50, v/v) as the elution solvent, the extraction recovery (%R) of the compounds studied was higher than 80%, and the matrix effect (%ME) was less than 8%. The stability of these cards and punching at the centre or side of the card were also studied, obtaining an excellent stability after 7 days of storage and complete homogeneity across the surface of the dried drop. The different μSPE parameters that affect the efficiency were also studied, and under optimum conditions, the %R and the %ME were higher than 70% and lower than 17%, respectively. The linearity range in dried urine spot cards was 2.5-20 μM for all the metabolites, with the exception of hydroxytyrosol-3-O-sulphate and hydroxytyrosol, which were 0.3-70 μM and 2.5-50 μM respectively. With regards to μSPE, the linearity range was 0.5-5 μM for all the studied compounds, except for hydroxytyrosol-3-O-sulphate, which was 0.08-5 μM. The quantification limits (LOQs) were 0.3-2.5 μM and 0.08-0.5 μM in dried spot cards and in μSPE, respectively. The two developed methods were then applied and compared for determining hydroxytyrosol and its metabolites in human 24 h-urine samples after a sustained consumption (21 days) of a phenol-enriched virgin olive oil. The metabolites identified were hydroxytyrosol in its glucuronide and sulphate

  17. Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes.

    PubMed

    di Gesso, Jessica L; Kerr, Jason S; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D; O'Connell, Maria A

    2015-06-01

    Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti-inflammatory effects of flavonoid metabolites relative to their precursor structures. Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1-10 μM) were screened for their ability to reduce LPS-induced tumor necrosis factor-α (TNF-α) secretion in THP-1 monocytes. One micromolar peonidin-3-glucoside, cyanidin-3-glucoside, and the metabolites isovanillic acid (IVA), IVA-glucuronide, vanillic acid-glucuronide, protocatechuic acid-3-sulfate, and benzoic acid-sulfate significantly reduced TNF-α secretion when in isolation, while there was no effect on TNF-α mRNA expression. Four combinations of metabolites that included 4-hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF-α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS-induced IL-1β and IL-10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL-1β secretion but none of the flavonoids or metabolites significantly modified IL-10 secretion. This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Profiling of steroid metabolites after transdermal and oral administration of testosterone by ultra-high pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    PubMed

    Badoud, F; Boccard, J; Schweizer, C; Pralong, F; Saugy, M; Baume, N

    2013-11-01

    The screening of testosterone (T) misuse for doping control is based on the urinary steroid profile, including T, its precursors and metabolites. Modifications of individual levels and ratio between those metabolites are indicators of T misuse. In the context of screening analysis, the most discriminant criterion known to date is based on the T glucuronide (TG) to epitestosterone glucuronide (EG) ratio (TG/EG). Following the World Anti-Doping Agency (WADA) recommendations, there is suspicion of T misuse when the ratio reaches 4 or beyond. While this marker remains very sensitive and specific, it suffers from large inter-individual variability, with important influence of enzyme polymorphisms. Moreover, use of low dose or topical administration forms makes the screening of endogenous steroids difficult while the detection window no longer suits the doping habit. As reference limits are estimated on the basis of population studies, which encompass inter-individual and inter-ethnic variability, new strategies including individual threshold monitoring and alternative biomarkers were proposed to detect T misuse. The purpose of this study was to evaluate the potential of ultra-high pressure liquid chromatography (UHPLC) coupled with a new generation high resolution quadrupole time-of-flight mass spectrometer (QTOF-MS) to investigate the steroid metabolism after transdermal and oral T administration. An approach was developed to quantify 12 targeted urinary steroids as direct glucuro- and sulfo-conjugated metabolites, allowing the conservation of the phase II metabolism information, reflecting genetic and environmental influences. The UHPLC-QTOF-MS(E) platform was applied to clinical study samples from 19 healthy male volunteers, having different genotypes for the UGT2B17 enzyme responsible for the glucuroconjugation of T. Based on reference population ranges, none of the traditional markers of T misuse could detect doping after topical administration of T, while the

  19. New Pioglitazone Metabolites and Absence of Opened-Ring Metabolites in New N-Substituted Thiazolidinedione.

    PubMed

    Campos, Michel Leandro; Cerqueira, Letícia Bonancio; Silva, Bruna Cristina Ulian; Franchin, Taísa Busaranho; Galdino-Pitta, Marina Rocha; Pitta, Ivan Rocha; Peccinini, Rosângela Gonçalves; Pontarolo, Roberto

    2018-06-01

    Thiazolidinediones (TZDs) are drugs used to treat type 2 diabetes mellitus; however, several safety concerns remain regarding the available drugs in this class. Therefore, the search for new TZD candidates is ongoing; metabolism studies play a crucial step in the development of new candidates. Pioglitazone, one of the most commonly used TZDs, and GQ-11, a new N -substituted TZD, were investigated in terms of their metabolic activity in rat and human liver microsomes to assess their metabolic stability and investigate their metabolites. Methods for preparation of samples were based on liquid-liquid extraction and protein precipitation. Quantitation was performed using liquid chromatography (LC)-tandem mass spectrometry, and the metabolite investigation was performed using ultraperformance LC coupled to a hybrid quadrupole-time of flight mass spectrometer. The predicted intrinsic clearance of GQ-11 was 70.3 and 46.1 ml/kg per minute for rats and humans, respectively. The predicted intrinsic clearance of pioglitazone was 24.1 and 15.9 ml/kg per minute for rats and humans, respectively. The pioglitazone metabolite investigation revealed two unpublished metabolites (M-D and M-A). M-A is a hydration product and may be related to the mechanism of ring opening and the toxicity of pioglitazone. The metabolites of GQ-11 are products of oxidation; no ring-opening metabolite was observed for GQ-11. In conclusion, under the same experimental conditions, a ring-opening metabolite was observed only for pioglitazone. The resistance of GQ-11 to the ring opening is probably related to N -substitution in the TZD ring. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Species and gender differences in the metabolism and distribution of tertiary amyl methyl ether in male and female rats and mice after inhalation exposure or gavage administration.

    PubMed

    Sumner, Susan C J; Janszen, Derek B; Asgharian, Bahman; Moore, Timothy A; Parkinson, Horace D; Fennell, Timothy R

    2003-01-01

    Tertiary amyl methyl ether (TAME) is a gasoline fuel additive used to reduce emissions. Understanding the metabolism and distribution of TAME is needed to assess potential human health issues. The effect of dose level, duration of exposure and route of administration on the metabolism and distribution of TAME were investigated in male and female F344 rats and CD-1 mice following inhalation or gavage administration. By 48 h after exposure, >96% of the administered radioactivity was expired in air (16-71%) or eliminated in urine and feces (28-72%). Following inhalation exposure, mice had a two- to threefold greater relative uptake of [14C]TAME compared with rats. Metabolites were excreted in urine of rats and mice that are formed by glucuronide conjugation of tertiary amyl alcohol (TAA), oxidation of TAA to 2,3-dihydroxy-2-methylbutane and glucuronide conjugation of 2,3-dihydroxy-2-methylbutane. A saturation in the uptake and metabolism of TAME with increased exposure concentration was indicated by a decreased relative uptake of total [14C]TAME equivalents and an increase in the percentage expired as volatiles. A saturation of P-450 oxidation of TAA was indicated by a disproportional decrease of 2,3-dihydroxy-2-methylbutane and its glucuronide conjugate with increased exposure concentration. Copyright 2003 John Wiley & Sons, Ltd.

  1. Glucuronidation of 6 alpha-hydroxy bile acids by human liver microsomes.

    PubMed Central

    Radomińska-Pyrek, A; Zimniak, P; Irshaid, Y M; Lester, R; Tephly, T R; St Pyrek, J

    1987-01-01

    The glucuronidation of 6-hydroxylated bile acids by human liver microsomes has been studied in vitro; for comparison, several major bile acids lacking a 6-hydroxyl group were also investigated. Glucuronidation rates for 6 alpha-hydroxylated bile acids were 10-20 times higher than those of substrates lacking a hydroxyl group in position 6. The highest rates measured were for hyodeoxy- and hyocholic acids, and kinetic analyses were carried out using these substrates. Rigorous product identification by high-field proton nuclear magnetic resonance and by electron impact mass spectrometry of methyl ester/peracetate derivatives revealed that 6-O-beta-D-glucuronides were the exclusive products formed in these enzymatic reactions. These results, together with literature data, indicate that 6 alpha-hydroxylation followed by 6-O-glucuronidation constitutes an alternative route of excretion of toxic hydrophobic bile acids. PMID:3110212

  2. High-resolution mass spectrometric metabolite profiling of a novel synthetic designer drug, N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) using cryopreserved human hepatocytes and assessment of metabolic stability with human liver microsomes

    PubMed Central

    Gandhi, Adarsh S.; Wohlfarth, Ariane; Zhu, Mingshe; Pang, Shaokun; Castaneto, Marisol; Scheidweiler, Karl B.; Huestis, Marilyn A.

    2014-01-01

    N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a new synthetic cannabinoid in herbal incense products discussed on internet drug user forums and identified in police seizures. To date, there are no STS-135 clinical or in vitro studies identifying STS-135 metabolic profiles. However, characterizing STS-135 metabolism is critical because synthetic cannabinoid metabolites can possess pharmacological activity and parent compounds are rarely detectable in urine. To characterize the metabolite profile, human hepatocytes were incubated with 10 μmol/L STS-135 for up to 3 h. High-resolution mass spectrometry with software-assisted data mining identified 29 STS-135 metabolites. Less than 25% of STS-135 parent compound remained after 3 h incubation. Primary metabolites were generated by mono-, di- or trihydroxylation with and without ketone formation, dealkylation and oxidative defluorination of N-fluoropentyl side chain or possible oxidation to carboxylic acid, some of them further glucuronidated. Hydroxylations occurred mainly on the aliphatic adamantane ring and less commonly on the N-pentyl side chain. At 1 h phase I metabolites predominated, while at 3 h phase II metabolites were present in higher amounts. The major metabolites were monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21), both hydroxylated on the adamantane system. Moreover, metabolic stability of STS-135 (1 μmol/L) was assessed in human liver microsomes experiments. The in vitro half-life of STS-135 was 7.2±0.6 min and intrinsic clearance (CLint) was 93.6 mL·min−1·kg−1. This is the first report characterizing STS-135 hepatic metabolic pathways. These data provide potential urinary targets to document STS-135 intake in clinical and forensic settings and potential candidates for pharmacological testing. PMID:24827428

  3. Sequential Activation of Classic PKC and Estrogen Receptor α Is Involved in Estradiol 17ß-D-Glucuronide-Induced Cholestasis

    PubMed Central

    Barosso, Ismael R.; Zucchetti, Andrés E.; Boaglio, Andrea C.; Larocca, M. Cecilia; Taborda, Diego R.; Luquita, Marcelo G.; Roma, Marcelo G.; Crocenzi, Fernando A.; Sánchez Pozzi, Enrique J.

    2012-01-01

    Estradiol 17ß-d-glucuronide (E17G) induces acute cholestasis in rat with endocytic internalization of the canalicular transporters bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). Classical protein kinase C (cPKC) and PI3K pathways play complementary roles in E17G cholestasis. Since non-conjugated estradiol is capable of activating these pathways via estrogen receptor alpha (ERα), we assessed the participation of this receptor in the cholestatic manifestations of estradiol glucuronidated-metabolite E17G in perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHC). In both models, E17G activated ERα. In PRL, E17G maximally decreased bile flow, and the excretions of dinitrophenyl-glutathione, and taurocholate (Abcc2 and Abcb11 substrates, respectively) by 60% approximately; preadministration of ICI 182,780 (ICI, ERα inhibitor) almost totally prevented these decreases. In IRHC, E17G decreased the canalicular vacuolar accumulation of cholyl-glycylamido-fluorescein (Abcb11 substrate) with an IC50 of 91±1 µM. ICI increased the IC50 to 184±1 µM, and similarly prevented the decrease in the canalicular vacuolar accumulation of the Abcc2 substrate, glutathione-methylfluorescein. ICI also completely prevented E17G-induced delocalization of Abcb11 and Abcc2 from the canalicular membrane, both in PRL and IRHC. The role of ERα in canalicular transporter internalization induced by E17G was confirmed in ERα-knocked-down hepatocytes cultured in collagen sandwich. In IRHC, the protection of ICI was additive to that produced by PI3K inhibitor wortmannin but not with that produced by cPKC inhibitor Gö6976, suggesting that ERα shared the signaling pathway of cPKC but not that of PI3K. Further analysis of ERα and cPKC activations induced by E17G, demonstrated that ICI did not affect cPKC activation whereas Gö6976 prevented that of ERα, indicating that cPKC activation precedes that of ERα. Conclusion: ERα is involved in

  4. Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and Bcrp1 knockout mice using a validated LC-MS/MS method.

    PubMed

    Ge, Shufan; Gao, Song; Yin, Taijun; Hu, Ming

    2015-03-25

    Chrysin, a flavone found in many plants, is also available as a dietary supplement because of its reported anticancer activities. However, its bioavailability is very poor due to extensive phase II metabolism. The purpose of this study was to develop an UPLC-MS/MS method to simultaneously quantify chrysin and its phase II metabolites, and to determine its pharmacokinetics in FVB wild-type and Bcrp knockout (Bcrp1 -/-) mice. In addition, the role of BCRP in chrysin phase II disposition was further investigated in Caco-2 cells. The results showed that our sensitive and reproducible UPLC-MS/MS method was successfully applied to the pharmacokinetic study of chrysin in wild-type and Bcrp1 (-/-) FVB mice after oral administration (20 mg/kg). Although there was no significant change in systemic exposure of chrysin and its metabolites, it was found that the Tmax for chrysin glucuronide was significantly shorter (p < 0.01) in Bcrp1-deficient mice. Furthermore, it was shown that inhibition of BCRP by Ko143 significantly reduced the efflux of chrysin sulfate in Caco-2 cells. In conclusion, BCRP had significant but less than expected impact on pharmacokinetics of chrysin and its conjugates, which were determined using a newly developed and validated LC-MS/MS method.

  5. Identification and characterization of human UDP-glucuronosyltransferases responsible for the in-vitro glucuronidation of arctigenin.

    PubMed

    Xin, Hong; Xia, Yang-Liu; Hou, Jie; Wang, Ping; He, Wei; Yang, Ling; Ge, Guang-Bo; Xu, Wei

    2015-12-01

    This study aimed to characterize the glucuronidation pathway of arctigenin (AR) in human liver microsomes (HLM) and human intestine microsomes (HIM). HLM and HIM incubation systems were employed to catalyse the formation of AR glucuronide. The glucuronidation activity of commercially recombinant UGT isoforms towards AR was screened. A combination of chemical inhibition assay and kinetic analysis was used to determine the UGT isoforms involved in the glucuronidation of AR in HLM and HIM. AR could be extensively metabolized to one mono-glucuronide in HLM and HIM. The mono-glucuronide was biosynthesized and characterized as 4'-O-glucuronide. UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7 and 2B17 participated in the formation of 4'-O-G, while UGT2B17 demonstrated the highest catalytic activity in this biotransformation. Both kinetic analysis and chemical inhibition assays demonstrated that UGT1A9, UGT2B7 and UGT2B17 played important roles in AR-4'-O-glucuronidation in HLM. Furthermore, HIM demonstrated moderate efficiency for AR-4'-O-glucuronidation, implying that AR may undergo a first-pass metabolism during the absorption process. UGT1A9, UGT2B7 and UGT2B17 were the major isoforms responsible for the 4'-O-glucuronidation of AR in HLM, while UGT2B7 and UGT2B17 were the major contributors to this biotransformation in HIM. © 2015 Royal Pharmaceutical Society.

  6. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin.

    PubMed

    Gill, Katherine L; Houston, J Brian; Galetin, Aleksandra

    2012-04-01

    Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CL(int, UGT)) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CL(int, UGT) on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CL(int, UGT) in different tissues. Although BSA increased CL(int, UGT) in all tissues, the extent was tissue- and drug-dependent. Scaled CL(int, UGT) in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min(-1) · g tissue(-1) in liver, kidney, and intestinal microsomes. Renal CL(int, UGT) (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CL(int, UGT) for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CL(int, UGT) (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CL(int, UGT) is particularly important for UGT1A9 substrates.

  7. Characterization of In Vitro Glucuronidation Clearance of a Range of Drugs in Human Kidney Microsomes: Comparison with Liver and Intestinal Glucuronidation and Impact of Albumin

    PubMed Central

    Gill, Katherine L.; Houston, J. Brian

    2012-01-01

    Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CLint, UGT) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CLint, UGT on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CLint, UGT in different tissues. Although BSA increased CLint, UGT in all tissues, the extent was tissue- and drug-dependent. Scaled CLint, UGT in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min−1 · g tissue−1 in liver, kidney, and intestinal microsomes. Renal CLint, UGT (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CLint, UGT for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CLint, UGT (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CLint, UGT is particularly important for UGT1A9 substrates. PMID:22275465

  8. Structure-Dependent Deconjugation of Flavonoid Glucuronides by Human β-Glucuronidase - In Vitro and In Silico Analyses.

    PubMed

    Untergehrer, Monika; Bücherl, Daniel; Wittmann, Hans-Joachim; Strasser, Andrea; Heilmann, Jörg; Jürgenliemk, Guido

    2015-08-01

    Flavonoid glycosides are extensively metabolized to glucuronidated compounds after oral intake. Recently, a cleavage of quercetin glucuronides by β-glucuronidase has been found. To characterize the deglucuronidation reaction and its structural prerequisites among the flavonoid subtypes more precisely, four flavonol glucuronides with varying glucuronidation positions, five flavone 7-O-glucuronides with varying A- and B-ring substitution as well as one flavanone- and one isoflavone-7-O-glucuronide were analyzed in a human monocytic cell line. Investigation of the deglucuronidation rates by HPLC revealed a significant influence of the glucuronidation position on enzyme activity for flavonols. Across the flavonoid subtypes, the C-ring saturation also showed a significant influence on deglucuronidation, whereas A- and B-ring variations within the flavone-7-O-glucuronides did not affect the enzymes' activity. Results were compared to computational binding studies on human β-glucuronidase. Additionally, molecular modeling and dynamic studies were performed to obtain detailed insight into the binding and cleavage mode of the substrate at the active site of the human β-glucuronidase. Georg Thieme Verlag KG Stuttgart · New York.

  9. Simultaneous analysis of opioid analgesics and their metabolites in municipal wastewaters and river water by liquid chromatography-tandem mass spectrometry.

    PubMed

    Krizman-Matasic, Ivona; Kostanjevecki, Petra; Ahel, Marijan; Terzic, Senka

    2018-01-19

    Although published literature provides a clear demonstration of widespread occurrence of opioid analgesics (OAs) in the aquatic environment, analytical methods suitable for a systematic study of this pharmaceutical class, which would include a broad spectrum of opioid analgesics and their metabolites, are still missing. In this work, a comprehensive multiresidue method for quantitative analysis of 27 opioid analgesics and their metabolites, including 2 morphine glucuronide conjugates, was developed and validated for three matrices: raw wastewater (RW), secondary effluent (SE) and river water. The method comprised different classes of opioid analgesics, including natural opiates (morphine and codeine), their semi-synthetic derivatives (hydrocodone, hydromorphone, oxycodone, oxymorphone and buprenorphine) as well as fully synthetic opioids such as methadone, fentanyl, sufentanil, propoxyphene and tramadol. The optimized enrichment procedure involved mixed-mode, strong cation-exchange sorbent in combination with a sequential elution procedure. The extracts were analyzed by reversed-phase liquid chromatography using a Synergy Polar column coupled to electrospray ionization tandem mass spectrometry (LC-MS/MS). Accurate quantification of target OAs was achieved using 19 deuterated analogues as surrogate standards. Method accuracies for RW, SE and river water varied in the range from 91 to 126%, 74 to 120% and 75 to 116%, respectively. Careful optimization of the procedure allowed reliable determination of OAs with method quantification limits in the low ng/L range (RW: 0.3-3.5 ng/L; SE: 0.2-1.9 ng/L, river water: 0.1-0.8 ng/L. The developed method was applied for analysis of RW, SE and river water samples from Croatia. The concentrations of individual OAs in municipal wastewater varied in a wide range (from < QL to 859 ng/L) and the most prevalent representatives were tramadol, codeine, morphine and methadone and their derivatives. Elevated concentrations of

  10. Direct measurement of Bisphenol A (BPA), BPA glucuronide and BPA sulfate in a diverse and low-income population of pregnant women reveals high exposure, with potential implications for previous exposure estimates: a cross-sectional study.

    PubMed

    Gerona, Roy R; Pan, Janet; Zota, Ami R; Schwartz, Jackie M; Friesen, Matthew; Taylor, Julia A; Hunt, Patricia A; Woodruff, Tracey J

    2016-04-12

    Bisphenol A (BPA) is a ubiquitous, endocrine-disrupting environmental contaminant that increases risk of some adverse developmental effects. Thus, it is important to characterize BPA levels, metabolic fate and sources of exposure in pregnant women. We used an improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) analytic method to directly and simultaneously measure unconjugated BPA (uBPA), BPA glucuronide and BPA sulfate in the urine of a population of ethnically and racially diverse, and predominately low-income pregnant women (n = 112) in their second trimester. We also administered a questionnaire on dietary and non-dietary sources of exposure to BPA. We found universal and high exposure to uBPA and its metabolites: median concentrations were 0.25, 4.67, and 0.31 μg/g creatinine for uBPA, BPA glucuronide, and BPA sulfate, respectively. The median Total BPA (uBPA + BPA in glucuronide and sulfate forms) level was more than twice that measured in U.S. pregnant women in NHANES 2005-2006, while 30 % of the women had Total BPA levels above the 95th percentile. On average, Total BPA consisted of 71 % BPA in glucuronide form, 15 % BPA in sulfate form and 14 % uBPA, however the proportion of BPA in sulfate form increased and the proportion of uBPA decreased with Total BPA levels. Occupational and non-occupational contact with paper receipts was positively associated with BPA in conjugated (glucuronidated + sulfated) form after adjustment for demographic characteristics. Recent consumption of foods and beverages likely to be contaminated with BPA was infrequent among participants and we did not observe any positive associations with BPA analyte levels. The high levels of BPA analytes found in our study population may be attributable to the low-income status of the majority of participants and/or our direct analytic method, which yields a more complete evaluation of BPA exposure. We observed near-universal exposure to BPA among pregnant women, as

  11. Inhibitory effect of ciprofloxacin on β-glucuronidase-mediated deconjugation of mycophenolic acid glucuronide.

    PubMed

    Kodawara, Takaaki; Masuda, Satohiro; Yano, Yoshitaka; Matsubara, Kazuo; Nakamura, Toshiaki; Masada, Mikio

    2014-07-01

    The interaction between mycophenolate (MPA) and quinolone antibiotics such as ciprofloxacin is considered to reduce the enterohepatic recycling of MPA, which is biotransformed in the intestine from MPA glucuronide (MPAG) conjugate excreted via the biliary system; however, the molecular mechanism underlying this biotransformation of MPA is still unclear. In this study, an in vitro system was established to evaluate β-glucuronidase-mediated deconjugation and to examine the influence of ciprofloxacin on the enzymatic deconjugation of MPAG and MPA resynthesis. Resynthesis of MPA via deconjugation of MPAG increased in a time-dependent manner from 5 to 60 min in the presence of β-glucuronidase. Ciprofloxacin and phenolphthalein-β-d-glucuronide (PhePG), a typical β-glucuronidase substrate, significantly decreased the production of MPA from MPAG in the β-glucuronidase-mediated deconjugation system. In addition, enoxacin significantly inhibited the production of MPA from MPAG, while levofloxacin and ofloxacin had no inhibitory effect on MPA synthesis. Pharmacokinetic analysis revealed that ciprofloxacin showed a dose-dependent inhibitory effect on MPA production from MPAG via β-glucuronidase with a half-maximal inhibitory concentration (IC50 ) value of 30.4 µm. While PhePG inhibited the β-glucuronidase-mediated production of MPA from MPAG in a competitive manner, ciprofloxacin inhibited MPA synthesis via noncompetitive inhibition. These findings suggest that the reduction in the serum MPA concentration during the co-administration of ciprofloxacin is at least in part due to the decreased enterohepatic circulation of MPA because of noncompetitive inhibition of deconjugation of MPAG by intestinal β-glucuronidase. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters

    USGS Publications Warehouse

    Writer, Jeffrey; Ferrer, Imma; Barber, Larry B.; Thurman, E. Michael

    2013-01-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations ± standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700 ± 1000 ng L−1, 2100 ± 1700 ng L−1, carbamazepine and 10-hydroxy-carbamazepine 480 ± 380 ng L−1, 360 ± 400 ng L−1, venlafaxine and O-desmethyl-venlafaxine 1400 ± 1300 ng L−1, 1800 ± 2300 ng L−1. Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that

  13. Development and validation of a sensitive assay for analysis of midazolam, free and conjugated 1-hydroxymidazolam and 4-hydroxymidazolam in pediatric plasma: Application to Pediatric Pharmacokinetic Study.

    PubMed

    Moorthy, Ganesh S; Jogiraju, Harini; Vedar, Christina; Zuppa, Athena F

    2017-11-01

    Pharmacokinetic, pharmacodynamic and pharmacogenomic studies of midazolam are currently being performed in critically ill children to find suitable dose regimens. Sensitive assays using small volumes of plasma are necessary to determine the concentrations of midazolam and its respective metabolites in pediatric studies. Midazolam is metabolized to hydroxylated midazolam isomers, which are present as free as well as the corresponding glucuronide conjugates. A high-performance liquid chromatographic method with tandem mass spectrometry has been developed and validated for the quantification of midazolam, and free and total 1-hydroxymidazolam and 4-hydroxymidazolam metabolites in small volumes of plasma. Cleanup consisted of 96-well μ-elution solid phase extraction (SPE). The analytes were separated by gradient elution using a C 18 analytical column with a total run time of 5min. Multiple reaction monitoring was employed using precursor to product ion transitions of m/z 326.2→291.3 for midazolam, m/z 342.1→203.0 for 1-hydroxymidazolam, m/z 342.1→325.1 for 4-hydroxymidazolam and m/z 330.2→295.3 for 2 H 4 -midazolam (internal standard). Since authentic hydroxymidazolamglucuronide standards are not available, samples were hydrolyzed with β-glucuronidase under optimized conditions. Assay conditions were modified and optimized to provide appropriate recovery and stability because 4-hydroxymidazolam was very acid sensitive. Standard curves were linear from 0.5 to 1000ng/mL for all three analytes. Intra- and inter day accuracy and precision for quality control samples (2, 20, 200 and 800ng/mL) were within 85-115% and 15% (coefficient of variation), respectively. Stability in plasma and extracts were sufficient under assay conditions. Plasma samples were processed and analyzed for midazolam, and free 1-hydroxymidazolam and 4-hydroxymidazolam metabolites. Plasma samples that were hydrolyzed with β-glucuronidase were processed and analyzed for midazolam, and total 1

  14. Metabolic disposition of 14C-bromfenac in healthy male volunteers.

    PubMed

    Osman, M; Chandrasekaran, A; Chan, K; Scatina, J; Ermer, J; Cevallos, W; Sisenwine, S F

    1998-08-01

    The metabolic disposition of 14C-bromfenac, an orally active, potent, nonsteroidal, nonnarcotic, analgesic agent was investigated in six healthy male subjects after a single oral 50-mg dose. The absorption of radioactivity was rapid, producing a mean maximum plasma concentration (Cmax) of 4.9 +/- 1.8 microg x equiv/mL, which was reached 1.0 +/- 0.5 hours after administration. Unchanged drug was the major component found in plasma, and no major metabolites were detected in the plasma. Total radioactivity recovered over a 4-day period from four of the six subjects averaged 82.5% and 13.2% of the dose in the urine and feces, respectively. Excretion into urine was rapid; most of the radioactivity was excreted during the first 8 hours. Five radioactive chromatographic peaks, a cyclic amide and four polar metabolites, were detected in 0- to 24-hour urine samples. Similarity of metabolite profiles between humans and cynomolgus monkeys permitted use of this animal model to generate samples after a high dose for structure elucidation. Liquid chromatography/mass spectrometry (LC/MS) analysis of monkey urine samples indicated that the four polar metabolites were two pairs of diastereoisomeric glucuronides whose molecular weight differed by two daltons. Enzyme hydrolysis, cochromatography, and LC/MS experiments resulted in the identification of a hydroxylated cyclic amide as one of the aglycones, which formed a pair of diastereoisomeric glucuronides after conjugation. Data also suggested that a dihydroxycyclic amide formed by the reduction of the ketone group that joins the phenyl rings formed the second pair of diastereoisomeric glucuronides. Further, incubation of various reference standards in control (blank) urine and buffer with and without creatinine indicated that the hydroxy cyclic amide released from enzyme hydrolysis can undergo ex vivo transformations to a condensation product between creatinine and an alpha-keto acid derivative of the hydroxy cyclic amide that is

  15. Clinical significance of CYP2C19 polymorphisms on the metabolism and pharmacokinetics of 11β-hydroxysteroid dehydrogenase type-1 inhibitor BMS-823778.

    PubMed

    Cheng, Yaofeng; Wang, Lifei; Iacono, Lisa; Zhang, Donglu; Chen, Weiqi; Gong, Jiachang; Humphreys, William Griffith; Gan, Jinping

    2018-01-01

    BMS-823778 is an inhibitor of 11β-hydroxysteroid dehydrogenase type-1, and thus a potential candidate for Type 2 diabetes treatment. Here, we investigated the metabolism and pharmacokinetics of BMS-823778 to understand its pharmacokinetic variations in early clinical trials. The metabolism of BMS-823778 was characterized in multiple in vitro assays. Pharmacokinetics were evaluated in healthy volunteers, prescreened as CYP2C19 extensive metabolizers (EM) or poor metabolizers (PM), with a single oral dose of [ 14 C]BMS-823778 (10 mg, 80 μCi). Three metabolites (<5%) were identified in human hepatocytes and liver microsomes (HLM) incubations, including two hydroxylated metabolites (M1 and M2) and one glucuronide conjugate (M3). As the most abundant metabolite, M1 was formed mainly through CYP2C19. M1 formation was also correlated with CYP2C19 activities in genotyped HLM. In humans, urinary excretion of dosed radioactivity was significantly higher in EM (68.8%; 95% confidence interval 61.3%, 76.3%) than in PM (47.0%; 43.5%, 50.6%); only small portions (<2%) were present in faeces or bile from both genotypes. In plasma, BMS-823778 exposure in PM was significantly (5.3-fold, P = 0.0097) higher than in EM. Furthermore, total radioactivity exposure was significantly higher (P < 0.01) than BMS-823778 exposure in all groups, indicating the presence of metabolites. M1 was the only metabolite observed in plasma, and much lower in PM. In urine, the amount of M1 and its oxidative metabolite in EM was 7-fold of that in PM, while more glucuronide conjugates of BMS-823778 and M1 were excreted in PM. CYP2C19 polymorphisms significantly impacted systemic exposure and metabolism pathways of BMS-823778 in humans. © 2017 The British Pharmacological Society.

  16. Disposition of lasofoxifene, a next-generation selective estrogen receptor modulator, in healthy male subjects.

    PubMed

    Prakash, Chandra; Johnson, Kim A; Gardner, Mark J

    2008-07-01

    Disposition of lasofoxifene, a next-generation selective estrogen receptor modulator, was investigated in male volunteers after p.o. administration of a single 20-mg dose of [(14)C]lasofoxifene. Approximately 72% of the administered dose was recovered from the urine and feces, with majority of dose excreted in the feces, probably via bile. The absorption of lasofoxifene in humans was slow with T(max) values typically exceeding 6 h. The C(max) and area under plasma concentration-time profile from time 0 to the last quantifiable time point values of lasofoxifene were lower than those determined for total radioactivity, indicating presence of circulating metabolites. The primary clearance mechanisms for lasofoxifene in humans were direct conjugation (glucuronide and sulfate conjugates) and phase I oxidation, each accounting for about half of the metabolism. Several oxidative metabolites were identified by liquid chromatography/tandem mass spectrometry. The primary phase I metabolites were the result of hydroxylations on the tetraline moiety and the phenyl rings attached to the tetraline, and oxidation on the pyrrolidine moiety. Considering the numerous metabolites seen in vivo, additional in vitro studies using human liver and intestinal microsomes, recombinant cytochromes P450 (P450s), and UDP glucuronosyltransferases (UGTs) were performed. The turnover of lasofoxifene was very slow in liver microsomes, and only two metabolites were identified as two regioisomers of the catechol metabolite. The results from in vitro experiments with recombinant isoforms and P450 isoform-selective inhibitors suggested that the oxidative metabolism of lasofoxifene is catalyzed primarily by CYP3A and CYP2D6. In addition, its glucuronidation is catalyzed by UGTs that are expressed in both the liver (UGT1A1, UGT1A3, UGT1A6, and UGT1A9) and the intestine (UGT1A8 and UGT1A10).

  17. Selective Effects of a Morphine Conjugate Vaccine on Heroin and Metabolite Distribution and Heroin-Induced Behaviors in Rats

    PubMed Central

    Pravetoni, M.; Harris, A.C.; Birnbaum, A.K.; Pentel, P.R.

    2013-01-01

    Morphine conjugate vaccines have effectively reduced behavioral effects of heroin in rodents and primates. To better understand how these effects are mediated, heroin and metabolite distribution studies were performed in rats in the presence and absence of vaccination. In non-vaccinated rats 6-monoacetylmorphine (6-MAM) was the predominant opioid in plasma and brain as early as 1 minute after i.v. administration of heroin and for up to 14 minutes. Vaccination with morphine conjugated to keyhole limpet hemocyanin (M-KLH) elicited high titers and concentrations of antibodies with high affinity for heroin, 6-MAM, and morphine. Four minutes after heroin administration vaccinated rats showed substantial retention of all three opioids in plasma compared to controls and reduced 6-MAM and morphine, but not heroin, distribution to brain. Administration of 6-MAM rather than heroin in M-KLH vaccinated rats showed a similar drug distribution pattern. Vaccination reduced heroin-induced analgesia and blocked heroin-induced locomotor activity throughout 2 weeks of repeated testing. Higher serum opioid-specific antibody concentrations were associated with higher plasma opioid concentrations, lower brain 6-MAM and morphine concentrations, and lower heroin-induced locomotor activity. Serum antibody concentrations over 0.2 mg/ml were associated with substantial effects on these measures. These data support a critical role for 6-MAM in mediating the early effects of i.v. heroin and suggest that reducing 6-MAM concentration in brain is essential to the efficacy of morphine conjugate vaccines. PMID:23220743

  18. Quantitative Method for Simultaneous Analysis of Acetaminophen and 6 Metabolites.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; Pistorius, Marcel C M; Romijn, Johannes A; Mathôt, Ron A A

    2017-04-01

    Hepatotoxicity after ingestion of high-dose acetaminophen [N-acetyl-para-aminophenol (APAP)] is caused by the metabolites of the drug. To gain more insight into factors influencing susceptibility to APAP hepatotoxicity, quantification of APAP and metabolites is important. A few methods have been developed to simultaneously quantify APAP and its most important metabolites. However, these methods require a comprehensive sample preparation and long run times. The aim of this study was to develop and validate a simplified, but sensitive method for the simultaneous quantification of acetaminophen, the main metabolites acetaminophen glucuronide and acetaminophen sulfate, and 4 Cytochrome P450-mediated metabolites by using liquid chromatography with mass spectrometric (LC-MS) detection. The method was developed and validated for the human plasma, and it entailed a single method for sample preparation, enabling quick processing of the samples followed by an LC-MS method with a chromatographic run time of 9 minutes. The method was validated for selectivity, linearity, accuracy, imprecision, dilution integrity, recovery, process efficiency, ionization efficiency, and carryover effect. The method showed good selectivity without matrix interferences. For all analytes, the mean process efficiency was >86%, and the mean ionization efficiency was >94%. Furthermore, the accuracy was between 90.3% and 112% for all analytes, and the within- and between-run imprecision were <20% for the lower limit of quantification and <14.3% for the middle level and upper limit of quantification. The method presented here enables the simultaneous quantification of APAP and 6 of its metabolites. It is less time consuming than previously reported methods because it requires only a single and simple method for the sample preparation followed by an LC-MS method with a short run time. Therefore, this analytical method provides a useful method for both clinical and research purposes.

  19. An investigation of the stability of free and glucuronidated 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid in authentic urine samples.

    PubMed

    Skopp, Gisela; Pötsch, Lucia

    2004-01-01

    Preanalytical stability of a drug and its major metabolites is an important consideration in pharmacokinetic studies or whenever the analyte pattern is used to estimate drug habits. Firstly, the stability of free and glucuronidated 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid (THCCOOH, THCCOOglu) in authentic urine samples was investigated. Random urine samples of cannabis users (n = 38) were stored at -20, 4, and 20 degrees C up to 15 days and up to 5 days at 40 degrees C, and alterations of the analyte pattern during storage were followed by liquid chromatography-tandem mass spectrometry. Secondly, the influence of pH (range 5.0-8.0) on the stability of the analytes was studied using spiked urine to elucidate the results obtained from authentic samples. In authentic urine samples, the initial pH ranged from 5.1 to 8.8. The glucuronide was found to be highly labile at a storage temperature of 4 degrees C and above. Initially, 18 urine samples tested positive for THCCOOH. After 2 days storage at 20 degrees C, THCCOOH was detectable in a further 4 samples, and 7 more samples tested positive for THCCOOH (5-81 ng/mL) after 15 days. Depending on time and temperature, the glucuronide concentration decreased, resulting in an increase of THCCOOH concentration. However, a loss in mean total THCCOOH concentration was found, which was significantly higher in deteriorated samples than in samples without signs of deterioration after 15 days of storage at 20 degrees C. In the drug-free urine sample separately spiked with THCCOOglu or THCCOOH, the investigations on the stability of the target analytes at various pH values revealed that THCCOOH was stable at pH 5.0. At higher pH values, its concentration slightly decreased with time, and about 69% of the initial THCCOOH concentration was still present at pH 8.0 on day 5. THCCOOglu concentrations rapidly decreased with increasing pH value. For example, only 72% of the initial THCCOOglu concentration could be detected at p

  20. Quantitative determination of five metabolites of aspirin by UHPLC-MS/MS coupled with enzymatic reaction and its application to evaluate the effects of aspirin dosage on the metabolic profile.

    PubMed

    Li, Jian-Ping; Guo, Jian-Ming; Shang, Er-Xin; Zhu, Zhen-Hua; Liu, Yang; Zhao, Bu-Chang; Zhao, Jing; Tang, Zhi-Shu; Duan, Jin-Ao

    2017-05-10

    Acetylsalicylic acid (Aspirin, ASA) is a famous drug for cardiovascular diseases in recent years. Effects of ASA dosage on the metabolic profile have not been fully understood. The purpose of our study is to establish a rapid and reliable method to quantify ASA metabolites in biological matrices, especially for glucuronide metabolites whose standards are not commercially available. Then we applied this method to evaluate the effects of ASA dosage on the metabolic and excretion profile of ASA metabolites in rat urine. Salicylic acid (SA), gentisic acid (GA) and salicyluric acid (SUA) were determined directly by UHPLC-MS/MS, while salicyl phenolic glucuronide (SAPG) and salicyluric acid phenolic glucuronide (SUAPG) were quantified indirectly by measuring the released SA and SUA from SAPG and SUAPG after β-glucuronidase digestion. SUA and SUAPG were the major metabolites of ASA in rat urine 24h after ASA administration, which accounted for 50% (SUA) and 26% (SUAPG). When ASA dosage was increased, the contributions dropped to 32% and 18%, respectively. The excretion of other three metabolites (GA, SA and SAPG) however showed remarkable increases by 16%, 6% and 4%, respectively. In addition, SUA and SUAPG were mainly excreted in the time period of 12-24h, while GA was excreted in the earlier time periods (0-4h and 4-8h). SA was mainly excreted in the time period of 0-4h and 12-24h. And the excretion of SAPG was equally distributed in the four time periods. We went further to show that the excretion of five metabolites in rat urine was delayed when ASA dosage was increased. In conclusion, we have developed a rapid and sensitive method to determine the five ASA metabolites (SA, GA, SUA, SAPG and SUAPG) in rat urine. We showed that ASA dosage could significantly influence the metabolic and excretion profile of ASA metabolites in rat urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients

    PubMed Central

    Romero-Lorca, Alicia; Novillo, Apolonia; Gaibar, María; Bandrés, Fernando; Fernández-Santander, Ana

    2015-01-01

    Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B

  2. Comparison of the bioavailability of quercetin and catechin in rats.

    PubMed

    Manach, C; Texier, O; Morand, C; Crespy, V; Régérat, F; Demigné, C; Rémésy, C

    1999-12-01

    Quercetin and catechin are present in noticeable amounts in human diet and these polyphenolic compounds are supposed to exert beneficial effects on human health. However, their metabolic fates in the organism have never been compared. In the present study, rats were fed a 0.25% quercetin or a 0.25% catechin diet. Quercetin and catechin metabolites were analyzed in plasma and liver samples by high-performance liquid chromatography coupled to an ultraviolet or a multielectrode coulometric detection. All plasma metabolites were present as conjugated forms, but catechin metabolites were mainly constituted by glucuronidated derivatives, whereas quercetin metabolites were sulfo- and glucurono-sulfo conjugates. Quercetin was more intensively methylated than catechin in plasma. The plasma quercetin metabolites are well maintained during the postabsorptive period (approximately 50 microM), whereas the concentration of catechin metabolites dropped dramatically between 12- and 24-h after an experimental meal (from 38.0 to 4.5 microM). In the liver, the concentrations of quercetin and catechin derivatives were lower than in plasma, and no accumulation was observed when the rats were adapted for 14 d to the supplemented diets. The hepatic metabolites were intensively methylated (90-95%), but in contrast to plasma, some free aglycones could be detected. Thus, it clearly appears that studies dealing with the biological impact of these polyphenols should take into account the feature of their bioavailability, particularly the fact that their circulating metabolites are conjugated derivatives.

  3. Sensitivity and proportionality assessment of metabolites from microdose to high dose in rats using LC-MS/MS.

    PubMed

    Ni, Jinsong; Ouyang, Hui; Seto, Carmai; Sakuma, Takeo; Ellis, Robert; Rowe, Josh; Acheampong, Andrew; Welty, Devin; Szekely-Klepser, Gabriella

    2010-03-01

    The objective of this study was to evaluate the sensitivity requirement for LC-MS/MS as an analytical tool to characterize metabolites in plasma and urine at microdoses in rats and to investigate proportionality of metabolite exposure from a microdose of 1.67 µg/kg to a high dose of 5000 µg/kg for atorvastatin, ofloxacin, omeprazole and tamoxifen. Only the glucuronide metabolite of ofloxacin, the hydroxylation metabolite of omeprazole and the hydration metabolite of tamoxifen were characterized in rat plasma at microdose by LC-MS/MS. The exposure of detected metabolites of omeprazole and tamoxifen appeared to increase in a nonproportional manner with increasing doses. Exposure of ortho- and para-hydroxyatorvastatin, but not atorvastatin and lactone, increased proportionally with increasing doses. LC-MS/MS has demonstrated its usefulness for detecting and characterizing the major metabolites in plasma and urine at microdosing levels in rats. The exposure of metabolites at microdose could not simply be used to predict their exposure at higher doses.

  4. Disposition and metabolism of safinamide, a novel drug for Parkinson's disease, in healthy male volunteers.

    PubMed

    Leuratti, Chiara; Sardina, Marco; Ventura, Paolo; Assandri, Alessandro; Müller, Markus; Brunner, Martin

    2013-01-01

    Absorption, biotransformation and elimination of safinamide, an enantiomeric α-aminoamide derivative developed as an add-on therapy for Parkinson's disease patients, were studied in healthy volunteers administered a single oral dose of 400 mg (14)C safinamide methanesulphonate, labelled in metabolically stable positions. Pharmacokinetics of the parent compound were investigated up to 96 h, of (14)C radioactivity up to 192/200 h post-dose. Maximum concentration was achieved at 1 h (plasma, median Tmax) for parent drug and at 7 and 1.5 h for plasma and whole blood (14)C radioactivity, respectively. Terminal half-lives were about 22 h for unchanged safinamide and 80 h for radioactivity. Safinamide deaminated acid and the N-dealkylated acid were identified as major metabolites in urine and plasma. In urine, the β-glucuronide of the N-dealkylated acid and the monohydroxy safinamide were also characterized. In addition, the glycine conjugate of the N-dealkylated acid and 2-[4-hydroxybenzylamino]propanamide were tentatively identified as minor urinary metabolites. © 2013 S. Karger AG, Basel.

  5. Breast Cancer Resistance Protein (ABCG2) Determines Distribution of Genistein Phase II Metabolites: Reevaluation of the Roles of ABCG2 in the Disposition of Genistein

    PubMed Central

    Yang, Zhen; Zhu, Wei; Gao, Song; Yin, Taijun; Jiang, Wen

    2012-01-01

    It was recently proposed that the improved oral bioavailability of genistein aglycone and conjugates in Bcrp1(−/−) mice is mainly due to increased intestinal absorption of aglycone and subsequent elevated exposure to conjugation enzymes. Here we tested this proposed mechanism and found that intestinal absorption of genistein aglycone did not increase in Bcrp1(−/−) mice compared with wild-type mice using an in situ mouse intestinal perfusion model and that inhibition of breast cancer resistance protein (BCRP) in Caco-2 cells also did not significantly increase permeability or intracellular concentration of aglycone. Separately, we showed that 5- to 10-fold increases in exposures of conjugates and somewhat lower fold increases (<2-fold) in exposures of aglycone were apparent after both oral and intraperitoneal administration in Bcrp1(−/−) mice. In contrast, the intestinal and biliary excretion of genistein conjugates significantly decreased in Bcrp1(−/−) mice without corresponding changes in aglycone excretion. Likewise, inhibition of BCRP functions in Caco-2 cells altered polarized excretion of genistein conjugates by increasing their basolateral excretion. We further found that genistein glucuronides could be hydrolyzed back to genistein, whereas sulfates were stable in blood. Because genistein glucuronidation rates were 110% (liver) and 50% (colon) higher and genistein sulfation rates were 40% (liver) and 42% (colon) lower in Bcrp1(−/−) mice, the changes in genistein exposures are not mainly due to changes in enzyme activities. In conclusion, improved bioavailability of genistein and increased plasma area under the curve of its conjugates in Bcrp1(−/−) mice is due to altered distribution of genistein conjugates to the systemic circulation. PMID:22736306

  6. Inhibition of intestinal microflora beta-glucuronidase modifies the distribution of the active metabolite of the antitumor agent, irinotecan hydrochloride (CPT-11) in rats.

    PubMed

    Takasuna, K; Hagiwara, T; Hirohashi, M; Kato, M; Nomura, M; Nagai, E; Yokoi, T; Kamataki, T

    1998-01-01

    SN-38, a metabolite of irinotecan hydrochloride (CPT-11), is considered to play a key role in the development of diarrhea as well as in the antitumor activity of CPT-11. We have previously found that the inhibition of beta-glucuronidase, which hydrolyzes detoxified SN-38 (SN-38 glucuronide) to reform SN-38, in the lumen by eliminating the intestinal microflora with antibiotics, markedly ameliorates the intestinal toxicity of CPT-11 in rats. In this study we compared the disposition of CPT-11 and its metabolites in rats treated with and without antibiotics. Rats were given drinking water containing 1 mg/ml penicillin and 2 mg/ml streptomycin from 5 days before the administration of CPT-11 (60 mg/kg i.v.) and throughout the experiment. CPT-11, SN-38 glucuronide and SN-38 concentrations in the blood, intestinal tissues and intestinal luminal contents were determined by HPLC. Antibiotics had little or no effect on the pharmacokinetics of CPT-11, SN-38 glucuronide or SN-38 in the blood, or in the tissues or contents of the small intestine, which has less beta-glucuronidase activity in its luminal contents. In contrast, antibiotics markedly reduced the AUC1-24 h of SN-38 (by about 85%) in the large intestine tissue without changing that of CPT-11, and this was accompanied by a complete inhibition of the deconjugation of SN-38 glucuronide in the luminal contents. These results suggest that SN-38, which results from the hydrolysis of SN-38 glucuronide by beta-glucuronidase in the intestinal microflora, contributes considerably to the distribution of SN-38 in the large intestine tissue, and that inhibition of the beta-glucuronidase activity by antibiotics results in decreased accumulation of SN-38 in the large intestine.

  7. Metabolite screening of aromatic amine hair dyes using in vitro hepatic models.

    PubMed

    Skare, J A; Hewitt, N J; Doyle, E; Powrie, R; Elcombe, C

    2009-11-01

    Aromatic amines and heterocyclic amines are widely used ingredients in permanent hair dyes. However, little has been published on their potential for oxidation via hepatic cytochrome P450s. Therefore, the authors screened nine such compounds for their potential to undergo oxidative metabolism in human liver microsomes. Toluene-2,5-diamine (TDA), p-aminophenol, m-aminophenol, p-methylaminophenol, N,N'-bis(2-hydroxyethyl)-p-phenylenediamine, and 1-hydroxyethyl-4,5-diaminopyrazole showed no evidence of oxidative metabolism. Oxidized metabolites of 4-amino-2-hydroxytoluene (AHT), 2-methyl-5- hydroxyethylaminophenol (MHEAP), and phenyl methyl pyrazolone (PMP) were detected, but there was no evidence of beta-nicotinamide adenine dinucleotide phosphate (NADPH)-dependent covalent binding to microsomal protein, suggesting that these are not reactive metabolites. Metabolism of AHT, MHEAP, PMP, and TDA was further studied in human hepatocytes. All these compounds underwent conjugation, but no oxidative metabolites were found. The results suggest that none of the hair dye ingredients tested showed evidence of hepatic metabolism to potentially biologically reactive oxidized metabolites.

  8. Low Cotinine Glucuronidation Results in Higher Serum and Saliva Cotinine in African American Compared to White Smokers.

    PubMed

    Murphy, Sharon E; Sipe, Christopher J; Choi, Kwangsoo; Raddatz, Leah M; Koopmeiners, Joseph S; Donny, Eric C; Hatsukami, Dorothy K

    2017-07-01

    Background: Tobacco exposure is often quantified by serum or saliva concentrations of the primary nicotine metabolite, cotinine. However, average cotinine concentrations are higher in African Americans (AA) compared with Whites with similar smoking levels. Cotinine is metabolized by UGT2B10 and CYP2A6, and low UGT2B10 activity is common in AA, due to the prevalence of a UGT2B10 splice variant. Methods: UGT2B10 activity was phenotyped in 1,446 smokers (34% AA) by measuring the percentage of cotinine excreted as a glucuronide. Urinary total nicotine equivalents (TNE), the sum of nicotine and 6 metabolites, were determined to quantify smoking dose, and cotinine and 3'-hydroxycotinine were quantified in saliva (study 1) or serum (study 2). Results: Ninety-seven smokers (78% AA) were null for UGT2B10 activity, and the saliva and serum cotinine levels, after adjustment for TNE and cigarettes per day (CPD), were 68% and 48% higher in these smokers compared with nonnull smokers ( P < 0.001). After adjustment for TNE and CPD, salivary cotinine was 35% higher, and serum cotinine 24% higher in AA versus White smokers, but with additional adjustment for UGT2B10 activity, there were no significant differences in saliva and serum cotinine concentrations between these two groups. Conclusions: UGT2B10 activity significantly influences plasma cotinine levels, and higher cotinine concentrations in AA versus White smokers (after adjustment for smoking dose) result from lower levels of UGT2B10-catalyzed cotinine glucuronidation by AA. Impact: UGT2B10 activity or genotype should be considered when using cotinine as a tobacco exposure biomarker, particularly in populations such as AA with high frequencies of UGT2B10 nonfunctional variants. Cancer Epidemiol Biomarkers Prev; 26(7); 1093-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Plasma pharmacokinetics of catechin metabolite 4'-O-Me-EGC in healthy humans.

    PubMed

    Renouf, Mathieu; Redeuil, Karine; Longet, Karin; Marmet, Cynthia; Dionisi, Fabiola; Kussmann, Martin; Williamson, Gary; Nagy, Kornél

    2011-10-01

    Tea is an infusion of the leaves of the Camellia sinensis plant and is the most widely consumed beverage in the world after water. Green tea contains significant amounts of polyphenol catechins and represents a promising dietary component to maintain health and well-being. Epidemiological studies indicate that polyphenol intake may have potential health benefits, such as, reducing the incidence of coronary heart disease, diabetes and cancer. While bioavailability of green tea bioactives is fairly well understood, some gaps still remain to be filled, especially the identification and quantification of conjugated metabolites in plasma, such as, sulphated, glucuronidated or methylated compounds. In the present study, we aimed to quantify the appearance of green tea catechins in plasma with particular emphasis on their methylated forms. After feeding 400 mL of green tea, 1.25% infusion to 9 healthy subjects, we found significant amounts of EC, EGC and EGCg in plasma as expected. EGC was the most bioavailable catechin, and its methylated form (4'-O-Me-EGC) was also present in quantifiable amounts. Its kinetics followed that of its parent compound. However, the relative amount of the methylated form of EGC was lower than that of the parent compound, an important aspect which, in the literature, has been controversial so far. The quantitative results presented in our study were confirmed by co-chromatography and accurate mass analysis of the respective standards. We show that the relative abundance of 4'-O-Me-EGC is ~40% compared to the parent EGC. 4'-O-Me-EGC is an important metabolite derived from catechin metabolism. Its presence in significant amounts should not be overlooked when assessing human bioavailability of green tea.

  10. Chiral analyses of dextromethorphan/levomethorphan and their metabolites in rat and human samples using LC-MS/MS.

    PubMed

    Kikura-Hanajiri, Ruri; Kawamura, Maiko; Miyajima, Atsuko; Sunouchi, Momoko; Goda, Yukihiro

    2011-04-01

    In order to develop an analytical method for the discrimination of dextromethorphan (an antitussive medicine) from its enantiomer, levomethorphan (a narcotic) in biological samples, chiral analyses of these drugs and their O-demethyl and/or N-demethyl metabolites in rat plasma, urine, and hair were carried out using LC-MS/MS. After the i.p. administration of dextromethorphan or levomethorphan to pigmented hairy male DA rats (5 mg/kg/day, 10 days), the parent compounds and their three metabolites in plasma, urine and hair were determined using LC-MS/MS. Complete chiral separation was achieved in 12 min on a Chiral CD-Ph column in 0.1% formic acid-acetonitrile by a linear gradient program. Most of the metabolites were detected as being the corresponding O-demethyl and N, O-didemethyl metabolites in the rat plasma and urine after the hydrolysis of O-glucuronides, although obvious differences in the amounts of these metabolites were found between the dextro and levo forms. No racemation was observed through O- and/or N-demethylation. In the rat hair samples collected 4 weeks after the first administration, those differences were more clearly detected and the concentrations of the parent compounds, their O-demethyl, N-demethyl, and N, O-didemethyl metabolites were 63.4, 2.7, 25.1, and 0.7 ng/mg for the dextro forms and 24.5, 24.6, 2.6, and 0.5 ng/mg for the levo forms, respectively. In order to fully investigate the differences of their metabolic properties between dextromethorphan and levomethorphan, DA rat and human liver microsomes were studied. The results suggested that there might be an enantioselective metabolism of levomethorphan, especially with regard to the O-demethylation, not only in DA rat but human liver microsomes as well. The proposed chiral analyses might be applied to human samples and could be useful for discriminating dextromethorphan use from levomethorphan use in the field of forensic toxicology, although further studies should be carried out

  11. Glucuronidation of Drugs and Drug-Induced Toxicity in Humanized UDP-Glucuronosyltransferase 1 Mice

    PubMed Central

    Kutsuno, Yuki; Itoh, Tomoo; Tukey, Robert H.

    2014-01-01

    UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various drugs. Although experimental rodents are used in preclinical studies to predict glucuronidation and toxicity of drugs in humans, species differences in glucuronidation and drug-induced toxicity have been reported. Humanized UGT1 mice in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus (hUGT1 mice) were recently developed. In this study, acyl-glucuronidations of etodolac, diclofenac, and ibuprofen in liver microsomes of hUGT1 mice were examined and compared with those of humans and regular mice. The kinetics of etodolac, diclofenac, and ibuprofen acyl-glucuronidation in hUGT1 mice were almost comparable to those in humans, rather than in mice. We further investigated the hepatotoxicity of ibuprofen in hUGT1 mice and regular mice by measuring serum alanine amino transferase (ALT) levels. Because ALT levels were increased at 6 hours after dosing in hUGT1 mice and at 24 hours after dosing in regular mice, the onset pattern of ibuprofen-induced liver toxicity in hUGT1 mice was different from that in regular mice. These data suggest that hUGT1 mice can be valuable tools for understanding glucuronidations of drugs and drug-induced toxicity in humans. PMID:24764149

  12. UGT1A and UGT2B genetic variation alters nicotine and nitrosamine glucuronidation in european and african american smokers.

    PubMed

    Wassenaar, Catherine A; Conti, David V; Das, Soma; Chen, Peixian; Cook, Edwin H; Ratain, Mark J; Benowitz, Neal L; Tyndale, Rachel F

    2015-01-01

    Identifying sources of variation in the nicotine and nitrosamine metabolic inactivation pathways is important to understanding the relationship between smoking and cancer risk. Numerous UGT1A and UGT2B enzymes are implicated in nicotine and nitrosamine metabolism in vitro; however, little is known about their roles in vivo. Within UGT1A1, UGT1A4, UGT1A9, UGT2B7, UGT2B10, and UGT2B17, 47 variants were genotyped, including UGT2B10*2 and UGT2B17*2. The association between variation in these UGTs and glucuronidation activity within European and African American current smokers (n = 128), quantified as urinary ratios of the glucuronide over unconjugated compound for nicotine, cotinine, trans-3'-hydroxycotinine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), was investigated in regression models assuming a dominant effect of variant alleles. Correcting for multiple testing, three UGT2B10 variants were associated with cotinine glucuronidation, rs2331559 and rs11726322 in European Americans and rs835309 in African Americans (P ≤ 0.0002). Additional variants predominantly in UGT2B10 were nominally associated with nicotine (P = 0.008-0.04) and cotinine (P = <0.001-0.02) glucuronidation in both ethnicities in addition to UGT2B10*2 in European Americans (P = 0.01, P < 0.001). UGT2B17*2 (P = 0.03) in European Americans and UGT2B7 variants (P = 0.02-0.04) in African Americans were nominally associated with 3HC glucuronidation. UGT1A (P = 0.007-0.01), UGT2B10 (P = 0.02), and UGT2B7 (P = 0.02-0.03) variants in African Americans were nominally associated with NNAL glucuronidation. Findings from this initial in vivo study support a role for multiple UGTs in the glucuronidation of tobacco-related compounds in vivo, in particular UGT2B10 and cotinine glucuronidation. Findings also provide insight into ethnic differences in glucuronidation activity, which could be contributing to ethnic disparities in the risk for smoking-related cancers. Cancer Epidemiol Biomarkers Prev

  13. Characterization of Differential Cocaine Metabolism in Mouse and Rat through Metabolomics-Guided Metabolite Profiling

    PubMed Central

    Yao, Dan; Shi, Xiaolei; Wang, Lei; Gosnell, Blake A.

    2013-01-01

    Rodent animal models have been widely used for studying neurologic and toxicological events associated with cocaine abuse. It is known that the mouse is more susceptible to cocaine-induced hepatotoxicity (CIH) than the rat. However, the causes behind this species-dependent sensitivity to cocaine have not been elucidated. In this study, cocaine metabolism in the mouse and rat was characterized through LC-MS-based metabolomic analysis of urine samples and were further compared through calculating the relative abundance of individual cocaine metabolites. The results showed that the levels of benzoylecgonine, a major cocaine metabolite from ester hydrolysis, were comparable in the urine from the mice and rats treated with the same dose of cocaine. However, the levels of the cocaine metabolites from oxidative metabolism, such as N-hydroxybenzoylnorecgonine and hydroxybenzoylecgonine, differed dramatically between the two species, indicating species-dependent cocaine metabolism. Subsequent structural analysis through accurate mass analysis and LC-MS/MS fragmentation revealed that N-oxidation reactions, including N-demethylation and N-hydroxylation, are preferred metabolic routes in the mouse, while extensive aryl hydroxylation reactions occur in the rat. Through stable isotope tracing and in vitro enzyme reactions, a mouse-specific α-glucoside of N-hydroxybenzoylnorecgonine and a group of aryl hydroxy glucuronides high in the rat were identified and structurally elucidated. The differences in the in vivo oxidative metabolism of cocaine between the two rodent species were confirmed by the in vitro microsomal incubations. Chemical inhibition of P450 enzymes further revealed that different P450-mediated oxidative reactions in the ecgonine and benzoic acid moieties of cocaine contribute to the species-dependent biotransformation of cocaine. PMID:23034697

  14. Simultaneous determination of ezetimibe and its glucuronide metabolite in human plasma by solid phase extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Guo, Lin; Wang, Meng-meng; He, Min; Qiu, Fu-rong; Jiang, Jian

    2015-04-01

    A liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed to quantify ezetimibe (EZM) and its major glucuronide (ezetimibe glucuronide, EZM-G) in human plasma simultaneously. The analytes were purified by solid phase extraction (SPE) without hydrolysis. Separation of the analytes was achieved using acetonitrile-water (0.08% formic acid) (70:30, v/v) as the mobile phase at a flow rate of 0.8 mL/min on an Agilent Extend C18 column. The analytes were detected by LC-MS/MS using negative ionization in multiple reaction monitoring (MRM) mode. The mass transition pairs of m/z 408.4→271.0 and m/z 584.5→271.0 were used to detect EZM and EZM-G, respectively. The analytical method was linear over the concentration range of 0.1-20 ng/mL for EZM and 0.5-200 ng/mL for EZM-G. Within- and between-run precision for EZM was no more than 8.6% and 12.8%; and for EZM-G was no more than 9.0% and 8.7%, respectively. This method was reproducible and reliable, and was successfully used to analyze human plasma samples for application in a bioequivalence study. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Detection of metabolites of the new synthetic cannabinoid CUMYL-4CN-BINACA in authentic urine samples and human liver microsomes using high-resolution mass spectrometry.

    PubMed

    Öztürk, Yeter Erol; Yeter, Oya; Öztürk, Serkan; Karakus, Goksun; Ates, Ismail; Buyuk, Yalçın; Yurdun, Turkan

    2018-03-01

    CUMYL-4CN-BINACA(1-(4-cyanobutyl)-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide) is a recently introduced indazole-3-carboxamide-type synthetic cannabinoid (SC) that was detected in herbal incense seized by of the Council of Forensic Medicine, Istanbul Narcotics Department, in May 2016 in Turkey. Recently introduced SCs are not detected in routine toxicological analysis; therefore, analytical methods to measure these compounds are in demand. The present study aims to identify urinary marker metabolites of CUMYL-4CN-BINACA by investigating its metabolism in human liver microsomes and to confirm the results in authentic urine samples (n = 80). In this study, 5 μM CUMYL-4CN-BINACA was incubated with human liver microsomes (HLMs) for up to 3 hours, and metabolites were identified using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Less than 21% of the CUMYL-4CN-BINACA parent compound remained after 3 hours of incubation. We identified 18 metabolites that were formed via monohydroxylation, dealkylation, oxidative decyanation to aldehyde, alcohol, and carboxylic acid formation, glucuronidation or reaction combinations. CUMYL-4CN-BINACA N-butanoic acid (M16) was found to be major metabolite in HLMs. In urine samples CUMYL-4CN-BINACA was not detected; CUMYL-4CN-BINACA N-butanoic acid (M16) was major metabolite after β-glucuronidase hydrolysis. Based on these findings, we recommend using M16 (CUMYL-4CN-BINACA N-butanoic acid), M8 and M11 (hydroxylcumyl CUMYL-4CN-BINACA) as urinary marker metabolites to confirm CUMYL-4CN-BINACA intake. Copyright © 2017 John Wiley & Sons, Ltd.

  16. PET imaging of β-glucuronidase activity by an activity-based 124I-trapping probe for the personalized glucuronide prodrug targeted therapy.

    PubMed

    Su, Yu-Cheng; Cheng, Ta-Chun; Leu, Yu-Ling; Roffler, Steve R; Wang, Jaw-Yuan; Chuang, Chih-Hung; Kao, Chien-Han; Chen, Kai-Chuan; Wang, Hsin-Ell; Cheng, Tian-Lu

    2014-12-01

    Beta-glucuronidase (βG) is a potential biomarker for cancer diagnosis and prodrug therapy. The ability to image βG activity in patients would assist in personalized glucuronide prodrug cancer therapy. However, whole-body imaging of βG activity for medical usage is not yet available. Here, we developed a radioactive βG activity-based trapping probe for positron emission tomography (PET). We generated a (124)I-tyramine-conjugated difluoromethylphenol beta-glucuronide probe (TrapG) to form (124)I-TrapG that could be selectively activated by βG for subsequent attachment of (124)I-tyramine to nucleophilic moieties near βG-expressing sites. We estimated the specificity of a fluorescent FITC-TrapG, the cytotoxicity of tyramine-TrapG, and the serum half-life of (124)I-TrapG. βG targeting of (124)I-TrapG in vivo was examined by micro-PET. The biodistribution of (131)I-TrapG was investigated in different organs. Finally, we imaged the endogenous βG activity and assessed its correlation with therapeutic efficacy of 9-aminocamptothecin glucuronide (9ACG) prodrug in native tumors. FITC-TrapG showed specific trapping at βG-expressing CT26 (CT26/mβG) cells but not in CT26 cells. The native TrapG probe possessed low cytotoxicity. (124)I-TrapG preferentially accumulated in CT26/mβG but not CT26 cells. Meanwhile, micro-PET and whole-body autoradiography results demonstrated that (124)I-TrapG signals in CT26/mβG tumors were 141.4-fold greater than in CT26 tumors. Importantly, Colo205 xenografts in nude mice that express elevated endogenous βG can be monitored by using infrared glucuronide trapping probes (NIR-TrapG) and suppressed by 9ACG prodrug treatment. (124)I-TrapG exhibited low cytotoxicity allowing long-term monitoring of βG activity in vivo to aid in the optimization of prodrug targeted therapy. ©2014 American Association for Cancer Research.

  17. A comparison of three fecal steroid metabolites for pregnancy detection used with single sampling in bighorn sheep (Ovis canadensis)

    USGS Publications Warehouse

    Schoenecker, K.A.; Lyda, R.O.; Kirkpatrick, J.

    2004-01-01

    We compared three fecal steroid metabolite assays for their usefulness in detecting pregnancy among free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) from Bighorn Canyon National Recreation Area, Wyoming and Montana (USA) and captive bighorn ewes at ZooMontana in Billings, Montana. Fecal samples were collected from 11 free-ranging, radio-collared bighorn ewes in late January–May 2001 and from 20 free-ranging, radio-collared ewes in late March to mid-May 2002. Free-ranging ewes were monitored the following spring to determine whether or not they lambed. In addition, two captive ewes were studied at Zoo-Montana. With three exceptions, free-ranging bighorn ewes that produced lambs had nonspecific progesterone metabolite (iPdG) levels of >1,800 ng/g feces and iPdG levels >7,000 ng/gm feces when samples were collected between early March and mid-May Samples collected earlier in the year were inconclusive. One false negative was suspected to be the result of sample collection error. Of the captive ewes, nonspecific pregnanediol-3α–glucuronide (PdG) and iPdG followed a predictable curve over the course of the 180-day pregnancies. We conclude that estrone conjugates are not useful in diagnosing pregnancy; however, fecal steroid analysis of PdG and iPdG can be used to accurately determine pregnancy and reproductive function in bighorn sheep. This holds great potential as a noninvasive technique for understanding the role of reproductive disease in wild bighorn sheep.

  18. Metabolism and disposition of MM-433593, a selective FAAH-1 inhibitor, in monkeys

    PubMed Central

    Banijamali, Ali R; Wakefield, James D; Mermerian, Ara H; Busby, Robert W

    2014-01-01

    MM-433593 is a highly potent and selective inhibitor of fatty acid amide hydrolase-1 (FAAH-1) with potential utility as an orally administered treatment of pain, inflammation, and other disorders. In this study, we investigated the metabolism and pharmacokinetics of MM-433593 in monkeys, and compared plasma and urine metabolites of this compound to the in vitro metabolites produced by monkey hepatocytes. Intravenous administration of MM-433593 to cynomolgus monkeys produced a rapid distribution phase and slower elimination phase with a mean systemic clearance rate of 8–11 mL/min/kg. Absolute oral bioavailability was determined to be 14–21% with maximum plasma concentrations reached ∼3 h (Tmax) following a 10 mg/kg oral dose. The average terminal half-life of MM-433593 was 17–20 h, and there were no qualitative sex differences in the metabolite profile of MM-433593. The major site of metabolism was oxidation of the methyl group at the five position of the indole ring, which was confirmed by chromatography and mass spectrometry comparison to a synthesized authentic standard. This metabolite was further oxidized to the corresponding carboxylic acid and/or conjugated with sulfate, glucuronide, or glutathione. In all, 18 metabolites were found in plasma and urine. In vitro incubations of MM-433593 with monkey hepatocytes yielded 13 metabolites, all of which were found in vivo, indicating a good correlation between the in vitro and in vivo metabolism data. A comprehensive pathway for the metabolism of MM-433593 is proposed, including a plausible, five-step biotransformation for the formation of N-acetylcysteine conjugate metabolite (M18) from the hydroxylated parent (M5). PMID:25505606

  19. New Potential Biomarker for Methasterone Misuse in Human Urine by Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry.

    PubMed

    Zhang, Jianli; Lu, Jianghai; Wu, Yun; Wang, Xiaobing; Xu, Youxuan; Zhang, Yinong; Wang, Yan

    2016-09-24

    In this study, methasterone urinary metabolic profiles were investigated by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS) in full scan and targeted MS/MS modes with accurate mass measurement. A healthy male volunteer was asked to take the drug and liquid-liquid extraction was employed to process urine samples. Chromatographic peaks for potential metabolites were hunted out with the theoretical [M - H](-) as a target ion in a full scan experiment and actual deprotonated ions were studied in targeted MS/MS experiment. Fifteen metabolites including two new sulfates (S1 and S2), three glucuronide conjugates (G2, G6 and G7), and three free metabolites (M2, M4 and M6) were detected for methasterone. Three metabolites involving G4, G5 and M5 were obtained for the first time in human urine samples. Owing to the absence of helpful fragments to elucidate the steroid ring structure of methasterone phase II metabolites, gas chromatography mass spectrometry (GC-MS) was employed to obtain structural information of the trimethylsilylated phase I metabolite released after enzymatic hydrolysis and the potential structure was inferred using a combined MS method. Metabolite detection times were also analyzed and G2 (18-nor-17β-hydroxymethyl-2α, 17α-dimethyl-androst-13-en-3α-ol-ξ-O-glucuronide) was thought to be new potential biomarker for methasterone misuse which can be detected up to 10 days.

  20. Metabolite profiling of RCS-4, a novel synthetic cannabinoid designer drug, using human hepatocyte metabolism and TOF-MS

    PubMed Central

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A

    2014-01-01

    Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048

  1. Serotonergic Neurotoxic Thioether Metabolites of 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”): Synthesis, Isolation and Characterization of Diastereoisomers

    PubMed Central

    Pizarro, Nieves; de la Torre, Rafael; Joglar, Jesús; Okumura, Noriko; Perfetti, Ximena; Lau, Serrine S.; Monks, Terrence J.

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a synthetic recreational drug of abuse that produces long-term toxicity associated with the degeneration of serotonergic nerve terminals. In various animal models direct administration of MDMA into the brain fails to reproduce the serotonergic neurotoxicity, implying a requirement for the systemic metabolism and bioactivation of MDMA. Catechol-thioether metabolites of MDMA, formed via oxidation of 3,4-dihydroxymetamphetamine and 3,4-dihydroxyamphetamine (HHMA and HHA) and subsequent conjugation with glutathione (GSH), are selective serotonergic neurotoxicants when administered directly into brain. Moreover, following systemic administration of MDMA, the thioether adducts are present in rat brain dialysate. MDMA contains a stereogenic center, and is consumed as a racemate. Interestingly, different pharmacological properties have been attributed to the two enantiomers, (S)-MDMA being the most active in the central nervous system and responsible for the entactogenic effects, and most likely also for the neurodegeneration. The present study focused on the synthesis and stereochemical analysis of the neurotoxic MDMA thioether metabolites, 5-(glutathion-S-yl)-HHMA, 5-(N-acetylcysteine-S-yl)-HHMA, 2,5-bis-(glutathion-S-yl)-HHMA and 2,5-bis-(N-acetylcysteine-S-yl)-HHMA. Both enzymatic and electrochemical syntheses were explored, and methodologies for analytical and semi-preparative diastereoisomeric separation of MDMA thioether conjugates by HPLC-CEAS and HPLC-UV respectively were developed. Synthesis, diastereoisomeric separation, and unequivocal identification of the thioether conjugates of MDMA provide the chemical tools necessary for appropriate toxicological and metabolic studies on MDMA metabolites contributing to its neurotoxicity. PMID:19548351

  2. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.-J.; Department of Biotechnology, Asia University, Taichung, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan

    2009-01-23

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, wemore » observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI{sub 50}) concentration of 2.35 {mu}M. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.« less

  3. Pharmacokinetic Characterization and Bioavailability of Strawberry Anthocyanins Relative to Meal Intake.

    PubMed

    Sandhu, Amandeep K; Huang, Yancui; Xiao, Di; Park, Eunyoung; Edirisinghe, Indika; Burton-Freeman, Britt

    2016-06-22

    Plasma strawberry anthocyanins were characterized in overweight (BMI: 26 ± 2 kg/m(2)) adults (n = 14) on the basis of meal timing. At each visit, subjects ingested three study drinks: two control and one strawberry drink. A strawberry drink was given at either 2 h before the breakfast meal (BM), with the meal (WM), or 2 h after the meal (AM), and control drinks were given at the alternative time points. Plasma anthocyanins and their metabolic conjugates were assessed hourly for 10 h using a triple-quadrupole liquid chromatography mass spectrometer. Maximum concentrations (Cmax), area under the curve (AUC), and bioavailability of pelargonidin-based anthocyanins determined from the main conjugated metabolite (pelargonidin glucuronide) were greater when a strawberry drink was consumed 2 h before the meal (BM) compared to consumption WM or AM (p < 0.05). Our results indicate that the timing of strawberry consumption relative to a meal impacts anthocyanin pharmacokinetic variables.

  4. Analysis of anabolic androgenic steroids as sulfate conjugates using high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Rzeppa, S; Heinrich, G; Hemmersbach, P

    2015-01-01

    Improvements in doping analysis can be effected by speeding up analysis time and extending the detection time. Therefore, direct detection of phase II conjugates of doping agents, especially anabolic androgenic steroids (AAS), is proposed. Besides direct detection of conjugates with glucuronic acid, the analysis of sulfate conjugates, which are usually not part of the routine doping control analysis, can be of high interest. Sulfate conjugates of methandienone and methyltestosterone metabolites have already been identified as long-term metabolites. This study presents the synthesis of sulfate conjugates of six commonly used AAS and their metabolites: trenbolone, nandrolone, boldenone, methenolone, mesterolone, and drostanolone. In the following these sulfate conjugates were used for development of a fast and easy analysis method based on sample preparation using solid phase extraction with a mixed-mode sorbent and detection by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Validation demonstrated the suitability of the method with regard to the criteria given by the technical documents of the World Anti-Doping Agency (WADA). In addition, suitability has been proven by successful detection of the synthesized sulfate conjugates in excretion urines and routine doping control samples. Copyright © 2015 John Wiley & Sons, Ltd.

  5. N6-Trimethyl-lysine metabolism. Structural identification of the metabolite 3-hydroxy-N6-trimethyl-lysine

    PubMed Central

    Novak, Raymond F.; Swift, Terrence J.; Hoppel, Charles L.

    1980-01-01

    1H and 13C nuclear-magnetic-resonance spectroscopy and functional-group analysis were used to determine the molecular structure of an isolated metabolite (IIb) of trimethyl-lysine as 3-hydroxy-N6-trimethyl-lysine, an important intermediate in the conversion of trimethyl-lysine into trimethylammoniobutyrate and carnitine [Hoppel, Cox & Novak (1980) Biochem. J. 188, 509–519]. Functional-group analysis revealed the presence of a primary amine and reaction of metabolite (IIb) with periodate yielded 4-N-trimethylammoniobutyrate as a product, showing 2,3-substitution on the molecule and suggesting that the 3-substitution on the molecule may be an alcohol ([unk]CH–OH), amine ([unk]CH[unk]–NH2) or carbonyl ([unk]C=O) functional group. 1H integration ratios, 1H and 13C chemical-shift data and 1H and 13C signal multiplicities from the sample (IIb) were used to complete the identification of metabolite (IIb) as 3-hydroxy-N6-trimethyl-lysine. For example, the proton multiplet at δ 4.2p.p.m. and doublet at δ 4.1p.p.m., positions representative of amine or alcohol substitution on methylene carbon atoms, integration ratios of 1:1:2:9:4 and a positive ninhydrin test suggest 3-hydroxy-N6-trimethyl-lysine as the molecular structure for metabolite (IIb). 13C chemical-shift data obtained from the sample (IIb) and compared with several model compounds (trimethylammoniohexanoate, trimethyl-lysine and 3-hydroxylysine) resulted in generation of the spectrum of the metabolite and allowed independent identification of metabolite (IIb) as 3-hydroxy-N6-trimethyl-lysine. The 1H spectrum of erythro- and threo-3-hydroxylysine are presented for comparison, and the 1H and 13C n.m.r. spectra of the erythro-isomer support this analysis. PMID:6772169

  6. Characterization of raloxifene glucuronidation. Potential role of UGT1A8 genotype on raloxifene metabolism in vivo

    PubMed Central

    Sun, Dongxiao; Jones, Nathan R; Manni, Andrea; Lazarus, Philip

    2014-01-01

    Raloxifene is a 2nd-generation selective estrogen receptor modulator used for the prevention and treatment of osteoporosis and the prevention of breast cancer in postmenopausal women. Raloxifene is extensively metabolized by glucuronidation to form raloxifene-6-glucuronide (ral-6-Gluc) and raloxifene-4′-glucuronide (ral-4′-Gluc). The goal of the present study was to determine whether functional polymorphisms in active UGTs could play a role in altered raloxifene glucuronidation in vivo. Using homogenates from HEK293 UGT-overexpressing cell lines, raloxifene was shown to be glucuronidated primarily by the hepatic UGTs 1A1 and 1A9 and the extra-hepatic UGTs 1A8 and 1A10; no detectable raloxifene glucuronidation activity was found for UGT2B enzymes. Functional UGT1A1 transcriptional promoter genotypes were significantly (ptrend=0.005) associated with ral-6-Gluc formation in human liver microsomes, and, consistent with the decreased raloxifene glucuronidation activities observed in vitro with cell line over-expressing UGT1A8 variants, the UGT1A8*2 variant was significantly (p=0.023) correlated with total raloxifene glucuronide formation in human jejunum homogenates. While ral-4′-Gluc exhibited 1/100th the anti-estrogenic activity of raloxifene itself as measured by binding to the estrogen receptor, raloxifene glucuronides comprised ∼99% of the circulating raloxifene dose in raloxifene-treated subjects, with ral-4′-Gluc comprising ∼70% of raloxifene glucuronides. Plasma ral-6-Gluc (ptrend=0.0025), ral-4′-Gluc (ptrend=0.001), and total raloxifene glucuronides (ptrend=0.001) were increased in raloxifene-treated subjects who were predicted slow metabolizers [UGT1A8 (*1/*3)] vs intermediate metabolizers [UGT1A8 (*1/*1) or UGT1A8 (*1/*2)] vs fast metabolizers [UGT1A8 (*2/*2). These data suggest that raloxifene metabolism may be dependent on UGT1A8 genotype and that UGT1A8 genotype may play an important role in overall response to raloxifene. PMID:23682072

  7. In Vitro Stability of Free and Glucuronidated Cannabinoids in Blood and Plasma Following Controlled Smoked Cannabis

    PubMed Central

    Karschner, Erin L.; Desrosiers, Nathalie A.; Gorelick, David A.; Huestis, Marilyn A.

    2013-01-01

    BACKGROUND Blood and plasma cannabinoid stability is important for test interpretation and is best studied in authentic rather than fortified samples. METHODS Low and high blood and plasma pools were created for each of 10 participants after they smoked a cannabis cigarette. The stabilities of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), cannabinol (CBN), THC-glucuronide, and THCCOOH-glucuronide were determined after 1 week at room temperature; 1, 2, 4, 12, and 26 (±2) weeks at 4 °C; and 1, 2, 4, 12, 26 (±2), and 52 (±4) weeks at −20 °C. Stability was assessed by Friedman test. RESULTS Numbers of THC-glucuronide and CBD-positive blood samples were insufficient to assess stability. In blood, 11-OH-THC and CBN were stable for 1 week at room temperature, whereas THC and THCCOOH-glucuronide decreased and THCCOOH increased. In blood, THC, THCCOOH-glucuronide, THCCOOH, 11-OH-THC, and CBN were stable for 12, 4, 4, 12, and 26 weeks, respectively, at 4 °C and 12, 12, 26, 26, and 52 weeks at −20 °C. In plasma, THC-glucuronide, THC, CBN, and CBD were stable for 1 week at room temperature, whereas THCCOOH-glucuronide and 11-OH-THC decreased and THCCOOH increased. In plasma, THC-glucuronide, THC, THCCOOH-glucuronide, THCCOOH, 11-OH-THC, CBN, and CBD were stable for 26, 26, 2, 2, 26, 12, and 26 weeks, respectively, at 4 °C and 52, 52, 26, 26, 52, 52, and 52 weeks, respectively, at −20 °C. CONCLUSIONS Blood and plasma samples should be stored at −20 °C for no more than 3 and 6 months, respectively, to assure accurate cannabinoid quantitative results. PMID:23519966

  8. Development of a method which discriminates between endogenous and exogenous beta-boldenone.

    PubMed

    Blokland, M H; van Rossum, H J; Sterk, S S; van Ginkel, L A; Stephany, R W

    2007-03-14

    One potential explanation for the presence of beta-boldenone in calf urine is contamination of the sample with feces containing beta-boldenone. It has been demonstrated that after oral and intramuscular administration of beta-boldenone esters, several metabolites are formed and excreted in urine. One of the (minor) metabolites is 6beta-hydroxy-17alpha-boldenone. This paper describes an analytical method that can discriminate between unconjugated boldenone, its glucuronide- and sulphate-conjugates, 6beta-hydroxy-17alpha/beta-boldenone and coprostanol, a marker for fecal contamination. The method was applied to all samples suspected to contain boldenone within the Dutch National Residue Control Plan. Approximately 10,000 samples of urine were screened (LC-MS) in 2004-2005 by VWA-East, one of the official Dutch control laboratories, from which 261 samples were suspected to contain boldenone. These samples were all analyzed for their conjugation state, 6beta-hydroxy-17alpha/beta-boldenone and for the presence of coprostanol. Alfa-boldenone, the major metabolite in bovine urine after boldenone-ester administration, was found in a large number of these samples. The presence of alpha-boldenone was proven also to be a result of fecal contamination. None of the samples tested contained residues of the metabolite 6beta-hydroxy-17alpha/beta-boldenone. Not finding this metabolite indicates that the origin of alpha-boldenone-conjugates is endogenous. The results confirm that the presence of unconjugated beta-boldenone and alpha-boldenone conjugates next to alpha-boldenone are no indicators for illegal administration of boldenone-esters. No indications were obtained that conjugated beta-boldenone can be of endogenous origin.

  9. Metabolic Disposition of Luteolin Is Mediated by the Interplay of UDP-Glucuronosyltransferases and Catechol-O-Methyltransferases in Rats.

    PubMed

    Wang, Liping; Chen, Qingwei; Zhu, Lijun; Li, Qiang; Zeng, Xuejun; Lu, Linlin; Hu, Ming; Wang, Xinchun; Liu, Zhongqiu

    2017-03-01

    Luteolin partially exerts its biologic effects via its metabolites catalyzed by UDP-glucuronosyltransferases (UGTs) and catechol-O-methyltransferases (COMTs). However, the interplay of UGTs and COMTs in mediating luteolin disposition has not been well clarified. In this study, we investigated the glucuronidation and methylation pathways of luteolin mediated by the interplay of UGTs and COMTs in vivo and in vitro. A total of nine luteolin metabolites was detected in rat plasma and bile by liquid chromatography-tandem mass spectrometry, namely, three glucuronides, two methylated metabolites, and four methylated glucuronides. Luteolin-3'-glucuronide (Lut-3'-G) exhibited the highest systemic exposure among these metabolites. Kinetics studies in rat liver S9 fractions suggested two pathways, as follows: 1) Luteolin was glucuronidated to luteolin-7-glucuronide, luteolin-4'-glucuronide, and Lut-3'-G by UGTs, and then Lut-7-G was methylated to chrysoeriol-7-glucuronide and diosmetin-7-glucuronide by COMTs. 2) Alternatively, luteolin was methylated to chrysoeriol and diosmetin by COMTs, and then chrysoeriol and diosmetin were glucuronidated by UGTs to their respective glucuronides. The methylation rate of luteolin was significantly increased by the absence of glucuronidation, whereas the glucuronidation rate was increased by the absence of methylation, but to a lesser extent. In conclusion, two pathways mediated by the interplay of UGTs and COMTs are probably involved in the metabolic disposition of luteolin. The glucuronidation and methylation of luteolin compensate for each other, although glucuronidation is the predominant pathway. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Is N,N-dimethylglycine N-oxide a choline and betaine metabolite?

    PubMed

    Lever, Michael; McEntyre, Christopher J; George, Peter M; Chambers, Stephen T

    2017-06-27

    Choline metabolism is by oxidation to betaine, which is demethylated to N,N-dimethylglycine; dimethylglycine is oxidatively demethylated to sarcosine. This pathway is important for osmoregulation and as a source of methyl groups. We asked whether another metabolite was involved. We synthesized the N-oxide of dimethylglycine (DMGO) by oxidizing dimethylglycine with peracetic acid, and measured DMGO in human plasma and urine by HPLC-MS/MS with positive ion detection, using two chromatography procedures, based on ion exchange and HILIC separations. The molecular ion DMGOH+ (m/z=120) yielded four significant fragments (m/z=103, 102, 58 and 42). The suspected DMGO peak in human body fluids showed all these fragments, and co-chromatographed with added standard DMGO in both HPLC systems. Typical plasma concentrations of DMGO are under 1 μmol/l. They may be lower in metabolic syndrome patients. Urine concentrations are higher, and DMGO has a higher fractional clearance than dimethylglycine, betaine and choline. It was present in all of over 80 human urine and plasma samples assayed. Plasma DMGO concentrations correlate with plasma DMG concentrations, with betaine and choline concentrations, with the osmolyte myo-inositol, and strongly with urinary DMGO excretion. We conclude that DMGO is probably a normal human metabolite.

  11. Formation and disposition of the minor metabolites of acetaminophen in the hamster.

    PubMed

    Gemborys, M W; Mudge, G H

    1981-01-01

    The urinary metabolites of acetaminophen and N-hydroxyacetaminophen were studied in the hamster over a wide dose range and with pretreatments designed to modify drug metabolism. Attention was focused on the origin and disposition of the minor metabolites. The sum of the 3-thio adducts, rather than just the 3-mercapturic adduct, is considered the better index of the formation of the reactive immediate precursor, presumably N-acetyl-p-benzoquinoneimine. At low dosage this amounts to 33% of the administered dose in this species. There is a major contribution from the 3-methylthio adduct, the magnitude of which has not been previously recognized. The 3-methylthio and the 3-methylsulfoxide derivates of acetaminophen are secondarily derived from the 3-glutathione adduct within the enterohepatic circulation, as indicated by their late appearance in the urine, the effect of common bile duct ligation and the metabolism of the minor metabolites when they themselves are administered. Following the administration of N-hydroxyacetaminophen this was excreted in the urine along with its phenolic conjugates, but no urinary N-hydroxyacetaminophen was detectable after the administration of acetaminophen itself. Of particular interest to the pathogenesis of analgesic nephropathy was the detection in the urine of small amounts of p-aminophenol, a known nephrotoxic agent, following dosage with acetaminophen. This metabolite has not been previously detected.

  12. Metabolism of the tropine indole-3-carboxylate ICS 205-930 by differentiated rat and human hepatoma cells.

    PubMed

    Fischer, V; Baldeck, J P; Wiebel, F J

    The metabolism of the tropine indole-3-carboxylate ICS 205-930 (ICS), a highly potent and selective antagonist of 5-HT3 receptors, was investigated in continuous cell lines derived from rat or human liver and compared to the in vivo metabolism in rat and human. The well-differentiated rat hepatoma line 2sFou extensively metabolized ICS by hydroxylation of the indole moiety and subsequent conjugation to form the corresponding glucuronides and sulfates. The 2sFou cells also oxidized ICS at the tropinyl moiety to form both N-demethyl and N-oxide derivatives. The relative amount of the various metabolites was dependent on the substrate concentration. Pretreatment of the cells with dexamethasone increased the rate of metabolism for all pathways, while benz[a]anthracene caused an increase in hydroxylation at the indole moiety at the expense of N-oxidation. Phenobarbital pretreatment had no effect on ICS metabolism. The pattern of metabolites formed in 2sFou cells was qualitatively similar to that formed in rat urine. The human hepatoma line HepG2 metabolized ICS only to a small extent. The HepG2 cells failed to form detectable amounts of ICS conjugates found in human urine. The N-oxide-ICS was not found in HepG2 cells or in human urine. Virtually no ICS metabolites were found in human lung adenocarcinoma lines NCI-H358 or NCI-H322. The results suggest that continuous cell lines such as the differentiated rat hepatoma cells 2sFou might be used to mimic the metabolism of xenobiotics in rat and to clarify their complex metabolic pathways.

  13. Urinary excretion of the metabolites of n-hexane and its isomers during occupational exposure.

    PubMed Central

    Perbellini, L; Brugnone, F; Faggionato, G

    1981-01-01

    Environmental exposure to commercial hexane (n-hexane, 2-methylpentane, and 3-methylpentane) was tested in several work places in five shoe factories by taking three grap-air samples during the afternoon shift. Individual exposure ranges were 32-500 mg/m3 for n-hexane, 11-250 mg/m3 for 2-methylpentane, and 10-204 mg/m3 for 3-methylpentane. The metabolites of commercial hexane in the urine of 41 workers were measured at the end of the work shift. 2-Hexanol, 2,5-hexanedione, 2,5-dimethylfuran, and gamma-valerolactone were found as n-hexane metabolites and 2-methyl-2-pentanol and 3-methyl-2-pentanol as 2-methylpentane and 3-methylpentane metabolites. The presence of metabolites in the urine was correlated with occupational exposure to solvents. n-Hexane exposure was correlated more positively with 2-hexanol and 2,5-hexanedione than with 2,5-dimethylfuran and gamma-valerolactone. A good correlation was also found between total n-hexane metabolites and n-hexane exposure. 2-Methyl-2-pentanol and 3-methyl-2-pentanol were highly correlated with 2-methylpentane and 3-methylpentane exposure. The results suggest that the urinary excretion of hexane metabolites may be used for monitoring occupational exposure to n-hexane and its isomers. PMID:7470400

  14. Validated LC-MS/MS method for the determination of 3-hydroxflavone and its glucuronide in blood and bioequivalent buffers: application to pharmacokinetic, absorption, and metabolism studies.

    PubMed

    Xu, Beibei; Yang, Guanyi; Ge, Shufan; Yin, Taijun; Hu, Ming; Gao, Song

    2013-11-01

    The purpose of this study is to develop an UPLC-MS/MS method to quantify 3-hydroxyflavone (3-HF) and its metabolite, 3-hydroxyflavone-glucuronide (3-HFG) from biological samples. A Waters BEH C8 column was used with acetonitrile/0.1% formic acid in water as mobile phases. The mass analysis was performed in an API 5500 Qtrap mass spectrometer via multiple reaction monitoring (MRM) with positive scan mood. The one-step protein precipitation by acetonitrile was used to extract the analytes from blood. The results showed that the linear response range was 0.61-2500.00 nM for 3-HF and 0.31-2500.00 nM for 3-HFG. The intra-day variance is less than 16.5% and accuracy is in 77.7-90.6% for 3-HF and variance less than 15.9%, accuracy in 85.1-114.7% for 3-HFG. The inter-day variance is less than 20.2%, accuracy is in 110.6-114.2% for 3-HF and variance less than 15.6%, accuracy in 83.0-89.4% for 3-HFG. The analysis was done within 4.0 min. Only 10 μl of blood is needed due to the high sensitivity of this method. The validated method was successfully used to pharmacokinetic study in A/J mouse, transport study in the Caco-2 cell culture model, and glucuronidation study using mice liver and intestine microsomes. The applications revealed that this method can be used for 3-HF and 3-HFG analysis in blood as well as in bioequivalent buffers such HBSS and KPI. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Validated LC-MS/MS method for the determination of 3-Hydroxflavone and its glucuronide in blood and bioequivalent buffers: Application to pharmacokinetic, absorption, and metabolism studies

    PubMed Central

    Xu, Beibei; Yang, Guanyi; Ge, Shufan; Yin, Taijun; Hu, Ming; Gao, Song

    2015-01-01

    The purpose of this study is to develop an UPLC-MS/MS method to quantify 3-hydroxy-flavone (3-HF) and its metabolite, 3-hydroxyflavone-glucuronide (3-HFG) from biological samples. A Waters BEH C8 column was used with acetonitrile/0.1 % formic acid in water as mobile phases. The mass analysis was performed in an API 5500 Qtrap mass spectrometer via multiple reaction monitoring (MRM) with positive scan mood. The one-step protein precipitation by acetonitrile was used to extract the analytes from plasma. The results showed that the linear response range was 0.61– 2,500.00 nM for 3-HF and 0.31– 2,500.00 nM for 3-HFG. The intra-day variance is less 16.48 % and accuracy is in 77.70–90.64 % for 3-HF and variance less than 15.86%, accuracy in 85.08–114.70 % for 3-HFG. The inter-day variance is less than 20.23 %, accuracy is in 110.58–114.2 % for 3-HF and variance less than 15.59 %, accuracy in 83.00–89.40% for 3-HFG. The analysis was done within 4.0 min. Only 10 μL of blood is needed due to the high sensitivity of this method. The validated method was successfully used to pharmacokinetic study in A/J mouse, transport study in the Caco-2 cell culture model, and glucuronidation study using mice liver and intestine microsomes. The applications revealed that this method can be used for 3-HF and 3-HFG analysis in blood as well as in bioequivalent buffers such HBSS and KPI. PMID:23973631

  16. Characterization of the in Vitro Metabolic Profile of Evodiamine in Human Liver Microsomes and Hepatocytes by UHPLC-Q Exactive Mass Spectrometer

    PubMed Central

    Zhang, Zhaowei; Fang, Tianzi; Zhou, Hongyun; Yuan, Jie; Liu, Qingwang

    2018-01-01

    Evodiamine is an indoloquinazoline alkaloid isolated from the fruit of Evodia rutaecarpa, which has a wide range of pharmacological effects like anti-tumor and anti-inflammatory effects. This study was intended to investigate the metabolic characteristics of evodiamine in human liver microsomes and hepatocytes by ultra-high performance liquid chromatography coupled with a Q Exactive mass spectrometer. A total of 12 phase I metabolites were detected in human liver microsomes; whereas in human hepatocytes 19 metabolites, including seven phase II metabolites were detected. The structures of the metabolites were characterized based on their accurate masses, fragment ions, and chromatographic retention times. Four metabolites (M1, M2, M5, and M7) were further unambiguously confirmed by matching their retention times, accurate masses, and fragment ions with those of their reference standards. Among these metabolites, 12 metabolites are first identified (M2, M5–M8, M10–M13, and M17–M19). The current study revealed that oxygenation, N-demethylation, dehydrogenation, glucuronidation, and GSH conjugation were the major metabolic pathways for evodiamine. This study elucidated the detailed metabolite profiles of evodiamine, which is helpful in predicting in vivo metabolism of evodiamine in human and in understanding the elimination mechanism of evodiamine and in turn, the effectiveness and toxicity. PMID:29520234

  17. p-Aminophenol-induced liver toxicity: tentative evidence of a role for acetaminophen.

    PubMed

    Song, H; Chen, T S

    2001-01-01

    p-Aminophenol (PAP) is a widely used industrial chemical and a metabolite of analgesics, such as acetaminophen (APAP). It was found recently that PAP, a known nephrotoxicant, could cause acute hepatotoxicity in mice but not in rats. The mechanism of hepatotoxicity is not known. The aim of this study was to investigate the role of N-acetylation of PAP to APAP in PAP-induced toxicity. Male C57BL/6 mice injected intraperitoneally (i.p.) with various doses of PAP were sacrificed at 12 hours for measurement of serum glutamic-pyruvic transaminase (GPT) and sorbitol dehydrogenase (SDH) levels and determination of the extent of hepatic nonprotein sulfhydryl (NPSH) and glutathione (GSH) depletion. Plasma levels of APAP and its metabolites were measured by HPLC after PAP administration. p-Aminophenol depleted NPSH in a dose- and time-dependent manner. Depletion of NPSH in mouse liver occurred at PAP doses above 400 mg/kg. Buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, potentiated the PAP-induced hepatotoxicity. Ascorbate, a reducing agent, did not affect PAP-induced hepatotoxicity and NPSH depletion. After PAP treatment, APAP and its sulfate and glucuronide conjugates as well as GSH conjugates (APAP-cysteine and APAP-mercapturate) were detected in the plasma. The results suggest the roles of GSH and N-acetylation of PAP to APAP in PAP-induced hepatotoxicity.

  18. Piceatannol and Its Metabolite, Isorhapontigenin, Induce SIRT1 Expression in THP-1 Human Monocytic Cell Line

    PubMed Central

    Kawakami, Shinpei; Kinoshita, Yosuke; Maruki-Uchida, Hiroko; Yanae, Koji; Sai, Masahiko; Ito, Tatsuhiko

    2014-01-01

    Piceatannol is a phytochemical that is present in large amounts in passion fruit (Passiflora edulis) seeds, and is an analog of resveratrol. Recently, the absorption and metabolism of piceatannol were investigated in rats, and isorhapontigenin, O-methyl piceatannol, was detected as a piceatannol metabolite in rat plasma. To elucidate the function of piceatannol and its metabolites, we investigated the expression of sirtuin 1 (SIRT1) in THP-1 monocytic cells after treatment with piceatannol and its metabolites, and compared their effects with those of resveratrol and its metabolites. Piceatannol and resveratrol upregulated the expression levels of SIRT1 mRNA and SIRT1 protein. An extract of passion fruit seeds, which contained high levels of piceatannol, also upregulated SIRT1 mRNA expression. As for the metabolites, isorhapontigenin upregulated SIRT1 mRNA expression, whereas resveratrol glucuronides and sulfate did not affect SIRT1 expression. These findings indicate that after intake of piceatannol, not only piceatannol itself, but also its metabolite, isorhapontigenin, contributed to the upregulation of SIRT1 expression. PMID:25360511

  19. Evaluation of markers out of the steroid profile for the screening of testosterone misuse. Part II: Intramuscular administration.

    PubMed

    Kotronoulas, Aristotelis; Gomez-Gómez, Àlex; Fabregat, Andreu; Segura, Jordi; Yang, Sheng; Xing, Yanyi; Moutian, Wu; Marcos, Josep; Joglar, Jesús; Ventura, Rosa; Pozo, Oscar J

    2018-05-01

    In the fight against doping, the introduction of alternative markers to the steroid profile can be considered as an effective approach to improve the screening capabilities for the detection of testosterone (T) misuse. The aim of this study was to evaluate the potential of several T metabolites (cysteinyl conjugated and glucuronoconjugated resistant to enzymatic hydrolysis) to detect both the transdermal and the intramuscular administration of T. In Part I of the study, we studied the potential of these metabolites for the detection of T transdermal administration. Results revealed that resistant glucuronides can be a suitable complement to the current steroid profile. In this, Part II, dedicated to the intramuscular administration, we studied the potential of cysteinyl conjugated, resistant glucuronoconjugated and 1-cyclopentenoylglycine (1-CPG) for the detection of a single intramuscular injection of T cypionate. Possible differences in the excretion profile of all markers were explored between individuals with low basal (n=6) and medium basal (n=6) values of the testosterone/epitestosterone ratio (T/E). The results showed that all tested markers presented low intra-individual stability in basal conditions. Despite this, all glucuronoconjugated markers and 1-CPG, but not the cysteinyl conjugated markers, provided detection windows that were similar or longer than those obtained by markers currently included in the steroid profile. Based on the results obtained from the 2 parts of this study and from previously reported data, the potential applicability and the limitations of including these markers in the steroid profile are discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Effect of the β-glucuronidase inhibitor saccharolactone on glucuronidation by human tissue microsomes and recombinant UDP-glucuronosyltransferases (UGTs)

    PubMed Central

    Oleson, Lauren; Court, Michael H.

    2009-01-01

    Glucuronidation studies using microsomes and recombinant UDP-glucuronosyltransferases (rUGTs) can be complicated by the presence of endogenous β-glucuronidases leading to underestimation of glucuronide formation rates. Saccharolactone is the most frequently used β-glucuronidase inhibitor, although as of yet it is not clear whether this reagent should be routinely added to glucuronidation incubations. Here we determined the effect of saccharolactone on eight different UGT probe activities using pooled human liver microsomes (pHLMs) and rUGTs. Despite the use of buffered incubation solutions it was necessary to adjust the pH of saccharolactone solutions to avoid effects (enhancement or inhibition) of lowered pH on UGT activity. Saccharolactone at concentrations ranging from 1 to 20 mM failed to show enhancement of any of the glucuronidation activities evaluated that could be considered consistent with inhibition of β-glucuronidase. However, for most activities, higher saccharolactone concentrations resulted in a modest degree of inhibition. The greatest inhibitory effect was observed for 5-hydroxytryptamine and estradiol glucuronidation by pHLMs with 35% decrease at 20 mM saccharolactone concentration. Endogenous β-glucuronidase activities were also measured using various human tissue microsomes and rUGTs with estradiol-3-glucuronide and estradiol-17-glucuronide as substrates. Glucuronide hydrolysis was observed for pHLMs, lung microsomes, and insect-cell expressed rUGTs, but not for kidney or intestinal microsomes, or HEK293 microsomes. However, the extent of hydrolysis was relatively small representing only 9 to 19% of the glucuronide formation rate measured in the same preparations. Consequently, these data do not support the routine inclusion of saccharolactone in glucuronidation incubations and, if used, saccharolactone concentrations should be titrated to achieve activity enhancement without inhibition. PMID:18718121

  1. Metabolism of benoxinate in humans.

    PubMed

    Kasuya, F; Igarashi, K; Fukui, M

    1987-04-01

    The metabolism of benoxinate hydrochloride [2-(diethylamino)ethyl 4-amino-3-butoxybenzoate monohydrochloride; oxybuprocaine] was examined in humans after administration of a single oral dose. The drug was almost completely absorbed and was rapidly excreted in the urine (92.1% of dose in 9 h). Nine metabolites and unchanged drug were isolated from the urine and identified by comparison of TLC, GC, and GC-MS with authentic compounds. Any metabolites reflecting initial loss of the butyl side chain of benoxinate could not be detected. This suggests that the ester portion is metabolized more rapidly than the O-butyl side chain. 3-Butoxy-4-aminobenzoic acid, the hydrolyzed product of benoxinate, was primarily excreted (70-90% of dose) as the glucuronide together with a trace of the glycine conjugate (0.35% of dose). In addition, 3-butoxy-4-acetylaminobenzoic acid, 3-hydroxy-4-aminobenzoic acid, and 3-hydroxy-4-acetylaminobenzoic acid were identified, the latter two being detected partly as the glucuronides (1.20 and 1.43% of dose, respectively).

  2. Metabolism of 4,4'-methylene-bis-2-chloroaniline (MOCA) by rats in vivo and formation of N-hydroxy MOCA by rat and human liver microsomes.

    PubMed

    Morton, K C; Lee, M S; Siedlik, P; Chapman, R

    1988-05-01

    The metabolism of 4,4'-methylene-bis-2-chloroaniline (MOCA) was investigated because it is an animal carcinogen to which humans have been exposed. In CD rats, where MOCA is a hepatocarcinogen, less than or equal to 0.2% of an oral dose of [14C]MOCA was recovered unchanged in the urine; enzymatic hydrolysis and extraction of urinary radioactivity indicated the presence of glucuronide and sulfate conjugates. In rat bile, the predominant metabolite was N-glucuronyl MOCA. Liver microsomes from male CD rats or human males (surgical specimens) were incubated in vitro with [14C] MOCA. Metabolite formation, which was dependent upon reduced pyridine nucleotides and intact microsomes, was quantitated by TLC and HPLC using appropriate chemically synthesized standards. N-Hydroxylation of MOCA occurred at a rate of 335 +/- 119 pmol/min/mg rat microsomal protein (n = 3) versus 230 or 765 (n = 2) with microsomes from humans; the product was identified by isotopic dilution for both species. The rates of 5-hydroxy-MOCA (o-aminophenol) formation were 92 +/- 33 (rats) and 7, 35 (human); rates for the benzhydrol derivative were 82 +/- 12 (rats) and 60, 160 (human). In rats, all three rates were elevated 4- to 8-fold by pretreatment with phenobarbital, which also enhanced the formation of partially characterized polar derivatives that appeared to result from oxidation and cleavage at the methylene carbon. The latter pathway typically amounted to 50-100% of the 4,4'-diamino-3,3'-dichlorobenzhydrol value in control or pretreated animals. Thus, rats metabolize MOCA extensively and the pathways include N-hydroxlation, which is regarded as an obligatory step in metabolic activation of arylamines. The presence of MOCA N-hydroxylase in human liver supports the hypothesis that exposure of humans to MOCA entails a carcinogenic risk.

  3. Species-related exposure of phase II metabolite gemfibrozil 1-O-β-glucuronide between human and mice: A net induction of mouse P450 activity was revealed.

    PubMed

    Luo, Min; Dai, Manyun; Lin, Hante; Xie, Minzhu; Lin, Jiao; Liu, Aiming; Yang, Julin

    2017-12-01

    Gemfibrozil is a fibrate drug used widely for dyslipidemia associated with atherosclerosis. Clinically, both gemfibrozil and its phase II metabolite gemfibrozil 1-O-β-glucuronide (gem-glu) are involved in drug-drug interaction (DDI). But the DDI risk caused by gem-glu between human and mice has not been compared. In this study, six volunteers were recruited and took a therapeutic dose of gemfibrozil for 3 days for examination of the gemfibrozil and gem-glu level in human. Male mice were fed a gemfibrozil diet (0.75%) for 7 days, following which a cocktail-based inhibitory DDI experiment was performed. Plasma samples and liver tissues from mice were collected for determination of gemfibrozil, gem-glu concentration and cytochrome p450 enzyme (P450) induction analysis. In human, the molar ratio of gem-glu/gemfibrozil was 15% and 10% at the trough concentration and the concentration at 1.5 h after the 6th dose. In contrast, this molar ratio at steady state in mice was 91%, demonstrating a 6- to 9-fold difference compared with that in human. Interestingly, a net induction of P450 activity and in vivo inductive DDI potential in mice was revealed. The P450 activity was not inhibited although the gem-glu concentration was high. These data suggested species difference of relative gem-glu exposure between human and mice, as well as a net inductive DDI potential of gemfibrozil in mouse model. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Perinatal development of conjugative enzyme systems.

    PubMed Central

    Lucier, G W

    1976-01-01

    The problems and priorities involved in studying the role of conjugagive enzymes in developmental pharmacology are discussed and evaluated. The relative rates of UDP glucuronyltransferase and beta-glucuronidase were studied during perinatal development in hepatic and extrahepatic tissues to determine the net balance of glucuronidation or deglucuronidation at different developmental stages. In general, deglucuronidation predominated over glucuronidation in fetal tissues whereas the converse was evident in adults. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an extremely toxic contaminant of some organochlorine compounds, was shown to be a potent inducer of some hepatic and extrahepatic drug-metabolizing enzymes. TCDD, administered during gestation, induced the postnatal activities of p-nitrophenol glucuronyltransferase and benzpyrene hydroxylase in rats. Foster mother experiments revealed that the postnatal induction was caused primarily by newborn exposure to TCDD in the mother's milk. Tissue distribution experiments with TCDD-14C confirmed these findings. Although TCDD induced non-steroid glucuronidation, no significant effects were evident on the postnatal development of steroid glucuronidation. The synthetic estrogen diethylstilbestrol (DES) is metabolized primarily by glucuronidation. The postnatal development of DES glucuronidation, like the steroid pathway, was not affected by gestational TCDD treatment. The fetal distribution of DES and DES-glucuronide, at different stages of development, correlated well with the perinatal development of steroid glucuronyltransferase activity. PMID:829487

  5. 75 FR 50891 - N-alkyl (C8-C18) Primary Amines and Acetate Salts; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... alcohols and hydrocarbons; surfactants such as polyoxyethylene polymers and fatty acids; carriers such as... NAPAAS primary amines and primary amine acetate salt may also be conjugated, whether by glucuronidation...

  6. Effects of in vivo hepatic ischemia-reperfusion injury on the hepatobiliary disposition of rhodamine 123 and its metabolites in isolated perfused rat livers.

    PubMed

    Parasrampuria, Ridhi; Shaik, Imam H; Mehvar, Reza

    2012-01-01

    A few studies have shown that normothermic hepatic ischemia-reperfusion (IR) injury may affect the mRNA and/or protein levels of canalicular transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (Mrp2). However, the effects of the injury on the functions of these canalicular transporters with respect to the biliary excretion of drugs remain largely unknown. Therefore, the purpose of this study was to investigate the effects of warm hepatic IR on the hepatobiliary disposition of rhodamine 123 (RH-123), a P-gp substrate, and its glucuronidated metabolite (RH-Glu), an Mrp2 substrate, in rats. Twenty four or 72 h following a 60-min partial ischemia or sham operation in rats, livers were isolated and perfused ex vivo with a constant concentration (~100 ng/mL) of RH-123. The concentration of RH-123 and its glucuronidated (RH-Glu) and deacylated (RH-110) metabolites were determined in the outlet perfusate, bile, and the liver tissue using HPLC, and relevant pharmacokinetic parameters were estimated. Twenty-four-h IR caused a significant reduction in the hepatic extraction ratio of RH-123 (IR: 0.857 ± 0.078; Sham: 0.980 ± 0.017) and the biliary recovery of the parent drug and RH-Glu by 43% and 44%, respectively. The reductions in the biliary recovery were associated with significant reductions in the apparent biliary clearance of RH-123 and RH-Glu. Mass balance data showed that the formation of the glucuronidated or deacylated metabolite was not significantly affected by the 24-h IR injury. In contrast to the 24-h IR, the injury did not have any effect on the hepatobiliary disposition of RH-123 or its metabolites following 72 h of reperfusion. It is concluded that the pharmacokinetics of drugs that are subject to biliary excretion by the canalicular P-gp and Mrp2 transporters may be altered shortly after hepatic IR injury.

  7. Benzene: a case study in parent chemical and metabolite interactions.

    PubMed

    Medinsky, M A; Kenyon, E M; Schlosser, P M

    1995-12-28

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia and pancytopenia, and acute myelogenous leukemia. A combination of metabolites (hydroquinone and phenol for example) is apparently necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Since benzene and its hydroxylated metabolites (phenol, hydroquinone and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus, the potential exists for competition among various enzymes for phenol. However, zonal localization of Phase I and Phase II enzymes in various regions of the liver acinus regulates this competition. Biologically-based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  8. Oxybuprocaine and five metabolites simultaneously determined in urine by gas chromatography and gas chromatography-mass spectrometry after extraction with Extrelut.

    PubMed

    Kasuya, F; Igarashi, K; Fukui, M

    1987-05-01

    We describe a gas-liquid chromatographic (GC) method for determination of oxybuprocaine, and a gas chromatographic-mass spectrometric (GC-MS) method for simultaneous determination of four of its nine metabolites in urine. We used an Extrelut column to simply and rapidly extract oxybuprocaine and its metabolites from urine. For the GC-MS analyses, we monitored the characteristic fragment ions at m/z 353, 395, 369, 411, and 235 for 3-butoxy-4-aminobenzoic acid (metabolite 2, M-2), 3-butoxy-4-acetylaminobenzoic acid (M-3), 3-hydroxy-4-aminobenzoic acid (M-4), 3-hydroxy-4-acetylaminobenzoic acid (M-5), and methaqualone (internal standard), respectively. We quantified the glucuronide of M-2 after enzymic treatment. The assay's selectivity and reproducibility (within-day and between-day CVs less than 8% for all metabolites) make it applicable to determine oxybuprocaine and its metabolites in human urine. Mean 9-h urinary excretion of oxybuprocaine and its five metabolites from four healthy volunteers was 89.2% after a 100-mg oral dose.

  9. Metabolism of RCS-8, a synthetic cannabinoid with cyclohexyl structure, in human hepatocytes by high-resolution MS

    PubMed Central

    Wohlfarth, Ariane; Pang, Shaokun; Zhu, Mingshe; Gandhi, Adarsh S; Scheidweiler, Karl B; Huestis, Marilyn A

    2015-01-01

    Background Since 2008, synthetic cannabinoids are major new designer drugs of abuse. They are extensively metabolized and excreted in urine, but limited human metabolism data are available. As there are no reports on the metabolism of RCS-8, a scheduled phenylacetylindole synthetic cannabinoid with an N-cyclohexylethyl moiety, we investigated metabolism of this new designer drug by human hepatocytes and high resolution MS. Methods After human hepatocyte incubation with RCS-8, samples were analyzed on a TripleTOF 5600+ mass spectrometer with time-of-flight survey scan and information-dependent acquisition triggered product ion scans. Data mining of the accurate mass full scan and product ion spectra employed different data processing algorithms. Results and Conclusion More than 20 RCS-8 metabolites were identified, products of oxidation, demethylation, and glucuronidation. Major metabolites and targets for analytical methods were hydroxyphenyl RCS - 8 glucuronide, a variety of hydroxycyclohexyl-hydroxyphenyl RCS-8 glucuronides, hydroxyphenyl RCS-8, as well as the demethyl-hydroxycyclohexyl RCS-8 glucuronide. PMID:24946920

  10. Inhalation but not transdermal resorption of hand sanitizer ethanol causes positive ethyl glucuronide findings in urine.

    PubMed

    Arndt, Torsten; Schröfel, Stefanie; Güssregen, Brunhilde; Stemmerich, Karsten

    2014-04-01

    Ethyl glucuronide (EtG) in urine is considered a specific marker of recent ethanol consumption. There is an ongoing debate about whether inhalation or transdermal resorption of sanitizer ethanol is the underlying cause for positive EtG findings after hand disinfection. Desderman(®) pure (Schülke & Mayr GmbH, Norderstedt) with 78.2g 96% (v/v) ethanol/100g and approx. 10% 2-propanol was used for multiple hand disinfection without and under an exhauster. Simulating a common working day in a clinic, 5 co-workers of our lab used the sanitizer 32 fold within 8h and 2 persons were merely exposed to the sanitizer vapor but without any dermal sanitizer contact. Any additional ethanol intake or exposition was reliably excluded. Spot urine was collected at baseline, after 1, 2, 4, 6 … 14, and finally 24h after the first sanitizer use. A validated LC-MS/MS was used for MRM and MS(3) of EtG and qualitative analyses of ethyl sulfate and 2-propyl glucuronide. Multiple hand disinfection caused positive EtG findings of up to 2.1mg/L or 1.7mg/g creatinine in 4 out of 5 test persons and even of 0.6mg/L or 0.8mg/g for 2 controls which were merely exposed to the sanitizer vapor but without any sanitizer contact. EtG results between the clinical (0.5mg/g) and the forensic (0.1mg/g) cut-off were obtained even 6h after the last sanitizer exposition. An exhauster prevented the sanitizer vapor inhalation and reduced the EtG excretion to mostly below the detection limit of 0.02mg/g. The maximum value was 0.09mg/g. Ethyl sulfate and 2-propyl glucuronide (2-PpG) were detectable only in the EtG positive samples. 2-PpG is a metabolite of 2-propanol, which is quite frequently used in disinfectants. Thus, the detection of this substance can be used in cases of odd EtG results as an indicator of (unintended) sanitizer exposition. Ethanol from hand sanitizers is predominantly incorporated by the respiratory tract but not via the skin. It can cause a distinct ethyl glucuronide excretion and thus

  11. Stability issues in the determination of 19 urinary (free and conjugated) monohydroxy polycyclic aromatic hydrocarbons.

    PubMed

    Gaudreau, Éric; Bérubé, René; Bienvenu, Jean-François; Fleury, Normand

    2016-06-01

    Data on the stability of monohydroxy polycyclic aromatic hydrocarbons (OH-PAHs; metabolites of PAHs) in urine are needed in order to effectively study the effects of PAHs in the body, but the relevant data are not available in the literature. Therefore, in this work, we investigated the stability of OH-PAHs in urine. For each OH-PAH studied, the free form (as opposed to the conjugated form) comprised <10 % of the total OH-PAH in urine samples obtained from a normal population, except for 9-OH-phenanthrene (where the free form represented 22.2 % of the total 9-OH-phenanthrene). 1-Naphthol and 9-OH-phenanthrene were found to be less stable in their free forms in urine than in their conjugated forms when the urine samples were stored at 4 °C or room temperature. Free 3-OH-fluoranthene was also very unstable at 4 °C or room temperature. The conjugated forms of the OH-PAHs were more stable than their corresponding free forms. However, the free and conjugated forms of all the OH-PAHs were stable in urine at -20 °C and -80 °C. A freeze and thaw assay also revealed that freezing and thawing had minimal impact on the stability of the OH-PAHs in urine. For the derivatized extracts, storing the samples under an argon atmosphere at 4 °C was found to maintain sample integrity. In order to measure the stabilities of 19 hydroxylated metabolites of PAHs in urine, we developed a method with sensitivity in the low pg/mL range using nine labeled internal standards. This method combined enzymatic deconjugation with liquid-liquid extraction, derivatization with N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), and gas chromatography/tandem mass spectrometry (GC-MS/MS). Graphical abstract Stability of the conjugated forms of the OH-PAHs versus free forms (e.g. 1-naphthol).

  12. Bisphenol-A glucuronidation in human liver and breast: identification of UDP-glucuronosyltransferases (UGTs) and influence of genetic polymorphisms.

    PubMed

    Street, Christina M; Zhu, Zhaohui; Finel, Moshe; Court, Michael H

    2017-01-01

    1. Bisphenol-A is a ubiquitous environmental contaminant that is primarily metabolized by glucuronidation and associated with various human diseases including breast cancer. Here we identified UDP-glucuronosyltransferases (UGTs) and genetic polymorphisms responsible for interindividual variability in bisphenol-A glucuronidation in human liver and breast. 2. Hepatic UGTs showing the highest bisphenol-A glucuronidation activity included UGT2B15 and UGT1A9. Relative activity factor normalization indicated that UGT2B15 contributes >80% of activity at bisphenol-A concentrations under 5 μM, while UGT1A9 contributes up to 50% of activity at higher concentrations. 3. Bisphenol-A glucuronidation by liver microsomes (46 donors) ranged from 0.25 to 4.3 nmoles/min/mg protein. Two-fold higher glucuronidation (p = 0.018) was observed in UGT1A9 *22/*22 livers compared with *1/*1 and *1/*22 livers. However, no associations were observed for UGT2B15*2 or UGT1A1*28 genotypes. 4. Bisphenol-A glucuronidation by breast microsomes (15 donors) ranged from <0.2 to 56 fmoles/min/mg protein. Breast mRNA expression of UGTs capable of glucuronidating bisphenol-A was highest for UGT1A1, followed by UGT2B4, UGT1A9, UGT1A10, UGT2B7 and UGT2B15. Bisphenol-A glucuronidation was over 10-fold lower in breast tissues with the UGT1A1*28 allele compared with tissues without this allele (p = 0.006). 5. UGT2B15 and UGT1A9 contribute to glucuronidation variability in liver, while UGT1A1 is important in breast.

  13. High Resolution Mass Spectrometric Analysis of Secoiridoids and Metabolites as Biomarkers of Acute Olive Oil Intake-An Approach to Study Interindividual Variability in Humans.

    PubMed

    Silva, Sandra; Garcia-Aloy, Mar; Figueira, Maria Eduardo; Combet, Emilie; Mullen, William; Bronze, Maria Rosário

    2018-01-01

    Phenolic compounds are minor components of extra virgin olive oil (EVOO). Secoiridoids are the major components contributing to the phenolic content of EVOO. Information is lacking regarding their potential as biomarkers for EVOO intake. Healthy volunteers (n = 9) ingested 50 mL of EVOO in a single dose containing 322 mg kg -1 total phenolic content (caffeic acid equivalents) and 6 mg 20 g -1 hydroxytyrosol and its derivatives. Plasma is collected before (0 h) and at 0.5, 1, 2, 4, and 6 h after ingestion. Urine samples are collected prior to ingestion (0 h) and at 0-4, 4-8, 8-15, and 15-24 h. Samples are analyzed by UPLC coupled with an Exactive Orbitrap MS. Partial least squares discriminant analysis with orthogonal signal correction is applied to screen for metabolites that allow sample discrimination. Plasma biomarkers and urine biomarkers are selected although individual variability is observed among volunteers. Results are in accordance with in vitro experiments performed (in vitro digestion and hepatic microsomal activity assays). Plasma (elenolic acid + H 2 ; p-HPEA-EA + H 2 + glucuronide) and urinary (3,4-DHPEA-EA, 3,4-DHPEA-EA + H 2 +glucuronide, methyl 3,4-DHPEA-EA + H 2 +glucuronide) secoiridoid compounds are selected as biomarkers to monitor EVOO intake showing good predictive ability according to multivariate analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In Vitro Effects of Bisphenol A β-D-Glucuronide (BPA-G) on Adipogenesis in Human and Murine Preadipocytes

    PubMed Central

    Boucher, Jonathan G.; Boudreau, Adèle; Ahmed, Shaimaa

    2015-01-01

    Background Exposure to common environmental substances, such as bisphenol A (BPA), has been associated with a number of negative health outcomes. In vivo, BPA is rapidly converted to its predominant metabolite, BPA-glucuronide (BPA-G), which has long been believed to be biologically inactive because it lacks estrogenic activity. However, the effects of BPA-G on cellular metabolism have not been characterized. In the present study we examined the effect of BPA-G on adipogenesis. Methods The effect of BPA-G on the differentiation of human and 3T3L1 murine preadipocytes was evaluated in vitro by quantifying lipid accumulation and the expression of adipogenic markers. Results Treatment of 3T3L1 preadipocytes with 10 μM BPA-G induced a significant increase in lipid accumulation, mRNA expression of the adipogenic markers sterol regulatory element binding factor 1 (SREBF1) and lipoprotein lipase (LPL), and protein levels of LPL, aP2, and adipsin. Treatment of primary human preadipocytes with BPA-G also induced adipogenesis as determined by aP2 levels. Co-treatment of cells with the estrogen receptor (ER) antagonist fulvestrant (ICI) significantly inhibited the BPA-G–induced increase in LPL and aP2 levels, whereas treatment with ICI alone had no effect. Moreover, BPA-G did not display any significant estrogenic activity. Conclusions To our knowledge, this study is the first to report that BPA-G induces adipocyte differentiation and is not simply an inactive metabolite. The fact that BPA-G induced adipogenesis and was inhibited by an ER antagonist yet showed no estrogenic activity suggests that it has no classical ER transcriptional activation function and acts through a pathway that remains to be determined. Citation Boucher JG, Boudreau A, Ahmed S, Atlas E. 2015. In vitro effects of bisphenol A β-D-glucuronide (BPA-G) on adipogenesis in human and murine preadipocytes. Environ Health Perspect 123:1287–1293; http://dx.doi.org/10.1289/ehp.1409143 PMID:26018136

  15. Methylenedioxy designer drugs: mass spectrometric characterization of their glutathione conjugates by means of liquid chromatography-high-resolution mass spectrometry/mass spectrometry and studies on their glutathionyl transferase inhibition potency.

    PubMed

    Meyer, Markus R; Richter, Lilian H J; Maurer, Hans H

    2014-04-25

    Methylenedioxy designer drugs of abuse such as 3,4-methylenedioxymethamphetamine (MDMA) can be selectively toxic to serotonergic neurons and glutathione (GSH) adducts have been implicated in its neurotoxicity. The catecholic demethylenyl metabolites of MDMA, 3,4-dihydroxymethamphetamine and 3,4-dihydroxyamphetamine, are metabolically oxidized to the corresponding ortho-quinones, which are highly reactive intermediates. These intermediates can then be conjugated with GSH preventing cellular damage. Furthermore, glutathionyl transferase (GST) activity was described to be irreversibly inhibited by the catechols dopamine, α-methyldopa and their GSH conjugates. Therefore, the aims of the present work were the detection and characterization of GSH conjugates of ten methylenedioxy drugs of abuse and their phase I metabolites as well as to assess their inhibition potency on GST activity. The substrates were incubated using human placental GST with or without preincubation by cytochrome P450 enzymes preparations. GST inhibition was tested using chlorodinitrobenzene GSH conjugation as marker reaction. GSH conjugates were analyzed and characterized using LC-high-resolution-MS/MS. For confirmation of postulated fragmentation patterns, formation of GSH conjugates of selected deuterated analogs (deuterated analogue approach, DAA) of the investigated drugs was explored. For the methylenedioxy amphetamines the following steps could be identified: conjugation of the parent compounds at position 2, 5, 6, of the demethylenyl metabolites at position 2 and 5, and of the further deaminated demethylenyl metabolites at position 2. For the β-keto-phenylalkylamine and pyrrolidinophenone, conjugation of the demethylenyl metabolites and of the deaminated demethylenyl metabolites at position 2 could be identified. The DAA allowed the differentiation of the 2 and 5/6 isomers by confirmation of the postulated mass spectral fragments. Finally, the tested drugs and phase I metabolites showed no

  16. First characterization of AKB-48 metabolism, a novel synthetic cannabinoid, using human hepatocytes and high-resolution mass spectrometry.

    PubMed

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Liu, Hua-Fen; Huestis, Marilyn A

    2013-10-01

    Since the federal authorities scheduled the first synthetic cannabinoids, JWH-018 and JWH-073, new synthetic cannabinoids were robustly marketed. N-(1-Adamantyl)-1-pentylindazole-3-carboxamide (AKB-48), also known as APINACA, was recently observed in Japanese herbal smoking blends. The National Forensic Laboratory Information System registered 443 reports of AKB-48 cases in the USA from March 2010 to January 2013. In May 2013, the Drug Enforcement Administration listed AKB-48 as a Schedule I drug. Recently, AKB-48 was shown to have twice the CB1 receptor binding affinity than CB2. These pharmacological effects and the difficulty in detecting the parent compound in urine highlight the importance of metabolite identification for developing analytical methods for clinical and forensic investigations. Using human hepatocytes and TripleTOF mass spectrometry, we identified 17 novel phase I and II AKB-48 metabolites, products of monohydroxylation, dihydroxylation, or trihydroxylation on the aliphatic adamantane ring or N-pentyl side chain. Glucuronide conjugation of some mono- and dihydroxylated metabolites also occurred. Oxidation and dihydroxylation on the adamantane ring and N-pentyl side chain formed a ketone. More metabolites were identified after 3 h of incubation than at 1 h. For the first time, we present a AKB-48 metabolic scheme obtained from human hepatocytes and high-resolution mass spectrometry. These data are needed to develop analytical methods to identify AKB-48 consumption in clinical and forensic testing.

  17. Synthesis and Neurotoxicity Profile of 2,4,5-Trihydroxymethamphetamine and its 6-(N-Acetylcystein-S-yl) Conjugate

    PubMed Central

    Neudörffer, Anne; Mueller, Melanie; Martinez, Claire-Marie; Mechan, Annis; McCann, Una; Ricaurte, George A.; Largeron, Martine

    2011-01-01

    The purpose of the present study was to determine if trihydroxymethamphetamine (THMA), a metabolite of methylenedioxymethamphetamine (MDMA, “ecstasy”) or its thioether conjugate, 6-(N-acetylcystein-S-yl)-2,4,5-trihydroxymethamphetamine (6-NAC-THMA), plays a role in the lasting effects of MDMA on brain serotonin (5-HT) neurons. To this end, novel high-yield syntheses of THMA and 6-NAC-THMA were developed. Lasting effects of both compounds on brain serotonin (5-HT) neuronal markers were then examined. A single intraventricular injection of THMA produced a significant lasting depletion of regional rat brain 5-HT and 5-hydroxyindoleacetic acid (5-HIAA), consistent with previous reports that THMA harbors 5-HT neurotoxic potential. The lasting effect of THMA on brain 5-HT markers was blocked by the 5-HT uptake inhibitor fluoxetine, indicating persistent effects of THMA on 5-HT markers, like those of MDMA, are dependent on intact 5-HT transporter function. Efforts to identify THMA in the brains of animals treated with a high, neurotoxic dose (80 mg/kg) of MDMA were unsuccessful. Inability to identify THMA in brains of these animals was not related to the unstable nature of the THMA molecule, because exogenous THMA administered intracerebroventricularly could be readily detected in the rat brain for several hours. The thioether conjugate of THMA, 6-NAC-THMA, led to no detectable lasting alterations of cortical 5-HT or 5-HIAA levels, indicating that it lacks significant 5-HT neurotoxic activity. The present results cast doubt on the role of either THMA or 6-NAC-THMA in the lasting serotonergic effects of MDMA. The possibility remains that different conjugated forms of THMA, or oxidized cyclic forms (e.g. the indole of THMA) play a role in MDMA-induced 5-HT neurotoxicity in vivo. PMID:21557581

  18. Fluorine nuclear magnetic resonance spectroscopy of human biofluids in the field of metabolic studies of anticancer and antifungal fluoropyrimidine drugs.

    PubMed

    Malet-Martino, Myriam; Gilard, Véronique; Desmoulin, Franck; Martino, Robert

    2006-04-01

    Fluorine-19 nuclear magnetic resonance (19F NMR) spectroscopy provides a highly specific tool for the detection, identification and quantification of fluorine-containing drugs and their metabolites in biofluids. The value and difficulties encountered in investigations on drug metabolism are first discussed. Then the metabolism of three fluoropyrimidines in clinical use, 5-fluorouracil, 5-fluorocytosine and capecitabine are reported. Besides the parent drug and the already known fluorinated metabolites, 12 new metabolites were identified for the first time with 19F NMR in human biofluids. Nine of them can only be observed with this technique: fluoride ion, N-carboxy-alpha-fluoro-beta-alanine, alpha-fluoro-beta-alanine conjugate with deoxycholic acid, 2-fluoro-3-hydroxypropanoic acid, fluoroacetic acid, O2-beta-glucuronide of fluorocytosine, fluoroacetaldehyde hydrate and its adduct with urea, fluoromalonic acid semi-aldehyde adducts with urea. This emphasizes the high analytical potential of 19F NMR for the furtherance in the understanding of fluoropyrimidine catabolic pathways. 19F NMR should also play a role in the therapeutic monitoring of FU and its prodrugs in specific groups of patients, e.g. hemodialyzed patients or patients with deficiency in FU catabolic enzymes.

  19. Recent advances in simultaneous analysis of bisphenol A and its conjugates in human matrices: Exposure biomarker perspectives.

    PubMed

    Andra, Syam S; Austin, Christine; Yang, Juan; Patel, Dhavalkumar; Arora, Manish

    2016-12-01

    Human exposures to bisphenol A (BPA) has attained considerable global health attention and represents one of the leading environmental contaminants with potential adverse health effects including endocrine disruption. Current practice of measuring of exposure to BPA includes the measurement of unconjugated BPA (aglycone) and total (both conjugated and unconjugated) BPA; the difference between the two measurements leads to estimation of conjugated forms. However, the measurement of BPA as the end analyte leads to inaccurate estimates from potential interferences from background sources during sample collection and analysis. BPA glucuronides (BPAG) and sulfates (BPAS) represent better candidates for biomarkers of BPA exposure, since they require in vivo metabolism and are not prone to external contamination. In this work, the primary focus was to review the current state of the art in analytical methods available to quantitate BPA conjugates. The entire analytical procedure for the simultaneous extraction and detection of aglycone BPA and conjugates is covered, from sample pre-treatment, extraction, separation, ionization, and detection. Solid phase extraction coupled with liquid chromatograph and tandem mass spectrometer analysis provides the most sensitive detection and quantification of BPA conjugates. Discussed herein are the applications of BPA conjugates analysis in human exposure assessment studies. Measuring these potential biomarkers of BPA exposure has only recently become analytically feasible and there are limitations and challenges to overcome in biomonitoring studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Urinary phthalate metabolites and their biotransformation products: predictors and temporal variability among men and women

    PubMed Central

    Meeker, John D.; Calafat, Antonia M.; Hauser, Russ

    2012-01-01

    Most epidemiology studies investigating potential adverse health effects in relation to phthalates measure the urinary concentration of the free plus glucuronidated species of phthalate metabolites (i.e., total concentration) to estimate exposure. However, the free species may represent the biologically relevant dose. In this study, we collected 943 urine samples from 112 men and 157 women and assessed the between- and within-person variability and predictors of a) the free and total urinary concentrations of phthalate metabolites, and b) the percentage of free phthalate metabolites (a potential phenotypic indicator of individual susceptibility). We also explored the proportion of urinary di-(2-ethylhexyl) phthalate (DEHP) metabolites contributed to by the bioactive mono-2-ethylhexyl phthalate (MEHP), considered a possible indicator of susceptibility to phthalate exposure. The percentage of phthalate metabolites present in the free form were less stable over time than the total metabolite concentration, and, therefore, it is not likely a useful indicator of metabolic susceptibility. Thus, the added costs and effort involved in the measurement of free in addition to total metabolite concentrations in large-scale studies may not be justified. Conversely, the proportion of DEHP metabolites contributed to by MEHP was more stable within individuals over time and may be a promising indicator of susceptibility if time of day of sample collection is carefully considered. PMID:22354176

  1. Concentration determination of urinary metabolites of N,N-dimethylacetamide by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Yamamoto, Shinobu; Matsumoto, Akiko; Yui, Yuko; Miyazaki, Shota; Kumagai, Shinji; Hori, Hajime; Ichiba, Masayoshi

    2018-03-27

    N,N-Dimethylacetamide (DMAC) is widely used in industry as a solvent. It can be absorbed through human skin. Therefore, it is necessary to determine exposure to DMAC via biological monitoring. However, the precision of traditional gas chromatography (GC) is low due to the thermal decomposition of metabolites in the high-temperature GC injection port. To overcome this problem, we have developed a new method for the simultaneous separation and quantification of urinary DMAC metabolites using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Urine samples were diluted 10-fold in formic acid, and 1-μl aliquots were injected into the LC-MS/MS equipment. A C18 reverse-phase Octa Decyl Silyl (ODS) column was used as the analytical column, and the mobile phase consisted of a mixture of methanol and aqueous formic acid solution. Urinary concentrations of DMAC and its known metabolites (N-hydroxymethyl-N-methylacetamide (DMAC-OH), N-methylacetamide (NMAC), and S- (acetamidomethyl) mercapturic acid (AMMA) ) were determined in a single run. The dynamic ranges of the calibration curves were 0.05-5 mg/l (r≥0.999) for all four compounds. The limits of detection for DMAC, DMAC-OH, NMAC, and AMMA in urine were 0.04, 0.02, 0.05, and 0.02 mg/l, respectively. Within-run accuracies were 96.5%-109.6% with relative standard deviations of precision being 3.43%-10.31%. The results demonstrated that the proposed method could successfully quantify low concentrations of DMAC and its metabolites with high precision. Hence, this method is useful for evaluating DMAC exposure. In addition, this method can be used to examine metabolite behaviors in human bodies after exposure and to select appropriate biomarkers.

  2. Concentration determination of urinary metabolites of N,N-dimethylacetamide by high-performance liquid chromatography-tandem mass spectrometry

    PubMed Central

    Yamamoto, Shinobu; Matsumoto, Akiko; Yui, Yuko; Miyazaki, Shota; Kumagai, Shinji; Hori, Hajime; Ichiba, Masayoshi

    2017-01-01

    Objectives: N,N-Dimethylacetamide (DMAC) is widely used in industry as a solvent. It can be absorbed through human skin. Therefore, it is necessary to determine exposure to DMAC via biological monitoring. However, the precision of traditional gas chromatography (GC) is low due to the thermal decomposition of metabolites in the high-temperature GC injection port. To overcome this problem, we have developed a new method for the simultaneous separation and quantification of urinary DMAC metabolites using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Methods: Urine samples were diluted 10-fold in formic acid, and 1-μl aliquots were injected into the LC-MS/MS equipment. A C18 reverse-phase Octa Decyl Silyl (ODS) column was used as the analytical column, and the mobile phase consisted of a mixture of methanol and aqueous formic acid solution. Results: Urinary concentrations of DMAC and its known metabolites (N-hydroxymethyl-N-methylacetamide (DMAC-OH), N-methylacetamide (NMAC), and S- (acetamidomethyl) mercapturic acid (AMMA) ) were determined in a single run. The dynamic ranges of the calibration curves were 0.05-5 mg/l (r≥0.999) for all four compounds. The limits of detection for DMAC, DMAC-OH, NMAC, and AMMA in urine were 0.04, 0.02, 0.05, and 0.02 mg/l, respectively. Within-run accuracies were 96.5%-109.6% with relative standard deviations of precision being 3.43%-10.31%. Conclusions: The results demonstrated that the proposed method could successfully quantify low concentrations of DMAC and its metabolites with high precision. Hence, this method is useful for evaluating DMAC exposure. In addition, this method can be used to examine metabolite behaviors in human bodies after exposure and to select appropriate biomarkers. PMID:29213009

  3. p-π Conjugated Polymers Based on Stable Triarylborane with n-Type Behavior in Optoelectronic Devices.

    PubMed

    Meng, Bin; Ren, Yi; Liu, Jun; Jäkle, Frieder; Wang, Lixiang

    2018-02-19

    p-π conjugation with embedded heteroatoms offers unique opportunities to tune the electronic structure of conjugated polymers. An approach is presented to form highly electron-deficient p-π conjugated polymers based on triarylboranes, demonstrate their n-type behavior, and explore device applications. By combining alternating [2,4,6-tris(trifluoromethyl)phenyl]di(thien-2-yl)borane (FBDT) and electron-deficient isoindigo (IID)/pyridine-flanked diketopyrrolopyrrole (DPPPy) units, we achieve low-lying lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels, high electron mobilities, and broad absorptions in the visible region. All-polymer solar cells with these polymers as electron acceptors exhibit encouraging photovoltaic performance with power conversion efficiencies of up to 2.83 %. These results unambiguously prove the n-type behavior and demonstrate the photovoltaic applications of p-π conjugated polymers based on triarylborane. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Radiosynthesis of N-¹¹C-Methyl-Taurine-Conjugated Bile Acids and Biodistribution Studies in Pigs by PET/CT.

    PubMed

    Schacht, Anna Christina; Sørensen, Michael; Munk, Ole Lajord; Frisch, Kim

    2016-04-01

    During cholestasis, accumulation of conjugated bile acids may occur in the liver and lead to hepatocellular damage. Inspired by our recent development of N-(11)C-methyl-glycocholic acid-that is, (11)C-cholylsarcosine-a tracer for PET of the endogenous glycine conjugate of cholic acid, we report here a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids and biodistribution studies in pigs by PET/CT. A radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids was developed and used to prepare N-(11)C-methyl-taurine conjugates derived from cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic acid. The lipophilicity of these new tracers was determined by reversed-phase thin-layer chromatography. The effect of lipophilicity and structure on the biodistribution was investigated in pigs by PET/CT using the tracers derived from cholic acid (3α-OH, 7α-OH, 12α-OH), ursodeoxycholic acid (3α-OH, 7β-OH), and lithocholic acid (3α-OH). The radiosyntheses of the N-(11)C-methyl-taurine-conjugated bile acids proceeded with radiochemical yields of 61% (decay-corrected) or greater and radiochemical purities greater than 99%. PET/CT in pigs revealed that the tracers were rapidly taken up by the liver and secreted into bile. There was no detectable radioactivity in urine. Significant reflux of N-(11)C-methyl-taurolithocholic acid into the stomach was observed. We have successfully developed a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids. These tracers behave in a manner similar to endogenous taurine-conjugated bile acids in vivo and are thus promising for functional PET of patients with cholestatic diseases. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Metabolite characterization of a novel sedative drug, remimazolam in human plasma and urine using ultra high-performance liquid chromatography coupled with synapt high-definition mass spectrometry.

    PubMed

    Zhou, Ying; Hu, Pei; Jiang, Ji

    2017-04-15

    Remimazolam is a new chemical entity belonging to the benzodiazepine class of sedative drugs, which shows faster-acting onset and recovery than currently available short-acting sedatives. In the present study, ultra high performance liquid chromatography with synapt high-definition mass spectrometry method combined with MassLynx software was established to characterize metabolites of remimazolam in human plasma and urine. In total, 5 human metabolites were detected, including 3 phase I and 2 phase II metabolites. There was no novel human metabolite detected compared to that in rat. Hydrolysis, glucuronidation and oxidation were the major metabolic reactions. To our knowledge, this is the first report of the human metabolic profile of remimazolam. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Influence of Sulforaphane Metabolites on Activities of Human Drug-Metabolizing Cytochrome P450 and Determination of Sulforaphane in Human Liver Cells.

    PubMed

    Vanduchova, Alena; Tomankova, Veronika; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-12-01

    The influence of metabolites of sulforaphane, natural compounds present in broccoli (Brassica oleracea var. botrytis italica) and in other cruciferous vegetables, on drug-metabolizing cytochrome P450 (CYP) enzymes in human liver microsomes and possible entry of sulforaphane into human hepatic cells were investigated. Metabolites studied are compounds derived from sulforaphane by the mercapturic acid pathway (conjugation with glutathione and by following reactions), namely sulforaphane glutathione and sulforaphane cysteine conjugates and sulforaphane-N-acetylcysteine. Their possible effect on four drug-metabolizing CYP enzymes, CYP3A4 (midazolam 1'-hydroxylation), CYP2D6 (bufuralol 1'-hydroxylation), CYP1A2 (7-ethoxyresorufin O-deethylation), and CYP2B6 (7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation), was tested. Inhibition of four prototypical CYP activities by sulforaphane metabolites was studied in pooled human liver microsomes. Sulforaphane metabolites did not considerably affect biological function of drug-metabolizing CYPs in human liver microsomes except for CYP2D6, which was found to be inhibited down to 73-78% of the original activity. Analysis of the entry of sulforaphane into human hepatocytes was done by cell disruption by sonication, methylene chloride extraction, and modified high-performance liquid chromatography method. The results have shown penetration of sulforaphane into the human hepatic cells.

  7. Application of quantitative time-lapse imaging (QTLI) for evaluation of Mrp2-based drug–drug interaction induced by liver metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Takeo; Ikenaga, Miho; Fukuda, Hajime

    2012-09-01

    We previously reported a quantitative time-lapse imaging (QTLI)-based analysis method to assess drug–drug interactions (DDI) at multidrug resistance-associated protein 2 (Mrp2) in rat sandwich-cultured hepatocyte (SCH) system, utilizing the fluorescent Mrp2 substrate, 5-(and 6)-carboxy-2′,7′-dichlorofluorescein (CDF). Here, we aimed to examine the feasibility of using QTLI to evaluate DDI involving drug metabolite(s) generated in hepatocytes. We used estradiol (E2) and bilirubin as model compounds; both are not substrates of MRP2, whereas their hepatic metabolites, estradiol-17β-glucuronide (E17G) or bilirubin glucuronides, are known to be its substrates as well as inhibitors. When rat SCHs were pre-exposed with E2, fluorescence of CDF accumulated inmore » bile canaliculi decreased depending upon both the duration of pre-exposure and the concentration of extracellular E2. The decrease corresponded with the increase in intracellular concentration of E17G in hepatocytes. Furthermore, cytotoxicity of vinblastine, a substrate of MRP2, was enhanced in SCHs treated with E2. Similarly, CDF accumulated in bile canaliculi was significantly reduced in rat SCHs pre-exposed with bilirubin. In conclusion, these results suggest that phase II biotransformation of a competitor is reflected in alteration of MRP2-mediated CDF transport detected in QTLI. The QTLI might provide a convenient platform to evaluate transporter-based DDIs involving hepatic metabolites of drug candidates without the need to identify the metabolites. -- Highlights: ► Mrp2-mediated CDF transport is inhibited by E2, but not E17G in vesicle study. ► Both E2 and E17G do not compromise CDF formation from CDFDA in hepatocytes. ► CDF accumulation in bile canaliculi is inhibited by E2 or E17G in QTLI. ► Increasing exposure to E2 decreases CDF accumulation in bile canaliculi in QTLI. ► QTLI is feasible to assess Mrp2-based DDI involving drug metabolite in hepatocytes.« less

  8. Induction of antibodies to nuclear antigens in rabbits by immunization with hydralazine-human serum albumin conjugates.

    PubMed Central

    Yamauchi, Y; Litwin, A; Adams, L; Zimmer, H; Hess, E V

    1975-01-01

    The antihypertensive drug hydralazine can induce in man a syndrome similar to spontaneous systemic lupus erythematosus (SLE). The pathogenesis of this drug-induced syndrome is not understood. In this investigation, five groups of rabbits were studied: group I, 10 rabbits hyperimmunized with hydralazine conjugated to human serum albumin (HSA) in complete Freund's adjuvant (CFA); group II, four rabbits with HSA in CFA; group III, four rabbits with CFA alone; group IV, five rabbits with hydralazine conjugated to rabbit serum albumin (RSA); and group V, four rabbits with a major metabolite of hydralazine conjugated to HSA. The rabbits immunized with hydralazine-HSA developed rising titers of antibodies to hydralazine and progressively increasing amounts of antibodies to both single-stranded and native DNA. The antibodies to DNA were cross-reactive with hydralazine as determined by inhibition of DNA binding and DNA hemagglutination tests. Similar results were obtained in rabbits immunized with the metabolite-HSA compound except the major hapten antibody response was to the metabolite. The DNA antibodies in this group were also capable of being absorbed by metabolite-HSA as well as hydralazine-HSA, indicative of the cross-reactivity between hydralazine and its metabolite. Immunization with hydralazine-RSA caused rabbits to produce antibodies to hydralazine but not to DNA, indicating the requirement for an immune response to the carrier protein in order for antibodies reactive with DNA to be produced. Thus, hyperimmunization of rabbits with hydralazine-protein conjugates may provide a useful animal model of SLE. The data suggests that an immune response to hydralazine may be important in human hydralazine-induced SLE. Images PMID:808562

  9. GC-MS, LC-MS(n), LC-high resolution-MS(n), and NMR studies on the metabolism and toxicological detection of mesembrine and mesembrenone, the main alkaloids of the legal high "Kanna" isolated from Sceletium tortuosum.

    PubMed

    Meyer, Golo M J; Wink, Carina S D; Zapp, Josef; Maurer, Hans H

    2015-01-01

    Mesembrine and mesembrenone are the main alkaloids of Sceletium tortuosum, a plant species that was used for sedation and analgesia by the KhoiSan, previously known as Hottentots, a tribe in South Africa. After fermentation, the obtained preparation called "Kanna" or "Kougoed" was used by chewing, smoking, or sniffing. Today, Kanna gains popularity by drug users as legal high. For monitoring such consumption, metabolism studies are mandatory because the metabolites are mostly the analytical targets, especially in urine. Therefore, the metabolism of both alkaloids was investigated in rat urine and pooled human liver preparations after several sample work-up procedures. As both alkaloids were not commercially available, they were isolated from plant material by Soxhlet extraction, and their identity confirmed by NMR. The metabolites were identified using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to linear ion trap high resolution mass spectrometry (LC-HR-MS(n)). Both alkaloids were O- and N-demethylated, dihydrated, and/or hydroxylated at different positions. The phenolic metabolites were partly excreted as glucuronides and/or sulfates. Most of the phase I metabolites identified in rat urine could be detected also in the human liver preparations. After a common user's low dose application of mesembrine, mainly the O- and N demethyl-dihydro, hydroxy, and bis-demethyl-dihydro metabolites, and in case of mesembrenone only the N-demethyl and the N-demethyl-dihydro metabolite could be detected in rat urine using the authors' standard urine screening approaches (SUSA) by GC-MS or LC-MS(n). Thus, it should be possible to monitor a consumption of mesembrine and/or mesembrenone assuming similar pharmacokinetics in humans.

  10. Metabolic patterns of JWH-210, RCS-4, and THC in pig urine elucidated using LC-HR-MS/MS: Do they reflect patterns in humans?

    PubMed

    Schaefer, Nadine; Helfer, Andreas G; Kettner, Mattias; Laschke, Matthias W; Schlote, Julia; Ewald, Andreas H; Meyer, Markus R; Menger, Michael D; Maurer, Hans H; Schmidt, Peter H

    2017-04-01

    The knowledge of pharmacokinetic (PK) properties of synthetic cannabinoids (SCs) is important for interpretation of analytical results found for example in intoxicated individuals. In the absence of human data from controlled studies, animal models elucidating SC PK have to be established. Pigs providing large biofluid sample volumes were tested for prediction of human PK data. In this context, the metabolic fate of two model SCs, namely 4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-210) and 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4), was elucidated in addition to Δ 9 -tetrahydrocannabinol (THC). After intravenous administration of the compounds, hourly collected pig urine was analyzed by liquid chromatography-high resolution mass spectrometry. The following pathways were observed: for JWH-210, hydroxylation at the ethyl side chain or pentyl chain and combinations of them followed by glucuronidation; for RCS-4, hydroxylation at the methoxyphenyl moiety or pentyl chain followed by glucuronidation as well as O-demethylation followed by glucuronidation or sulfation; for THC, THC glucuronidation, 11-hydroxylation, followed by carboxylation and glucuronidation. For both SCs, parent compounds could not be detected in urine in contrast to THC. These results were consistent with those obtained from human hepatocyte and/or human case studies. Urinary markers for the consumption of JWH-210 were the glucuronide of the N-hydroxypentyl metabolite (detectable for 3-4 h) and of RCS-4 the glucuronides of the N-hydroxypentyl, hydroxy-methoxyphenyl (detectable for at least 6 h), and the O-demethyl-hydroxy metabolites (detectable for 4 h). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Rhodium(I)-Complexes Catalyzed 1,4-Conjugate Addition of Arylzinc Chlorides to N-Boc-4-pyridone.

    PubMed

    Guo, Fenghai; McGilvary, Matthew A; Jeffries, Malcolm C; Graves, Briana N; Graham, Shekinah A; Wu, Yuelin

    2017-05-01

    Rhodium(I)-complexes catalyzed the 1,4-conjugate addition of arylzinc chlorides to N -Boc-4-pyridone in the presence of chlorotrimethylsilane (TMSCl). A combination of [RhCl(C₂H₄)₂]₂ and BINAP was determined to be the most effective catalyst to promote the 1,4-conjugate addition reactions of arylzinc chlorides to N -Boc-4-pyridone. A broad scope of arylzinc reagents with both electron-withdrawing and electron-donating substituents on the aromatic ring successfully underwent 1,4-conjugate addition to N -Boc-4-pyridone to afford versatile 1,4-adducts 2-substituted-2,3-dihydropyridones in good to excellent yields (up to 91%) and excellent ee (up to 96%) when ( S )-BINAP was used as chiral ligand.

  12. Physicochemical and Pharmacological Characterization of Permanently Charged Opioids.

    PubMed

    Mazak, Karoly; Noszal, Bela; Hosztafi, Sandor

    2017-01-01

    The main aim of synthesizing permanently charged opioids is to ensure that they do not enter the central nervous system. Such drugs can provide analgesic activity with reduced sedation and other side effects on the central nervous system. We undertook a search of bibliographic databases for peer-reviewed research literature and also summarized our published results in this field. The present review focuses on the characterization of permanently charged opioids by various physicochemical methods, and in vitro as well as in vivo tests. The basicity and lipophilicity of opioid alkaloids are discussed at the microscopic, speciesspecific level. Glucuronide conjugates of opioids are also reviewed. Whereas the primary metabolite morphine-3-glucuronide does not bind to opioid receptors with high affinity, morphine-6-glucuronide is a potent analgesic, at least, partly due to its unexpectedly high lipophilicity. We discuss the quaternary ammonium opioid derivatives of a permanent positive charge, detailing their antinociceptive activity and effects on gastrointestinal motility in various in vivo animal tests and in vitro studies. Compounds with antagonistic activity are also reviewed. The last part of our study concentrates on sulfate conjugates of morphine derivatives that display unique pharmacological properties because they carry a negative charge at any pH value in the human body. In conclusion, the findings of this review confirm the importance of permanently charged opioids in the investigated fields of pharmacology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Biochemistry of metalocenes. The organ distribution of hydroxyacetyl (/sup 103/Ru)ruthenocene and its glucuronide in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A.J.; Macha, J.; Wenzel, M.

    1980-01-01

    Hydroxyacetyl(/sup 103/Ru)ruthenocene and its o-glucuronide were prepared in vitro by incubation of acetyl(/sup 103/Ru)ruthenocene with rat-liver homogenate, NADPH, and UDP-glucuronate. The factors affecting hydroxylation and glucuronidation in vitro were optimized for acetylruthenocene. Hydroxyacetyl(/sup 103/Ru)ruthenocene glucuronide showed no affinity for the adrenal glands, but after iv administration of hydroxyacetyl(/sup 103/Ru)ruthenocene there was a distinct accumulation of Ru-103 in adrenals, similar to that found after administration of acetyl(/sup 103/Ru)ruthenocene.

  14. In vivo metabolism and genotoxic effects of nitrated polycyclic aromatic hydrocarbons.

    PubMed

    Möller, L

    1994-10-01

    During incomplete combustion of organic matter, nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), are formed in a reaction that is catalyzed by a low pH. 2-Nitrofluorene (NF), a marker for nitro-PAHs, is metabolized in vivo by two different routes. After inhalation, potent mutagenic metabolites, hydroxylated nitrofluorenes (OH-NFs), are formed. The metabolites are distributed by systemic circulation. After oral administration, NF is reduced to the corresponding amine, a reaction mediated by the intestinal microflora. This metabolite is acetylated to 2-acetylaminofluorene (AAF), a potent carcinogen. Further ring-hydroxylation of AAF leads to detoxification and excretion. Induction of cytochrome P450s affects the metabolism, and more OH-NFs are formed. As a consequence, more mutagenic metabolites are found in the circulation. OH-NFs are excreted in the bile as, in terms of mutagenicity, totally harmless glucuronide conjugates. When these conjugates are excreted via the bile, intestinal beta-glucuronidase can liberate direct-acting mutagens in the intestine. Thus, inhalation of NF can lead to formation of potent mutagens in the intestine. NF is a direct-acting mutagen in bacterial assays and an initiator and promoter of the carcinogenic process, and gives rise to DNA adduct formation in laboratory animals.

  15. Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants and response to fenofibrate

    PubMed Central

    Trottier, Jocelyn; Perreault, Martin; Rudkowska, Iwona; Levy, Cynthia; Dallaire-Theroux, Amélie; Verreault, Mélanie; Caron, Patrick; Staels, Bart; Vohl, Marie-Claude; Straka, Robert J.; Barbier, Olivier

    2014-01-01

    Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes detoxifies cholestatic bile acids (BAs). We aimed at i) characterizing the circulating BA-glucuronide (-G) pool composition in humans, ii) evaluating how sex and UGT polymorphisms influence this composition, and iii) analyzing the effects of lipid-lowering drug fenofibrate on the circulating BA-G profile in 300 volunteers and 5 cholestatic patients. Eleven BA-Gs were determined in pre- and post-fenofibrate samples. Men exhibited higher BA-G concentrations, and various genotype/BA-G associations were discovered in relevant UGT genes. The chenodeoxycholic acid-3G concentration was associated with the UGT2B7 802C>T polymorphism. Glucuronidation assays confirmed the predominant role of UGT2B7 and UGT1A4 in CDCA-3G formation. Fenofibrate exposure increased the serum levels of 5 BA-G species, including CDCA-3G, and up-regulated expression of UGT1A4, but not UGT2B7, in hepatic cells. This study demonstrates that fenofibrate stimulates BA glucuronidation in humans, and thus reduces bile acid toxicity in the liver. PMID:23756370

  16. Synthesis, physicochemical properties, and biological activity of bile acids 3-glucuronides: Novel insights into bile acid signalling and detoxification.

    PubMed

    Mostarda, Serena; Passeri, Daniela; Carotti, Andrea; Cerra, Bruno; Colliva, Carolina; Benicchi, Tiziana; Macchiarulo, Antonio; Pellicciari, Roberto; Gioiello, Antimo

    2018-01-20

    Glucuronidation is considered an important detoxification pathway of bile acids especially in cholestatic conditions. Glucuronides are less toxic than the parent free forms and are more easily excreted in urine. However, the pathophysiological significance of bile acid glucuronidation is still controversial and debated among the scientific community. Progress in this field has been strongly limited by the lack of appropriate methods for the preparation of pure glucuronides in the amount needed for biological and pharmacological studies. In this work, we have developed a new synthesis of bile acid C3-glucuronides enabling the convenient preparation of gram-scale quantities. The synthesized compounds have been characterized in terms of physicochemical properties and abilities to modulate key nuclear receptors including the farnesoid X receptor (FXR). In particular, we found that C3-glucuronides of chenodeoxycholic acid and lithocholic acid, respectively the most abundant and potentially cytotoxic species formed in patients affected by cholestasis, behave as FXR agonists and positively regulate the gene expression of transporter proteins, the function of which is critical in human conditions related to imbalances of bile acid homeostasis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Synthesis and characterization of radiolabeled 17ß-estradiol conjugates

    USDA-ARS?s Scientific Manuscript database

    The use of radioactive tracers for environmental fate and transport studies of emerging contaminants, especially for those that are labile, offers convenience in tracking study compounds and their metabolites and in calculating mass-balances. The contribution of conjugated forms of natural steroid h...

  18. Pharmacokinetics, Tissue Distribution, and Anti-Lipogenic/Adipogenic Effects of Allyl-Isothiocyanate Metabolites

    PubMed Central

    Ahn, Jiyun; Chung, Woo-Jae; Jang, Young Jin; Seong, Ki-Seung; Moon, Jae-Hak; Ha, Tae Youl; Jung, Chang Hwa

    2015-01-01

    Allyl-isothiocyanate (AITC) is an organosulfur phytochemical found in abundance in common cruciferous vegetables such as mustard, wasabi, and cabbage. Although AITC is metabolized primarily through the mercapturic acid pathway, its exact pharmacokinetics remains undefined and the biological function of AITC metabolites is still largely unknown. In this study, we evaluated the inhibitory effects of AITC metabolites on lipid accumulation in vitro and elucidated the pharmacokinetics and tissue distribution of AITC metabolites in rats. We found that AITC metabolites generally conjugate with glutathione (GSH) or N-acetylcysteine (NAC) and are distributed in most organs and tissues. Pharmacokinetic analysis showed a rapid uptake and complete metabolism of AITC following oral administration to rats. Although AITC has been reported to exhibit anti-tumor activity in bladder cancer, the potential bioactivity of its metabolites has not been explored. We found that GSH-AITC and NAC-AITC effectively inhibit adipogenic differentiation of 3T3-L1 preadipocytes and suppress expression of PPAR-γ, C/EBPα, and FAS, which are up-regulated during adipogenesis. GSH-AITC and NAC-AITC also suppressed oleic acid-induced lipid accumulation and lipogenesis in hepatocytes. Our findings suggest that AITC is almost completely metabolized in the liver and rapidly excreted in urine through the mercapturic acid pathway following administration in rats. AITC metabolites may exert anti-obesity effects through suppression of adipogenesis or lipogenesis. PMID:26317351

  19. Pharmacokinetics, Tissue Distribution, and Anti-Lipogenic/Adipogenic Effects of Allyl-Isothiocyanate Metabolites.

    PubMed

    Kim, Yang-Ji; Lee, Da-Hye; Ahn, Jiyun; Chung, Woo-Jae; Jang, Young Jin; Seong, Ki-Seung; Moon, Jae-Hak; Ha, Tae Youl; Jung, Chang Hwa

    2015-01-01

    Allyl-isothiocyanate (AITC) is an organosulfur phytochemical found in abundance in common cruciferous vegetables such as mustard, wasabi, and cabbage. Although AITC is metabolized primarily through the mercapturic acid pathway, its exact pharmacokinetics remains undefined and the biological function of AITC metabolites is still largely unknown. In this study, we evaluated the inhibitory effects of AITC metabolites on lipid accumulation in vitro and elucidated the pharmacokinetics and tissue distribution of AITC metabolites in rats. We found that AITC metabolites generally conjugate with glutathione (GSH) or N-acetylcysteine (NAC) and are distributed in most organs and tissues. Pharmacokinetic analysis showed a rapid uptake and complete metabolism of AITC following oral administration to rats. Although AITC has been reported to exhibit anti-tumor activity in bladder cancer, the potential bioactivity of its metabolites has not been explored. We found that GSH-AITC and NAC-AITC effectively inhibit adipogenic differentiation of 3T3-L1 preadipocytes and suppress expression of PPAR-γ, C/EBPα, and FAS, which are up-regulated during adipogenesis. GSH-AITC and NAC-AITC also suppressed oleic acid-induced lipid accumulation and lipogenesis in hepatocytes. Our findings suggest that AITC is almost completely metabolized in the liver and rapidly excreted in urine through the mercapturic acid pathway following administration in rats. AITC metabolites may exert anti-obesity effects through suppression of adipogenesis or lipogenesis.

  20. Comparative metabolites profiles of osthole in normal and osteoporosis rats using liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Wang, Nani; Wang, Xuping; Zhang, Yang; Zhang, Qiaoyan; Xu, Pingcui; Xin, Hailiang; Wu, Renjie; Shou, Dan; Qin, Luping

    2018-05-30

    Osthole is a derivative of coumnarin, which has been used to treat several diseases, including osteoporosis. To investigate the metabolite profile of osthole in osteoporosis rats was utilized to understand its underlying mechanisms of its anti-osteoporosis effect. In this study, plasma samples were collected from normal and osteoporosis rats after oral administration of osthole and analyzed to identify the metabolites of osthole by high performance liquid chromatography quadrupole time-of-flight mass spectrometry. By comparing the molecular weight and MS fragmentation of the metabolites with those of parent drug and reference standards, a total of 36 metabolites in plasma were identified. Demethylation, hydroxylation, hydroxymethylene loss and reduction, and subsequent glucuronidation, methylation and sulfation were the major metabolic pathways of osthole in both normal and osteoporosis rats. A specific hydration metabolic pathway was found in osteoporosis rats. These results provided a meaningful basis for studying the underlying mechanism of the anti-osteoporosis effect of osthole. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Identification of metabolites of Si-Ni-San, a traditional Chinese medicine formula, in rat plasma and urine using liquid chromatography/diode array detection/triple-quadrupole spectrometry.

    PubMed

    Yan, Zhixiang; Chen, Ying; Li, Tianxue; Zhang, Jie; Yang, Xinghao

    2012-02-15

    Si-Ni-San (SNS) is a widely used traditional Chinese medicine formula (TCMF) in treating various diseases. However, the in vivo integrated metabolism of its multiple components remains unknown. In this paper, a liquid chromatography coupled with diode array detection and triple-quadrupole spectrometry (LC-DAD-MS/MS) method was developed for detection and identification of SNS metabolites in rat plasma and urine at a normal clinical dosage. Accurate structural elucidation was performed using MS/MS, UV data and n-octanol/water partition coefficient. Based on the proposed strategy, 36 absorbed compounds and 29 metabolites in plasma and 33 metabolites in urine were detected by a highly sensitive MRM method. Our results indicated that phase II reactions (e.g., methylation, glucuronidation and sulfation) were the main metabolic pathways of gallic acid and flavanones, while phase I reactions (e.g., hydroxylation) were the major metabolic reaction for triterpenoid saponins. The metabolite profile analysis of SNS provided a comprehensive understanding of the in vivo metabolic fates of constituents in SNS. Moreover, the results in this work demonstrated the present strategy based on the combination of chromatographic, spectrophotometric, mass-spectrometric, and software prediction to detect and identify metabolites was effective and reliable. And such a strategy may also be extended to investigate the metabolism of other TCMF. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Simultaneous extraction of propofol and propofol glucuronide from hair followed by validated LC-MS/MS analyses.

    PubMed

    Maas, Alexandra; Maier, Christoph; Iwersen-Bergmann, Stefanie; Madea, Burkhard; Hess, Cornelius

    2017-11-30

    Besides its clinical application, the anaesthetic agent propofol is being increasingly misused, mostly by healthcare professionals, and its abuse potential gained worldwide attention after the tragic death of Michael Jackson in 2009. Due to the short duration of its narcotic effects, propofol abuse is especially easy to hide compared with the use of other recreational drugs. However, propofol possesses a very narrow therapeutic window between the desired effect and potentially fatal toxicity, making abuse of the drug extremely dangerous even in experienced physicians. Consequently, it is important that forensic laboratories possess a sensitive and specific method for the detection of chronic propofol abuse. We present a simple, fast and reliable method to simultaneously extract propofol and its main metabolite propofol glucuronide from hair, followed by sensitive LC-MS/MS analyses, allowing to determine a chronic propofol abuse. Difficulties regarding the detection of propofol using LC-MS/MS were solved by using a derivatization reaction with 2-fluoro-1-methylpyridinium-p-toluene-sulfonate and triethylamine. Reliability of extraction method and subsequent LC-MS/MS analyses was confirmed under consideration of the validation parameters selectivity, linearity, accuracy and precision, analytical limits, processed sample stability, matrix effects and recovery. Appropriate quantification (LLOQ=10pg/mg hair) and detection limits (3.6pg/mg hair for propofol and 7.8 pg/mg hair for propofol glucuronide) could be achieved, enabling to detect even small amounts of both analytes. Applicability of the method was confirmed by analysis of three human hair samples from deceased with suspicion of chronic propofol abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Metabolite identification and pharmacokinetic profiling of PP242, an ATP-competitive inhibitor of mTOR using ultra high-performance liquid chromatography and mass spectrometry.

    PubMed

    Rashid, Md Mamunur; Lee, Hyunbeom; Jung, Byung Hwa

    2018-01-01

    PP242 is a second generation novel selective ATP-competitive inhibitor of mTOR that displayed promising anti-cancer activity over several cancer types by inhibiting both the complexes of mTOR (mTORC1 and mTORC2). The purpose of this study is to identify the possible metabolites and to evaluate the pharmacokinetic profile of PP242 after a single oral administration to Sprague-Dawley (SD) rats. Two metabolites, including one phase I and one phase II, were identified by in vitro and in vivo studies using rat liver microsomes (RLMs) as well as rat plasma, urine and feces, respectively, through ultra high-performance liquid chromatography-linear ion trap quadrupole-orbitrap-mass spectrometry (UHPLC-LTQ-Orbitrap-MS). The major biotransformation pathways of PP242 were hydroxylation and glucuronide conjugation. Additionally, a simple and rapid quantification method was developed and validated. The method recovery was within 79.7-84.6%, whereas the matrix effect was 78.1-96.0% in all three quality control (QC) concentrations (low, medium and high) including the LLOQ. Other parameters showed acceptable results according to the US food and drug administration (FDA) guidelines for bioanalytical method validation. Afterwards, pharmacokinetic parameters were evaluated in rat plasma by successfully applying the validated method using liquid chromatography-tandem mass spectrometry (LC-MS/MS). After a single oral administration at a dose of 5mg/kg, the maximum plasma concentration (C max ) of PP242 was 0.17±0.08μg/mL, while the elimination was moderately fast (T 1/2 : 172.18±45.54min). All of the obtained information on the metabolite identification and pharmacokinetic parameter elucidation could facilitate the further development of PP242. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Regiospecificity of Human UDP-glucuronosyltransferase Isoforms in Chalcone and Flavanone Glucuronidation Determined by Metal Complexation and Tandem Mass Spectrometry

    PubMed Central

    Niemeyer, Emily D.; Brodbelt, Jennifer S.

    2013-01-01

    The glucuronidation of a series of chalcones (2'-hydroxychalcone, 2',4'-dihydroxychalcone, 3,2'-dihydroxychalcone, 4,2'-dihydroxychalcone, and cardamonin) and their corresponding cyclized flavanones (7-hydroxyflavanone, 3'-hydroxyflavanone, 4'-hydroxyflavanone, and alpinetin) by nine human UDP-glucuronosyltransferase (UGT) 1A enzymes was evaluated. A post-column metal complexation LC-MS/MS strategy was used successfully to produce characteristic mass spectrometric product ions that were utilized in combination with elution order trends to identify chalcone and flavanone monoglucuronides unambiguously, thus allowing determination of the regioselectivities of the UGT1A isoforms. The presence of hydroxy groups on the A or B-ring had a significant effect on the glucuronide product yield and the site where glucuronidation occurred. For example, for reaction with UGT1A9, formation of the 2'-O-glucuronide was increased for dihydroxychalcones with A-ring hydroxy substituents. In contrast, although UGT1A8 reacted with 3,2'-dihydroxychalcone and 4,2'-dihydroxychalcone to yield 2'-O-glucuronide products, the presence of a B-ring hydroxy group at the 4' position on cardamonin and 2',4'-dihydroxychalcone quenched the reaction at the OH-2' position. Moreover, the A-ring OH-4 group promoted glucuronidation at the 2' position for the reaction of 4,2'-dihydroxychalcone with UGT1A1 and 1A3. For UGT1A7, hydroxy group substituents on the chalcone A-ring also promoted cyclization and formation of the corresponding flavanone glucuronide. PMID:23713759

  5. Regiospecificity of human UDP-glucuronosyltransferase isoforms in chalcone and flavanone glucuronidation determined by metal complexation and tandem mass spectrometry.

    PubMed

    Niemeyer, Emily D; Brodbelt, Jennifer S

    2013-06-28

    The glucuronidation of a series of chalcones (2'-hydroxychalcone, 2',4'-dihydroxychalcone, 3,2'-dihydroxychalcone, 4,2'-dihydroxychalcone, and cardamonin) and their corresponding cyclized flavanones (7-hydroxyflavanone, 3'-hydroxyflavanone, 4'-hydroxyflavanone, and alpinetin) by eight human UDP-glucuronosyltransferase (UGT) 1A enzymes was evaluated. A postcolumn metal complexation LC-MS/MS strategy was used successfully to produce characteristic mass spectrometric product ions that were utilized in combination with elution order trends to identify chalcone and flavanone monoglucuronides unambiguously, thus allowing determination of the regioselectivities of the UGT1A isoforms. The presence of hydroxy groups on the A- or B-ring had a significant effect on the glucuronide product yield and the site where glucuronidation occurred. For example, for reaction with UGT1A9, formation of the 2'-O-glucuronide was increased for dihydroxychalcones with A-ring hydroxy substituents. In contrast, although UGT1A8 reacted with 3,2'-dihydroxychalcone and 4,2'-dihydroxychalcone to yield 2'-O-glucuronide products, the presence of a B-ring hydroxy group at the 4' position on cardamonin and 2',4'-dihydroxychalcone quenched the reaction at the OH-2' position. Moreover, the A-ring OH-4 group promoted glucuronidation at the 2' position for the reaction of 4,2'-dihydroxychalcone with UGT1A1 and 1A3. For UGT1A7, hydroxy group substituents on the chalcone A-ring also promoted cyclization and formation of the corresponding flavanone glucuronide.

  6. Hydroquinone PBPK model refinement and application to dermal exposure.

    PubMed

    Poet, Torka S; Carlton, Betsy D; Deyo, James A; Hinderliter, Paul M

    2010-11-01

    A physiologically based pharmacokinetic (PBPK) model for hydroquinone (HQ) was refined to include an expanded description of HQ-glucuronide metabolites and a description of dermal exposures to support route-to-route and cross-species extrapolation. Total urinary excretion of metabolites from in vivo rat dermal exposures was used to estimate a percutaneous permeability coefficient (K(p); 3.6×10(-5) cm/h). The human in vivo K(p) was estimated to be 1.62×10(-4) cm/h, based on in vitro skin permeability data in rats and humans and rat in vivo values. The projected total multi-substituted glutathione (which was used as an internal dose surrogate for the toxic glutathione metabolites) was modeled following an exposure scenario based on submersion of both hands in a 5% aqueous solution of HQ (similar to black and white photographic developing solution) for 2 h, a worst-case exposure scenario. Total multi-substituted glutathione following this human dermal exposure scenario was several orders of magnitude lower than the internal total glutathione conjugates in rats following an oral exposure to the rat NOEL of 20 mg/kg. Thus, under more realistic human dermal exposure conditions, it is unlikely that toxic glutathione conjugates (primarily the di- and, to a lesser degree, the tri-glutathione conjugate) will reach significant levels in target tissues. Copyright © 2010. Published by Elsevier Ltd.

  7. Isolation and Identification of Twelve Metabolites of Isocorynoxeine in Rat Urine and their Neuroprotective Activities in HT22 Cell Assay

    PubMed Central

    Qi, Wen; Chen, Fangfang; Sun, Jiahong; Simpkins, James W.; Yuan, Dan

    2015-01-01

    Isocorynoxeine, one of the major alkaloids from Uncaria Hook, shows the effects of lowering blood pressure, vasodilatation, and protection against ischemia-induced neuronal damage. In this paper, the metabolism of isocorynoxeine was investigated in rats. Twelve metabolites and the parent drug were isolated by using solvent extraction and repeated chromatographic methods, and determined by spectroscopic methods including UV, MS, NMR, and CD experiments. Seven new compounds were identified as 11-hydroxyisocorynoxeine, 5-oxoisocorynoxeinic acid-22-O-β-D-glucuronide, 10-hydroxyisocorynoxeine, 17-O-demethyl-16,17-dihydro-5-oxoisocorynoxeine, 5-oxoisocorynoxeinic acid, 21-hydroxy-5-oxoisocorynoxeine, and oxireno[18,19]-5-oxoisocorynoxeine, together with six known compounds identified as isocorynoxeine, 18,19-dehydrocorynoxinic acid, 18,19-dehydrocorynoxinic acid B, corynoxeine, isocorynoxeine-N-oxide, and corynoxeine-N-oxide. Possible metabolic pathways of isocorynoxeine are proposed. Furthermore, the activity assay for the parent drug and some of its metabolites showed that isocorynoxeine exhibited a significant neuroprotective effect against glutamate-induced HT22 cell death at the maximum concentration. However, little or weak neuroprotective activities were observed for M-3, M-6, M-7, and M-10. Our present study is important to further understand their metabolic fate and disposition in humans. PMID:25519834

  8. Enantioselective quantitation of the ecstasy compound (R)- and (S)-N-ethyl-3,4-methylenedioxyamphetamine and its major metabolites in human plasma and urine.

    PubMed

    Buechler, Jochen; Schwab, Matthias; Mikus, Gerd; Fischer, Beate; Hermle, Leo; Marx, Claudia; Grön, Georg; Spitzer, Manfred; Kovar, Karl Artur

    2003-08-15

    An enantioselective HPLC method has been developed and validated for the stereospecific analysis of N-ethyl-3,4-methylenedioxyamphetamine (MDE) and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA). These compounds have been analyzed both from human plasma and urine after administration of 70 mg pure MDE-hydrochloride enantiomers to four subjects. The samples were prepared by hydrolysis of the o-glucuronate and sulfate conjugates using beta-glucuronidase/arylsulfatase and solid-phase extraction with a cation-exchange phase. A chiral stationary protein phase (chiral-CBH) was used for the stereoselective determination of MDE, HME and MDA in a single HPLC run using sodium dihydrogenphosphate, ethylendiaminetetraacetic acid disodium salt and isopropanol as the mobile phase (pH 6.44) and fluorimetric detection (lambda(ex) 286 nm, lambda(em) 322 nm). Moreover, a suitable internal standard (N-ethyl-3,4-methylenedioxybenzylamine) was synthesized and qualified for quantitation purposes. The method showed high recovery rates (>95%) and limits of quantitation for MDE and MDA of 5 ng/ml and for HME of 10 ng/ml. The RSDs for all working ranges of MDE, MDA and HME in plasma and urine, respectively, were less than 1.5%. After validation of the analytical methods in plasma and urine samples pharmacokinetic parameters were calculated. The plasma concentrations of (R)-MDE exceeded those of the S-enantiomer (ratio R:S of the area under the curve, 3.1) and the plasma half time of (R)-MDE was longer than that of (S)-MDE (7.9 vs. 4.0 h). In contrast, the stereochemical disposition of the MDE metabolites HME and MDA was reversed. Concentrations of the (S)-metabolites in plasma of volunteers were much higher than those of the (R)-enantiomers.

  9. Disposition of Phenolic and Sulfated Metabolites after Inhalation Exposure to 4-Chlorobiphenyl (PCB3) in Female Rats

    PubMed Central

    2015-01-01

    PCBs, such as PCB3, are air contaminants in buildings and outdoors. Metabolites of PCB3 are potential endocrine disrupting chemicals and genotoxic agents. We studied the disposition of phenolic and sulfated metabolites after acute nose-only inhalation exposure to airborne PCB3 for 2 h in female rats. Inhalation exposure was carried out in three groups. In the first group, rats exposed to an estimated dose of 26 μg/rat were euthanized at 0, 1, 2, and 4 h after exposure. Highest concentrations of phenols and sulfates were observed at 0 h, and the values were 7 ± 1 and 560 ± 60 ng/mL in serum, 213 ± 120 and 842 ± 80 ng/g in liver, 31 ± 27 and 22 ± 7 ng/g in lung, and 27 ± 6 and 3 ± 0 ng/g in brain, respectively. First-order serum clearance half-lives of 0.5 h for phenols and 1 h for sulfates were estimated. In the second group, rats exposed to an estimated dose of 35 μg/rat were transferred to metabolism cages immediately after exposure for the collection of urine and feces over 24 h. Approximately 45 ± 5% of the dose was recovered from urine and consisted mostly of sulfates; the 18 ± 5% of the dose recovered from feces was exclusively phenols. Unchanged PCB3 was detected in both urine and feces but accounted for only 5 ± 3% of the dose. Peak excretion of metabolites in both urine and feces occurred within 18 h postexposure. In the third group, three bile-cannulated rats exposed to an estimated dose of 277 μg/rat were used for bile collection. Bile was collected for 4 h immediately after 2 h exposure. Biliary metabolites consisted mostly of sulfates, some glucuronides, and lower amounts of the free phenols. Control rats in each group were exposed to clean air. Clinical serum chemistry values, serum T4 level, and urinary 8-hydroxy-2′-deoxyguanosine were similar in treated and control rats. These data show that PCB3 is rapidly metabolized to phenols and conjugated to sulfates after inhalation and that both of these metabolites are distributed to liver

  10. Ginger Compound [6]-Shogaol and Its Cysteine-Conjugated Metabolite (M2) Activate Nrf2 in Colon Epithelial Cells in Vitro and in Vivo

    PubMed Central

    2015-01-01

    In this study, we identified Nrf2 as a molecular target of [6]-shogaol (6S), a bioactive compound isolated from ginger, in colon epithelial cells in vitro and in vivo. Following 6S treatment of HCT-116 cells, the intracellular GSH/GSSG ratio was initially diminished but was then elevated above the basal level. Intracellular reactive oxygen species (ROS) correlated inversely with the GSH/GSSG ratio. Further analysis using gene microarray showed that 6S upregulated the expression of Nrf2 target genes (AKR1B10, FTL, GGTLA4, and HMOX1) in HCT-116 cells. Western blotting confirmed upregulation, phosphorylation, and nuclear translocation of Nrf2 protein followed by Keap1 decrease and upregulation of Nrf2 target genes (AKR1B10, FTL, GGTLA4, HMOX1, and MT1) and glutathione synthesis genes (GCLC and GCLM). Pretreatment of cells with a specific inhibitor of p38 (SB202190), PI3K (LY294002), or MEK1 (PD098059) attenuated these effects of 6S. Using ultra-high-performance liquid chromatography–tandem mass spectrometry, we found that 6S modified multiple cysteine residues of Keap1 protein. In vivo 6S treatment induced Nrf2 nuclear translocation and significantly upregulated the expression of MT1, HMOX1, and GCLC in the colon of wild-type mice but not Nrf2–/– mice. Similar to 6S, a cysteine-conjugated metabolite of 6S (M2), which was previously found to be a carrier of 6S in vitro and in vivo, also activated Nrf2. Our data demonstrated that 6S and its cysteine-conjugated metabolite M2 activate Nrf2 in colon epithelial cells in vitro and in vivo through Keap1-dependent and -independent mechanisms. PMID:25148906

  11. Ginger compound [6]-shogaol and its cysteine-conjugated metabolite (M2) activate Nrf2 in colon epithelial cells in vitro and in vivo.

    PubMed

    Chen, Huadong; Fu, Junsheng; Chen, Hao; Hu, Yuhui; Soroka, Dominique N; Prigge, Justin R; Schmidt, Edward E; Yan, Feng; Major, Michael B; Chen, Xiaoxin; Sang, Shengmin

    2014-09-15

    In this study, we identified Nrf2 as a molecular target of [6]-shogaol (6S), a bioactive compound isolated from ginger, in colon epithelial cells in vitro and in vivo. Following 6S treatment of HCT-116 cells, the intracellular GSH/GSSG ratio was initially diminished but was then elevated above the basal level. Intracellular reactive oxygen species (ROS) correlated inversely with the GSH/GSSG ratio. Further analysis using gene microarray showed that 6S upregulated the expression of Nrf2 target genes (AKR1B10, FTL, GGTLA4, and HMOX1) in HCT-116 cells. Western blotting confirmed upregulation, phosphorylation, and nuclear translocation of Nrf2 protein followed by Keap1 decrease and upregulation of Nrf2 target genes (AKR1B10, FTL, GGTLA4, HMOX1, and MT1) and glutathione synthesis genes (GCLC and GCLM). Pretreatment of cells with a specific inhibitor of p38 (SB202190), PI3K (LY294002), or MEK1 (PD098059) attenuated these effects of 6S. Using ultra-high-performance liquid chromatography-tandem mass spectrometry, we found that 6S modified multiple cysteine residues of Keap1 protein. In vivo 6S treatment induced Nrf2 nuclear translocation and significantly upregulated the expression of MT1, HMOX1, and GCLC in the colon of wild-type mice but not Nrf2(-/-) mice. Similar to 6S, a cysteine-conjugated metabolite of 6S (M2), which was previously found to be a carrier of 6S in vitro and in vivo, also activated Nrf2. Our data demonstrated that 6S and its cysteine-conjugated metabolite M2 activate Nrf2 in colon epithelial cells in vitro and in vivo through Keap1-dependent and -independent mechanisms.

  12. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review

    PubMed Central

    Nguyen Thai, Huynh; Van Camp, John; Smagghe, Guy; Raes, Katleen

    2014-01-01

    This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices. PMID:25347275

  13. One drop chemical derivatization--DESI-MS analysis for metabolite structure identification.

    PubMed

    Lubin, Arnaud; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip

    2015-07-01

    Structural elucidation of metabolites is an important part during the discovery and development process of new pharmaceutical drugs. Liquid Chromatography (LC) in combination with Mass Spectrometry (MS) is usually the technique of choice for structural identification but cannot always provide precise structural identification of the studied metabolite (e.g. site of hydroxylation and site of glucuronidation). In order to identify those metabolites, different approaches are used combined with MS data including nuclear magnetic resonance, hydrogen/deuterium exchange and chemical derivatization followed by LC-MS. Those techniques are often time-consuming and/or require extra sample pre-treatment. In this paper, a fast and easy to set up tool using desorption electrospray ionization-MS for metabolite identification is presented. In the developed method, analytes in solution are simply dried on a glass plate with printed Teflon spots and then a single drop of derivatization mixture is added. Once the spot is dried, the derivatized compound is analyzed. Six classic chemical derivatizations were adjusted to work as a one drop reaction and applied on a list of compounds with relevant functional groups. Subsequently, two successive reactions on a single spot of amoxicillin were tested and the methodology described was successfully applied on an in vitro incubated alprazolam metabolite. All reactions and analyses were performed within an hour and gave useful structural information by derivatizing functional groups, making the method a time-saving and efficient tool for metabolite identification if used in addition or in some cases as an alternative to common methods. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Enterolactone glucuronide and β-glucuronidase in antibody directed enzyme prodrug therapy for targeted prostate cancer cell treatment.

    PubMed

    Di, Yunyun; Ji, Shaoping; Wolf, Philipp; Krol, Ed S; Alcorn, Jane

    2017-08-01

    Evidence from preclinical and animal studies demonstrated an anticancer effect of flaxseed lignans, particularly enterolactone (ENL), against prostate cancer. However, extensive first-pass metabolism following oral lignan consumption results in their systemic availability primarily as glucuronic acid conjugates (ENL-Gluc) and their modest in vivo effects. To overcome the unfavorable pharmacokinetics and improve their effectiveness in prostate cancer, antibody-directed enzyme prodrug therapy (ADEPT) might offer a novel strategy to allow for restricted activation of ENL from circulating ENL-Gluc within the tumor environment. The anti-prostate-specific membrane antigen (PSMA) antibody D7 was fused with human β-glucuronidase (hβG) via a flexible linker. The binding property of the fusion construct, D7-hβG, against purified or cell surface PSMA was determined by flow cytometry and Octet Red 384 system, respectively, with a binding rate constant, K d, of 2.5 nM. The enzymatic activity of D7-hβG was first tested using the probe, 4-methylumbelliferone glucuronide. A 3.8-fold greater fluorescence intensity was observed at pH 4.5 at 2 h compared with pH 7.4. The ability of D7-hβG to activate ENL from ENL-Gluc was tested and detected using LC-MS/MS. Enhanced generation of ENL was observed with increasing ENL-Gluc concentrations and reached 3613.2 ng/mL following incubation with 100 μM ENL-Gluc at pH 4.5 for 0.5 h. D7-hβG also decreased docetaxel IC 50 value from 23 nM to 14.9 nM in C4-2 cells. These results confirmed the binding and activity of D7-hβG and additional in vitro investigation is needed to support the future possibility of introducing this ADEPT system to animal models.

  15. Direct Conjugation of Emerging Contaminants in Arabidopsis: Indication for an Overlooked Risk in Plants?

    PubMed

    Fu, Qiuguo; Zhang, Jianbo; Borchardt, Dan; Schlenk, Daniel; Gan, Jay

    2017-06-06

    Agricultural use of treated wastewater, biosolids, and animal wastes introduces a multitude of contaminants of emerging concerns (CECs) into the soil-plant system. The potential for food crops to accumulate CECs depends largely on their metabolism in plants, which at present is poorly understood. Here, we evaluated the metabolism of naproxen and ibuprofen, two of the most-used human drugs from the Profen family, in Arabidopsis thaliana cells and the Arabidopsis plant. The complementary use of high-resolution mass spectrometry and 14 C labeling allowed the characterization of both free and conjugated metabolites, as well as nonextractable residues. Naproxen and ibuprofen, in their parent form, were conjugated quickly and directly with glutamic acid and glutamine, and further with peptides, in A. thaliana cells. For example, after 120 h, the metabolites of naproxen accounted for >90% of the extractable chemical mass, while the intact parent itself was negligible. The structures of glutamate and glutamine conjugates were confirmed using synthesized standards and further verified in whole plants. Amino acid conjugates may easily deconjugate, releasing the parent molecule. This finding highlights the possibility that the bioactivity of such CECs may be effectively preserved through direct conjugation, a previously overlooked risk. Many other CECs are also carboxylic acids, such as the profens. Therefore, direct conjugation may be a common route for plant metabolism of these CECs, making it imperative to consider conjugates when assessing their risks.

  16. LC-MS/MS analysis of uncommon paracetamol metabolites derived through in vitro polymerization and nitration reactions in liquid nitrogen.

    PubMed

    Trettin, Arne; Jordan, Jens; Tsikas, Dimitrios

    2014-09-01

    Paracetamol (acetaminophen, APAP) is a commonly used analgesic drug. Known paracetamol metabolites include the glucuronide, sulfate and mercapturate. N-Acetyl-benzoquinonimine (NAPQI) is considered the toxic intermediate metabolite of paracetamol. In vitro and in vivo studies indicate that paracetamol is also metabolized to additional poorly characterized metabolites. For example, metabolomic studies in urine samples of APAP-treated mice revealed metabolites such as APAP-sulfate-APAP and APAP-S-S-APAP in addition to the classical phase II metabolites. Here, we report on the development and application of LC-MS and LC-MS/MS approaches to study reactions of unlabelled and (2)H-labelled APAP with unlabelled and (15)N-labelled nitrite in aqueous phosphate buffers (pH 7.4) upon their immersion into liquid nitrogen (-196°C). In mechanistic studies, these reactions were also studied in aqueous buffer prepared in (18)O-labelled water. LC-MS and LC-MS/MS analyses were performed on a reverse-phase material (C18) using gradient elution (2mM ammonium acetate/acetonitrile), in positive and negative electrospray mode. We identified a series of APAP metabolites including di-, tri- and tetra-APAP, mono- and di-nitro-APAP and nitric ester of di-APAP. Our study indicates that nitrite induces oxidation, i.e., polymerization and nitration of APAP, when buffered APAP/nitrite solutions are immersed into liquid nitrogen. These reactions are specific for nitrite with respect to nitrate and do not proceed via intermediate formation of NAPQI. Potassium ions and physiological saline but not thiols inhibit nitrite- and shock-freeze-induced reactions of paracetamol. The underlying mechanism likely involves in situ formation of NO2 radicals from nitrite secondary to profound pH reduction (down to pH 1) and disproportionation. Polymeric paracetamol species can be analyzed as pentafluorobenzyl derivatives by LC-MS but not by GC-MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Urinary steroid hormone analysis of ovarian cycles and pregnancy in mandrills (Mandrillus sphinx) indicate that menses, copulatory behavior, sexual swellings and reproductive condition are associated with changing estrone conjugates (E(1)C) and pregnanediol-3-glucuronide (PdG).

    PubMed

    Phillips, Rebecca Sellin; Wheaton, Catharine J

    2008-07-01

    The objective of this study was to determine if sexual swellings in mandrills (Mandrillus sphinx) are a reflection of reproductive endocrine state. Urine samples were assayed using an enzyme immunoassay measuring pregnanediol-3-glucuronide (PdG) and estrone conjugates (E(1)C). Hormone patterns of ovarian cycles, pregnancy and lactation were characterized and compared with sexual swellings and copulations relative to menses and peak E(1)C. Cycle lengths averaging 28.7 days and pregnancy length of 181 days determined by hormonal and sexual swelling measures were similar to those reported in other Old World primate species. First day of copulation was observed during rising E(1)C concentrations and preceded observations of peak swelling by 1-2 days. Observations of peak sexual swellings occurred at or on the day after peak E(1)C and decreased following the ovulatory increase in PdG. Observations of menses and sexual swellings are a useful method to track mandrill ovarian cycles and can assist zoos in determining the reproductive state of females in their collections. Zoo Biol 27:320-330, 2008. (c) 2008 Wiley-Liss, Inc.

  18. Urine Levels of Phthalate Metabolites and Bisphenol A in Relation to Main Metabolic Syndrome Components: Dyslipidemia, Hypertension and Type 2 Diabetes. A Pilot Study.

    PubMed

    Piecha, Roman; Svačina, Štěpán; Malý, Marek; Vrbík, Karel; Lacinová, Zdenka; Haluzík, Martin; Pavloušková, Jana; Vavrouš, Adam; Matějková, Dagmar; Müllerová, Dana; Mráz, Miloš; Matoulek, Martin

    2016-12-01

    Human exposure to organic pollutants (some of them also called endocrine disruptors) can be associated with adverse metabolic health outcomes including type 2 diabetes. The goal of this study was to compare the urine levels of bisphenol A and phthalate metabolites in subgroups of patients with metabolic syndrome composed of patients with and without three important components of metabolic syndrome (hypertension, dyslipidemia and diabetes). We have investigated 24 hr urine samples of 168 patients with metabolic syndrome from the Metabolic Outpatient Department of General University Hospital in Prague. Using standard metabolic syndrome criteria, we classified patients as dyslipidemic (n=87), hypertensive (n=96), and type 2 diabetic (n=58). Bisphenol A and 15 metabolites of phthalates were evaluated in relation to creatinine excretion. Samples were analysed with enzymatic cleavage of glucuronide using ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry in one laboratory with external quality control. Four metabolites, mono-n-butyl phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, and mono-(2-ethyl-5-carboxypentyl) phthalate showed significantly higher levels in diabetic compared to non-diabetic patients (p<0.001, p=0.002, p=0.002, and p=0.005, respectively). The differences remained significant after adjustment to hypertension, dyslipidemia, age, and BMI. No difference was found between either the hypertensive and non-hypertensive or dyslipidemic and non-dyslipidemic patients. There was no significant relation of bisphenol A level to diabetes, hypertension, dyslipidemia, age, and BMI. Urine levels of four phthalate metabolites were significantly higher in type 2 diabetics independently on specified predictors. Phthalate levels can be in relation to beta cell dysfunction in type 2 diabetic patients but this study is not able to show if the relation is causal. Copyright© by the National

  19. Transformation of codeine and codeine-6-glucuronide to opioid analogues by urine adulteration with pyridinium chlorochromate: potential issue for urine drug testing.

    PubMed

    Luong, Susan; Ung, Alison T; Kalman, John; Fu, Shanlin

    2014-07-30

    Pyridinium chlorochromate (PCC) is the active ingredient of 'Urine Luck', a commercially available in vitro adulterating agent used to conceal the presence of drugs in a urine specimen. The exposure of codeine and its major glucuronide metabolite codeine-6-glucuronide (C6G) to PCC was investigated to determine whether PCC is an effective masking agent for these opiate compounds. Following the addition of PCC to both spiked and authentic codeine and C6G-positive urine specimens, the samples were monitored using liquid chromatography/mass spectrometry (LC/MS). Stable reaction products were identified and characterized using high-resolution MS analysis and, where possible, nuclear magnetic resonance (NMR) analysis. It was determined that PCC effectively oxidizes codeine and C6G, thus altering the original codeine-to-C6G ratio in the urine specimen. Four reaction products were identified for codeine: codeinone, 14-hydroxycodeinone, 6-O-methylcodeine and 8-hydroxy-7,8-dihydrocodeinone. Similarly, three reaction products were identified for C6G: codeinone, codeine and a lactone of C6G (tentative assignment). Besides addressing the complications added to interpretation, more investigation is warranted to further determine their potential for use as markers for monitoring the presence of codeine and C6G in urine specimens adulterated with PCC. Copyright © 2014 John Wiley & Sons, Ltd.

  20. The synthesis and biological evaluation of new DNA-directed alkylating agents, phenyl N-mustard-4-anilinoquinoline conjugates containing a urea linker.

    PubMed

    Marvania, Bhavin; Kakadiya, Rajesh; Christian, Wilson; Chen, Tai-Lin; Wu, Ming-Hsi; Suman, Sharda; Tala, Kiran; Lee, Te-Chang; Shah, Anamik; Su, Tsann-Long

    2014-08-18

    We synthesized a series of phenyl N-mustard-4-anilinoquinoline conjugates to study their antitumorigenic effects. These agents were prepared by the condensation of 4-[N,N-bis(2-chloroethyl)amino]phenyl isocyanate with 6-amino-4-methylamino or 4-anilinoquinolines. The structure-activity relationship (SAR) studies revealed that the C2-methylquinoline derivatives (18a-o) were generally more cytotoxic than the C2-phenylquinoline conjugates (23a-d) in inhibiting the cell growth of various human tumor cell lines in vitro. However, the methylamino or aniline substituents at C4 of quinoline did not influence the cytotoxic effects. The title conjugates were capable of inducing DNA cross-linking and promoting cell-cycle arrest at the G2/M phase. This study demonstrates that phenyl N-mustard-4-anilinoquinoline conjugates are generally more potent than phenyl N-mustard-4-anilinoquinazoline conjugates against the cell growth of various tumor cell-lines. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Human Microdosing with Carcinogenic Polycyclic Aromatic Hydrocarbons: In Vivo Pharmacokinetics of Dibenzo[ def,p ]chrysene and Metabolites by UPLC Accelerator Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madeen, Erin P.; Ognibene, Ted J.; Corley, Richard A.

    Metabolism is a key health risk factor following exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in non-smokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a micro-dose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novelmore » “moving wire” interface between ultra-performance liquid chromatography (UPLC) and AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself, (Cmax= 18.5 ± 15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/-)-DBC-11,12-diol (Cmax= 2.5 ± 1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Free and conjugated metabolites were detected in urine with [14C]-(+/-)-DBC-11,12,13,14-tetraol isomers identified as the major metabolites, 56.3% of which were conjugated (Cmax= 35.8 ± 23.0 pg/pool, Tmax= 6-12 h pool). [14C]-DBC-11,12-diol, of which 97.5% was conjugated, was also identified in urine (Cmax= 29.4 ± 11.6 pg/pool, Tmax= 6-12 h pool). Parent [14C]-DBC was not detected in urine. This is the first dataset to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose animal models to humans for translation of environmental health risk assessment.« less

  2. Metabolic Profile of Skimmianine in Rats Determined by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    PubMed

    Huang, Aihua; Xu, Hui; Zhan, Ruoting; Chen, Weiwen; Liu, Jiawei; Chi, Yuguang; Chen, Daidi; Ji, Xiaoyu; Luo, Chaoquan

    2017-03-23

    Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family. It has been reported to have analgesic, antispastic, sedative, anti-inflammatory, and other pharmacologic activities. Despite its critical pharmacological function, its metabolite profiling is still unclear. In this study, the in vivo metabolite profiling of skimmianine in rats was investigated using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). The metabolites were predicted using MetabolitePilot TM software. These predicted metabolites were further analyzed by MS² spectra, and compared with the detailed fragmentation pathway of the skimmianine standard and literature data. A total of 16 metabolites were identified for the first time in rat plasma, urine, and feces samples after oral administration of skimmianine. Skimmianine underwent extensive Phase I and Phase II metabolism in rats. The Phase I biotransformations of skimmianine consist of epoxidation of olefin on its furan ring (M1) followed by the hydrolysis of the epoxide ring (M4), hydroxylation (M2, M3), O -demethylation (M5-M7), didemethylation (M14-M16). The Phase II biotransformations include glucuronide conjugation (M8-M10) and sulfate conjugation (M11-M13). The epoxidation of 2,3-olefinic bond followed by the hydrolysis of the epoxide ring and O -demethylation were the major metabolic pathways of skimmianine. The results provide key information for understanding the biotransformation processes of skimmianine and the related furoquinoline alkaloids.

  3. Prediction of Relative In Vivo Metabolite Exposure from In Vitro Data Using Two Model Drugs: Dextromethorphan and Omeprazole

    PubMed Central

    Lutz, Justin D.

    2012-01-01

    Metabolites can have pharmacological or toxicological effects, inhibit metabolic enzymes, and be used as probes of drug-drug interactions or specific cytochrome P450 (P450) phenotypes. Thus, better understanding and prediction methods are needed to characterize metabolite exposures in vivo. This study aimed to test whether in vitro data could be used to predict and rationalize in vivo metabolite exposures using two model drugs and P450 probes: dextromethorphan and omeprazole with their primary metabolites dextrorphan, 5-hydroxyomeprazole (5OH-omeprazole), and omeprazole sulfone. Relative metabolite exposures were predicted using metabolite formation and elimination clearances. For dextrorphan, the formation clearances of dextrorphan glucuronide and 3-hydroxymorphinan from dextrorphan in human liver microsomes were used to predict metabolite (dextrorphan) clearance. For 5OH-omeprazole and omeprazole sulfone, the depletion rates of the metabolites in human hepatocytes were used to predict metabolite clearance. Dextrorphan/dextromethorphan in vivo metabolite/parent area under the plasma concentration versus time curve ratio (AUCm/AUCp) was overpredicted by 2.1-fold, whereas 5OH-omeprazole/omeprazole and omeprazole sulfone/omeprazole were predicted within 0.75- and 1.1-fold, respectively. The effect of inhibition or induction of the metabolite's formation and elimination on the AUCm/AUCp ratio was simulated. The simulations showed that unless metabolite clearance pathways are characterized, interpretation of the metabolic ratios is exceedingly difficult. This study shows that relative in vivo metabolite exposure can be predicted from in vitro data and characterization of secondary metabolism of probe metabolites is critical for interpretation of phenotypic data. PMID:22010218

  4. Star-Shaped Conjugated Systems

    PubMed Central

    Detert, Heiner; Lehmann, Matthias; Meier, Herbert

    2010-01-01

    The present review deals with the preparation and the properties of star-shaped conjugated compounds. Three, four or six conjugated arms are attached to cross-conjugated cores, which consist of single atoms (B, C+, N), benzene or azine rings or polycyclic ring systems, as for example triphenylene or tristriazolotriazine. Many of these shape-persistent [n]star compounds tend to π-stacking and self-organization, and exhibit interesting properties in materials science: Linear and non-linear optics, electrical conductivity, electroluminescence, formation of liquid crystalline phases, etc.

  5. Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus.

    PubMed

    Nishikawa, Miyu; Iwano, Hidetomo; Yanagisawa, Risa; Koike, Nanako; Inoue, Hiroki; Yokota, Hiroshi

    2010-09-01

    Bisphenol A (BPA), a well-known endocrine disruptor, is highly glucuronidated in the liver, and the resultant BPA-glucuronide (BPA-GA) is excreted primarily into bile. However, in rodents, prenatal exposure to low doses of BPA can adversely affect the fetus, despite the efficient drug-metabolizing systems of the dams. The transport mechanisms of BPA from mother to fetus are unknown. To test our hypothesis that BPA-GA-an inactive metabolite-is passed through the placenta to the fetus, where it affects the fetus after reactivation, we investigated the placental transfer of BPA-GA and reactivation to BPA in the fetus. After performing uterine perfusion with BPA-GA in pregnant rats, we examined the expression and localization of the placental transporters for drug metabolites in the perfusate by reverse-transcriptase polymerase chain reaction and immunohistochemistry. We also investigated the deconjugation of BPA-GA in the fetus and examined uridine 5 -diphospho-glucuronosyltransferase (UGT) activity toward BPA and the expression of UGT isoforms in fetal liver. We detected BPA-GA and deconjugated BPA in the fetus and amniotic fluid after perfusion. In the trophoblast cells, organic anion-transporting polypeptide 4a1 (Oatp4a1) was localized on the apical membrane, and multidrug resistance-associated protein 1 (Mrp1) was localized to the basolateral membrane. We observed deconjugation of BPA-GA in the fetus; furthermore, we found the expression of UGT2B1, which metabolizes BPA, to be quite low in the fetus. These results demonstrate that BPA-GA is transferred into the fetus and deconjugated in the fetus because of its vulnerable drug-metabolizing system.

  6. S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen

    PubMed Central

    Bowalgaha, Kushari; Elliot, David J; Mackenzie, Peter I; Knights, Kathleen M; Swedmark, Stellan; Miners, John O

    2005-01-01

    Aims To characterize the kinetics of S-naproxen (‘naproxen’) acyl glucuronidation and desmethylnaproxen acyl and phenolic glucuronidation by human liver microsomes and identify the human UGT isoform(s) catalysing these reactions. Methods Naproxen and desmethylnaproxen glucuronidation were investigated using microsomes from six and five livers, respectively. Human recombinant UGTs were screened for activity towards naproxen and desmethylnaproxen. Where significant activity was observed, kinetic parameters were determined. Naproxen and desmethylnaproxen glucuronides were measured by separate high-performance liquid chromatography methods. Results Naproxen acyl glucuronidation by human liver microsomes followed biphasic kinetics. Mean apparent Km values (±SD, with 95% confidence interval in parentheses) for the high- and low-affinity components were 29 ± 13 µm (16, 43) and 473 ± 108 µm (359, 587), respectively. UGT 1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10 and 2B7 glucuronidated naproxen. UGT2B7 exhibited an apparent Km (72 µm) of the same order as the high-affinity human liver microsomal activity, which was inhibited by the UGT2B7 selective ‘probe’ fluconazole. Although data for desmethylnaproxen phenolic glucuronidation by human liver microsomes were generally adequately fitted to either the single- or two-enzyme Michaelis–Menten equation, model fitting was inconclusive for desmethylnaproxen acyl glucuronidation. UGT 1A1, 1A7, 1A9 and 1A10 catalysed both the phenolic and acyl glucuronidation of desmethylnaproxen, while UGT 1A3, 1A6 and 2B7 formed only the acyl glucuronide. Atypical glucuronidation kinetics were variably observed for naproxen and desmethylnaproxen glucuronidation by the recombinant UGTs. Conclusion UGT2B7 is responsible for human hepatic naproxen acyl glucuronidation, which is the primary elimination pathway for this drug. PMID:16187975

  7. Detection and Structural Characterization of Nucleophiles Trapped Reactive Metabolites of Limonin Using Liquid Chromatography-Mass Spectrometry

    PubMed Central

    Deng, Yujie; Fu, Yudong; Xu, Shumin; Wang, Ping; Yang, Nailong; Li, Chengqian

    2018-01-01

    Limonin (LIM), a furan-containing limonoid, is one of the most abundant components of Dictamnus dasycarpus Turcz. Recent studies demonstrated that LIM has great potential for inhibiting the activity of drug-metabolizing enzymes. However, the mechanisms of LIM-induced enzyme inactivation processes remain unexplored. The main objective of this study was to identify the reactive metabolites of LIM using liquid chromatography-mass spectrometry. Three nucleophiles, glutathione (GSH), N-acetyl cysteine (NAC), and N-acetyl lysine (NAL), were used to trap the reactive metabolites of LIM in in vitro and in vivo models. Two different types of mass spectrometry, a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometry and a LTQ velos Pro ion trap mass spectrometry, were employed to acquire structural information of nucleophile adducts of LIM. In total, six nucleophile adducts of LIM (M1–M6) with their isomers were identified; among them, M1 was a GSH and NAL conjugate of LIM, M2–M4 were glutathione adducts of LIM, M5 was a NAC and NAL conjugate of LIM, and M6 was a NAC adduct of LIM. Additionally, CYP3A4 was found to be the key enzyme responsible for the bioactivation of limonin. This metabolism study largely facilitates the understanding of mechanisms of limonin-induced enzyme inactivation processes. PMID:29850372

  8. Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins.

    PubMed

    Harrer, Henning; Laviad, Elad L; Humpf, Hans Ulrich; Futerman, Anthony H

    2013-03-01

    Fumonisins are mycotoxins produced by Fusarium species. The predominant derivative, fumonisin B1 (FB1), occurs in food and feed and is of health concern due to its hepatotoxic and carcinogenic effects. However, the role of FB1 metabolites on the mechanism of the toxicity, the inhibition of the ceramide synthesis, is unknown. The aim of this study was to identify new fumonisin metabolites and to evaluate their cytotoxic potential. MS, molecular biology, and in vitro enzyme assays were used to investigate fumonisin metabolism in mammalian cells overexpressing human ceramide synthase (CerS) genes. N-acyl-FB1 derivatives were detected as new metabolites in cultured cells at levels of up to 10 pmol/mg of protein. The N-acylation of FB1 and hydrolyzed FB1 was analyzed in several cell lines, including cells overexpressing CerS. The acyl-chain length of the N-acyl fumonisins depends on the CerS isoform acylating them. The N-acyl fumonisins are more cytotoxic than the parent fumonisin B1. The identification of N-acyl fumonisins with various acyl chain lengths together with the observed cytotoxicity of these compounds is a new aspect of fumonisin-related toxicity. Therefore, these new metabolites might play an important role in the mode of action of fumonisins. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of phenobarbital on aniline metabolism in primary liver cell culture of rats with ethionine-induced liver disorder.

    PubMed

    Noguchi, M; Nitoh, S; Mabuchi, M; Kawai, Y

    1996-04-01

    In experiment 1, the amount of aniline (AN) metabolites in the primary cell culture medium of the liver cells obtained from ethionine (ET)-treated rats was compared with that of the control (normal) rats. Although the metabolites detected in both groups were p-aminophenol (p-AP), N-acetyl-p-AP (AAP), acetoanilide (AAN), AAP-glucuronide (AAPG), phenylhydroxylamine sulfate (PHAS) and p-AP-glucuronide (p-APG), the amount of AAP was lower and that of p-APG was markedly higher in the ET-treated rats than in the control rats. In experiment 2, phenobarbital (PB) was orally administered to the ET-treated and control rats at a dose of 100 mg/kg. The time course changes in AN metabolites in the primary cell culture medium of liver cells obtained at 2 or 48 hr after PB treatment were compared with those without PB treatment. In the ET-treated rats, the amount of PHAS was slightly higher at 2 hr after PB treatment, and that of AAP was lower and that of p-APG was higher at 48 hr after PB treatment as compared with those without PB treatment. In the control rats, the amounts of AAP, AAN, p-AP and p-APG at 2 hr after PB treatment remained lower than those without PB treatment, and that of AAP was markedly lower and that of p-APG was higher at 48 hr after PB treatment as compared with those without PB treatment. These findings indicated greater detoxication in the primary liver cell culture in the ET-treated rats than in the control rats. Furthermore, detoxication was greater in the primary cell culture of liver cell obtained from the ET-treated rats after PB treatment than from those without PB treatment, because the production of acetylates (AAP) decreased and p-APG increased (induction of conjugated enzyme) in the PB treatment group.

  10. Meconium Nicotine and Metabolites by Liquid Chromatography–Tandem Mass Spectrometry: Differentiation of Passive and Nonexposure and Correlation with Neonatal Outcome Measures

    PubMed Central

    Gray, Teresa R.; Magri, Raquel; Shakleya, Diaa M.; Huestis, Marilyn A.

    2011-01-01

    BACKGROUND Meconium analysis is a diagnostically sensitive and objective alternative to maternal self-report for detecting prenatal tobacco exposure. Nicotine and metabolite disposition in meconium is poorly characterized, and correlation of analytes’ concentrations with neonatal outcomes is unexplored. Our objectives were to quantify nicotine, cotinine, trans-3′-hydroxycotinine (OH-cotinine), nornicotine, norcotinine, and glucuronide concentrations in meconium, identify the best biomarkers of in utero tobacco exposure, compare meconium concentrations of tobacco-exposed and nonexposed neonates, and investigate concentration–outcome relationships. METHODS We quantified concentrations of nicotine and 4 metabolites with and without hydrolysis simultaneously in meconium from tobacco-exposed and nonexposed neonates by liquid chromatography–tandem mass spectrometry. We compared meconium concentrations to birth weight, length, head circumference, gestational age, and 1- and 5-min Apgar scores. RESULTS Nicotine, cotinine, and OH-cotinine were the most prevalent and abundant meconium tobacco biomarkers and were found in higher concentrations in tobacco-exposed neonates. Whereas cotinine and OH-cotinine are glucuronide bound, performing the lengthy and costly enzymatic hydrolysis identified only 1 additional positive specimen. Unconjugated nicotine, cotinine, or OH-cotinine meconium concentration >10 ng/g most accurately discriminated active from passive and nonexposed neonates. There was no significant correlation between quantitative nicotine and metabolite meconium results and neonatal outcomes, although presence of a nicotine biomarker predicted decreased head circumference. CONCLUSIONS Unconjugated nicotine, cotinine, and OH-cotinine should be analyzed in meconium to detect in utero tobacco exposure, as approximately 25% of positive specimens did not contain cotinine. Immunoassay testing monitoring cotinine only would underestimate the prevalence of prenatal

  11. Novel sulphur-containing imatinib metabolites found by untargeted LC-HRMS analysis.

    PubMed

    Vrobel, Ivo; Friedecký, David; Faber, Edgar; Najdekr, Lukáš; Mičová, Kateřina; Karlíková, Radana; Adam, Tomáš

    2017-06-15

    Untargeted metabolite profiling using high-resolution mass spectrometry coupled with liquid chromatography (LC-HRMS), followed by data analysis with the Compound Discoverer 2.0™ software, was used to study the metabolism of imatinib in humans with chronic myeloid leukemia. Plasma samples from control (drug-free) and patient (treated with imatinib) groups were analyzed in full-scan mode and the unknown ions occurring only in the patient group were then, as potential imatinib metabolites, subjected to multi-stage fragmentation in order to elucidate their structure. The application of an untargeted approach, as described in this study, enabled the detection of 24 novel structurally unexpected metabolites. Several sulphur-containing compounds, probably originating after the reaction of reactive intermediates of imatinib with endogenous glutathione, were found and annotated as cysteine and cystine adducts. In the proposed mechanism, the cysteine adducts were formed after the rearrangement of piperazine moiety to imidazoline. On the contrary, in vivo S-N exchange occurred in the case of the cystine adducts. In addition, N-O exchange was observed in the collision cell in the course of the fragmentation of the cystine adducts. The presence of sulphur in the cysteine and cystine conjugates was proved by means of ultra-high resolution measurements using Orbitrap Elite. The detection of metabolites derived from glutathione might improve knowledge about the disposition of imatinib towards bioactivation and help to improve understanding of the mechanism of its hepatotoxicity or nephrotoxicity in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Gas Chromatography-Mass Spectrometry for Metabolite Profiling of Japanese Black Cattle Naturally Contaminated with Zearalenone and Sterigmatocystin.

    PubMed

    Toda, Katsuki; Kokushi, Emiko; Uno, Seiichi; Shiiba, Ayaka; Hasunuma, Hiroshi; Fushimi, Yasuo; Wijayagunawardane, Missaka P B; Zhang, Chunhua; Yamato, Osamu; Taniguchi, Masayasu; Fink-Gremmels, Johanna; Takagi, Mitsuhiro

    2017-09-21

    The objective of this study was to evaluate the metabolic profile of cattle fed with or without zearalenone (ZEN) and sterigmatocystin (STC)-contaminated diets using a gas chromatography-mass spectrometry metabolomics approach. Urinary samples were collected from individual animals ( n = 6 per herd) from fattening female Japanese Black (JB) cattle herds (23 months old, 550-600 kg). Herd 1 had persistently high urinary ZEN and STC concentrations due to the presence of contaminated rice straw. Herd 2, the second female JB fattening herd (23 months old, 550-600 kg), received the same dietary feed as Herd 1, with non-contaminated rice straw. Urine samples were collected from Herd 1, two weeks after the contaminated rice straw was replaced with uncontaminated rice straw (Herd 1N). Identified metabolites were subjected to principal component analysis (PCA) and ANOVA. The PCA revealed that the effects on cattle metabolites depended on ZEN and STC concentrations. The contamination of cattle feed with multiple mycotoxins may alter systemic metabolic processes, including metabolites associated with ATP generation, amino acids, glycine-conjugates, organic acids, and purine bases. The results obtained from Herd 1N indicate that a two-week remedy period was not sufficient to improve the levels of urinary metabolites, suggesting that chronic contamination with mycotoxins may have long-term harmful effects on the systemic metabolism of cattle.

  13. Gas Chromatography-Mass Spectrometry for Metabolite Profiling of Japanese Black Cattle Naturally Contaminated with Zearalenone and Sterigmatocystin

    PubMed Central

    Toda, Katsuki; Kokushi, Emiko; Uno, Seiichi; Shiiba, Ayaka; Hasunuma, Hiroshi; Fushimi, Yasuo; Wijayagunawardane, Missaka P. B.; Zhang, Chunhua; Yamato, Osamu; Taniguchi, Masayasu; Fink-Gremmels, Johanna; Takagi, Mitsuhiro

    2017-01-01

    The objective of this study was to evaluate the metabolic profile of cattle fed with or without zearalenone (ZEN) and sterigmatocystin (STC)-contaminated diets using a gas chromatography-mass spectrometry metabolomics approach. Urinary samples were collected from individual animals (n = 6 per herd) from fattening female Japanese Black (JB) cattle herds (23 months old, 550–600 kg). Herd 1 had persistently high urinary ZEN and STC concentrations due to the presence of contaminated rice straw. Herd 2, the second female JB fattening herd (23 months old, 550–600 kg), received the same dietary feed as Herd 1, with non-contaminated rice straw. Urine samples were collected from Herd 1, two weeks after the contaminated rice straw was replaced with uncontaminated rice straw (Herd 1N). Identified metabolites were subjected to principal component analysis (PCA) and ANOVA. The PCA revealed that the effects on cattle metabolites depended on ZEN and STC concentrations. The contamination of cattle feed with multiple mycotoxins may alter systemic metabolic processes, including metabolites associated with ATP generation, amino acids, glycine-conjugates, organic acids, and purine bases. The results obtained from Herd 1N indicate that a two-week remedy period was not sufficient to improve the levels of urinary metabolites, suggesting that chronic contamination with mycotoxins may have long-term harmful effects on the systemic metabolism of cattle. PMID:28934162

  14. Liquid Microjunction Surface Sampling Coupled with High-Pressure Liquid Chromatography-Electrospray Ionization-Mass Spectrometry for Analysis of Drugs and Metabolites in Whole-Body Thin Tissue Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Van Berkel, Gary J

    2010-01-01

    In this work, a commercially available autosampler was adapted to perform direct liquid microjunction (LMJ) surface sampling followed by a high-pressure liquid chromatography (HPLC) separation of the extract components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the utility of coupling a separation with this direct liquid extraction based surface sampling approach, four different organs (brain, lung, kidney, and liver) from whole-body thin tissue sections of propranolol dosed and control mice were examined. The parent drug was observed in the chromatograms of the surface sampling extracts from all the organs of the dosed mouse examined. In addition, twomore » isomeric phase II metabolites of propranolol (an aliphatic and an aromatic hydroxypropranolol glucuronide) were observed in the chromatograms of the extracts from lung, kidney, and liver. Confirming the presence of one or the other or both of these glucuronides in the extract from the various organs was not possible without the separation. These drug and metabolite data obtained using the LMJ surface sampling/HPLC-MS method and the results achieved by analyzing similar samples by conventional extraction of the tissues and subsequent HPLC-MS analysis were consistent.« less

  15. HOMOGENEOUS FLUOROIMMUNOASSAY OF A PYRETHROID METABOLITE IN URINE. (R825433)

    EPA Science Inventory

    Pyrethroids are widely used in agriculture as insecticides. In this study, we describe a simple one-step homogeneous fluoroimmunoassay for the glycine conjugate of phenoxybenzoic acid (PBAG), a putative pyrethroid metabolite that may be used as a biomarker of exposure to pyret...

  16. Effects of the Substituents of Boron Atoms on Conjugated Polymers Containing B←N Units.

    PubMed

    Liu, Jun; Wang, Tao; Dou, Chuandong; Wang, Lixiang

    2018-06-15

    Organoboron chemistry is a new tool to tune the electronic structures and properties of conjugated polymers, which are important for applications in organic opto-electronic devices. To investigate the effects of substituents of boron atoms on conjugated polymers, we synthesized three conjugated polymers based on double B←N bridged bipyridine (BNBP) with various substituents on the boron atoms. By changing the substituents from four phenyl groups and two phenyl groups/two fluorine atoms to four fluorine atoms, the BNBP-based polymers show the blue-shifted absorption spectra, decreased LUMO/HOMO energy levels and enhanced electron affinities, as well as the increased electron mobilities. Moreover, these BNBP-based polymers can be used as electron acceptors for all-polymer solar cells. These results demonstrate that the substituents of boron atoms can effectively modulate the electronic properties and applications of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In vitro inhibition of human UGT isoforms by ritonavir and cobicistat.

    PubMed

    Algeelani, Sara; Alam, Novera; Hossain, Md Amin; Mikus, Gerd; Greenblatt, David J

    2018-08-01

    1. Ritonavir and cobicistat are pharmacokinetic boosting agents used to increase systemic exposure to other antiretroviral therapies. The manufacturer's data suggests that cobicistat is a more selective CYP3A4 inhibitor than ritonavir. However, the inhibitory effect of ritonavir and cobicistat on human UDP glucuronosyltransferase (UGT) enzymes in Phase II metabolism is not established. This study evaluated the inhibition of human UGT isoforms by ritonavir versus cobicistat. 2. Acetaminophen and ibuprofen were used as substrates to evaluate the metabolic activity of the principal human UGTs. Metabolite formation rates were determined by HPLC analysis of incubates following in vitro incubation of index substrates with human liver microsomes (HLMs) at different concentrations of ritonavir or cobicistat. Probenecid and estradiol served as positive control inhibitors. 3. The 50% inhibitory concentrations (IC 50 ) of cobicistat and ritonavir were at least 50 µM, which substantially exceeds usual clinical plasma concentrations. Probenecid inhibited the glucuronidation of acetaminophen (IC 50 0.7 mM), but not glucuronidation of ibuprofen. At relatively high concentrations, estradiol inhibited ibuprofen glucuronidation (IC 50 17 µM). 4. Ritonavir and cobicistat are unlikely to produce clinically important drug interactions involving drugs metabolized to glucuronide conjugates by UGT1A1, 1A3, 1A6, 1A9, 2B4 and 2B7.

  18. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates.

    PubMed

    Kato, Yoshinori; Onishi, Hiraku; Machida, Yoshiharu

    2004-02-01

    N-succinyl-chitosan (Suc-Chi) has favourable properties as a drug carrier such as biocompatibility, low toxicity and long-term retention in the body. It was long retained in the systemic circulation after intravenous administration, and the plasma half-lives of Suc-Chi (MW: 3.4 x 10(5); succinylation degree: 0.81 mol/sugar unit; deacetylation degree: 1.0 mol/sugar unit) were ca. 100.3h in normal mice and 43 h in Sarcoma 180-bearing mice. The biodistribution of Suc-Chi into other tissues was trace apart from the prostate and lymph nodes. The maximum tolerable dose for the intraperitoneal injection of Suc-Chi to mice was greater than 2 g/kg. The water-insoluble and water-soluble conjugates could be prepared using a water-soluble carbodiimide and mitomycin C (MMC) or using an activated ester of glutaric MMC. In vitro release characteristics of these conjugates showed similar patterns, i.e. a pH-dependent manner, except that water-insoluble conjugates showed a slightly slower release of MMC than water-soluble ones. The conjugates of MMC with Suc-Chi showed good antitumour activities against various tumours such as murine leukaemias (L1210 and P388), B16 melanoma, Sarcoma 180 solid tumour, a murine liver metastatic tumour (M5076) and a murine hepatic cell carcinoma (MH134). This review summarizes the utilization of Suc-Chi as a drug carrier for macromolecular conjugates of MMC and the therapeutic efficacy of the conjugates against various tumours.

  19. Characterization of new metabolites from in vivo biotransformation of 2-amino-3-methylimidazo[4,5-f]quinoline in mouse by mass spectrometry

    PubMed Central

    Hsu, Fong-Fu; Lakshmi, Vijaya M.; Zenser, Terry V.

    2010-01-01

    In studying the metabolic pathways underlying the mechanism of carcinogenesis of the heterocyclic amine of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), we recently found a new metabolite, which gave a [M + H]+ ion of m/z 217 when subjected to ESI in positive-ion mode. Following ip injection of this metabolite of m/z 217 (designated as m/z 217) to beta-naphthoflavone-treated mice, 57% of the total radioactivity was recovered in a 24-hr mouse urine sample. HPLC separation followed by MS analysis indicates that the urine sample contained m/z 217 (36 ± 3% of total recovered radioactivity) and two other peaks that gave rise to the [M + H]+ ions of m/z 393 (31 ± 4%, designated as m/z 393) and m/z 233 (14 ± 1%, designated as m/z 233). Beta-glucuronidase treatment of m/z 393 resulted in a radioactive peak corresponding to m/z 217. Electrospray ionization in combination with various mass spectrometry techniques, including multiple-stage mass spectrometry, exact mass measurements, and H-D exchange followed by tandem mass spectrometry was used for structural characterization. The urinary metabolites of m/z 217, 393, and 233 were identified as 1,2-dihydro-2-amino-5-hydroxy-3-methylimidazo[4,5-f]quinoline, 1,2-dihydro-2-amino-5-O-glucuronide-3-methylimidazo[4,5-f]quinoline, and 1,2-dihydro-2-amino-5,7-dihydroxy-3-methylimidazo[4,5-f]quinoline, respectively. Our results demonstrated that m/z 217 is biotransformed in vivo to m/z 393 by O-glucuronidation and to m/z 233 by oxidation. The observation of these more polar metabolites relative to IQ suggests that they may arise from a previously undescribed detoxicification pathway. PMID:19629964

  20. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats

    PubMed Central

    Kapetanovic, Izet M.; Huang, Zhihua; Thompson, Thomas N.; McCormick, David L.

    2011-01-01

    Purpose Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a naturally occurring polyphenol with a broad range of possible health benefits, including anti-cancer activity. However, the biological activity of resveratrol may be limited by poor absorption and first-pass metabolism: only low plasma concentrations of resveratrol are seen following oral administration, and metabolism to glucuronide and sulfate conjugates is rapid. Methylated polyphenol analogs (such as pterostilbene [3,5-dimethoxy-4′-hydroxy-trans-stilbene], the dimethylether analog of resveratrol) may overcome these limitations to pharmacologic efficacy. The present study was designed to compare the bioavailability, pharmacokinetics, and metabolism of resveratrol and pterostilbene following equimolar oral dosing in rats. Methods The agents were administered orally via gavage for 14 consecutive days at 50 or 150 mg/kg/day for resveratrol and 56 or 168 mg/kg/day for pterostilbene. Two additional groups were dosed once intravenously with 10 and 11.2 mg/kg for resveratrol and pterostilbene, respectively. Plasma concentrations of agents and metabolites were measured using a high-pressure liquid chromatograph-tandem mass spectrometer system. Noncompartmental analysis was used to derive pharmacokinetic parameters. Results Resveratrol and pterostilbene were approximately 20 and 80% bioavailable, respectively. Following oral dosing, plasma levels of pterostilbene and pterostilbene sulfate were markedly greater than were plasma levels of resveratrol and resveratrol sulfate. Although plasma levels of resveratrol glucuronide exceeded those of pterostilbene glucuronide, those differences were smaller than those of the parent drugs and sulfate metabolites. Conclusions When administered orally, pterostilbene demonstrates greater bioavailability and total plasma levels of both the parent compound and metabolites than does resveratrol. These differences in agent pharmacokinetics suggest that the in vivo biological

  1. The pharmacokinetics and metabolism of lumiracoxib in chimeric humanized and murinized FRG mice.

    PubMed

    Dickie, A P; Wilson, C E; Schreiter, K; Wehr, R; Wilson, E M; Bial, J; Scheer, N; Wilson, I D; Riley, R J

    2017-07-01

    The pharmacokinetics and metabolism of lumiracoxib were studied, after administration of single 10mg/kg oral doses to chimeric liver-humanized and murinized FRG mice. In the chimeric humanized mice, lumiracoxib reached peak observed concentrations in the blood of 1.10±0.08μg/mL at 0.25-0.5h post-dose with an AUC inf of 1.74±0.52μgh/mL and an effective half-life for the drug of 1.42±0.72h (n=3). In the case of the murinized animals peak observed concentrations in the blood were determined as 1.15±0.08μg/mL at 0.25h post-dose with an AUC inf of 1.94±0.22μgh/mL and an effective half-life of 1.28±0.02h (n=3). Analysis of blood indicated only the presence of unchanged lumiracoxib. Metabolic profiling of urine, bile and faecal extracts revealed a complex pattern of metabolites for both humanized and murinized animals with, in addition to unchanged parent drug, a variety of hydroxylated and conjugated metabolites detected. The profiles obtained in humanized mice were different compared to murinized animals with e.g., a higher proportion of the dose detected in the form of acyl glucuronide metabolites and much reduced amounts of taurine conjugates. Comparison of the metabolic profiles obtained from the present study with previously published data from C57bl/6J mice and humans, revealed a greater though not complete match between chimeric humanized mice and humans, such that the liver-humanized FRG model may represent a useful approach to assessing the biotransformation of such compounds in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Synthesis and in vitro evaluation of methotrexate conjugated O, N-carboxymethyl chitosan via peptidyl spacers

    NASA Astrophysics Data System (ADS)

    Li, Dan; Lu, Bo; Zhang, Hong; Huang, Zhijun; Xu, Peihu; Zheng, Hua; Yin, Yihua; Xu, Haixing; Liu, Xia; Lou, Yiceng; Zhang, Xueqiong; Xiong, Fuliang

    2014-09-01

    The use of methotrexate (MTX), an anticancer drug for the treatment of hematologic malignancies, has been limited in the clinical application due to its poor water solubility, high clearance rate, and lack of target specificity. To solve these problems, O, N-carboxymethyl chitosan-dipeptide-MTX conjugates have been synthesized and characterized by fourier transform infrared radiation spectroscopy and proton nuclear magnetic resonance (1H NMR). All polymeric conjugates showed satisfactory water solubility. The results of the study revealed that drug release and toxicity were affected by employing polymeric conjugation strategy and dipeptide spacers [glycylglycine (Gly-Gly), glycyl- l-phenylalanine (Gly-Phe), glycyl- l-tyrosine (Gly-Tyr)]. It has been found that drugs could be effectively loaded and released when polymeric prodrugs were combined with a dipeptide spacer. In conclusion, O, N-CMCS-dipeptide-MTX polymeric prodrugs could potentially be used as responsive drug delivery systems.

  3. Chiral metabonomics: 1H NMR-based enantiospecific differentiation of metabolites in human urine via direct cosolvation with β-cyclodextrin.

    PubMed

    Pérez-Trujillo, Míriam; Lindon, John C; Parella, Teodor; Keun, Hector C; Nicholson, Jeremy K; Athersuch, Toby J

    2012-03-20

    Differences in molecular chirality remain an important issue in drug metabolism and pharmacokinetics for the pharmaceutical industry and regulatory authorities, and chirality is an important feature of many endogenous metabolites. We present a method for the rapid, direct differentiation and identification of chiral drug enantiomers in human urine without pretreatment of any kind. Using the well-known anti-inflammatory chemical ibuprofen as one example, we demonstrate that the enantiomers of ibuprofen and the diastereoisomers of one of its main metabolites, the glucuronidated carboxylate derivative, can be resolved by (1)H NMR spectroscopy as a consequence of direct addition of the chiral cosolvating agent (CSA) β-cyclodextrin (βCD). This approach is simple, rapid, and robust, involves minimal sample manipulation, and does not require derivatization or purification of the sample. In addition, the method should allow the enantiodifferentiation of endogenous chiral metabolites, and this has potential value for differentiating metabolites from mammalian and microbial sources in biofluids. From these initial findings, we propose that more extensive and detailed enantiospecific metabolic profiling could be possible using CSA-NMR spectroscopy than has been previously reported.

  4. Biouptake, toxicity and biotransformation of triclosan in diatom Cymbella sp. and the influence of humic acid.

    PubMed

    Ding, Tengda; Lin, Kunde; Bao, Lianjun; Yang, Mengting; Li, Juying; Yang, Bo; Gan, Jay

    2018-03-01

    Triclosan is one of the most frequently detected emerging contaminants in aquatic environment. In this study, we investigated the biouptake, toxicity and biotransformation of triclosan in freshwater algae Cymbella sp. The influence of humic acid, as a representative of dissolved organic matter, was also explored. Results from this study showed that triclosan was toxic to Cymbella sp. with 72 h EC 50 of 324.9 μg L -1 . Humic acid significantly reduced the toxicity and accumulation of triclosan in Cymbella sp. SEM analysis showed that Cymbella sp. were enormously damaged under 1 mg L -1 triclosan exposure and repaired after the addition of 20 mg L -1 humic acid. Triclosan can be significantly taken up by Cymbella sp. The toxicity of triclosan is related to bioaccumulated triclosan as the algal cell numbers decreased when intracellular triclosan increased. A total of 11 metabolites were identified in diatom cells and degradation pathways are proposed. Hydroxylation, methylation, dechlorination, amino acids conjunction and glucuronidation contributed to the transformative reactions of triclosan in Cymbella sp., producing biologically active products (e.g., methyl triclosan) and conjugation products (e.g., glucuronide or oxaloacetic acid conjugated triclosan), which may be included in the detoxification mechanism of triclosan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The application of high-resolution mass spectrometry-based data-mining tools in tandem to metabolite profiling of a triple drug combination in humans.

    PubMed

    Xing, Jie; Zang, Meitong; Zhang, Haiying; Zhu, Mingshe

    2015-10-15

    Patients are usually exposed to multiple drugs, and metabolite profiling of each drug in complex biological matrices is a big challenge. This study presented a new application of an improved high resolution mass spectrometry (HRMS)-based data-mining tools in tandem to fast and comprehensive metabolite identification of combination drugs in human. The model drug combination was metronidazole-pantoprazole-clarithromycin (MET-PAN-CLAR), which is widely used in clinic to treat ulcers caused by Helicobacter pylori. First, mass defect filter (MDF), as a targeted data processing tool, was able to recover all relevant metabolites of MET-PAN-CLAR in human plasma and urine from the full-scan MS dataset when appropriate MDF templates for each drug were defined. Second, the accurate mass-based background subtraction (BS), as an untargeted data-mining tool, worked effectively except for several trace metabolites, which were buried in the remaining background signals. Third, an integrated strategy, i.e., untargeted BS followed by improved MDF, was effective for metabolite identification of MET-PAN-CLAR. Most metabolites except for trace ones were found in the first step of BS-processed datasets, and the results led to the setup of appropriate metabolite MDF template for the subsequent MDF data processing. Trace metabolites were further recovered by MDF, which used both common MDF templates and the novel metabolite-based MDF templates. As a result, a total of 44 metabolites or related components were found for MET-PAN-CLAR in human plasma and urine using the integrated strategy. New metabolic pathways such as N-glucuronidation of PAN and dehydrogenation of CLAR were found. This study demonstrated that the combination of accurate mass-based multiple data-mining techniques in tandem, i.e., untargeted background subtraction followed by targeted mass defect filtering, can be a valuable tool for rapid metabolite profiling of combination drugs in vivo. Copyright © 2015 Elsevier B

  6. In vitro and in vivo metabolism of verproside in rats.

    PubMed

    Kim, Min Gi; Hwang, Deok-Kyu; Jeong, Hyeon-Uk; Ji, Hye Young; Oh, Sei-Ryang; Lee, Yongnam; Yoo, Ji Seok; Shin, Dae Hee; Lee, Hye Suk

    2012-10-12

    Verproside, a catalpol derivative iridoid glycoside isolated from Pseudolysimachion rotundum var. subintegrum, is a biologically active compound with anti-inflammatory, antinociceptic, antioxidant, and anti-asthmatic properties. Twenty-one metabolites were identified in bile and urine samples obtained after intravenous administration of verproside in rats using liquid chromatography-quadrupole Orbitrap mass spectrometry. Verproside was metabolized by O-methylation, glucuronidation, sulfation, and hydrolysis to verproside glucuronides (M1 and M2), verproside sulfates (M3 and M4), picroside II (M5), M5 glucuronide (M7), M5 sulfate (M9), isovanilloylcatalpol (M6), M6 glucuronide (M8), M6 sulfate (M10), 3,4-dihydroxybenzoic acid (M11), M11 glucuronide (M12), M11 sulfates (M13 and M14), 3-methyoxy-4-hydroxybenzoic acid (M15), M15 glucuronides (M17 and M18), M15 sulfate (M20), 3-hydroxy-4-methoxybenzoic acid (M16), M16 glucuronide (M19), and M16 sulfate (M21). Incubation of verproside with rat hepatocytes resulted in thirteen metabolites (M1-M11, M13, and M14). Verproside sulfate, M4 was a major metabolite in rat hepatocytes. After intravenous administration of verproside, the drug was recovered in bile (0.77% of dose) and urine (4.48% of dose), and O-methylation of verproside to picroside II (M5) and isovanilloylcatalpol (M6) followed by glucuronidation and sulfation was identified as major metabolic pathways compared to glucuronidation and sulfation of verproside in rats.

  7. Expression of β-glucuronidase on the surface of bacteria enhances activation of glucuronide prodrugs.

    PubMed

    Cheng, C-M; Chen, F M; Lu, Y-L; Tzou, S-C; Wang, J-Y; Kao, C-H; Liao, K-W; Cheng, T-C; Chuang, C-H; Chen, B-M; Roffler, S; Cheng, T-L

    2013-05-01

    Extracellular activation of hydrophilic glucuronide prodrugs by β-glucuronidase (βG) was examined to increase the therapeutic efficacy of bacteria-directed enzyme prodrug therapy (BDEPT). βG was expressed on the surface of Escherichia coli by fusion to either the bacterial autotransporter protein Adhesin (membrane βG (mβG)/AIDA) or the lipoprotein (lpp) outermembrane protein A (mβG/lpp). Both mβG/AIDA and mβG/lpp were expressed on the bacterial surface, but only mβG/AIDA displayed enzymatic activity. The rate of substrate hydrolysis by mβG/AIDA-BL21cells was 2.6-fold greater than by pβG-BL21 cells, which express periplasmic βG. Human colon cancer HCT116 cells that were incubated with mβG/AIDA-BL21 bacteria were sensitive to a glucuronide prodrug (p-hydroxy aniline mustard β-D-glucuronide, HAMG) with an half maximal inhibitory concentration (IC50) value of 226.53±45.4 μM, similar to the IC50 value of the active drug (p-hydroxy aniline mustard, pHAM; 70.6±6.75 μM), indicating that mβG/AIDA on BL21 bacteria could rapidly and efficiently convert HAMG to an active anticancer agent. These results suggest that surface display of functional βG on bacteria can enhance the hydrolysis of glucuronide prodrugs and may increase the effectiveness of BDEPT.

  8. Ethyl glucuronide: unusual distribution between head hair and pubic hair.

    PubMed

    Kintz, Pascal; Villain, Marion; Vallet, Emilie; Etter, Mathieu; Salquebre, Guillaume; Cirimele, Vincent

    2008-03-21

    Ethyl glucuronide (EtG) is a minor metabolite of ethanol that can be detected in hair. In some specific situations, head hair can be missing, and therefore, alternative anatomical locations of hair are of interest. In this study, paired hair specimens (head hair and pubic hair) from eight social drinkers were analyzed for EtG. Each sample was decontaminated by two dichloromethane bathes (5 ml) for 2 min. After cutting into small pieces, about 50 mg of hair was incubated in 2 ml water in the presence of 10 ng of EtG-d5, used as internal standard and submitted to ultra-sonication for 2 h. The aqueous phase was extracted by SPE using Oasis MAX columns. The hair extract was separated on an ACQUITY BEH HILIC column using a gradient of acetonitrile and formate buffer. Detection was based on two daughter ions: transitions m/z 221-85 and 75 and m/z 226-75 for EtG and the IS, respectively. This laboratory is using a positive cut-off at 50 pg/mg. All eight head hair specimens were negative for EtG at a limit of quantitation fixed at 10 pg/mg. Surprisingly, EtG was identified at high concentrations in pubic hair, in the range 12-1370 pg/mg. It appears, therefore, that it is not possible to document the drinking status of a subject by simply switching from head hair to pubic hair.

  9. Transport of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene, by mouse multidrug resistance associated protein 2 (Mrp2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsirulnikov, Kirill; Abuladze, Natalia; Koag, Myong-Chul

    2010-04-15

    N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (Ac-DCVC) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) are the glutathione conjugation pathway metabolites of a common industrial contaminant and potent nephrotoxicant trichloroethylene (TCE). Ac-DCVC and DCVC are accumulated in the renal proximal tubule where they may be secreted into the urine by an unknown apical transporter(s). In this study, we explored the hypothesis that the apical transport of Ac-DCVC and/or DCVC may be mediated by the multidrug resistance associated protein 2 (Mrp2, ABCC2), which is known to mediate proximal tubular apical ATP-dependent transport of glutathione and numerous xenobiotics and endogenous substances conjugated with glutathione. Transport experiments using membrane vesicles prepared from mousemore » proximal tubule derived cells expressing mouse Mrp2 utilizing ATPase assay and direct measurements of Ac-DCVC/DCVC using liquid chromatography/tandem mass-spectrometry (LC/MS/MS) demonstrated that mouse Mrp2 mediates ATP-dependent transport of Ac-DCVC. Expression of mouse Mrp2 antisense mRNA significantly inhibited the vectorial basolateral to apical transport of Ac-DCVC but not DCVC in mouse proximal tubule derived cells endogenously expressing mouse Mrp2. The results suggest that Mrp2 may be involved in the renal secretion of Ac-DCVC.« less

  10. Identification of UDP-glucuronosyltransferases 1A1, 1A3 and 2B15 as the main contributors to glucuronidation of bakuchiol, a natural biologically active compound.

    PubMed

    Li, Feng; Wang, Shuai; Lu, Danyi; Wang, Yifei; Dong, Dong; Wu, Baojian

    2017-05-01

    1. Bakuchiol, one of the main active compounds of Psoralea corylifolia, possesses a variety of pharmacological activities such as anti-tumor and anti-aging effects. Here, we aimed to characterize the glucuronidation of bakuchiol using human liver microsomes (HLM) and expressed UDP-glucuronosyltransferase (UGT) enzymes. 2. The glucuronide of bakuchiol was confirmed by liquid chromatography-mass spectrometry (LC-MS) and β-glucuronidase hydrolysis assay. Glucuronidation rates and kinetic parameters were derived by enzymatic incubation and model fitting. Activity correlation analyses were performed to identify the main UGT isoforms contributing to hepatic metabolism of bakuchiol. 3. Among the three UGT enzymes (i.e., UGT1A1, UGT1A3 and UGT2B15) capable of catalyzing bakuchiol glucuronidation, UGT2B15 showed the highest activity with a CL int value of 100 μl/min/nmol. Bakuchiol glucuronidation was strongly correlated with glucuronidation of 5-hydroxyrofecoxib (r = 0.933; p < 0.001), 3-O-glucuronidation of β-estradiol (r = 0.719; p < 0.01) and significantly correlated with 24-O-glucuronidation of CDCA (r = 0.594; p < 0.05). In addition, a marked species difference existed in hepatic glucuronidation of bakuchiol. 4. In conclusion, UGT1A1, UGT1A3 and UGT2B15 were identified as the main contributors to glucuronidation of bakuchiol.

  11. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract.

    PubMed

    de Bock, Martin; Thorstensen, Eric B; Derraik, José G B; Henderson, Harold V; Hofman, Paul L; Cutfield, Wayne S

    2013-11-01

    Phenolic compounds derived from the olive plant (Olea europaea L.), particularly hydroxytyrosol and oleuropein, have many beneficial effects in vitro. Olive leaves are the richest source of olive phenolic compounds, and olive leaf extract (OLE) is now a popular nutraceutical taken either as liquid or capsules. To quantify the bioavailability and metabolism of oleuropein and hydroxytyrosol when taken as OLE, nine volunteers (five males) aged 42.8 ± 7.4 years were randomized to receive either capsulated or liquid OLE as a single lower (51.1 mg oleuropein, 9.7 mg hydroxytyrosol) or higher (76.6 mg oleuropein, 14.5 mg hydroxytyrosol) dose, and then the opposite strength (but same formulation) a week later. Plasma and urine samples were collected at fixed intervals for 24 h post-ingestion. Phenolic content was analyzed by LC-ESI-MS/MS. Conjugated metabolites of hydroxytyrosol were the primary metabolites recovered in plasma and urine after OLE ingestion. Peak oleuropein concentrations in plasma were greater following ingestion of liquid than capsule preparations (0.47 versus 2.74 ng/mL; p = 0.004), but no such effect was observed for peak concentrations of conjugated (sulfated and glucuronidated) hydroxytyrosol (p = 0.94). However, the latter peak was reached earlier with liquid preparation (93 versus 64 min; p = 0.031). There was a gender effect on the bioavailability of phenolic compounds, with males displaying greater plasma area under the curve for conjugated hydroxytyrosol (11,600 versus 2550 ng/mL; p = 0.048). All conjugated hydroxytyrosol metabolites were recovered in the urine within 8 h. There was wide inter-individual variation. OLE effectively delivers oleuropein and hydroxytrosol metabolites to plasma in humans. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Degradation and metabolite formation of estrogen conjugates in an agricultural soil

    USDA-ARS?s Scientific Manuscript database

    Estrogen conjugates are precursors of free estrogens such as 17beta-estradiol (E2) and estrone (E1), which causes potent endocrine disrupting effects on aquatic organisms. In this study, microcosm laboratory experiments were conducted in an agricultural soil to investigate the aerobic degradation an...

  13. In vitro Inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea, and Curcuma xanthorrhiza Extracts and Constituents on Human Liver Glucuronidation Activity.

    PubMed

    Husni, Zulhilmi; Ismail, Sabariah; Zulkiffli, Mohd Halimhilmi; Afandi, Atiqah; Haron, Munirah

    2017-07-01

    Andrographis paniculata , Gynura procumbens , Ficus deltoidea and Curcuma xanthorrhiza are commonly consumed as herbal medicines. However their effects on human liver glucuronidation activity are not yet evaluated. In this study, we evaluate the inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza extracts and their constituents on human liver glucuronidation activity. Herbal extracts (aqueous, methanolic and ethanolic extracts) and their constituents were incubated with human liver microsomes with the addition of UDPGA to initiate the reaction. Working concentrations of herbal extracts and their constituents ranged from 10 μg/mL to 1000 μg/mL and 10 μM to 300 μM respectively. IC50 was determined by monitoring the decrement of glucuronidation activity with the increment of herbal extracts or phytochemical constituent's concentrations. All herbal extracts inhibited human liver glucuronidation activity in range of 34.69 μg/mL to 398.10 μg/mL whereas for the constituents, only xanthorrhizol and curcumin (constituents of Curcuma xanthorrhiza ) inhibited human liver glucuronidation activity with IC50 of 538.50 and 32.26 μM respectively. In the present study, we have proved the capabilities of Andrographis paniculata , Gynura procumbens , Ficus deltoidea and Curcuma xanthorrhiza to interfere with in vitro glucuronidation process in human liver microsomes. This study documented the capabilities of Andrographis paniculata , Gynura procumbens , Ficus deltoidea and Curcuma xanthorrhiza to inhibit human liver glucuronidation activity which may affect the metabolism of therapeutic drugs or hazardous toxicants that follow the same glucuronidation pathway. Abbreviations used: UGT: Uridine 5'-diphospho-glucuronosyltransferase; 4-MU: 4-methylumbelliferone; IC50: Half Maximal Inhibitory Concentration; Km: Michaelis constant; Vmax: Maximum velocity.

  14. Differences in the Glucuronidation of Resveratrol and Pterostilbene: Altered Enzyme Specificity and Potential Gender Differences

    PubMed Central

    Dellinger, Ryan W.; Gomez Garcia, Angela M.; Meyskens, Frank L.

    2015-01-01

    Summary Resveratrol, a natural polyphenol found in grapes, berries and other plants, has been proposed as an ideal chemopreventative agent due to its plethora of health promoting activities. However, despite its lofty promise as a cancer prevention agent its success in human clinical trials has been limited due to its poor bioavailability. Thus, interest in other natural polyphenols is intensifying including the naturally occurring dimethylated analog of resveratrol, pterostilbene. The UDP-glucuronosyltransferase (UGT) family of enzymes plays a vital role in the metabolism of both resveratrol and pterostilbene. The current study sought to elucidate the UGT family members responsible for the metabolism of pterostilbene and to examine gender differences in the glucuronidation of resveratrol and pterostilbene. We demonstrate that UGT1A1 and UGT1A3 are mainly responsible for pterostilbene glucuronidation although UGT1A8, UGT1A9 and UGT1A10 also had detectable activity. Intriguingly, UGT1A1 exhibits the highest activity against both resveratrol and pterostilbene despite altered hydroxyl group specificity. Using pooled human liver microsomes, enzyme kinetics were determined for pterostilbene and resveratrol glucuronides. In all cases females were more efficient than males, indicating potential gender differences in stilbene metabolism. Importantly, the glucuronidation of pterostilbene is much less efficient than that of resveratrol, indicating that pterostilbene will have dramatically decreased metabolism in humans. PMID:23965644

  15. Differences in the metabolism and disposition of inhaled (3H)benzene by F344/N rats and B6C3F1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, P.J.; Bechtold, W.E.; Birnbaum, L.S.

    1988-06-15

    Benzene is a potent hematotoxin and has been shown to cause leukemia in man. Chronic toxicity studies indicate that B6C3F1 mice are more susceptible than F334/N rats to benzene toxicity. The purpose of the studies presented in this paper was to determine if there were metabolic differences between F344/N rats and B6C3F1 mice which might be responsible for this increased susceptibility. Metabolites of benzene in blood, liver, lung, and bone marrow were measured during and following a 6-hr 50 ppm exposure to benzene vapor. Hydroquinone glucuronide, hydroquinone, and muconic acid, which reflect pathways leading to potential toxic metabolites of benzene,more » were present in much greater concentrations in the mouse than in rat tissues. Phenylsulfate, a detoxified metabolite, and an unknown water-soluble metabolite were present in approximately equal concentrations in these two species. These results indicate that the proportion of benzene metabolized via pathways leading to the formation of potentially toxic metabolites as opposed to detoxification pathways was much higher in B6C3F1 mice than in F344 rats, which may explain the higher susceptibility of mice to benzene-induced hematotoxicity and carcinogenicity.« less

  16. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems☆

    PubMed Central

    Wlcek, Katrin; Hofstetter, Lia; Stieger, Bruno

    2014-01-01

    Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR− rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane. PMID:24406246

  17. Review on the targeted conjugation of anticancer drugs doxorubicin and tamoxifen with synthetic polymers for drug delivery.

    PubMed

    Sanyakamdhorn, S; Agudelo, D; Tajmir-Riahi, H A

    2017-08-01

    In this review, the binding and loading efficacy (LE) of anticancer drugs doxorubicin (DOX), tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox) with several synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3), and polyamidoamine (PAMAM-G4) dendrimers were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling of conjugated drug-polymer were examined. Structural analysis showed that drug-polymer conjugation occurs mainly via H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4 > mPEG-PAMAM-G3 > PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Doxorubicin shows stronger affinity for PAMAM-G4 than tamoxifen and its metabolites. The drug LE was 30-55%. TEM showed significant changes in the carrier morphology upon drug encapsulation. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with DOX forming more stable polymer conjugates.

  18. Free and Glucuronide Whole Blood Cannabinoids' Pharmacokinetics after Controlled Smoked, Vaporized, and Oral Cannabis Administration in Frequent and Occasional Cannabis Users: Identification of Recent Cannabis Intake.

    PubMed

    Newmeyer, Matthew N; Swortwood, Madeleine J; Barnes, Allan J; Abulseoud, Osama A; Scheidweiler, Karl B; Huestis, Marilyn A

    2016-12-01

    There is increasing interest in markers of recent cannabis use because following frequent cannabis intake, Δ 9 -tetrahydrocannabinol (THC) may be detected in blood for up to 30 days. The minor cannabinoids cannabidiol, cannabinol (CBN), and THC-glucuronide were previously detected for ≤2.1 h in frequent and occasional smokers' blood after cannabis smoking. Cannabigerol (CBG), Δ 9 -tetrahydrocannabivarin (THCV), and 11-nor-9-carboxy-THCV might also be recent use markers, but their blood pharmacokinetics have not been investigated. Additionally, while smoking is the most common administration route, vaporization and edibles are frequently used. We characterized blood pharmacokinetics of THC, its phase I and phase II glucuronide metabolites, and minor cannabinoids in occasional and frequent cannabis smokers for 54 (occasional) and 72 (frequent) hours after controlled smoked, vaporized, and oral cannabis administration. Few differences were observed between smoked and vaporized blood cannabinoid pharmacokinetics, while significantly greater 11-nor-9-carboxy-THC (THCCOOH) and THCCOOH-glucuronide concentrations occurred following oral cannabis. CBG and CBN were frequently identified after inhalation routes with short detection windows, but not detected following oral dosing. Implementation of a combined THC ≥5 μg/L plus THCCOOH/11-hydroxy-THC ratio <20 cutoff produced detection windows <8 h after all routes for frequent smokers; no occasional smoker was positive 1.5 h or 12 h following inhaled or oral cannabis, respectively. Vaporization and smoking provide comparable cannabinoid delivery. CBG and CBN are recent-use cannabis markers after cannabis inhalation, but their absence does not exclude recent use. Multiple, complimentary criteria should be implemented in conjunction with impairment observations to improve interpretation of cannabinoid tests. Clinicaltrials.gov Identifier: NCT02177513. © 2016 American Association for Clinical Chemistry.

  19. Identification of Recent Cannabis Use: Whole-Blood and Plasma Free and Glucuronidated Cannabinoid Pharmacokinetics following Controlled Smoked Cannabis Administration

    PubMed Central

    Schwope, David M.; Karschner, Erin L.; Gorelick, David A.; Huestis, Marilyn A.

    2013-01-01

    BACKGROUND Δ9-Tetrahydrocannabinol (THC) is the most frequently observed illicit drug in investigations of accidents and driving under the influence of drugs. THC-glucuronide has been suggested as a marker of recent cannabis use, but there are no blood data following controlled THC administration to test this hypothesis. Furthermore, there are no studies directly examining whole-blood cannabinoid pharmacokinetics, although this matrix is often the only available specimen. METHODS Participants (9 men, 1 woman) resided on a closed research unit and smoked one 6.8% THC cannabis cigarette ad libitum. We quantified THC, 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), cannabinol (CBN), THC-glucuronide and THCCOOH-glucuronide directly in whole blood and plasma by liquid chromatography/ tandem mass spectrometry within 24 h of collection to obviate stability issues. RESULTS Median whole blood (plasma) observed maximum concentrations (Cmax) were 50 (76), 6.4 (10), 41 (67), 1.3 (2.0), 2.4 (3.6), 89 (190), and 0.7 (1.4) μg/L 0.25 h after starting smoking for THC, 11-OH-THC, THCCOOH, CBD, CBN, and THCCOOH-glucuronide, respectively, and 0.5 h for THC-glucuronide. At observed Cmax, whole-blood (plasma) detection rates were 60% (80%), 80% (90%), and 50% (80%) for CBD, CBN, and THC-glucuronide, respectively. CBD and CBN were not detectable after 1 h in either matrix (LOQ 1.0 μg/L). CONCLUSIONS Human whole-blood cannabinoid data following cannabis smoking will assist whole blood and plasma cannabinoid interpretation, while furthering identification of recent cannabis intake. PMID:21836075

  20. The fate and transport of reproductive hormones and their conjugates in the environment (Invited)

    NASA Astrophysics Data System (ADS)

    Casey, F. X.; Shrestha, S. L.; Hakk, H.; Smith, D. J.; Larsen, G. L.; Padmanabhan, G.

    2009-12-01

    Reproductive steroid hormones can disrupt the endocrine system of some species at ng/L concentrations. Sources of steroid hormones to the environment include human waste water effluents or manure produced at animal feeding operations (AFOs). Steroid hormones, such as 17β-estradiol (E2) and estrone (E1), undergo various fate and transport processes, and laboratory studies have shown that they do not persist long (hours to few days), and have very little if any mobility in soil. Nonetheless, steroid hormones are detected at frequencies and concentrations of concern in the natural environment that would suggest their moderate persistence and mobility. One theory that may partially explain the disparity between field and laboratory studies is that conjugated forms of hormones are more mobile than their deconjugated counterparts. Glucuronide and sulfate conjugates are found in abundance in animal waste and are more soluble than their deconjugated forms. Laboratory studies were conducted to study the fate of a major urinary E2 conjugate, 17β-estradiol glucuronide (E2G), in a Hamar soil (Sandy, mixed, frigid typic Endoaquolls) from the surface and subsurface horizons. Speciation studies using batch sorption indicated that E2G degraded to E2 and E1 within 24 hours in the upper horizon soil with organic carbon content (OC) of 1.35%; whereas it persisted more in the lower horizon soil containing 0.32% OC. For initial concentrations of 2.8-28 mg/L, more than 15% of the applied dose concentration was still intact in the conjugate form in the aqueous phase for 3 - 14 days, in the lower horizon soil. The decline of E2G in the aqueous phase in the upper horizon soil was approximated with a first-order rate constant (k), which ranged from -0.208 to -0.279/h. The k values ranged from -0.006 to -0.016/h for the lower soil horizon. The differences in k values between the two horizons could be attributed to differences in bacterial activity and/or differences in sorption capacities

  1. Synthesis of deleobuvir, a potent hepatitis C virus polymerase inhibitor, and its major metabolites labeled with carbon-13 and carbon-14.

    PubMed

    Latli, Bachir; Hrapchak, Matt; Chevliakov, Maxim; Li, Guisheng; Campbell, Scot; Busacca, Carl A; Senanayake, Chris H

    2015-05-30

    Deleobuvir, (2E)-3-(2-{1-[2-(5-bromopyrimidin-2-yl)-3-cyclopentyl-1-methyl-1H-indole-6-carboxamido]cyclobutyl}-1-methyl-1H-benzimidazol-6-yl)prop-2-enoic acid (1), is a non-nucleoside, potent, and selective inhibitor of hepatitis C virus NS5B polymerase. Herein, we describe the detailed synthesis of this compound labeled with carbon-13 and carbon-14. The synthesis of its three major metabolites, namely, the reduced double bond metabolite (2) and the acyl glucuronide derivatives of (1) and (2), is also reported. Aniline-(13) C6 was the starting material to prepare butyl (E)-3-(3-methylamino-4-nitrophenyl-(13) C6 )acrylate [(13) C6 ]-(11) in six steps. This intermediate was then used to obtain [(13) C6 ]-(1) and [(13) C6 ]-(2) in five and four more steps, respectively. For the radioactive synthesis, potassium cyanide-(14) C was used to prepare 1-cylobutylaminoacid [(14) C]-(23) via Buchrer-Bergs reaction. The carbonyl chloride of this acid was then used to access both [(14) C]-(1) and [(14) C]-(2) in four steps. The acyl glucuronide derivatives [(13) C6 ]-(3), [(13) C6 ]-(4) and [(14) C]-(3) were synthesized in three steps from the acids [(13) C6 ]-(1), [(13) C6 ]-(2) and [(14) C]-(1) using known procedures. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Formation of difluorothionoacetyl-protein adducts by S-(1,1,2,2-tetrafluoroethyl)-L-cysteine metabolites: Nucleophilic catalysis of stable lysyl adduct formation by histidine and tyrosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, P.J.; McCann, D.J.; Stevens, J.L.

    1991-06-18

    {sup 19}F NMR spectorscopy was used in conjunction with isotopic labeling to demonstrate that difluorothionoacetyl-protein adducts are formed by metabolites of the nephrotoxic cysteine conjugate S(1,1,2,2-tetrafluoroethyl)-L-cysteine (TFEC). To determine which amino acid residues can be involved in adduct formation, the reactivity of TFEC metabolites with a variety of N-acetyl amino acids was also investigated. An N{sup {alpha}}-acetyl-N{sup {epsilon}}-(difluorothionoacetyl)lysine (DFTAL) adduct was isolated and characterized by {sup 19}F and {sup 13}C NMR spectroscopy and mass spectrometry. N{sup {alpha}}-Acetylhistidine and N-acetyltyrosine were found to act as nucleophilic catalysts to facilitate the formation of both the protein and DFTAL adducts. Adduct formation wasmore » greatly reduced when lysyl-modified protein was used as the substrate, indicating that lysyl residues are primary sites of adduct formation. However, N{sup a}-acetyllysine, at concentrations of >100-fold in excess compared to protein lysyl residues, was not effective in preventing binding of metabolites to protein. Therefore, nucleophilic catalysis at the surface of the protein may be an important mechanism for the binding of TFEC metabolites to specific lysyl residues in protein. TFEC metabolites were very reactive with the thiol nucleophiles glutathione and N-acetylcysteine. However, the predicted difluorodithioesters could not be isolated. Bothe stable difluorothioacetamide and less stable difluorodithioester protein adducts may play a role in TFEC-mediated enphrotoxicity.« less

  3. Formation of Δ(1) and Δ(6) testosterone metabolites by human hepatocytes.

    PubMed

    Fabregat, Andreu; Marcos, Josep; Ventura, Rosa; Casals, Gregori; Jimenez, Wladimiro; Reichenbach, Vedrana; Segura, Jordi; Pozo, Oscar J

    2015-03-01

    The existence of urinary testosterone (T) metabolites conjugated with cysteine has been recently reported. The formation of a ring double bond by a phase I metabolic transformation and the subsequent nucleophilic conjugation with glutathione was proposed as a putative metabolic pathway for the occurrence of these metabolites in urine. The main goal of the present study was to confirm the first step of the postulated pathway. For that purpose, human hepatocyte cells systems were incubated with a pure T standard. The cell culture supernatants were analyzed by liquid chromatography coupled to mass spectrometry using a selected reaction monitoring method. Major T metabolites such as androsterone and 4-androstene-3,17-dione, together with the recently reported Δ(1) and Δ(6) metabolites were simultaneously quantified. The formation of 1,4-androstadien-3,17-dione, 4,6-androstadien-3,17-dione, 17β-hydroxy-4,6-androstadien-3-one and 17β-hydroxy-1,4-androstadien-3-one (boldenone) after incubation of T in hepatocyte cell cultures was demonstrated by comparing the retention times and the ion ratios of the metabolites with those obtained by analysis of commercial standards. Thus, the formation of double bonds Δ(1) and Δ(6) by hepatic phase I metabolism of T was confirmed. Analogously to T, this pathway might also be present in other steroids, opening the possibility of targeting additional biomarkers. Copyright © 2015. Published by Elsevier Inc.

  4. Metabolite Profiling and Pharmacokinetic Evaluation of Hydrocortisone in a Perfused Three-Dimensional Human Liver Bioreactor

    PubMed Central

    Sarkar, Ujjal; Rivera-Burgos, Dinelia; Large, Emma M.; Hughes, David J.; Ravindra, Kodihalli C.; Dyer, Rachel L.; Ebrahimkhani, Mohammad R.; Griffith, Linda G.

    2015-01-01

    Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a three-dimensional human microphysiological hepatocyte–Kupffer cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and was assessed by the release of proinflammatory cytokines, interleukin 6 and tumor necrosis factor α. A sensitive and specific reversed-phase–ultra high-performance liquid chromatography–quadrupole time of flight–mass spectrometry method was used to evaluate hydrocortisone disappearance and metabolism at near physiologic levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for 2 days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8–10% of the loss, and 45–52% consisted of phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life, rate of elimination, clearance, and area under the curve, were 23.03 hours, 0.03 hour−1, 6.6 × 10−5 l⋅hour−1, and 1.03 (mg/l)*h, respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized, and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically relevant tool for investigating hepatic function in an inflamed liver. PMID:25926431

  5. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor.

    PubMed

    Sarkar, Ujjal; Rivera-Burgos, Dinelia; Large, Emma M; Hughes, David J; Ravindra, Kodihalli C; Dyer, Rachel L; Ebrahimkhani, Mohammad R; Wishnok, John S; Griffith, Linda G; Tannenbaum, Steven R

    2015-07-01

    Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a three-dimensional human microphysiological hepatocyte-Kupffer cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and was assessed by the release of proinflammatory cytokines, interleukin 6 and tumor necrosis factor α. A sensitive and specific reversed-phase-ultra high-performance liquid chromatography-quadrupole time of flight-mass spectrometry method was used to evaluate hydrocortisone disappearance and metabolism at near physiologic levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for 2 days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8-10% of the loss, and 45-52% consisted of phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life, rate of elimination, clearance, and area under the curve, were 23.03 hours, 0.03 hour(-1), 6.6 × 10(-5) l⋅hour(-1), and 1.03 (mg/l)*h, respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized, and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically relevant tool for investigating hepatic function in an inflamed liver. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Selective Synthesis and Biological Evaluation of Sulfate-Conjugated Resveratrol Metabolites

    PubMed Central

    Hoshino, Juma; Park, Eun-Jung; Kondratyuk, Tamara P.; Marler, Laura; Pezzuto, John M.; van Breemen, Richard B.; Mo, Shunyan; Li, Yongchao; Cushman, Mark

    2010-01-01

    Five resveratrol sulfate metabolites were synthesized and assessed for activities known to be mediated by resveratrol: inhibition of tumor necrosis factor (TNF)-α-induced NFκB activity, cylcooxygenases (COX-1 and COX-2), aromatase, nitric oxide production in endotoxin-stimulated macrophages, and proliferation of KB or MCF7 cells, induction of quinone reductase 1 (QR1), accumulation in the sub-G1 phase of the cell cycle, and quenching of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical. Two metabolites showed activity in these assays; the 3-sulfate exhibited QR1 induction, DPPH free radical scavenging, and COX-1 and COX-2 inhibitory activities, and the 4′-sulfate inhibited NFκB induction, as well as COX-1 and COX-2 activities. Resveratrol, as well as its 3′-sulfate and 4-sulfate, inhibit NO production by NO scavenging and down-regulation of iNOS expression in RAW 264.7 cells. Resveratrol sulfates displayed low antiproliferative activity and negligible uptake in MCF7 cells. PMID:20527891

  7. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway

    NASA Technical Reports Server (NTRS)

    Solomon, V.; Baracos, V.; Sarraf, P.; Goldberg, A. L.

    1998-01-01

    The rapid loss of muscle mass that accompanies many disease states, such as cancer or sepsis, is primarily a result of increased protein breakdown in muscle, and several observations have suggested an activation of the ubiquitin-proteasome system. Accordingly, in extracts of atrophying muscles from tumor-bearing or septic rats, rates of 125I-ubiquitin conjugation to endogenous proteins were found to be higher than in control extracts. On the other hand, in extracts of muscles from hypothyroid rats, where overall proteolysis is reduced below normal, the conjugation of 125I-ubiquitin to soluble proteins decreased by 50%, and treatment with triiodothyronine (T3) restored ubiquitination to control levels. Surprisingly, the N-end rule pathway, which selectively degrades proteins with basic or large hydrophobic N-terminal residues, was found to be responsible for most of these changes in ubiquitin conjugation. Competitive inhibitors of this pathway that specifically block the ubiquitin ligase, E3alpha, suppressed most of the increased ubiquitin conjugation in the muscle extracts from tumor-bearing and septic rats. These inhibitors also suppressed ubiquitination in normal extracts toward levels in hypothyroid extracts, which showed little E3alpha-dependent ubiquitination. Thus, the inhibitors eliminated most of the differences in ubiquitination under these different pathological conditions. Moreover, 125I-lysozyme, a model N-end rule substrate, was ubiquitinated more rapidly in extracts from tumor-bearing and septic rats, and more slowly in those from hypothyroid rats, than in controls. Thus, the rate of ubiquitin conjugation increases in atrophying muscles, and these hormone- and cytokine-dependent responses are in large part due to activation of the N-end rule pathway.

  8. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway

    PubMed Central

    Solomon, Vered; Baracos, Vickie; Sarraf, Pasha; Goldberg, Alfred L.

    1998-01-01

    The rapid loss of muscle mass that accompanies many disease states, such as cancer or sepsis, is primarily a result of increased protein breakdown in muscle, and several observations have suggested an activation of the ubiquitin–proteasome system. Accordingly, in extracts of atrophying muscles from tumor-bearing or septic rats, rates of 125I-ubiquitin conjugation to endogenous proteins were found to be higher than in control extracts. On the other hand, in extracts of muscles from hypothyroid rats, where overall proteolysis is reduced below normal, the conjugation of 125I-ubiquitin to soluble proteins decreased by 50%, and treatment with triiodothyronine (T3) restored ubiquitination to control levels. Surprisingly, the N-end rule pathway, which selectively degrades proteins with basic or large hydrophobic N-terminal residues, was found to be responsible for most of these changes in ubiquitin conjugation. Competitive inhibitors of this pathway that specifically block the ubiquitin ligase, E3α, suppressed most of the increased ubiquitin conjugation in the muscle extracts from tumor-bearing and septic rats. These inhibitors also suppressed ubiquitination in normal extracts toward levels in hypothyroid extracts, which showed little E3α-dependent ubiquitination. Thus, the inhibitors eliminated most of the differences in ubiquitination under these different pathological conditions. Moreover, 125I-lysozyme, a model N-end rule substrate, was ubiquitinated more rapidly in extracts from tumor-bearing and septic rats, and more slowly in those from hypothyroid rats, than in controls. Thus, the rate of ubiquitin conjugation increases in atrophying muscles, and these hormone- and cytokine-dependent responses are in large part due to activation of the N-end rule pathway. PMID:9770532

  9. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver.

    PubMed

    Papageorgiou, Ioannis; Freytsis, Marina; Court, Michael H

    2016-10-01

    Acetaminophen is the leading cause of acute liver failure (ALF) in many countries including the United States. Hepatic glucuronidation by UDP-glucuronosyltransferase (UGT) 1A subfamily enzymes is the major route of acetaminophen elimination. Reduced glucuronidation may predispose some individuals to acetaminophen-induced ALF, but mechanisms underlying reduced glucuronidation are poorly understood. We hypothesized that specific microRNAs (miRNAs) may reduce UGT1A activity by direct effects on the UGT1A 3'-UTR shared by all UGT1A enzyme transcripts, or by indirect effects on transcription factors regulating UGT1A expression. We performed an unbiased miRNA whole transcriptome association analysis using a bank of human livers with known acetaminophen glucuronidation activities. Of 754 miRNAs evaluated, 9 miRNAs were identified that were significantly overexpressed (p<0.05; >2-fold) in livers with low acetaminophen glucuronidation activities compared with those with high activities. miR-375 showed the highest difference (>10-fold), and was chosen for further mechanistic validation. We demonstrated using in silico analysis and luciferase reporter assays that miR-375 has a unique functional binding site in the 3'-UTR of the aryl hydrocarbon receptor (AhR) gene. Furthermore overexpression of miR-375 in LS180 cells demonstrated significant repression of endogenous AhR protein (by 40%) and mRNA (by 10%), as well as enzyme activity and/or mRNA of AhR regulated enzymes including UGT1A1, UGT1A6, and CYP1A2, without affecting UGT2B7, which is not regulated by AhR. Thus miR-375 is identified as a novel repressor of UGT1A-mediated hepatic acetaminophen glucuronidation through reduced AhR expression, which could predispose some individuals to increased risk for acetaminophen-induced ALF. Published by Elsevier Inc.

  10. Metabolism of Skin-Absorbed Resveratrol into Its Glucuronized Form in Mouse Skin

    PubMed Central

    Pluskal, Tomáš; Ito, Ken; Hori, Kousuke; Ebe, Masahiro; Yanagida, Mitsuhiro; Kondoh, Hiroshi

    2014-01-01

    Resveratrol (RESV) is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV. PMID:25506824

  11. A New Glutathione Conjugate of the Pyrrolizidine Alkaloids Produced by Human Cytosolic Enzyme Dependent Reactions in vitro.

    PubMed

    Muluneh, Fashe; Häkkinen, Merja R; El-Dairi, Rami; Pasanen, Markku; Juvonen, Risto O

    2018-05-22

    The toxic metabolites of pyrrolizidine alkaloids (PAs) are initially formed by cytochrome P450 mediated oxidation reactions and primarily eliminated as glutathione (GSH) conjugates. Although the reaction between the reactive metabolites and GSH can occur spontaneously, the role of the cytosolic enzymes in the process has not been studied. The toxic metabolites of selected PAs (retrorsine, monocrotaline, senecionine, lasiocarpine, heliotrine or senkirkine) were generated by incubating them in 100 mM phosphate buffer pH 7.4 containing liver microsomes of human, pig, rat or sheep, NADPH and reduced GSH in the absence or presence of human, pig, rat or sheep liver cytosolic fraction. The supernatants were analyzed by using liquid chromatography connected to Finnigan LTQ ion-trap, Agilent QTOF or Thermo Scientific Q Exactive Focus quadrupole-orbitrap mass spectrometers. Retrorsine, senecionine and lasiocarpine yielded three GSH conjugates producing [M-H] - ions at m/z 439 (7-GSH-DHP(CHO)), m/z 441 (7-GSH-DHP(OH)) and m/z 730 (7,9-diGSH-DHP) in the presence of human liver cytosolic fraction. 7-GSH-DHP(CHO) was a novel metabolite. Monocrotaline, heliotrine and senkirkine did not produce this novel 7-GSH-DHP(CHO) conjugate. 7-GSH-DHP(CHO) disappeared when incubated with hydroxylamine, and a new oxime derivative was formed. This metabolite was formed only by the human liver cytosolic enzymes but not in the presence of rat or sheep liver cytosolic fractions under otherwise identical reaction conditions. 7-GSH-DHP(CHO) has not been reported before and thus, it was considered as a novel metabolite of PAs. This may clarify the mechanisms involved in PA detoxification and widely observed but less understood species differences in response to PA exposure. This article is protected by copyright. All rights reserved.

  12. In vitro Inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea, and Curcuma xanthorrhiza Extracts and Constituents on Human Liver Glucuronidation Activity

    PubMed Central

    Husni, Zulhilmi; Ismail, Sabariah; Zulkiffli, Mohd Halimhilmi; Afandi, Atiqah; Haron, Munirah

    2017-01-01

    Background: Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza are commonly consumed as herbal medicines. However their effects on human liver glucuronidation activity are not yet evaluated. Objective: In this study, we evaluate the inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza extracts and their constituents on human liver glucuronidation activity. Materials and Methods: Herbal extracts (aqueous, methanolic and ethanolic extracts) and their constituents were incubated with human liver microsomes with the addition of UDPGA to initiate the reaction. Working concentrations of herbal extracts and their constituents ranged from 10 μg/mL to 1000 μg/mL and 10 μM to 300 μM respectively. IC50 was determined by monitoring the decrement of glucuronidation activity with the increment of herbal extracts or phytochemical constituent's concentrations. Results: All herbal extracts inhibited human liver glucuronidation activity in range of 34.69 μg/mL to 398.10 μg/mL whereas for the constituents, only xanthorrhizol and curcumin (constituents of Curcuma xanthorrhiza) inhibited human liver glucuronidation activity with IC50 of 538.50 and 32.26 μM respectively. Conclusion: In the present study, we have proved the capabilities of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza to interfere with in vitro glucuronidation process in human liver microsomes. SUMMARY This study documented the capabilities of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza to inhibit human liver glucuronidation activity which may affect the metabolism of therapeutic drugs or hazardous toxicants that follow the same glucuronidation pathway. Abbreviations used: UGT: Uridine 5’-diphospho-glucuronosyltransferase; 4-MU: 4-methylumbelliferone; IC50: Half Maximal Inhibitory Concentration; Km: Michaelis constant; Vmax: Maximum velocity. PMID

  13. Differences in metabolite-mediated toxicity of tamoxifen in rodents versus humans elucidated with DNA/microsome electro-optical arrays and nanoreactors.

    PubMed

    Zhao, Linlin; Krishnan, Sadagopan; Zhang, Yun; Schenkman, John B; Rusling, James F

    2009-02-01

    Tamoxifen, a therapeutic and chemopreventive breast cancer drug, was chosen as a model compound because of acknowledged species specific toxicity differences. Emerging approaches utilizing electro-optical arrays and nanoreactors based on DNA/microsome films were used to compare metabolite-mediated toxicity differences of tamoxifen in rodents versus humans. Hits triggered by liver enzyme metabolism were first provided by arrays utilizing a DNA damage end point. The arrays feature thin-film spots containing an electrochemiluminescent (ECL) ruthenium polymer ([Ru(bpy)(2)PVP(10)](2+); PVP, polyvinylpyridine), DNA, and liver microsomes. When DNA damage resulted from reactions with tamoxifen metabolites, it was detected by an increase in light from the oxidation of the damaged DNA by the ECL metallopolymer. The slope of ECL generation versus enzyme reaction time correlated with the rate of DNA damage. An approximate 2-fold greater ECL turnover rate was observed for spots with rat liver microsomes compared to that with human liver microsomes. These results were supported by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of reaction products using nanoreactors featuring analogous films on silica nanoparticles, allowing the direct measurement of the relative formation rate for alpha-(N(2)-deoxyguanosinyl)tamoxifen. We observed 2-5-fold more rapid formation rates for three major metabolites, i.e., alpha-hydroxytamoxifen, 4-hydroxytamoxifen, and tamoxifen N-oxide, catalyzed by rat liver microsomes compared to human liver microsomes. Comparable formation rates were observed for N-desmethyl tamoxifen with rat and human liver microsomes. A better detoxifying capacity for human liver microsomes than rat liver microsomes was confirmed utilizing glucuronyltransferase in microsomes together with UDP-glucuronic acid. Taken together, lower genotoxicity and higher detoxication rates presented by human liver microsomes correlate with the lower risk of tamoxifen in

  14. Mass spectrometry combinations for structural characterization of sulfated-steroid metabolites.

    PubMed

    Yan, Yuetian; Rempel, Don L; Holy, Timothy E; Gross, Michael L

    2014-05-01

    Steroid conjugates, which often occur as metabolites, are challenging to characterize. One application is female-mouse urine, where steroid conjugates serve as important ligands for the pheromone-sensing neurons. Although the two with the highest abundance in mouse urine were previously characterized with mass spectrometry (MS) and NMR to be sulfated steroids, many more exist but remain structurally unresolved. Given that their physical and chemical properties are similar, they are likely to have a sulfated steroid ring structure. Because these compounds occur in trace amounts in mouse urine and elsewhere, their characterization by NMR will be difficult. Thus, MS methods become the primary approach for determining structure. Here, we show that a combination of MS tools is effective for determining the structures of sulfated steroids. Using 4-pregnene analogs, we explored high-resolving power MS (HR-MS) to determine chemical formulae; HD exchange MS (HDX-MS) to determine number of active, exchangeable hydrogens (e.g., OH groups); methoxyamine hydrochloride (MOX) derivatization MS, or reactive desorption electrospray ionization with hydroxylamine to determine the number of carbonyl groups; and tandem MS (MS(n)), high-resolution tandem MS (HRMS/MS), and GC-MS to obtain structural details of the steroid ring. From the fragmentation studies, we deduced three major fragmentation rules for this class of sulfated steroids. We also show that a combined MS approach is effective for determining structure of steroid metabolites, with important implications for targeted metabolomics in general and for the study of mouse social communication in particular.

  15. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy.

    PubMed

    Stalmach, Angélique; Steiling, Heike; Williamson, Gary; Crozier, Alan

    2010-09-01

    The intestinal absorption and metabolism of 385 micromol chlorogenic acids following a single intake of 200 mL of instant coffee by human volunteers with an ileostomy was investigated. HPLC-MS(3) analysis of 0-24h post-ingestion ileal effluent revealed the presence of 274+/-28 micromol of chlorogenic acids and their metabolites accounting for 71+/-7% of intake. Of the compounds recovered, 78% comprised parent compounds initially present in the coffee, and 22% were metabolites including free and sulfated caffeic and ferulic acids. Over a 24h period after ingestion of the coffee, excretion of chlorogenic acid metabolites in urine accounted for 8+/-1% of intake, the main compounds being ferulic acid-4-O-sulfate, caffeic acid-3-O-sulfate, isoferulic acid-3-O-glucuronide and dihydrocaffeic acid-3-O-sulfate. In contrast, after drinking a similar coffee, urinary excretion by humans with an intact colon corresponded to 29+/-4% of chlorogenic acid intake. This difference was due to the excretion of higher levels of dihydroferulic acid and feruloylglycine together with sulfate and glucuronide conjugates of dihydrocaffeic and dihydroferulic acids. This highlights the importance of colonic metabolism. Comparison of the data obtained in the current study with that of Stalmach et al. facilitated elucidation of the pathways involved in post-ingestion metabolism of chlorogenic acids and also helped distinguish between compounds absorbed in the small and the large intestine. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. A Scheme for the Evaluation of Electron Delocalization and Conjugation Efficiency in Linearly π-Conjugated Systems.

    PubMed

    Bruschi, Maurizio; Limacher, Peter A; Hutter, Jürg; Lüthi, Hans Peter

    2009-03-10

    In this study, we present a scheme for the evaluation of electron delocalization and conjugation efficiency in lineraly π-conjugated systems. The scheme, based on the natural bond orbital theory, allows monitoring the evolution of electron delocalization along an extended conjugation path as well as its response to chemical modification. The scheme presented is evaluated and illustrated by means of a computational investigation of π-conjugation in all-trans polyacetylene [PA; H(-CH═CH)n-H], polydiacetylene [PDA, H(-C≡C-CH═CH)n-H], and polytriacetylene [PTA, H(-C≡C-CH═CH-C≡C)n-H] with up to 180 carbon atoms, all related by the number of ethynyl units incorporated in the chain. We are able to show that for short oligomers the incorporation of ethynyl spacers into the PA chain increases the π-delocalization energy, but, on the other hand, reduces the efficiency with which π-electron delocalization is promoted along the backbone. This explains the generally shorter effective conjugation lengths observed for the properties of the polyeneynes (PDA and PTA) relative to the polyenes (PA). It will also be shown that the reduced conjugation efficiency, within the NBO-based model presented in this work, can be related to the orbital interaction pattern along the π-conjugated chain. We will show that the orbital interaction energy pattern is characteristic for the type and the length of the backbone and may therefore serve as a descriptor for linearly π-conjugated chains.

  17. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems.

    PubMed

    Wlcek, Katrin; Hofstetter, Lia; Stieger, Bruno

    2014-03-01

    Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR(-) rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Nuclear Magnetic Resonance Identification of New Sulfonic Acid Metabolites of Chloroacetanilide Herbicides

    USGS Publications Warehouse

    Morton, M.D.; Walters, F.H.; Aga, D.S.; Thurman, E.M.; Larive, C.K.

    1997-01-01

    The detection of the sulfonic acid metabolites of the chloroacetanilide herbicides acetochlor, alachlor, butachlor, propachlor, and, more recently, metolachlor in surface and ground water suggests that a common mechanism for dechlorination exists via the glutathione conjugation pathway. The identification of these herbicides and their metabolites is important due to growing public awareness and concern about pesticide levels in drinking water. Although these herbicides are regulated, little is known about the fate of their metabolites in soil. The sulfonic acid metabolites were synthesized by reaction of the parent compounds with an excess of sodium sulfite. Acetochlor, alachlor, butachlor, metolachlor, and propachlor and their sulfonic acid metabolites were studied by nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. This paper provides a direct method for the preparation and characterization of these compounds that will be useful in the analysis and study of chloracetanilide herbicides and their metabolites.

  19. Carbon nanotubes as carriers of Panax ginseng metabolites and enhancers of ginsenosides Rb1 and Rg1 anti-cancer activity

    NASA Astrophysics Data System (ADS)

    Lahiani, Mohamed H.; Eassa, Souzan; Parnell, Charlette; Nima, Zeid; Ghosh, Anindya; Biris, Alexandru S.; Khodakovskaya, Mariya V.

    2017-01-01

    A major benefit to nanomaterial based-medicine is the ability to provide nanosized vehicles for sporadic metabolites. Here, we describe how the conjugation of valuable ginseng secondary metabolites (ginsenoside Rb1 or Rg1) with carbon nanotubes (CNT) can enhance their anti-proliferative and anti-cancer effects. Ginsenoside-CNT conjugate (Rb-CNT or Rg-CNT) permitted the ginsenosides to be used at a low dose, yet achieve a higher incidence of cancer killing. We were able to demonstrate that the ginsenoside-CNT conjugate can decrease cell viability up to 62% in breast cancer cells (MCF-7) and enhance antiproliferation of drug-resistant pancreatic cancer cells (PANC-1) by 61%. The interaction of the ginsenoside-CNT conjugate with breast cancer cells was studied using Raman Spectroscopy mapping. Total transcriptome profiling (Affymetrix platform) of MCF-7 cells treated with the ginsenoside-CNT conjugate shows that a number of cellular, apoptotic and response to stimulus processes were affected. Therefore, our data confirmed the potential use of CNT as a drug delivery system.

  20. [Gas chromatographic/mass spectrometric analysis of boldenone urinary metabolites in man].

    PubMed

    Zhang, J; Liu, C S; Zhou, T H

    1991-01-01

    The metabolism of boldenone (17 beta-hydroxy-1,4-androstem-3-one) in man has been investigated by gas chromatography/mass spectrometry. After oral administration of a 20 mg dose to man, six metabolites were detected in the conjugated fraction of the urinary samples. Boldenone, the major compound excreted in urine, was detected within 34 h after administration. In addition, several metabolites, resulting from the hydroxylation of boldenone and the reduction of the unsaturated carbon bonds of boldenone, were detected in the urine samples varying from 9 to 83 h. Extraction and fractionation of these metabolites were achieved by using XAD-2 column and gas chromatography. The recovery of the whole procedure was studied. Furthermore, the mass spectra of the metabolites are presented and major fragment pathways are discussed.

  1. Metabolic profile of esculin in rats by ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Wang, Yinan; Zhao, Min; Ou, Yingfu; Zeng, Bowen; Lou, Xinyu; Wang, Miao; Zhao, Chunjie

    2016-05-01

    Esculin, a coumarin derivative found in Fraxinus rhynchophylla, has been reported to possess multiple biological activities. This present study is designed to investigate the metabolic profile of esculin in vivo based on ultra high performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) for the first time. After oral administration of esculin (100 mg/kg) for rats, plasma, urine, feces and bile samples were collected to screen metabolites. As a result, a total of 19 metabolites (10 phase I metabolites and 9 phase II metabolites) were found and identified. Results showed that metabolic pathways of esculin included hydrolysis, dehydrogenation, hydroxylation, methylation, dehydrogenation, glucuronidation, sulfation, and glycine conjugation. It was also found that after oral administration of esculin, the esculin could be metabolized to esculetin in vivo via deglycosylation, and esculetin was found in all biological samples. This study also laid solid basis for in-depth development of esculin and provided important information for clarifying the biotransformation process of esculin in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Trichloroethylene Biotransformation and its Role in Mutagenicity, Carcinogenicity and Target Organ Toxicity

    PubMed Central

    Lash, Lawrence H.; Chiu, Weihsueh A.; Guyton, Kathryn Z.; Rusyn, Ivan

    2014-01-01

    Metabolism is critical for the mutagenicity, carcinogenicity, and other adverse health effects of trichloroethylene (TCE). Despite the relatively small size and simple chemical structure of TCE, its metabolism is quite complex, yielding multiple intermediates and end-products. Experimental animal and human data indicate that TCE metabolism occurs through two major pathways: cytochrome P450 (CYP)-dependent oxidation and glutathione (GSH) conjugation catalyzed by GSH S-transferases (GSTs). Herein we review recent data characterizing TCE processing and flux through these pathways. We describe the catalytic enzymes, their regulation and tissue localization, as well as the evidence for transport and inter-organ processing of metabolites. We address the chemical reactivity of TCE metabolites, highlighting data on mutagenicity of these end-products. Identification in urine of key metabolites, particularly trichloroacetate (TCA), dichloroacetate (DCA), trichloroethanol and its glucuronide (TCOH and TCOG), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC), in exposed humans and other species (mostly rats and mice) demonstrates function of the two metabolic pathways in vivo. The CYP pathway primarily yields chemically stable end-products. However, the GST pathway conjugate S-(1,2-dichlorovinyl)glutathione (DCVG) is further processed to multiple highly reactive species that are known to be mutagenic, especially in kidney where in situ metabolism occurs. TCE metabolism is highly variable across sexes, species, tissues and individuals. Genetic polymorphisms in several of the key enzymes metabolizing TCE and its intermediates contribute to variability in metabolic profiles and rates. In all, the evidence characterizing the complex metabolism of TCE can inform predictions of adverse responses including mutagenesis, carcinogenesis, and acute and chronic organ-specific toxicity. PMID:25484616

  3. Secondary Metabolites in Allergic Plant Pollen Samples Modulate Afferent Neurons and Murine Tracheal Rings.

    PubMed

    Božičević, Alen; De Mieri, Maria; Nassenstein, Christina; Wiegand, Silke; Hamburger, Matthias

    2017-11-22

    Plant pollens are strong airborne elicitors of asthma. Their proteinaceous allergens have been studied intensively, but little is known about a possible contribution of pollen secondary metabolites to the nonallergic exacerbation of asthma. Pollen samples originating from 30 plant species were analyzed by HPLC coupled to PDA, ESIMS, and ELSD detectors and off-line NMR spectroscopy. Polyamine conjugates, flavonoids, and sesquiterpene lactones were identified. Polyamine conjugates were characteristic of all Asteraceae species. The presence of sesquiterpene lactones in Asteraceae pollen varied between species and pollen lots. All plant pollen, including those from non-Asteraceae species, contained to some extent electrophiles as determined by their reaction with N-acetyl-l-cysteine. Selected pollen extracts and pure compounds were tested in murine afferent neurons and in murine tracheal preparations. Tetrahydrofuran extracts of Ambrosia artemisiifolia and Ambrosia psilostachya pollen and a mixture of sesquiterpene lactones coronopilin/parthenin increased the intracellular Ca 2+ concentration in 15%, 32%, and 37% of cinnamaldehyde-responsive neurons, respectively. In organ bath experiments, only the sesquiterpene lactones tested induced a weak dilatation of naïve tracheas and strongly lowered the maximal methacholine-induced tracheal constriction. A tetrahydrofuran extract of A. psilostachya and coronopilin/parthenin led to a time-dependent relaxation of the methacholine-preconstricted trachea. These results provide the first evidence for a potential role of pollen secondary metabolites in the modulation of the tracheal tone.

  4. Establishment and Use of New MDCK II Cells Overexpressing Both UGT1A1 and MRP2 to Characterize Flavonoid Metabolism via the Glucuronidation Pathway

    PubMed Central

    Wang, Meifang; Yang, Guangyi; He, Yu; Xu, Beibei; Zeng, Min; Yin, Taijun; Gao, Song; Hu, Ming

    2017-01-01

    Scope The purpose of this study is to characterize how overexpression of an efflux transporter and an UDP-glucuronosyltransferase (UGT) affects the cellular kinetics of glucuronidation processes. Methods and Results A new MDCK II cell line overexpressing both MRP2 and UGT1A1 (MDCKII-UGT1A1/MRP2 cells) was developed and used to determine how overexpression of an efflux transporter affects the kinetics of cellular flavonoid glucuronide production. The results showed that most model flavonoids (from a total of 13) were mainly metabolized into glucuronides in the MDCKII-UGT1A1/MRP2 cells and the glucuronides were rapidly excreted. Flavonoids with three or fewer hydroxyl group at 7, 3′ or 6 hydroxyl group were also metabolized into sulfates. Mechanistic studies using 7-hydroxylflavone showed that its glucuronide was mainly (90%) effluxed by BCRP with a small (10%) but significant contribution from MRP2. Maximal velocity of glucuronide production MDCK-MRP2/UGT1A1 cells showed a fairly good correlation (R2 >0.8) with those derived using UGT1A1 microsomes, but other kinetic parameters (e.g., Km) did not correlate. Conclusion Overexpression of a second efficient efflux transporter did not significantly change the fact that BCRP is the dominant transporter for flavonoid glucuronide nor did it diminish the influence of the efflux transporter as the “gate keeper” of glucuronidation process. PMID:26833852

  5. Human urinary metabolic patterns of the designer benzodiazepines flubromazolam and pyrazolam studied by liquid chromatography-high resolution mass spectrometry.

    PubMed

    Pettersson Bergstrand, Madeleine; Meyer, Markus R; Beck, Olof; Helander, Anders

    2018-03-01

    Over the past ~8 years, hundreds of unregulated new psychoactive substances (NPS) of various chemical categories have been introduced as recreational drugs through mainly open online trade. This study was performed to further investigate the human metabolic pattern of the NPS, or designer benzodiazepines flubromazolam and pyrazolam, and to propose analytical targets for urine drug testing of these substances. The urine samples originated from patient samples confirmed by liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS) analysis to contain flubromazolam or pyrazolam. The LC-HRMS/MS system consisted of a YMC-UltraHT Hydrosphere C18 column (YMC, Dinslaken, Germany) coupled to a Thermo Scientific (Waltham, MA, USA) Q Exactive Orbitrap MS operating in positive electrospray mode. The samples were analyzed both with and without enzymatic hydrolysis using β-glucuronidase. Besides the parent compounds, the main urinary excretion products were parent glucuronides, mono-hydroxy metabolites, and mono-hydroxy glucuronides. In samples prepared without hydrolysis, the most common flubromazolam metabolites were 1 of the mono-hydroxy glucuronides and 1 of the parent glucuronides. For pyrazolam, a parent glucuronide was the most common metabolite. These 3 metabolites were detected in all samples and were considered the primary targets for urine drug testing and confirmation of intake. After enzymatic hydrolysis of the urine samples, a 2-19-fold increase in the concentration of flubromazolam was found, highlighting the value of hydrolysis for this analyte. With hydrolysis, the flubromazolam hydroxy metabolites should be used as target metabolites. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Selection of filamentous fungi of the Beauveria genus able to metabolize quercetin like mammalian cells

    PubMed Central

    de M. B. Costa, Eula Maria; Pimenta, Fabiana Cristina; Luz, Wolf Christian; de Oliveira, Valéria

    2008-01-01

    Microbial biotransformations constitute an important alternative as models for drug metabolism study in mammalians and have been used for the industrial synthesis of chemicals with pharmaceutical purposes. Several microorganisms with unique biotransformation ability have been found by intensive screening and put in commercial applications. Ten isolates of Beauveria sp genus filamentous fungi, isolated from soil in the central Brazil, and Beauveria bassiana ATCC 7159 were evaluated for their capability of quercetin biotransformation. Biotransformation processes were carried out for 24 up to 96 hours and monitored by mass spectrometry analyses of the culture broth. All strains were able to metabolize quercetin, forming mammalian metabolites. The results were different from those presented by other microorganisms previously utilized, attrackting attention because of the great diversity of reactions. Methylated, sulphated, monoglucuronidated, and glucuronidated conjugated metabolites were simultaneously detected. PMID:24031237

  7. Possible endocrine disrupting effects of parabens and their metabolites.

    PubMed

    Boberg, Julie; Taxvig, Camilla; Christiansen, Sofie; Hass, Ulla

    2010-09-01

    Parabens are preservatives used in a wide range of cosmetic products, including products for children, and some are permitted in foods. However, there is concern for endocrine disrupting effects. This paper critically discusses the conclusions of recent reviews and original research papers and provides an overview of studies on toxicokinetics. After dermal uptake, parabens are hydrolyzed and conjugated and excreted in urine. Despite high total dermal uptake of paraben and metabolites, little intact paraben can be recovered in blood and urine. Paraben metabolites may play a role in the endocrine disruption seen in experimental animals and studies are needed to determine human levels of parabens and metabolites. Overall, the estrogenic burden of parabens and their metabolites in blood may exceed the action of endogenous estradiol in childhood and the safety margin for propylparaben is very low when comparing worst-case exposure to NOAELs from experimental studies in rats and mice. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Detection of naproxen and its metabolites in fish bile following intraperitoneal and aqueous exposure.

    PubMed

    Brozinski, Jenny-Maria; Lahti, Marja; Oikari, Aimo; Kronberg, Leif

    2011-06-01

    The anti-inflammatory drug naproxen (NPX) has been found as a micropollutant in river water downstream the discharge points of wastewater treatment plants (WWTP). In this study, rainbow trout (Oncorhynchus mykiss) was exposed to NXP and the uptake and metabolism of the drug was studied. Following exposure through intraperitoneal injection (i.p., 0.5 mg NPX/100 g fish biomass) and through water (1.6 μg L(-1)), the bile was collected and analyzed with various LC-MS/MS methods. The identification of the formed metabolites in i.p. injected fish was based on the exact mass determinations by a time-of-flight mass analyzer (Q-TOF-MS) and on the studies of fragments and fragmentation patterns of precursor ions by an ion trap mass analyzer (IT-MS). No matter the exposure route, the main metabolites were found to be acyl glucuronides of NPX and of 6-O-desmethylnaproxen. Also, unmetabolized NPX was detected in the bile. The total bioconcentration factors (BCF(total-bile)) of NPX and the metabolites in the bile of fish exposed through water ranged from 500 to 2,300. The findings suggest that fish living downstream WWTPs may take up NPX and metabolize the compound. Consequently, NPX and its metabolites in bile can be used to monitor the exposure of fish to NPX.

  9. Determination of α- and β-boldenone sulfate, glucuronide and free forms, and androstadienedione in bovine urine using immunoaffinity columns clean-up and liquid chromatography tandem mass spectrometry analysis.

    PubMed

    Chiesa, Luca; Pavlovic, Radmila; Dusi, Guglielmo; Pasquale, Elisa; Casati, Alessio; Panseri, Sara; Arioli, Francesco

    2015-01-01

    The debate about the origins of boldenone in bovine urine is ongoing for two decades in Europe. Despite the fact that its use as a growth promoter has been banned in the European Union (EU) since 1981, its detection in bovine urine, in the form of α-boldenone conjugate, is considered fully compliant up to 2 ng mL(-1). The conjugated form of β-boldenone must be absent. In recent years, the literature about boldenone has focused on the identification of biomarkers that can indicate an illicit treatment. β-boldenone sulfate is a candidate molecule, even if the only studies currently available have taken place in small populations. In this study, a method for the determination of sulfate and glucuronate conjugates of β-boldenone was developed and validated according to the European Commission Decision 2002/657/EC and applied to α-boldenone sulfate and glucuronide, α- and β-boldenone free forms and androstadienedione (ADD), too. The clean-up with immunoaffinity columns enabled the direct determination of the conjugates and free forms and allowed specific and sensitive analyses of urine samples randomly selected to verify this method. The decision limits (CCα) ranged between 0.07 and 0.08 ng mL(-1), the detection capabilities (CCβ) between 0.08 and 0.1 ng mL(-1). Recovery was higher than 92% for all the analytes. Intra-day repeatability was between 5.8% and 17.2%, and inter-day repeatability was between 6.0% and 21.8% for the studied free and conjugated forms. This method has been developed as a powerful tool with the aim to study the origin of boldenone in a trial on a significant number of animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Polychlorinated Biphenyl Congeners that Increase the Glucuronidation and Biliary Excretion of Thyroxine Are Distinct from the Congeners that Enhance the Serum Disappearance of Thyroxine

    PubMed Central

    Martin, L. A.; Wilson, D. T.; Reuhl, K. R.; Gallo, M. A.

    2012-01-01

    Polychlorinated biphenyl (PCB) congeners differentially reduce serum thyroxine (T4) in rats, but little is known about their ability to affect biliary excretion of T4. Thus, male Sprague-Dawley rats were orally administered Aroclor-1254, Aroclor-1242 (32 mg/kg per day), PCB-95, PCB-99, PCB-118 (16 mg/kg per day), PCB-126 (40 μg/kg per day), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (3.9 μg/kg per day), or corn oil for 7 days. Twenty-four hours after the last dose, [125I]T4 was administered intravenously, and blood, bile, and urine samples were collected for quantifying [125I]T4 and in bile [125I]T4 metabolites. Serum T4 concentrations were reduced by all treatments, but dramatic reductions occurred in response to Aroclor-1254, PCB-99 [phenobarbital (PB)-type congener], and PCB-118 (mixed-type congener). None of the treatments increased urinary excretion of [125I]T4. Aroclor-1254, PCB-118, TCDD, and PCB-126 (TCDD-type congener) increased biliary excretion of T4-glucuronide by 850, 756, 710, and 573%, respectively, corresponding to marked induction of hepatic UDP-glucuronosyltransferase (UGT) activity toward T4. PCB-95 and PCB-99 did not induce UGT activity; therefore, the increased biliary excretion of T4-glucuronide was related to the affinity of congeners for the aryl hydrocarbon receptor. The disappearance of [125I]T4 from serum was rapid (within 15-min) and was increased by Aroclor-1254, PCB-99 and PCB-118. Thus, reductions in serum T4 in response to PCBs did not always correspond with UGT activity toward T4 or with increased biliary excretion of T4-glucuronide. The rapid disappearance of [125I]T4 from the serum of rats treated with PB-like PCBs suggests that increased tissue uptake of T4 is an additional mechanism by which PCBs may reduce serum T4. PMID:22187485

  11. Photoinduced Charge Transfer and Electrochemical Properties of Triphenylamine Ih-Sc3N@C80 Donor-Acceptor Conjugates

    PubMed Central

    Pinzón, Julio R.; Gasca, Diana C.; Shankara, Gayathri. S; Bottari, Giovanni; Torres, Tomás; Guldi, Dirk M.; Echegoyen, Luis

    2009-01-01

    Two isomeric [5,6]-pyrrolidine-Ih-Sc3N@C80 electron donor acceptor conjugates containing triphenylamine (TPA) as the donor system were synthesized. Electrochemical and photophysical studies of the novel conjugates were made and compared with those of their C60 analogues, in order to determine i) the effect of the linkage position (N-substituted versus 2-substituted pyrrolidine) of the donor system in the formation of photoinduced charge separated states, ii) the thermal stability towards the retro-cycloaddition reaction and iii) the effect of changing C60 for Ih-Sc3N@C80 as the electron acceptor. It was found that when the donor is connected to the pyrrolidine nitrogen atom, the resulting dyad produces a significantly longer lived radical pair than the corresponding 2-substituted isomer for both the C60 and Ih-Sc3N@C80 dyads. In addition to that, the N-substituted TPA-Ih-Sc3N@C80 dyad has much better thermal stability than the 2-subtituted one. Finally, the Ih-Sc3N@C80 dyads have considerably longer lived charge separated states than their C60 analogues, thus approving the advantage of using Ih-Sc3N@C80 instead of C60 as the acceptor for the construction of fullerene based donor acceptor conjugates. These findings are important for the design and future application of Ih-Sc3N@C80 dyads as materials for the construction of plastic organic solar cells. PMID:19445462

  12. Role of UDP-glucuronosyltransferase isoforms in 13-cis retinoic acid metabolism in humans.

    PubMed

    Rowbotham, Sophie E; Illingworth, Nicola A; Daly, Ann K; Veal, Gareth J; Boddy, Alan V

    2010-07-01

    13-cis Retinoic acid (13cisRA, isotretinoin) is an important drug in both dermatology, and the treatment of high-risk neuroblastoma. 13cisRA is known to undergo cytochrome P450-mediated oxidation, mainly by CYP2C8, but phase II metabolic pathways have not been characterized. In the present study, the glucuronidation activities of human liver (HLM) and intestinal microsomes (HIM), as well as a panel of human UDP-glucuronosyltransferases (UGTs) toward both 13cisRA and the 4-oxo metabolite, 4-oxo 13cisRA, were compared using high-performance liquid chromatography. Both HLM and, to a greater extent, HIM catalyzed the glucuronidation of 13cisRA and 4-oxo 13cisRA. Based on the structures of 13cisRA and 4-oxo 13cisRA, the glucuronides formed are conjugated at the terminal carboxylic acid. Further analysis revealed that UGT1A1, UGT1A3, UGT1A7, UGT1A8, and UGT1A9 were the major isoforms responsible for the glucuronidation of both substrates. For 13cisRA, a pronounced substrate inhibition was observed with individual UGTs and with HIM. UGT1A3 exhibited the highest rate of activity toward both substrates, and a high rate of activity toward 13cisRA glucuronidation was also observed with UGT1A7. However, for both substrates, K(m) values were above concentrations reported in clinical studies. Therefore, UGT1A9 is likely to be the most important enzyme in the glucuronidation of both substrates as this enzyme had the lowest K(m) and is expressed in both the intestine and at high levels in the liver.

  13. Biotransformation of ginsenosides F4 and Rg6 in zebrafish.

    PubMed

    Shen, Wen-Wen; Zhang, Hai-Xia; Qiu, Shou-Bei; Wei, Ying-Jie; Zhu, Fen-Xia; Wang, Jing; Wang, Dan-Dan; Jia, Xiao-Bin; Tang, Dao-Quan; Chen, Bin

    2017-03-28

    Ginsenosides F 4 and Rg 6 (GF 4 and GRg 6 ), two main active components of steamed notoginseng or red ginseng, are dehydrated disaccharide saponins. In this work, biotransformation of ginsenosides F 4 and Rg 6 in zebrafish was investigated by qualitatively identifying their metabolites and then proposing their possible metabolic pathways. The prediction of possible metabolism of ginsenosides F 4 and Rg 6 using zebrafish model which can effectively simulate existing mammals model was early and quickly performed. Metabolites of ginsenosides F 4 and Rg 6 after exposing to zebrafish for 24 h were identified by Ultraperformance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry. A total of 8 and 6 metabolites of ginsenosides F 4 and Rg 6 were identified in zebrafish, respectively. Of these, 7 and 5, including M1, M3-M5, M7-M9 and N1 (N5), N2, N4 (N9), N7-N8 were reported for the first time as far as we know. The mechanisms of their biotransformation involved were further deduced to be desugarization, glucuronidation, sulfation, dehydroxylation, loss of C-17 and/or C-23 residue pathways. It was concluded that loss of rhamnose at position C-6 and glucuronidation at position C-3 in zebrafish were considered as the main physiologic and metabolic processes of ginsenosides F 4 and ginsenosides Rg 6 , respectively.

  14. Free and total urinary phthalate metabolite concentrations among pregnant women from the Healthy Baby Cohort (HBC), China.

    PubMed

    Zhu, Yingshuang; Wan, Yanjian; Li, Yuanyuan; Zhang, Bin; Zhou, Aifen; Cai, Zongwei; Qian, Zhengmin; Zhang, Chuncao; Huo, Wenqian; Huang, Kai; Hu, Jie; Cheng, Lu; Chang, Huailong; Huang, Zheng; Xu, Bing; Xia, Wei; Xu, Shunqing

    2016-03-01

    Total urinary phthalate metabolites (the free plus glucuronidated forms) have been frequently measured in the general population. However, data are limited on the free forms which may be more bioactive, especially for sensitive population such as pregnant women. Here the data gap was addressed by measuring concentrations of free and total forms of six phthalate metabolites in 293 urine samples from pregnant women at delivery, who were randomly selected from the prospective Healthy Baby Cohort (HBC), China. We observed detectable concentrations of the total amount of phthalate metabolites in all urine samples. The geometric mean (GM) urinary concentrations of free and total mono-butyl phthalate (MBP) (5.20, 54.49ng/mL) were the highest, followed by mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) (4.52, 7.27ng/mL). For most of phthalate metabolites, urinary concentrations were significantly higher in women who were nulliparous. Significantly higher concentrations of mono-ethyl phthalate (MEP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) were found in women who had higher educational level. To our knowledge, this is the first study to report the free and total forms of phthalate metabolites among pregnant women in China. The results suggest that exposure characteristics may be related to parity and education. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Conjugating influenza a (H1N1) antigen to n-trimethylaminoethylmethacrylate chitosan nanoparticles improves the immunogenicity of the antigen after nasal administration.

    PubMed

    Liu, Qingfeng; Zheng, Xiaoyao; Zhang, Chi; Shao, Xiayan; Zhang, Xi; Zhang, Qizhi; Jiang, Xinguo

    2015-11-01

    As one of the most serious infectious respiratory diseases, influenza A (H1N1) is a great threat to human health, and it has created an urgent demand for effective vaccines. Nasal immunization can induce both systemic and mucosal immune responses against viruses, and it can serve as an ideal route for vaccination. However, the low immunogenicity of antigens on nasal mucosa is a high barrier for the development of nasal vaccines. In this study, we covalently conjugated an influenza A (H1N1) antigen to the surface of N-trimethylaminoethylmethacrylate chitosan (TMC) nanoparticles (H1N1-TMC/NP) through thioester bonds to increase the immunogenicity of the antigen after nasal administration. SDS-PAGE revealed that most of the antigen was conjugated on TMC nanoparticles, and an in vitro biological activity assay confirmed the stability of the antigen after conjugation. After three nasal immunizations, the H1N1-TMC/NP induced significantly higher levels of serum IgG and mucosal sIgA compared with free antigen. A hemagglutination inhibition assay showed that H1N1-TMC/NP induced much more protective antibodies than antigen-encapsulated nanoparticles or alum-precipitated antigen (I.M.). In the mechanistic study, H1N1-TMC/NP was shown to stimulate macrophages to produce IL-1β and IL-6 and to stimulate spleen lymphocytes to produce IL-2 and IFN-γ. These results indicated that H1N1-TMC/NP may be an effective vaccine against influenza A (H1N1) viruses for use in nasal immunization. © 2015 Wiley Periodicals, Inc.

  16. Measurement of thyroxine and its glucuronide in municipal wastewater and solids using weak anion exchange solid phase extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Brown, Alistair K; Wong, Charles S

    2017-11-24

    A solids extraction method, using sonication in combination with weak anion exchange solid phase extraction, was created to extract thyroxine (T4) and thyroxine-O-β-d-glucuronide (T4-Glc) simultaneously from wastewaters and sludges, and to quantify these compounds via reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry. The method limits of quantification were all in the low ng/g (dry weight solids) range for both T4 and T4-Glc: 2.13 and 2.63ng/g respectively in primary wastewater, 4.3 and 28.3ng/g for primary suspended solids, for 1.1 and 3.7ng/g for return activated sludge. Precision for measurements of T4 and T4-Glc were 2.6 and 6.5% (intraday) and 9.6 and 5.7% (interday) respectively, while linearity was 0.9967 and 0.9943 respectively. Overall recoveries for T4 and T4-Glc in primary suspended solids were 94% and 95%, and 86 and 101% in primary wastewater, respectively. Extraction efficiency tests using primary sludge determined that one methanol aliquot was sufficient during the extraction process as opposed to 2 or 3 aliquots. Mass loadings at the North Main Wastewater Treatment Plant in Winnipeg, Canada showed 316%, 714%, and 714% greater T4-Glc than T4 associated with the suspended solids of the primary, secondary, and final effluent respectively, yet 765% more T4 than T4-Glc associated with the solids of the mixed liquor. Moreover, 26% of T4 and 49% of T4-Glc were associated with the suspended solids during the treatment process. This method demonstrates the need to assess accurately both metabolite conjugates of contaminants of emerging concern, as well as the sorbed levels of particle-reactive analytes such as T4 in the aquatic environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Metabolic profile of Kudiezi injection in rats by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Zhang, Jingdan; Zhang, Xiaoxue; Zhao, Yangyang; Song, Aihua; Sun, Wei; Yin, Ran

    2018-02-01

    In this study, a reliable and sensitive ultra-high performance liquid chromatography coupled with fourier transform ion cyclotron resonance mass spectrometry method was developed for the systematic study of the metabolic profile of Kudiezi injection in rat plasma, bile, urine, and feces after intravenous administration of a single dose. The chromatographic separation was performed on an Agilent Eclipse Plus C 18 column (4.6 mm × 50 mm, 1.8 μm) and the identification of prototype components and metabolites was achieved on a Bruker Solarix 7.0 T ultra-high resolution spectrometer in negative ion mode. Results indicated that a total of 76 constituents including 29 prototype compounds and 47 metabolites (10 phase I metabolites and 37 phase II metabolites) were tentatively identified. And the metabolic pathways of these prototype compounds including hydroxylation, dehydrogenation, glucuronidation, and sulfate conjugation. In conclusion, the developed method with high resolution and sensitivity was effective for screening and identification of prototypes and metabolites of Kudiezi injection in vivo. Moreover, these results would provide significant information for further pharmacokinetic and pharmacological research of Kudiezi injection in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development and optimization of a reversed-phase high-performance liquid chromatographic method for the determination of acetaminophen and its major metabolites in rabbit plasma and urine after a toxic dose.

    PubMed

    Vertzoni, M V; Archontaki, H A; Galanopoulou, P

    2003-07-14

    A reversed-phase high-performance liquid chromatographic method with detection at 242 nm was developed, optimized and validated for the determination of acetaminophen (A) and its major metabolites glucuronide (AG) and sulfate (AS) conjugates in rabbit plasma and urine after a toxic dose. m-Aminophenol was used as internal standard (IS). A Hypersil BDS RP-C18 column (250 x 4.6 mm), 5 microm particle size, was equilibrated with a mobile phase composed of aqueous buffer solution of KH2PO4 0.05 M containing 1% CH3COOH (pH 6.5) and methanol (95:5, v/v). Its flow rate was 1.5 ml/min. Calibration curves of A, AG and AS were linear in the concentration ranges of 0.5-250, 1-200, 0.5-100 microg/ml in plasma and 1-200, 0.5-150, 0.5-100 microg/ml in urine matrix, respectively. Limits of detection and quantitation were calculated in all cases and extensive recovery studies were also performed. Intra-day relative standard deviation (R.S.D.) for A, AG and AS in plasma was less than 5, 4, 2% and in urine less than 4, 7, 4%, respectively, while the corresponding inter-day values were 7, 6, 4% and 5, 8, 6%, respectively.

  19. Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10

    PubMed Central

    Ramírez, Jacqueline; Mirkov, Snezana; House, Larry K.

    2015-01-01

    OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0–21%) was observed using clinically relevant OTS167 concentrations (0.4–2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration. PMID:25870101

  20. Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10.

    PubMed

    Ramírez, Jacqueline; Mirkov, Snezana; House, Larry K; Ratain, Mark J

    2015-07-01

    OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0-21%) was observed using clinically relevant OTS167 concentrations (0.4-2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.