Sample records for n-heterocyclic carbene precursor

  1. Application of Chan-Lam cross coupling for the synthesis of N-heterocyclic carbene precursors bearing strong electron donating or withdrawing groups

    NASA Astrophysics Data System (ADS)

    Huang, Liliang; He, Chengxiang; Sun, Zhihua

    2015-07-01

    Chan-Lam cross coupling allowed efficient synthesis of N,N’-disubstituted ortho-phenylene diamines bearing strong electron donating or withdrawing groups, such as nitro or methoxy groups, with moderate to high yields. These diamines can then be turned into N-heterocyclic carbene precursors after condensation with trimethyl orthoformate. The same strategy can also be utilized for the synthesis of N-monosubstituted aniline derivatives containing a functionalized ortho-aminomethyl group as intermediates for chiral 6-membered ring carbene precursors.

  2. Synthesis and Properties of Chelating N-Heterocyclic Carbene Rhodium(I) Complexes: Synthetic Experiments in Current Organometallic Chemistry

    ERIC Educational Resources Information Center

    Mata, Jose A.; Poyatos, Macarena; Mas-Marza, Elena

    2011-01-01

    The preparation and characterization of two air-stable Rh(I) complexes bearing a chelating N-heterocyclic carbene (NHC) ligand is described. The synthesis involves the preparation of a Ag(I)-NHC complex and its use as carbene transfer agent to a Rh(I) precursor. The so obtained complex can be further reacted with carbon monoxide to give the…

  3. Carbene complexes of rhodium and iridium from tripodal N-heterocyclic carbene ligands: synthesis and catalytic properties.

    PubMed

    Mas-Marzá, Elena; Poyatos, Macarena; Sanaú, Mercedes; Peris, Eduardo

    2004-03-22

    Two tripodal trisimidazolium ligand precursors have been tested in the synthesis of new N-heterocyclic carbene rhodium and iridium complexes. [Tris(3-methylbenzimidazolium-1-yl)]methane sulfate gave products with coordination of the decomposed precursor. [1,1,1-Tris(3-butylimidazolium-1-yl)methyl]ethane trichloride (TIMEH(3)(Bu)) coordinated to the metal in a chelate and bridged-chelate form, depending on the reaction conditions. The crystal structures of two of the products are described. The compounds resulting from the coordination with TIME(Bu) were tested in the catalytic hydrosilylation of terminal alkynes.

  4. Optimized Syntheses of Cyclopentadienyl Nickel Chloride Compounds Containing "N"-Heterocyclic Carbene Ligands for Short Laboratory Periods

    ERIC Educational Resources Information Center

    Cooke, Jason; Lightbody, Owen C.

    2011-01-01

    Experiments are described for the preparation of imidazolium chloride precursors to "N"-heterocyclic carbenes and their cyclopentadienyl nickel chloride derivatives. The syntheses have been optimized for second- and third-year undergraduate laboratories that have a maximum programmed length of three hours per week. The experiments are flexible and…

  5. α-Diazo oxime ethers for N-heterocycle synthesis.

    PubMed

    Choi, Subin; Ha, Sujin; Park, Cheol-Min

    2017-06-01

    This Feature Article introduces the preparation and synthetic utility of α-diazo oxime ethers. α-Oximino carbenes are useful synthons for N-heterocycles, and can be easily prepared from α-diazo oxime ethers as precursors. We begin with the preparation of α-diazo oxime ethers and their application in [3+2] cycloaddition. It turns out that the nature of metals bound to carbenes plays a crucial role in modulating the reactivity of α-oximino carbenes, in which copper carbenes smoothly react with enamines, whereas the less reactive enol ethers and nitriles require gold carbenes. In Section 3.2, a discussion on N-O and C-H bond activation is presented. Carbenes derived from diazo oxime ethers show unique reactivity towards N-O and C-H bond activation, in which the proximity of the two functionalities, carbene and oxime ether, dictates the preferred reaction pathways toward pyridines, pyrroles, and 2H-azirines. In Section 3.3, the development of tandem reactions based on α-diazo oxime ethers is discussed. The nature of carbenes in which whether free carbenes or metal complexes are involved dissects the pathway and forms different types of 2H-azirines. The 2H-azirine formation turned out to be an excellent platform for the tandem synthesis of N-heterocycles including pyrroles and pyridines. In the last section, we describe the electrophilic activation of 2H-azirines with vinyl carbenes and oximino carbenes. The resulting azirinium species undergo rapid ring expansion rearrangements to form pyridines and pyrazines.

  6. Coumaraz-2-on-4-ylidene: Ambiphilic N-heterocyclic Carbenes with a Fine-Tunable Electronic Structure.

    PubMed

    Song, Hayoung; Kim, Hyunho; Lee, Eunsung

    2018-05-16

    Herein, a coumaraz-2-on-4-ylidene (1) as a new example of ambiphilic N-heterocyclic carbenes with fine tunable electronic properties is reported. The N-carbamic and aryl groups on carbene carbon provide exceptionally high electrophilicity and nucleophilicity simultaneously to the carbene center, as evidenced by the 77Se NMR chemical shifts of their selenoketone derivatives and the CO stretching strengths of their rhodium carbonyl complexes. Since the precursors of 1 could be synthesized from various functionalized Schiff bases in a practical and scalable manner, the electronic properties of 1 can be fine-tuned in quantitative and predictable way using the Hammett σ constant of the functional groups on aryl ring. The facile electronic tuning capability of 1 may be further applicable to eliciting novel properties in main-group and transition metal chemistry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Depolymerization of Poly(Ethylene Terephthalate) (PET) Using N-Heterocyclic Carbenes from Ionic Liquids

    ERIC Educational Resources Information Center

    Kamber, Nahrain E.; Tsujii, Yasuhito; Keets, Kate; Waymouth, Robert M.; Pratt, Russell C.; Nyce, Gregory W.; Hedrick, James L.

    2010-01-01

    The depolymerization of the plastic polyethylene terephthalate (PET or PETE) is described in this laboratory procedure. The transesterification reaction used to depolymerize PET employs a highly efficient N-heterocyclic carbene catalyst derived from a commercially available imidazolium ionic liquid. N-heterocyclic carbenes are potent nucleophilic…

  8. Synthesis of palladium(0) and -(II) complexes with chelating bis(N-heterocyclic carbene) ligands and their application in semihydrogenation.

    PubMed

    Sluijter, Soraya N; Warsink, Stefan; Lutz, Martin; Elsevier, Cornelis J

    2013-05-28

    A transmetallation route, using silver(I) precursors, to several zero- and di-valent palladium complexes with chelating bis(N-heterocyclic carbene) ligands bearing various N-substituents has been established. The resulting complexes have been characterized by NMR and mass spectroscopy. In addition, the structure of a representative compound, [Pd(0)(bis-(Mes)NHC)(η(2)-ma)] (3a), was confirmed by X-ray crystal structure determination. In contrast to the transfer semihydrogenation, in which only low activity was observed, complex 3a showed activity (TOF = 49 mol(sub) mol(cat)(-1) h(-1)) and selectivity comparable to its monodentate counterparts in the semihydrogenation of 1-phenyl-1-propyne with molecular hydrogen.

  9. N,N'-diamidoketenimines via coupling of isocyanides to an N-heterocyclic carbene.

    PubMed

    Hudnall, Todd W; Moorhead, Eric J; Gusev, Dmitry G; Bielawski, Christopher W

    2010-04-16

    Treatment of an N-heterocyclic carbene that features two amide groups N-bound to the carbene nucleus with various organic isocyanides afforded a new class of ketenimines in yields of up to 96% (isolated). DFT analyses revealed that the carbene exhibits a unique, low-lying LUMO, which may explain the atypical reactivity observed.

  10. Carbene Catalysts

    NASA Astrophysics Data System (ADS)

    Moore, Jennifer L.; Rovis, Tomislav

    The use of N-heterocyclic carbenes as catalysts for organic transformations has received increased attention in the past 10 years. A discussion of catalyst development and nucleophilic characteristics precedes a description of recent advancements and new reactions using N-heterocyclic carbenes in catalysis.

  11. "Decarbonization" of an imino N-heterocyclic carbene via triple benzyl migration from hafnium

    USDA-ARS?s Scientific Manuscript database

    An imino N-heterocyclic carbene underwent three sequential benzyl migrations upon reaction with tetrabenzylhafnium, resulting in complete removal of the carbene carbon from the ligand. The resulting eneamido-amidinato hafnium complex showed alkene polymerization activity comparable to that of a prec...

  12. Abnormal carbene-silicon halide complexes.

    PubMed

    Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; Schaefer, Henry F; Robinson, Gregory H

    2016-04-14

    Reaction of the anionic N-heterocyclic dicarbene (NHDC), [:C{[N(2,6-Pr(i)2C6H3)]2CHCLi}]n (1), with SiCl4 gives the trichlorosilyl-substituted (at the C4 carbon) N-heterocyclic carbene complex (7). Abnormal carbene-SiCl4 complex (8) may be conveniently synthesized by combining 7 with HCl·NEt3. In addition, 7 may react with CH2Cl2 in warm hexane, giving the abnormal carbene-complexed SiCl3(+) cation (9). The nature of the bonding in 9 was probed with complementary DFT computations.

  13. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N -Heterocyclic Carbene Synthons

    DOE PAGES

    Lu, Haipeng; Brutchey, Richard L.

    2017-01-23

    Here we present a new toolset of precursors for semiconductor nanocrystal synthesis, N-heterocyclic carbene (NHC)-metal halide complexes, which enables a tunable molecular platform for the preparation of coinage metal chalcogenide quantum dots (QDs). Phase-pure and highly monodisperse coinage metal chalcogenide (Ag 2E, Cu 2-xE; E = S, Se) QDs are readily synthesized from the direct reaction of an NHC-MBr synthon (where M = Ag, Cu) with alkylsilyl chalcogenide reagents at room temperature. We demonstrate that the size of the resulting QDs is well tailored by the electron-donating ability of the L-type NHC ligands, which are further confirmed to be themore » only organic capping ligands on the QD surface, imparting excellent colloidal stability. Local superstructures of the NHC-capped Ag 2S QDs are observed by TEM, further demonstrating their potential for synthesizing monodisperse ensembles and mediating self-assembly.« less

  14. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N -Heterocyclic Carbene Synthons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Haipeng; Brutchey, Richard L.

    Here we present a new toolset of precursors for semiconductor nanocrystal synthesis, N-heterocyclic carbene (NHC)-metal halide complexes, which enables a tunable molecular platform for the preparation of coinage metal chalcogenide quantum dots (QDs). Phase-pure and highly monodisperse coinage metal chalcogenide (Ag 2E, Cu 2-xE; E = S, Se) QDs are readily synthesized from the direct reaction of an NHC-MBr synthon (where M = Ag, Cu) with alkylsilyl chalcogenide reagents at room temperature. We demonstrate that the size of the resulting QDs is well tailored by the electron-donating ability of the L-type NHC ligands, which are further confirmed to be themore » only organic capping ligands on the QD surface, imparting excellent colloidal stability. Local superstructures of the NHC-capped Ag 2S QDs are observed by TEM, further demonstrating their potential for synthesizing monodisperse ensembles and mediating self-assembly.« less

  15. Highly chemoselective intermolecular cross-benzoin reactions using an ad hoc designed novel N-heterocyclic carbene catalyst.

    PubMed

    Delany, Eoghan G; Connon, Stephen J

    2018-01-31

    The design of a novel N-heterocyclic carbene catalyst incorporating a bulky yet highly electron-deficient N-aryl substituent has allowed the development of an efficient protocol for the first highly chemoselective intermolecular benzoin condensations between two non-identical aromatic aldehydes.

  16. Synthesis and characterization of Pd(II)-methyl complexes with N-heterocyclic carbene-amine ligands.

    PubMed

    Warsink, Stefan; de Boer, Sandra Y; Jongens, Lianne M; Fu, Ching-Feng; Liu, Shiuh-Tzung; Chen, Jwu-Ting; Lutz, Martin; Spek, Anthony L; Elsevier, Cornelis J

    2009-09-21

    A number of palladium(ii) complexes with a heteroditopic NHC-amine ligand and their precursor silver(i) carbene complexes have been efficiently prepared and their structural features have been investigated. The heteroditopic coordination of this ligand class was unequivocally shown by NMR-spectroscopy and X-ray crystallographic analysis. The neutral and cationic cis-methyl-palladium(NHC) complexes are not prone to reductive elimination, which is normally a major degenerative pathway for this type of complex. In contrast, under carbon monoxide atmosphere rapid reductive elimination of the acyl-imidazolium salt was observed.

  17. N-Heterocyclic Carbene-Catalyzed Alcohol Acetylation: An Organic Experiment Using Organocatalysis

    ERIC Educational Resources Information Center

    Morgan, John P.; Shrimp, Jonathan H.

    2014-01-01

    Undergraduate students in the teaching laboratory have successfully used N-heterocyclic carbenes (NHCs) as organocatalysts for the acetylation of primary alcohols, despite the high water sensitivity of uncomplexed ("free") NHCs. The free NHC readily reacted with chloroform, resulting in an air- and moisture-stable adduct that liberates…

  18. Pd-N-Heterocyclic Carbene (NHC) Organic Silica: Synthesis and Application in Carbon-Carbon Coupling Reactions

    EPA Science Inventory

    The first Pd-N-heterocyclic carbene (NHC) complex in the form of organic silica was prepared using sol-gel method and its application in Heck and Suzuki reaction were demonstrated. These C-C coupling reactions proceeded efficiently under the influence of microwave irradiation, wi...

  19. Annulation of o-Quinodimethanes through N-Heterocyclic Carbene Catalysis for the Synthesis of 1-Isochromanones.

    PubMed

    Janssen-Müller, Daniel; Singha, Santanu; Olyschläger, Theresa; Daniliuc, Constantin G; Glorius, Frank

    2016-09-02

    The activation of 2-(bromomethyl)benzaldehydes using N-heterocyclic carbenes represents a novel approach to the generation of o-quinodimethane (o-QDM) intermediates. Coupling with ketones such as phenylglyoxylates, isatins, or trifluoromethyl ketones via [4 + 2] annulation gives access to functionalized 1-isochromanones.

  20. Synthesis of Pd-N-heterocyclic carbene Pd-catalyst and its application in MW-assisted Heck and Suzuki reaction

    EPA Science Inventory

    The first Pd-N-heterocyclic carbene (NHC) complex in the form of organic silica is prepared using sol-gel method and its application in Heck and Suzuki reactions are demonstrated. These C-C coupling reactions proceeded efficiently under the influence of microwave irradiation, wit...

  1. N-heterocyclic carbene catalysed asymmetric cross-benzoin reactions of heteroaromatic aldehydes with trifluoromethyl ketones.

    PubMed

    Enders, Dieter; Grossmann, André; Fronert, Jeanne; Raabe, Gerhard

    2010-09-14

    A new triazolium salt derived N-heterocyclic carbene catalyses an asymmetric cross-benzoin-type reaction of heteroaromatic aldehydes and various trifluoromethyl ketones in good to excellent yields (69-96%) and moderate to good enantioselectivities (ee = 39-85%). Up to 99% ee can be achieved by recrystallisation.

  2. Gold(I) Carbenoids: On‐Demand Access to Gold(I) Carbenes in Solution

    PubMed Central

    Sarria Toro, Juan M.; García‐Morales, Cristina; Raducan, Mihai; Smirnova, Ekaterina S.

    2017-01-01

    Abstract Chloromethylgold(I) complexes of phosphine, phosphite, and N‐heterocyclic carbene ligands are easily synthesized by reaction of trimethylsilyldiazomethane with the corresponding gold chloride precursors. Activation of these gold(I) carbenoids with a variety of chloride scavengers promotes reactivity typical of metallocarbenes in solution, namely homocoupling to ethylene, olefin cyclopropanation, and Buchner ring expansion of benzene. PMID:28090747

  3. N-Heterocyclic carbene-catalyzed chemoselective cross-aza-benzoin reaction of enals with isatin-derived ketimines: access to chiral quaternary aminooxindoles.

    PubMed

    Xu, Jianfeng; Mou, Chengli; Zhu, Tingshun; Song, Bao-An; Chi, Yonggui Robin

    2014-06-20

    A chemo- and enantioselective cross-aza-benzoin reaction between enals and isatin-derived ketimines is disclosed. The high chemoselectivity (of the acyl anion reaction over enal α- and β-carbon reactions) is enabled by the electronic and steric properties of the N-heterocyclic carbene organocatalyst.

  4. Coordination chemistry of highly hemilabile bidentate sulfoxide N-heterocyclic carbenes with palladium(II).

    PubMed

    Yu, Kuo-Hsuan; Wang, Chia-Ching; Chang, I-Hsin; Liu, Yi-Hung; Wang, Yu; Elsevier, Cornelis J; Liu, Shiuh-Tzung; Chen, Jwu-Ting

    2014-12-01

    Imidazolium salts, [RS(O)-CH2 (C3 H3 N2 )Mes]Cl (R=Me (L1a), Ph (L1b)); Mes=mesityl), make convenient carbene precursors. Palladation of L1a affords the monodentate dinuclear complex, [(PdCl2 {MeS(O)CH2 (C3 H2 N2 )Mes})2 ] (2a), which is converted into trans-[PdCl2 (NHC)2] (trans-4a; N-heterocyclic carbene) with two rotamers in anti and syn configurations. Complex trans-4a can isomerize into cis-4a(anti) at reflux in acetonitrile. Abstraction of chlorides from 4a or 4b leads to the formation of a new dication: trans-[Pd{RS(O)CH2(C3H2N2)Mes}2](PF6)2 (R=Me (5a), Ph (5b)). The X-ray structure of 5a provides evidence that the two bidentate SO-NHC ligands at palladium(II) are in square-planar geometry. Two sulfoxides are sulfur- and oxygen-bound, and constitute five- and six-membered chelate rings with the metal center, respectively. In acetonitrile, complexes 5a or 5b spontaneously transform into cis-[Pd(NHC)2(NCMe)2](PF6)2. Similar studies of thioether-NHCs have also been examined for comparison. The results indicate that sulfoxides are more labile than thioethers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. N-heterocyclic carbene catalyzed regioselective oxo-acyloxylation of alkenes with aromatic aldehydes: a high yield synthesis of α-acyloxy ketones and esters.

    PubMed

    Reddi, Rambabu N; Malekar, Pushpa V; Sudalai, Arumugam

    2013-10-14

    An N-heterocyclic carbene (NHC)-catalyzed reaction of alkenes with aromatic aldehydes providing for a high yield synthesis of α-acyloxy ketones and esters has been described. This unprecedented regioselective oxidative process employs NBS and Et3N in stoichiometric amounts and O2 (1 atm) as an oxidant under ambient conditions in DMSO as a solvent.

  6. Synergistic N-Heterocyclic Carbene/Palladium-Catalyzed Reactions of Aldehyde Acyl Anions with either Diarylmethyl or Allylic Carbonates.

    PubMed

    Yasuda, Shigeo; Ishii, Takuya; Takemoto, Shunsuke; Haruki, Hiroki; Ohmiya, Hirohisa

    2018-03-05

    Benzylation and allylation of aldehyde acyl anions were enabled by the merger of a thiazolium N-heterocyclic carbene (NHC) catalyst and a palladium/bisphosphine catalyst in a synergistic manner. Owing to the mildness of the reaction conditions, various functional groups were tolerated in the substrates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Preparation of a N-Heterocyclic Carbene Nickel(II) Complex: Synthetic Experiments in Current Organic and Organometallic Chemistry

    ERIC Educational Resources Information Center

    Ritleng, Vincent; Brenner, Eric; Chetcuti, Michael J.

    2008-01-01

    A four-part experiment that leads to the synthesis of a cyclopentadienyl chloro-nickel(II) complex bearing a N-heterocyclic carbene (NHC) ligand is presented. In the first part, the preparation of 1,3-bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes[middle dot]HCl) in a one-pot procedure by reaction of 2,4,6-trimethylaniline with…

  8. Site-selective benzoin-type cyclization of unsymmetrical dialdoses catalyzed by N-heterocyclic carbenes for divergent cyclitol synthesis.

    PubMed

    Kang, Bubwoong; Wang, Yinli; Kuwano, Satoru; Yamaoka, Yousuke; Takasu, Kiyosei; Yamada, Ken-Ichi

    2017-04-18

    A highly site-selective N-heterocyclic carbene (NHC)-catalyzed benzoin-type cyclization of unsymmetrical dialdoses is developed to enable a divergent cyclitol synthesis. The choice of chiral NHCs and protecting groups affects the site-selectivity. The resulting inososes are converted into epi-, muco- and myo-inositols, and their chiral protected derivatives are formed in good yields.

  9. Organocatalysis by bimacrocyclic NHCs: unexpected formation of a cyclic hemiacetal instead of a gamma-butyrolactone.

    PubMed

    Winkelmann, Ole; Näther, Christian; Lüning, Ulrich

    2009-02-07

    Two bimacrocyclic imidazolinium salts of different size, precursors to respective NHCs (N-heterocyclic carbenes), were tested as precatalysts in the reaction of aromatic aldehydes or ketones with enals. The expected lactones were produced in most cases, but in the reaction of methyl 4-formylbenzoate with cinnamaldehyde, the larger bimacrocycle led to the formation of a cyclic hemiacetal, while the smaller bimacrocycle gave the anticipated lactone.

  10. Synthesis of Well-Defined Copper "N"-Heterocyclic Carbene Complexes and Their Use as Catalysts for a "Click Reaction": A Multistep Experiment that Emphasizes the Role of Catalysis in Green Chemistry

    ERIC Educational Resources Information Center

    Ison, Elon A.; Ison, Ana

    2012-01-01

    A multistep experiment for an advanced synthesis lab course that incorporates topics in organic-inorganic synthesis and catalysis and highlights green chemistry principles was developed. Students synthesized two "N"-heterocyclic carbene ligands, used them to prepare two well-defined copper(I) complexes and subsequently utilized the complexes as…

  11. "N"-Heterocyclic Carbene-Catalyzed Reaction of Chalcone and Cinnamaldehyde to Give 1,3,4-Triphenylcyclopentene Using Organocatalysis to Form a Homoenolate Equivalent

    ERIC Educational Resources Information Center

    Snider, Barry B.

    2015-01-01

    In this experiment, students carry out a modern organocatalytic reaction using IMes·HCl and NaOH to catalyze the formation of 1,3,4-triphenylcyclopentene from cinnamaldehyde and chalcone in water. Deprotonation of IMes·HCl with NaOH forms the "N"-heterocyclic carbene IMes that reacts with cinnamaldehyde to form a homoenolate equivalent…

  12. Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions.

    PubMed

    Menon, Rajeev S; Biju, Akkattu T; Nair, Vijay

    2016-01-01

    N-Heterocyclic carbenes (NHCs) have emerged as a powerful class of organocatalysts that mediate a variety of organic transformations. The Benzoin reaction constitutes one of the earliest known carbon-carbon bond-forming reactions catalysed by NHCs. The rapid growth of NHC catalysis in general has resulted in the development of a variety of benzoin and benzoin-type reactions. An overview of such NHC-catalysed benzoin reactions is presented.

  13. An electronic rationale for observed initiation rates in ruthenium-mediated olefin metathesis: charge donation in phosphine and N-heterocyclic carbene ligands.

    PubMed

    Getty, Kendra; Delgado-Jaime, Mario Ulises; Kennepohl, Pierre

    2007-12-26

    Ru K-edge XAS data indicate that second generation ruthenium-based olefin metathesis precatalysts (L = N-heterocyclic carbene) possess a more electron-deficient metal center than in the corresponding first generation species (L = tricyclohexylphosphine). This surprising effect is also observed from DFT calculations and provides a simple rationale for the slow phosphine dissociation kinetics previously noted for second-generation metathesis precatalysts.

  14. N-Heterocyclic carbene-catalyzed direct cross-aza-benzoin reaction: Efficient synthesis of α-amino-β-keto esters.

    PubMed

    Uno, Takuya; Kobayashi, Yusuke; Takemoto, Yoshiji

    2012-01-01

    An efficient catalytic synthesis of α-amino-β-keto esters has been newly developed. Cross-coupling of various aldehydes with α-imino ester, catalyzed by N-heterocyclic carbene, leads chemoselectively to α-amino-β-keto esters in moderate to good yields with high atom efficiency. The reaction mechanism is discussed, and it is proposed that the α-amino-β-keto esters are formed under thermodynamic control.

  15. Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions

    PubMed Central

    Menon, Rajeev S; Biju, Akkattu T

    2016-01-01

    Summary N-Heterocyclic carbenes (NHCs) have emerged as a powerful class of organocatalysts that mediate a variety of organic transformations. The Benzoin reaction constitutes one of the earliest known carbon–carbon bond-forming reactions catalysed by NHCs. The rapid growth of NHC catalysis in general has resulted in the development of a variety of benzoin and benzoin-type reactions. An overview of such NHC-catalysed benzoin reactions is presented. PMID:27340440

  16. Oxidative enantioselective α-fluorination of aliphatic aldehydes enabled by N-heterocyclic carbene catalysis.

    PubMed

    Li, Fangyi; Wu, Zijun; Wang, Jian

    2015-01-07

    Described is the first study on oxidative enantioselective α-fluorination of simple aliphatic aldehydes enabled by N-heterocyclic carbene catalysis. N-fluorobis(phenyl)sulfonimide serves as a an oxidant and as an "F" source. The C-F bond formation occurs directly at the α position of simple aliphatic aldehydes, thus overcoming nontrivial challenges, such as competitive difluorination and nonfluorination, and proceeds with high to excellent enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Building new discrete supramolecular assemblies through the interaction of iso-tellurazole N-oxides with Lewis acids and bases.

    PubMed

    Ho, Peter C; Jenkins, Hilary A; Britten, James F; Vargas-Baca, Ignacio

    2017-10-13

    The supramolecular macrocycles spontaneously assembled by iso-tellurazole N-oxides are stable towards Lewis bases as strong as N-heterocyclic carbenes (NHC) but readily react with Lewis acids such as BR 3 (R = Ph, F). The electron acceptor ability of the tellurium atom is greatly enhanced in the resulting O-bonded adducts, which consequently enables binding to a variety of Lewis bases that includes acetonitrile, 4-dimethylaminopyridine, 4,4'-bipyridine, triphenyl phosphine, a N-heterocyclic carbene and a second molecule of iso-tellurazole N-oxide.

  18. In situ Generated Ruthenium Catalyst Systems Bearing Diverse N-Heterocyclic Carbene Precursors for Atom-Economic Amide Synthesis from Alcohols and Amines.

    PubMed

    Cheng, Hua; Xiong, Mao-Qian; Cheng, Chuan-Xiang; Wang, Hua-Jing; Lu, Qiang; Liu, Hong-Fu; Yao, Fu-Bin; Chen, Cheng; Verpoort, Francis

    2018-02-16

    The transition-metal-catalyzed direct synthesis of amides from alcohols and amines is herein demonstrated as a highly environmentally benign and atom-economic process. Among various catalyst systems, in situ generated N-heterocyclic carbene (NHC)-based ruthenium (Ru) halide catalyst systems have been proven to be active for this transformation. However, these existing catalyst systems usually require an additional ligand to achieve satisfactory results. In this work, through extensive screening of a diverse variety of NHC precursors, we discovered an active in situ catalyst system for efficient amide synthesis without any additional ligand. Notably, this catalyst system was found to be insensitive to the electronic effects of the substrates, and various electron-deficient substrates, which were not highly reactive with our previous catalyst systems, could be employed to afford the corresponding amides efficiently. Furthermore, mechanistic investigations were performed to provide a rationale for the high activity of the optimized catalyst system. NMR-scale reactions indicated that the rapid formation of a Ru hydride intermediate (signal at δ=-7.8 ppm in the 1 H NMR spectrum) after the addition of the alcohol substrate should be pivotal in establishing the high catalyst activity. Besides, HRMS analysis provided possible structures of the in situ generated catalyst system. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Well-defined N-heterocyclic carbene silver halides of 1-cyclohexyl-3-arylmethylimidazolylidenes: synthesis, structure and catalysis in A3-reaction of aldehydes, amines and alkynes.

    PubMed

    Li, Yanbo; Chen, Xiaofeng; Song, Yin; Fang, Ling; Zou, Gang

    2011-03-07

    Structurally well-defined N-heterocyclic carbene silver chlorides and bromides supported by 1-cyclohexyl-3-benzylimidazolylidene (CyBn-NHC) or 1-cyclohexyl-3-naphthalen-2-ylmethylimidazolylidene (CyNaph-NHC) were synthesized by reaction of the corresponding imidazolium halides with silver(I) oxide while cationic bis(CyBn-NHC) silver nitrate was isolated under similar conditions using imidazolium iodide in the presence of sodium nitrate. Single-crystal X-ray diffraction revealed a dimeric structure through a nonpolar weak-hydrogen-bond supported Ag-Ag bond for 1-cyclohexyl-3-benzylimidazolylidene silver halides [(CyBn-NHC)AgX](2) (X = Cl, 1; Br, 2) but a monomeric structure for N-heterocyclic carbene silver halides with the more sterically demanding 1-cyclohexyl-3-naphthalen-2-ylmethylimidazolylidene ligand (CyNaph-NHC)AgX (X = Cl, 4; Br, 5). Cationic biscarbene silver nitrate [(CyBn-NHC)(2)Ag](+)NO(3)(-)3 assumed a cis orientation with respect to the two carbene ligands. The monomeric complexes (CyNaph-NHC)AgX 4 and 5 showed higher catalytic activity than the dimeric [(CyBn-NHC)AgX](2)1 and 2 as well as the cationic biscarbene silver nitrate 3 in the model three component reaction of 3-phenylpropionaldehyde, phenylacetylene and piperidine with chloride 4 performing best and giving product in almost quantitative yield within 2 h at 100 °C. An explanation for the structure-activity relationship in N-heterocyclic carbene silver halide catalyzed three component reaction is given based on a slightly modified mechanism from the one in literature.

  20. 2-Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties

    NASA Astrophysics Data System (ADS)

    Erdemir, Fatoş; Barut Celepci, Duygu; Aktaş, Aydın; Taslimi, Parham; Gök, Yetkin; Karabıyık, Hasan; Gülçin, İlhami

    2018-03-01

    This study contains novel a serie synthesis of N-heterocyclic carbene (NHC) precursors that 2-hydroxyethyl substituted. The NHC precursors have been prepared from 1-(2- hydroxyethyl)benzimidazole and alkyl halides. The novel NHC precursors have been characterized by using 1H NMR, 13C NMR, FTIR spectroscopy and elemental analysis techniques. Molecular and crystal structures of 2a, 2d, 2e, 2f and 2g were obtained with single-crystal X-ray diffraction studies. These novel NHC precursor's derivatives effectively inhibited the α-glycosidase, cytosolic carbonic anhydrase I and II isoforms (hCA I and II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). Inhibition constant (Ki) were found in the range of 0.30-9.22 nM for α-glycosidase, 13.90-41.46 nM for hCA I, 12.82-49.95 nM for hCA II, 145.82-882.01 nM for BChE, and 280.92-1370.01 nM for AChE, respectively.

  1. N-Heterocyclic Carbenes as Promotors for the Rearrangement of Phosphaketenes to Phosphaheteroallenes: A Case Study for OCP to OPC Constitutional Isomerism.

    PubMed

    Li, Zhongshu; Chen, Xiaodan; Benkő, Zoltán; Liu, Liu; Ruiz, David A; Peltier, Jesse L; Bertrand, Guy; Su, Chen-Yong; Grützmacher, Hansjörg

    2016-05-10

    The concept of isomerism is essential to chemistry and allows defining molecules with an identical composition but different connectivity (bonds) between their atoms (constitutional isomers) and/or a different arrangement in space (stereoisomers). The reaction of phosphanyl ketenes, (NHP)-P=C=O (NHP=N-heterocyclic phosphenium) with N-heterocyclic carbenes (NHCs) leads to phosphaheteroallenes (NHP)-O-P=C=NHC in which the PCO unit has been isomerized to OPC. Based on the isolation of several intermediates and DFT calculations, a mechanism for this fundamental isomerisation process is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHC-OH Ligand.

    PubMed

    Srivastava, Ravi; Moneuse, Raphaël; Petit, Julien; Pavard, Paul-Alexis; Dardun, Vincent; Rivat, Madleen; Schiltz, Pauline; Solari, Marius; Jeanneau, Erwann; Veyre, Laurent; Thieuleux, Chloé; Quadrelli, Elsje Alessandra; Camp, Clément

    2018-03-20

    The straightforward synthesis of a new unsymmetrical hydroxy-tethered N-heterocyclic carbene (NHC) ligand, HL, is presented. The free ligand exhibits an unusual OH-carbene hydrogen-bonding interaction. This OH-carbene motif was used to yield 1) the first tantalum complex displaying both a Fischer- and Schrock-type carbene ligand and 2) a unique NHC-based early/late heterobimetallic complex. More specifically, the protonolysis chemistry between the ligand's hydroxy group and imido-alkyl or alkylidene-alkyl tantalum precursor complexes yielded the rare monometallic tantalum-NHC complexes [Ta(XtBu)(L)(CH 2 tBu) 2 ] (X=N, CH), in which the alkoxy-carbene ligand acts as a chelate. In contrast, HL only binds to rhodium through the NHC unit in [Rh(HL)(cod)Cl] (cod=cycloocta-1,5-diene), the hydroxy pendant arm remaining unbound. This bifunctional ligand scaffold successfully promoted the assembly of rhodium/tantalum heterobimetallic complexes upon either 1) the insertion of [Rh(cod)Cl] 2 into the Ta-NHC bond in [Ta(NtBu)(L)(CH 2 tBu) 2 ] or 2) protonolysis between the free hydroxy group in [Rh(HL)(cod)Cl] and one alkyl group in [Ta(NtBu)(CH 2 tBu) 3 ]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enantioselective N-Heterocyclic Carbene Catalysis via the Dienyl Acyl Azolium.

    PubMed

    Gillard, Rachel M; Fernando, Jared E M; Lupton, David W

    2018-04-16

    Herein we report the enantioselective N-heterocyclic carbene catalyzed (4+2) annulation of the dienyl acyl azolium with enolates. The reaction exploits readily accessible acyl fluorides and TMS enol ethers to give a range of highly enantio- and diastereo-enriched cyclohexenes (most >97:3 er and >20:1 dr). The reaction was found to require high nucleophilicity NHC catalysts with mechanistic studies supporting a stepwise 1,6-addition/β-lactonization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rate and Equilibrium Constants for the Addition of N-Heterocyclic Carbenes into Benzaldehydes: A Remarkable 2-Substituent Effect**

    PubMed Central

    Collett, Christopher J; Massey, Richard S; Taylor, James E; Maguire, Oliver R; O'Donoghue, AnnMarie C; Smith, Andrew D

    2015-01-01

    Rate and equilibrium constants for the reaction between N-aryl triazolium N-heterocyclic carbene (NHC) precatalysts and substituted benzaldehyde derivatives to form 3-(hydroxybenzyl)azolium adducts under both catalytic and stoichiometric conditions have been measured. Kinetic analysis and reaction profile fitting of both the forward and reverse reactions, plus onwards reaction to the Breslow intermediate, demonstrate the remarkable effect of the benzaldehyde 2-substituent in these reactions and provide insight into the chemoselectivity of cross-benzoin reactions. PMID:25908493

  5. Homobimetallic Ruthenium-N-Heterocyclic Carbene Complexes For Olefin Metathesis

    NASA Astrophysics Data System (ADS)

    Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, the synthesis and catalytic activity towards olefin metathesis of homobimetallic ruthenium (Ru)-alkylidene, -cyclodiene or -arene complexes bearing phosphine or N-heterocyclic carbene (NHC) ligands are reviewed. Emphasis is placed on the last category of bimetallic compounds. Three representatives of this new type of molecular scaffold were investigated. Thus, [(p-cymene)Ru(m-Cl)3RuCl (h2-C2H4)(L)] complexes with L = PCy3 (15a), IMes (16a), or IMesCl2 (16b) were prepared. They served as catalyst precursors for cross-metathesis (CM) of various styrene derivatives. These experiments revealed the outstanding aptitude of complex 16a (and to a lesser extent of 16b) to catalyze olefin metathesis reactions. Contrary to monometallic Ru-arene complexes of the [RuCl2(p-cymene)(L)] type, the new homobimetallic species did not require the addition of a diazo compound nor visible light illumination to initiate the ring-opening metathesis of norbornene or cyclooctene. When diethyl 2,2-diallylmalonate and N,N-diallyltosylamide were exposed to 16a,b, a mixture of cycloisomerization and ring-closing metathesis (RCM) products was obtained in a nonselective way. Addition of phenylacetylene enhanced the metathetical activity while completely repressing the cycloisomerization process.

  6. C^C* cyclometalated platinum(II) N-heterocyclic carbene complexes with a sterically demanding β-diketonato ligand – synthesis, characterization and photophysical properties.

    PubMed

    Tenne, M; Metz, S; Wagenblast, G; Münster, Ingo; Strassner, T

    2015-05-14

    Neutral cyclometalated platinum(ii) N-heterocyclic carbene complexes [Pt(C^C*)(O^O)] with C^C* ligands based on 1-phenyl-1,2,4-triazol-5-ylidene and 4-phenyl-1,2,4-triazol-5-ylidene, as well as acetylacetonato (O^O = acac) and 1,3-bis(2,4,6-trimethylphenyl)propan-1,3-dionato (O^O = mesacac) ancillary ligands were synthesized and characterized. All complexes are emissive at room temperature in a poly(methyl methacrylate) (PMMA) matrix with emission maxima in the blue region of the spectrum. High quantum efficiencies and short decay times were observed for all complexes with mesacac ancillary ligands. The sterically demanding mesityl groups of the mesacac ligand effectively prevent molecular stacking. The emission behavior of these emitters is in general independent of the position of the nitrogen in the backbone of the N-heterocyclic carbene (NHC) unit and a variety of substituents in 4-position of the phenyl unit, meta to the cyclometalating bond.

  7. Water-soluble platinum nanoparticles stabilized by sulfonated N-heterocyclic carbenes: influence of the synthetic approach.

    PubMed

    Baquero, Edwin A; Tricard, Simon; Coppel, Yannick; Flores, Juan C; Chaudret, Bruno; de Jesús, Ernesto

    2018-03-28

    The synthesis of metal nanoparticles (NPs) under controlled conditions in water remains a challenge in nanochemistry. Two different approaches to obtain platinum NPs, which involve the treatment of aqueous solutions of preformed sulfonated (NHC)Pt(ii) dimethyl complexes with carbon monoxide, and of (NHC)Pt(0) diolefin complexes with dihydrogen (NHC = N-heterocyclic carbene), are disclosed here. The resulting NPs were found to be highly stable in water under air for an indefinite time period. Coordination of the NHC ligands to the platinum surface via the carbenic carbon was monitored by solid-state NMR spectroscopy, and the presence of a platinum-carbon bond was unambiguously evidenced by the determination of a 13 C- 195 Pt coupling constant (1106 and 1050 Hz for NPs containing 13 C labeled-NHC ligands and prepared under CO and H 2 , respectively). The coordination of CO to the (NHC)Pt(ii) precursors prior to formation of the NPs was confirmed by NMR spectroscopy. When using a disulfonated NHC ligand, a second coordination sphere containing bis(NHC)Pt(ii) complexes is described. Under CO, the formation of NPs was found to be slower than in a previously reported thermal method (Angew. Chem., Int. Ed., 2014, 53, 13220-13224), but led to NPs of similar sizes, whereas under H 2 , the synthesis of platinum NPs progressed even more slowly and produced larger NPs. In addition to the influence of the synthetic approach, the present study highlights the importance of ligand design for NP stabilization.

  8. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides.

    PubMed

    Nahra, Fady; Patrick, Scott R; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David; Nolan, Steven P

    2015-01-01

    We report the synthesis of nine new N -heterocyclic carbene gold bifluoride complexes starting from the corresponding N -heterocyclic carbene gold hydroxides. A new methodology to access N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical and unsymmetrical alkynes, thus affording fluorinated stilbene analogues and fluorovinyl thioethers in good to excellent yields with high stereo- and regioselectivity. The method is exploited further to access a fluorinated combretastatin analogue selectively in two steps starting from commercially available reagents.

  9. Synthesis, structure and DFT conformation analysis of CpNiX(NHC) and NiX2(NHC)2 (X = SPh or Br) complexes

    NASA Astrophysics Data System (ADS)

    Malan, Frederick P.; Singleton, Eric; van Rooyen, Petrus H.; Conradie, Jeanet; Landman, Marilé

    2017-11-01

    The synthesis, density functional theory (DFT) conformational study and structure analysis of novel two-legged piano stool Ni N-heterocyclic carbene (NHC) complexes and square planar Ni bis-N-heterocyclic carbene complexes, all containing either bromido- or thiophenolato ligands, are described. [CpNi(SPh)(NHC)] complexes were obtained from the neutral 18-electron [CpNiBr(NHC)] complexes by substitution of a bromido ligand with SPh, using NEt3 as a base to abstract the proton of HSPh. The 16-electron biscarbene complexes [Ni(SPh)2{NHC}2] were isolated when an excess of HSPh was added to the reaction mixture. Biscarbene complexes of the type [NiBr2(NHC)2] were obtained in the reaction of NiCp2 with a slight excess of the specific imidazolium bromide salt. The molecular and electronic structures of the mono- and bis-N-heterocyclic carbene complexes have been analysed using single crystal diffraction and density functional theory (DFT) calculations, to give insight into their structural properties.

  10. Biscarbene palladium(II) complexes. reactivity of saturated versus unsaturated N-heterocyclic carbenes.

    PubMed

    Fu, Ching-Feng; Lee, Chun-Chin; Liu, Yi-Hung; Peng, Shie-Ming; Warsink, Stefan; Elsevier, Cornelis J; Chen, Jwu-Ting; Liu, Shiuh-Tzung

    2010-03-15

    A series of designed palladium biscarbene complexes including saturated and unsaturated N-heterocyclic carbene (NHC) moieties have been prepared by the carbene transfer methods. All of these complexes have been characterized by (1)H and (13)C NMR spectroscopy as well as X-ray diffraction analysis. The reactivity of Pd-C((saturated NHC)) is distinct from that of Pd-C((unsaturated NHC)). The Pd-C((saturated NHC)) bonds are fairly stable toward reagents such as CF(3)COOH, AgBF(4) and I(2), whereas Pd-C((unsaturated NHC)) bonds are readily cleaved under the similar conditions. Notably, the catalytically activity of these palladium complexes on Suzuki-Miyaura coupling follows the order: (sat-NHC)(2)PdCl(2) > (sat-NHC)(unsat-NHC)PdCl(2 )> (unsat-NHC)(2)PdCl(2).

  11. Structure and spectroscopic properties of the dimeric copper(I) N-heterocyclic carbene complex [Cu₂(CNC(t-Bu))₂](PF₆)₂.

    PubMed

    Riener, Korbinian; Pöthig, Alexander; Cokoja, Mirza; Herrmann, Wolfgang A; Kühn, Fritz E

    2015-08-01

    In recent years, the use of copper N-heterocyclic carbene (NHC) complexes has expanded to fields besides catalysis, namely medicinal chemistry and luminescence applications. In the latter case, multinuclear copper NHC compounds have attracted interest, however, the number of these complexes in the literature is still quite limited. Bis[μ-1,3-bis(3-tert-butylimidazolin-2-yliden-1-yl)pyridine]-1κ(4)C(2),N:N,C(2');2κ(4)C(2),N:N,C(2')-dicopper(I) bis(hexafluoridophosphate), [Cu2(C19H25N5)2](PF6)2, is a dimeric copper(I) complex bridged by two CNC, i.e. bis(N-heterocyclic carbene)pyridine, ligands. Each Cu(I) atom is almost linearly coordinated by two NHC ligands and interactions are observed between the pyridine N atoms and the metal centres, while no cuprophilic interactions were observed. Very strong absorption bands are evident in the UV-Vis spectrum at 236 and 274 nm, and an emission band is observed at 450 nm. The reported complex is a new example of a multinuclear copper NHC complex and a member of a compound class which has only rarely been reported.

  12. Versatile synthesis of cationic N-heterocyclic carbene-gold(i) complexes containing a second ancillary ligand. Design of heterobimetallic ruthenium-gold anticancer agents.

    PubMed

    Fernández-Gallardo, Jacob; Elie, Benelita T; Sanaú, Mercedes; Contel, María

    2016-02-21

    We describe a versatile and quick route to cationic gold(i) complexes containing N-heterocyclic carbenes and a second ancillary ligand (such as phosphanes, phosphites, arsines and amines) of interest for the synthesis of compounds with potential catalytic and medicinal applications. The general synthetic strategy has been applied in the preparation of novel cationic heterobimetallic ruthenium(ii)-gold(i) complexes that are highly cytotoxic to renal cancer Caki-1 and colon cancer HCT 116 cell lines while showing a synergistic effect and being more selective than their monometallic counterparts.

  13. Silica gel promotes reductions of aldehydes and ketones by N-heterocyclic carbene boranes.

    PubMed

    Taniguchi, Tsuyoshi; Curran, Dennis P

    2012-09-07

    N-Heterocyclic carbene boranes (NHC-boranes) such as 1,3-dimethylimidazol-2-ylidine trihydridoborane (diMe-Imd-BH(3)) serve as practical hydride donors for the reduction of aldehydes and ketones in the presence of silica gel. Primary and secondary alcohols are formed in good yields under ambient conditions. Aldehydes are selectively reduced in the presence of ketones. One, two, or even all three of the boron hydrides can be transferred. The process is attractive because all the components are stable and easy to handle and because both the reaction and isolation procedures are convenient.

  14. Synthesis of functionalized imidazolidine-2-thiones via NHC/base-promoted aza-benzoin/aza-acetalization domino reactions.

    PubMed

    Di Carmine, Graziano; Ragno, Daniele; De Risi, Carmela; Bortolini, Olga; Giovannini, Pier Paolo; Fantin, Giancarlo; Massi, Alessandro

    2017-10-25

    A strategy for the synthesis of biologically relevant 5-hydroxy-imidazolidine-2-thione derivatives is presented. A novel class of α-sulfonylamines have been suitably prepared (46-81% yield) as precursors of formal benzylidenethiourea acceptors; these are generated in situ and intercepted by N-heterocyclic carbene (NHC)-activated aldehydes affording open-chain aza-benzoin-type adducts, which in turn undergo an intramolecular aza-acetalization reaction in a one-pot fashion. A thiazolium salt/triethylamine couple proved to be the more effective system to trigger the domino sequence giving the target heterocycles in good yields (45-97%) and diastereoselectivities (up to 99 : 1 dr). The multigram scale synthesis and elaboration of a selected 5-hydroxy-imidazolidine-2-thione compound is also described.

  15. A tritopic carbanionic N-heterocyclic dicarbene and its homo- and heterometallic coinage metal complexes.

    PubMed

    Zhang, Fan; Cao, Xiao-Ming; Wang, Jiwei; Jiao, Jiajun; Huang, Yongming; Shi, Min; Braunstein, Pierre; Zhang, Jun

    2018-05-21

    Homo (Au3)- and heterotrinuclear coinage metal complexes (Au2Ag and Au2Cu) ligated by the first tritopic carbanionic N-heterocyclic carbene (NHC) have been prepared by deprotonation of ditopic NHC digold complexes and structurally characterized by single-crystal X-ray diffraction.

  16. Rhenium complexes of bidentate, bis-bidentate and tridentate N-heterocyclic carbene ligands.

    PubMed

    Chan, Chung Ying; Barnard, Peter J

    2015-11-28

    A series of eight Rhenium(I)-N-heterocyclic carbene (NHC) complexes of the general form [ReCl(CO)3(C^C)] (where C^C is a bis(NHC) bidentate ligand), [ReCl(CO)3(C^C)]2 (where C^C is a bis-bidentate tetra-NHC ligand) and [Re(CO)3(C^N^C)](+)[X](-) (where C^N^C is a bis(NHC)-amine ligand and the counter ion X is either the ReO4(-) or PF6(-)) have been synthesised using a Ag2O transmetallation protocol. The novel precursor imidazolium salts and Re(I) complexes were characterized by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for two imidazolium salt and six Re(I) complexes were determined by single crystal X-ray diffraction. These NHC ligand systems are of interest for possible applications in the development of Tc-99m or Re-186/188 radiopharmaceuticals and as such the stability of two complexes of the form [ReCl(CO)3(C^C)] and [Re(CO)3(C^N^C)][ReO4] were evaluated in ligand challenge experiments using the metal binding amino acids L-histidine or L-cysteine. These studies showed that the former was unstable, with the chloride ligand being replaced by either cysteine or histidine, while no evidence for transchelation was observed for the latter suggesting that bis(NHC)-amine ligands of this type may be suitable for biological applications.

  17. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    PubMed

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.

  18. N-Heterocyclic carbene metal complexes: photoluminescence and applications.

    PubMed

    Visbal, Renso; Gimeno, M Concepción

    2014-05-21

    This review covers the advances made in the synthesis of luminescent transition metal complexes containing N-heterocyclic carbene (NHC) ligands. The presence of a high field strength ligand such as an NHC in the complexes gives rise to high energy emissions, and consequently, to the desired blue colour needed for OLED applications. Furthermore, the great versatility of NHC ligands for structural modifications, together with the use of other ancillary ligands in the complex, provides numerous possibilities for the synthesis of phosphorescent materials, with emission colours over the entire visible spectra and potential future applications in fields such as photochemical water-splitting, chemosensors, dye-sensitised solar cells, oxygen sensors, and medicine.

  19. A dual Lewis base activation strategy for enantioselective carbene-catalyzed annulations.

    PubMed

    Izquierdo, Javier; Orue, Ane; Scheidt, Karl A

    2013-07-24

    A dual activation strategy integrating N-heterocyclic carbene (NHC) catalysis and a second Lewis base has been developed. NHC-bound homoenolate equivalents derived from α,β-unsaturated aldehydes combine with transient reactive o-quinone methides in an enantioselective formal [4 + 3] fashion to access 2-benzoxopinones. The overall approach provides a general blueprint for the integration of carbene catalysis with additional Lewis base activation modes.

  20. Breslow Intermediates from Aromatic N-Heterocyclic Carbenes (Benzimidazolin-2-ylidenes, Thiazolin-2-ylidenes).

    PubMed

    Berkessel, Albrecht; Paul, Mathias; Sudkaow, Panyapon; Wessels, Alina; Schlörer, Nils E; Neudörfl, Jörg M

    2018-04-12

    We report the first generation and characterization of the elusive Breslow intermediates derived from aromatic N-heterocyclic carbenes (NHCs), namely benzimidazolin-2-ylidenes (NMR, X-ray) and thiazolin-2-ylidenes (NMR). In the former case, the diaminoenols were generated by reaction of the free N,N-bis-Dipp- and N,N-bis-Mes-benzimidazolin-2-ylidenes with aldehydes, while the dimer of 3,4,5-trimethylthiazolin-2-ylidene served as the starting material in the latter case. The unambiguous NMR-identification of the first thiazolin-2-ylidene based Breslow intermediate rests on double 13C labeling of both the NHC and the aldehyde component. Acyl anion reactivity was proven by benzoin formation with excess aldehyde. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chemical bonding in silicon-carbene complexes.

    PubMed

    Liu, Z

    2009-06-04

    The bonding situations in the newly synthesized silicon-carbene complexes with formulas L:SiCl4, L:(Cl)Si-Si(Cl):L, and L:Si=Si:L (where L: is an N-heterocyclic carbene), are reported using density functional theory at the BP86/TZ2P level. The bonding analysis clearly shows that the bonding situation in the silicon-carbene complexes cannot be described in terms of donor-acceptor interactions depicted in the Dewar-Chatt-Duncanson model. The energy decomposition analysis (EDA) shows that the electrostatic attraction plays an important or even dominant role for the Si-C(carbene) binding interactions in the silicon-carbene complexes. That the molecular orbitals of the silicon-carbene complexes are lower in energy than the parent orbitals of carbenes indicates that these complexes are better described as stabilized carbene complexes.

  2. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods.more » They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. They demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, they developed conditions to directly arylate these heterocycles with aryl halides. The initial conditions that used PCy{sub 3} as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (Phoban) that also facilitated the coupling of aryl bromides. They then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, they anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C-H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations.« less

  3. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.

    PubMed

    Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert

    2016-05-04

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and characterization of new N-heterocyclic carbene ligands: 1,3-Bis(acetamide)imidazol-3-ium bromide and 3-(acetamide)-1-(3-aminopropyl)-1H-imidazol-3-ium bromide

    NASA Astrophysics Data System (ADS)

    Turkyilmaz, Murat; Uluçam, Gühergül; Aktaş, Şaban; Okan, S. Erol

    2017-05-01

    Two new pincer type N-heterocyclic carbene ligands were synthesized. The compounds were characterized by FTIR, NMR (1H, 13C) GC-MS and elemental analyses. They were also both modelled by DFT calculations as the crystal structure of 1,3-bis(acetamide)imidazol-3-ium bromide was determined by XRD which is an orthorhombic system with space group P21212. The structural analyses in gas phase were realized by comparing the experimental NMR and IR spectra with those of the theoretical calculations. In vitro biological activities of the molecules were determined and found that one of them exhibits significant cytotoxic activity.

  5. N-Heterocyclic-Carbene-Treated Gold Surfaces in Pentacene Organic Field-Effect Transistors: Improved Stability and Contact at the Interface.

    PubMed

    Lv, Aifeng; Freitag, Matthias; Chepiga, Kathryn M; Schäfer, Andreas H; Glorius, Frank; Chi, Lifeng

    2018-04-16

    N-Heterocyclic carbenes (NHCs), which react with the surface of Au electrodes, have been successfully applied in pentacene transistors. With the application of NHCs, the charge-carrier mobility of pentacene transistors increased by five times, while the contact resistance at the pentacene-Au interface was reduced by 85 %. Even after annealing the NHC-Au electrodes at 200 °C for 2 h before pentacene deposition, the charge-carrier mobility of the pentacene transistors did not decrease. The distinguished performance makes NHCs as excellent alternatives to thiols as metal modifiers for the application in organic field-effect transistors (OFETs). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A multi-target caffeine derived rhodium(i) N-heterocyclic carbene complex: evaluation of the mechanism of action.

    PubMed

    Zhang, Jing-Jing; Muenzner, Julienne K; Abu El Maaty, Mohamed A; Karge, Bianka; Schobert, Rainer; Wölfl, Stefan; Ott, Ingo

    2016-08-16

    A rhodium(i) and a ruthenium(ii) complex with a caffeine derived N-heterocyclic carbene (NHC) ligand were biologically investigated as organometallic conjugates consisting of a metal center and a naturally occurring moiety. While the ruthenium(ii) complex was largely inactive, the rhodium(i) NHC complex displayed selective cytotoxicity and significant anti-metastatic and in vivo anti-vascular activities and acted as both a mammalian and an E. coli thioredoxin reductase inhibitor. In HCT-116 cells it increased the reactive oxygen species level, leading to DNA damage, and it induced cell cycle arrest, decreased the mitochondrial membrane potential, and triggered apoptosis. This rhodium(i) NHC derivative thus represents a multi-target compound with promising anti-cancer potential.

  7. Straightforward Preparation Method for Complexes Bearing a Bidentate N-Heterocyclic Carbene to Introduce Undergraduate Students to Research Methodology

    ERIC Educational Resources Information Center

    Fernández, Alberto; López-Torres, Margarita; Fernández, Jesús J.; Vázquez-García, Digna; Marcos, Ismael

    2017-01-01

    A laboratory experiment for students in advanced inorganic chemistry is described. In this experiment, students prepare two metal complexes with a potentially bidentate-carbene ligand. The complexes are synthesized by reaction of a bisimidazolium salt with silver(I) oxide or palladium(II) acetate. Silver and palladium complexes are binuclear and…

  8. A Continuum of Progress: Applications of N-Hetereocyclic Carbene Catalysis in Total Synthesis

    PubMed Central

    Izquierdo, Javier; Hutson, Gerri E.; Cohen, Daniel T.; Scheidt, Karl A.

    2013-01-01

    N-Heterocyclic carbene (NHC) catalyzed transformations have emerged as powerful tactics for the construction of complex molecules. Since Stetter’s report in 1975 of the total synthesis of cis-jasmon and dihydrojasmon by using carbene catalysis, the use of NHCs in total synthesis has grown rapidly, particularly over the last decade. This renaissance is undoubtedly due to the recent developments in NHC-catalyzed reactions, including new benzoin, Stetter, homoenolate, and aroylation processes. These transformations employ typical as well as Umpolung types of bond disconnections and have served as the key step in several new total syntheses. This Minireview highlights these reports and captures the excitement and emerging synthetic utility of carbene catalysis in total synthesis. PMID:23074146

  9. Synthesis of a Simplified Version of Stable Bulky and Rigid Cyclic (Alkyl)(Amino)Carbenes (CAACs), and Catalytic Activity of the Ensuing Gold(I) Complex in the Three-Component Preparation of 1,2-Dihydroquinoline Derivatives

    PubMed Central

    Zeng, Xiaoming; Frey, Guido D.; Kinjo, Rei; Donnadieu, Bruno; Bertrand, Guy

    2009-01-01

    A 95/5 mixture of cis and trans 2,4-dimethyl-3-cyclohexenecarboxaldehyde (trivertal), a common fragrance and flavor material produced in bulk quantities, serves as the precursor for the synthesis of a stable spirocyclic (alkyl)(amino)carbene, in which the 2-methyl-substituted cyclohexenyl group provides steric protection to an ensuing metal. The efficiency of this carbene as ligand for transition metal based catalysts is first illustrated by the gold(I) catalyzed hydroamination of internal alkynes with secondary dialkyl amines, a process with little precedent. The feasibility of this reaction allows for significantly enlarging the scope of the one-pot three-component synthesis of 1,2-dihydroquinoline derivatives, and related nitrogen-containing heterocycles. Indeed, two different alkynes were used, which include an internal alkyne for the first step. PMID:19456108

  10. Optical spectra, electronic structure and aromaticity of benzannulated N-heterocyclic carbene and its analogues of the type C6H4(NR)2E: (E = Si, Ge, Sn, Pb).

    PubMed

    Aysin, Rinat R; Bukalov, Sergey S; Leites, Larissa A; Zabula, Alexander V

    2017-07-11

    A series of benzannulated N-heterocyclic compounds containing divalent 14 group atoms, C 6 H 4 (NR) 2 E II , E = C, Si, Ge, Sn, Pb, have been studied by various experimental (vibrational and UV-vis spectroscopy) and theoretical (NICS, ISE, ACID) techniques. The methods used confirm 10 π-electron delocalization (aromaticity) in these heterocycles, however, the aromaticity sequences estimated by the criteria based on different physical properties do not coincide.

  11. Exceptionally Strong Electron-Donating Ability of Bora-Ylide Substituent vis-à-vis Silylene and Silylium Ion.

    PubMed

    Rosas-Sánchez, Alfredo; Alvarado-Beltran, Isabel; Baceiredo, Antoine; Saffon-Merceron, Nathalie; Massou, Stéphane; Branchadell, Vicenç; Kato, Tsuyoshi

    2017-08-21

    Electropositive boron-based substituent (phosphonium bora-ylide) with an exceptionally strong π- and σ-electron donating character dramatically increases the stability of a new type of N-heterocyclic silylene 2 featuring amino- and bora-ylide-substituents. Moreover, the related silylium ion 4 and transition-metal-silylene complexes, with trigonal-planar geometries around the silicon center, are also well stabilized. Therefore, the N,B-heterocyclic silylene 2 can be used as a strongly electron-donating innocent ligand in coordination chemistry similarly to N-heterocyclic carbenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis of Water-Soluble Palladium Nanoparticles Stabilized by Sulfonated N-Heterocyclic Carbenes.

    PubMed

    Asensio, Juan M; Tricard, Simon; Coppel, Yannick; Andrés, Román; Chaudret, Bruno; de Jesús, Ernesto

    2017-09-27

    A strategy involving the decomposition of palladium(II) organometallic complexes with sulfonated N-heterocyclic carbene ligands leads to the formation of stable and water-soluble Pd nanoparticles. Three different methodologies (thermal decomposition, reduction under 13 CO atmosphere, and reduction with H 2 ) gave particles with different shapes and sizes, ranging from 1.5 to 7 nm. The structures of the organometallic intermediates and organic decomposition products were elucidated by NMR spectroscopy. To check the accessibility of the surface, the nanoparticles were tested as catalysts for the chemoselective hydrogenation of styrene in water. An effect of the particle size on the catalyst activity was observed. The aqueous phase was recycled up to ten times without any precipitation of metallic palladium. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Theoretical investigation on the chemoselective N-heterocyclic carbene-catalyzed cross-benzoin reactions.

    PubMed

    Liu, Tao; Han, Shu-Min; Han, Ling-Li; Wang, Lu; Cui, Xiang-Yang; Du, Chong-Yang; Bi, Siwei

    2015-03-28

    A density functional theory study was performed to understand the detailed mechanisms of the cross-benzoin reactions catalyzed by N-heterocyclic carbene (NHC) species. Our theoretical study predicted that the first H-transfer operates with water in solution as a mediator, and the second H-transfer undergoes a concerted mechanism rather than a stepwise one. In addition, the chemoselectivity of the reactions studied in this work has been explored. P1 was obtained as a major product mainly due to the more stable intermediate formed by reaction of NHC with reactant R1. Different steric effects resulting from the fused six-membered ring in transition state TS7 and the fused five-membered ring in transition state TS13 are the origin leading to the chemoselectivity.

  14. Rare‐Earth‐ and Uranium‐Mesoionic Carbenes: A New Class of f‐Block Carbene Complex Derived from an N‐Heterocyclic Olefin

    PubMed Central

    Seed, John A.; Gregson, Matthew; Tuna, Floriana; Chilton, Nicholas F.; Wooles, Ashley J.; McInnes, Eric J. L.

    2017-01-01

    Abstract Neutral mesoionic carbenes (MICs) have emerged as an important class of carbene, however they are found in the free form or ligated to only a few d‐block ions. Unprecedented f‐block MIC complexes [M(N′′)3{CN(Me)C(Me)N(Me)CH}] (M=U, Y, La, Nd; N′′=N(SiMe3)2) are reported. These complexes were prepared by a formal 1,4‐proton migration reaction when the metal triamides [M(N′′)3] were treated with the N‐heterocyclic olefin H2C=C(NMeCH)2, which constitutes a new, general way to prepare MIC complexes. Quantum chemical calculations on the 5f3 uranium(III) complex suggest the presence of a U=C donor‐acceptor bond, composed of a MIC→U σ‐component and a U(5f)→MIC(2p) π‐back‐bond, but for the d0f0 Y and La and 4f3 Nd congeners only MIC→M σ‐bonding is found. Considering the generally negligible π‐acidity of MICs, this is surprising and highlights that greater consideration should possibly be given to recognizing MICs as potential π‐acid ligands when coordinated to strongly reducing metals. PMID:28719735

  15. From furfural to fuel: synthesis of furoins by organocatalysis and their hydrodeoxygenation by cascade catalysis.

    PubMed

    Wegenhart, Benjamin L; Yang, Linan; Kwan, Soon Cheong; Harris, Remi; Kenttämaa, Hilkka I; Abu-Omar, Mahdi M

    2014-09-01

    The synthesis of furoins from biomass-derived furfural and 2-methylfurfural is demonstrated in high yields in green and renewable solvents using N-heterocyclic carbene organocatalysts. The resulting furoin molecules are used as precursors for fuels using cascade catalysis, first by using Pd/C with acidic co-catalysts under very mild conditions to yield oxygenated C12 molecules. Two main products were formed, which we identified as 1,2-bis(5-methyltetrahydrofuran-2-yl)ethane and 1-(5-methyltetrahydrofuran-2-yl)heptanol. The use of a Pd/Zeolite-β catalyst under more extreme conditions resulted in the complete hydrodeoxygenation of 5,5'-dimethylfuroin to dodecanes in high yields (76%) and exceptional selectivity (94%) for n-dodecane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of the first radiolabeled 188Re N-heterocyclic carbene complex and initial studies on its potential use in radiopharmaceutical applications

    PubMed Central

    Wagner, Thomas; Zeglis, Brian M.; Groveman, Sam; Hille, Claudia; Pöthig, Alexander; Francesconi, Lynn C.; Herrmann, Wolfgang A.; Kühn, Fritz E.; Reiner, Thomas

    2015-01-01

    A novel approach towards the synthesis of radiolabeled organometallic rhenium complexes is presented. We successfully synthesized and analyzed the first 188Re-labeled N-heterocyclic biscarbene complex, trans-dioxobis(1,1′-methylene-bis(3,3′-diisopropylimidazolium-2-ylidene))188rhenium(V) hexafluorophosphate (188Re-4) via transmetalation using an air-stable and moisture-stable silver(I) biscarbene complex. In order to assess the viability of this complex as a potential lead structure for in vivo applications, the stability of the 188Re-NHC complex was tested in physiologically relevant media. Ultimately, our studies illustrate that the complex we synthesized dissociates rapidly and is therefore unsuitable for use in radiopharmaceuticals. However, it is clear that the transmetalation approach we have developed is a rapid, robust, and mild method for the synthesis of new 188Re-labeled carbene complexes. PMID:24889257

  17. Ballbot-type motion of N-heterocyclic carbenes on gold surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Gaoqiang; Rühling, Andreas; Amirjalayer, Saeed; Knor, Marek; Ernst, Johannes Bruno; Richter, Christian; Gao, Hong-Jun; Timmer, Alexander; Gao, Hong-Ying; Doltsinis, Nikos L.; Glorius, Frank; Fuchs, Harald

    2017-02-01

    Recently, N-heterocyclic carbenes (NHCs) were introduced as alternative anchors for surface modifications and so offered many attractive features, which might render them superior to thiol-based systems. However, little effort has been made to investigate the self-organization process of NHCs on surfaces, an important aspect for the formation of self-assembled monolayers (SAMs), which requires molecular mobility. Based on investigations with scanning tunnelling microscopy and first-principles calculations, we provide an understanding of the microscopic mechanism behind the high mobility observed for NHCs. These NHCs extract a gold atom from the surface, which leads to the formation of an NHC-gold adatom complex that displays a high surface mobility by a ballbot-type motion. Together with their high desorption barrier this enables the formation of ordered and strongly bound SAMs. In addition, this mechanism allows a complementary surface-assisted synthesis of dimeric and hitherto unknown trimeric NHC gold complexes on the surface.

  18. Ballbot-type motion of N-heterocyclic carbenes on gold surfaces.

    PubMed

    Wang, Gaoqiang; Rühling, Andreas; Amirjalayer, Saeed; Knor, Marek; Ernst, Johannes Bruno; Richter, Christian; Gao, Hong-Jun; Timmer, Alexander; Gao, Hong-Ying; Doltsinis, Nikos L; Glorius, Frank; Fuchs, Harald

    2017-02-01

    Recently, N-heterocyclic carbenes (NHCs) were introduced as alternative anchors for surface modifications and so offered many attractive features, which might render them superior to thiol-based systems. However, little effort has been made to investigate the self-organization process of NHCs on surfaces, an important aspect for the formation of self-assembled monolayers (SAMs), which requires molecular mobility. Based on investigations with scanning tunnelling microscopy and first-principles calculations, we provide an understanding of the microscopic mechanism behind the high mobility observed for NHCs. These NHCs extract a gold atom from the surface, which leads to the formation of an NHC-gold adatom complex that displays a high surface mobility by a ballbot-type motion. Together with their high desorption barrier this enables the formation of ordered and strongly bound SAMs. In addition, this mechanism allows a complementary surface-assisted synthesis of dimeric and hitherto unknown trimeric NHC gold complexes on the surface.

  19. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    PubMed Central

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism—nucleophilic attack of enolate oxygen on Palladium followed by C–C bond-forming [3,3']-reductive elimination. PMID:27283477

  20. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  1. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE PAGES

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying; ...

    2016-06-10

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  2. Asymmetric NHC-catalyzed redox α-amination of α-aroyloxyaldehydes.

    PubMed

    Taylor, James E; Daniels, David S B; Smith, Andrew D

    2013-12-06

    Asymmetric α-amination through an N-heterocyclic carbene (NHC)-catalyzed redox reaction of α-aroyloxyaldehydes with N-aryl-N-aroyldiazenes to form α-hydrazino esters with high enantioselectivity (up to 99% ee) is reported. The hydrazide products are readily converted into enantioenriched N-aryl amino esters through samarium(II) iodide mediated N-N bond cleavage.

  3. Mono- and bimetallic zwitterionic chromium(0) and tungsten(0) allenyls.

    PubMed

    Giner, Elena A; Santiago, Alicia; Gómez-Gallego, Mar; Ramírez de Arellano, Carmen; Poulten, Rebecca C; Whittlesey, Michael K; Sierra, Miguel A

    2015-06-01

    A series of stable chiral (racemic), formally neutral, zwitterionic mono- and bimetallic M(CO)5[C(OEt)═C═CR(NHC)] (M = Cr, W) σ-allenyls are ready available by the addition of N-heterocyclic carbenes (NHCs) to Cr(0) and W(0) alkynyl Fischer carbene complexes. Different classes of NHCs, (e.g., 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene, 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene, and their six- and seven-membered analogues and 1,3-bis(dimethyl)imidazol-2-ylidene) were employed as nucleophiles in these C-C bond-forming reactions yielding the novel complexes in essentially quantitative yields. A systematic experimental and computational study of the electronic properties of the Cr- and W-allenyls shows that their UV-vis spectra are directly influenced by the structure of the heterocyclic moiety derived from the NHC (ring size, substituents on the N atoms) and by the nature of the metal fragment (Cr/W). The electron-releasing nature of these complexes allows them to participate in electron-transfer reactions in the ground state, leading to a type of charged α,β-unsaturated Fischer carbenes that incorporate an NHC fragment in their structure.

  4. Organocatalytic activation of isocyanides: N-heterocyclic carbene-catalyzed enaminone synthesis from ketones† †Electronic supplementary information (ESI) available: Full data for reaction conditions optimizations, detailed experimental procedures, and full characterization of substrates and products. Crystallographic data for compound 3sa. CCDC 1503347. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc05266e Click here for additional data file. Click here for additional data file.

    PubMed Central

    Kim, Jungwon

    2017-01-01

    The first example of the use of an N-heterocyclic carbene (NHC) as an organocatalyst for the activation of isocyanides was demonstrated. On the basis of previous reports on the interaction between NHCs and isocyanides, we developed a catalytic cycle involving transient imidoyl intermediate. The reaction of ketones with isocyanides produced the corresponding enaminones with high efficiency. Control experiments suggested a novel role for the carbene in the activation of isocyanides, and a proton transfer process was found to be crucial for the generation of two activated species in the catalytic cycle. Various enaminones, some of which are not easily accessible by other methods, were synthesized in excellent yields. This study clearly demonstrates the potential of the nucleophilic activation of isocyanides in the expansion of their reactivity scope. PMID:28451346

  5. Anti-trypanosomal activity of cationic N-heterocyclic carbene gold(I) complexes.

    PubMed

    Winter, Isabel; Lockhauserbäumer, Julia; Lallinger-Kube, Gertrud; Schobert, Rainer; Ersfeld, Klaus; Biersack, Bernhard

    2017-06-01

    Two gold(I) N-heterocyclic carbene complexes 1a and 1b were tested for their anti-trypanosomal activity against Trypanosoma brucei parasites. Both gold compounds exhibited excellent anti-trypanosomal activity (IC 50 =0.9-3.0nM). The effects of the gold complexes 1a and 1b on the T. b. brucei cytoskeleton were evaluated. Rapid detachment of the flagellum from the cell body occurred after treatment with the gold complexes. In addition, a quick and complete degeneration of the parasitic cytoskeleton was induced by the gold complexes, only the microtubules of the detached flagellum remained intact. Both gold compounds 1a and 1b feature selective anti-trypanosomal agents and were distinctly more active against T. b. brucei cells than against human HeLa cells. Thus, the gold complexes 1a and 1b feature promising drug candidates for the treatment of trypanosome infections such as sleeping sickness (human African Trypanosomiasis caused by Trypanosoma brucei parasites). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. N-alkyl functionalised expanded ring N-heterocyclic carbene complexes of rhodium(I) and iridium(I): structural investigations and preliminary catalytic evaluation.

    PubMed

    Dunsford, Jay J; Tromp, Dorette S; Cavell, Kingsley J; Elsevier, Cornelis J; Kariuki, Benson M

    2013-05-28

    A series of new N-alkyl functionalised 6- and 7-membered expanded ring N-heterocyclic carbene (NHC) pro-ligands 3-6 and their corresponding complexes of rhodium(I) and iridium(I), [M(NHC)(COD)Cl] 7-14 and [M(NHC)(CO)2Cl] 15-22 are described. The complexes have been characterised by (1)H and (13)C{(1)H} NMR, mass spectrometry, IR and X-ray diffraction. It is noted from X-ray diffraction studies that the N-alkyl substituents are found to orientate themselves away from the metal centre due to unfavourable steric interactions resulting in low percent buried volume (%V(bur)) values in the solid state. The heterocycle ring size is also found to dictate the spatial orientation of the N-alkyl substituents in the neopentyl functionalised derivatives 10 and 14. The 7-membered derivative 14 allows for a conformational 'twist' of the heterocycle ring with the N-alkyl substituents adopting a mutually trans configuration with respect to each other, while the more rigid 6-membered system 10 does not allow for this conformational 'twist' and consequently the N-alkyl substituents adopt a mutually cis configuration. The σ-donor function of this new class of expanded ring NHC ligand has also been probed by measured IR stretching frequencies of the [M(NHC)(CO)2Cl] complexes 15-22. A preliminary catalytic survey of the hydrogenation of functionalised alkenes with molecular hydrogen under mild conditions has also been undertaken with complex , affording an insight into the application of large ring NHC ancillary ligands bearing N-alkyl substituents in hydrogenation transformations.

  7. Unraveling the synthesis of homoleptic [Ag(N,N-diaryl-NHC)2]Y (Y = BF4, PF6) complexes by ball-milling.

    PubMed

    Beillard, Audrey; Bantreil, Xavier; Métro, Thomas-Xavier; Martinez, Jean; Lamaty, Frédéric

    2016-11-28

    A user-friendly and general mechanochemical method was developed to access rarely described NHC (N-heterocyclic carbene) silver(i) complexes featuring N,N-diarylimidazol(idin)ene ligands and non-coordinating tetrafluoroborate or hexafluorophosphate counter anions. Comparison with syntheses in solution clearly demonstrated the superiority of the ball-milling conditions.

  8. N‐Heterocyclic Carbene Self‐assembled Monolayers on Copper and Gold: Dramatic Effect of Wingtip Groups on Binding, Orientation and Assembly

    PubMed Central

    Larrea, Christian R.; Narouz, Mina R.; Mosey, Nicholas J.; Horton, J. Hugh; Crudden, Cathleen M.

    2017-01-01

    Abstract Self‐assembled monolayers of N‐heterocyclic carbenes (NHCs) on copper are reported. The monolayer structure is highly dependent on the N,N‐substituents on the NHC. On both Cu(111) and Au(111), bulky isopropyl substituents force the NHC to bind perpendicular to the metal surface while methyl‐ or ethyl‐substituted NHCs lie flat. Temperature‐programmed desorption studies show that the NHC binds to Cu(111) with a desorption energy of E des=152±10 kJ mol−1. NHCs that bind upright desorb cleanly, while flat‐lying NHCs decompose leaving adsorbed organic residues. Scanning tunneling microscopy of methylated NHCs reveals arrays of covalently linked dimers which transform into adsorbed (NHC)2Cu species by extraction of a copper atom from the surface after annealing. PMID:28960768

  9. Designing Stability into Thermally Reactive Plumbylenes.

    PubMed

    Bačić, Goran; Zanders, David; Mallick, Bert; Devi, Anjana; Barry, Seán T

    2018-06-26

    Lead analogues of N-heterocyclic carbenes (NHPbs) are the least understood members of this increasingly important class of compounds. Here we report the design, preparation, isolation, structure, volatility, and decomposition pathways of a novel aliphatic NHPb: rac- N  2 , N  3 -di- tert-butylbutane-2,3-diamido lead(II) (1Pb). The large steric bulk of the tert-butylamido moieties and rac-butane backbone successfully hinder redox decomposition pathways observed for diamidoethylene and -ethane backbone analogues, pushing the onset of thermal decomposition from below 0 °C to above 150 °C. With an exceptionally high vapor pressure of 1 Torr at 94 ± 2 °C and excellent thermal stability among Pb(II) complexes, 1Pb is a promising precursor for the chemical vapor deposition (CVD) and atomic layer deposition (ALD) of functional lead-containing materials.

  10. Triazole-functionalized N-heterocyclic carbene complexes of palladium and platinum and efficient aqueous Suzuki-Miyaura coupling reaction.

    PubMed

    Gu, Shaojin; Xu, Hui; Zhang, Na; Chen, Wanzhi

    2010-07-05

    Imidazolium salts bearing triazole groups are synthesized via a copper catalyzed click reaction, and the silver, palladium, and platinum complexes of their N-heterocyclic carbenes are studied. [Ag(4)(L1)(4)](PF(6))(4), [Pd(L1)Cl](PF(6)), [Pt(L1)Cl](PF(6)) (L1=3-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1-(pyrimidin-2-yl)-1H-imidazolylidene), [Pd(2)(L2)(2)Cl(2)](PF(6))(2), and [Pd(L2)(2)](PF(6))(2) (L2=1-butyl-3-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methyl)imidazolylidene) have been synthesized and fully characterized by NMR, elemental analysis, and X-ray crystallography. The silver complex [Ag(4)(L1)(4)](PF(6))(4) consists of a Ag(4) zigzag chain. The complexes [Pd(L1)Cl](PF(6)) and [Pt(L1)Cl](PF(6)), containing a nonsymmetrical NCN' pincer ligand, are square planar with a chloride trans to the carbene donor. [Pd(2)(L2)(2)Cl(2)](PF(6))(2) consists of two palladium centers with CN(2)Cl coordination mode, whereas the palladium in [Pd(L2)(2)](PF(6))(2) is surrounded by two carbene and two triazole groups with two uncoordinated pyridines. The palladium compounds are highly active for Suzuki-Miyaura cross coupling reactions of aryl bromides and 1,1-dibromo-1-alkenes in neat water under an air atmosphere.

  11. N-heterocyclic carbene-catalyzed tandem aza-benzoin/Michael reactions: on site reversal of the reactivity of N-Boc imines.

    PubMed

    Wu, Ke-Jia; Li, Gong-Qiang; Li, Yi; Dai, Li-Xin; You, Shu-Li

    2011-01-07

    A tandem NHC-catalyzed aza-benzoin/Michael reaction has been developed as a method to efficiently produce dihydroindenones and pyrrolidinone-containing tricycles. The novel reaction pattern involves tert-butyl aryl(tosyl)methylcarbamates reacting as both electrophile and nucleophile on the same carbon.

  12. Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions--a synthetic chemist's perspective.

    PubMed

    Kantchev, Eric Assen B; O'Brien, Christopher J; Organ, Michael G

    2007-01-01

    Palladium-catalyzed C-C and C-N bond-forming reactions are among the most versatile and powerful synthetic methods. For the last 15 years, N-heterocyclic carbenes (NHCs) have enjoyed increasing popularity as ligands in Pd-mediated cross-coupling and related transformations because of their superior performance compared to the more traditional tertiary phosphanes. The strong sigma-electron-donating ability of NHCs renders oxidative insertion even in challenging substrates facile, while their steric bulk and particular topology is responsible for fast reductive elimination. The strong Pd-NHC bonds contribute to the high stability of the active species, even at low ligand/Pd ratios and high temperatures. With a number of commercially available, stable, user-friendly, and powerful NHC-Pd precatalysts, the goal of a universal cross-coupling catalyst is within reach. This Review discusses the basics of Pd-NHC chemistry to understand the peculiarities of these catalysts and then gives a critical discussion on their application in C-C and C-N cross-coupling as well as carbopalladation reactions.

  13. From the N-Heterocyclic Carbene-Catalyzed Conjugate Addition of Alcohols to the Controlled Polymerization of (Meth)acrylates.

    PubMed

    Ottou, Winnie Nzahou; Bourichon, Damien; Vignolle, Joan; Wirotius, Anne-Laure; Robert, Fredéric; Landais, Yannick; Sotiropoulos, Jean-Marc; Miqueu, Karinne; Taton, Daniel

    2015-06-22

    Among various N-heterocyclic carbenes (NHCs) tested, only 1,3-bis(tert-butyl)imidazol-2-ylidene (NHC(tBu) ) proved to selectively promote the catalytic conjugate addition of alcohols onto (meth)acrylate substrates. This rather rare example of NHC-catalyzed 1,4-addition of alcohols was investigated as a simple means to trigger the polymerization of both methyl methacrylate and methyl acrylate (MMA and MA, respectively). Well-defined α-alkoxy poly(methyl (meth)acrylate) (PM(M)A) chains, the molar masses of which could be controlled by the initial [(meth)acrylate]0/[ROH]0 molar ratio, were ultimately obtained in N,N-dimethylformamide at 25 °C. A hydroxyl-terminated poly(ethylene oxide) (PEO-OH) macro-initiator was also employed to directly access PEO-b-PMMA amphiphilic block copolymers. Investigations into the reaction mechanism by DFT calculations revealed the occurrence of two competitive concerted pathways, involving either the activation of the alcohol or that of the monomer by NHC(tBu) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ruthenium(η⁶,η¹-arene-CH₂-NHC) Catalysts for Direct Arylation of 2-Phenylpyridine with (Hetero)Aryl Chlorides in Water.

    PubMed

    Kaloğlu, Nazan; Özdemir, İsmail; Gürbüz, Nevin; Arslan, Hakan; Dixneuf, Pierre H

    2018-03-13

    A series of new benzimidazolium halides were synthesized in good yields as unsymmetrical N -heterocyclic carbene (NHC) precursors containing the N-CH₂-arene group. The benzimidazolium halides were readily converted into ruthenium(II)-NHC complexes with the general formula [RuCl₂(η⁶,η¹-arene-CH₂-NHC)]. The structures of all new compounds were characterized by ¹H NMR (Nuclear Magnetic Resonance), 13 C NMR, FT-IR (Fourier Transform Infrared) spectroscopy and elemental analysis techniques. The single crystal structure of one benzimidazole ruthenium complex, 2b , was determined. The complex is best thought of as containing an octahedrally coordinated Ru center with the arene residue occupying three sites, the remaining sites being occupied by a (carbene)C-Ru bond and two Ru-Cl bonds. The catalytic activity of [RuCl₂(η⁶,η ¹ -arene-CH₂-NHC)] complexes was evaluated in the direct (hetero)arylation of 2-phenylpyridine with (hetero)aryl chlorides in water as the nontoxic reaction medium. These results show that catalysts 2a and 2b were the best for monoarylation with simple phenyl and tolyl chlorides. For functional aryl chlorides, 2d , 2e , and 2c appeared to be the most efficient.

  15. In Situ Generated Ruthenium-Arene Catalyst for Photoactivated Ring-Opening Metathesis Polymerization through Photolatent N-Heterocyclic Carbene Ligand.

    PubMed

    Pinaud, Julien; Trinh, Thi Kim Hoang; Sauvanier, David; Placet, Emeline; Songsee, Sriprapai; Lacroix-Desmazes, Patrick; Becht, Jean-Michel; Tarablsi, Bassam; Lalevée, Jacques; Pichavant, Loïc; Héroguez, Valérie; Chemtob, Abraham

    2018-01-09

    1,3-Bis(mesityl)imidazolium tetraphenylborate (IMesH + BPh 4 - ) can be synthesized in one step by anion metathesis between the corresponding imidazolium chloride and sodium tetraphenylborate. In the presence of 2-isopropylthioxanthone (sensitizer), an IMes N-heterocyclic carbene (NHC) ligand can be photogenerated under irradiation at 365 nm through coupled electron/proton transfer reactions. By combining this tandem NHC photogenerator system with metathesis inactive [RuCl 2 (p-cymene)] 2 precatalyst, the highly active RuCl 2 (p-cymene)(IMes) complex can be formed in situ, enabling a complete ring-opening metathesis polymerization (ROMP) of norbornene in the matter of minutes at room temperature. To the best of our knowledge, this is the first example of a photogenerated NHC. Its exploitation in photoROMP has resulted in a simplified process compared to current photocatalysts, because only stable commercial or easily synthesized reagents are required. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes

    PubMed Central

    Franz, Daniel; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-01-01

    Aluminum chalcogenides are mostly encountered in the form of bulk aluminum oxides that are structurally diverse but typically consist of networks with high lattice energy in which the chalcogen atoms bridge the metal centres. This makes their molecular congeners difficult to synthesize because of a pronounced tendency for oligomerization. Here we describe the isolation of the monotopic aluminum chalcogenide (LDipN)AlTe(LEt)2 (LDip=1,3-(2,6-diisopropylphenyl)-imidazolin-2-imine, LEt=1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene). Unique features of (LDipN)AlTe(LEt)2 are the terminal position of the tellurium atom, the shortest aluminum–tellurium distance hitherto reported for a molecular complex and the highest bond order reported for an interaction between these elements, to the best of our knowledge. At elevated temperature (LDipN)AlTe(LEt)2 equilibrates with dimeric {(LDipN)AlTe(LEt)}2 in which the chalcogen atoms assume their common role as bridges between the metal centres. These findings demonstrate that (LDipN)AlTe(LEt)2 comprises the elusive Al=Te double bond in the form of an N-heterocyclic carbene-stabilized species. PMID:26612781

  17. Asymmetric Desymmetrization of 1,3-Diketones via Intramolecular Benzoin Reaction.

    PubMed

    Li, Yuanzhen; Yang, Shuang; Wen, Genfa; Lin, Qiqiao; Zhang, Guoxiang; Qiu, Lin; Zhang, Xiaoyan; Du, Guangfen; Fang, Xinqiang

    2016-04-01

    A general method for the asymmetric desymmetrization of 1,3-diketone substrates via chiral N-heterocyclic carbene catalyzed intramolecular benzoin reactions was developed. Five- and six-membered cyclic ketones bearing two contiguous fully substituted stereocenters were generated with excellent diastereoselectivities and moderate to excellent enantioselectivities.

  18. Alkali-Metal-Mediated Magnesiations of an N-Heterocyclic Carbene: Normal, Abnormal, and "Paranormal" Reactivity in a Single Tritopic Molecule.

    PubMed

    Martínez-Martínez, Antonio J; Fuentes, M Ángeles; Hernán-Gómez, Alberto; Hevia, Eva; Kennedy, Alan R; Mulvey, Robert E; O'Hara, Charles T

    2015-11-16

    Herein the sodium alkylmagnesium amide [Na4Mg2(TMP)6(nBu)2] (TMP=2,2,6,6-tetramethylpiperidide), a template base as its deprotonating action is dictated primarily by its 12 atom ring structure, is studied with the common N-heterocyclic carbene (NHC) IPr [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Remarkably, magnesiation of IPr occurs at the para-position of an aryl substituent, sodiation occurs at the abnormal C4 position, and a dative bond occurs between normal C2 and sodium, all within a 20 atom ring structure accommodating two IPr(2-). Studies with different K/Mg and Na/Mg bimetallic bases led to two other magnesiated NHC structures containing two or three IPr(-) monoanions bound to Mg through abnormal C4 sites. Synergistic in that magnesiation can only work through alkali-metal mediation, these reactions add magnesium to the small cartel of metals capable of directly metalating a NHC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. [CNN]-pincer nickel(II) complexes of N-heterocyclic carbene (NHC): synthesis and catalysis of the Kumada reaction of unactivated C-Cl bonds.

    PubMed

    Sun, Yunqiang; Li, Xiaoyan; Sun, Hongjian

    2014-07-07

    Three novel [CNN]-pincer nickel(ii) complexes with NHC-amine arms were synthesized in three steps. Complex was proven to be an efficient catalyst for the Kumada coupling of aryl chlorides or aryl dichlorides under mild conditions.

  20. α-Unsubstituted Pyrroles by NHC-Catalyzed Three-Component Coupling: Direct Synthesis of a Versatile Atorvastatin Derivative.

    PubMed

    Fleige, Mirco; Glorius, Frank

    2017-08-10

    A practical one-pot cascade reaction protocol provides direct access to valuable 1,2,4-trisubstituted pyrroles. The process involves an N-heterocyclic carbene (NHC)-catalyzed Stetter-type hydroformylation using glycolaldehyde dimer as a novel C1 building-block, followed by a Paal-Knorr condensation with primary amines. The reaction makes use of simple and commercially available starting-materials and catalyst, an important feature regarding applicability and utility. Low catalyst loading under mild reaction conditions afforded a variety of 1,2,4-substituted pyrroles in a transition-metal-free reaction with high step economy and good yields. This methodology is applied in the synthesis of a versatile Atorvastatin precursor, in which a variety of modifications at the pyrrole core structure are possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pyrene-based bisazolium salts: from luminescence properties to janus-type bis-N-heterocyclic carbenes.

    PubMed

    Gonell, Sergio; Poyatos, Macarena; Peris, Eduardo

    2014-07-28

    A series of pyrene-based bisazolium salts have been obtained starting from 4,5,9,10-tetrabromo-2,7-di-tert-butylpyrene. The synthetic procedure to the pyrene-bisazoliums (PBIs) reveals an unexpected behavior, as a consequence of the presence of the alkyl groups (alkyl=Me, Et, n-Pr, and n-Bu) coming from the trisalkoxyformate in the final products, instead of the expected tBu of tAmyl groups from the starting tetra-aminated pyrenes. All bisazoliums show fluorescence properties, with emissions in the range of 370-420 nm, and quantum yields ranging from 0.29 to 0.41. The PBIs were used as bis-NHC precursors in the preparation of a series of dirhodium and diiridium complexes, which have been fully characterized. The electrochemical studies on selected dimetallic complexes reveal that the electronic communication between the metals through the polyaromatic linker is negligible. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.

    2008-01-30

    The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.

  3. Rate and Equilibrium Constants for the Addition of N‐Heterocyclic Carbenes into Benzaldehydes: A Remarkable 2‐Substituent Effect†

    PubMed Central

    Collett, Christopher J.; Massey, Richard S.; Taylor, James E.; Maguire, Oliver R.

    2015-01-01

    Abstract Rate and equilibrium constants for the reaction between N‐aryl triazolium N‐heterocyclic carbene (NHC) precatalysts and substituted benzaldehyde derivatives to form 3‐(hydroxybenzyl)azolium adducts under both catalytic and stoichiometric conditions have been measured. Kinetic analysis and reaction profile fitting of both the forward and reverse reactions, plus onwards reaction to the Breslow intermediate, demonstrate the remarkable effect of the benzaldehyde 2‐substituent in these reactions and provide insight into the chemoselectivity of cross‐benzoin reactions. PMID:27478264

  4. Aminomethylation of enals through carbene and acid cooperative catalysis: concise access to β(2)-amino acids.

    PubMed

    Xu, Jianfeng; Chen, Xingkuan; Wang, Ming; Zheng, Pengcheng; Song, Bao-An; Chi, Yonggui Robin

    2015-04-20

    A convergent, organocatalytic asymmetric aminomethylation of α,β-unsaturated aldehydes by N-heterocyclic carbene (NHC) and (in situ generated) Brønsted acid cooperative catalysis is disclosed. The catalytically generated conjugated acid from the base plays dual roles in promoting the formation of azolium enolate intermediate, formaldehyde-derived iminium ion (as an electrophilic reactant), and methanol (as a nucleophilic reactant). This redox-neutral strategy is suitable for the scalable synthesis of enantiomerically enriched β(2) -amino acids bearing various substituents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. N-Heterocyclic Carbene Capture by Cytochrome P450 3A4

    PubMed Central

    Jennings, Gareth K.; Ritchie, Caroline M.; Shock, Lisa S.; Lyons, Charles E.

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the dominant P450 enzyme involved in human drug metabolism, and its inhibition may result in adverse interactions or, conversely, favorably reduce the systemic elimination rates of poorly bioavailable drugs. Herein we describe a spectroscopic investigation of the interaction of CYP3A4 with N-methylritonavir, an analog of ritonavir, widely used as a pharmacoenhancer. In contrast to ritonavir, the binding affinity of N-methylritonavir for CYP3A4 is pH-dependent. At pH <7.4, the spectra are definitively type I, whereas at pH ≥7.4 the spectra have split Soret bands, including a red-shifted component characteristic of a P450-carbene complex. Variable-pH UV-visible spectroscopy binding studies with molecular fragments narrows the source of this pH dependence to its N-methylthiazolium fragment. The C2 proton of this group is acidic, and variable-pH resonance Raman spectroscopy tentatively assigns it a pKa of 7.4. Hence, this fragment of N-methylritonavir is expected to be readily deprotonated under physiologic conditions to yield a thiazol-2-ylidene, which is an N-heterocyclic carbene that has high-affinity for and is presumed to be subsequently captured by the heme iron. This mechanism is supported by time-dependent density functional theory with an active site model that accurately reproduces distinguishing features of the experimental UV-visible spectra of N-methylritonavir bound to CYP3A4. Finally, density functional theory calculations support that this novel interaction is as strong as the tightest-binding azaheterocycles found in P450 inhibitors and could offer new avenues for inhibitor development. PMID:27126611

  6. Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Water-Soluble N-Heterocyclic Carbene Complexes of Late Transition Metals.

    PubMed

    Jantke, Dominik; Pardatscher, Lorenz; Drees, Markus; Cokoja, Mirza; Herrmann, Wolfgang A; Kühn, Fritz E

    2016-10-06

    The synthesis and characterization of two water-soluble bis-N-heterocyclic carbene (NHC) complexes of rhodium and iridium is presented. Both compounds are active in H 2 generation from formic acid and in hydrogenation of bicarbonate to formate. The rhodium derivative is most active in both reactions, reaching a TOF of 39 000 h -1 and a TON of 449 000 for H 2 production. The catalytic hydrogenation reactions were carried out in an autoclave system and analyzed using the integrated peak areas in the 1 H NMR spectra. Decomposition of formic acid was investigated using a Fisher-Porter bottle equipped with a pressure transducer. Long-term stability for hydrogen evolution was tested by surveillance of the gas flow rate. The procedure does not require any additives like amines or inert gas conditions. Density functional theory calculations in agreement with experimental results suggest a bicarbonate reduction mechanism involving a second catalyst molecule, which provides an external hydride acting as reducing agent. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. N-heterocyclic carbene gold(I) and silver(I) complexes bearing functional groups for bio-conjugation

    PubMed Central

    Garner, Mary E.; Niu, Weijia; Chen, Xigao; Ghiviriga, Ion; Tan, Weihong; Veige, Adam S.

    2015-01-01

    This work describes several synthetic approaches to append organic functional groups to gold and silver N-heterocyclic carbene (NHC) complexes suitable for applications in biomolecule conjugation. Carboxylate appended NHC ligands (3) lead to unstable AuI complexes that convert into bis-NHC species (4). A benzyl protected carboxylate NHC-AuI complex 2 was synthesized but deprotection to produce the carboxylic acid functionality could not be achieved. A small library of new alkyne functionalized NHC proligands were synthesized and used for subsequent silver and gold metalation reactions. The alkyne appended NHC gold complex 13 readily react with benzyl azide in a copper catalyzed azide-alkyne cycloaddition reaction to form the triazole appended NHC gold complex 14. Cell cytotoxicity studies were performed on DLD-1 (colorectal adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MCF-7 (breast adenocarcinoma), CCRF-CEM (human T-Cell leukemia), and HEK (human embryonic kidney). Complete spectroscopic characterization of the ligands and complexes was achieved using 1H and 13C NMR, gHMBC, ESI-MS, and combustion analysis. PMID:25490699

  8. Copper- and copper–N-heterocyclic carbene-catalyzed C─H activating carboxylation of terminal alkynes with CO2 at ambient conditions

    PubMed Central

    Yu, Dingyi; Zhang, Yugen

    2010-01-01

    The use of carbon dioxide as a renewable and environmentally friendly source of carbon in organic synthesis is a highly attractive approach, but its real world applications remain a great challenge. The major obstacles for commercialization of most current protocols are their low catalytic performances, harsh reaction conditions, and limited substrate scope. It is important to develop new reactions and new protocols for CO2 transformations at mild conditions and in cost-efficient ways. Herein, a copper-catalyzed and copper–N-heterocyclic carbene-cocatalyzed transformation of CO2 to carboxylic acids via C─H bond activation of terminal alkynes with or without base additives is reported. Various propiolic acids were synthesized in good to excellent yields under ambient conditions without consumption of any organometallic or organic reagent additives. This system has a wide scope of substrates and functional group tolerances and provides a powerful tool for the synthesis of highly functionalized propiolic acids. This catalytic system is a simple and economically viable protocol with great potential in practical applications. PMID:21059950

  9. Antibacterial and DNA cleavage activity of carbonyl functionalized N-heterocyclic carbene-silver(I) and selenium compounds

    NASA Astrophysics Data System (ADS)

    Haque, Rosenani A.; Iqbal, Muhammad Adnan; Mohamad, Faisal; Razali, Mohd R.

    2018-03-01

    The article describes syntheses and characterizations of carbonyl functionalized benzimidazolium salts, I-IV. While salts I-III are unstable at room temperature, salt IV remained stable and was further utilised to form N-heterocyclic carbene (NHC) compounds of silver(I), V and VI, and selenium compound, VII respectively. Compounds IV-VII were tested for their antibacterial potential against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Salt IV shows a very low inhibition potential (minimum inhibitory concentration, MIC 500 μg/mL) compared to the respective silver(I)-NHC, V and VI (MIC 31.25 μg/mL against both, E. coli and S. aureus) and selenium compound, VII (MIC 125 μg/mL against E. coli and 62.50 μg/mL against S. aureus). In DNA cleavage abilities, all the test compounds cleave DNA in which the VII cleaves the DNA at the faster rate. Meanwhile, the silver(I)-NHC complexes V and VI act at the same mode and pattern of DNA cleavage while VII is similar to IV.

  10. A chemical-biological evaluation of rhodium(I) N-heterocyclic carbene complexes as prospective anticancer drugs.

    PubMed

    Oehninger, Luciano; Küster, Laura Nadine; Schmidt, Claudia; Muñoz-Castro, Alvaro; Prokop, Aram; Ott, Ingo

    2013-12-23

    Rhodium(I) complexes bearing N-heterocyclic carbene (NHC) ligands have been widely used in catalytic chemistry, but there are very few reports of biological properties of these organometallics. A series of Rh(I)-NHC derivatives with 1,5-cyclooctadiene and CO as secondary ligands were synthesized, characterized, and biologically investigated as prospective antitumor drug candidates. Pronounced antiproliferative effects were noted for all complexes, along with moderate inhibitory activity of thioredoxin reductase (TrxR) and efficient binding to biomolecules (DNA, albumin). Biodistribution studies showed that the presence of albumin lowered the cellular uptake and confirmed the transport of rhodium into the nuclei. Changes in the mitochondrial membrane potential (MMP) were observed as well as DNA fragmentation in wild-type and daunorubicin- or vincristine-resistant Nalm-6 leukemia cells. Overall, these studies indicated that Rh(I)-NHC fragments could be used as partial structures of new antitumor agents, in particular in those drugs designed to address resistant malignant tissues. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Activation of C-H bonds by rare-earth metallocene-butyl complexes.

    PubMed

    Grindell, Richard; Day, Benjamin M; Guo, Fu-Sheng; Pugh, Thomas; Layfield, Richard A

    2017-09-05

    The stable metallocene-butyl complexes [(Cp Me ) 2 M( n Bu)] 2 (M = Y, Dy) were synthesized and their reactivity towards to ferrocene and bulky N-heterocyclic carbenes investigated. Selective mono-deprotonation of ferrocene and a benzylic methyl group of IMes were observed, whereas a control reaction of (Cp Me ) 3 M with IMes resulted in a normal-to-abnormal NHC rearrangement.

  12. Coordination chemistry and catalytic activity of N-heterocyclic carbene iridium(I) complexes.

    PubMed

    Fu, Ching-Feng; Chang, Yung-Hung; Liu, Yi-Hong; Peng, Shei-Ming; Elsevier, Cornelis J; Chen, Jwu-Ting; Liu, Shiuh-Tzung

    2009-09-21

    Iridium complexes [(CO)2Ir(NHC-R)Cl] (R = Et-, 3a; PhCH2-, 3b; CH3OCH2CH2-, 3c; o-CH3OC6H4CH2-, 3d; NHC: N-heterocyclic carbene) are prepared via the carbene transfer from [(NHC-R)W(CO)5] to [Ir(COD)Cl]2. By using substitution with 13CO, we are able to estimate the activation energy (G) of the CO-exchange in 3a-d, which are in the range of 12-13 kcal mol-1, significantly higher than those for the phosphine analog [(CO)2Ir(PCy3)Cl]. Reactions of 3b and 3d with an equimolar amount of PPh3 result in the formation of the corresponding [(NHC-R)Ir(CO)(PPh3)Cl] with the phosphine and NHC in trans arrangement. In contrast, the analogous reaction of 3a or 3c with phosphine undergoes substitution followed by the anion metathesis to yield the corresponding di-substituted [(NHC-R)Ir(CO)(PPh3)2]BF4 (5) directly. Treatment of 3b or 3d with excess of PPh3 leads to the similar product of disubstitution 5b and 5d. The analysis for the IR data of carbonyliridium complexes provides the estimation of electron-donating power of NHCs versus phosphines. The NHC moiety on the iridium center cannot be replaced by phosphines, even 1,2-bis(diphenylphohino)ethane (dppe). All the carbene moieties on the iridium complexes are inert toward sulfur treatment, indicating a strong interaction between NHC and the iridium centers. Complexes 3a-c are active on the catalysis of the oxidative cyclization of 2-(o-aminophenyl)ethanol to yield the indole compound. The phosphine substituted complexes or analogs are less active.

  13. Syntheses and structures of ruthenium(II) N,S-heterocyclic carbene diphosphine complexes and their catalytic activity towards transfer hydrogenation.

    PubMed

    Ding, Nini; Hor, T S Andy

    2011-06-06

    Phosphine exchange of [Ru(II) Br(MeCOO)(PPh(3))(2)(3-RBzTh)] (3-RBzTh=3-benzylbenzothiazol-2-ylidene) with a series of diphosphines (bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethylene (dppv), 1,1'-bis(diphenylphosphino)ferrocene (dppf), 1,4-bis(diphenylphosphino)butane (dppb), and 1,3-(diphenylphosphino)propane (dppp)) gave mononuclear and neutral octahedral complexes [RuBr(MeCOO)(η(2)-P(2))(3-RBzTh)] (P(2)=dppm (2), dppv (3), dppf (4), dppb (5), or dppp (6)), the coordination spheres of which contained four different ligands, namely, a chelating diphosphine, carboxylate, N,S-heterocyclic carbene (NSHC), and a bromide. Two geometric isomers of 6 (6a and 6b) have been isolated. The structures of these products, which have been elucidated by single-crystal X-ray crystallography, show two structural types, I and II, depending on the relative dispositions of the ligands. Type I structures contain a carbenic carbon atom trans to the oxygen atom, whereas two phosphorus atoms are trans to bromine and oxygen atoms. The type II system comprises a carbene carbon atom trans to one of the phosphorus atoms, whereas the other phosphorus is trans to the oxygen atom, with the bromine trans to the remaining oxygen atom. Complexes 2, 3, 4, and 6a belong to type I, whereas 5 and 6b are of type II. The kinetic product 6b eventually converts into 6a upon standing. These complexes are active towards catalytic reduction of para-methyl acetophenone by 2-propanol at 82 °C under 1% catalyst load giving the corresponding alcohols. The dppm complex 2 shows the good yields (91-97%) towards selected ketones. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Copper-Catalyzed SN2'-Selective Allylic Substitution Reaction of gem-Diborylalkanes.

    PubMed

    Zhang, Zhen-Qi; Zhang, Ben; Lu, Xi; Liu, Jing-Hui; Lu, Xiao-Yu; Xiao, Bin; Fu, Yao

    2016-03-04

    A Cu/(NHC)-catalyzed SN2'-selective substitution reaction of allylic electrophiles with gem-diborylalkanes is reported. Different substituted gem-diborylalkanes and allylic electrophiles can be employed in this reaction, and various synthetic valuable functional groups can be tolerated. The asymmetric version of this reaction was initially researched with chiral N-heterocyclic carbene (NHC) ligands.

  15. Chemo- and Diastereoselective N-Heterocyclic Carbene-Catalyzed Cross-Benzoin Reactions Using N-Boc-α-amino Aldehydes.

    PubMed

    Haghshenas, Pouyan; Gravel, Michel

    2016-09-16

    N-Boc-α-amino aldehydes are shown to be excellent partners in cross-benzoin reactions with aliphatic or heteroaromatic aldehydes. The chemoselectivity of the reaction and the facial selectivity on the amino aldehyde allow cross-benzoin products to be obtained in good yields and good diastereomeric ratios. The developed method is utilized as the key step in a concise total synthesis of d-arabino-phytosphingosine.

  16. A general access to organogold(iii) complexes by oxidative addition of diazonium salts.

    PubMed

    Huang, Long; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K

    2016-05-11

    At room temperature under mild photochemical conditions, namely irradiation with a simple blue light LED, gold(i) chloro complexes of both phosphane and carbene ligands in combination with aryldiazonium salts afford arylgold(iii) complexes. With chelating P,N-ligands cationic six- or five-membered chelate complexes were isolated in the form of salts with weakly coordinating counter anions that were brought in from the diazonium salt. With monodentate P ligands or N-heterocyclic carbene ligands and diazonium chlorides neutral arylgold(iii) dichloro complexes were obtained. The coordination geometry was determined by X-ray crystal structure analyses of representative compounds, a cis arrangement of the aryl and the phosphane ligand at the square planar gold(iii) center is observed.

  17. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    NASA Astrophysics Data System (ADS)

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-09-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions.

  18. Heterobimetallic Activation of Dioxygen

    PubMed Central

    York, John T.; Young, Victor G.; Tolman, William B.

    2008-01-01

    Reaction of the known germylene Ge[N(SiMe3)2]2 and a new heterocyclic variant Ge[(NMes)2(CH)2] with [LMe2 Cu]2 (LMe2 = the β -diketiminate derived from 2-(2,6-dimethylphenyl)amino-4-(2,6-dimethylphenyl)imino-2-pentene) yielded novel Cu(I)-Ge(II) complexes LMe2Cu-Ge[(NMes)2(CH)2] (1a) and LMe2Cu-Ge[N(SiMe3)2]2 (1b), which were characterized by spectroscopy and X-ray crystallography. The lability of the Cu(I)-Ge(II) bond in 1a and b was probed by studies of their reactivity with benzil, PPh3, and an N-heterocyclic carbene (NHC). Notably, both complexes are cleaved rapidly by PPh3 and the NHC to yield stable Cu(I) adducts (characterized by X-ray diffraction) and the free germylene. In addition, the complexes are highly reactive with O2 and exhibit chemistry which depends on the bound germylene. Thus, oxygenation of 1a results in scission and formation of thermally unstable LMe2CuO2, which subsequently decays to [(LMe2Cu)2(μ-O)2], while 1b yields LMe2Cu(μ-O)2Ge[N(SiMe3)2]2, a novel heterobimetallic intermediate having [CuIII(μ-O)2GeIV]3+ core. The isolation of the latter species by direct oxygenation of a Cu(I)-Ge(II) precursor represents a new route to heterobimetallic oxidants comprising copper. PMID:16676981

  19. Hydrophenoxylation of internal alkynes catalysed with a heterobimetallic Cu-NHC/Au-NHC system.

    PubMed

    Lazreg, Faïma; Guidone, Stefano; Gómez-Herrera, Alberto; Nahra, Fady; Cazin, Catherine S J

    2017-02-21

    A straightforward method for the hydrophenoxylation of internal alkynes, using N-heterocyclic carbene-based copper(i) and gold(i) complexes, is described. The heterobimetallic catalytic system proceeds via dual activation of the substrates to afford the desired vinylether derivatives. This methodology is shown to be highly efficient and tolerates a wide range of substituted phenols and alkynes.

  20. Rhenium(i) complexes of N-heterocyclic carbene ligands that bind to amyloid plaques of Alzheimer's disease.

    PubMed

    Chan, Chung Ying; Noor, Asif; McLean, Catriona A; Donnelly, Paul S; Barnard, Peter J

    2017-02-16

    A series of [Re(i)L(CO) 3 ] + complexes (where L is a bifunctional bis(NHC)-amine ligand) that are analogues of potential Tc-99m diagnostic imaging agents for Alzheimer's disease have been synthesised. One of the complexes bound to amyloid plaques in human frontal cortex brain tissue from subjects with Alzheimer's disease.

  1. Self-Assembled N-Heterocyclic Carbene-Based Carboxymethylated Dextran Monolayers on Gold as a Tunable Platform for Designing Affinity-Capture Biosensor Surfaces.

    PubMed

    Li, Zhijun; Munro, Kim; Narouz, Mina R; Lau, Andrew; Hao, Hongxia; Crudden, Cathleen M; Horton, J Hugh

    2018-05-30

    Sensor surfaces play a predominant role in the development of optical biosensor technologies for the analysis of biomolecular interactions. Thiol-based self-assembled monolayers (SAMs) on gold have been widely used as linker layers for sensor surfaces. However, the degradation of the thiol-gold bond can limit the performance and durability of such surfaces, directly impacting their performance and cost-effectiveness. To this end, a new family of materials based on N-heterocyclic carbenes (NHCs) has emerged as an alternative for surface modification, capable of self-assembling onto a gold surface with higher affinity and superior stability as compared to the thiol-based systems. Here we demonstrate three applications of NHC SAMs supporting a dextran layer as a tunable platform for developing various affinity-capture biosensor surfaces. We describe the development and testing of NHC-based dextran biosensor surfaces modified with each of streptavidin, nitrilotriacetic acid, and recombinant Protein A. These affinity-capture sensor surfaces enable oriented binding of ligands for optimal performance in biomolecular assays. Together, the intrinsic high stability and flexible design of the NHC biosensing platforms show great promise and open up exciting possibilities for future biosensing applications.

  2. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-01-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions. PMID:27671606

  3. Insights into the Competing Mechanisms and Origin of Enantioselectivity for N-Heterocyclic Carbene-Catalyzed Reaction of Aldehyde with Enamide

    NASA Astrophysics Data System (ADS)

    Qiao, Yan; Chen, Xinhuan; Wei, Donghui; Chang, Junbiao

    2016-12-01

    Hydroacylation reactions and aza-benzoin reactions have attracted considerable attention from experimental chemists. Recently, Wang et al. reported an interesting reaction of N-heterocyclic carbene (NHC)-catalyzed addition of aldehyde to enamide, in which both hydroacylation and aza-benzoin reactions may be involved. Thus, understanding the competing relationship between them is of great interest. Now, density functional theory (DFT) investigation was performed to elucidate this issue. Our results reveal that enamide can tautomerize to its imine isomer with the assistance of HCO3-. The addition of NHC to aldehydes formed Breslow intermediate, which can go through cross-coupling with enamide via hydroacylation reaction or its imine isomer via aza-benzoin reaction. The aza-benzoin reaction requires relatively lower free energy barrier than the hydroacylation reaction. The more polar characteristic of C=N group in the imine isomers, and the more advantageous stereoelectronic effect in the carbon-carbon bond forming transition states in aza-benzoin pathway were identified to determine that the imine isomer can react with the Breslow intermediate more easily. Furthermore, the origin of enantioselectivities for the reaction was explored and reasonably explained by structural analyses on key transition states. The work should provide valuable insights for rational design of switchable NHC-catalyzed hydroacylation and aza-benzoin reactions with high stereoselectivity.

  4. N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Chen, Wenwen; Jia, Yuexiao; Tian, Yue; Zhao, Yuyun; Long, Fei; Rui, Yukui; Jiang, Xingyu

    2016-07-01

    We demonstrate that N-heterocyclic molecule-capped gold nanoparticles (Au NPs) have broad-spectrum antibacterial activity. Optimized antibacterial activity can be achieved by using different initial molar ratios (1 : 1 and 10 : 1) of N-heterocyclic prodrugs and the precursor of Au NPs (HAuCl4). This work opens up new avenues for antibiotics based on Au NPs.We demonstrate that N-heterocyclic molecule-capped gold nanoparticles (Au NPs) have broad-spectrum antibacterial activity. Optimized antibacterial activity can be achieved by using different initial molar ratios (1 : 1 and 10 : 1) of N-heterocyclic prodrugs and the precursor of Au NPs (HAuCl4). This work opens up new avenues for antibiotics based on Au NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03317b

  5. Silver-free activation of ligated gold(I) chlorides: the use of [Me3NB12Cl11]- as a weakly coordinating anion in homogeneous gold catalysis.

    PubMed

    Wegener, Michael; Huber, Florian; Bolli, Christoph; Jenne, Carsten; Kirsch, Stefan F

    2015-01-12

    Phosphane and N-heterocyclic carbene ligated gold(I) chlorides can be effectively activated by Na[Me3NB12Cl11] (1) under silver-free conditions. This activation method with a weakly coordinating closo-dodecaborate anion was shown to be suitable for a large variety of reactions known to be catalyzed by homogeneous gold species, ranging from carbocyclizations to heterocyclizations. Additionally, the capability of 1 in a previously unknown conversion of 5-silyloxy-1,6-allenynes was demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Application of the π-accepting ability parameter of N-heterocyclic carbene ligands in iridium complexes for signal amplification by reversible exchange (SABRE).

    PubMed

    van Weerdenburg, Bram J A; Eshuis, Nan; Tessari, Marco; Rutjes, Floris P J T; Feiters, Martin C

    2015-09-21

    The new π-accepting ability parameter (PAAP) appears to be the best tool to analyse the electronic properties of NHC ligands in [Ir(H)2(NHC)(Py)3](+) complexes for SABRE. Together with the buried volume, the efficiency of hyperpolarisation transfer in SABRE, depending on the exchange rate of pyridine, can be described.

  7. Synthesis and characterization of nitrile functionalized silver(I)-N-heterocyclic carbene complexes: DNA binding, cleavage studies, antibacterial properties and mosquitocidal activity against the dengue vector, Aedes albopictus.

    PubMed

    Asekunowo, Patrick O; Haque, Rosenani A; Razali, Mohd R; Avicor, Silas W; Wajidi, Mustafa F F

    2018-04-25

    A series of four benzimidazolium based nitrile-functionalized mononuclear-Ag(I)-N-heterocyclic carbene and binuclear-Ag(I)-N-heterocyclic carbene (Ag(I)-NHC) hexafluorophosphate complexes (5b-8b) were synthesized by reacting the corresponding hexafluorophosphate salts (1b-4b) with Ag 2 O in acetonitrile, respectively. These compounds were characterized by 1 H NMR, 13 C NMR, IR, UV-visible spectroscopic techniques, elemental analyses and molar conductivity. Additionally, 8b was structurally characterized by single crystal X-ray diffraction technique. Preliminary in vitro antibacterial evaluation was conducted for all the compounds against two standard bacteria; gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacterial strains. Most of the Ag(I)-NHC complexes (5b-8b) showed moderate to good antibacterial activity with MIC values in the range of 12.5-100 μg/mL. Especially, compound 8b exhibited promising anti-Staphylococcus aureus activity with a low MIC value (12.5 μg/mL). However, all the hexafluorophosphate salts (1b-4b) were inactive against the bacteria strains. The preliminary interactive investigation revealed that the most active compound, 8b, could effectively intercalate into DNA to form 8b-DNA complex which shows a better binding ability for DNA (K b  = 3.627 × 10 6 ) than the complexes 5b-7b (2.177 × 10 6 , 8.672 × 10 5 and 6.665 × 10 5 , respectively). Nuclease activity of the complexes on plasmid DNA and Aedes albopictus genomic DNA was time-dependent, although minimal. The complexes were larvicidal to the mosquito, with 5b, 6b and 8b being highly active. Developmental progression from the larval to the adult stage was affected by the complexes, progressively being toxic to the insect's development with increasing concentration. These indicate the potential use of these complexes as control agents against bacteria and the dengue mosquito Ae. albopictus. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Experimental charge density analysis of a gallium(I) N-heterocyclic carbene analogue.

    PubMed

    Overgaard, Jacob; Jones, Cameron; Dange, Deepak; Platts, James A

    2011-09-05

    The experimental electron density of the only known example of a four-membered Ga(I) N-heterocyclic carbene analogue has been determined by multipole modeling of 90 K X-ray diffraction data and compared to theoretical data. In order to obtain a satisfactory model, it is necessary to modify the radial dependency of the core electrons of Ga using two separate scaling parameters for s,p- and d-electrons. Evidence for significant lone-pair density on Ga is found in the electron density and derived properties despite the partial positive charge of this atom. Static deformation density and molecular electrostatic potential clearly show a directional lone pair on Ga, whereas the Laplacian of the total electron density does not; this feature is, however, present in the Laplacian of the valence-only density. The Ga center also acts as an acceptor in four intramolecular C-H···Ga contacts, whose nature is probed by density properties. Substantial covalent character is apparent in the Ga-N bonds, but no sign of donation from filled N p-orbitals to empty Ga p-orbitals is found, whereas π-delocalization over the organic ligand is evident. This study highlights the utility of experimental charge density analysis as a technique to investigate the unusual bonding and electronic characteristics of low oxidation state/low coordinate p-block complexes.

  9. Gold-Catalyzed Formal [4+1]/[4+3] Cycloadditions of Diazo Esters with Triazines.

    PubMed

    Zhu, Chenghao; Xu, Guangyang; Sun, Jiangtao

    2016-09-19

    Reported herein is the unprecedented gold-catalyzed formal [4+1]/[4+3] cycloadditions of diazo esters with hexahydro-1,3,4-triazines, thus providing five- and seven-membered heterocycles in moderate to high yields under mild reaction conditions. These reactions feature the use of a gold complex to accomplish the diverse annulations and the first example of the involvement of a gold metallo-enolcarbene in a cycloaddition. It is also the first utilization of stable triazines as formal dipolar adducts in the carbene-involved cycloadditions. Mechanistic investigations reveal that the triazines reacted directly, rather than as formaldimine precursors, in the reaction process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Theoretical investigations on the mechanism of benzoin condensation catalyzed by pyrido[1,2-a]-2-ethyl[1,2,4]triazol-3-ylidene.

    PubMed

    He, Yunqing; Xue, Ying

    2011-03-03

    A new annulated N-heterocyclic carbene (NHC), pyrido[1,2-a]-2-ethyl[1,2,4]triazol-3-ylidene, has been synthesized and its good catalytic activity for benzoin condensation has been experimentally determined by You and co-workers recently [ Ma , Y. J. , Wei , S. P. , Lan , J. B. , Wang , J. Z. , Xie , R. G. , and You , J. S. J. Org. Chem. 2008 , 73 , 8256 ]. In this work, the mechanism of the title reaction has been intensively studied computationally by employing the density functional theory (B3LYP) method in conjunction with 6-31+G(d) and 6-311+G(2d,p) basis sets. Our results indicate that path A (in which a sequence of intermolecular proton transfers between two carbene/benzaldehyde coupling intermediates affords enamine) and path B (in which a t-BuOH assisted hydrogen transfer generates enamine) proposed on the basis of the Breslow mechanism are competitive for their similar barriers. In path A, the first intermolecular proton transfer between two N-heterocyclic carbene/benzaldehyde coupled intermediates to form tertiary alcohol and enolate anion is theoretically the rate-determining step with corresponding barrier (30.93 kcal/mol), while the t-BuOH assisted hydrogen transfer generating Breslow enamine is the rate-determining step with corresponding barrier (28.84 kcal/mol) in path B. The coupling of carbene and benzaldehyde, and the coupling of enamine and another benzaldehyde to form a C-C bond are partially rate-determining for their relatively significant barriers (24.06 and 26.95 kcal/mol, respectively), being the same in both paths A and B. Our results are in nice agreement with the experimental result in a kinetic investigation of thiazolium ion-catalyzed benzoin condensation performed by White and Leeper in 2001.

  11. Transition-metal phosphors with cyclometalating ligands: fundamentals and applications.

    PubMed

    Chi, Yun; Chou, Pi-Tai

    2010-02-01

    One goal of this critical review is to provide advanced methodologies for systematic preparation of transition-metal based phosphors that show latent applications in the field of organic light emitting diodes (OLEDs). We are therefore reviewing various types of cyclometalating chelates for which the favorable metal-chelate bonding interaction, on the one hand, makes the resulting phosphorescent complexes highly emissive in both fluid and solid states at room temperature. On the other hand, fine adjustment of ligand-centered pi-pi* electronic transitions allows tuning of emission wavelength across the whole visible spectrum. The cyclometalating chelates are then classified according to types of cyclometalating groups, i.e. either aromatic C-H or azolic N-H fragment, and the adjacent donor fragment involved in the formation of metallacycles; the latter is an N-containing heterocycle, N-heterocyclic (NHC) carbene fragment or even diphenylphosphino group. These cyclometalating ligands are capable to react with heavy transition-metal elements, namely: Ru(II), Os(II), Ir(III) and Pt(II), to afford a variety of highly emissive phosphors, for which the photophysical properties as a function of chelate or metal characteristics are systematically discussed. Using Ir(III) complexes as examples, the C--N chelates possessing both C-H site and N-heterocyclic donor group are essential for obtaining phosphors with emission ranging from sky-blue to saturated red, while the N--N chelates such as 2-pyridyl-C-linked azolates are found useful for serving as true-blue chromophores due to their increased ligand-centered pi-pi* energy gap. Lastly, the remaining NHC carbene and benzyl phosphine chelates are highly desirable to serve as ancillary chelates in localizing the electronic transition between the metal and remaining lower energy chromophoric chelates. As for the potential opto-electronic applications, many of them exhibit remarkable performance data, which are convincing to pave a broad avenue for further development of all types of phosphorescent displays and illumination devices (94 references).

  12. Aqueous NMR Signal Enhancement by Reversible Exchange in a Single Step Using Water-Soluble Catalysts

    PubMed Central

    2016-01-01

    Two synthetic strategies are investigated for the preparation of water-soluble iridium-based catalysts for NMR signal amplification by reversible exchange (SABRE). In one approach, PEGylation of a variant N-heterocyclic carbene provided a novel catalyst with excellent water solubility. However, while SABRE-active in ethanol solutions, the catalyst lost activity in >50% water. In a second approach, synthesis of a novel di-iridium complex precursor where the cyclooctadiene (COD) rings have been replaced by CODDA (1,2-dihydroxy-3,7-cyclooctadiene) leads to the creation of a catalyst [IrCl(CODDA)IMes] that can be dissolved and activated in water—enabling aqueous SABRE in a single step, without need for either an organic cosolvent or solvent removal followed by aqueous reconstitution. The potential utility of the CODDA catalyst for aqueous SABRE is demonstrated with the ∼(−)32-fold enhancement of 1H signals of pyridine in water with only 1 atm of parahydrogen. PMID:27350846

  13. Local structure of Iridium organometallic catalysts covalently bonded to carbon nanotubes.

    NASA Astrophysics Data System (ADS)

    Blasco, J.; Cuartero, V.; Subías, G.; Jiménez, M. V.; Pérez-Torrente, J. J.; Oro, L. A.; Blanco, M.; Álvarez, P.; Blanco, C.; Menéndez, R.

    2016-05-01

    Hybrid catalysts based on Iridium N-heterocyclic carbenes anchored to carbon nanotubes (CNT) have been studied by XAFS spectroscopy. Oxidation of CNT yields a large amount of functional groups, mainly hydroxyl groups at the walls and carboxylic groups at the tips, defects and edges. Different kinds of esterification reactions were performed to functionalize oxidized CNT with imidazolium salts. Then, the resulting products were reacted with an Ir organometallic compound to form hybrid catalysts efficient in hydrogen transfer processes. XANES spectroscopy agree with the presence of Ir(I) in these catalysts and the EXAFS spectra detected differences in the local structure of Ir atoms between the initial Ir organometallic compound and the Ir complexes anchored to the CNT. Our results confirm that the halide atom, present in the Ir precursor, was replaced by oxygen from -OH groups at the CNT wall in the first coordination shell of Ir. The lability of this group accounts for the good recyclability and the good efficiency shown by these hybrid catalysts.

  14. Catalytic Enantioselective Aza-Benzoin Reactions of Aldehydes with 2H-Azirines.

    PubMed

    Peng, Qiupeng; Guo, Donghui; Bie, Jianbo; Wang, Jian

    2018-03-26

    The unprecedented enantioselective aza-benzoin reaction of aldehydes with 2H-azirines was developed by utilizing a chiral N-heterocyclic carbene as the catalyst. A wide range of corresponding aziridines can be obtained in good yields with high enantioselectivities. The obtained optically active aziridines should be useful in the synthesis of other valuable molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis, photophysical properties, and computational studies of four-coordinate copper(I) complexes based on benzimidazolylidene N-heterocyclic carbene (NHC) ligands bearing aryl substituents

    NASA Astrophysics Data System (ADS)

    Xu, Shengxian; Wang, Jinglan; Liu, Shaobo; Zhao, Feng; Xia, Hongying; Wang, Yibo

    2018-02-01

    Three four-coordinate N-heterocyclic carbene (NHC) copper(I) complexes, [Cu(Ph-BenIm-Py)(POP)]PF6 (1), [Cu(Naph-BenIm-Py)(POP)]PF6 (2), and [Cu(Anthr-BenIm-Py)(POP)]PF6 (3) (Ph-BenIm-Py = 3-benzyl-1-(pyridin-2-yl)-1H-benzimidazolylidene, Naph-BenIm-Py = 3-(naphthalen-2-yl-1-(pyridin-2-yl)-1H- benzimidazolylidene, Anthr-BenIm-Py = 3-(anthracen-9-yl)-1-(pyridin-2-yl)-1H-benzimidazolylidene, and POP = bis[2-diphenylphosphino]-phenyl)ether) have been synthesized and characterized. The different aryl substituents (phenyl, naphthyl, and anthracyl groups) were introduced into NHC ligands and the corresponding photophysical properties of the complexes were systematically investigated. The absorption spectra of all NHCsbnd Cu(I) complexes show a characteristic feature of metal-to-ligand charge transfer (MLCT) in the lower-energy region. Complex 1 exhibited good photoluminescence (PL) properties companying with the high quantum yields and long excited-state lifetimes, whereas 2 and 3 with naphthyl and anthracyl groups show the low PL efficiency caused by the strong π-π stacking interactions. Density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations were employed to rationalize the photophysical properties of the NHCsbnd Cu(I) complexes.

  16. High-spatial-resolution mapping of catalytic reactions on single particles

    DOE PAGES

    Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan; ...

    2017-01-26

    We report the critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has beenmore » used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. Lastly, these observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan

    We report the critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has beenmore » used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. Lastly, these observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.« less

  18. Insights into the Competing Mechanisms and Origin of Enantioselectivity for N-Heterocyclic Carbene-Catalyzed Reaction of Aldehyde with Enamide

    PubMed Central

    Qiao, Yan; Chen, Xinhuan; Wei, Donghui; Chang, Junbiao

    2016-01-01

    Hydroacylation reactions and aza-benzoin reactions have attracted considerable attention from experimental chemists. Recently, Wang et al. reported an interesting reaction of N-heterocyclic carbene (NHC)-catalyzed addition of aldehyde to enamide, in which both hydroacylation and aza-benzoin reactions may be involved. Thus, understanding the competing relationship between them is of great interest. Now, density functional theory (DFT) investigation was performed to elucidate this issue. Our results reveal that enamide can tautomerize to its imine isomer with the assistance of HCO3−. The addition of NHC to aldehydes formed Breslow intermediate, which can go through cross-coupling with enamide via hydroacylation reaction or its imine isomer via aza-benzoin reaction. The aza-benzoin reaction requires relatively lower free energy barrier than the hydroacylation reaction. The more polar characteristic of C=N group in the imine isomers, and the more advantageous stereoelectronic effect in the carbon-carbon bond forming transition states in aza-benzoin pathway were identified to determine that the imine isomer can react with the Breslow intermediate more easily. Furthermore, the origin of enantioselectivities for the reaction was explored and reasonably explained by structural analyses on key transition states. The work should provide valuable insights for rational design of switchable NHC-catalyzed hydroacylation and aza-benzoin reactions with high stereoselectivity. PMID:27905524

  19. Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoi, VanSara; Kornienko, Nick; Margarit, C

    2013-06-07

    The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene amine ligands that exhibit high selectivity and activity formore » the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni(Prbimiq1)]2+ (1c, where Prbimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (Ecat = 1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s1, respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.« less

  20. Stereoselective 1,3-Insertions of Rhodium(II) Azavinyl Carbenes

    PubMed Central

    Chuprakov, Stepan; Worrell, Brady T.; Selander, Nicklas; Sit, Rakesh K.; Fokin, Valery V.

    2014-01-01

    Rhodium(II) azavinyl carbenes, conveniently generated from 1-sulfonyl-1,2,3-triazoles, undergo a facile, mild and convergent formal 1,3-insertion into N–H and O–H bonds of primary and secondary amides, various alcohols, and carboxylic acids to afford a wide range of vicinally bis-functionalized Z-olefins with perfect regio- and stereoselectively. Utilizing the distinctive functionality installed through these reactions, a number of subsequent rearrangements and cyclizations expand the repertoire of valuable organic building blocks constructed by reactions of transition metal carbene complexes, including α-allenyl ketones and amino-substituted heterocycles. PMID:24295389

  1. Hydrogenation of fluoroarenes: Direct access to all-cis-(multi)fluorinated cycloalkanes.

    PubMed

    Wiesenfeldt, Mario P; Nairoukh, Zackaria; Li, Wei; Glorius, Frank

    2017-09-01

    All-c is -multifluorinated cycloalkanes exhibit intriguing electronic properties. In particular, they display extremely high dipole moments perpendicular to the aliphatic ring, making them highly desired motifs in material science. Very few such motifs have been prepared, as their syntheses require multistep sequences from diastereoselectively prefunctionalized precursors. Herein we report a synthetic strategy to access these valuable materials via the rhodium-cyclic (alkyl)(amino)carbene (CAAC)-catalyzed hydrogenation of readily available fluorinated arenes in hexane. This route enables the scalable single-step preparation of an abundance of multisubstituted and multifluorinated cycloalkanes, including all- cis -1,2,3,4,5,6-hexafluorocyclohexane as well as cis-configured fluorinated aliphatic heterocycles. Copyright © 2017, American Association for the Advancement of Science.

  2. Solvent-Free Benzoin and Stetter Reactions with a Small Amount of NHC Catalyst in the Liquid or Semisolid State.

    PubMed

    Ema, Tadashi; Nanjo, Yoshiko; Shiratori, Sho; Terao, Yuta; Kimura, Ryo

    2016-11-04

    The intermolecular or intramolecular asymmetric benzoin reaction was catalyzed by a small amount of N-heterocyclic carbene (NHC) (0.2-1 mol %) under solvent-free conditions. The solvent-free intramolecular asymmetric Stetter reaction also proceeded efficiently with NHC (0.2-1 mol %). In some cases, even solid-to-solid or solid-to-liquid conversions took place with low catalyst loading (0.2-1 mol %).

  3. Efficient Domino Hydroformylation/Benzoin Condensation: Highly Selective Synthesis of α-Hydroxy Ketones.

    PubMed

    Dong, Kaiwu; Sang, Rui; Soule, Jean-Francois; Bruneau, Christian; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-12-07

    An improved domino hydroformylation/benzoin condensation to give α-hydroxy ketones has been developed. Easily available olefins are smoothly converted into the corresponding α-hydroxy ketones in high yields with excellent regioselectivities. Key to success is the use of a specific catalytic system consisting of a rhodium/phosphine complex and the CO2 adduct of an N-heterocyclic carbene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chemoselective N-heterocyclic carbene-catalyzed cross-benzoin reactions: importance of the fused ring in triazolium salts.

    PubMed

    Langdon, Steven M; Wilde, Myron M D; Thai, Karen; Gravel, Michel

    2014-05-28

    Morpholinone- and piperidinone-derived triazolium salts are shown to catalyze highly chemoselective cross-benzoin reactions between aliphatic and aromatic aldehydes. The reaction scope includes ortho-, meta-, and para-substituted benzaldehyde derivatives with a range of electron-donating and -withdrawing groups as well as branched and unbranched aliphatic aldehydes. Catalytic loadings as low as 5 mol % give excellent yields in these reactions (up to 99%).

  5. Biomedical properties of a series of ruthenium-N-heterocyclic carbene complexes based on oxidant activity in vitro and assessment in vivo of biosafety in zebrafish embryos.

    PubMed

    Alfaro, Juan M; Prades, Amparo; del Carmen Ramos, María; Peris, Eduardo; Ripoll-Gómez, Jorge; Poyatos, Macarena; Burgos, Javier S

    2010-03-01

    N-Heterocyclic carbene (NHC) ligands have attracted great interest over the last decade for their use in the design of homogenous catalysts. NHC-based metal complexes have interesting potential biomedical applications, such as in antimicrobial and cancer therapy, which are beginning to be explored more fully. We have studied here the oxidant activities of a series of Ru(II) complexes in vitro and zebrafish (Danio rerio) have been used as a model in vivo to investigate and characterize the toxicity of some of these compounds. Dual behavior was observed for the NHC-based complexes as they behaved as antioxidants at low concentrations but showed pro-oxidant capacity at higher concentrations. Zebrafish embryos were exposed to Ru(II) complexes under several different conditions (0 or 24 h postfertilization, with or without the chorion) and various parameters, such as viability, edema, heart rate, blood coagulation, pigmentation, scoliosis, malformation, and hatching, were tested. In general, zebrafish embryos were not harmed by exposure to Ru(II) complexes whatever the experimental conditions. Several toxicity profiles were observed depending upon the chemical structure of the compound in question. Their characteristics as pro-oxidant and/or antioxidant agents together with their biosafety may point to their having biomedical applications as antitumoral or neuroprotective drugs.

  6. Targeting antioxidant pathways with ferrocenylated N-heterocyclic carbene supported gold(i) complexes in A549 lung cancer cells† †Electronic supplementary information (ESI) available. CCDC 1419940 and 1419941. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc03519h

    PubMed Central

    McCall, R.; Sidoran, K. J.; Magda, D.; Mitchell, N. A.; Bielawski, C. W.; Lynch, V. M.; Sessler, J. L.

    2016-01-01

    Ferrocene containing N-heterocyclic carbene (NHC) ligated gold(i) complexes of the type [Au(NHC)2]+ were prepared and found to be capable of regulating the formation of reactive oxygen species (ROS) via multiple mechanisms. Single crystal X-ray analysis of bis(1-(ferrocenylmethyl)-3-mesitylimidazol-2-ylidene)-gold(i) chloride (5) and bis(1,3-di(ferrocenylmethyl)imidazol-2-ylidene)-gold(i) chloride (6) revealed a quasi-linear geometry around the gold(i) centers (i.e., the C–Au–C bond angle were measured to be ∼177° and all the Au–Ccarbene bonds distances were in the range of 2.00 (7)–2.03 (1) Å). A series of cell studies indicated that cell proliferation inhibition and ROS generation were directly proportional to the amount of ferrocene contained within the [Au(NHC)2]+ complexes (IC50 of 6 < 5 < bis(1-benzyl-3-mesitylimidazol-2-ylidene)-gold(i) chloride (4)). Complexes 4–6 were also confirmed to inhibit thioredoxin reductase as inferred from lipoate reduction assays and increased chelatable intracellular zinc concentrations. RNA microarray gene expression assays revealed that 6 induces endoplasmic reticulum stress response pathways as a result of ROS increase. PMID:26918111

  7. Surface-active ionic liquids for palladium-catalysed cross coupling in water: effect of ionic liquid concentration on the catalytically active species† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07757b

    PubMed Central

    Taskin, Meltem; Cognigni, Alice; Zirbs, Ronald; Reimhult, Erik

    2017-01-01

    We report the design and synthesis of surface-active ionic liquids for application in palladium-catalyzed cross coupling reactions. A series of dodecylimidazolium-based ionic liquids were applied as additives in the Heck reaction of ethyl acrylate and iodobenzene, and high yields of >90% could be obtained in water without the addition of further ligands. Our results indicate that the ionic liquid concentration in water is the key factor affecting the formation of the catalytically active species and hence the yield. Moreover, imidazolium-based ionic liquids that are able to form a carbene species differ significantly from conventional cationic surfactants, as a concentration dependent formation of the N-heterocyclic carbene complex was observed. PMID:29308189

  8. Carbene based photochemical molecular assemblies for solar driven hydrogen generation.

    PubMed

    Peuntinger, Katrin; Pilz, T David; Staehle, Robert; Schaub, Markus; Kaufhold, Simon; Petermann, Lydia; Wunderlin, Markus; Görls, Helmar; Heinemann, Frank W; Li, Jing; Drewello, Thomas; Vos, Johannes G; Guldi, Dirk M; Rau, Sven

    2014-09-28

    Novel photocatalysts based on ruthenium complexes with NHC (N-heterocyclic carbene)-type bridging ligands have been prepared and structurally and photophysically characterised. The identity of the NHC-unit of the bridging ligand was established unambiguously by means of X-ray structural analysis of a heterodinuclear ruthenium-silver complex. The photophysical data indicate ultrafast intersystem crossing into an emissive and a non-emissive triplet excited state after excitation of the ruthenium centre. Exceptionally high luminescence quantum yields of up to 39% and long lifetimes of up to 2 μs are some of the triplet excited state characteristics. Preliminary studies into the visible light driven photocatalytic hydrogen formation show no induction phase and constant turnover frequencies that are independent on the concentration of the photocatalyst. In conclusion this supports the notion of a stable assembly under photocatalytic conditions.

  9. Synthesis of isocoumarins through three-component couplings of arynes, terminal alkynes, and carbon dioxide catalyzed by an NHC-copper complex.

    PubMed

    Yoo, Woo-Jin; Nguyen, Thanh V Q; Kobayashi, Shū

    2014-09-15

    A copper-catalyzed multicomponent coupling reaction between in situ generated ortho-arynes, terminal alkynes, and carbon dioxide was developed to access isocoumarins in moderate to good yields. The key to this CO2-incorporating reaction was the use of a versatile N-heterocyclic carbene/copper complex that was able to catalyze multiple transformations within the three-component reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gold(I)-catalyzed diazo coupling: strategy towards alkene formation and tandem benzannulation.

    PubMed

    Zhang, Daming; Xu, Guangyang; Ding, Dong; Zhu, Chenghao; Li, Jian; Sun, Jiangtao

    2014-10-06

    A gold(I)-catalyzed cross-coupling of diazo compounds to afford tetrasubstituted alkenes has been developed by taking advantage of a trivial electronic difference between two diazo substrates. A N-heterocyclic-carbene-derived gold complex is the most effective catalyst for this transformation. Based on this new strategy, a gold(I)-initiated benzannulation has been achieved through a tandem reaction involving a diazo cross-coupling, 6π electrocyclization, and oxidative aromatization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Organocatalytic C-H bond arylation of aldehydes to bis-heteroaryl ketones.

    PubMed

    Toh, Qiao Yan; McNally, Andrew; Vera, Silvia; Erdmann, Nico; Gaunt, Matthew J

    2013-03-13

    An organocatalytic aldehyde C-H bond arylation process for the synthesis of complex heteroaryl ketones has been developed. By exploiting the inherent electrophilicity of diaryliodonium salts, we have found that a commercial N-heterocyclic carbene catalyst promotes the union of heteroaryl aldehydes and these heteroaromatic electrophile equivalents in good yields. This straightforward catalytic protocol offers access to ketones bearing a diverse array of arene and heteroarene substituents that can subsequently be converted into molecules displaying structural motifs commonly found in medicinal agents.

  12. Starbon/High-Amylose Corn Starch-Supported N-Heterocyclic Carbene-Iron(III) Catalyst for Conversion of Fructose into 5-Hydroxymethylfurfural.

    PubMed

    Matharu, Avtar S; Ahmed, Suleiman; Almonthery, Badriya; Macquarrie, Duncan J; Lee, Yoon-Sik; Kim, Yohan

    2018-02-22

    Iron-N-heterocyclic carbene complexes (Fe-NHCs) have come to prominence because of their applicability in diverse catalytic reactions, ranging from C-C cross-coupling and C-X bond formation to substitution, reduction, polymerization, and dehydration reactions. The detailed synthesis, characterization, and application of novel heterogeneous Fe-NHC catalysts immobilized on mesoporous expanded high-amylose corn starch (HACS) and Starbon 350 (S350) for facile fructose conversion into 5-hydroxymethylfurfural (HMF) is reported. Both catalyst types showed good performance for the dehydration of fructose to HMF when the reaction was tested at 100 °C with varying time (10 min, 20 min, 0.5 h, 1 h, 3 h and 6 h). For Fe-NHC/S350, the highest HMF yield was 81.7 % (t=0.5 h), with a TOF of 169 h -1 , fructose conversion of 95 %, and HMF selectivity of 85.7 %, whereas for Fe-NHC/expanded HACS, the highest yield was 86 % (t=0.5 h), with a TOF of 206 h -1 , fructose conversion of 87 %, and HMF selectivity of 99 %. Iron loadings of 0.26 and 0.30 mmol g -1 were achieved for Fe-NHC/expanded starch and Fe-NHC/S350, respectively. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Metal-free catalytic enantioselective C-B bond formation: (pinacolato)boron conjugate additions to α,β-unsaturated ketones, esters, Weinreb amides, and aldehydes promoted by chiral N-heterocyclic carbenes.

    PubMed

    Wu, Hao; Radomkit, Suttipol; O'Brien, Jeannette M; Hoveyda, Amir H

    2012-05-16

    The first broadly applicable metal-free enantioselective method for boron conjugate addition (BCA) to α,β-unsaturated carbonyls is presented. The C-B bond forming reactions are promoted in the presence of 2.5-7.5 mol % of a readily accessible C(1)-symmetric chiral imidazolinium salt, which is converted, in situ, to the catalytically active diastereo- and enantiomerically pure N-heterocyclic carbene (NHC) by the common organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu). In addition to the commercially available bis(pinacolato)diboron [B(2)(pin)(2)], and in contrast to reactions with the less sterically demanding achiral NHCs, the presence of MeOH is required for high efficiency. Acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, Weinreb amides, and aldehydes, can serve as suitable substrates; the desired β-boryl carbonyls are isolated in up to 94% yield and >98:2 enantiomer ratio (er). Transformations are often carried out at ambient temperature. In certain cases, such as when the relatively less reactive unsaturated amides are used, elevated temperatures are required (50-66 °C); nonetheless, reactions remain highly enantioselective. The utility of the NHC-catalyzed method is demonstrated through comparison with the alternative Cu-catalyzed protocols; in cases involving a polyfunctional substrate, unique profiles in chemoselectivity are exhibited by the metal-free approach (e.g., conjugate addition vs reaction with an alkyne, allene, or aldehyde).

  14. On the organocatalytic activity of N-heterocyclic carbenes: role of sulfur in thiamine.

    PubMed

    Hollóczki, Oldamur; Kelemen, Zsolt; Nyulászi, László

    2012-07-20

    The reaction energy profiles of the benzoin condensation from three aldehydes catalyzed by imidazol-2-ylidene, triazol-3-ylidene, and thiazol-2-ylidene have been investigated computationally. The barriers for all steps of all investigated reactions have been found to be low enough to indicate the viability of the mechanism proposed by Breslow in the 1950s. The most remarkable difference in the catalytic cycles has been the increased stability of the Breslow intermediate in case of thiazol-2-ylidene (by ca. 10 kcal/mol) compared to the other two carbenes, which results in lower energy for the coupling of the second aldehyde molecule, thus, increasing the reversibility of the reaction. Since the analogous transketolase reaction, being involved in the carbohydrate metabolism of many organisms, requires an initial decoupling-a reverse benzoin condensation-this difference provides a reasonable explanation for the presence of a thiazolium ring in thiamine instead of the otherwise generally more available imidazole derivatives. The "resting intermediate" found by Berkessel and co-workers for a triazole-based catalyst was found more stable than the Breslow intermediate for all of the systems investigated. The (gas phase) proton affinities of several carbenes were compared, the relative trends being in agreement with the available (in aqueous solution) data. The hydrolytic ring-opening reaction of the thiazole-based carbene was shown to be different from that of imidazole-2-ylidenes.

  15. E-Selective Semi-Hydrogenation of Alkynes by Heterobimetallic Catalysis.

    PubMed

    Karunananda, Malkanthi K; Mankad, Neal P

    2015-11-25

    A unique cooperative H2 activation reaction by heterobimetallic (NHC)M'-MCp(CO)2 complexes (NHC = N-heterocyclic carbene, M' = Cu or Ag, M = Fe or Ru) has been leveraged to develop a catalytic alkyne semi-hydrogenation transformation. The optimal Ag-Ru catalyst gives high selectivity for converting alkynes to E-alkenes, a rare selectivity mode for reduction reactions with H2. The transformation is tolerant of many reducible functional groups. Computational analysis of H2 activation thermodynamics guided rational catalyst development. Bimetallic alkyne hydrogenation and alkene isomerization mechanisms are proposed.

  16. N-Heterocyclic Carbene Complexes in Dehalogenation Reactions

    NASA Astrophysics Data System (ADS)

    Mas-Marzá, Elena; Page, Michael J.; Whittlesey, Michael K.

    Catalytic dehalogenation represents an underdeveloped transformation in M-NHC chemistry with a small number of reports detailing the reactivity of Co, Ru, Ni and Pd catalysts. In situ generated nickel and palladium NHC complexes catalyse the hydrodechlorination of aryl chlorides. Lower coordinate Ni complexes are proposed to operate in the hydrodefluorination of mono- and poly-fluorinated substrates. The single example of Ru-NHC catalysed hydrodefluorination of fully and partially fluorinated aromatic substrates is characterised by an unusual regioselectivity. The highly regioselective dehydrohalogenation of relatively unreactive alkyl halide substrates is achieved with a cobalt NHC catalyst.

  17. Selective synthesis of cis- and trans-[(NHC(Me))2PtCl2] and [NHC(Me)Pt(cod)Cl][NHC(Me)PtCl3] using NHC(Me)SiCl4.

    PubMed

    Lewis-Alleyne, Lesley C; Bassil, Bassem S; Böttcher, Tobias; Röschenthaler, Gerd-Volker

    2014-11-14

    NHC(Me)SiCl4 (NHC(Me) = 1,3-dimethylimidazolidin-2-ylidene) was used to synthesise novel NHC(Me)-Pt(ii) complexes. An atypical trans-cis isomerisation process was also achieved for [(NHC(Me))2PtCl2], while the synthesis of the unique double-complex salt [(NHC(Me))Pt(cod)Cl] [(NHC(Me))PtCl3] (cod = 1,5-cyclooctadiene) revealed the first-ever N-heterocyclic carbene analogue of the Cossa's salt anion.

  18. Dynamic kinetic asymmetric cross-benzoin additions of β-stereogenic α-keto esters.

    PubMed

    Goodman, C Guy; Johnson, Jeffrey S

    2014-10-22

    The dynamic kinetic resolution of β-halo α-keto esters via an asymmetric cross-benzoin reaction is described. A chiral N-heterocyclic carbene catalyzes the umpolung addition of aldehydes to racemic α-keto esters. The resulting fully substituted β-halo glycolic ester products are obtained with high levels of enantio- and diastereocontrol. The high chemoselectivity observed is a result of greater electrophilicity of the α-keto ester toward the Breslow intermediate. The reaction products are shown to undergo highly diastereoselective substrate-controlled reduction to give highly functionalized stereotriads.

  19. Dynamic Kinetic Asymmetric Cross-Benzoin Additions of β-Stereogenic α-Keto Esters

    PubMed Central

    2015-01-01

    The dynamic kinetic resolution of β-halo α-keto esters via an asymmetric cross-benzoin reaction is described. A chiral N-heterocyclic carbene catalyzes the umpolung addition of aldehydes to racemic α-keto esters. The resulting fully substituted β-halo glycolic ester products are obtained with high levels of enantio- and diastereocontrol. The high chemoselectivity observed is a result of greater electrophilicity of the α-keto ester toward the Breslow intermediate. The reaction products are shown to undergo highly diastereoselective substrate-controlled reduction to give highly functionalized stereotriads. PMID:25299730

  20. Catalytic Activation of Nitrogen Dioxide for Selective Synthesis of Nitroorganics

    DTIC Science & Technology

    2015-01-15

    observed, with C-P and C-C reductive elimination of ancillary phosphine ligands taking place preferentially, though traces of nitroarene are...reductive elimination) as well as some phosphine oxide. Thermolysis of (Ph3P)Pd(IPr)(C6H4CH3)(NO2) gives unusual C–C reductive elimination of the...N-heterocyclic carbene to give the imidazolium salt [CH3C6H4–IPr]NO2. Only in the case of the bis(diphenylphosphino) ferrocene complex [Fe(C5H4PPh2

  1. Oxidation-promoted activation of a ferrocene C-H bond by a rhodium complex.

    PubMed

    Labande, Agnès; Debono, Nathalie; Sournia-Saquet, Alix; Daran, Jean-Claude; Poli, Rinaldo

    2013-05-14

    The oxidation of a rhodium(I) complex containing a ferrocene-based heterodifunctional phosphine N-heterocyclic carbene (NHC) ligand produces a stable, planar chiral rhodium(III) complex with an unexpected C-H activation on ferrocene. The oxidation of rhodium(I) to rhodium(III) may be accomplished by initial oxidation of ferrocene to ferrocenium and subsequent electron transfer from rhodium to ferrocenium. Preliminary catalytic tests showed that the rhodium(III) complex is active for the Grignard-type arylation of 4-nitrobenzaldehyde via C-H activation of 2-phenylpyridine.

  2. C(2) symmetric chiral NHC ligand for asymmetric quaternary carbon constructing copper-catalyzed conjugate addition of grignard reagents to 3-substituted cyclohexenones.

    PubMed

    Matsumoto, Yasumasa; Yamada, Ken-ichi; Tomioka, Kiyoshi

    2008-06-20

    The asymmetric construction of quaternary carbon centers by conjugate addition of Grignard reagents to 3-methyl- and 3-ethylcyclohexenones was realized in a maximum enantioselectivity of 80% by using a C 2 symmetric chiral N-heterocyclic carbene (NHC)-copper catalyst, generated from (4 S,5 S)-1,3-bis(2-methoxyphenyl)-4,5-diphenyl-4,5-dihydro-1 H-imidazol-3-ium tetrafluoroborate and copper(II) triflate. The stereostructures of the NHC-Au complexes were analyzed by X-ray crystallography, which rationalized the good stereocontrolling ability of N-aryl NHCs.

  3. Catalytic SN2'- and Enantioselective Allylic Substitution with a Diborylmethane Reagent and Application in Synthesis.

    PubMed

    Shi, Ying; Hoveyda, Amir H

    2016-03-01

    A catalytic method for the site- and enantioselective addition of commercially available di-B(pin)-methane to allylic phosphates is introduced (pin=pinacolato). Transformations may be facilitated by an NHC-Cu complex (NHC=N-heterocyclic carbene) and products obtained in 63-95 % yield, 88:12 to >98:2 S(N)2'/S(N)2 selectivity, and 85:15-99:1 enantiomeric ratio. The utility of the approach, entailing the involvement of different catalytic cross-coupling processes, is highlighted by its application to the formal synthesis of the cytotoxic natural product rhopaloic acid A. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bimetallic d10 -Metal Complexes of a Bipyridine Substituted N-Heterocyclic Carbene.

    PubMed

    Kaub, Christoph; Lebedkin, Sergei; Li, Alina; Kruppa, Sebastian V; Strebert, Patrick H; Kappes, Manfred M; Riehn, Christoph; Roesky, Peter W

    2018-04-20

    The hybrid ligand 3-(2,2'-bipyridine-6-ylmethyl)-1-mesityl-1H-imidazolylidene (NHC Bipy ) featuring both carbene and N-donor sites, was selectively complexed with various d 10 metal cations in order to examine its coordination behavior with regard to homo and heterometallic structures. Respective silver complexes can be obtained by the silver oxide route and are suitable transmetallation reagents for the synthesis of gold(I) compounds. Starting from the mononuclear complexes [(NHC Bipy )AuCl], [(NHC Bipy )Au(C 6 F 5 )] and [(NHC Bipy ) 2 Au][ClO 4 ], open-chain as well as cyclic heterobimetallic complexes containing Cu + , Ag + , Zn 2+ , Cd 2+ , and Hg 2+ were synthesized. Furthermore, the homobimetallic species [(NHC Bipy ) 2 M 2 ][ClO 4 ] 2 (M=Cu, Ag) were obtained. All bimetallic compounds were fully characterized including single-crystal X-ray analysis. Their photoluminescence (PL) properties were investigated in the solid state at temperatures between 15 and 295 K and compared with those of the mononuclear species. There is a clear difference in PL properties between the open chain and the cyclic heterobimetallic complexes. The latter species show different PL properties, depending on the metals involved. In addition, collision-induced dissociation (CID) experiments were performed on electrosprayed cations of the cyclic heterobimetallic compounds, to compare the metal binding at the carbene and N-donor sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    PubMed Central

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-01-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N∙ (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C∙, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C∙, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals. PMID:26960916

  6. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    NASA Astrophysics Data System (ADS)

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N• (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C•, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C•, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  7. Metal-Diazo Radicals of α-Carbonyl Diazomethanes.

    PubMed

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-10

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [Rh(I)Cl(cod)]2, [Co(II)(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [Rh(I)Cl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N∙ (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C∙, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C∙, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  8. Metal-Free Catalytic Enantioselective C–B Bond Formation: (Pinacolato)boron Conjugate Additions to α,β-Unsaturated Ketones, Esters, Weinreb Amides and Aldehydes Promoted by Chiral N-Heterocyclic Carbenes

    PubMed Central

    Wu, Hao; Radomkit, Suttipol; O’Brien, Jeannette M.; Hoveyda, Amir H.

    2012-01-01

    The first broadly applicable metal-free enantioselective method for boron conjugate addition (BCA) to α,β-unsaturated carbonyls is presented. The C–B bond forming reactions are promoted in the presence of 2.5–7.5 mol % of a readily accessible C1-symmetric chiral imidazolinium salt, which is converted, in situ, to the catalytically active diastereo- and enantiomerically pure N-heterocyclic carbene (NHC) by the common organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu). In addition to the commercially available bis(pinacolato)diboron [B2(pin)2], and in contrast to reactions with the less sterically demanding achiral NHCs, the presence of MeOH is required for high efficiency. Acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, Weinreb amides and aldehydes can serve as suitable substrates; the desired β-boryl carbonyls are isolated in up to 94% yield and >98:2 enantiomer ratio (er). Transformations are often carried out at ambient temperature. In certain cases, such as when the relatively less reactive unsaturated amides are used, elevated temperatures are required (50–66 °C); nonetheless, reactions remain highly enantioselective. The utility of the NHC-catalyzed method is demonstrated through comparison with the alternative Cu-catalyzed protocols; in cases involving a polyfunctional substrate, unique profiles in chemoselectivity are exhibited by the metal-free approach (e.g., conjugate addition vs reaction with an alkyne, allene or aldehyde). PMID:22559866

  9. An efficient synthesis of bis-1,3-(3'-aryl-N-heterocycl-1'-yl)arenes as CCC-NHC pincer ligand precursors.

    PubMed

    Howell, Tyler O; Huckaba, Aron J; Hollis, T Keith

    2014-05-02

    A report that demonstrated an efficient methodology for the arylation of imidazoles has been extended to bis(N-heterocyclic) compounds. Using bis(aryl) iodonium salts provides high-yielding access to CCC-NHC ligand precursors in a single step. Examples of arylation using various iodonium salts are reported herein with an investigation into the factors governing their relative rate of reactivity. The metalation of one of these compounds using Zr(NMe2)4 and its subsequent treatment with [Pt(COD)Cl2] to yield a transmetalated product are reported.

  10. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    PubMed

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dinuclear NHC-palladium complexes containing phosphine spacers: synthesis, X-ray structures and their catalytic activities towards the Hiyama coupling reaction.

    PubMed

    Yang, Jin; Li, Pinhua; Zhang, Yicheng; Wang, Lei

    2014-05-21

    Six dinuclear N-heterocyclic carbene (NHC) palladium complexes, [PdCl2(IMes)]2(μ-dppe) (1), [PdCl2(IPr)]2(μ-dppe) (2), [PdCl2(IMes)]2(μ-dppb) (3), [PdCl2(IPr)]2(μ-dppb) (4), [PdCl2(IMes)]2(μ-dpph) (5), and [PdCl2(IPr)]2(μ-dpph) (6) [IMes = N,N'-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene; IPr = N,N'-bis-(2,6-di(iso-propyl)phenyl)imidazol-2-ylidene; dppe = 1,2-bis(diphenylphosphino)ethane, dppb = 1,4-bis(diphenylphosphino)butane; and dpph = 1,6-bis(diphenylphosphino)hexane], have been synthesized through bridge-cleavage reactions of chloro-bridged dimeric compounds, [Pd(μ-Cl)(Cl)(NHC)]2, with the corresponding diphosphine ligands. The obtained compounds were fully characterized by (1)H NMR, (13)C NMR and (31)P NMR spectroscopy, FT-IR, elemental analysis and single-crystal X-ray crystallography. Moreover, further explorations of the catalytic potential of the dinuclear carbene palladium complexes as catalysts for the Pd-catalyzed transformations have been performed under microwave irradiation conditions, and the complexes exhibited moderate to good catalytic activity in the Hiyama coupling reaction of trimethoxyphenylsilane with aryl chlorides.

  12. General and mild Ni(0)-catalyzed α-arylation of ketones using aryl chlorides.

    PubMed

    Fernández-Salas, José A; Marelli, Enrico; Cordes, David B; Slawin, Alexandra M Z; Nolan, Steven P

    2015-03-02

    A general methodology for the α-arylation of ketones using a nickel catalyst has been developed. The new well-defined [Ni(IPr*)(cin)Cl] (1 c) pre-catalyst showed great efficiency for this transformation, allowing the coupling of a wide range of ketones, including acetophenone derivatives, with various functionalised aryl chlorides. This cinnamyl-based Ni-N-heterocyclic carbene (NHC) complex has demonstrated a different behaviour to previously reported NHC-Ni catalysts. Preliminary mechanistic studies suggest a Ni(0)/Ni(II) catalytic cycle to be at play. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A well-defined Pd hybrid material for the Z-selective semihydrogenation of alkynes characterized at the molecular level by DNP SENS.

    PubMed

    Conley, Matthew P; Drost, Ruben M; Baffert, Mathieu; Gajan, David; Elsevier, Cornelis; Franks, W Trent; Oschkinat, Hartmut; Veyre, Laurent; Zagdoun, Alexandre; Rossini, Aaron; Lelli, Moreno; Lesage, Anne; Casano, Gilles; Ouari, Olivier; Tordo, Paul; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé

    2013-09-09

    Direct evidence of the conformation of a Pd-N heterocyclic carbene (NHC) moiety imbedded in a hybrid material and of the Pd-NHC bond were obtained by dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) at natural abundance in short experimental times (hours). Overall, this silica-based hybrid material containing well-defined Pd-NHC sites in a uniform environment displays high activity and selectivity in the semihydrogenation of alkynes into Z-alkenes (see figure). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Crystal structure of bis-(1,3-di-meth-oxy-imidazolin-2-yl-idene)silver(I) hexa-fluorido-phosphate, N-heterocyclic carbene (NHC) complex.

    PubMed

    Rietzler, Barbara; Laus, Gerhard; Kahlenberg, Volker; Schottenberger, Herwig

    2015-12-01

    The title salt, [Ag(C5H8N2O2)2]PF6, was obtained by deprotonation and metalation of 1,3-di-meth-oxy-imidazolium hexa-fluorido-phosphate using silver(I) oxide in methanol. The C-Ag-C angle in the cation is 178.1 (2)°, and the N-C-N angles are 101.1 (4) and 100.5 (4)°. The meth-oxy groups adopt an anti conformation. In the crystal, anions (A) are sandwiched between cations (C) in a layered arrangement {C…A…C} n stacked along [001]. Within a C…A…C layer, the hexafluoridophosphate anions accept several C-H⋯F hydrogen bonds from the cationic complex.

  15. Ru(II)-Catalyzed Cross-Coupling of Cyclopropenes with Diazo Compounds: Formation of Olefins from Two Different Carbene Precursors.

    PubMed

    Wang, Bo; Yi, Heng; Zhang, Hang; Sun, Tong; Zhang, Yan; Wang, Jianbo

    2018-01-19

    Formal carbene dimerization is a convergent method for the synthesis of alkenes. Herein, we report a Ru(II)-catalyzed carbene dimerization of cyclopropenes and diazo compounds. The yields are up to 97% and the stereoselectivity are up to >20:1. Mechanistically, it has been experimentally demonstrated that the catalyst reacts with cyclopropene first to generate a Ru(II)-carbene species, which is attacked by nucleophilic diazo substrate, followed by dinitrogen extrusion to form the double bond.

  16. Sites of intermolecular crosslinking of fatty acyl chains in phospholipids carrying a photoactivable carbene precursor

    PubMed Central

    Gupta, Chhitar M.; Costello, Catherine E.; Khorana, H. Gobind

    1979-01-01

    Sonicated vesicles of 1-fatty acyl-2-ω-(2-diazo-3,3,3-trifluoropropionoxy) fatty acyl sn-glycero-3-phosphoryl-cholines were shown recently to form intermolecular crosslinks by insertion of the photogenerated carbene into a C—H bond of a neighboring hydrocarbon chain. We now report that photolysis of multilamellar dispersions gives a second series of products in which carbene insertion is accompanied by elimination of a molecule of hydrogen fluoride. The sites of crosslinking in the latter compounds have been studied by mass spectrometry using phospholipids with varying chain lengths of the fatty acyl groups carrying the carbene precursor. The patterns observed show that the point of maximum crosslinking is consistent with the recent conclusion that in phospholipids the sn-2 fatty acyl chain trails the sn-1 chain by 2-4 atoms. Images PMID:16592675

  17. Lipophilicity-dependent ruthenium N-heterocyclic carbene complexes as potential anticancer agents.

    PubMed

    Lv, Gaochao; Guo, Liubin; Qiu, Ling; Yang, Hui; Wang, Tengfei; Liu, Hong; Lin, Jianguo

    2015-04-28

    Five Ru(II)-N-heterocyclic carbenes (NHC) (1-5) were synthesized by reacting the appropriately substituted imidazolium chlorides with Ag2O, forming the NHC-silver chloride in situ followed by transmetalation with dimeric p-cymene ruthenium(II) dichloride. All the complexes were characterized by NMR and ESI-MS, and complex 1 was also characterized by single-crystal X-ray diffraction. The IC50 values of these five complexes were determined by the MTT-based assay on four human cancer cell lines, SKOV-3 (ovarian), PC-3 (prostate), MDA-MB-231 (breast) and EC109 (esophagus). The cytotoxicities of these complexes changed from a moderate effect to a fine one, corresponding to the increasing lipophilicity order of the complex of 2 < 1 < 3 < 4 < 5 (0.91, 0.88, 1.36, 1.85 and 2.62 for 1–5 respectively). Complex 5 showed the most cytotoxicity with the IC50 values 10.3 ± 0.3 μM for SKOV-3, 2.9 ± 0.1 μM for PC-3, 8.2 ± 0.6 μM for MDA-MB-231, 6.4 ± 0.2 μM for EC109 cell lines. Due to the superior cytotoxicity of complex 5 against the PC-3 cell lines, further biological evaluations were carried out to elucidate its action mechanism. The morphologic changes and cell cycle analysis showed that complex 5 can inhibit PC-3 cell lines by inducing cell cycle arrest at the G2/M phase. The DNA binding experiments further demonstrate that complex 5 has a better binding ability for DNA (Kb = 2.2 × 10(6) M(-1)) than complexes 1-4 (3.8 × 10(5), 7.0 × 10(5), 5.7 × 10(5), and 1.9 × 10(5) respectively).

  18. Base-stabilized silaimine and its donor-free dimer derived from the reaction of NHC-supported silylene with SiCl4.

    PubMed

    Cui, Haiyan; Cui, Chunming

    2015-12-21

    Reaction of the N-heterocyclic carbene (NHC)-stabilized silylene ArN(SiMe3)Si(IiPr)Cl (1, Ar = 2,6-iPr2C6H3, IiPr = 1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene) with SiCl4 resulted in the formation of three different products NHC-stabilized dichlorosilaimine ArN=Si(IiPr)Cl2 (2), aminotrichlorosilane ArN(SiMe3)SiCl3 (3) and a silaimine dimer (ArNSiCl2)2 (4) under different conditions. The products can be controlled by reaction conditions. Compound 2 is the first example of a less bulky NHC-supported silaimine via the reaction of a silylene with SiCl4.

  19. A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation

    PubMed Central

    2015-01-01

    For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C–H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The intermolecular approach offers excellent synthetic flexibility because no tethering of the oxidant is required, and its reduced form is not tangled with the product. We were the first research group to develop this strategy, through the use of pyridine/quinolone N-oxides as the external oxidants. In this manner, we can effectively make a C–C triple bond a surrogate of an α-diazo carbonyl moiety in various gold catalyses. With terminal alkynes, we demonstrated that we can efficiently trap exclusively formed terminal carbene centers by internal nucleophiles en route to the formation of cyclic products, including strained oxetan-3-ones and azetidin-3-ones, and by external nucleophiles when a P,N-bidentate ligand is coordinated to gold. With internal alkynes, we generated synthetically useful regioselectivities in the generation of the α-oxo gold carbene moiety, which enables expedient formation of versatile enone products. Other research groups have also applied this strategy en route to versatile synthetic methods. The α-oxo gold carbenes appear to be more electrophilic than their Rh counterpart, which many chemists have focused on in a large array of excellent work on metal carbene chemistry. The ease of accessing the reactive gold carbenes opens up a vast area for developing new synthetic methods that would be distinctively different from the known Rh chemistry and promises to generate a new round of “gold rush”. PMID:24428596

  20. A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation.

    PubMed

    Zhang, Liming

    2014-03-18

    For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C-H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The intermolecular approach offers excellent synthetic flexibility because no tethering of the oxidant is required, and its reduced form is not tangled with the product. We were the first research group to develop this strategy, through the use of pyridine/quinolone N-oxides as the external oxidants. In this manner, we can effectively make a C-C triple bond a surrogate of an α-diazo carbonyl moiety in various gold catalyses. With terminal alkynes, we demonstrated that we can efficiently trap exclusively formed terminal carbene centers by internal nucleophiles en route to the formation of cyclic products, including strained oxetan-3-ones and azetidin-3-ones, and by external nucleophiles when a P,N-bidentate ligand is coordinated to gold. With internal alkynes, we generated synthetically useful regioselectivities in the generation of the α-oxo gold carbene moiety, which enables expedient formation of versatile enone products. Other research groups have also applied this strategy en route to versatile synthetic methods. The α-oxo gold carbenes appear to be more electrophilic than their Rh counterpart, which many chemists have focused on in a large array of excellent work on metal carbene chemistry. The ease of accessing the reactive gold carbenes opens up a vast area for developing new synthetic methods that would be distinctively different from the known Rh chemistry and promises to generate a new round of "gold rush".

  1. Tautomerism and thermal decomposition of tetrazole: high-level ab initio study.

    PubMed

    Kiselev, Vitaly G; Cheblakov, Pavel B; Gritsan, Nina P

    2011-03-10

    The mutual interconversion and decomposition reactions of four tetrazole isomers (1H-TZ, 2H-TZ, 5H-TZ, and an N-heterocyclic carbene 14H) have been studied theoretically using the W1 high-level procedure. Computations allowed resolution of the existing discrepancies in the mechanism and key intermediates of TZ thermolysis. The tautomeric equilibria between 1H-TZ, 2H-TZ, and 14H turned out to play a very important role in the mechanism of thermal decomposition. Although the barriers of monomolecular tautomeric transformations were found to be high (∼50-70 kcal/mol), the concerted double H atom transfer reactions in the H-bonded complexes of TZ tautomers have profoundly lower barriers (∼18-28 kcal/mol). These reactions lead to fast interconversion between 1H-TZ, 2H-TZ, and 14H. The carbene 14H has never been considered before; however, it was predicted to be a key intermediate in the mechanism of thermal decomposition of TZ. For all species considered, the unimolecular reactions of N(2) elimination were predicted to dominate over the elimination of hydrazoic acid. In agreement with existing experimental data, the effective activation energy of thermolysis was calculated to be 36.2 kcal/mol.

  2. Synthesis of P,N-Heterocycles from ω-Amino-H-Phosphinates: Conformationally Restricted α-Amino Acid Analogs

    PubMed Central

    Queffelec, Clémence; Ribière, Patrice; Montchamp, Jean-Luc

    2009-01-01

    P,N-Heterocycles (3-hydroxy-1,3-azaphospholane and 3-hydroxy-1,3-azaphosphorinane-3-oxide) are synthesized in moderate yield from readily available ω-amino-H-phosphinates and aldehydes or ketones via an intramolecular Kabachnik-Fields reaction. The products are conformationally restricted phosphinic analogs of α-amino acids. The multi-gram scale syntheses of the H2N(CH2)nPO2H2 phosphinic precursors (n = 1, 2, 3) and some derivatives are also described. PMID:18855477

  3. On the behaviour of biradicaloid [P(μ-NTer)]2 towards Lewis acids and bases.

    PubMed

    Hinz, Alexander; Schulz, Axel; Villinger, Alexander

    2016-05-07

    The well-known diphosphadiazane-1,3-diyl [P(μ-NTer)]2 (Ter = 2,6-bis(2,4,6-trimethyl-phenyl)-phenyl) was treated with Lewis bases such as N-heterocyclic carbenes and Lewis acids e.g. gold(i) chloride complexes. In the reaction with the Lewis base, fragmentation of the P2N2 framework was observed, yielding a salt of the type [(NHC)2P](+)[(TerN)2P](-) in a clean reaction. The reaction of [P(μ-NTer)]2 with gold(i) chloride afforded 1 : 1 and 1 : 2 complexes. The dinuclear complex [(ClAu)2P(μ-NTer)2P] displays a bridging P atom between both gold centers, as has been observed for P based zwitterions.

  4. Antiplasmodial activities of gold(I) complexes involving functionalized N-heterocyclic carbenes.

    PubMed

    Hemmert, Catherine; Ramadani, Arba Pramundita; Boselli, Luca; Fernández Álvarez, Álvaro; Paloque, Lucie; Augereau, Jean-Michel; Gornitzka, Heinz; Benoit-Vical, Françoise

    2016-07-01

    A series of twenty five molecules, including imidazolium salts functionalized by N-, O- or S-containing groups and their corresponding cationic, neutral or anionic gold(I) complexes were evaluated on Plasmodium falciparum in vitro and then on Vero cells to determine their selectivity. Among them, eight new compounds were synthesized and fully characterized by spectroscopic methods. The X-ray structures of three gold(I) complexes are presented. Except one complex (18), all the cationic gold(I) complexes show potent antiplasmodial activity with IC50 in the micro- and submicromolar range, correlated with their lipophilicity. Structure-activity relationships enable to evidence a lead-complex (21) displaying a good activity (IC50=210nM) close to the value obtained with chloroquine (IC50=514nM) and a weak cytotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Easy access to silicon(0) and silicon(II) compounds.

    PubMed

    Mondal, Kartik Chandra; Samuel, Prinson P; Tretiakov, Mykyta; Singh, Amit Pratap; Roesky, Herbert W; Stückl, A Claudia; Niepötter, Benedikt; Carl, Elena; Wolf, Hilke; Herbst-Irmer, Regine; Stalke, Dietmar

    2013-04-15

    Two different synthetic methodologies of silicon dihalide bridged biradicals of the general formula (L(n)•)2SiX2 (n = 1, 2) have been developed. First, the metathesis reaction between NHC:SiX2 and L(n): (L(n): = cyclic akyl(amino) carbene in a 1:3 molar ratio leads to the products 2 (n = 1, X = Cl), 4 (n = 2, X = Cl), 6 (n = 1, X = Br), and 7 (n = 2, X = Br). These reactions also produce coupled NHCs (3, 5) under C-C bond formation. The formation of the coupled NHCs (L(m) = cyclic alkyl(amino) carbene substituted N-heterocyclic carbene; m = 3, n = 1 (3) and m = 4, n =2 (5)) is faster during the metathesis reaction between NHC:SiBr2 and L(n): when compared with that of NHC:SiCl2. Second, the reaction of L(1):SiCl4 (8) (L(1): =:C(CH2)(CMe2)2N-2,6-iPr2C6H3) with a non-nucleophilic base LiN(iPr)2 in a 1:1 molar ratio shows an unprecedented methodology for the synthesis of the biradical (L(1)•)2SiCl2 (2). The blue blocks of silicon dichloride bridged biradicals (2, 4) are stable for more than six months under an inert atmosphere and in air for one week. Compounds 2 and 4 melt in the temperature range of 185 to 195 °C. The dibromide (6, 7) analogue is more prone to decomposition in the solution but comparatively more stable in the solid state than in the solution. Decomposition of the products has been observed in the UV-vis spectra. Moreover, compounds 2 and 4 were further converted to stable singlet biradicaloid dicarbene-coordinated (L(n):)2Si(0) (n = 1 (9), 2 (10)) under KC8 reduction. Compounds 2 and 4 were also reduced to dehalogenated products 9 and 10, respectively when treated with RLi (R = Ph, Me, tBu). Cyclic voltametry measurements show that 10 can irreversibly undergo both one electron oxidation and reduction.

  6. The Twentieth International Symposium on Molten Salts and Ionic Liquids

    DTIC Science & Technology

    2016-11-29

    Heterocyclic Carbene Involved?" by Hyung Kim "Carbon Dioxide Absorption Behavior and Cabronate Ion Transport of Lithium Orthosilicate/Molten Carbonate...K. Gemmell, K. Johnson, A. East 575 Lithium Ion Conduction in Single Lithium Perfluorosulfonylamides K. Kubota, H. Matsumoto 585...energy applications (e.g., batteries , fuel cells, semiconductors, photovoltaics, and phase change energy storage); (3) rare earth and nuclear chemistry

  7. Heterocycles Based on Group III, IV, and V Elements, Precursors for Novel Glasses and Ceramics

    DTIC Science & Technology

    1990-08-01

    OF TABLES v LIST OF FIGURES vi 1. ABSTRACT 1 2. INTRODUCTION 3 3. RESULTS AND DISCUSSION 5 3.1 Synthesis and Thermolysis of Aluminum...Chloride.Hexamethyldisilazane Adduct 5 3.2 Synthesis and Reactions of Bis(trimethylsilyl)- aminoaluminum Compounds 11 3.3 Reactions of Tris[bis(trimethylsilyl)amino...Et3N.C12AIN(SiMe3 )B(NH2 )NHSiMe3 , a processible precursor to AlN.BN ceramic. Attempts at synthesis of other AlN.BN precursors and AINP systems were

  8. Iridium-Catalysed ortho-Directed Deuterium Labelling of Aromatic Esters--An Experimental and Theoretical Study on Directing Group Chemoselectivity.

    PubMed

    Devlin, Jennifer; Kerr, William J; Lindsay, David M; McCabe, Timothy J D; Reid, Marc; Tuttle, Tell

    2015-06-25

    Herein we report a combined experimental and theoretical study on the deuterium labelling of benzoate ester derivatives, utilizing our developed iridium N-heterocyclic carbene/phosphine catalysts. A range of benzoate esters were screened, including derivatives with electron-donating and -withdrawing groups in the para- position. The substrate scope, in terms of the alkoxy group, was studied and the nature of the catalyst counter-ion was shown to have a profound effect on the efficiency of isotope exchange. Finally, the observed chemoselectivity was rationalized by rate studies and theoretical calculations, and this insight was applied to the selective labelling of benzoate esters bearing a second directing group.

  9. Template Synthesis, Metalation, and Self-Assembly of Protic Gold(I)/(NHC)2 Tectons Driven by Metallophilic Interactions.

    PubMed

    Ruiz, Javier; García, Lucía; Sol, Daniel; Vivanco, Marilín

    2016-07-11

    A new protocol for the synthesis of protic bis(N-heterocyclic carbene) complexes of Au(I) by a stepwise metal-controlled coupling of isocyanide and propargylamine is described. They are used as tectons for the construction of supramolecular architectures through metalation and self-assembly. Notably a unique polymeric chain of Cu(I) with alternate Au(I) /bis(imidazolate) bridging scaffolds and strong unsupported Cu(I) -Cu(I) interactions has been generated, as well as a 28-metal-atoms cluster containing a nanopiece of Cu2 O trapped by peripheral Au(I) /bis(imidazolate) moieties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preclinical anti-cancer activity and multiple mechanisms of action of a cationic silver complex bearing N-heterocyclic carbene ligands.

    PubMed

    Allison, Simon J; Sadiq, Maria; Baronou, Efstathia; Cooper, Patricia A; Dunnill, Chris; Georgopoulos, Nikolaos T; Latif, Ayşe; Shepherd, Samantha; Shnyder, Steve D; Stratford, Ian J; Wheelhouse, Richard T; Willans, Charlotte E; Phillips, Roger M

    2017-09-10

    Organometallic complexes offer the prospect of targeting multiple pathways that are important in cancer biology. Here, the preclinical activity and mechanism(s) of action of a silver-bis(N-heterocyclic carbine) complex (Ag8) were evaluated. Ag8 induced DNA damage via several mechanisms including topoisomerase I/II and thioredoxin reductase inhibition and induction of reactive oxygen species. DNA damage induction was consistent with cytotoxicity observed against proliferating cells and Ag8 induced cell death by apoptosis. Ag8 also inhibited DNA repair enzyme PARP1, showed preferential activity against cisplatin resistant A2780 cells and potentiated the activity of temozolomide. Ag8 was substantially less active against non-proliferating non-cancer cells and selectively inhibited glycolysis in cancer cells. Ag8 also induced significant anti-tumour effects against cells implanted intraperitoneally in hollow fibres but lacked activity against hollow fibres implanted subcutaneously. Thus, Ag8 targets multiple pathways of importance in cancer biology, is less active against non-cancer cells and shows activity in vivo in a loco-regional setting. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. gem-Difluoroolefination of Diazo Compounds with TMSCF3 or TMSCF2Br: Transition-Metal-Free Cross-Coupling of Two Carbene Precursors.

    PubMed

    Hu, Mingyou; Ni, Chuanfa; Li, Lingchun; Han, Yongxin; Hu, Jinbo

    2015-11-18

    A new olefination protocol for transition-metal-free cross-coupling of two carbene fragments arising from two different sources, namely, a nonfluorinated carbene fragment resulting from a diazo compound and a difluorocarbene fragment derived from Ruppert-Prakash reagent (TMSCF3) or TMSCF2Br, has been developed. This gem-difluoroolefination proceeds through the direct nucleophilic addition of diazo compounds to difluorocarbene followed by elimination of N2. Compared to previously reported Cu-catalyzed gem-difluoroolefination of diazo compounds with TMSCF3, which possesses a narrow substrate scope due to a demanding requirement on the reactivity of diazo compounds and in-situ-generated CuCF3, this transition-metal-free protocol affords a general and efficient approach to various disubstituted 1,1-difluoroalkenes, including difluoroacrylates, diaryldifluoroolefins, as well as arylalkyldifluoroolefins. In view of the ready availability of diazo compounds and difluorocarbene reagents and versatile transformations of 1,1-difluoroalkenes, this new gem-difluoroolefination method is expected to find wide applications in organic synthesis.

  12. Redox-Active Bis(phenolate) N-Heterocyclic Carbene [OCO] Pincer Ligands Support Cobalt Electron Transfer Series Spanning Four Oxidation States.

    PubMed

    Harris, Caleb F; Bayless, Michael B; van Leest, Nicolaas P; Bruch, Quinton J; Livesay, Brooke N; Bacsa, John; Hardcastle, Kenneth I; Shores, Matthew P; de Bruin, Bas; Soper, Jake D

    2017-10-16

    A new family of low-coordinate Co complexes supported by three redox-noninnocent tridentate [OCO] pincer-type bis(phenolate) N-heterocyclic carbene (NHC) ligands are described. Combined experimental and computational data suggest that the charge-neutral four-coordinate complexes are best formulated as Co(II) centers bound to closed-shell [OCO] 2- dianions, of the general formula [(OCO)Co II L] (where L is a solvent-derived MeCN or THF). Cyclic voltammograms of the [(OCO)Co II L] complexes reveal three oxidations accessible at potentials below 1.2 V vs Fc + /Fc, corresponding to generation of formally Co(V) species, but the true physical/spectroscopic oxidation states are much lower. Chemical oxidations afford the mono- and dications of the imidazoline NHC-derived complex, which were examined by computational and magnetic and spectroscopic methods, including single-crystal X-ray diffraction. The metal and ligand oxidation states of the monocationic complex are ambiguous; data are consistent with formulation as either [( S OCO)Co III (THF) 2 ] + containing a closed-shell [ S OCO] 2- diphenolate ligand bound to a S = 1 Co(III) center, or [( S OCO • )Co II (THF) 2 ] + with a low-spin Co(II) ion ferromagnetically coupled to monoanionic [ S OCO • ] - containing a single unpaired electron distributed across the [OCO] framework. The dication is best described as [( S OCO 0 )Co II (THF) 3 ] 2+ , with a single unpaired electron localized on the d 7 Co(II) center and a doubly oxidized, charge-neutral, closed-shell S OCO 0 ligand. The combined data provide for the first time unequivocal and structural evidence for [OCO] ligand redox activity. Notably, varying the degree of unsaturation in the NHC backbone shifts the ligand-based oxidation potentials by up to 400 mV. The possible chemical origins of this unexpected shift, along with the potential utility of the [OCO] pincer ligands for base-metal-mediated organometallic coupling catalysis, are discussed.

  13. N-heterocycle carbene (NHC)-ligated cyclopalladated N,N-dimethylbenzylamine: a highly active, practical and versatile catalyst for the Heck-Mizoroki reaction.

    PubMed

    Peh, Guang-Rong; Kantchev, Eric Assen B; Zhang, Chi; Ying, Jackie Y

    2009-05-21

    The wide dissemination of catalytic protocols in academic and industrial laboratories is facilitated by the development of catalysts that are not only highly active but also user-friendly, stable to moisture, air and long term storage and easy to prepare on a large scale. Herein we describe a protocol for the Heck-Mizoroki reaction mediated by cyclopalladated N,N-dimethylbenzylamine (dmba) ligated with a N-heterocyclic carbene, 1,3-bis(mesityl)imidazol-2-ylidene (IMes), that fulfils these criteria. The precatalyst can be synthesized on approximately 100 g scale by a tri-component, sequential, one-pot reaction of N,N-dimethylbenzylamine, PdCl2 and IMes.HCl in refluxing acetonitrile in air in the presence of K2CO3. This single component catalyst is stable to air, moisture and long term storage and can be conveniently dispensed as a stock solution in NMP. It mediates the Heck-Mizoroki reaction of a range of aryl- and heteroaryl bromides in reagent grade NMP at the 0.1-2 mol% range without the need for rigorous anhydrous techniques or a glovebox, and is active even in air. The catalyst is capable of achieving very high levels of catalytic activity (TON of up to 5.22 x 10(5)) for the coupling of a deactivated arylbromide, p-bromoanisole, with tBu acrylate as a benchmark substrate pair. A wide range of aryl bromides, iodides and, for the first time with a NHC-Pd catalyst, a triflate was coupled with diverse acrylate derivatives (nitrile, tert-butyl ester and amides) and styrene derivatives. The use of excess (>2 equiv.) of the aryl bromide and tert-butyl acrylate leads to mixture of tert-butyl beta,beta-diarylacrylate and tert-butyl cinnamate derivatives depending on the substitution pattern of the aryl bromide. Electron rich m- and p-substituted arylbromides give the diarylated products exclusively, whereas electron-poor aryl bromides give predominantly mono-arylated products. For o-substituted aryl bromides, no doubly arylated products could be obtained under any conditions. Overall, the active catalyst (IMes-Pd) shows higher activity with electron-rich aryl halides, a marked difference compared with the more commonly used phosphane-Pd or non-ligated Pd catalysts.

  14. Azido, triazolyl, and alkynyl complexes of gold(I): syntheses, structures, and ligand effects.

    PubMed

    Robilotto, Thomas J; Deligonul, Nihal; Updegraff, James B; Gray, Thomas G

    2013-08-19

    Gold(I) triazolyl complexes are prepared in [3 + 2] cycloaddition reactions of (tertiary phosphine)gold(I) azides with terminal alkynes. Seven such triazolyl complexes, not previously prepared, are described. Reducible functional groups are accommodated. In addition, two new (N-heterocyclic carbene)gold(I) azides and two new gold(I) alkynyls are described. Eight complexes are crystallographically authenticated; aurophilic interactions appear in one structure only. The packing diagrams of gold(I) triazolyls all show intermolecular hydrogen bonding between N-1 of one molecule and N-3 of a neighbor. This hydrogen bonding permeates the crystal lattice. Density-functional theory calculations of (triphenylphosphine)gold(I) triazolyls and the corresponding alkynyls indicate that the triazolyl is a stronger trans-influencer than is the alkynyl, but the alkynyl is more electron-releasing. These results suggest that trans-influences in two-coordinate gold(I) complexes can be more than a simple matter of ligand donicity.

  15. Formation and Human Risk of Carcinogenic Heterocyclic Amines Formed from Natural Precursors in Meat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knize, M G; Felton, J S

    2004-11-22

    A group of heterocyclic amines that are mutagens and rodent carcinogens form when meat is cooked to medium and well-done states. The precursors of these compounds are natural meat components: creatinine, amino acids and sugars. Defined model systems of dry-heated precursors mimic the amounts and proportions of heterocyclic amines found in meat. Results from model systems and cooking experiments suggest ways to reduce their formation and, thus, to reduce human intake. Human cancer epidemiology studies related to consumption of well-done meat products are listed and compared.

  16. Facile synthesis of highly substituted 3-aminofurans from thiazolium salts, aldehydes, and dimethyl acetylenedicarboxylate.

    PubMed

    Ma, Cheng; Ding, Hanfeng; Wu, Guangming; Yang, Yewei

    2005-10-28

    [reaction: see text] A facile preparation of 3-aminofuran derivatives via multicomponent reactions of thiazole carbenes, aldehydes, and dimethyl acetylenedicarboxylate (DMAD) is reported. In this process, the thiazole carbenes, generated in situ from thiazolium salts, reacted with aldehydes and DMAD at -78 to 0 degree C in CH(2)Cl(2) to afford the substituted furans in moderate to good yields. Eight substituted thiazolium salts were employed as carbene precursors in the reaction. Besides aryl aldehydes, alpha,beta-unsaturated aldehydes, aliphatic aldehydes, and arenedial were also investigated and found to be applicable to this reaction.

  17. Isovanillin derived N-(un)substituted hydroxylamines possessing an ortho-allylic group: valuable precursors to bioactive N-heterocycles.

    PubMed

    Dulla, Balakrishna; Tangellamudi, Neelima D; Balasubramanian, Sridhar; Yellanki, Swapna; Medishetti, Raghavender; Kumar Banote, Rakesh; Hari Chaudhari, Girish; Kulkarni, Pushkar; Iqbal, Javed; Reiser, Oliver; Pal, Manojit

    2014-04-28

    The intramolecular 1,3-dipolar cycloaddition of isovanillin derived N-aryl hydroxylamines possessing ortho-allylic dipolarophiles affords novel benzo analogues of tricyclic isoxazolidines that can be readily transformed into functionalized lactams, γ-aminoalcohols and oxazepines. The corresponding N-unsubstituted hydroxylamines give rise to tetrahydroisoquinolines. Anxiogenic properties of these compounds are tested in zebra fish.

  18. Water-Soluble N-Heterocyclic Carbene-Protected Gold Nanoparticles: Size-Controlled Synthesis, Stability, and Optical Properties.

    PubMed

    Salorinne, Kirsi; Man, Renee W Y; Li, Chien-Hung; Taki, Masayasu; Nambo, Masakazu; Crudden, Cathleen M

    2017-05-22

    NHC-Au I complexes were used to prepare stable, water-soluble, NHC-protected gold nanoparticles. The water-soluble, charged nature of the nanoparticles permitted analysis by polyacrylamide gel electrophoresis (PAGE), which showed that the nanoparticles were highly monodisperse, with tunable core diameters between 2.0 and 3.3 nm depending on the synthesis conditions. Temporal, thermal, and chemical stability of the nanoparticles were determined to be high. Treatment with thiols caused etching of the particles after 24 h; however larger plasmonic particles showed greater resistance to thiol treatment. These water-soluble, bio-compatible nanoparticles are promising candidates for use in photoacoustic imaging, with even the smallest nanoparticles giving reliable photoacoustic signals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Exploring the Transphobia Effect on Heteroleptic NHC Cycloplatinated Complexes.

    PubMed

    Fuertes, Sara; Chueca, Andrés J; Sicilia, Violeta

    2015-10-19

    The synthesis of 1-(4-cyanophenyl)-1H-imidazol (1) has been carried out by an improved method. Then its corresponding imidazolium iodide salt, 2, has been used to prepare the N-heterocyclic carbene (NHC) cycloplatinated compound [{Pt(μ-Cl)(C^C*)}2] (4) (HC^C*-κC* = 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene) following a step-by-step protocol. The intermediate complex [PtCl(η(3)-2-Me-C3H4) (HC^C*-κC*)] (3) has also been isolated and characterized. Using 4 as precursor, several heteroleptic complexes of stoicheometry [PtCl(C^C*)L] (L = PPh3 (5), pyridine (py, 6), 2,6-dimethylphenyl isocyanide (CNXyl, 7), and 2-mercapto-1-methylimidazole (MMI, 8)) and [Pt(C^C*)LL']PF6 (L = PPh3, L' = py (9), CNXyl (10), and MMI (11)) have been synthesized. Complexes 6-8 were obtained as a mixture of cis- and trans-(C*,L) isomers, while trans-(C*,L) isomer was the only one observed for complexes 5 and 9-11. Their geometries have been discussed in terms of the degree of transphobia (T) of pairs of trans ligands and supported by theoretical calculations. The trans influence of the two σ Pt-C bonds present in these molecules, Pt-C(Ar) and Pt-C*(NHC), has been compared from the J(Pt-P) values observed in the new complex [Pt(C^C*)(dppe)]PF6 (dppe = 1, 2-bis(diphenylphosphino)ethane, 12).

  20. A quantitative approach to nucleophilic organocatalysis

    PubMed Central

    Lakhdar, Sami; Maji, Biplab; Ofial, Armin R

    2012-01-01

    Summary The key steps in most organocatalytic cyclizations are the reactions of electrophiles with nucleophiles. Their rates can be calculated by the linear free-energy relationship log k(20 °C) = s N(E + N), where electrophiles are characterized by one parameter (E) and nucleophiles are characterized by the solvent-dependent nucleophilicity (N) and sensitivity (s N) parameters. Electrophilicity parameters in the range –10 < E < –5 were determined for iminium ions derived from cinnamaldehyde and common organocatalysts, such as pyrrolidines and imidazolidinones, by studying the rates of their reactions with reference nucleophiles. Iminium activated reactions of α,β-unsaturated aldehydes can, therefore, be expected to proceed with nucleophiles of 2 < N < 14, because such nucleophiles are strong enough to react with iminium ions but weak enough not to react with their precursor aldehydes. With the N parameters of enamines derived from phenylacetaldehyde and MacMillan’s imidazolidinones one can rationalize why only strong electrophiles, such as stabilized carbenium ions (–8 < E < –2) or hexachlorocyclohexadienone (E = –6.75), are suitable electrophiles for enamine activated reactions with imidazolidinones. Several mechanistic controversies concerning iminium and enamine activated reactions could thus be settled by studying the reactivities of independently synthesized intermediates. Kinetic investigations of the reactions of N-heterocyclic carbenes (NHCs) with benzhydrylium ions showed that they have similar nucleophilicities to common organocatalysts (e.g., PPh3, DMAP, DABCO) but are much stronger (100–200 kJ mol–1) Lewis bases. While structurally analogous imidazolylidenes and imidazolidinylidenes have comparable nucleophilicities and Lewis basicities, the corresponding deoxy Breslow intermediates differ dramatically in reactivity. The thousand-fold higher nucleophilicity of 2-benzylidene-imidazoline relative to 2-benzylidene-imidazolidine is explained by the gain of aromaticity during electrophilic additions to the imidazoline derivatives. O-Methylated Breslow intermediates are a hundred-fold less nucleophilic than deoxy Breslow intermediates. PMID:23019481

  1. Synthesis of Backfunctionalized Imidazolinium Salts and NHC Carbene Complexes

    DTIC Science & Technology

    2017-04-02

    at American Chemical Society National Meeting; San Francisco, CA, USA (02 April 2017) Prepared in collaboration with California Institute of...AFRL – Tenant of Edwards AFB since late ‘50s – Full scale testing of the Atlas rockets (Gemini missions) – Initial testing of the F-1 engine (Apollo...Force has an interest in NHC carbene precursors for a variety applications – Ionic liquid propellants and additives – Ligands for Supercritical Chemical

  2. Discovery of a widely distributed toxin biosynthetic gene cluster

    PubMed Central

    Lee, Shaun W.; Mitchell, Douglas A.; Markley, Andrew L.; Hensler, Mary E.; Gonzalez, David; Wohlrab, Aaron; Dorrestein, Pieter C.; Nizet, Victor; Dixon, Jack E.

    2008-01-01

    Bacteriocins represent a large family of ribosomally produced peptide antibiotics. Here we describe the discovery of a widely conserved biosynthetic gene cluster for the synthesis of thiazole and oxazole heterocycles on ribosomally produced peptides. These clusters encode a toxin precursor and all necessary proteins for toxin maturation and export. Using the toxin precursor peptide and heterocycle-forming synthetase proteins from the human pathogen Streptococcus pyogenes, we demonstrate the in vitro reconstitution of streptolysin S activity. We provide evidence that the synthetase enzymes, as predicted from our bioinformatics analysis, introduce heterocycles onto precursor peptides, thereby providing molecular insight into the chemical structure of streptolysin S. Furthermore, our studies reveal that the synthetase exhibits relaxed substrate specificity and modifies toxin precursors from both related and distant species. Given our findings, it is likely that the discovery of similar peptidic toxins will rapidly expand to existing and emerging genomes. PMID:18375757

  3. Physical Properties and CO2 Reaction Pathway of 1-Ethyl-3-Methylimidazolium Ionic Liquids with Aprotic Heterocyclic Anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, S; DeSilva, MA; Brennecke, JF

    2014-12-25

    Ionic liquids (ILs) with aprotic heterocyclic anions (AHA) are attractive candidates for CO2 capture technologies. In this study, a series of AHA ILs with 1-ethyl-3-methylimidazolium ([emim](+)) cations were synthesized, and their physical properties (density, viscosity, and ionic conductivity) were measured. In addition, CO2 solubility in each IL was determined at room temperature using a volumetric method at pressures between 0 and 1 bar. The AHAs are basic anions that are capable of reacting stoichiometrically with CO2 to form carbamate species. An interesting CO2 uptake isotherm behavior was observed, and this may be attributed to a parallel, equilibrium proton exchange processmore » between the imidazolium cation and the basic AHA in the presence of CO2, followed by the formation of "transient" carbene species that react rapidly with CO2. The presence of the imidazolium-carboxylate species and carbamate anion species was verified using H-1 and C-13 NMR spectroscopy. While the reaction between CO2 and the proposed transient carbene resulted in cation-CO2 binding that is stronger than the anion-CO2 reaction, the reactions of the imidazolium AHA ILs were fully reversible upon regeneration at 80 degrees C with nitrogen purging. The presence of water decreased the CO2 uptake due to the inhibiting effect of the neutral species (protonated form of AHA) that is formed.« less

  4. Coordination behavior of bis-phenolate saturated and unsaturated N-heterocyclic carbene ligands to zirconium: reactivity and activity in the copolymerization of cyclohexene oxide with CO2.

    PubMed

    Lalrempuia, Ralte; Breivik, Frida; Törnroos, Karl W; Le Roux, Erwan

    2017-06-27

    Tetravalent zirconium complexes supported by tridentate bis-phenolate imidazolidin-2-ylidene (L1), imidazol-2-ylidene (L2) and benzimidazol-2-ylidene (L3) NHC ligands were synthesized and evaluated as precursors for the copolymerization of cyclohexene oxide (CHO) with CO 2 . While the reactivity of the imidazolidinium [H 3 L1] chloride salt with Zr(OiPr) 4 (HOiPr), and subsequent ligand exchanges with either (CH 3 ) 3 SiCl or LiOiPr lead to a series of heteroleptic compounds (κ 3 -O,C,O-L1)Zr(X) 2 (THF) (X = Cl, OiPr), both imidazolium [H 3 L2] and benzimidazolium [H 3 L3] chloride salts give a mixture of homoleptic (κ 3 -O,C,O-NHC) 2 Zr and zwitterionic (κ 2 -O,O-HL)ZrCl 2 (OiPr) compounds along with traces or the absence of the heteroleptic intermediate (κ 3 -O,C,O-NHC)Zr(Cl)(OiPr)(THF). Such dissimilar reactivity between the unsaturated and saturated NHC ligands is predominantly ascribed to the increased acidity of azolium salts along with the π-donor strength of the C carbene in L2 and L3-Zr moieties. The reactivity with the more acidic azolium salts (H 3 L2/3) and the destabilized Zr-X trans to NHC carbene bond results in a significant increase in the amount of homoleptic compounds generating HCl. The released HCl reacts preferentially with the heteroleptic intermediates having non-planar NHC ligands (i.e. L2/3) promoting the formation of zwitterionic complexes. The in situ deprotonation of the isolated zwitterionic (κ 2 -O,O-HL3)ZrCl 2 (OiPr) compound by using Ag 2 O gives the homoleptic complex as the major component along with a bimetallic hydroxo-bridged [(κ 3 -O,C,O-L3)Zr(μ-OH)(OiPr)] 2 compound. Of particular interest is that only the heteroleptic NHC-Zr(iv) complexes were identified to be active and highly selective towards the copolymerization of CHO with CO 2 independently of the co-catalysts used (both anionic and neutral) under mild conditions (P CO 2 < 1 bar, T = 60 °C), and gave atactic and completely alternating copolymers in a controlled manner (M w /M n ≈ 1.3-1.8). In contrast, the isolated homoleptic, zwitterionic and bimetallic zirconium species were found to be inactive under similar reaction conditions. Although the activity found for NHC-Zr(iv) complexes is nearly of the same order of magnitude as that of the NHC-Ti(iv) analogues, these results are the first examples of tetravalent zirconium complexes achieving high selectivity (99% in PCHC) in the catalyzed copolymerization of CHO with CO 2 .

  5. Comparative reactivity of different types of stable cyclic and acyclic mono- and diamino carbenes with simple organic substrates.

    PubMed

    Martin, David; Canac, Yves; Lavallo, Vincent; Bertrand, Guy

    2014-04-02

    A series of stable carbenes, featuring a broad range of electronic properties, were reacted with simple organic substrates. The N,N-dimesityl imidazolylidene (NHC) does not react with isocyanides, whereas anti-Bredt di(amino)carbene (pyr-NHC), cyclic (alkyl)(amino)carbene (CAAC), acyclic di(amino)carbene (ADAC), and acyclic (alkyl)(amino)carbene (AAAC) give rise to the corresponding ketenimines. NHCs are known to promote the benzoin condensation, and we found that the CAAC, pyr-NHC, and ADAC react with benzaldehyde to give the ketone tautomer of the Breslow intermediate, whereas the AAAC first gives the corresponding epoxide and ultimately the Breslow intermediate, which can be isolated. Addition of excess benzaldehyde to the latter does not lead to benzoin but to a stable 1,3-dioxolane. Depending on the electronic properties of carbenes, different products are also obtained with methyl acrylate as a substrate. The critical role of the carbene electrophilicity on the outcome of reactions is discussed.

  6. Developing effective electronic-only coupled-cluster and Møller-Plesset perturbation theories for the muonic molecules.

    PubMed

    Goli, Mohammad; Shahbazian, Shant

    2018-06-20

    Recently we have proposed an effective Hartree-Fock (EHF) theory for the electrons of the muonic molecules that is formally equivalent to the HF theory within the context of the nuclear-electronic orbital theory [Phys. Chem. Chem. Phys., 2018, 20, 4466]. In the present report we extend the muon-specific effective electronic structure theory beyond the EHF level by introducing the effective second order Møller-Plesset perturbation theory (EMP2) and the effective coupled-cluster theory at single and double excitation levels (ECCSD) as well as an improved version including perturbative triple excitations (ECCSD(T)). These theories incorporate electron-electron correlation into the effective paradigm and through their computational implementation, a diverse set of small muonic species is considered as a benchmark at these post-EHF levels. A comparative computational study on this set demonstrates that the muonic bond length is in general non-negligibly longer than corresponding hydrogenic analogs. Next, the developed post-EHF theories are applied for the muoniated N-heterocyclic carbene/silylene/germylene and the muoniated triazolium cation revealing the relative stability of the sticking sites of the muon in each species. The computational results, in line with previously reported experimental data demonstrate that the muon generally prefers to attach to the divalent atom with carbeneic nature. A detailed comparison of these muonic adducts with the corresponding hydrogenic adducts reveals subtle differences that have already been overlooked.

  7. Activating catalysts with mechanical force.

    PubMed

    Piermattei, Alessio; Karthikeyan, S; Sijbesma, Rint P

    2009-05-01

    Homogeneously catalysed reactions can be 'switched on' by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to activate latent catalysts by mechanically breaking bonds between a metal and one of its ligands. We have found that silver(I) complexes of polymer-functionalized N-heterocyclic carbenes, which are latent organocatalysts, catalyse a transesterification reaction when exposed to ultrasound in solution. Furthermore, ultrasonic activation of a ruthenium biscarbene complex with appended polymer chains results in catalysis of olefin metathesis reactions. In each case, the catalytic activity results from ligand dissociation, brought about by transfer of mechanical forces from the polymeric substituents to the coordination bond. Mechanochemical catalyst activation has potential applications in transduction and amplification of mechanical signals, and mechanically initiated polymerizations hold promise as a novel repair mechanism in self-healing materials.

  8. NHC-catalysed benzoin condensation - is it all down to the Breslow intermediate?

    PubMed

    Rehbein, Julia; Ruser, Stephanie-M; Phan, Jenny

    2015-10-01

    The Breslow catalytic cycle describing the benzoin condensation promoted by N-heterocyclic carbenes (NHC) as proposed in the late 1950s has since then been tried by generations of physical organic chemists. Emphasis has been laid on proofing the existence of an enaminol like structure (Breslow intermediate) that explains the observed umpolung of an otherwise electrophilic aldehyde. The present study is not focusing on spectroscopic elucidation of a thiazolydene based Breslow intermediate but rather tries to clarify if this key-intermediate is indeed directly linked with the product side of the overall reaction. The here presented EPR-spectroscopic and computational data provide a fundamentally different view on how the benzoin condensation may proceed: a radical pair could be identified as a second key-intermediate that is derived from the Breslow-intermediate via an SET process. These results highlight the close relationship to the Cannizarro reaction and oxidative transformations of aldehydes under NHC catalysis.

  9. Origin of chemoselectivity in N-heterocyclic carbene catalyzed cross-benzoin reactions: DFT and experimental insights.

    PubMed

    Langdon, Steven M; Legault, Claude Y; Gravel, Michel

    2015-04-03

    An exploration into the origin of chemoselectivity in the NHC-catalyzed cross-benzoin reaction reveals several key factors governing the preferred pathway. In the first computational study to explore the cross-benzoin reaction, a piperidinone-derived triazolium catalyst produces kinetically controlled chemoselectivity. This is supported by (1)H NMR studies as well as a series of crossover experiments. Major contributors include the rapid and preferential formation of an NHC adduct with alkyl aldehydes, a rate-limiting carbon-carbon bond formation step benefiting from a stabilizing π-stacking/π-cation interaction, and steric penalties paid by competing pathways. The energy profile for the analogous pyrrolidinone-derived catalyst was found to be remarkably similar, despite experimental data showing that it is less chemoselective. The chemoselectivity could not be improved through kinetic control; however, equilibrating conditions show substantial preference for the same cross-benzoin product kinetically favored by the piperidinone-derived catalyst.

  10. Asymmetric catalytic cascade reactions for constructing diverse scaffolds and complex molecules.

    PubMed

    Wang, Yao; Lu, Hong; Xu, Peng-Fei

    2015-07-21

    With the increasing concerns about chemical pollution and sustainability of resources, among the significant challenges facing synthetic chemists are the development and application of elegant and efficient methods that enable the concise synthesis of natural products, drugs, and related compounds in a step-, atom- and redox-economic manner. One of the most effective ways to reach this goal is to implement reaction cascades that allow multiple bond-forming events to occur in a single vessel. This Account documents our progress on the rational design and strategic application of asymmetric catalytic cascade reactions in constructing diverse scaffolds and synthesizing complex chiral molecules. Our research is aimed at developing robust cascade reactions for the systematic synthesis of a range of interesting molecules that contain structural motifs prevalent in natural products, pharmaceuticals, and biological probes. The strategies employed to achieve this goal can be classified into three categories: bifunctional base/Brønsted acid catalysis, covalent aminocatalysis/N-heterocyclic carbene catalysis, and asymmetric organocatalytic relay cascades. By the use of rationally designed substrates with properly reactive sites, chiral oxindole, chroman, tetrahydroquinoline, tetrahydrothiophene, and cyclohexane scaffolds were successfully assembled under bifunctional base/Brønsted acid catalysis from simple and readily available substances such as imines and nitroolefins. We found that some of these reactions are highly efficient since catalyst loadings as low as 1 mol % can promote the multistep sequences affording complex architectures with high stereoselectivities and yields. Furthermore, one of the bifunctional base/Brønsted acid-catalyzed cascade reactions for the synthesis of chiral cyclohexanes has been used as a key step in the construction of the tetracyclic core of lycorine-type alkaloids and the formal synthesis of α-lycorane. Guided by the principles of covalent aminocatalysis and N-heterocyclic carbene catalysis, we synthesized chiral piperidine, indole, and cyclobutane derivatives. The synthesis of chiral cyclobutanes and pyrroloindolones showed unprecedented reactivity of substrates and catalysts. The development of the strategy of asymmetric organocatalytic relay cascades has provided a useful tool for the controlled synthesis of specific diastereomers in complex molecules. This Account gives a panoramic view and the logic of our research on the design, development, and applications of asymmetric catalytic cascade reactions that will potentially provide useful insights into exploring new reactions.

  11. Highly selective biaryl cross-coupling reactions between aryl halides and aryl Grignard reagents: a new catalyst combination of N-heterocyclic carbenes and iron, cobalt, and nickel fluorides.

    PubMed

    Hatakeyama, Takuji; Hashimoto, Sigma; Ishizuka, Kentaro; Nakamura, Masaharu

    2009-08-26

    Combinations of N-heterocyclic carbenes (NHCs) and fluoride salts of the iron-group metals (Fe, Co, and Ni) have been shown to be excellent catalysts for the cross-coupling reactions of aryl Grignard reagents (Ar(1)MgBr) with aryl and heteroaryl halides (Ar(2)X) to give unsymmetrical biaryls (Ar(1)-Ar(2)). Iron fluorides in combination with SIPr, a saturated NHC ligand, catalyze the biaryl cross-coupling between various aryl chlorides and aryl Grignard reagents in high yield and high selectivity. On the other hand, cobalt and nickel fluorides in combination with IPr, an unsaturated NHC ligand, exhibit interesting complementary reactivity in the coupling of aryl bromides or iodides; in contrast, with these substrates the iron catalysts show a lower selectivity. The formation of homocoupling byproducts is suppressed markedly to less than 5% in most cases by choosing the appropriate metal fluoride/NHC combination. The present catalyst combinations offer several synthetic advantages over existing methods: practical synthesis of a broad range of unsymmetrical biaryls without the use of palladium catalysts and phosphine ligands. On the basis of stoichiometric control experiments and theoretical studies, the origin of the unique catalytic effect of the fluoride counterion can be ascribed to the formation of a higher-valent heteroleptic metalate [Ar(1)MF(2)]MgBr as the key intermediate in our proposed catalytic cycle. First, stoichiometric control experiments revealed the stark differences in chemical reactivity between the metal fluorides and metal chlorides. Second, DFT calculations indicate that the initial reduction of di- or trivalent metal fluoride in the wake of transmetalation with PhMgCl is energetically unfavorable and that formation of a divalent heteroleptic metalate complex, [PhMF(2)]MgCl (M = Fe, Co, Ni), is dominant in the metal fluoride system. The heteroleptic ate-complex serves as a key reactive intermediate, which undergoes oxidative addition with PhCl and releases the biaryl cross-coupling product Ph-Ph with reasonable energy barriers. The present cross-coupling reaction catalyzed by iron-group metal fluorides and an NHC ligand provides a highly selective and practical method for the synthesis of unsymmetrical biaryls as well as the opportunity to gain new mechanistic insights into the metal-catalyzed cross-coupling reactions.

  12. Diverse reactivity of a tricoordinate organoboron L2PhB: (L = oxazol-2-ylidene) towards alkali metal, group 9 metal, and coinage metal precursors† †Electronic supplementary information (ESI) available: Experimental and calculation details, and crystallographic information for 2, 3, 4, 6, 8. CCDC 1038665, 1038666, 1038667, 1011534, and 1011533. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc00404g Click here for additional data file. Click here for additional data file.

    PubMed Central

    Kong, Lingbing; Ganguly, Rakesh; Li, Yongxin

    2015-01-01

    The reactivity of a tricoordinate organoboron L2PhB: (L = oxazol-2-ylidene) 1 towards metal precursors and its coordination chemistry were comprehensively studied. While the boron center in 1 is reluctant to coordinate to the alkali metals in their trifluoromethanesulfonate salts (MOTf) (M = Li, Na, K), the unprecedented compound 2 containing two L2PhB: units linked by a cyclic Li(OTf)2Li spacer was obtained from the reaction of 1 with LiOTf. Treatment of 1 with group 9 metal complexes [MCl(COD)]2 (M = Rh, Ir) afforded the first zwitterionic rhodium(i)–boronium complex 3 and the iridium(iii)–borane complex 4, respectively. The reaction pathway may involve C–H activation followed by proton migration from the metals to the boron center, demonstrating the first example of the deprotonation of metal hydrides by a basic boron. In the reactions with coinage metals, 1 could act as a two-electron reducing agent towards the metal chlorides MCl (M = Cu, Ag, Au). Meanwhile, the reaction of 1 with gold chloride supported by a N-heterocyclic carbene (NHC) produced a heteroleptic cationic gold complex [(L2PhB)Au(NHC)]Cl (6) featuring both carbene and L2PhB: ligands on the gold atom. In contrast, an isolable gold chloride complex (L2PhB)AuCl (8) was obtained by direct complexation between 1 and triphenylphosphine-gold chloride via ligand exchange. X-ray diffraction analysis and computational studies revealed the nature of the B:→Au bonding interaction in complexes 6 and 8. Natural Population Analysis (NPA) and Natural Bond Orbital (NBO) analysis support the strong σ-donating property of the L2PhB: ligand. Moreover, preliminary studies showed that complex 8 can serve as an efficient precatalyst for the addition of X–H (X = N, O, C) to alkynes under ambient conditions, demonstrating the first application of a metal complex featuring a neutral boron-based ligand in catalysis. PMID:29308167

  13. Highly Unsaturated Platinum and Palladium Carbenes PtC 3 and PdC 3 Isolated and Characterized in the Gas Phase

    DOE PAGES

    Bittner, Dror M.; Zaleski, Daniel P.; Tew, David P.; ...

    2016-02-16

    Carbenes of platinum and palladium, PtC 3 and PdC 3 , were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and abinitio calculations confirm that both molecules are linear. The geometry of PtC 3 was accurately determined by fitting to the experimental moments of inertia of twenty-six isotopologues. In conclusion, the results are consistent with the proposal of an autogenic isolobal relationship between O, Au + , and Ptatoms.

  14. N,S,O-Heterocycles in Aged Champagne Reserve Wines and Correlation with Free Amino Acid Concentrations.

    PubMed

    Le Menn, Nicolas; Marchand, Stephanie; de Revel, Gilles; Demarville, Dominique; Laborde, Delphine; Marchal, Richard

    2017-03-22

    Champagne regulations allow winegrowers to stock still wines to compensate for quality shifts in vintages, mainly due to climate variations. According to their technical requirements and house style, Champagne producers use these stored wines in their blends to enhance complexity. The presence of lees and aging at low pH (2.95-3.15), as in Champagne wines, lead to several modifications in wine composition. These conditions, combined with extended aging, result in the required environment for the Maillard chemical reaction, involving aromatic molecules, including sulfur, oxygen, and nitrogen heterocycles (such as thiazole, furan, and pyrazine derivatives), which may have a sensory impact on wine. Some aromatic heterocycles in 50 monovarietal wines aged from 1 to 27 years provided by Veuve Clicquot Ponsardin Champagne house were determined by the SPME-GC-MS method. The most interesting result highlighted a strong correlation between certain heterocycle concentrations and wine age. The second revealed a correlation between heterocyclic compound and free amino acid concentrations measured in the wines, suggesting that these compounds are potential aromatic precursors when wine is aged on lees and, thus, potential key compounds in the bouquet of aged Champagnes. The principal outcome of these assays was to reveal, for the first time, that aromatic heterocycle concentrations in Champagne base wines are correlated with wine age.

  15. Silylene-Nickel Promoted Cleavage of B-O Bonds: From Catechol Borane to the Hydroborylene Ligand.

    PubMed

    Hadlington, Terrance J; Szilvási, Tibor; Driess, Matthias

    2017-06-19

    The first 16 valence electron [bis(NHC)](silylene)Ni 0 complex 1, [( TMS L)ClSi:→Ni(NHC) 2 ], bearing the acyclic amido-chlorosilylene ( TMS L)ClSi: ( TMS L=N(SiMe 3 )Dipp; Dipp=2,6-Pr i 2 C 6 H 4 ) and two NHC ligands (N-heterocyclic carbene=:C[(Pr i )NC(Me)] 2 ) was synthesized in high yield and structurally characterized. Compound 1 is capable of facile dihydrogen activation under ambient conditions to give the corresponding HSi-NiH complex 2. Most notably, 1 reacts with catechol borane to afford the unprecedented hydroborylene-coordinated (chloro)(silyl)nickel(II) complex 3, {[cat( TMS L)Si](Cl)Ni←:BH(NHC) 2 }, via the cleavage of two B-O bonds and simultaneous formation of two Si-O bonds. The mechanism for the formation of 3 was rationalized by means of DFT calculations, which highlight the powerful synergistic effects of the Si:→Ni moiety in the breaking of incredibly strong B-O bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dynamic Kinetic Resolution Enabled by Intramolecular Benzoin Reaction: Synthetic Applications and Mechanistic Insights.

    PubMed

    Zhang, Guoxiang; Yang, Shuang; Zhang, Xiaoyan; Lin, Qiqiao; Das, Deb K; Liu, Jian; Fang, Xinqiang

    2016-06-29

    The highly enantio-, diastereo-, and regioselective dynamic kinetic resolution of β-ketoesters and 1,3-diketones was achieved via a chiral N-heterocyclic carbene catalyzed intramolecular cross-benzoin reaction. A variety of tetralone derivatives bearing two contiguous stereocenters and multiple functionalities were liberated in moderate to excellent yields and with high levels of stereoselectivity (>95% ee and >20:1 dr in most cases). In addition, the excellent regioselectivity control for aryl/alkyl 1,3-diketones, and the superior electronic differentiation of 1,3-diarylketones were highlighted. Moreover, a set of new mechanistic rationale that differs with the currently widely accepted understanding of intramolecular benzoin reactions was established to demonstrate the superior preference of benzoin over aldol transformation: (1) A coexistence of competitive aldol and benzoin reactions was detected, but a retro-aldol-irreversible benzoin process performs a vital role in the generation of predominant benzoin products. (2) The most essential role of an N-electron-withdrawing substituent in triazolium catalysts was revealed to be accelerating the rate of the benzoin transformation, rather than suppressing the aldol process through reducing the inherent basicity of the catalyst.

  17. Trans-Metal-Trapping Meets Frustrated-Lewis-Pair Chemistry: Ga(CH2SiMe3)3-Induced C–H Functionalizations

    PubMed Central

    2017-01-01

    Merging two topical themes in main-group chemistry, namely, cooperative bimetallics and frustrated-Lewis-pair (FLP) activity, this Forum Article focuses on the cooperativity-induced outcomes observed when the tris(alkyl)gallium compound GaR3 (R = CH2SiMe3) is paired with the lithium amide LiTMP (TMP = 2,2,6,6-tetramethylpiperidide) or the sterically hindered N-heterocyclic carbene (NHC) 1,3-bis(tert-butyl)imidazol-2-ylidene (ItBu). When some previously published work are drawn together with new results, unique tandem reactivities are presented that are driven by the steric mismatch between the individual reagents of these multicomponent reagents. Thus, the LiTMP/GaR3 combination, which on its own fails to form a cocomplex, functions as a highly regioselective base (LiTMP)/trap (GaR3) partnership for the metalation of N-heterocycles such as diazines, 1,3-benzoazoles, and 2-picolines in a trans-metal-trapping (TMT) process that stabilizes the emerging sensitive carbanions. Taking advantage of related steric incompatibility, a novel monometallic FLP system pairing GaR3 with ItBu has been developed for the activation of carbonyl compounds (via C=O insertion) and other molecules with acidic hydrogen atoms such as phenol and phenylacetylene. Shedding new light on how these non-cocomplexing partnerships operate and showcasing the potential of gallium reagents to engage in metalation reactions or FLP activations, areas where the use of this group 13 metal is scant, this Forum Article aims to stimulate more interest and activity toward the advancement of organogallium chemistry. PMID:28485929

  18. Direct synthesis of cis-dihalido-bis(NHC) complex of nickel(II) and catalytic application in olefin addition polymerization: effect of halogen co-ligands and density functional theory study.

    PubMed

    Zhang, Dao; Zhou, Sen; Li, Zhiming; Wang, Quanrui; Weng, Linhong

    2013-09-07

    Two novel amine-containing N-heterocyclic carbene ligand precursors [H(1a-b)]Br have been prepared in good yield and fully characterized. Direct syntheses of cis- and trans-dihalido-bis(NHC) nickel complexes [Ni(NHC)2X2] (X = Cl, Br) are reported. The solid structures of trans-[Ni(1a-b)2Br2] (2a-b) and cis-[Ni(1a)2Cl2] (3) were determined by single-crystal X-ray analysis and 3 was found to be the first example of cis-configuration coordination of monodentate NHC ligands to a metal center for dihalido-bis(NHC) nickel complexes. DFT calculations were conducted to determine the energy difference between cis- and trans-isomers of complexes 2a and 3 bearing bromide and chloride co-ligands. The cis-[Ni(1a)2Cl2] (cis-3) is 1.77-1.55 kcal mol(-1) lower in energy than its trans-isomer in polar solvents including CH2Cl2 and THF, while the trans-[Ni(1a)2Br2] (trans-2a) is more stable than the cis-isomer similarly in the gas phase. The cis nickel complex 3 with two coordinated monodentate NHCs was tested for olefin addition polymerization at standard conditions. It was found that cis-3 was inactive in ethylene polymerization but showed moderate catalytic activities (0.5-3.0 × 10(6) g of PNB (mol of Ni)(-1) h(-1)) in the addition polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst.

  19. Ruthenium bidentate phosphine complexes for the coordination and catalytic dehydrogenation of amine- and phosphine-boranes.

    PubMed

    Ledger, Araminta E W; Ellul, Charles E; Mahon, Mary F; Williams, Jonathan M J; Whittlesey, Michael K

    2011-07-25

    Addition of the amine-boranes H(3)B⋅NH(2)tBu, H(3)B⋅NHMe(2) and H(3)B⋅NH(3) to the cationic ruthenium fragment [Ru(xantphos)(PPh(3))(OH(2))H][BAr(F)(4)] (2; xantphos=4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; BAr(F)(4)=[B{3,5-(CF(3))(2)C(6)H(3)}(4)](-)) affords the η(1)-B-H bound amine-borane complexes [Ru(xantphos)(PPh(3))(H(3)B⋅NH(2)tBu)H][BAr(F)(4)] (5), [Ru(xantphos)(PPh(3))(H(3) B⋅NHMe(2))H][BAr(F)(4)] (6) and [Ru(xantphos)(PPh(3))(H(3)B⋅NH(3))H][BAr(F)(4)] (7). The X-ray crystal structures of 5 and 7 have been determined with [BAr(F)(4)] and [BPh(4)] anions, respectively. Treatment of 2 with H(3)B⋅PHPh(2) resulted in quite different behaviour, with cleavage of the B-P interaction taking place to generate the structurally characterised bis-secondary phosphine complex [Ru(xantphos)(PHPh(2))(2)H][BPh(4)] (9). The xantphos complexes 2, 5 and 9 proved to be poor precursors for the catalytic dehydrogenation of H(3)B⋅NHMe(2). While the dppf species (dppf=1,1'-bis(diphenylphosphino)ferrocene) [Ru(dppf)(PPh(3))HCl] (3) and [Ru(dppf)(η(6)-C(6)H(5)PPh(2))H][BAr(F)(4)] (4) showed better, but still moderate activity, the agostic-stabilised N-heterocyclic carbene derivative [Ru(dppf)(ICy)HCl] (12; ICy=1,3-dicyclohexylimidazol-2-ylidene) proved to be the most efficient catalyst with a turnover number of 76 h(-1) at room temperature. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Carbene supported dimer of heavier ketenimine analogue with p and si atoms.

    PubMed

    Roy, Sudipta; Dittrich, Birger; Mondal, Totan; Koley, Debasis; Stückl, A Claudia; Schwederski, Brigitte; Kaim, Wolfgang; John, Michael; Vasa, Suresh Kumar; Linser, Rasmus; Roesky, Herbert W

    2015-05-20

    A cyclic alkyl(amino) carbene (cAAC) stabilized dimer [(cAAC)Si(P-Tip)]2 (2) (Tip = 2,4,6-triisopropylphenyl) is reported. 2 can be considered as a dimer of the heavier ketenimine (R2C═C═N-R) analogue. The dark-red rod-shaped crystals of 2 were synthesized by reduction of the precursor, cAAC-dichlorosilylene-stabilized phosphinidene (cAAC)SiCl2→P-Tip with sodium napthalenide. The crystals of 2 are storable at room temperature for several months and stable up to 215 °C under an inert atmosphere. X-ray single-crystal diffraction revealed that 2 contains a cyclic nonplanar four-membered SiPSiP ring. Magnetic susceptibility measurements confirmed the singlet spin ground state of 2. Cyclic voltammetry of 2 showed a quasi-reversible one-electron reduction indicating the formation of the corresponding radical anion 2(•-), which was further characterized by EPR measurements in solution. The electronic structure and bonding of 2 and 2(•-) were studied by theoretical calculations. The experimentally obtained data are in good agreement with the calculated values.

  1. Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles.

    PubMed

    Wentrup, Curt

    2017-03-08

    Flash vacuum pyrolysis (FVP) of azides is an extremely valuable method of generating nitrenes and studying their thermal rearrangements. The nitrenes can in many cases be isolated in low-temperature matrices and observed spectroscopically. NH and methyl, alkyl, aralkyl, vinyl, cyano, aryl and N-heteroaryl, acyl, carbamoyl, alkoxycarbonyl, imidoyl, boryl, silyl, phosphonyl, and sulfonyl nitrenes are included. FVP of triazoloazines generates diazomethylazines and azinylcarbenes, which often rearrange to the energetically more stable arylnitrenes. N 2 elimination from monocyclic 1,2,3-triazoles can generate iminocarbenes, 1H-azirines, ketenimines, and cyclization products, and 1,2,4-triazoles are precursors of nitrile ylides. Benzotriazoles are preparatively useful precursors of cyanocyclopentadienes, carbazoles, and aza-analogues. FVP of 5-aryltetrazoles can result in double N 2 elimination with formation of arylcarbenes or of heteroarylcarbenes, which again rearrange to arylnitrenes. Many 5-substituted and 2,5-disubstituted tetrazoles are excellent precursors of nitrile imines (propargylic, allenic, or carbenic), which are isolable at low temperatures in some cases (e.g., aryl- and silylnitrile imines) or rearrange to carbodiimides. 1,5-Disubstituted tetrazoles are precursors of imidoylnitrenes, which also rearrange to carbodiimides or add intramolecularly to aryl substituents to yield indazoles and related compounds. Where relevant for the mechanistic understanding, pyrolysis under flow conditions or in solution or the solid state will be mentioned. Results of photolysis reactions and computational chemistry complementing the FVP results will also be mentioned in several places.

  2. Highly Unsaturated Platinum and Palladium Carbenes PtC3 and PdC3 Isolated and Characterized in the Gas Phase

    PubMed Central

    Bittner, Dror M.; Zaleski, Daniel P.; Tew, David P.

    2016-01-01

    Abstract Carbenes of platinum and palladium, PtC3 and PdC3, were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and ab initio calculations confirm that both molecules are linear. The geometry of PtC3 was accurately determined by fitting to the experimental moments of inertia of twenty‐six isotopologues. The results are consistent with the proposal of an autogenic isolobal relationship between O, Au+, and Pt atoms. PMID:26879473

  3. Vitamin B1-catalyzed acetoin formation from acetaldehyde: a key step for upgrading bioethanol to bulk C₄ chemicals.

    PubMed

    Lu, Ting; Li, Xiukai; Gu, Liuqun; Zhang, Yugen

    2014-09-01

    The production of bulk chemicals and fuels from renewable biobased feedstocks is of significant importance for the sustainability of human society. The production of ethanol from biomass has dramatically increased and bioethanol also holds considerable potential as a versatile building block for the chemical industry. Herein, we report a highly selective process for the conversion of ethanol to C4 bulk chemicals, such as 2,3-butanediol and butene, via a vitamin B1 (thiamine)-derived N-heterocyclic carbene (NHC)-catalyzed acetoin condensation as the key step to assemble two C2 acetaldehydes into a C4 product. The environmentally benign and cheap natural catalyst vitamin B1 demonstrates high selectivity (99%), high efficiency (97% yield), and high tolerance toward ethanol and water impurities in the acetoin reaction. The results enable a novel and efficient process for ethanol upgrading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Blue phosphorescent nitrile containing C^C* cyclometalated NHC platinum(II) complexes.

    PubMed

    Tronnier, Alexander; Metz, Stefan; Wagenblast, Gerhard; Muenster, Ingo; Strassner, Thomas

    2014-02-28

    Since C^C* cyclometalated Pt(II) complexes with N-heterocyclic carbene (NHC) ligands have been identified as potential emitter materials in organic light-emitting devices (OLEDs), very promising results regarding quantum yields, colour and stability have been presented. Herein, we report on four nitrile substituted complexes with a chelating NHC ligand (1-(4-cyanophenyl)-3-isopropyl-1H-benzo[d]imidazole or 4-(tert-butyl)-1-(4-cyanophenyl)-3-methyl-1H-imidazole) and a bidentate monoanionic auxiliary ligand (acetylacetone or dimesitoylmethane). The complexes have been fully characterized including extensive 2D NMR studies (COSY, HSQC, HMBC, NOESY, (195)Pt NMR), three of them also by solid-state structures. Photophysical measurements in amorphous PMMA films and pure emitter films at room temperature reveal the impact of the mesityl groups in the auxiliary ligand, which led to a significant increase of the quantum yield, while the decay lifetimes decreased. The electron withdrawing nitrile groups shift the emission towards blue colour coordinates.

  5. Heteroleptic Cycloplatinated N-Heterocyclic Carbene Complexes: A New Approach to Highly Efficient Blue-Light Emitters.

    PubMed

    Fuertes, Sara; Chueca, Andrés J; Arnal, Lorenzo; Martín, Antonio; Giovanella, Umberto; Botta, Chiara; Sicilia, Violeta

    2017-05-01

    New heteroleptic compounds of platinum(II)-containing cyclometalated N-heterocyclic carbenes, [PtCl(R-C^C*)(PPh 3 )] [R-CH^C*-κC* = 3-methyl-1-(naphthalen-2-yl)-1H-imidazol-2-ylidene (R-C = Naph; 1A), 1-[4-(ethoxycarbonyl)phenyl]-3-methyl-1H-imidazol-2-ylidene (R = CO 2 Et; 1B), and [Pt(R-C^C*)(py)(PPh 3 )]PF 6 (py = pyridine; R-C = Naph, 2A; R = CO 2 Et, 2B], have been prepared and fully characterized. All of them were obtained as the trans-(C*,PPh 3 ) isomer in high yields. The selectivity of their synthesis has been explained in terms of the degree of transphobia (T) of pairs of ligands in trans positions. X-ray diffraction studies on both 2A and 2B revealed that only in 2A, containing a C^C* with a more extended π system, do the molecules assemble themselves into head-to-tail pairs through intermolecular π···π contacts. The photophysical properties of 2A and 2B and those of the related compounds [Pt(NC-C^C*)(PPh 3 )L]PF 6 [NC-CH^C*-κC* = 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene; L = pyridine (py; 2C), 2,6-dimethylphenylisocyanide (CNXyl; 3C), and 2-mercapto-1-methylimidazole (MMI; 4C)] have been examined to analyze the influence of the R substituent on R-C^C* (R-C = Naph; R = CO 2 Et, CN) and that of the ancillary ligands (L) on them. Experimental data and time-dependent density functional theory calculations showed the similarity of the electronic features associated with R-C^C* (R = CN, CO 2 Et) and their difference with respect to R-C^C* (R-C = Naph). All of the compounds are very efficient blue emitters in poly(methyl methacrylate) films under an argon atmosphere, with QY values ranging from 68% (2B) to 93% (2C). In the solid state, the color of the emission changes to yellowish-orange for compounds 2A (λ max = 600 nm) and 3C (λ max = 590 nm) because of the formation of aggregates through intermolecular π···π interactions. 2C and 3C were chosen to fabricate fully solution-processed electroluminescent devices with blue-light (2C), yellow-orange-light (3C), and white-light (mixtures of 2C and 3C) emission from neat films of the compounds as emitting layers.

  6. Tandem enyne metathesis-Diels-Alder reaction for construction of natural product frameworks.

    PubMed

    Rosillo, Marta; Domínguez, Gema; Casarrubios, Luis; Amador, Ulises; Pérez-Castells, Javier

    2004-03-19

    Enynes connected through aromatic rings are used as substrates for metathesis reactions. The reactivity of three ruthenium carbene complexes is compared. The resulting 1,3-dienes are suitable precursors of polycyclic structures via a Diels-Alder process. Some domino RCM-Diels-Alder reactions are performed, suggesting a possible beneficial effect of the ruthenium catalyst in the cycloaddition process. Other examples require Lewis acid cocatalyst. When applied to aromatic ynamines or enamines, a new synthesis of vinylindoles is achieved. Monitorization of several metathesis reactions with NMR shows the different behavior for ruthenium catalysts. New carbenic species are detected in some reactions with an important dependence on the solvent used.

  7. Total synthesis of dihydrolysergic acid and dihydrolysergol: development of a divergent synthetic strategy applicable to rapid assembly of D-ring analogs.

    PubMed

    Lee, Kiyoun; Poudel, Yam B; Glinkerman, Christopher M; Boger, Dale L

    2015-09-02

    The total syntheses of dihydrolysergic acid and dihydrolysergol are detailed based on a Pd(0)-catalyzed intramolecular Larock indole cyclization for the preparation of the embedded tricyclic indole (ABC ring system) and a subsequent powerful inverse electron demand Diels-Alder reaction of 5-carbomethoxy-1,2,3-triazine with a ketone-derived enamine for the introduction of a functionalized pyridine, serving as the precursor for a remarkably diastereoselective reduction to the N -methylpiperidine D-ring. By design, the use of the same ketone-derived enamine and a set of related complementary heterocyclic azadiene [4 + 2] cycloaddition reactions permitted the late stage divergent preparation of a series of alternative heterocyclic derivatives not readily accessible by more conventional approaches.

  8. Divergent Synthesis of Multisubstituted Tetrahydrofurans and Pyrrolidines via Intramolecular Aldol-type Trapping of Onium Ylide Intermediates.

    PubMed

    Jing, Changcheng; Xing, Dong; Gao, Lixin; Li, Jia; Hu, Wenhao

    2015-12-21

    This paper reports a divergent strategy for the synthesis of multisubstituted tetrahydrofurans and pyrrolidines, starting from easily accessible β-hydroxyketones or β-aminoketones to react with diazo compounds. Under Rh(II) catalysis, this transformation is proposed to proceed through a metal-carbene-induced oxonium ylide or ammonium ylide formation followed by an intramolecular aldol-type trapping of these active intermediates. A series of highly substituted tetrahydrofurans and pyrrolidines are synthesized in high yields with good to excellent diastereoselectivities. Preliminary biological evaluations revealed that both types of heterocycles show good PTP1B inhibitory activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis of axially chiral oxazoline-carbene ligands with an N-naphthyl framework and a study of their coordination with AuCl·SMe(2).

    PubMed

    Wang, Feijun; Li, Shengke; Qu, Mingliang; Zhao, Mei-Xin; Liu, Lian-Jun; Shi, Min

    2012-01-01

    Axially chiral oxazoline-carbene ligands with an N-naphthyl framework were successfully prepared, and their coordination behavior with AuCl·SMe(2) was also investigated, affording the corresponding Au(I) complexes in moderate to high yields.

  10. Ligand effects on the hydrogenation of biomass-inspired substrates with bifunctional Ru, Ir, and Rh complexes.

    PubMed

    Jansen, Eveline; Jongbloed, Linda S; Tromp, Dorette S; Lutz, Martin; de Bruin, Bas; Elsevier, Cornelis J

    2013-09-01

    We herein report on the application and structural investigation of a new set of complexes that contain bidentate N-heterocyclic carbenes (NHCs) and primary amine moieties of the type [M(arene)Cl(L)] [M=Ru, Ir, or Rh; arene=p-cymene or pentamethylcyclopentadienyl; L=1-(2-aminophenyl)-3-(n-alkyl)imidazol-2-ylidine]. These complexes were tested and compared in the hydrogenation of acetophenone with hydrogen. Structural variations in the chelate ring size of the heteroditopic ligand revealed that smaller chelate ring sizes in combination with ring conjugation in the ligand are beneficial for the activity of this type of catalyst, favoring an inner-sphere coordination pathway. Additionally, increasing the steric bulk of the alkyl substituent on the NHC aided the reaction, showing almost no induction period and formation of a more active catalyst for the n-butyl complex relative to complexes with smaller Me and Et substituents. As is common in hydrogenation reactions, the activity of the complexes decreases in the order Ru>Ir>Rh. The application of [Ru(p-cym)Cl(L)]PF6 , which outperforms its reported analogues, has been successfully extended to the hydrogenation of more challenging biomass-inspired substrates. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Heterobimetallic complexes containing an N-heterocyclic carbene based multidentate ligand and catalyzed tandem click/Sonogashira reactions.

    PubMed

    Gu, Shaojin; Xu, Daichao; Chen, Wanzhi

    2011-02-21

    Mono- and polynuclear complexes containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L), [NiL(2)](PF(6))(2) (2), [CoL(2)](PF(6))(3) (3), [PtLCl](PF(6)) (4), [PdAgL(2)](PF(6))(3) (5), [PdCuL(2)](PF(6))(3) (6), [Pd(2)L(2)Cl(2)](PF(6))(2) (7), and [Pd(3)L(2)Cl(4)](PF(6))(2) (8) have been prepared and fully characterized by NMR, ESI-MS spectroscopy, and X-ray crystallography. In complexes 2-4, the ligand binds to metals in a pincer NNC fashion with the pyridine group uncoordinated. Complexes 5 and 6 are isostructural to each other in which the palladium ions are surrounded by two pyridines and two imidazolylidenes and Ag(I) or Cu(I) is coordinated by two 1,10-phenanthroline moieties. In the trinuclear palladium complex 8, one palladium ion has an identical coordination mode as in 5 and 6, and the other two palladium ions are bonded to the 1,10-phenanthroline. Complex 6 exhibits excellent catalytic activity for the tandem click/Sonogashira reaction of 1-(bromomethyl)-4-iodobenzene, NaN(3), and ethynylbenzene in which three C-N bonds and one C-C bond are formed in a single flask.

  12. Computation provides chemical insight into the diverse hydride NMR chemical shifts of [Ru(NHC)4(L)H]0/+ species (NHC = N-heterocyclic carbene; L = vacant, H2, N2, CO, MeCN, O2, P4, SO2, H-, F- and Cl-) and their [Ru(R2PCH2CH2PR2)2(L)H]+ congeners.

    PubMed

    Häller, L Jonas L; Mas-Marzá, Elena; Cybulski, Mateusz K; Sanguramath, Rajashekharayya A; Macgregor, Stuart A; Mahon, Mary F; Raynaud, Christophe; Russell, Christopher A; Whittlesey, Michael K

    2017-02-28

    Relativistic density functional theory calculations, both with and without the effects of spin-orbit coupling, have been employed to model hydride NMR chemical shifts for a series of [Ru(NHC) 4 (L)H] 0/+ species (NHC = N-heterocyclic carbene; L = vacant, H 2 , N 2 , CO, MeCN, O 2 , P 4 , SO 2 , H - , F - and Cl - ), as well as selected phosphine analogues [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 (L)H] + (R = i Pr, Cy; L = vacant, O 2 ). Inclusion of spin-orbit coupling provides good agreement with the experimental data. For the NHC systems large variations in hydride chemical shift are shown to arise from the paramagnetic term, with high net shielding (L = vacant, Cl - , F - ) being reinforced by the contribution from spin-orbit coupling. Natural chemical shift analysis highlights the major orbital contributions to the paramagnetic term and rationalizes trends via changes in the energies of the occupied Ru d π orbitals and the unoccupied σ* Ru-H orbital. In [Ru(NHC) 4 (η 2 -O 2 )H] + a δ-interaction with the O 2 ligand results in a low-lying LUMO of d π character. As a result this orbital can no longer contribute to the paramagnetic shielding, but instead provides additional deshielding via overlap with the remaining (occupied) d π orbital under the L z angular momentum operator. These two effects account for the unusual hydride chemical shift of +4.8 ppm observed experimentally for this species. Calculations reproduce hydride chemical shift data observed for [Ru( i Pr 2 PCH 2 CH 2 P i Pr 2 ) 2 (η 2 -O 2 )H] + (δ = -6.2 ppm) and [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 H] + (ca. -32 ppm, R = i Pr, Cy). For the latter, the presence of a weak agostic interaction trans to the hydride ligand is significant, as in its absence (R = Me) calculations predict a chemical shift of -41 ppm, similar to the [Ru(NHC) 4 H] + analogues. Depending on the strength of the agostic interaction a variation of up to 18 ppm in hydride chemical shift is possible and this factor (that is not necessarily readily detected experimentally) can aid in the interpretation of hydride chemical shift data for nominally unsaturated hydride-containing species. The synthesis and crystallographic characterization of the BAr F 4 - salts of [Ru(IMe 4 ) 4 (L)H] + (IMe 4 = 1,3,4,5-tetramethylimidazol-2-ylidene; L = P 4 , SO 2 ; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) and [Ru(IMe 4 ) 4 (Cl)H] are also reported.

  13. Effects of histidin-2-ylidene vs. imidazol-2-ylidene ligands on the anticancer and antivascular activity of complexes of ruthenium, iridium, platinum, and gold.

    PubMed

    Schmitt, Florian; Donnelly, Kate; Muenzner, Julienne K; Rehm, Tobias; Novohradsky, Vojtech; Brabec, Viktor; Kasparkova, Jana; Albrecht, Martin; Schobert, Rainer; Mueller, Thomas

    2016-10-01

    Couples of N-heterocyclic carbene complexes of ruthenium, iridium, platinum, and gold, each differing only in the carbene ligand being either 1,3-dimethylimidazol-2-ylidene (IM) or 1,3-dimethyl-N-boc-O-methylhistidin-2-ylidene (HIS), were assessed for their antiproliferative effect on seven cancer cell lines, their interaction with DNA, their cell cycle interference, and their vascular disrupting properties. In MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays only the platinum complexes were cytotoxic at single-digit micromolar IC 50 concentrations with the (HIS)Pt complex being on average twice as active as the (IM)Pt complex. The former was highly efficacious against cisplatin-resistant HT-29 colon carcinoma cells where the latter had no effect. Both Pt complexes were accumulated by cancer cells and bound to double-helical DNA equally well. Only the (HIS)Pt complex modified the electrophoretic mobility of circular DNA in vitro due to the HIS ligand causing greater morphological changes to the DNA. Both platinum complexes induced accumulation of 518A2 melanoma cells in G2/M and S phase of the cell cycle. A disruption of blood vessels in the chorioallantoic membrane of fertilized chicken eggs was observed for both platinum complexes and the (IM)gold complex. The (HIS)platinum complex was as active as cisplatin in tumor xenografted mice while being tolerated better. We found that the HIS ligand may augment the cytotoxicity of certain antitumoral metal fragments in two ways: by acting as a transmembrane carrier increasing the cellular accumulation of the complex, and by initiating a pronounced distortion and unwinding of DNA. We identified a new (HIS)platinum complex which was highly cytotoxic against cancer cells including cisplatin-resistant ones. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Dyeing behaviours of amino heterocyclic compounds as blue oxidative hair dye precursors applied to keratin fibres.

    PubMed

    Li, D; Huang, Y; Su, J

    2011-04-01

    Several novel heterocyclic compounds based on 1,2,3,4-tetrahydroquinoline and 2,3-dihydroindole have been investigated for their application of colour keratin fibres as blue oxidative dye precursors, especially to human hair. The colourants we studied contained anyone of these dyes (concentration range from 0.005% to 6%), and some common oxidative hair dyes, such as p-phenylenediamine, toluene-2,5-diamine sulphate. Experiments were carried out on the method of mixing hair colourants with H(2)O(2) gel at the ratio of 1 : 1, accompanied by pH = 8∼11. It is demonstrated that 1,2,3,4-tetrahydroquinoline derivatives could be considered as an excellent candidate for blue dyes, and N-methyl-7-amino-1,2,3,4-tetrahydroquinoline is the most outstanding one among this kind of compounds. They own significant advantages of colour purity, stability and fastness. On the other hand, 2,3-dihydroindoles show the similar colours but not stable and brilliant enough. © 2010 The Authors. ICS © 2010 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Gold(I) NHC-based homo- and heterobimetallic complexes: synthesis, characterization and evaluation as potential anticancer agents.

    PubMed

    Bertrand, Benoît; Citta, Anna; Franken, Inge L; Picquet, Michel; Folda, Alessandra; Scalcon, Valeria; Rigobello, Maria Pia; Le Gendre, Pierre; Casini, Angela; Bodio, Ewen

    2015-09-01

    While N-heterocyclic carbenes (NHC) are ubiquitous ligands in catalysis for organic or industrial syntheses, their potential to form transition metal complexes for medicinal applications has still to be exploited. Within this frame, we synthesized new homo- and heterobimetallic complexes based on the Au(I)-NHC scaffold. The compounds were synthesized via a microwave-assisted method developed in our laboratories using Au(I)-NHC complexes carrying a pentafluorophenol ester moiety and another Au(I) phosphane complex or a bipyridine ligand bearing a pendant amine function. Thus, we developed two different methods to prepare homo- and heterobimetallic complexes (Au(I)/Au(I) or Au(I)/Cu(II), Au(I)/Ru(II), respectively). All the compounds were fully characterized by several spectroscopic techniques including far infrared, and were tested for their antiproliferative effects in a series of human cancer cells. They showed moderate anticancer properties. Their toxic effects were also studied ex vivo using the precision-cut tissue slices (PCTS) technique and initial results concerning their reactivity with the seleno-enzyme thioredoxin reductase were obtained.

  16. Amination with Pd-NHC complexes: rate and computational studies involving substituted aniline substrates.

    PubMed

    Hoi, Ka Hou; Çalimsiz, Selçuk; Froese, Robert D J; Hopkinson, Alan C; Organ, Michael G

    2012-01-02

    The amination of aryl chlorides with various aniline derivatives using the N-heterocyclic carbene-based Pd complexes Pd-PEPPSI-IPr and Pd-PEPPSI-IPent (PEPPSI=pyridine, enhanced precatalyst, preparation, stabilization, and initiation; IPr=diisopropylphenylimidazolium derivative; IPent= diisopentylphenylimidazolium derivative) has been studied. Rate studies have shown a reliance on the aryl chloride to be electron poor, although oxidative addition is not rate limiting. Anilines couple best when they are electron rich, which would seem to discount deprotonation of the intermediate metal ammonium complex as being rate limiting in favour of reductive elimination. In previous studies with secondary amines using PEPPSI complexes, deprotonation was proposed to be the slow step in the cycle. These experimental findings relating to mechanism were corroborated by computation. Pd-PEPPSI-IPr and the more hindered Pd-PEPPSI-IPent catalysts were used to couple deactivated aryl chlorides with electron poor anilines; while the IPr catalysis was sluggish, the IPent catalyst performed extremely well, again showing the high reactivity of this broadly useful catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cu-catalyzed formal methylative and hydrogenative carboxylation of alkynes with carbon dioxide: efficient synthesis of α,β-unsaturated carboxylic acids.

    PubMed

    Takimoto, Masanori; Hou, Zhaomin

    2013-08-19

    The sequential hydroalumination or methylalumination of various alkynes catalyzed by different catalyst systems, such those based on Sc, Zr, and Ni complexes, and the subsequent carboxylation of the resulting alkenylaluminum species with CO2 catalyzed by an N-heterocyclic carbene (NHC)-copper catalyst have been examined in detail. The regio- and stereoselectivity of the overall reaction relied largely on the hydroalumination or methylalumination reactions, which significantly depended on the catalyst and alkyne substrates. The subsequent Cu-catalyzed carboxylation proceeded with retention of the stereoconfiguration of the alkenylaluminum species. All the reactions could be carried out in one-pot to afford efficiently a variety of α,β-unsaturated carboxylic acids with well-controlled configurations, which are difficult to construct by previously reported methods. This protocol could be practically useful and attractive because of its high regio- and stereoselectivity, simple one-pot reaction operation, and the use of CO2 as a starting material. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior.

    PubMed

    Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven

    2014-02-03

    A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Brandon R.; Wiedner, Eric S.; Helm, Monte L.

    Nickel(II) complexes containing chelating N-heterocyclic carbene-phosphine ligands ([NiL2](BPh4)2, for which L = [MeIm(CH2)2PR2]) have been synthesized for the purpose of studying how this class of ligand effects the electrochemical properties compared to the nickel bis- diphosphine analogues. The nickel complexes were synthesized and characterized by x-ray crystallography and electrochemical methods. Based on the half wave potentials (E1/2), substitution of an NHC for one of the phosphines in a diphoshine ligand results in shifts in potential to 0.6 V to 1.2 V more negative than the corresponding nickel bis-diphosphine complexes. These quantitative results highlight the substantial effect that NHC ligands canmore » have upon the electronic properties of the metal complexes. BRG, JCL, and AMA acknowledge the support by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH acknoledges the support of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  20. A Broadly Applicable NHC–Cu-Catalyzed Approach for Efficient, Site-, and Enantioselective Coupling of Readily Accessible (Pinacolato)alkenylboron Compounds to Allylic Phosphates and Applications to Natural Product Synthesis

    PubMed Central

    2015-01-01

    A set of protocols for catalytic enantioselective allylic substitution (EAS) reactions that allow for additions of alkenyl units to readily accessible allylic electrophiles is disclosed. Transformations afford 1,4-dienes that contain a tertiary carbon stereogenic site and are promoted by 1.0–5.0 mol % of a copper complex of an N-heterocyclic carbene (NHC). Aryl- as well as alkyl-substituted electrophiles bearing a di- or trisubstituted alkene may be employed. Reactions can involve a variety of robust alkenyl–(pinacolatoboron) [alkenyl–B(pin)] compounds that can be either purchased or prepared by various efficient, site-, and/or stereoselective catalytic reactions, such as cross-metathesis or proto-boryl additions to terminal alkynes. Vinyl-, E-, or Z-disubstituted alkenyl-, 1,1-disubstituted alkenyl-, acyclic, or heterocyclic trisubstituted alkenyl groups may be added in up to >98% yield, >98:2 SN2′:SN2, and 99:1 enantiomeric ratio (er). NHC–Cu-catalyzed EAS with alkenyl–B(pin) reagents containing a conjugated carboxylic ester or aldehyde group proceed to provide the desired 1,4-diene products in good yield and with high enantioselectivity despite the presence of a sensitive stereogenic tertiary carbon center that could be considered prone to epimerization. In most instances, the alternative approach of utilizing an alkenylmetal reagent (e.g., an Al-based species) represents an incompatible option. The utility of the approach is illustrated through applications to enantioselective synthesis of natural products such as santolina alcohol, semburin, nyasol, heliespirone A, and heliannuol E. PMID:24467274

  1. A broadly applicable NHC-Cu-catalyzed approach for efficient, site-, and enantioselective coupling of readily accessible (pinacolato)alkenylboron compounds to allylic phosphates and applications to natural product synthesis.

    PubMed

    Gao, Fang; Carr, James L; Hoveyda, Amir H

    2014-02-05

    A set of protocols for catalytic enantioselective allylic substitution (EAS) reactions that allow for additions of alkenyl units to readily accessible allylic electrophiles is disclosed. Transformations afford 1,4-dienes that contain a tertiary carbon stereogenic site and are promoted by 1.0-5.0 mol % of a copper complex of an N-heterocyclic carbene (NHC). Aryl- as well as alkyl-substituted electrophiles bearing a di- or trisubstituted alkene may be employed. Reactions can involve a variety of robust alkenyl-(pinacolatoboron) [alkenyl-B(pin)] compounds that can be either purchased or prepared by various efficient, site-, and/or stereoselective catalytic reactions, such as cross-metathesis or proto-boryl additions to terminal alkynes. Vinyl-, E-, or Z-disubstituted alkenyl-, 1,1-disubstituted alkenyl-, acyclic, or heterocyclic trisubstituted alkenyl groups may be added in up to >98% yield, >98:2 SN2':SN2, and 99:1 enantiomeric ratio (er). NHC-Cu-catalyzed EAS with alkenyl-B(pin) reagents containing a conjugated carboxylic ester or aldehyde group proceed to provide the desired 1,4-diene products in good yield and with high enantioselectivity despite the presence of a sensitive stereogenic tertiary carbon center that could be considered prone to epimerization. In most instances, the alternative approach of utilizing an alkenylmetal reagent (e.g., an Al-based species) represents an incompatible option. The utility of the approach is illustrated through applications to enantioselective synthesis of natural products such as santolina alcohol, semburin, nyasol, heliespirone A, and heliannuol E.

  2. NHC→SiCl4 : an ambivalent carbene-transfer reagent.

    PubMed

    Böttcher, Tobias; Steinhauer, Simon; Lewis-Alleyne, Lesley C; Neumann, Beate; Stammler, Hans-Georg; Bassil, Bassem S; Röschenthaler, Gerd-Volker; Hoge, Berthold

    2015-01-07

    The addition of BCl3 to the carbene-transfer reagent NHC→SiCl4 (NHC=1,3-dimethylimidazolidin-2-ylidene) gave the tetra- and pentacoordinate trichlorosilicon(IV) cations [(NHC)SiCl3 ](+) and [(NHC)2 SiCl3 ](+) with tetrachloroborate as counterion. This is in contrast to previous reactions, in which NHC→SiCl4 served as a transfer reagent for the NHC ligand. The addition of BF3 ⋅OEt2 , on the other hand, gave NHC→BF3 as the product of NHC transfer. In addition, the highly Lewis acidic bis(pentafluoroethyl)silane (C2 F5 )2 SiCl2 was treated with NHC→SiCl4 . In acetonitrile, the cationic silicon(IV) complexes [(NHC)SiCl3 ](+) and [(NHC)2 SiCl3 ](+) were detected with [(C2 F5 )SiCl3 ](-) as counterion. A similar result was already reported for the reaction of NHC→SiCl4 with (C2 F5 )2 SiH2 , which gave [(NHC)2 SiCl2 H][(C2 F5 )SiCl3 ]. If the reaction medium was changed to dichloromethane, the products of carbene transfer, NHC→Si(C2 F5 )2 Cl2 and NHC→Si(C2 F5 )2 ClH, respectively, were obtained instead. The formation of the latter species is a result of chloride/hydride metathesis. These compounds may serve as valuable precursors for electron-poor silylenes. Furthermore, the reactivity of NHC→SiCl4 towards phosphines is discussed. The carbene complex NHC→PCl3 shows similar reactivity to NHC→SiCl4 , and may even serve as a carbene-transfer reagent as well. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An unprecedented chemospecific and stereoselective tandem nucleophilic addition/cycloaddition reaction of nucleophilic carbenes with ketenimines.

    PubMed

    Cheng, Ying; Ma, Yang-Guang; Wang, Xiao-Rong; Mo, Jun-Ming

    2009-01-16

    The first study of the reaction between nucleophilic carbenes and ketenimines is reported. The interaction of thiazole and benzothiazole carbenes with ketenimines proceeded in a chemospecific and stereoselective manner to produce thiazole- and benzothiazole-spiro-pyrrole derivatives generally in good yields. The reaction was proposed to proceed via a tandem nucleophilic addition of carbene to the C=N bond of ketenimine followed by a stepwise [3+2] cycloaddition of the 1,3-dipolar intermediate with the C=C bond of ketenimine. This reaction provides a powerful protocol for the construction of novel polyfunctional thiazole-spiro-pyrrole or benzothiazole-spiro-pyrrole compounds that are not readily accessible by other methods.

  4. Double stabilization of nanocrystalline silicon: a bonus from solvent

    NASA Astrophysics Data System (ADS)

    Kolyagin, Y. G.; Zakharov, V. N.; Yatsenko, A. V.; Paseshnichenko, K. A.; Savilov, S. V.; Aslanov, L. A.

    2016-01-01

    Double stabilization of the silicon nanocrystals was observed for the first time by 29Si and 13C MAS NMR spectroscopy. The role of solvent, 1,2-dimethoxyethane (glyme), in formation and stabilization of silicon nanocrystals as well as mechanism of modification of the surface of silicon nanocrystals by nitrogen-heterocyclic carbene (NHC) was studied in this research. It was shown that silicon nanocrystals were stabilized by the products of cleavage of the C-O bonds in ethers and similar compounds. The fact of stabilization of silicon nanoparticles with NHC ligands in glyme was experimentally detected. It was demonstrated that MAS NMR spectroscopy is rather informative for study of the surface of silicon nanoparticles but it needs very pure samples.

  5. Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal

    PubMed Central

    2017-01-01

    Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6′-dihydroxybipyridine (6,6′-dhbp)) for both their proton-responsive features and for metal–ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N-heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-pyOR)Cl]OTf complexes where R = tBu (1), H (2), or Me (3). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6′-dxbp)Cl]OTf, where x = hydroxy (4Ir) or methoxy (5Ir); 4Ir was reported previously, but 5Ir is new. The analogous ruthenium complexes were also tested using [(η6-cymene)Ru(6,6′-dxbp)Cl]OTf, where x = hydroxy (4Ru) or methoxy (5Ru); 4Ru and 5Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1, 2, 3, 5Ir, and for two [Ag(NHC-pyOR)2]OTf complexes 6 (R = tBu) and 7 (R = Me). The aqueous catalytic studies of both CO2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1–5. In general, NHC-pyOR complexes 1–3 were modest precatalysts for both reactions. NHC complexes 1–3 all underwent transformations under basic CO2 hydrogenation conditions, and for 3, we trapped a product of its transformation, 3SP, which we characterized crystallographically. For CO2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy (4Ir) is 5–8 times more active than x = methoxy (5Ir). Notably, ruthenium complex 4Ru showed 95% of the activity of 4Ir. For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4Ir ≫ 4Ru and 4Ir ≈ 5Ir. Secondary coordination sphere effects are important under basic hydrogenation conditions where the OH groups of 6,6′-dhbp are deprotonated and alkali metals can bind and help to activate CO2. Computational DFT studies have confirmed these trends and have been used to study the mechanisms of both CO2 hydrogenation and formic acid dehydrogenation. PMID:29540958

  6. Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal.

    PubMed

    Siek, Sopheavy; Burks, Dalton B; Gerlach, Deidra L; Liang, Guangchao; Tesh, Jamie M; Thompson, Courtney R; Qu, Fengrui; Shankwitz, Jennifer E; Vasquez, Robert M; Chambers, Nicole; Szulczewski, Gregory J; Grotjahn, Douglas B; Webster, Charles Edwin; Papish, Elizabeth T

    2017-03-27

    Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO 2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6'-dihydroxybipyridine (6,6'-dhbp)) for both their proton-responsive features and for metal-ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N -heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-py OR )Cl]OTf complexes where R = t Bu ( 1 ), H ( 2 ), or Me ( 3 ). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ir ) or methoxy ( 5 Ir ); 4 Ir was reported previously, but 5 Ir is new. The analogous ruthenium complexes were also tested using [(η 6 -cymene)Ru(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ru ) or methoxy ( 5 Ru ); 4 Ru and 5 Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1 , 2 , 3 , 5 Ir , and for two [Ag(NHC-py OR ) 2 ]OTf complexes 6 (R = t Bu) and 7 (R = Me). The aqueous catalytic studies of both CO 2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1 - 5 . In general, NHC-py OR complexes 1 - 3 were modest precatalysts for both reactions. NHC complexes 1 - 3 all underwent transformations under basic CO 2 hydrogenation conditions, and for 3 , we trapped a product of its transformation, 3 SP , which we characterized crystallographically. For CO 2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy ( 4 Ir ) is 5-8 times more active than x = methoxy ( 5 Ir ). Notably, ruthenium complex 4 Ru showed 95% of the activity of 4 Ir . For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4 Ir ≫ 4 Ru and 4 Ir ≈ 5 Ir . Secondary coordination sphere effects are important under basic hydrogenation conditions where the OH groups of 6,6'-dhbp are deprotonated and alkali metals can bind and help to activate CO 2 . Computational DFT studies have confirmed these trends and have been used to study the mechanisms of both CO 2 hydrogenation and formic acid dehydrogenation.

  7. Gold(I) and Gold(III) Complexes of Cyclic (Alkyl)(amino)carbenes

    PubMed Central

    2016-01-01

    The chemistry of Au(I) complexes with two types of cyclic (alkyl)(amino)carbene (CAAC) ligands has been explored, using the sterically less demanding dimethyl derivative Me2CAAC and the 2-adamantyl ligand AdCAAC. The conversion of (AdCAAC)AuCl into (AdCAAC)AuOH by treatment with KOH is significantly accelerated by the addition of tBuOH. (AdCAAC)AuOH is a convenient starting material for the high-yield syntheses of (AdCAAC)AuX complexes by acid/base and C–H activation reactions (X = OAryl, CF3CO2, N(Tf)2, C2Ph, C6F5, C6HF4, C6H2F3, CH2C(O)C6H4OMe, CH(Ph)C(O)Ph, CH2SO2Ph), while the cationic complexes [(AdCAAC)AuL]+ (L = CO, CNtBu) and (AdCAAC)AuCN were obtained by chloride substitution from (AdCAAC)AuCl. The reactivity toward variously substituted fluoroarenes suggests that (AdCAAC)AuOH is able to react with C–H bonds with pKa values lower than about 31.5. This, together with the spectroscopic data, confirm the somewhat stronger electron-donor properties of CAAC ligands in comparison to imidazolylidene-type N-heterocyclic carbenes (NHCs). In spite of this, the oxidation of Me2CAAC and AdCAAC gold compounds is much less facile. Oxidations proceed with C–Au cleavage by halogens unless light is strictly excluded. The oxidation of (AdCAAC)AuCl with PhICl2 in the dark gives near-quantitative yields of (AdCAAC)AuCl3, while [Au(Me2CAAC)2]Cl leads to trans-[AuCl2(Me2CAAC)2]Cl. In contrast to the chemistry of imidazolylidene-type gold NHC complexes, oxidation products containing Au–Br or Au–I bonds could not be obtained; whereas the reaction with CsBr3 cleaves the Au–C bond to give mixtures of [AdCAAC-Br]+[AuBr2]− and [(AdCAAC-Br)]+ [AuBr4]−, the oxidation of (AdCAAC)AuI with I2 leads to the adduct (AdCAAC)AuI·I2. Irrespective of the steric demands of the CAAC ligands, their gold complexes proved more resistant to oxidation and more prone to halogen cleavage of the Au–C bonds than gold(I) complexes of imidazole-based NHC ligands. PMID:26146436

  8. Dimensioning the Term Carbenoid.

    PubMed

    Caballero, Ana; Pérez, Pedro J

    2017-10-17

    The current use of the term carbenoid is discussed, particularly in the context of carbene transfer reactions from diazo compounds, in which intermediates of type L n M=CR 1 R 2 , or one of its resonance forms, are tagged which such a name. We discuss this issue, on the basis of the data evidencing the metal-carbene nature of those intermediates, as well as the existence of carbenoids of type (N 2 )(M)CR 1 R 2 en route to the formation to L n M=CR 1 R 2' from diazo reagents. We propose the exclusive use of the carbenoid term to species of type (X)(M)CR 1 R 2 with a tetrasubstituted carbon center that upon loss of X afford an effective carbene transfer process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Organocatalytic upgrading of furfural and 5-hydroxymethyl furfural to C10 and C12 furoins with quantitative yield and atom-efficiency.

    PubMed

    Zang, Hongjun; Chen, Eugene Y X

    2015-03-30

    There is increasing interest in the upgrading of C5 furfural (FF) and C6 5-hydroxymethyl furfural (HMF) into C10 and C12 furoins as higher energy-density intermediates for renewable chemicals, materials, and biofuels. This work utilizes the organocatalytic approach, using the in situ generated N,S-heterocyclic carbene catalyst derived from thiazolium ionic liquids (ILs), to achieve highly efficient self-coupling reactions of FF and HMF. Specifically, variations of the thiazolium IL structure have led to the most active and efficient catalyst system of the current series, which is derived from a new thiazolium IL carrying the electron-donating acetate group at the 5-ring position. For FF coupling by this IL (0.1 mol %, 60 °C, 1 h), when combined with Et3N, furoin was obtained in >99% yield. A 97% yield of the C12 furoin was also achieved from the HMF coupling by this catalyst system (10 mol % loading, 120 °C, 3 h). On the other hand, the thiazolium IL bearing the electron-withdrawing group at the 5-ring position is the least active and efficient catalyst. The mechanistic aspects of the coupling reaction by the thiazolium catalyst system have also been examined and a mechanism has been proposed.

  10. A Triatomic Silicon(0) Cluster Stabilized by a Cyclic Alkyl(amino) Carbene.

    PubMed

    Mondal, Kartik Chandra; Roy, Sudipta; Dittrich, Birger; Andrada, Diego M; Frenking, Gernot; Roesky, Herbert W

    2016-02-24

    Reduction of the neutral carbene tetrachlorosilane adduct (cAAC)SiCl4 (cAAC=cyclic alkyl(amino) carbene :C(CMe2)2 (CH2)N(2,6-iPr2C6H3) with potassium graphite produces stable (cAAC)3Si3, a carbene-stabilized triatomic silicon(0) molecule. The Si-Si bond lengths in (cAAC)3Si3 are 2.399(8), 2.369(8) and 2.398(8) Å, which are in the range of Si-Si single bonds. Each trigonal pyramidal silicon atom of the triangular molecule (cAAC)3Si3 possesses a lone pair of electrons. Its bonding, stability, and electron density distributions were studied by quantum chemical calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Heterocyclic amines: occurrence and prevention in cooked food.

    PubMed Central

    Robbana-Barnat, S; Rabache, M; Rialland, E; Fradin, J

    1996-01-01

    This article deals with the mutagenic heterocyclic amines, especially the aminoimidazoazaarenes family, isolated from cooked foods. The conditions which lead to their occurrence in foods are discussed. This formation primarily depends on the characteristics of the food, such as the type of the food and the presence of precursors, water, and lipids. Secondarily, it depends on the cooking modes where the temperature is considered to be the most important factor involved in their formation. As their formation during cooking represents a health risk, we present some ways and means to limit their formation by alternative cooking methods that tend to decrease heterocyclic amine concentrations in foods as they are implicated in cancer risks. PMID:8919766

  12. Efficient and Selective N-Methylation of Nitroarenes under Mild Reaction Conditions.

    PubMed

    Pedrajas, Elena; Sorribes, Iván; Guillamón, Eva; Junge, Kathrin; Beller, Matthias; Llusar, Rosa

    2017-09-21

    Herein, we report a straightforward protocol for the preparation of N,N-dimethylated amines from readily available nitro starting materials using formic acid as a renewable C 1 source and silanes as reducing agents. This tandem process is efficiently accomplished in the presence of a cubane-type Mo 3 PtS 4 catalyst. For the preparation of the novel [Mo 3 Pt(PPh 3 )S 4 Cl 3 (dmen) 3 ] + (3 + ) (dmen: N,N'-dimethylethylenediamine) compound we have followed a [3+1] building block strategy starting from the trinuclear [Mo 3 S 4 Cl 3 (dmen) 3 ] + (1 + ) and Pt(PPh 3 ) 4 (2) complexes. The heterobimetallic 3 + cation preserves the main structural features of its 1 + cluster precursor. Interestingly, this catalytic protocol operates at room temperature with high chemoselectivity when the 3 + catalyst co-exists with its trinuclear 1 + precursor. N-heterocyclic arenes, double bonds, ketones, cyanides and ester functional groups are well retained after N-methylation of the corresponding functionalized nitroarenes. In addition, benzylic-type as well as aliphatic nitro compounds can also be methylated following this protocol. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pincer-CNC mononuclear, dinuclear and heterodinuclear Au(III) and Pt(II) complexes supported by mono- and poly-N-heterocyclic carbenes: synthesis and photophysical properties.

    PubMed

    Gonell, S; Poyatos, M; Peris, E

    2016-04-07

    A family of cyclometallated Au(iii) and Pt(ii) complexes containing a CNC-pincer ligand (CNC = 2,6-diphenylpyridine) supported by pyrene-based mono- or bis-NHC ligands have been synthesized and characterized, together with the preparation of a Pt-Au hetero-dimetallic complex based on a Y-shaped tris-NHC ligand. The photophysical properties of all the new species and of two related Ru(ii)-arene complexes were studied and compared. Whereas the pyrene-based complexes only exhibit emission in solution, those containing the Y-shaped tris-NHC ligand are only luminescent when dispersed in poly(methyl methacrylate) (PMMA). In particular, the pyrene-based complexes were found to be emissive in the range of 373-440 nm, with quantum yields ranging from 3.1 to 6.3%, and their emission spectra were found to be almost superimposable, pointing to the fluorescent pyrene-centered nature of the emission. This observation suggests that the emission properties of the pyrene fragment may be combined with some of the numerous applications of NHCs as supporting ligands allowing, for instance, the design of biological luminescent agents.

  14. Iridium N-Heterocyclic Carbene Complexes as Efficient Catalysts for Magnetization Transfer from para-Hydrogen

    PubMed Central

    2011-01-01

    While the characterization of materials by NMR is hugely important in the physical and biological sciences, it also plays a vital role in medical imaging. This success is all the more impressive because of the inherently low sensitivity of the method. We establish here that [Ir(H)2(IMes)(py)3]Cl undergoes both pyridine (py) loss as well as the reductive elimination of H2. These reversible processes bring para-H2 and py into contact in a magnetically coupled environment, delivering an 8100-fold increase in 1H NMR signal strength relative to non-hyperpolarized py at 3 T. An apparatus that facilitates signal averaging has been built to demonstrate that the efficiency of this process is controlled by the strength of the magnetic field experienced by the complex during the magnetization transfer step. Thermodynamic and kinetic data combined with DFT calculations reveal the involvement of [Ir(H)2(η2-H2)(IMes)(py)2]+, an unlikely yet key intermediate in the reaction. Deuterium labeling yields an additional 60% improvement in signal, an observation that offers insight into strategies for optimizing this approach. PMID:21469642

  15. Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen.

    PubMed

    Cowley, Michael J; Adams, Ralph W; Atkinson, Kevin D; Cockett, Martin C R; Duckett, Simon B; Green, Gary G R; Lohman, Joost A B; Kerssebaum, Rainer; Kilgour, David; Mewis, Ryan E

    2011-04-27

    While the characterization of materials by NMR is hugely important in the physical and biological sciences, it also plays a vital role in medical imaging. This success is all the more impressive because of the inherently low sensitivity of the method. We establish here that [Ir(H)(2)(IMes)(py)(3)]Cl undergoes both pyridine (py) loss as well as the reductive elimination of H(2). These reversible processes bring para-H(2) and py into contact in a magnetically coupled environment, delivering an 8100-fold increase in (1)H NMR signal strength relative to non-hyperpolarized py at 3 T. An apparatus that facilitates signal averaging has been built to demonstrate that the efficiency of this process is controlled by the strength of the magnetic field experienced by the complex during the magnetization transfer step. Thermodynamic and kinetic data combined with DFT calculations reveal the involvement of [Ir(H)(2)(η(2)-H(2))(IMes)(py)(2)](+), an unlikely yet key intermediate in the reaction. Deuterium labeling yields an additional 60% improvement in signal, an observation that offers insight into strategies for optimizing this approach.

  16. NHC-catalysed benzoin condensation – is it all down to the Breslow intermediate?† †Electronic supplementary information (ESI) available: Characterisation data of products, substrates and catalysts, EPR and NMR spectra and progress curves as well as computational details are found. See DOI: 10.1039/c5sc02186c Click here for additional data file.

    PubMed Central

    Ruser, Stephanie-M.; Phan, Jenny

    2015-01-01

    The Breslow catalytic cycle describing the benzoin condensation promoted by N-heterocyclic carbenes (NHC) as proposed in the late 1950s has since then been tried by generations of physical organic chemists. Emphasis has been laid on proofing the existence of an enaminol like structure (Breslow intermediate) that explains the observed umpolung of an otherwise electrophilic aldehyde. The present study is not focusing on spectroscopic elucidation of a thiazolydene based Breslow intermediate but rather tries to clarify if this key-intermediate is indeed directly linked with the product side of the overall reaction. The here presented EPR-spectroscopic and computational data provide a fundamentally different view on how the benzoin condensation may proceed: a radical pair could be identified as a second key-intermediate that is derived from the Breslow-intermediate via an SET process. These results highlight the close relationship to the Cannizarro reaction and oxidative transformations of aldehydes under NHC catalysis. PMID:29449915

  17. C-H activation in Ir(III) and N-demethylation in Pt(II) complexes with mesoionic carbene ligands: examples of monometallic, homobimetallic and heterobimetallic complexes.

    PubMed

    Maity, Ramananda; Tichter, Tim; van der Meer, Margarethe; Sarkar, Biprajit

    2015-11-14

    Mononuclear Pt(II) and the first dinuclear Pt(II) complexes along with a cyclometalated heterobimetallic Ir(III)/Pd(II) complex bearing mesoionic carbene donor ligands are presented starting from the same bis-triazolium salt. The mononuclear Pt(II) complex possesses a free triazole moiety which is generated from the corresponding triazolium salt through an N-demethylation reaction, whereas the mononuclear Ir(III) complex features an unreacted triazolium unit.

  18. Metallosupramolecular Architectures Obtained from Poly-N-heterocyclic Carbene Ligands.

    PubMed

    Sinha, Narayan; Hahn, F Ekkehardt

    2017-09-19

    Over the past two decades, self-assembly of supramolecular architectures has become a field of intensive research due to the wide range of applications for the resulting assemblies in various fields such as molecular encapsulation, supramolecular catalysis, drug delivery, metallopharmaceuticals, chemical and photochemical sensing, and light-emitting materials. For these purposes, a large number of coordination-driven metallacycles and metallacages featuring different sizes and shapes have been prepared and investigated. Almost all of these are Werner-type coordination compounds where metal centers are coordinated by nitrogen and/or oxygen donors of polydentate ligands. With the evolving interest in the coordination chemistry of N-heterocyclic carbenes (NHCs), discrete supramolecular complexes held together by M-C NHC bonds have recently become of interest. The construction of such metallosupramolecular assemblies requires the synthesis of suitable poly-NHC ligands where the NHC donors form labile bonds with metal centers thus enabling the formation of the thermodynamically most stable reaction product. In organometallic chemistry, these conditions are uniquely met by the combination of poly-NHCs and silver(I) ions where the resulting assemblies also offer the possibility to generate new structures by transmetalation of the poly-NHC ligands to additional metal centers forming more stable C NHC -M bonds. Stable metallosupramolecular assemblies obtained from poly-NHC ligands feature special properties such as good solubility in many less polar organic solvents and the presence of the often catalyticlly active {M(NHC) n } moiety as building block. In this Account, we review recent developments in organometallic supramolecular architectures derived from poly-NHC ligands. We describe dinuclear (M = Ag I , Au I , Cu I ) tetracarbene complexes obtained from bis-NHC ligands with an internal olefin or two external coumarin pendants and their postsynthetic modification via a photochemically induced single or double [2 + 2] cycloaddition to form dinuclear tetracarbene complexes featuring cyclobutane units. Even three-dimensional cage-like structures can be prepared by this postsynthetic strategy. Cylinder-like trinuclear, tetranuclear, and hexanuclear (M = Ag I , Au I , Cu I , Hg II , Pd II ) complexes have been obtained from benzene-bridged tris-, tetrakis-, or hexakis-NHC ligands. These complexes resemble polynuclear assemblies obtained from related polydentate Werner-type ligands. Contrary to the Werner-type complexes, cylinder-like assemblies with three, four, or six silver(I) ions sandwiched in between two tris-, tetrakis-, or hexakis-NHC ligands undergo a facile transmetalation reaction to give the complexes featuring more stable M-C NHC bonds, normally with retention of the metallosupramolecular structure. This unique behavior of NHC-Ag + complexes allows the prepration of assemblies containing various metals from the poly-NHC silver(I) assemblies. Narcissistic self-sorting phenomena have also been observed for mixtures of selected poly-NHC ligands and silver(I) ions. Even a very early type of metallosupramolecular assembly, the tetranuclear molecular square, can be prepared from four bridging dicarbene ligands and four transition metal ions either by a stepwise assembly or by a single-step protocol. At this point, it appears that procedures for the synthesis of metallosupramolecular assemblies using polydentate Werner-type ligands and metal ions can be transferred to organometallic chemistry by using suitable poly-NHC ligands. The resulting structures feature stable M-C NHC bonds (with the exception of the labile C NHC -Ag + bond) when compared to M-N/M-O bonds in classical Werner-type complexes. The generally good solubility of the compounds and the presence of the often catalytically active {M(NHC) n } moiety make organometallic supramolecular complexes a promising new class of molecular hosts for catalytic transformations and encapsulation of selected substrates.

  19. Oxygenation of ruthenium carbene complexes containing naphthothiophene or naphthofuran: spectroscopic and DFT studies.

    PubMed

    Tsai, Fu-Yuan; Lo, Ji-Xian; Hsu, Hsin-Tzu; Lin, Ying-Chih; Huang, Shou-Ling; Wang, Ju-Chun; Liu, Yi-Hong

    2013-11-01

    The aryl propargylic alcohol 1-[2-(thiophen-3-yl)phenyl]prop-2-yn-1-ol (1a) is readily prepared from 2-(thiophen-3-yl)benzaldehyde. In the presence of visible light, treatment of 1a with one-half mole equivalent of [Ru]Cl ([Ru]=Cp(dppe)Ru) (dppe=1,2-bis(diphenylphosphino)ethane) and NH4PF6 in O2 affords the naphtha[2,1-b]thiophene-4-carbaldehyde (4a) in high yields. The cyclization reaction of 1a proceeds through the formation of the carbene complex 2a that contains the naphtha[2,1-b]thiophene ring, which is isolated in a 1:1 stoichiometric reaction. The C-C bond formation between the inner carbon of the terminal triple bond and the heterocyclic ring is confirmed by structure determination of 2a using single-crystal X-ray diffraction analysis. Facile oxygenation of 2a by O2 yields the aldehyde product 4a accompanied by the formation of phosphine oxide of dppe. Oxygen is most likely activated by coordination to the ruthenium center when one PPh2 unit of the dppe ligand dissociates. This dissociated PPh2 unit then reacts with the coordinated oxygen nearby to generate half-oxidized dppe ligand and an unobserved oxo-carbene intermediate. Coupling of the oxo/carbene ligands followed by demetalation then yields 4a. Presumably the resulting complex with the half-oxidized dppe ligand continuously promotes cyclization/oxygenation of 1a to yield the second aldehyde molecule. In alcohol such as MeOH or EtOH, the oxygenation reaction affords a mixture of 4a and the corresponding esters 5a or 5a'. Four other aryl propargylic alcohols 1b-e, which contain thiophen-2-yl, isopropenyl, fur-3-yl, and fur-2-yl, respectively, on the aryl ring are also prepared. Analogous aldehydes 4b-e are similarly prepared from 1b-e, respectively. For oxygenations of 1b, 1d, and 1e in alcohol, mixtures of aldehyde 4, ester 5, and acetal 8 are obtained. The carbene complex 2b obtained from 1b was also characterized by single-crystal X-ray diffraction analysis. The UV/Vis spectra of 2a and 2b consist of absorption bands with a high extinction coefficient. From DFT calculations on 2a and 2b, the visible light is found to populate the LUMO antibonding orbital of mainly Ru=C bonds, thereby weakening the Ru=C bond and promoting the oxygenation/demetalation reactions of 2. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Organocatalytic Upgrading of Furfural and 5-Hydroxymethyl Furfural to C10 and C12 Furoins with Quantitative Yield and Atom-Efficiency

    PubMed Central

    Zang, Hongjun; Chen, Eugene Y. X.

    2015-01-01

    There is increasing interest in the upgrading of C5 furfural (FF) and C6 5-hydroxymethyl furfural (HMF) into C10 and C12 furoins as higher energy-density intermediates for renewable chemicals, materials, and biofuels. This work utilizes the organocatalytic approach, using the in situ generated N,S-heterocyclic carbene catalyst derived from thiazolium ionic liquids (ILs), to achieve highly efficient self-coupling reactions of FF and HMF. Specifically, variations of the thiazolium IL structure have led to the most active and efficient catalyst system of the current series, which is derived from a new thiazolium IL carrying the electron-donating acetate group at the 5-ring position. For FF coupling by this IL (0.1 mol %, 60 °C, 1 h), when combined with Et3N, furoin was obtained in >99% yield. A 97% yield of the C12 furoin was also achieved from the HMF coupling by this catalyst system (10 mol % loading, 120 °C, 3 h). On the other hand, the thiazolium IL bearing the electron-withdrawing group at the 5-ring position is the least active and efficient catalyst. The mechanistic aspects of the coupling reaction by the thiazolium catalyst system have also been examined and a mechanism has been proposed. PMID:25830482

  1. Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene

    DOE PAGES

    Xu, Songchen; Boschen, Jeffery S.; Biswas, Abhranil; ...

    2015-08-17

    An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ³-N,Si,C-PhB(Ox Me²)(Ox Me²SiHPh)Im Mes}Rh(H)CO][HB(C₆F₅)₃] (2, Ox Me² = 4,4-dimethyl-2-oxazoline; Im Mes = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(Ox Me²)₂Im Mes}RhH(SiH 2Ph)CO (1) and B(C 6F 5) 3. The unusual oxazoline-coordinated silylene structure in 2 is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(Ox Me²)₂Im Mes}RhH(SiHPh)CO][HB(C₆F₅)₃] generated by H abstraction. Complex 2 catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced bymore » the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenation of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C₆F₅)₃ catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH₃ as the reducing agent.« less

  2. Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songchen; Boschen, Jeffery S.; Biswas, Abhranil

    An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ³-N,Si,C-PhB(Ox Me²)(Ox Me²SiHPh)Im Mes}Rh(H)CO][HB(C₆F₅)₃] (2, Ox Me² = 4,4-dimethyl-2-oxazoline; Im Mes = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(Ox Me²)₂Im Mes}RhH(SiH 2Ph)CO (1) and B(C 6F 5) 3. The unusual oxazoline-coordinated silylene structure in 2 is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(Ox Me²)₂Im Mes}RhH(SiHPh)CO][HB(C₆F₅)₃] generated by H abstraction. Complex 2 catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced bymore » the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenation of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C₆F₅)₃ catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH₃ as the reducing agent.« less

  3. A DFT and structural investigation of the conformations of Fischer carbene complexes

    NASA Astrophysics Data System (ADS)

    Landman, Marilé

    2015-09-01

    A set of different Fischer carbene complexes of group VI and VII metals, with varied heteroatom and heteroaromatic substituents on the carbene carbon atom, was studied. Density functional theory as well as single crystal diffraction techniques were employed to investigated the most stable conformation of these complexes. The complexes studied, [M(CO)4L{C(X)Z}], with L = PPh3 or CO, X = ethoxy (-OCH2CH3) or amino (-NH2 or NHCy) substituents as the heteroatom carbene substituents, Z = 2-furyl (-C4H3O), 2-thienyl (-C4H3S), 2-(N-methyl)pyrrolyl (-C4H3NCH3) as the second carbene substituent had their substituents varied systematically to give all the possible conformations of these complexes. The conformations of the complexes, in particular the relative orientations of the heteroatoms in the molecule (syn vs. anti), E/Z isomerism in the aminocarbene complexes and cis/trans isomerism in the ligand substituted complexes as well as various combinations of these aspects, were studied. In general, it was found that the most stable conformation theoretically as well as in the solid state for most of the complexes preferred the syn conformation. The Z-isomer is generally preferred over the E isomer while the cis is more predominant than the trans isomer. Using DFT and NBO calculations, explanations for the preferred conformations were explored. It was concluded that both steric and electronic factors influence the conformations of the carbene complexes, with the extent of contribution of these two factors varying for each of the different carbene substituents.

  4. Selenium containing imidazolium salt in designing single source precursors for silver bromide and selenide nano-particles.

    PubMed

    Joshi, Hemant; Sharma, Kamal Nayan; Singh, Ved Vati; Singh, Pradhumn; Singh, Ajai Kumar

    2013-02-21

    The AgBr and Ag(2)Se nanoparticles (NPs) have been synthesized for the first time from two single source precursors ([Ag(2)(L)(2)Br(2)] (1) and [Ag(L-HBr)(2)]BF(4) (2) respectively) designed using the same ligand 3-benzyl-1-(2-phenylselanyl-ethyl)-3H-imidazolium bromide (L). The ODE-ODA-OA (1 : 1 : 2) and TOP-OA (1 : 2) are most suitable solvents for thermolysis of 1 and 2 respectively, resulting in the NPs. The composition of the solvent used in thermolysis affects the purity of NPs. The bonding of L in 1 is unique, as it has a pre-carbene site intact.

  5. On the absolute photoionization cross section and dissociative photoionization of cyclopropenylidene.

    PubMed

    Holzmeier, Fabian; Fischer, Ingo; Kiendl, Benjamin; Krueger, Anke; Bodi, Andras; Hemberger, Patrick

    2016-04-07

    We report the determination of the absolute photoionization cross section of cyclopropenylidene, c-C3H2, and the heat of formation of the C3H radical and ion derived by the dissociative ionization of the carbene. Vacuum ultraviolet (VUV) synchrotron radiation as provided by the Swiss Light Source and imaging photoelectron photoion coincidence (iPEPICO) were employed. Cyclopropenylidene was generated by pyrolysis of a quadricyclane precursor in a 1 : 1 ratio with benzene, which enabled us to derive the carbene's near threshold absolute photoionization cross section from the photoionization yield of the two pyrolysis products and the known cross section of benzene. The cross section at 9.5 eV, for example, was determined to be 4.5 ± 1.4 Mb. Upon dissociative ionization the carbene decomposes by hydrogen atom loss to the linear isomer of C3H(+). The appearance energy for this process was determined to be AE(0K)(c-C3H2; l-C3H(+)) = 13.67 ± 0.10 eV. The heat of formation of neutral and cationic C3H was derived from this value via a thermochemical cycle as Δ(f)H(0K)(C3H) = 725 ± 25 kJ mol(-1) and Δ(f)H(0K)(C3H(+)) = 1604 ± 19 kJ mol(-1), using a previously reported ionization energy of C3H.

  6. Heterocyclic N-Oxides – An Emerging Class of Therapeutic Agents

    PubMed Central

    Mfuh, Adelphe M.; Larionov, Oleg V.

    2016-01-01

    Heterocyclic N-oxides have emerged as potent compounds with anticancer, antibacterial, antihypertensive, antiparasitic, anti-HIV, anti-inflammatory, herbicidal, neuroprotective, and procognitive activities. The N-oxide motif has been successfully employed in a number of recent drug development projects. This review surveys the emergence of this scaffold in the mainstream medicinal chemistry with a focus on the discovery of the heterocyclic N-oxide drugs, N-oxide-specific mechanisms of action, drug-receptor interactions and synthetic avenues to these compounds. As the first review on this subject that covers the developments since 1950s to date, it is expected that it will inspire wider implementation of the heterocyclic N-oxide motif in the rational design of new medicinal agents. PMID:26087764

  7. Singlet-triplet energy differences in divalent five membered cyclic conjugated Arduengo-type carbenes XC2HN2M (M = C, Si, Ge, Sn, and Pb; X = F, Cl, Br, and I)

    NASA Astrophysics Data System (ADS)

    Vessally, Esmail; Dehbandi, Behnam; Ahmadi, Elaheh

    2016-09-01

    Singlet-triplet energy differences in Arduengo-type carbenes XC2HN2C compared and contrasted with their sila, germa, stana and plumba analogues; at B3LYP/6-311++G** level of theory. Free Gibbs energy differences between triplet (t) and singlet (s) states (Δ G(t-s)) change in the following order: plumbylenes > stannylenes > germylenes > silylenes > carbenes. The singlet states in XC2HN2C are generally more stable when the electron withdrawing groups such as-F was used at β-position. However, the singlet states in XC2N2HM (M = Si, Ge, Sn, and Pb) are generally more stable when the withdrawing groups such as-F was placed. The puckering energy is investigated for each the singlet and triplet states. The DFT calculations found the linear correlation to size of the group 14 divalent element (M), the ∠N-M-N angle, and the Δ(LUMO-HOMO) of XC2HN2M.

  8. Exploring the Fate of Nitrogen Heterocycles in Complex Prebiotic Mixtures

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Cleaves, Henderson J.; Dworkin, Jason P.; House, Christopher H.

    2011-01-01

    A long standing question in the field of prebiotic chemistry is the origin of the genetic macromolecules DNA and RNA. DNA and RNA have very complex structures with repeating subunits of nucleotides, which are composed of nucleobases (nitrogen heterocycles) connected to sugar-phosphate. Due to the instability of some nucleobases (e.g. cytosine), difficulty of synthesis and instability of D-ribose, and the likely scarcity of polyphosphates necessary for the modern nucleotides, alternative nucleotides have been proposed for constructing the first genetic material. Thus, we have begun to investigate the chemistry of nitrogen heterocycles in plausible, complex prebiotic mixtures in an effort to identify robust reactions and potential alternative nucleotides. We have taken a complex prebiotic mixture produced by a spark discharge acting on a gas mixture of N2, CO2, CH4, and H2, and reacted it with four nitrogen heterocycles: uracil, 5-hydroxymethyluracil, guanine, and isoxanthopterin (2-amino-4,7-dihydroxypteridine). The products of the reaction between the spark mixture and each nitrogen heterocycle were characterized by liquid chromatography coupled to UV spectroscopy and Orbitrap mass spectrometry. We found that the reaction between the spark mixtUl'e and isoxanthopterin formed one major product, which was a cyanide adduct. 5-hydroxymethyluracil also reacted with the spark mixture to form a cyanide adduct, uracil-5-acetonitrile, which has been synthesized previously by reacting HCN with S-hydroxymethyluracil. Unlike isoxanthopterin, the chromatogram of the 5-hydroxymethyluracil reaction was much more complex with multiple products including spark-modified dimers. Additionally, we observed that HMU readily self-polymerizes in solution to a variety of oligomers consistent with those suggested by Cleaves. Guanine and uracil, the biological nucleobases, did not react with the spark mixture, even at high temperature (100 C). This suggests that there are alternative nucleobases which are more reactive under prebiotic conditions and may have been involved in producing precursor nucleotides.

  9. Synthesis of precursors to and spectroscopic characterization of highly unsaturated carbenes and diradicals and development and implementation of a web-based stereochemistry tutorial

    NASA Astrophysics Data System (ADS)

    Burrmann, Nicola Jean

    A variety of substituted diynols, diynals, and diynones have been prepared en route to the synthesis of precursors to dialkynyl carbenes (R1--C≡C--C--C≡C--R 2). In light of the unique reactivity associated with these simple systems, several strategies were required to assemble the carbon backbones (Chapter I). Tosylhydrazone and trisylhydrazone precursors to 2-diazo-3-pentyne ( 1), 2-diazo-3-butyne (2), and Idiazo-2-butyne ( 3) were synthesized and then converted into their respective diazo compounds. Various attempts to study these diazo compounds using matrix isolation IR and EPR spectroscopy were made and proved to be unsuccessful. Computations were done to characterize the C5H6 potential energy surface, as well as to determine the IR vibrational frequencies of the isomers on this surface (Chapter 2). A web-based Stereochemistry Tutorial that details the core definitions and structural representations relevant to organic stereochemistry was designed and implemented into several introductory-level organic chemistry classes. This tutorial also allows for students to select their preferred structural representation and method for making stereochemical comparisons between molecules. The tutorial was evaluated, either qualitatively, quantitatively, or both, by students in three different introductory organic chemistry courses at the University of Wisconsin---Madison. The data show that students did use a variety of different methods for making stereochemical comparisons between molecules, and that prior exposure to lectures on stereochemistry by the course professor strongly influenced these choices. Furthermore, the level of improvement in stereochemical knowledge as a result of using only the tutorial was comparable to, or higher than, that achieved by students who were only exposed to lectures by the course professor, regardless of the method chosen for making stereochemical comparisons between molecules (Chapter 3)

  10. Highly Reactive, General and Long-Lived Catalysts for Palladium-Catalyzed Amination of Heteroaryl and Aryl Chlorides, Bromides and Iodides: Scope and Structure-Activity Relationships

    PubMed Central

    Shen, Qilong; Ogata, Tokutaro; Hartwig, John F.

    2010-01-01

    We describe a systematic study of the scope and relationship between ligand structure and activity for a highly efficient and selective class of catalysts for the amination of heteroaryl and aryl chlorides, bromides and iodides containing sterically hindered chelating alkylphosphines. In the presence of this catalyst, aryl and heteroaryl chlorides, bromides and iodides react with many primary amines in high yields with part-per-million quantities of palladium precursor and ligand. Many reactions of primary amines with both heteroaryl and aryl chlorides, bromides and iodides occur to completion with 0.0005-0.05 mol % catalysts. A comparison of the reactivity of this catalyst for coupling of primary amines at these loadings is made with catalysts generated from hindered monophosphines and carbenes, and these data illustrate the benefits of chelation. Thus, these complexes constitute a fourth-generation catalyst for the amination of aryl halides, whose activity complements catalysts based on monophosphines and carbenes. PMID:18444639

  11. Toward organometallic (99m)Tc imaging agents: synthesis of water-stable (99)Tc-NHC complexes.

    PubMed

    Benz, Michael; Spingler, Bernhard; Alberto, Roger; Braband, Henrik

    2013-11-20

    (99)Tc(V)O2-NHC complexes containing monodentate and bidentate N-heterocyclic carbenes (NHCs) have been prepared by the reactions of [TcO(glyc)2](-) (glyc = ethyleneglycolato) with 1,3-dimethylimidazoline-2-ylidene (L1), 1,1'-methylene-3,3'-dimethyl-4,4'-diimidazoline-2,2'-diylidene (L2), and 1,1'-methylene-3,3'-diethyl-4,4'-diimidazoline-2,2'-diylidene (L3) in THF. The resulting complexes were fully characterized and their stabilities investigated. While complexes with monodentate NHCs only are hydrolytically unstable, complexes containing bidentate NHCs are water-stable over a broad pH range. The high water stability allows interconversion of the {(99)Tc(V)O2}(+) core into {(99)Tc(V)OCl}(2+) with HCl as the H(+) and Cl(-) source. An alternative procedure to obtain (99)Tc(V)O2-NHC complexes is the in situ deprotonation of imidazolium salts, enabling the preparation of (99)Tc(V)O2-NHC compounds without free NHCs, thus increasing the scope of NHC ligands drastically. The remarkable stability and pH-controllable reactivity of the new complexes underlines the potential of NHCs as stabilizing ligands for (99)Tc complexes and paves the way for the first (99m)Tc-NHC complexes in the future.

  12. Electrochemistry of 1,1'-bis(2,4-dialkylphosphetanyl)ferrocene and 1,1'-bis(2,5-dialkylphospholanyl)ferrocene ligands: free phosphines, metal complexes, and chalcogenides.

    PubMed

    Mandell, Chelsea L; Kleinbach, Shannon S; Dougherty, William G; Kassel, W Scott; Nataro, Chip

    2010-10-18

    The oxidative electrochemistries of a series of chiral bisphosphinoferrocene ligands, 1,1'-bis(2,4-dialkylphosphetanyl)ferrocene (FerroTANE) and 1,1'-bis(2,5-dialkylphospholanyl)ferrocene (FerroLANE), were examined. The reversibility of the oxidation is sensitive to the steric bulk of the alkyl groups. New transition metal compounds and phosphine chalcogenides of these ligands were prepared and characterized. X-ray crystal structures of 10 of these compounds are reported. The percent buried volume (%V(bur)) is a recently developed measurement based on crystallographic data that examines the steric bulk of N-heterocyclic carbene and phosphine ligands. The %V(bur) for the FerroTANE and FerroLANE structures with methyl or ethyl substituents suggests these ligands are similar in steric properties to 1,1'-bis(diphenylphosphino)ferrocene (dppf). In addition the %V(bur) has been found to correlate well with the Tolman cone angle for phosphine chalcogenides. The oxidative electrochemistries of the transition metal complexes occur at more positive potentials than the free ligands. While a similar positive shift is seen for the oxidative electrochemistries of the phosphine chalcogenides, the oxidation of the phosphine selenides does not occur at the iron center, but rather oxidation occurs at the selenium atoms.

  13. Late metal carbene complexes generated by multiple C-H activations: examining the continuum of M=C bond reactivity.

    PubMed

    Whited, Matthew T; Grubbs, Robert H

    2009-10-20

    Unactivated C(sp(3))-H bonds are ubiquitous in organic chemicals and hydrocarbon feedstocks. However, these resources remain largely untapped, and the development of efficient homogeneous methods for hydrocarbon functionalization by C-H activation is an attractive and unresolved challenge for synthetic chemists. Transition-metal catalysis offers an attractive possible means for achieving selective, catalytic C-H functionalization given the thermodynamically favorable nature of many desirable partial oxidation schemes and the propensity of transition-metal complexes to cleave C-H bonds. Selective C-H activation, typically by a single cleavage event to produce M-C(sp(3)) products, is possible through myriad reported transition-metal species. In contrast, several recent reports have shown that late transition metals may react with certain substrates to perform multiple C-H activations, generating M=C(sp(2)) complexes for further elaboration. In light of the rich reactivity of metal-bound carbenes, such a route could open a new manifold of reactivity for catalytic C-H functionalization, and we have targeted this strategy in our studies. In this Account, we highlight several early examples of late transition-metal complexes that have been shown to generate metal-bound carbenes by multiple C-H activations and briefly examine factors leading to the selective generation of metal carbenes through this route. Using these reports as a backdrop, we focus on the double C-H activation of ethers and amines at iridium complexes supported by Ozerov's amidophosphine PNP ligand (PNP = [N(2-P(i)Pr(2)-4-Me-C(6)H(3))(2)](-)), allowing isolation of unusual square-planar iridium(I) carbenes. These species exhibit reactivity that is distinct from the archetypal Fischer and Schrock designations. We present experimental and theoretical studies showing that, like the classical square-planar iridium(I) organometallics, these complexes are best described as nucleophilic at iridium. We discuss the classification of this reactivity in the context of a scheme originally delineated by Roper. These "Roper-type" carbenes perform a number of multiple-bond metatheses leading to atom and group transfer from electrophilic heterocumulene (e.g., CO(2), CS(2), PhNCS) and diazo (e.g., N(2)O, AdN(3)) reagents. In one instance, we have extended this methodology to a process for catalytic C-H functionalization by a double C-H activation-group transfer process. Although the scope of these reactions is currently limited, these new pathways may find broader utility as the reactivity of late-metal carbenes continues to be explored. Examination of alternative transition metals and supporting ligand sets will certainly be important. Nonetheless, our findings show that carbene generation by double C-H activation is a viable strategy for C-H functionalization, leading to products not accessible through traditional C(sp(3))-H activation pathways.

  14. One-Pot Two-Step Multicomponent Process of Indole and Other Nitrogenous Heterocycles or Amines toward α-Oxo-acetamidines.

    PubMed

    Martinez-Ariza, Guillermo; McConnell, Nicholas; Hulme, Christopher

    2016-04-15

    A cesium carbonate promoted three-component reaction of N-H containing heterocycles, primary or secondary amines, arylglyoxaldehydes, and anilines is reported. The key step involves a tandem sequence of N-1 addition of a heterocycle or an amine to preformed α-iminoketones, followed by an air- or oxygen-mediated oxidation to form α-oxo-acetamidines. The scope of the reaction is enticingly broad, and this novel methodology is applied toward the synthesis of various polycyclic heterocycles.

  15. Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: conversion of phenols and N-heterocyclic compounds.

    PubMed

    Yang, Libin; Si, Buchun; Martins, Marcio Arêdes; Watson, Jamison; Chu, Huaqiang; Zhang, Yuanhui; Tan, Xiaobo; Zhou, Xuefei; Zhang, Yalei

    2017-04-01

    Hydrothermal liquefaction is a promising technology to convert wet biomass into bio-oil. However, post-hydrothermal liquefaction wastewater (PHWW) is also produced during the process. This wastewater contains a high concentration of organic compounds, including phenols and N-heterocyclic compounds which are two main inhibitors for biological treatment. Thus, proper treatment is required. In this work, ozone was used to convert phenols and N-heterocyclic compounds with a dosage range of 0-4.64 mg O 3 /mL PHWW. After ozone treatment, the phenols were fully converted, and acids were produced. However, N-heterocyclic compounds were found to have a low conversion rate (21.7%). The kinetic analysis for the degradation of phenols and N-heterocyclic compounds showed that the substitute played an important role in determining the priority of ozone reactions. The OH moiety in the ring compounds (phenols and pyridinol) may form hydroxyl radical, which lead to an efficient reaction. A substantial improved biodegradability of PHWW was observed after ozone treatment. The ratio of BOD 5 /COD was increased by about 32.36%, and reached a maximum of 0.41. The improved biodegradability of PHWW was justified by the conversion of phenols and N-heterocyclic compounds.

  16. The development and catalytic uses of N-heterocyclic carbene gold complexes.

    PubMed

    Nolan, Steven P

    2011-02-15

    Gold has emerged as a powerful synthetic tool in the chemist's arsenal. From the early use of inorganic salts such as AuCl and AuCl(3) as catalysts, the field has evolved to explore ligands that fine-tune reactivity, stability, and, more recently, selectivity in gold-mediated processes. Substrates generally contain alkenes or alkynes, and they usually involve straightforward protocols in air with solvents that can often times be of technical grade. The actual catalytic species is the putative cationic gold(I) complex [Au(L)](+) (where L is a phosphorus-based species or N-heterocyclic carbene, NHC). The early gold systems bearing phosphine and phosphite ligands provided important transformations and served as useful mechanistic probes. More recently, the use of NHCs as ligands for gold has rapidly gained in popularity. These two-electron donor ligands combine strong σ-donating properties with a steric profile that allows for both stabilization of the metal center and enhancement of its catalytic activity. As a result, the gold-NHC complexes have been used as well-defined precatalysts and have permitted the isolation of reactive single-component systems that are now used instead of the initial [Au(L)Cl]/silver salt method. Because some are now commercially available, NHC-containing gold(I) complexes are gathering increasing interest. In this Account, we describe the chronological development of this chemistry in our laboratories, highlighting the advantages of this family of gold complexes and reviewing their synthesis and applications in catalysis. We first outline the syntheses, which are straightforward. The complexes generally exhibit high stability, allowing for indefinite storage and easy handling. We next consider catalysis, particularly examining efficacy in cycloisomerization, other skeletal rearrangements, addition of water to alkynes and nitriles, and C-H bond activation. These processes are quite atom-economical, and in the most recent C-H reactions the only byproduct is water. State-of-the-art methodology now involves single-component catalysts, precluding the need for costly silver co-catalysts. Remarkably, the use of an NHC as a supporting ligand has permitted the isolation of [Au(L)(S)](+) species (where S is a solvent molecule such as a nitrile), which can act as single-component catalysts. Some improvements are still needed, as the single components are most often synthesized with a silver reagent. Owing to the stabilizing effect of NHC coordination, some NHC-containing systems can catalyze extremely challenging reactions (at temperatures as high as 140 °C) and react at very low loadings of gold (ppm levels). Our latest developments deal with C-H bond functionalization and hold great promise. We close with a selection of important developments by the community with gold-NHC complexes. As demonstrated by the turns and twists encountered during our own journey in the gold-NHC venture, the chemistry described here, combining fundamental organometallic, catalytic, and organic methodology, remains rich in opportunities, especially considering that only a handful of gold(I) architectures has been studied. We hope this Account will encourage young researchers to explore this emerging area, as the adage "the more you do, the more you have to do" surely holds true in gold-mediated catalysis.

  17. Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions.

    PubMed

    Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2013-02-19

    Transition-metal-catalyzed carbene transformations and cross-couplings represent two major reaction types in organometallic chemistry and organic synthesis. However, for a long period of time, these two important areas have evolved separately, with essentially no overlap or integration. Thus, an intriguing question has emerged: can cross-coupling and metal carbene transformations be merged into a single reaction cycle? Such a combination could facilitate the development of novel carbon-carbon bond-forming methodologies. Although this concept was first explored about 10 years ago, rapid developments inthis area have been achieved recently. Palladium catalysts can be used to couple diazo compounds with a wide variety of organic halides. Under oxidative coupling conditions, diazo compounds can also react with arylboronic acids and terminal alkynes. Both of these coupling reactions form carbon-carbon double bonds. As the key step in these catalytic processes, Pd carbene migratory insertion plays a vital role in merging the elementary steps of Pd intermediates, leading to novel carbon-carbon bond formations. Because the diazo substrates can be generated in situ from N-tosylhydrazones in the presence of base, the N-tosylhydrazones can be used as reaction partners, making this type of cross-coupling reaction practical in organic synthesis. N-Tosylhydrazones are easily derived from the corresponding aldehydes or ketones. The Pd-catalyzed cross-coupling of N-tosylhydrazones is considered a complementary reaction to the classic Shapiro reaction for converting carbonyl functionalities into carbon-carbon double bonds. It can also serve as an alternative approach for the Pd-catalyzed cross-coupling of carbonyl compounds, which is usually achieved via triflates. The combination of carbene formation and cross-coupling in a single catalytic cycle is not limited to Pd-catalyzed reactions. Recent studies of Cu-, Rh-, Ni-, and Co-catalyzed cross-coupling reactions with diazo compounds or N-tosylhydrazones show that these transformations also work with other transition metals, demonstrating the generality of the diazo compounds as new cross-coupling partners in transition-metal-catalyzed coupling reactions.

  18. Ionic liquids as an electrolyte for the electro synthesis of organic compounds.

    PubMed

    Kathiresan, Murugavel; Velayutham, David

    2015-12-25

    The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed. To date several ILs exist, however the ILs based on tetraalkylammonium, pyrrolidinium, piperidinium and imidazolium cations with BF4(-), PF6(-), and TFSI anions have been widely used and explored the most. Electro organic synthesis in ionic liquid media leading to the synthesis of a wide range of organic compounds has been discussed. Anodic oxidation or cathodic reduction will generate radical cation or anion intermediates, respectively. These radicals can undergo self coupling or coupling with other molecules yielding organic compounds of interest. The cation of the IL is known to stabilize the radical anion extensively. This stabilization effect has a specific impact on the electrochemical CO2 reduction and coupling to various organics. The relative stability of the intermediates in IL leads to the formation of specific products in higher yields. Electrochemical reduction of imidazolium or thiazolium based ILs generates N-heterocyclic carbenes that have been shown to catalyze a wide range of base or nucleophile catalyzed organic reactions in IL media, an aspect that falls into the category of organocatalysis. Electrochemical fluorination or selective electrochemical fluorination is another fascinating area that delivers selectively fluorinated organic products in Et3N·nHF or Et4NF·nHF adducts (IL) via anodic oxidation. Oxidative polymerization in ILs has been explored the most; although morphological changes were observed compared to the conventional methods, polymers were obtained in good yields and in some cases ILs were used as dopants to improve the desired properties.

  19. Gold(I)-assisted catalysis - a comprehensive view on the [3,3]-sigmatropic rearrangement of allyl acetate

    NASA Astrophysics Data System (ADS)

    Freindorf, Marek; Cremer, Dieter; Kraka, Elfi

    2018-03-01

    The unified reaction valley approach (URVA) combined with the local mode, ring puckering and electron density analysis is applied to elucidate the mechanistic differences of the non-catalysed and the Au[I]-N-heterocyclic carbene (NHC)-catalysed [3,3]-sigmatropic rearrangement of allyl acetate. Using a dual-level approach (DFT and DLPNO-CCSD(T)), the influence of solvation, counter-ions, bulky and electron withdrawing/donating substituents as well as the exchange of the Au[I]-NHC with a Au[I]-phosphine catalyst is investigated. The catalyst breaks up the rearrangement into two steps by switching between Au[I]-π and Au[I]-σ complexation, thus avoiding the energy-consuming CO cleavage in the first step. Based on local stretching force constants ka(C=C), we derive for the first time a quantitative measure of the π-acidity of the Au[I] catalyst; in all catalysed reactions, the bond order n(C=C) drops from 2 to 1.65. The ring puckering analysis clarifies that all reactions start and end via a six-membered ring with a boat form. All Au[I]-σ-complex intermediates show a considerable admixture of the chair form. The non-catalysed [3,3]-sigmatropic rearrangement goes through a maximum of charge separation between the allyl and acetate units at the transition state, while all catalysed reactions proceed via a minimum of charge separation reached in the region of the Au[I]-σ-complex.

  20. Isolatable organophosphorus(III)-tellurium heterocycles.

    PubMed

    Nordheider, Andreas; Chivers, Tristram; Schön, Oliver; Karaghiosoff, Konstantin; Athukorala Arachchige, Kasun S; Slawin, Alexandra M Z; Woollins, J Derek

    2014-01-13

    A new structural arrangement Te3 (RP(III) )3 and the first crystal structures of organophosphorus(III)-tellurium heterocycles are presented. The heterocycles can be stabilized and structurally characterized by the appropriate choice of substituents in Tem (P(III) R)n (m=1: n=2, R=OMes* (Mes*=supermesityl or 2,4,6-tri-tert-butylphenyl); n=3, R=adamantyl (Ad); n=4, R=ferrocene (Fc); m=n=3: R=trityl (Trt), Mesor by the installation of a P(V) 2 N2 anchor in RP(III) [TeP(V) (tBuN)(μ-NtBu)]2 (R=Ad, tBu). Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of polyimide foams with blowing agents

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Sorathia, Usman A. K. (Inventor); Lee, Raymond (Inventor)

    1985-01-01

    A method of preparing a polyimide foam which includes the steps of: preparing, foaming, and curing a precursor containing at least one alkyl ester of 3,3'4,4'-benzophenonetetracarboxylic acid; a meta- or para-substituted aromatic diamine; a heterocyclic diamine; an aliphatic diamine; and a solid blowing agent. The blowing agent is added to said precursor in a concentration which is sufficient to effect at least one of the following attributes of the foam: cell size, proportion of open cells, cell density, and indentation load deflection.

  2. SnAP reagents for the one-step synthesis of medium-ring saturated N-heterocycles from aldehydes

    NASA Astrophysics Data System (ADS)

    Vo, Cam-Van T.; Luescher, Michael U.; Bode, Jeffrey W.

    2014-04-01

    Interest in saturated N-heterocycles as scaffolds for the synthesis of bioactive molecules is increasing. Reliable and predictable synthetic methods for the preparation of these compounds, especially medium-sized rings, are limited. We describe the development of SnAP (Sn amino protocol) reagents for the transformation of aldehydes into seven-, eight- and nine-membered saturated N-heterocycles. This process occurs under mild, room-temperature conditions and offers exceptional substrate scope and functional-group tolerance. Air- and moisture-stable SnAP reagents are prepared on a multigram scale from inexpensive starting materials by simple reaction sequences. These new reagents and processes allow widely available aryl, heteroaryl and aliphatic aldehydes to be converted into diverse N-heterocycles, including diazepanes, oxazepanes, diazocanes, oxazocanes and hexahydrobenzoxazonines, by a single synthetic operation.

  3. The divergent synthesis of nitrogen heterocycles by rhodium(II)-catalyzed cycloadditions of 1-sulfonyl 1,2,3-triazoles with 1,3-dienes.

    PubMed

    Shang, Hai; Wang, Yuanhao; Tian, Yu; Feng, Juan; Tang, Yefeng

    2014-05-26

    The first rhodium(II)-catalyzed aza-[4+3] cycloadditions of 1-sulfonyl 1,2,3-triazoles with 1,3-dienes have been developed, and enable the efficient synthesis of highly functionalized 2,5-dihydroazepines from readily available precursors. In some cases, the reaction pathway could divert to formal aza-[3+2] cycloadditions, thus leading to 2,3-dihydropyrroles. In this context, the titled reaction represents a capable tool for the divergent synthesis of two types of synthetically valuable aza-heterocycles from common rhodium(II) iminocarbene intermediates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Heterobimetallic Pd–K carbene complexes via one-electron reductions of palladium radical carbenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Peng; Hoffbauer, Melissa R.; Vyushkova, Mariya

    2016-03-24

    Unprecedented sequential substitution/reduction synthetic strategy on the Pd radical carbenes afforded heterobimetallic Pd–K carbene complexes, which features novel Pd–C carbene–K structural moieties.

  5. Heterobimetallic Pd–K carbene complexes via one-electron reductions of palladium radical carbenes

    DOE PAGES

    Cui, Peng; Hoffbauer, Melissa R.; Vyushkova, Mariya; ...

    2016-01-01

    Unprecedented sequential substitution/reduction synthetic strategy on the Pd radical carbenes afforded heterobimetallic Pd–K carbene complexes, which features novel Pd–C carbene–K structural moieties.

  6. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  7. The Oxime Portmanteau Motif: Released Heteroradicals Undergo Incisive EPR Interrogation and Deliver Diverse Heterocycles

    PubMed Central

    2014-01-01

    Conspectus Selective syntheses are now available for compounds of many classes, based on C-centered radicals, exploiting a diverse range of mechanisms. The prospect for chemistry based around N- and O-centered radicals is probably more favorable because of the importance of heterocycles as biologically active materials. Heteroradical chemistry is still comparatively underdeveloped due to the need for safe and easy ways of generating them. Oxime esters appeared promising candidates to meet this need because literature reports and our EPR spectroscopic examinations showed they readily dissociated on photolysis with production of a pair of N- and O-centered radicals. It soon became apparent that a whole suite of benign oxime-containing molecules could be pressed into service. The bimodality of the oxime motif meant that by suitable choice of functionality the reactions could be directed to yield selectively products from either the N-centered radicals or from the O-centered radicals. We found that on one hand photolyses of acetophenone oxime esters of carboxylic acids yielded alicyclics. On the other hand, aromatic and heteroaromatic acyl oximes (as well as dioxime oxalates) afforded good yields of phenanthridines and related heterocycles. Easily prepared oxime oxalate amides released carbamoyl radicals, and pleasingly, β-lactams were thereby obtained. Oxime carbonates and oxime carbamates, available via our novel 1,1'-carbonyldiimidazole (CDI)-based preparations, were accessible alternatives for iminyl radicals and hence for phenanthridine preparations. In their second modes, these compounds proved their value as precursors for exotic alkoxycarbonyloxyl and carbamoyloxyl radicals. Microwave-assistance was shown to be a particularly convenient procedure with O-phenyl oxime ethers. The iminyl radicals generated from such precursors with alkene, alkyne, and aromatic acceptor substituents furnished pyrrole, quinoline, phenanthridine, benzonaphthiridine, indolopyridine, and other systems. Microwave irradiations with 2-(aminoaryl)alkanone O-phenyl oximes enabled either dihydroquinazolines or quinazolines to be obtained in very good yields. The fine quality of the EPR spectra, acquired during photolyses of all the O-carbonyl oxime types, marked this as an important complement to existing ways of obtaining such spectra in solution. Quantifications enabled SARs to be obtained for key reaction types of N- and O-centered radicals, thus putting mechanistic chemistry in this area on a much firmer footing. Surprises included the inverse gem-dimethyl effect in 5-exo-cyclizations of iminyls and the interplay of spiro- with ortho-cyclization onto aromatics. Insights into unusual 4-exo-cyclizations of carbamoyl radicals showed the process to be more viable than pent-4-enyl 4-exo-ring closure. Another surprise was the magnitude of the difference in CO2 loss rate from alkoxycarbonyloxyl radicals as compared with acyloxyl radicals. Their rapid 5-exo-cyclization was charted, as was their preferred spiro-cyclization onto aromatics. The first evidence that N-monosubstituted carbamoyloxyls had finite lifetimes was also forthcoming. It is evident that oxime derivatives have excellent credentials as reagents for radical generation and that there is ample room to extend their applications to additional radical types and for further heterocycle syntheses. There is also clear scope for the development of preparative procedures based around the alkoxyl and aminyl radicals that emerge downstream from oxime carbonate and oxime carbamate dissociations. PMID:24654991

  8. Installing amino acids and peptides on N-heterocycles under visible-light assistance

    PubMed Central

    Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua

    2016-01-01

    Readily available natural α-amino acids are one of nature’s most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments. PMID:26830014

  9. Matrix-Isolation Spectroscopy of Reactive Organic Molecules of Relevance to Interstellar Space

    NASA Astrophysics Data System (ADS)

    Kopff, Laura A.; Nolan, Alex M.; Kreifels, Terese A.; Draxler, Thomas W.; Esselman, Brian J.; Burrmann, Nicola J.; McMahon, Robert J.

    2010-11-01

    Matrix isolation, the process of trapping a molecule in an inert gas at low temperature, provides a means for studying highly reactive intermediates, such as carbenes or radicals. Reactive species can be characterized by IR, UV-vis and/or EPR spectroscopy. Comparison of experimental and computed spectral data, as well as chemical reactivity, is used for structural assignment Triplet propynylidene is proposed to exist in the interstellar medium (ISM), due to the detection of a higher-energy isomers via rotational spectroscopy. Currently, we are exploring the structural and photochemical effects of varying substituents on the propynylidne system. A diazo precursor has been synthesized and photolyzed to produce dimethylpropynylidene in an argon matrix. A photochemical hydrogen shift to produce 1-penten-3-yne has been observed through infrared spectroscopy. Cyanocarbons are known to be abundant in the ISM and the atmosphere of Titan, however matrixisolation studies have not yet been carried out for a significant number of these compounds. Photolysis of 3-cyano-3-methyldiazirine should yield methylcyanocarbene, one of the simplest species in this family. Another molecule of interest is l-HC4N, which has been detected in the ISM, but has not yet been matrix-isolated and characterized. The study of arylcarbenes is vital to understanding the chemistry of carbon-rich environments, such as discharges, interstellar clouds, and circumstellar envelopes. The identification of small, sulfur containing molecules, and the identification of aromatics in the ISM make future thiophene and benzothiophene detections a real possibility. Studies on 2- and 3-diazomethyl substituted benzothiophenes are underway to assess their photochemical reactivity and potential for forming benzothiophene carbenes. Macrocylic polyynes are proposed to be involved in carbon condensation via the ring coalescence and annealing model to produce graphitic sheets or fullerenes. To simplify a complex system we are experimentally and computationally studying the series of ethynyl-substituted cyclobutadienes and their possible involvement in the build-up of larger carbon containing molecules in the ISM. The Bergman cyclization of cyclobutadiene has been explored computationally and the photochemical precursor is currently being synthesized.

  10. Nitrogen: A New Class of π-Bonding Partner in Hetero π-Stacking Interaction.

    PubMed

    Ramanathan, N; Sankaran, K; Sundararajan, K

    2017-11-30

    Spectroscopy under isolated conditions at low temperatures is an excellent tool to characterize the aggregates stabilized through weak interactions. Within the framework of weak interactions, the π-stacking interactions are considered unconventional with the limited experimental proofs, wherein the bonding associates are either aromatic and heterocyclic compounds or their combinations. Besides aromatic compounds, π-stacking networks can even be realized with molecules possessing electron rich π-clouds. In this work, the N 2 molecule as a possible π-bonding partner is explored for the first time in which hetero π-stacking was achieved between pyrrole and N 2 precursors. The matrix isolation experiments performed by seeding pyrrole and N 2 mixtures in an Ar matrix at low temperatures with subsequent infrared spectral characterization revealed the generation of adducts stabilized through a π(pyrrole)···π(N 2 ) interaction. Under identical conditions with the likelihood of two competing π-stacking and hydrogen-bonding interactions in pyrrole-N 2 associates, π-stacking dominates energetically over hydrogen-bonding interaction.

  11. Heterocyclic Anions of Astrobiological Interest

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Demarais, Nicholas J.; Yang, Zhibo; Snow, Theodore P.; Bierbaum, Veronica M.

    2013-12-01

    As more complex organic molecules are detected in the interstellar medium, the importance of heterocyclic molecules to astrobiology and the origin of life has become evident. 2-Aminothiazole and 2-aminooxazole have recently been suggested as important nucleotide precursors, highlighting azoles as potential prebiotic molecules. This study explores the gas-phase chemistry of three deprotonated azoles: oxazole, thiazole, and isothiazole. For the first time, their gas-phase acidities are experimentally determined with bracketing and H/D exchange techniques, and their reactivity is characterized with several detected interstellar neutral molecules (N2O, O2, CO, OCS, CO2, and SO2) and other reactive species (CS2, CH3Cl, (CH3)3CCl, and (CH3)3CBr). Rate constants and branching fractions for these reactions are experimentally measured using a modified commercial ion trap mass spectrometer whose kinetic data are in good accord with those of a flowing afterglow apparatus reported here. Last, we have examined the fragmentation patterns of these deprotonated azoles to elucidate their destruction mechanisms in high-energy environments. All experimental data are supported and complemented by electronic structure calculations at the B3LYP/6-311++G(d,p) and MP2(full)/aug-cc-pVDZ levels of theory.

  12. Synthesis and crystal structure of the iridium(I) carbene complex with a pair of hydrogen wing tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.-Y.; Chen, Z.-M.; Wang, Y.

    The iridium(I) cyclooctadiene complex with two (3-tert-butylimidazol-2-ylidene) ligands [(H-Im{sup t}Bu){sub 2}Ir(COD)]{sup +}PF{sub 6}{sup −} (C{sub 22}H{sub 32}PF{sub 6}IrN{sub 4}) has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal atom, which is coordinated by two H-Im{sup t}Bu ligands and one cyclooctadiene group. The new iridium carbene complex has a pair of hydrogen wing tips. The Ir−C{sub carbene} bond lengths are 2.066(5) and 2.052(5) Å, and the bond angle C−Ir−C between these bonds is 95.54(19)°. The dihedral angle between two imidazol-2-ylidene rings is 86.42°.

  13. Surface hydrophobic modification of polyurethanes by diaryl carbene chemistry: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Yang, Pengfei; Wang, Yongqing; Lu, Ling; Yu, Xi; Liu, Lian

    2018-03-01

    Dodecyl diaryl diazomethane was firstly synthesized from 4,4-dihydroxybenzophenone and 1-bromododecane by a series of reaction steps. Then water-borne polyurethane films with different amount of DMPA were prepared, as well as a type of solvent-borne polyurethane film for comparison. Finally, all these polyurethane films were modified by dodecyl diaryl diazomethane. The dodecyl diaryl carbene was generated from dodecyl diaryl diazomethane by strong solar light, which was very convenient to insert into the Xsbnd H bonds (X = C, N) on the surface of polyurethane films. The contact angle test was used to characterize these films and depict the surface property. DSC analysis and tensile test were used to investigate the physical properties of polyurethane films before and after modification. It was suggested that the hydrophobic modification protocol with carbene insertion was very useful and convenient to prepare water-proof coatings outdoors under direct solar-light exposure.

  14. A stable silicon(0) compound with a Si=Si double bond.

    PubMed

    Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; King, R Bruce; Schaefer, Henry F; von R Schleyer, Paul; Robinson, Gregory H

    2008-08-22

    Dative, or nonoxidative, ligand coordination is common in transition metal complexes; however, this bonding motif is rare in compounds of main group elements in the formal oxidation state of zero. Here, we report that the potassium graphite reduction of the neutral hypervalent silicon-carbene complex L:SiCl4 {where L: is:C[N(2,6-Pri2-C6H3)CH]2 and Pri is isopropyl} produces L:(Cl)Si-Si(Cl):L, a carbene-stabilized bis-silylene, and L:Si=Si:L, a carbene-stabilized diatomic silicon molecule with the Si atoms in the formal oxidation state of zero. The Si-Si bond distance of 2.2294 +/- 0.0011 (standard deviation) angstroms in L:Si=Si:L is consistent with a Si=Si double bond. Complementary computational studies confirm the nature of the bonding in L:(Cl)Si-Si(Cl):L and L:Si=Si:L.

  15. Insights on the mechanism of thioredoxin reductase inhibition by gold N-heterocyclic carbene compounds using the synthetic linear selenocysteine containing C-terminal peptide hTrxR(488-499): an ESI-MS investigation.

    PubMed

    Pratesi, Alessandro; Gabbiani, Chiara; Michelucci, Elena; Ginanneschi, Mauro; Papini, Anna Maria; Rubbiani, Riccardo; Ott, Ingo; Messori, Luigi

    2014-07-01

    Gold-based drugs typically behave as strong inhibitors of the enzyme thioredoxin reductase (hTrxR), possibly as the consequence of direct Gold(I) coordination to its active site selenocysteine. To gain a deeper insight into the molecular basis of enzyme inhibition and prove gold-selenocysteine coordination, the reactions of three parent Gold(I) NHC compounds with the synthetic C-terminal dodecapeptide of hTrxR containing Selenocysteine at position 498, were investigated by electrospray ionization mass spectrometry (ESI-MS). Formation of 1:1 Gold-peptide adducts, though in highly different amounts, was demonstrated in all cases. In these adducts the same [Au-NHC](+) moiety is always associated to the intact peptide. Afterward, tandem MS experiments, conducted on a specific Gold-peptide complex, pointed out that Gold is coordinated to the selenolate group. The relatively large strength of the Gold-selenolate coordinative bond well accounts for potent enzyme inhibition typically afforded by these Gold(I) compounds. In a selected case, the time course of enzyme inhibition was explored. Interestingly, enzyme inhibition turned out to show up very quickly and reached its maximum just few minutes after mixing. Overall, the present results offer some clear insight into the process of thioredoxin reductase inhibition by Gold-based compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Catalysts For Hydrogenation And Hydrosilylation Methods Of Making And Using The Same

    DOEpatents

    Dioumaev, Vladimir K.; Bullock, R. Morris

    2004-05-18

    A compound is provided including an organometallic complex represented by the formula I: wherein M is an atom of molybdenum or tangsten, Cp is substituted or unsubstituted cyclopentadienyl radical represented by the formula [C.sub.5 Q.sup.1 Q.sup.2 Q.sup.3 Q.sup.4 Q.sup.5 ], wherein Q.sup.1 to Q.sup.5 are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, substituted hydrocarbyl radical, halogen radical, halogen-substituted hydrocarbyl radical, --OR, --C(O)R', --CO.sub.2 R', --SiR'.sub.3 and --NR'R", wherein R' and R" are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, halogen radical, and halogen-substituted hydrocarbyl radical, wherein said Q.sup.1 to Q.sup.5 radicals are optionally linked to each other to form a stable bridging group, NHC is any N-heterocyclic carbene ligand, L is either any neutral electron donor ligand, wherein k is a number from 0 to 1 or L is an anionic ligand wherein k is 2, and A.sup.- is an anion. Processes using the organometallic complex as catalyst for hydrogenation of aldehydes and ketones are provided. Processes using the organometallic complex as catalyst for the hydrosilylation of aldehydes, ketones and esters are also provided.

  17. Stereodynamics and edge-to-face CH-π aromatic interactions in imino compounds containing heterocyclic rings.

    PubMed

    González-Rosende, M Eugenia; Castillo, Encarna; Jennings, W Brian; Malone, John F

    2017-02-07

    By comparison with close contact interactions between benzene rings there is a paucity of experimental data available for attractive interactions involving aromatic heterocyclic rings, especially for small molecules in solution. Herein we describe aromatic heterocyclic and carbocyclic edge-to face interactions and conformational stereodynamics of N-1,2-diphenylethyl imines bearing a phenyl group and either a 2-pyridyl, 3-pyridyl, 2-thiophene or 2-furanyl moiety on the imino carbon. X-ray crystal structures have been determined for two compounds. Slow rotation about the phenyl-imino bond in the E-isomers and around the heterocycle-imino bond in the Z-isomers of the pyridyl compounds was observed at low temperatures by NMR. Abnormally large shielding of one ortho hydrogen indicates that both the imino phenyl and heterocycle rings can engage in an edge-to-face interaction with the N-terminal phenyl moiety in the appropriate isomer. Some rotational barriers around the phenyl-imino and heterocycle-imino bonds were measured.

  18. Bond Energies and Thermochemical Properties of Ring-Opened Diradicals and Carbenes of exo-Tricyclo[5.2.1.0(2,6)]decane.

    PubMed

    Hudzik, Jason M; Castillo, Álvaro; Bozzelli, Joseph W

    2015-09-24

    Exo-tricyclo[5.2.1.0(2,6)]decane (TCD) or exo-tetrahydrodicyclopentadiene is an interesting strained ring compound and the single-component high-energy density hydrocarbon fuel known as JP-10. Important initial reactions of TCD at high temperatures could cleave a strained carbon-carbon (C-C) bond in the ring system creating diradicals also constrained by the remaining ring system. This study determines the thermochemical properties of these diradicals (TCD-H2 mJ-nJ where m and n correspond to the cleaved carbons sites) including the carbon-carbon bond dissociation energy (C-C BDE) corresponding to the cleaved TCD site. Thermochemical properties including enthalpies (ΔH°f298), entropies (S(T)), heat capacities (Cp(T)), and C-H and C-C BDEs for the parent (TCD-H2 m-n), radical (TCD-H2 mJ-n and m-nJ), diradical (TCD-H2 mJ-nJ), and carbene (TCD-H2 mJJ-n and m-nJJ) species are determined. Structures, vibrational frequencies, moments of inertia, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) level of theory. Standard enthalpies of formation in the gas phase for the TCD-H2 m-n parent and radical species are determined using the B3LYP density functional theory and the higher level G3MP2B3 and CBS-QB3 composite methods. For singlet and triplet TCD diradicals and carbenes, M06-2X, ωB97X-D, and CCSD(T) methods are included in the analysis to determine ΔH°f298 values. The C-C BDEs are further calculated using CASMP2(2,2)/aug-cc-pvtz//CASSCF(2,2)/cc-pvtz and with the CASMP2 energies extrapolated to the complete basis set limit. The bond energies calculated with these methods are shown to be comparable to the other calculation methods. Isodesmic work reactions are used for enthalpy analysis of these compounds for effective cancelation of systematic errors arising from ring strain. C-C BDEs range from 77.4 to 84.6 kcal mol(-1) for TCD diradical singlet species. C-H BDEs for the parent TCD-H2 m-n carbon sites range from 93 to 101 kcal mol(-1) with a similar range seen for loss of the second hydrogen to generate the diradical singlet species. A wider range for C-C BDEs is seen for the carbenes from about 77 to 100 kcal mol(-1) as compared to the diradicals. Results from the DFT methods for the parents, radicals, diradicals, and carbenes are in good agreement with results from the composite methods using our sets of work reactions.

  19. Reduction of aromatic and heterocyclic aromatic N-hydroxylamines by human cytochrome P450 2S1.

    PubMed

    Wang, Kai; Guengerich, F Peter

    2013-06-17

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals, and there is also strong evidence of some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anticancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions [Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740-1751]. In the study presented here, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs.

  20. Reduction of Aromatic and Heterocyclic Aromatic N-Hydroxylamines by Human Cytochrome P450 2S1

    PubMed Central

    Wang, Kai; Guengerich, F. Peter

    2013-01-01

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals and there is also strong evidence for some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anti-cancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions (Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740–1751). In the present study, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs. PMID:23682735

  1. Rational synthesis of normal, abnormal and anionic NHC–gallium alkyl complexes: structural, stability and isomerization insights† †Dedicated to the memory of Paul von R. Schleyer. ‡ ‡Electronic supplementary information (ESI) available: CIF files giving crystallographic results, experimental details and copies of the NMR spectra. CCDC 1405459–1405464. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc02086g

    PubMed Central

    Uzelac, Marina; Hernán-Gómez, Alberto; Armstrong, David R.; Kennedy, Alan R.

    2015-01-01

    Advancing the rational design of main-group N-heterocyclic carbene complexes, this study reports the synthesis, X-ray crystallographic and NMR spectroscopic characterisation of a novel series of Ga complexes containing neutral or anionic NHC ligands using the unsaturated carbene IPr (IPr = 1,3-bis-(2,6-di-isopropylphenyl)imidazol-2-ylidene). Starting from normal adduct GaR3·IPr (1) (R = CH2SiMe3), the addition of polar LiR led to the formation of NHC-stabilised gallate species IPr·LiGaR4 (2), resulting from co-complexation of the single-metal species. Contrastingly, reversing the order of addition of these organometallic reagents, by treating unsaturated free IPr, first with LiR followed by GaR3, furnished novel heteroleptic gallate (THF)2Li[:C{[N(2,6-iPr2C6H3)]2CHCGa(CH2SiMe3)3}] (3), which contains an anionic NHC ligand acting as an unsymmetrical bridge between the two metals, coordinating through its abnormal C4 position to Ga and through its normal C2 position to Li. Electrophilic interception studies of 3 using methyl triflate (MeOTf), methanol and imidazolium salt (IMes·HCl) led to the isolation and structural elucidation of the two novel neutral abnormal NHC (aNHC) complexes [CH3C{[N(2,6-iPr2C6H3)]2CHCGa(CH2SiMe3)3}] (4) and aIPr·GaR3 (5) (aIPr = HC{[N(2,6-iPr2C6H3)]2CHC}). These studies disclose the preference of the anionic IPr ligand present in 3 to react with electrophiles via its C2 position, leaving its Ga–C4 bond intact. Abnormal complex 5 can also be accessed by a thermally induced rearrangement of its normal isomer 1. Combining NMR spectroscopic and kinetic studies with DFT calculations, new light has been shed on this intriguing transformation, which suggests that it occurs via a dissociative mechanism, highlighting the importance of the donor ability of the solvent used in these thermal isomerizations as well as the steric bulk of the substituents on the NHC and the Ga reagent. These findings intimate that relief of the steric hindrance around Ga by forming an abnormal complex is a key driving force behind these rearrangements. PMID:29910864

  2. New Molecular Detections in TMC-1 with the Green Bank Telescope: Carbon-Chain and Aromatic Molecules

    NASA Astrophysics Data System (ADS)

    Burkhardt, Andrew Michael

    2018-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocycles PA(N)Hs are believed to be widespread throughout the Universe, and are likely responsible for the unidentified infrared bands. However, the individual detection of aromatic molecules has been limited to a single weak absorption feature of an infrared bending mode of benzene (c-C6H6). The cold core TMC-1 has long been a source of new molecular detections, particularly for unsaturated carbon-rich molecules that are appealing potential precursors of PA(N)Hs. Through deep observations with the Green Bank Telescope of TMC-1, we report the first rotational detection of an aromatic molecule, benzonitrile (c-C6H5CN), along with 8 new isotopologues of HC5N and HC7N and an entirely new molecular family (HC5O, HC7O). These new detections provide crucial insights to the formation of PAHs and the underlying carbon-chain chemistry of dark clouds.

  3. Fe N-Heterocyclic Carbene Complexes as Promising Photosensitizers.

    PubMed

    Liu, Yizhu; Persson, Petter; Sundström, Villy; Wärnmark, Kenneth

    2016-08-16

    The photophysics and photochemistry of transition metal complexes (TMCs) has long been a hot field of interdisciplinary research. Rich metal-based redox processes, together with a high variety in electronic configurations and excited-state dynamics, have rendered TMCs excellent candidates for interconversion between light, chemical, and electrical energies in intramolecular, supramolecular, and interfacial arrangements. In specific applications such as photocatalytic organic synthesis, photoelectrochemical cells, and light-driven supramolecular motors, light absorption by a TMC-based photosensitizer and subsequent excited-state energy or electron transfer constitute essential steps. In this context, TMCs based on rare and expensive metals, such as ruthenium and iridium, are frequently employed as photosensitizers, which is obviously not ideal for large-scale implementation. In the search for abundant and environmentally benign solutions, six-coordinate Fe(II) complexes (Fe(II)L6) have been widely considered as highly desirable alternatives. However, not much success has been achieved due to the extremely short-lived triplet metal-to-ligand charge transfer ((3)MLCT) excited state that is deactivated by low-lying metal-centered (MC) states on a 100 fs time scale. A fundamental strategy to design useful Fe-based photosensitizers is thus to destabilize the MC states relative to the (3)MLCT state by increasing the ligand field strength, with special focus on making eg σ* orbitals on the Fe center energetically less accessible. Previous efforts to directly transplant successful strategies from Ru(II)L6 complexes unfortunately met with limited success in this regard, despite their close chemical kinship. In this Account, we summarize recent promising results from our and other groups in utilizing strongly σ-donating N-heterocyclic carbene (NHC) ligands to make strong-field Fe(II)L6 complexes with significantly extended (3)MLCT lifetimes. Already some of the first homoleptic bis(tridentate) complexes incorporating (CNHC^Npyridine^CNHC)-type ligands gratifyingly resulted in extension of the (3)MLCT lifetime by more than 2 orders of magnitude compared to the parental [Fe(tpy)2](2+) (tpy = 2,2':6',2″-terpyridine) complex. Quantum chemical (QC) studies also revealed that the (3)MC instead of the (5)MC state likely dictates the deactivation of the (3)MLCT state, a behavior distinct from traditional Fe(II)L6 complexes but rather resembling Ru analogues. A heteroleptic Fe(II) NHC complex featuring mesoionic bis(1,2,3-triazol-5-ylidene) (btz) ligands also delivered a 100-fold elongation of the (3)MLCT lifetime relative to its parental [Fe(bpy)3](2+) (bpy = 2,2'-bipyridine) complex. Again, a Ru-like deactivation mechanism of the (3)MLCT state was indicated by QC studies. With a COOH-functionalized homoleptic complex, a record (3)MLCT lifetime of 37 ps was recently observed on an Al2O3 nanofilm. As a proof of concept, it was further demonstrated that the significant improvement in the (3)MLCT lifetime indeed benefits efficient light harvesting with Fe(II) NHC complexes. For the first time, close-to-unity electron injection from the lowest-energy (3)MLCT state to a TiO2 nanofilm was achieved by a stable Fe(II) complex. This is in complete contrast to conventional Fe(II)L6-derived photosensitizers that could only make use of high-energy photons. These exciting results significantly broaden the understanding of the fundamental photophysics and photochemistry of d(6) Fe(II) complexes. They also open up new possibilities to develop solar energy-converting materials based on this abundant, inexpensive, and intrinsically nontoxic element.

  4. Biochemical interpretation of quantitative structure-activity relationships (QSAR) for biodegradation of N-heterocycles: a complementary approach to predict biodegradability.

    PubMed

    Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker

    2007-02-15

    Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QSAR models based on 17 activating (OSAR 1) and on 16 inactivating molecular fragments (GSAR 2), which were statistically significantly linked to efficient or poor biodegradability, respectively. The percentages of correct classifications were over 99% for both models, and cross-validation resulted in 67.9% (GSAR 1) and 70.4% (OSAR 2) correct predictions. Biochemical interpretation of the activating and inactivating characteristics of the molecular fragments delivered plausible mechanistic interpretations and enabled us to establish the following biodegradation rules: (1) Target sites for amidohydrolases and for cytochrome P450 monooxygenases enhance biodegradation of nonaromatic N-heterocycles. (2) Target sites for molybdenum hydroxylases enhance biodegradation of aromatic N-heterocycles. (3) Target sites for hydratation by an urocanase-like mechanism enhance biodegradation of imidazoles. Our complementary approach represents a feasible strategy for generating concrete rules for the prediction of biodegradability of organic compounds.

  5. Chemistry and adhesive properties of poly(arylene ether)s containing heterocyclic units

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1991-01-01

    Novel poly(arylene ether)s containing heterocyclic units were prepared, characterized, and evaluated as adhesives and composite matrices. The polymers were prepared by reacting a heterocyclic bisphenol with an activated aromatic dihalide in a polar aprotic solvent, using potassium carbonate. The polymerizations were generally carried out in N,N-dimethylacetamide at 155 C. In some cases, where the polymers were semicrystalline, higher temperatures and thus higher boiling solvents were necessary to keep the polymers in solution. Heterocyclic rings incorporated into the poly(arylene ether) backbone include phenylquinoxaline, phenylimidazole, benzimidazole, benzoxazole, 1,3,4-oxadiazole, and 1,2,4-triazole. The polymers were characterized by differential scanning calorimetry, solution viscosity, X-ray diffraction, thin film, and adhesive and (in some cases) composite properties. The glass transition temperatures, crystalline melt temperature, solubility, and mechanical properties varied depending upon the heterocyclic ring. The chemistry and properties of these materials are discussed.

  6. Formation and ecotoxicity of N-heterocyclic compounds on ammoxidation of mono- and polysaccharides.

    PubMed

    Klinger, Karl Michael; Liebner, Falk; Fritz, Ines; Potthast, Antje; Rosenau, Thomas

    2013-09-25

    Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16-30 μg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4-160.5 mg/g of educt) and polysaccharides (140 °C: 5.52-16.03 mg/g of educt).

  7. Chemical Preparation Laboratory for IND Candidate Compounds

    DTIC Science & Technology

    1990-08-10

    Confirmation by 500 MHz Spectroscopy of an Analogue of the Amaryllidaceae Alkaloids, Narciclasine and Pancratistatin." Bjarne Gabrielsen, Department...subdivided into modified nucleosides, alkaloids with synthetically modified precursors and analogues , and miscellaneous heterocycles that possess...or antitumor compounds were modified synthet 4cally to possibly yield novel analogues that possess enhanced activities or show a specific mode of

  8. Coal-Tar-Sealcoated Parking Lots: "Hot spots" of PAHs and N-heterocycles to Urban Streams and Lakes Result in "Hot Moments" of Toxicity

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Van Metre, P. C.; Ingersoll, C.; Kunz, J. L.

    2014-12-01

    Coal-tar (CT) sealcoat, a potent source of polycyclic aromatic hydrocarbons (PAHs) and N-heterocycles, is applied to asphalt pavement of parking lots and driveways in many parts of the U.S. and Canada every 1 to 5 years. We measured the chemistry and toxicity of unfiltered runoff resulting from rain events simulated from 5 hours to 111 days after application of CT or asphalt (AS) sealcoat. PAHs and N-heterocycles were measured by GC/EIMS. Toxicity tests were done with Ceriodaphnia dubia and Pimephales promelas exposed 48 hours to undiluted and diluted (1 part runoff 9 parts control water) runoff under ambient lighting. Organisms were then transferred to fresh control water and subjected to a 4-hour pulse of ultraviolet radiation (UVR). Concentrations of 2- and 3-ringed PAHs and N-heterocycles in CT runoff, initially high (sum of 6 PAHs, 220 μg/L; sum of 7 N-heterocycles, 904 μg/L), decreased rapidly, whereas concentrations of 4-, 5- and 6-ringed PAHs more than doubled by 7 days after application (sum of 9 PAHs, 378 μg/L) and remained elevated 111 days after application (sum of 9 PAHs, 283 μg/L). Concentrations of PAHs and N-heterocycles in AS sealcoated runoff followed a similar pattern, but were ~10 times lower than those in CT runoff; concentrations in a sample of runoff from unsealed asphalt pavement were near or less than the detection limit. Organisms exposed to samples of undiluted CT-runoff collected during the 36 days following CT sealcoat application (no UVR exposure) experienced 100% mortality. Mortality (as much as 100%) of organisms exposed to the 10% dilution of CT runoff or to undiluted AS runoff occurred only with UVR; mortality of organisms exposed to the 10% solution of AS runoff and UVR was minimal. Results demonstrate that freshly CT-sealed parking lots and driveways are "hot spots" of PAH and N-heterocycle contamination and that prolonged "hot moments" of toxicity follow CT sealcoat application.

  9. The [2 + 1] and [4 + 3] cyclization reactions of fulvenes with Fischer carbene complexes: new access to annulated cyclopentanones.

    PubMed

    Barluenga, José; Martínez, Silvia; Suárez-Sobrino, Angel L; Tomás, Miguel

    2002-05-29

    Pentafulvenes are regioselectively cyclopropanated with group 6 Fischer carbene complexes leading to the homofulvene ring with complete endo selectivity. The homofulvene adducts undergo in turn a further cyclopropanation with ethyl diazoacetate or cyclopentannulation with a Fischer alkenyl carbene complex to provide substituted cyclopentanones after ozonolysis of the exocyclic carbon=carbon double bond. Fischer alkynyl carbene complexes also produce the corresponding alkynyl homofulvenes, albeit the exo stereoisomer is in this case exclusively or preferentially formed. Under moderate CO pressure, tungsten alkynyl carbene complexes cycloadd to pentafulvenes in a [4 + 3] fashion, giving rise to bicyclo[3.2.1]octadien-2-ones.

  10. Photochemistry of furyl- and thienyldiazomethanes: spectroscopic characterization of triplet 3-thienylcarbene.

    PubMed

    Pharr, Caroline R; Kopff, Laura A; Bennett, Brian; Reid, Scott A; McMahon, Robert J

    2012-04-11

    Photolysis (λ > 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N(2) at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm(-1), |E/hc| = 0.0554 cm(-1); |D/hc| = 0.579 cm(-1), |E/hc| = 0.0315 cm(-1)). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon-an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λ(max) = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C(5)H(4)S or C(5)H(4)O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively). © 2012 American Chemical Society

  11. A theoretical study on the mechanistic highlights behind the Brønsted-acid dependent mer-fac isomerization of homoleptic carbenic iridium complexes for PhOLEDs.

    PubMed

    Setzer, Tobias; Lennartz, Christian; Dreuw, Andreas

    2017-06-06

    Recently, a successful Brønsted-acid mediated geometric isomerization of the meridional homoleptic carbenic iridium(iii) complexes tris-(N-phenyl,N-methyl-benzimidazol-2-yl)iridium(iii) (1) and tris-(N-phenyl,N-benzyl-benzimidazol-2-yl)iridium(iii) (2) into their facial form has been reported. In the present work the pronounced acid-dependency of this particular isomerization procedure is revisited and additional mechanistic pathways are taken into account. Moreover, the acid-induced material decomposition is addressed. All calculations are carried out using density functional theory (DFT) while the environmental effects in solution are accounted for by the COSMO-RS model. The simulated results clearly reveal the outstanding importance of the complex interplay between acid strength, coordinating power of the corresponding base and the steric influence of the ligand system in contrast to the plain calculation of minimum energy pathways for selected complexes. Eventually, general rules to enhance the material-specific reaction yields are provided.

  12. Iron-catalyzed cross-coupling of N-heterocyclic chlorides and bromides with arylmagnesium reagents.

    PubMed

    Kuzmina, Olesya M; Steib, Andreas K; Flubacher, Dietmar; Knochel, Paul

    2012-09-21

    A simple, practical iron salt catalyzed procedure allows fast cross-couplings of N-heterocyclic chlorides and bromides with various electron-rich and -poor arylmagnesium reagents. A solvent mixture of THF and tBuOMe is found to be essential for achieving high yields mainly by avoiding homocoupling side reactions.

  13. Formation and Ecotoxicity of N-Heterocyclic Compounds on Ammoxidation of Mono- and Polysaccharides

    PubMed Central

    2013-01-01

    Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16–30 μg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4–160.5 mg/g of educt) and polysaccharides (140 °C: 5.52–16.03 mg/g of educt). PMID:23967874

  14. Heterobimetallic N-Heterocyclic Carbene Complexes: A Synthetic, Spectroscopic, and Theoretical Study.

    PubMed

    Pell, Thomas P; Wilson, David J D; Skelton, Brian W; Dutton, Jason L; Barnard, Peter J

    2016-07-18

    A new synthetic methodology has been developed for the preparation of heterobimetallic group 11 and group 12 complexes of a symmetrical bis-NHC "pincer" ligand. The synthetic route involved the initial preparation of a mononuclear [Au(NHC)2](+) complex with pendent imidazole moieties on the NHC ligands. Subsequent alkylation of the imidazole groups with Et3OBF4 and metalation with a second metal ion (Ag(I) or Hg(II)) provided two heterobimetallic complexes. Four homobimetallic (Cu(I)2, Ag(I)2, Au(I)2, and Hg(II)2) complexes of the same bis-NHC "pincer" ligand were also prepared. The homobimetallic Cu(I)2, Au(I)2, and Hg(II)2 complexes and heterobimetallic Au(I)-Ag(I) and Au(I)-Hg(II) complexes and the synthetic intermediates for the heterobimetallic complexes were characterized by X-ray crystallography. These X-ray structures show that the bimetallic complexes adopt "twisted" conformations in the solid state, supporting short M···M interactions. Crystalline samples of the homobimetallic Ag(I)2 and Au(I)2 and heterobimetallic Au(I)-Ag(I) and Au(I)-Hg(II) complexes were emissive at room temperature and at 77 K. The geometries of the synthesized complexes were optimized at the M06-L/def2-SVP level of theory, and the electronic nature of the M···M interactions for all synthesized complexes was investigated using natural bond orbital (NBO) calculations.

  15. Halogen bonding from a hard and soft acids and bases perspective: investigation by using density functional theory reactivity indices.

    PubMed

    Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank

    2013-01-07

    Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Four-Coordinate Iron(II) Diaryl Compounds with Monodentate N-Heterocyclic Carbene Ligation: Synthesis, Characterization, and Their Tetrahedral-Square Planar Isomerization in Solution.

    PubMed

    Liu, Yuesheng; Luo, Lun; Xiao, Jie; Wang, Lei; Song, You; Qu, Jingping; Luo, Yi; Deng, Liang

    2015-05-18

    The salt elimination reactions of (IPr2Me2)2FeCl2 (IPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) with the corresponding aryl Grignard reagents afford [(IPr2Me2)2FeAr2] (Ar = Ph, 3; C6H4-p-Me, 4; C6H4-p-(t)Bu, 5; C6H3-3,5-(CF3)2, 6) in good yields. X-ray crystallographic studies revealed the presence of both tetrahedral and trans square planar isomers for 3 and 6 and the tetrahedral structures for 4 and 5. Magnetic susceptibility and (57)Fe Mössbauer spectrum measurements on the solid samples indicated the high-spin (S = 2) and intermediate-spin (S = 1) nature of the tetrahedral and square planar structures, respectively. Solution property studies, including solution magnetic susceptibility measurement, variable-temperature (1)H and (19)F NMR, and absorption spectroscopy, on 3-6, as well as an (57)Fe Mössbauer spectrum study on a frozen tetrahydrofuran solution of tetrahedral [(IPr2Me2)2(57)FePh2] suggest the coexistence of tetrahedral and trans square planar structures in solution phase. Density functional theory calculations on (IPr2Me2)2FePh2 disclosed that the tetrahedral and trans square planar isomers are close in energy and that the geometry isomerization can occur by spin-change-coupled geometric transformation on four-coordinate iron(II) center.

  17. Synthesis of Quaternary Carbon Stereogenic Centers through Enantioselective Cu-Catalyzed Allylic Substitutions with Vinylaluminum Reagents

    PubMed Central

    Gao, Fang; McGrath, Kevin P.; Lee, Yunmi; Hoveyda, Amir H.

    2010-01-01

    Catalytic enantioselective allylic substitution (EAS) reactions, which involve the use of alkyl- or aryl-substituted vinylaluminum reagents and afford 1,4-dienes containing a quaternary carbon stereogenic center at their C-3 site, are disclosed. The C–C bond forming transformations are promoted by 0.5–2.5 mol % of sulfonate bearing chiral bidentate N-heterocyclic carbene (NHC) complexes, furnishing the desired products efficiently (66–97% yield of isolated products) and in high site- (>98% SN2′) and enantioselectivity [up to 99:1 enantiomer ratio (er)]. To the best of our knowledge, the present report puts forward the first cases of allylic substitution reactions that result in the generation of all-carbon quaternary stereogenic centers through the addition of a vinyl unit. The aryl- and vinyl-substituted vinylaluminum reagents, which cannot be prepared in high efficiency through direct reaction with diisobutylaluminum hydride, are accessed through a recently introduced Ni-catalyzed reaction of the corresponding terminal alkynes with the same inexpensive metal-hydride agent. Sequential Ni-catalyzed hydrometallations and Cu-catalyzed C–C bond forming reactions allow for efficient and selective synthesis of a range of enantiomerically enriched EAS products, which cannot cannot be accessed by previously disclosed strategies (due to inefficient vinylmetal synthesis or low reactivity and/or selectivity with Si-substituted derivatives). The utility of the protocols developed is demonstrated through a concise enantioselective synthesis of natural product bakuchiol. PMID:20860365

  18. The Use of Cyclometalated NHCs and Pyrazoles for the Development of Fully Efficient Blue PtII Emitters and Pt/Ag Clusters.

    PubMed

    Arnal, Lorenzo; Fuertes, Sara; Martín, Antonio; Sicilia, Violeta

    2018-05-15

    New bis-pyrazole complexes [Pt(C^C*)(RpzH) 2 ]X, containing a cyclometalated N-heterocyclic carbene ligand (HC^C*=1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazol-2-ylidene) were prepared as chloride (X=Cl - , RpzH: 3,5-Me 2 pzH 1 a, 4-MepzH 2 a, pzH 3 a), perchlorate (X=ClO 4 - , 1 b-3 b), or hexafluorophosphate (X=PF 6 - , RpzH: 3,5-Me 2 pzH 1 c) salts. The X-ray structure of 1 a showed that the Cl - anion is trapped by the cation through two N-H⋅⋅⋅Cl bonds. In solution of methanol, acetone and THF at RT, 1 a-3 a coexist in equilibrium with the corresponding [PtCl(C^C*)(RpzH)] (B) and RpzH species. In CH 2 Cl 2 , this equilibrium takes place just for 2 a and 3 a, but it is completely shifted to the left at 243 and 223 K for 2 a and 3 a, respectively. The low-lying absorption and emission bands were assigned to intraligand (ILCT) charge transfer on the NHC group. Quantum yield measurements in PMMA films revealed that 1 b, 2 b and 1 c are amongst the most efficient blue-light emitters, with values up to 100 %. Proton abstraction from the coordinated 3,5-Me 2 pzH in 1 b by NEt 3 and replacement by Ag + afforded a neutral [Pt 2 Ag 2 ] cluster containing Pt→Ag dative bonds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A DFT study on NHC-catalyzed intramolecular aldehyde-ketone crossed-benzoin reaction: mechanism, regioselectivity, stereoselectivity, and role of NHC.

    PubMed

    Zhang, Wei; Wang, Yang; Wei, Donghui; Tang, Mingsheng; Zhu, Xinju

    2016-07-06

    A systematic theoretical study has been carried out to understand the mechanism and stereoselectivity of N-heterocyclic carbene (NHC)-catalyzed intramolecular crossed-benzoin reaction of enolizable keto-aldehyde using density functional theory (DFT) calculations. The calculated results reveal that the most favorable pathway contains four steps, i.e., the nucleophilic attack of NHC on the carbonyl carbon atom of a formyl group, the formation of a Breslow intermediate, a ring-closure process coupled with proton transfer, and regeneration of the catalyst. For the formation of the Breslow intermediate via the [1,2]-proton transfer process, apart from the direct proton transfer mechanism, the base Et3N and the in situ generated Brønsted acid Et3N·H(+) mediated proton transfer mechanisms have also been investigated; the free energy barriers for the crucial proton transfer steps are found to be significantly lowered by explicit inclusion of the Brønsted acid Et3N·H(+). The computational results show that the ring-closure process is the stereoselectivity-determining step, in which two chirality centers assigned on the coupling carbon atoms are formed, and the S-configured diastereomer is the predominant product, which is in good agreement with the experimental observations. NCI and NBO analyses are employed to disclose the origin of stereoselectivity and regioselectivity. Moreover, a global reaction index (GRI) analysis has been performed to confirm that NHC mainly plays the role of a Lewis base. The mechanistic insights obtained in the present study should be valuable for the rational design of an effective organocatalyst for this kind of reaction with high stereoselectivity and regioselectivity.

  20. The carbene insertion methodology for the catalytic functionalization of unreactive hydrocarbons: no classical C-H activation, but efficient C-H functionalization.

    PubMed

    Díaz-Requejo, M Mar; Belderrain, Tomás R; Nicasio, M Carmen; Pérez, Pedro J

    2006-12-21

    This contribution intends to highlight the use of the metal-catalyzed functionalization of unreactive carbon-hydrogen bonds by the carbene insertion methodology, that employs diazo compounds as the carbene source.

  1. Zinc-Catalyzed Synthesis of Conjugated Dienoates through Unusual Cross-Couplings of Zinc Carbenes with Diazo Compounds.

    PubMed

    Mata, Sergio; González, María J; González, Jesús; López, Luis A; Vicente, Rubén

    2017-01-23

    Zinc-catalyzed selective cross-coupling of two carbene sources, such as vinyl diazo compounds and enynones, enabled the synthesis of conjugated dienoate derivatives. This reaction involved the unprecedented coupling of a zinc furyl carbene with vinyl diazo compounds through the γ-carbon. Alternatively, dienoates were also prepared by a commutative cross-coupling of zinc vinyl carbenes generated from cyclopropenes and simple diazo compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of Enabling Chemical Technologies for Power from Green Sources

    DTIC Science & Technology

    2013-11-18

    structurally analogous polymers based on N-heterocycles (triazole, imidazole and pyrazole) and benz-N-heterocycles (benzotriazole, benzimidazole ...found that triazole (benzotriazole) and imidazole ( benzimidazole ) containing polymers exhibit similar proton conductivities, about 4 orders of...magnitude higher than those with pyrazole (benzopyrazole) (Figure 6b). The similar behavior of triazole and imidazole (benzotriazole and benzimidazole

  3. N(4)-Methyl-N(4)-(2-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine-ethanol-hydrazine (1/0.865/0.135): hydrogen-bonded ribbons containing four independent ring types.

    PubMed

    Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Glidewell, Christopher

    2009-06-01

    N(4)-Methyl-N(4)-(2-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine crystallizes from ethanol as a mixed solvate, C(13)H(14)N(6).0.865C(2)H(6)O.0.135N(2)H(4), (I), where the hydrazine has been carried through from the initial preparation. Within the heterocyclic component, the 2-methylphenyl substituent is disordered over two sets of sites. There is an intramolecular C-H...pi(arene) hydrogen bond, which may control the molecular conformation of the heterocycle. The heterocyclic molecules are linked by two independent N-H...N hydrogen bonds in a chain containing two types of R(2)(2)(8) ring. The ethanol component is linked to this chain by a combination of O-H...N and N-H...O hydrogen bonds and the hydrazine component by two N-H...N hydrogen bonds, so generating two R(3)(3)(9) rings and thus forming a ribbon containing four distinct ring types.

  4. Steric hindrance effects in the use of heterocyclic azodyestuffs as spectrophotometric reagents.

    PubMed

    Geary, W J; Bottomley, F

    1967-05-01

    The heterocyclic azo dyestuffs 4-(n-methyl-2 -pyridylazo)-resorcinol (where n = 3', 4', 5', 6') have been prepared, and their possible use as spectrophotometric reagents investigated. The dyestuffs are shown to function analogously to the parent ligand 4-(2'-pyridylazo) resorcinol (PAR) in giving red complexes with the ions Co(2+), Ni(2+), Cu(2+), Zn(2+) and UO(2)(2+). Steric effects resulting from the position of the methyl group in the heterocyclic ring are shown to occur in relation both to the spectra of the dyestuffs themselves and to the sensitivity of their reactions with the metal ions.

  5. C-H activation of imidazolium salts by Pt(0) at ambient temperature: synthesis of hydrido platinum bis(carbene) compounds.

    PubMed

    Duin, Marcel A; Clement, Nicolas D; Cavell, Kingsley J; Elsevier, Cornelis J

    2003-02-07

    A zerovalent platinum(carbene) complex with two monoalkene ligands, which is able to activate C-H bonds of imidazolium salts at room temperature to yield isolable hydrido platinum(II) bis(carbene) compounds, has been synthesised for the first time.

  6. Computational Chemistry Studies on the Carbene Hydroxymethylene

    ERIC Educational Resources Information Center

    Marzzacco, Charles J.; Baum, J. Clayton

    2011-01-01

    A density functional theory computational chemistry exercise on the structure and vibrational spectrum of the carbene hydroxymethylene is presented. The potential energy curve for the decomposition reaction of the carbene to formaldehyde and the geometry of the transition state are explored. The results are in good agreement with recent…

  7. Divergent pathways in the reaction of Fischer carbenes and palladium.

    PubMed

    López-Alberca, María P; Mancheño, María J; Fernandez, Israel; Gómez-Gallego, Mar; Sierra, Miguel A; Torres, Rosario

    2007-04-26

    [reaction: see text] The Pd-catalyzed reaction of beta-arylaminochromium(0) carbene complexes produces by transmetalation the first isolated and X-ray structurally characterized bis-Pd(II) carbene complex, as well as other alternative reaction pathways, such as the oxidative addition-transmetalation sequence, not seen before in this chemistry.

  8. Nucleophilic addition of amines to ruthenium carbenes: ortho-(alkynyloxy)benzylamine cyclizations towards 1,3-benzoxazines.

    PubMed

    González-Rodríguez, Carlos; Suárez, José Ramón; Varela, Jesús A; Saá, Carlos

    2015-02-23

    A new ruthenium-catalyzed cyclization of ortho-(alkynyloxy)benzylamines to dihydro-1,3-benzoxazines is reported. The cyclization is thought to take place via the vinyl ruthenium carbene intermediates which are easily formed from [Cp*RuCl(cod)] and N2 CHSiMe3 . The mild reaction conditions and the efficiency of the procedure allow the easy preparation of a broad range of new 2-vinyl-2-substituted 1,3-benzoxazine derivatives. Rearrangement of an internal C(sp) in the starting material into a tetrasubstituted C(sp(3) ) atom in the final 1,3-benzoxazine is highly remarkable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of marinating on heterocyclic amine carcinogen formation in grilled chicken.

    PubMed

    Salmon, C P; Knize, M G; Felton, J S

    1997-05-01

    This study compared heterocyclic aromatic amines in marinated and unmarinated chicken breast meat flame-broiled on a propane grill. Chicken was marinated prior to grilling and the levels of several heterocyclic amines formed during cooking were determined by solid-phase extraction and HPLC. Compared with unmarinated controls, a 92-99% decrease in 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was observed in whole chicken breast marinated with a mixture of brown sugar, olive oil, cider vinegar, garlic, mustard, lemon juice and salt, then grilled for 10, 20, 30 or 40 min. Conversely, 2-amino-3, 8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) increased over 10-fold with marinating, but only at the 30 and 40 min cooking times. Marinating reduced the total detectable heterocyclic amines from 56 to 1.7 ng/g, from 158 to 10 ng/g and from 330 to 44 ng/g for grilling times of 20, 30 and 40 min, respectively. The mutagenic activity of the sample extracts was also measured, using the Ames/Salmonella assay. Mutagenic activity was lower in marinated samples cooked for 10, 20 and 30 min, but higher in the marinated samples cooked for 40 min, compared with unmarinated controls. Although a change in free amino acids, which are heterocyclic amine precursors, might explain the decrease in PhIP and increase in MeIQx, no such change was detected. Marinating chicken in one ingredient at a time showed that sugar was involved in the increased MeIQx, but the reason for the decrease in PhIP was unclear. PhIP decreased in grilled chicken after marinating with several individual ingredients. This work shows that marinating is one method that can significantly reduce PhIP concentration in grilled chicken.

  10. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2014-02-01

    The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.

  11. Tandem reactions initiated by copper-catalyzed cross-coupling: a new strategy towards heterocycle synthesis.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2011-10-21

    Copper-catalyzed cross-coupling reactions which lead to the formation of C-N, C-O, C-S and C-C bonds have been recognized as one of the most useful strategies in synthetic organic chemistry. During past decades, important breakthroughs in the study of Cu-catalyzed coupling processes demonstrated that Cu-catalyzed reactions are broadly applicable to a variety of research fields related to organic synthesis. Representatively, employing these coupling transformations as key steps, a large number of tandem reactions have been developed for the construction of various heterocyclic compounds. These tactics share the advantages of high atom economics of tandem reactions as well as the broad tolerance of Cu-catalyst systems. Therefore, Cu-catalyzed C-X (X = N, O, S, C) coupling transformation-initiated tandem reactions were quickly recognized as a strategy with great potential for synthesizing heterocyclic compounds and gained worldwide attention. In this review, recent research progress in heterocycle syntheses using tandem reactions initiated by copper-catalyzed coupling transformations, including C-N, C-O, C-S as well as C-C coupling processes are summarized.

  12. The scope and limitations of intramolecular Nicholas and Pauson-Khand reactions for the synthesis of tricyclic oxygen- and nitrogen-containing heterocycles.

    PubMed

    Closser, Kristina D; Quintal, Miriam M; Shea, Kevin M

    2009-05-15

    We studied the scope and limitations of a tandem intramolecular Nicholas/Pauson-Khand strategy for the synthesis of tricyclic oxygen- and nitrogen-containing heterocycles. This methodology enables conversion of simple acyclic starting materials into a series of previously unknown heterocyclic architectures. For the preparation of cyclic ethers (Z = O), tricyclic [5,6,5]- through [5,9,5]-systems (m = 1, n = 1-4) are available with the [5,7,5]- and [5,8,5]-systems amenable to quick and efficient synthesis. Tricyclic [5,7,5]- and [5,8,5]-amine-containing (Z = NTs) heterocycles can be successfully prepared. Attempts to make larger ring systems (Z = O, m = 2; Z = O, n = 5; or Z = NTs, n = 4-5) or prepare lactones via Nicholas reactions with carboxylic acid nucleophiles (available via oxidation of alcohol nucleophiles, Z = O) result in decomposition or dimerization. The latter process enables formation of 14-, 16-, and 18-membered ring diolides when using carboxylic acid nucleophiles. We also investigated the use of chiral amine promoters in the Pauson-Khand step but found no asymmetric induction.

  13. Can creatine supplementation form carcinogenic heterocyclic amines in humans?

    PubMed Central

    Pereira, Renato Tavares dos Santos; Dörr, Felipe Augusto; Pinto, Ernani; Solis, Marina Yazigi; Artioli, Guilherme Giannini; Fernandes, Alan Lins; Murai, Igor Hisashi; Dantas, Wagner Silva; Seguro, Antônio Carlos; Santinho, Mirela Aparecida Rodrigues; Roschel, Hamilton; Carpentier, Alain; Poortmans, Jacques Remi; Gualano, Bruno

    2015-01-01

    Abstract Creatine supplementation has been associated with increased cancer risk. In fact, there is evidence indicating that creatine and/or creatinine are important precursors of carcinogenic heterocyclic amines (HCAs). The present study aimed to investigate the acute and chronic effects of low- and high-dose creatine supplementation on the production of HCAs in healthy humans (i.e. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx),  2-amino-(1,6-dimethylfuro[3,2-e]imidazo[4,5-b])pyridine (IFP) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)). This was a non-counterbalanced single-blind crossover study divided into two phases, in which low- and high-dose creatine protocols were tested. After acute (1 day) and chronic supplementation (30 days), the HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx were assessed through a newly developed HPLC–MS/MS method. Dietary HCA intake and blood and urinary creatinine were also evaluated. Out of 576 assessments performed (from 149 urine samples), only nine (3 from creatine and 6 from placebo) showed quantifiable levels of HCAs (8-MeIQx: n = 3; 4,8-DiMeIQx: n = 2; PhIP: n = 4). Individual analyses revealed that diet rather than creatine supplementation was the main responsible factor for HCA formation in these cases. This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, did not cause increases in the carcinogenic HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx in healthy subjects. These findings challenge the long-existing notion that creatine supplementation could potentially increase the risk of cancer by stimulating the formation of these mutagens. Key points There is a long-standing concern that creatine supplementation could be associated with cancer, possibly by facilitating the formation of carcinogenic heterocyclic amines (HCAs). This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, does not cause a significant increase in HCA formation. HCAs detection was unrelated to creatine supplementation. Diet was likely to be the main factor responsible for HCAs formation after either placebo (n = 6) or creatine supplementation (n = 3). These results directly challenge the recently suggested biological plausibility for the association between creatine use and risk of testicular germ cell cancer. PMID:26148133

  14. Can creatine supplementation form carcinogenic heterocyclic amines in humans?

    PubMed

    Pereira, Renato Tavares dos Santos; Dörr, Felipe Augusto; Pinto, Ernani; Solis, Marina Yazigi; Artioli, Guilherme Giannini; Fernandes, Alan Lins; Murai, Igor Hisashi; Dantas, Wagner Silva; Seguro, Antônio Carlos; Santinho, Mirela Aparecida Rodrigues; Roschel, Hamilton; Carpentier, Alain; Poortmans, Jacques Remi; Gualano, Bruno

    2015-09-01

    There is a long-standing concern that creatine supplementation could be associated with cancer, possibly by facilitating the formation of carcinogenic heterocyclic amines (HCAs). This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, does not cause a significant increase in HCA formation. HCAs detection was unrelated to creatine supplementation. Diet was likely to be the main factor responsible for HCAs formation after either placebo (n = 6) or creatine supplementation (n = 3). These results directly challenge the recently suggested biological plausibility for the association between creatine use and risk of testicular germ cell cancer. Creatine supplementation has been associated with increased cancer risk. In fact, there is evidence indicating that creatine and/or creatinine are important precursors of carcinogenic heterocyclic amines (HCAs). The present study aimed to investigate the acute and chronic effects of low- and high-dose creatine supplementation on the production of HCAs in healthy humans (i.e. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx), 2-amino-(1,6-dimethylfuro[3,2-e]imidazo[4,5-b])pyridine (IFP) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)). This was a non-counterbalanced single-blind crossover study divided into two phases, in which low- and high-dose creatine protocols were tested. After acute (1 day) and chronic supplementation (30 days), the HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx were assessed through a newly developed HPLC-MS/MS method. Dietary HCA intake and blood and urinary creatinine were also evaluated. Out of 576 assessments performed (from 149 urine samples), only nine (3 from creatine and 6 from placebo) showed quantifiable levels of HCAs (8-MeIQx: n = 3; 4,8-DiMeIQx: n = 2; PhIP: n = 4). Individual analyses revealed that diet rather than creatine supplementation was the main responsible factor for HCA formation in these cases. This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, did not cause increases in the carcinogenic HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx in healthy subjects. These findings challenge the long-existing notion that creatine supplementation could potentially increase the risk of cancer by stimulating the formation of these mutagens. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  15. New monodentate amidine superbasic ligands with a single configuration in fac-[Re(CO)3(5,5'- or 6,6'-Me2bipyridine)(amidine)]BF4 complexes.

    PubMed

    Abhayawardhana, Pramuditha; Marzilli, Patricia A; Perera, Theshini; Fronczek, Frank R; Marzilli, Luigi G

    2012-07-02

    Treatment of two precursors, fac-[Re(CO)(3)(L)(CH(3)CN)]BF(4) [L = 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me(2)bipy) (1) and 6,6'-dimethyl-2,2'-bipyridine (6,6'-Me(2)bipy) (2)], with five C(2)-symmetrical saturated heterocyclic amines yielded 10 new amidine complexes, fac-[Re(CO)(3)(L)(HNC(CH(3))N(CH(2)CH(2))(2)Y)]BF(4) [Y = CH(2), (CH(2))(2), (CH(2))(3), NH, or O]. All 10 complexes possess the novel feature of having only one isomer (amidine E configuration), as established by crystallographic and (1)H NMR spectroscopic methods. We are confident that NMR signals of the other possible isomer (amidine Z configuration) would have been detected, if it were present. Isomers are readily detected in closely related amidine complexes because the double-bond character of the amidine C-N3 bond (N3 is bound to Re) leads to slow E to Z isomer interchange. The new fac-[Re(CO)(3)(L)(HNC(CH(3))N(CH(2)CH(2))(2)Y)]BF(4) complexes have C-N3 bonds with essentially identical double-bond character. However, the reason that the Z isomer is so unstable as to be undetectable in the new complexes is undoubtedly because of unfavorable clashes between the equatorial ligands and the bulky N(CH(2)CH(2))(2)Y ring moiety of the axial amidine ligand. The amidine formation reactions in acetonitrile (25 °C) proceeded more easily with 2 than with 1, indicating that the distortion in 6,6'-Me(2)bipy resulting from the proximity of the methyl substituents to the inner coordination sphere enhanced the reactivity of the coordinated CH(3)CN. Reaction times for 1 and 2 exhibited a similar dependence on the basicity and ring size of the heterocyclic amine reactants. Moreover, when the product of the reaction of 1 with piperidine, fac-[Re(CO)(3)(5,5'-Me(2)bipy)(HNC(CH(3))N(CH(2)CH(2))(2)CH(2))]BF(4), was challenged in acetonitrile-d(3) or CDCl(3) with a 5-fold excess of the strong 4-dimethylaminopyridine ligand, there was no evidence for replacement of the amidine ligand after two months, thus establishing that the piperidinylamidine ligand is a robust ligand. This chemistry offers promise as a suitable means for preparing isomerically pure conjugated fac-[(99m)Tc(CO)(3)L](n±) imaging agents, including conjugates with known bioactive heterocyclic amines.

  16. Divalent carbon(0) chemistry, part 1: Parent compounds.

    PubMed

    Tonner, Ralf; Frenking, Gernot

    2008-01-01

    Quantum-chemical calculations with DFT (BP86) and ab initio methods [MP2, SCS-MP2, CCSD(T)] have been carried out for the molecules C(PH(3))(2) (1), C(PMe(3))(2) (2), C(PPh(3))(2) (3), C(PPh(3))(CO) (4), C(CO)(2) (5), C(NHC(H))(2) (6), C(NHC(Me))(2) (7) (Me(2)N)(2)C=C=C(NMe(2))(2) (8), and NHC (9), where NHC=N-heterocyclic carbene and NHC(Me)=N-methyl-substituted NHC. The electronic structure in 1-9 was analyzed with charge- and energy-partitioning methods. The results show that the bonding situations in L(2)C compounds 1-8 can be interpreted in terms of donor-acceptor interactions between closed-shell ligands L and a carbon atom which has two lone-pair orbitals L-->C<--L. This holds particularly for the carbodiphosphoranes 1-3 where L=PR(3), which therefore are classified as divalent carbon(0) compounds. The NBO analysis suggests that the best Lewis structures for the carbodicarbenes 6 and 7 where L is a NHC ligand have C==C==C double bonds as in the tetraaminoallene 8. However, the Lewis structures of 6-8, in which two lone-pair orbitals at the central carbon atom are enforced, have only a slightly higher residual density. Visual inspection of the frontier orbitals of the latter species reveals their pronounced lone-pair character, which suggests that even the quasi-linear tetraaminoallene 8 is a "masked" divalent carbon(0) compound. This explains the very shallow bending potential of 8. The same conclusion is drawn for phosphoranylketene 4 and for carbon suboxide (5), which according to the bonding analysis have hidden double-lone-pair character. The AIM analysis and the EDA calculations support the assignment of carbodiphosphoranes as divalent carbon(0) compounds, while NHC 9 is characterized as a divalent carbon(II) compound. The L-->C((1)D) donor-acceptor bonds are roughly twice as strong as the respective L-->BH(3) bond.

  17. Synthesis, structure and DFT study of cymantrenyl Fischer carbene complexes of group VI and VII transition metals

    NASA Astrophysics Data System (ADS)

    Fraser, Roan; van Rooyen, Petrus H.; Landman, Marilé

    2016-02-01

    Bi- and trimetallic carbene complexes of group VI and VII transition metals (Cr, Mo, W, Mn and Re), with CpMn(CO)3 as the initial synthon, have been synthesised according to the classical Fischer methodology. Crystal structures of the novel carbene complexes with general formula [Mx(CO)y-1{C(OEt)(MnCp(CO)3)}], where x = 1 then y = 3 or 6; x = 2 then y = 10, of the complexes are reported. A density functional theory (DFT) study was undertaken to determine natural bonding orbitals (NBOs) and conformational as well as isomeric aspects of the polymetallic complexes. Application of the second-order perturbation theory (SOPT) of the natural bond orbital (NBO) method revealed stabilizing interactions between the methylene C-H bonds and the carbonyl ligands of the carbene metal moiety. These stabilization interactions show a linear decrease for the group VI metal carbene complexes down the group.

  18. Synthesis and research of benzylamides of some isocyclic and heterocyclic acids as potential anticonvulsants.

    PubMed

    Strupińska, Marzanna; Rostafińska-Suchar, Grazyna; Pirianowicz-Chaber, Elzbieta; Stables, James P; Jiang, Jeff; Paruszewski, Ryszard

    2013-01-01

    A series of benzylamides of isocyclic and heterocyclic acids was synthesized and tested in Anticonvulsant Screening Project (ASP) of Antiepileptic Drug Development Program (ADDP) of NIH. Near all synthesized derivatives of heterocyclic acids showed activity. All obtained derivatives of mono- and bicyclic isocyclic acids were inactive. The power of action of heterocyclic acids derivatives seems does not depend upon kind of heteroatom (N, O or S). One of the compounds (2-furoic acid benzylamide (4)) appeared most promising. It showed in minimal clonic seizure (6Hz) test (ASP) in rats after i. p. administration: MES ED50 = 36.5 mg/kg, TOX TD50 = 269.75 mg/kg, and PI = 7.39.

  19. Ruthenium(II) carbonyl complexes bearing CCC-pincer bis-(carbene) ligands: synthesis, structures and activities toward recycle transfer hydrogenation reactions.

    PubMed

    Naziruddin, Abbas Raja; Huang, Zhao-Jiunn; Lai, Wei-Chih; Lin, Wan-Jung; Hwang, Wen-Shu

    2013-09-28

    A new series of ruthenium(II) carbonyl complexes with benzene-based CCC-pincer bis-(carbene) ligands, [((R)CCC(R))Ru(CO)2(X)](0/+) and [((R)CCC(R))Ru(CO)(NN)](+) ((R)CCC(R) = 2,6-bis-(1-alkylimidazolylidene)benzene, R = Me or (n)Bu; X = I, Br, CH3CN, or 6-(aminomethyl)pyridine (ampy); NN = 2·CH3CN, or chelating ampy or bipyridine), was synthesized and fully characterized. X-Ray structure determinations revealed that these eight complexes have pseudo-octahedral configurations around the ruthenium center with the pincer ligand occupying three meridional sites. These complexes prove to be efficient precatalysts demonstrating very good activity and reusability for the transfer hydrogenation of ketones.

  20. Carbene-aerogen bonds: an ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Sabouri, Ayda

    2017-04-01

    Through the use of ab initio calculations, the possibility of formation of σ-hole interaction between ZO3 (Z = Ar, Kr and Xe) and carbene species is investigated. Since singlet carbenes show a negative electrostatic potential on their divalent carbon atom, they can favourably interact with the positive electrostatic potential generated by the σ-hole of Z atom of ZO3. The characteristic of this interaction, termed as 'carbene-aerogen' bond, is analysed in terms of geometric, interaction energies and electronic features. The energy decomposition analysis indicates that for all complexes analysed here, the electrostatic energy is more negative than the polarisation or dispersion energy term. According to the electron density analysis, some partial covalent character can be ascribed to XeṡṡṡC interactions. In addition, the carbene-aerogen bond exhibits cooperative effects with the HṡṡṡO hydrogen-bonding interaction in ternary complexes where both interactions coexist. For a given carbene, the amount of these cooperative effects increases with the size of the Z atom. The results obtained in this work may be helpful for the extension and future application of σ-hole intermolecular interactions as well as coordination chemistry.

  1. Gold(I) NHC Complexes: Antiproliferative Activity, Cellular Uptake, Inhibition of Mammalian and Bacterial Thioredoxin Reductases, and Gram-Positive Directed Antibacterial Effects.

    PubMed

    Schmidt, Claudia; Karge, Bianka; Misgeld, Rainer; Prokop, Aram; Franke, Raimo; Brönstrup, Mark; Ott, Ingo

    2017-02-03

    Gold complexes with N-heterocyclic carbene (NHC) ligands represent a promising class of metallodrugs for the treatment of cancer or infectious diseases. In this report, the synthesis and the biological evaluation of halogen-containing NHC-Au I -Cl complexes are described. The complexes 1 and 5 a-5 f displayed good cytotoxic activity against tumor cells, and cellular uptake studies suggested that an intact Au-NHC fragment is essential for the accumulation of high amounts of both the metal and the NHC ligand. However, the bioavailability was negatively affected by serum components of the cell culture media and was influenced by likely transformations of the complex. One example (5 d) efficiently induced apoptosis in vincristine- and daunorubicin-resistant P-glycoprotein overexpressing Nalm-6 leukemia cells. Cellular uptake studies with this compound showed that both the wild-type and resistant Nalm-6 cells accumulated comparable amounts of gold, indicating that the gold drug was not excreted by P-glycoprotein or other efflux transporters. The effective inhibition of mammalian and bacterial thioredoxin reductases (TrxR) was confirmed for all of the gold complexes. Antibacterial screening of the gold complexes showed a particularly high activity against Gram-positive strains, reflecting their high dependence on an intact Trx/TrxR system. This result is of particular interest as the inhibition of bacterial TrxR represents a relatively little explored mechanism of new anti-infectives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  3. Greener Synthesis of N-Heterocycles via Sustainable Applications of Nano-Catalysts

    EPA Science Inventory

    A brief historic account of reactions involving microwave (MW) exposure of neat reactants or catalysis by mineral surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermedi...

  4. Facile insertion of a cyclic alkyl(amino) carbene carbon into the B-B bond of diboron(4) reagents.

    PubMed

    Eichhorn, Antonius F; Kuehn, Laura; Marder, Todd B; Radius, Udo

    2017-10-24

    We report herein the room temperature insertion of the carbene carbon atom of the cyclic (alkyl)(amino) carbene cAAC Me into the B-B single bonds of the diboron(4) compounds B 2 pin 2 , B 2 cat 2 , B 2 neop 2 , and B 2 eg 2 (pin = pinacolato, cat = catecholato, neop = neopentylglycolato, eg = ethyleneglycolato).

  5. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler

    NASA Astrophysics Data System (ADS)

    Shaffer, Christopher J.; Andrikopoulos, Prokopis C.; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František

    2016-04-01

    Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific 13C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)+ ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H]+ ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase.

  6. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia

    PubMed Central

    Forberg, Daniel; Schwob, Tobias; Zaheer, Muhammad; Friedrich, Martin; Miyajima, Nobuyoshi; Kempe, Rhett

    2016-01-01

    Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage. PMID:27762267

  7. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia.

    PubMed

    Forberg, Daniel; Schwob, Tobias; Zaheer, Muhammad; Friedrich, Martin; Miyajima, Nobuyoshi; Kempe, Rhett

    2016-10-20

    Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.

  8. Understanding and Exploitation of Neighboring Heteroatom Effect for the Mild N-Arylation of Heterocycles with Diaryliodonium Salts under Aqueous Conditions: A Theoretical and Experimental Mechanistic Study.

    PubMed

    Bihari, Tamás; Babinszki, Bence; Gonda, Zsombor; Kovács, Szabolcs; Novák, Zoltán; Stirling, András

    2016-07-01

    The mechanism of arylation of N-heterocycles with unsymmetric diaryliodonium salts is elucidated. The fast and efficient N-arylation reaction is interpreted in terms of the bifunctionality of the substrate: The consecutive actions of properly oriented Lewis base and Brønsted acid centers in sufficient proximity result in the fast and efficient N-arylation. The mechanistic picture points to a promising synthetic strategy where suitably positioned nucleophilic and acidic centers enable functionalization, and it is tested experimentally.

  9. Phthalocyanines functionalized with 2-methyl-5-nitro-1H-imidazolylethoxy and 1,4,7-trioxanonyl moieties and the effect of metronidazole substitution on photocytotoxicity.

    PubMed

    Wierzchowski, Marcin; Sobotta, Lukasz; Skupin-Mrugalska, Paulina; Kruk, Justyna; Jusiak, Weronika; Yee, Michael; Konopka, Krystyna; Düzgüneş, Nejat; Tykarska, Ewa; Gdaniec, Maria; Mielcarek, Jadwiga; Goslinski, Tomasz

    2013-10-01

    Four novel magnesium(II) and zinc(II) phthalocyanines bearing 1,4,7-trioxanonyl, polyether and/or (2-methyl-5-nitro-1H-imidazol-1-yl)ethoxy, heterocyclic substituents at their non-peripheral positions were synthesized and assessed in terms of physicochemical and biological properties. Magnesium phthalocyanine derivatives bearing polyether substituents (Pc-1), a mixed system of polyether and heterocyclic substituents (Pc-3), and four heterocyclic substituents (Pc-4), respectively, were synthesized following the Linstead macrocyclization reaction procedure. Zinc phthalocyanine (Pc-2) bearing polyether substituents at non-peripheral positions was synthesized following the procedure in n-pentanol with the zinc acetate, and DBU. Novel phthalocyanines were purified by flash column chromatography and characterized using NMR, MS, UV-Vis and HPLC. Moreover, two precursors in macrocyclization reaction phthalonitriles were characterized using X-ray. Photophysical properties of the novel macrocycles were evaluated, including UV-Vis spectra analysis and aggregation study. All macrocycles subjected to singlet oxygen generation and the oxidation rate constant measurements exhibited lower quantum yields of singlet oxygen generation in DMSO than in DMF. In addition, the Pc-2 molecule was found to be the most efficient singlet oxygen generator from the group of macrocycles studied. The photocytotoxicity evaluated on the human oral squamous cell carcinoma cell line, HSC-3, for Pc-3 was significantly higher than that for Pc-1, Pc-2, and Pc-4. Interestingly, Pc-3 was found to be the most active macrocycle in vitro although its ability to generate singlet oxygen was significantly lower than those of Pc-1 and Pc-2. However, attempts to encapsulate phthalocyanines Pc-1-Pc-3 in liposomal membranes were unsuccessful. The phthalocyanine-nitroimidazole conjugate, Pc-4 was encapsulated in phosphatidylglycerol:phosphatidylcholine unilamellar liposomes and subjected to photocytotoxicity study. © 2013.

  10. Synthesis of High-Load, Hybrid Silica-Immobilized Heterocyclic Benzyl Phosphate (Si–OHBP) and Triazolyl Phosphate (Si–OHTP) Alkylating Reagents

    PubMed Central

    2016-01-01

    The development of new ROMP-derived silica-immobilized heterocyclic phosphate reagents and their application in purification-free protocols is reported. Grafting of norbornenyl norbornenyl-functionalized (Nb-tagged) silica particles with functionalized Nb-tagged heterocyclic phosphate monomers efficiently yield high-load, hybrid silica-immobilized oligomeric heterobenzyl phosphates (Si–OHBP) and heterotriazolyl phosphates (Si–OHTP) as efficient alkylation agents. Applications of these reagents for the diversification of N-, O-, and S-nucleophilic species, for efficient heterobenzylation and hetero(triazolyl)methylation have been validated. PMID:27300761

  11. Arylation of Rhodium(II) Azavinyl Carbenes with Boronic Acids

    PubMed Central

    Selander, Nicklas; Worrell, Brady T.; Chuprakov, Stepan; Velaparthi, Subash; Fokin, Valery V.

    2013-01-01

    A highly efficient and stereoselective arylation of in situ generated azavinyl carbenes affording 2,2-diaryl enamines at ambient temperatures has been developed. These transition metal carbenes are directly produced from readily available and stable 1-sulfonyl-1,2,3-triazoles in the presence of a rhodium carboxylate catalyst. In several cases, the enamines generated in this reaction can be cyclized into substituted indoles employing copper catalysts. PMID:22913576

  12. Photochemistry of Pyrimidine in Astrophysical Ices: Formation of Nucleobases and Other Prebiotic Species

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Sandford, Scott A.; Materese, Christopher K.; Milam, Stefanie N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA. They are divided into two molecular groups: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites, and their extraterrestrial origin confirmed by isotopic measurements. Although no N-heterocycles have ever been observed in the ISM, the positions of the 6.2- m interstellar emission features suggest a population of such molecules is likely to be present. However, laboratory experiments have shown that the ultraviolet (UV) irradiation of pyrimidine in ices of astrophysical relevance such as H2O, NH3, CH3OH, CH4, CO, or combinations of these at low temperature (less than or equal to 20 K) leads to the formation of several pyrimidine derivatives including the nucleobases uracil and cytosine, as well as precursors such as 4(3H)-pyrimidone and 4-aminopyrimidine. Quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways.10 In those residues, other species of prebiotic interest such as urea as well as the amino acids glycine and alanine could also be identified. However, only very small amounts of pyrimidine derivatives containing CH3 groups could be detected, suggesting that the addition of methyl groups to pyrimidine is not an efficient process. For this reason, the nucleobase thymine was not observed in any of the samples. In this work, we study the formation of nucleobases and other photo-products of prebiotic interest from the UV irradiation of pyrimidine in ices containing H2O, NH3, CH3OH, and CO, mixed in astrophysical proportions.

  13. Harnessing polarisation transfer to indazole and imidazole through signal amplification by reversible exchange to improve their NMR detectability

    PubMed Central

    Fekete, Marianna; Rayner, Peter J.; Green, Gary G. R.

    2017-01-01

    The signal amplification by reversible exchange (SABRE) approach has been used to hyperpolarise the substrates indazole and imidazole in the presence of the co‐ligand acetonitrile through the action of the precataysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)]. 2H‐labelled forms of these catalysts were also examined. Our comparison of the two precatalysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)], coupled with 2H labelling of the N‐heterocyclic carbene and associated relaxation and polarisation field variation studies, demonstrates the critical and collective role these parameters play in controlling the efficiency of signal amplification by reversible exchange. Ultimately, with imidazole, a 700‐fold1H signal gain per proton is produced at 400 MHz, whilst for indazole, a 90‐fold increase per proton is achieved. The co‐ligand acetonitrile proved to optimally exhibit a 190‐fold signal gain per proton in these measurements, with the associated studies revealing the importance the substrate plays in controlling this value. Copyright © 2017 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. PMID:28497481

  14. Re-Orienting Coupling of Organocuprates with Propargyl Electrophiles from SN2' to SN2 with Stereocontrol.

    PubMed

    Trost, Barry M; Debien, Laurent

    2016-01-01

    Diorganocuprate(I) reagents derived from lithiated heterocycles and CuCN react with enantioenriched secondary propagryl bromides to give the corresponding propargylated heterocycles. While propargyl electrophiles typically undergo S N 2' displacement, this transformation represents the first example of the reaction of hard carbanions with propargyl eletrophiles in an S N 2 fashion and occurs with excellent levels of stereoinversion. The new method was applied to the formal synthesis of (+)-frondosin B.

  15. Formation of complex precursors of amino acids by irradiation of simulated interstellar media with heavy ions

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Suzuki, N.; Taniuchi, T.; Kaneko, T.; Yoshida, S.

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as meteorites and comets Amino acids were identified in the extracts from Murchison meteorite and other carbonaceous chondrites It is hypothesized that these compounds are originally formed in ice mantles of interstellar dusts ISDs in molecular clouds by cosmic rays and ultraviolet light UV Formation of amino acid precursors by high energy protons or UV irradiation of simulated ISDs was reported by several groups The amino acid precursors were however not well-characterized We irradiated a frozen mixture of methanol ammonia and water with heavy ions to study possible organic compounds abiotically formed in molecular clouds by cosmic rays A mixture of methanol ammonia and water was irradiated with carbon beams 290 MeV u from a heavy ion accelerator HIMAC of National Institute of Radiological Sciences Japan Irradiation was performed either at room temperature liquid phase or at 77 K solid phase The products were characterized by gel filtration chromatography GFC FT-IR pyrolysis PY -GC MS etc Amino acids were analyzed by HPLC and GC MS after acid hydrolysis or the products Amino acids such as glycine and alanine were identified in the products in both the cases of liquid phase and solid phase irradiation Energy yields G-values of glycine were 0 014 liquid phase and 0 007 solid phase respectively Average molecular weights of the products were estimated as to 2300 in both the case Aromatic hydrocarbons N-containing heterocyclic

  16. Applications of ortho-phenylisonitrile and ortho-N-Boc aniline for the two-step preparation of novel bis-heterocyclic chemotypes.

    PubMed

    Xu, Zhigang; Shaw, Arthur Y; Nichol, Gary S; Cappelli, Alexandra P; Hulme, Christopher

    2012-08-01

    Concise routes to five pharmacologically relevant bis-heterocyclic scaffolds are described. Significant molecular complexity is generated in a mere two synthetic operations enabling access to each scaffold. Routes are often improved by microwave irradiation and all utilize isocyanide-based multi-component reaction methods to incorporate the required diversity elements. Common reagents in all initial condensation reactions include 2-(N-Boc-amino)-phenyl-isocyanide 1, mono-Boc-phenylenediamine 2 and ethyl glyoxalate 3.

  17. A LFER analysis of the singlet-triplet gap in a series of sixty-six carbenes

    NASA Astrophysics Data System (ADS)

    Alkorta, Ibon; Elguero, José

    2018-01-01

    Ab initio G4 calculations have been performed to investigate the singlet-triplet gap in a series of 66 simple carbenes. Energies and geometries were analyzed. An additive model has been explored that include four interaction terms. An abnormal behavior of the cyano group has been found. The 13C absolute shieldings of the carbenic carbon atom were calculated at the GIAO/B3LYP/6-311++G(d, p).

  18. Insight into π-hole interactions containing the inorganic heterocyclic compounds S2N2/SN2P2.

    PubMed

    Lu, Bo; Zhang, Xueying; Meng, Lingpeng; Zeng, Yanli

    2017-08-01

    Similar to σ-hole interactions, the π-hole interaction has attracted much attention in recent years. According to the positive electrostatic potentials above and below the surface of inorganic heterocyclic compounds S 2 N 2 and three SN 2 P 2 isomers (heterocyclic compounds 1-4), and the negative electrostatic potential outside the X atom of XH 3 (X = N, P, As), S 2 N 2 /SN 2 P 2 ⋯XH 3 (X = N, P, As) complexes were constructed and optimized at the MP2/aug-cc-pVTZ level. The X atom of XH 3 (X = N, P, As) is almost perpendicular to the ring of the heterocyclic compounds. The π-hole interaction energy becomes greater as the trend goes from 1⋯XH 3 to 4⋯XH 3 . These π-hole interactions are weak and belong to "closed-shell" noncovalent interactions. According to the energy decomposition analysis, of the three attractive terms, the dispersion energy contributes more than the electrostatic energy. The polarization effect also plays an important role in the formation of π-hole complexes, with the contrasting phenomena of decreasing electronic density in the π-hole region and increasing electric density outside the X atom of XH 3 (X = N, P, As). Graphical abstract Computed density difference plots for the complexes 3⋯NH 3 (a 1 ), 3⋯PH 3 (b 1 ), 3⋯AsH 3 (c 1 ) and electron density shifts for the complexes 3⋯NH 3 (a 2 ), 3⋯PH 3 (b 2 ),3⋯AsH 3 (c 2 ) on the 0.001 a.u. contour.

  19. Matrix Isolation Spectroscopy and Photochemistry of Triplet 1,3-DIMETHYLPROPYNYLIDENE (MeC3Me)

    NASA Astrophysics Data System (ADS)

    Knezz, Stephanie N.; Waltz, Terese A.; Haenni, Benjamin C.; Burrmann, Nicola J.; McMahon, Robert J.

    2015-06-01

    Acetylenic carbenes and conjugated carbon chain molecules of the HCnH family are relevant to the study of combustion and chemistry in the interstellar medium (ISM). Propynylidene (HC3H) has been thoroughly studied and its structure and photochemistry determined. Here, we produce triplet diradical 1,3-dimethylpropynylidene (MeC3Me) photochemically from a precursor diazo compound in a cryogenic matrix (N2 or Ar) at 10 K, and spectroscopic analysis is carried out. The infrared, electronic absorption, and electron paramagnetic resonance spectra were examined in light of the parent (HC3H) system to ascertain the effect of alkyl substituents on delocalized carbon chains of this type. Computational analysis, EPR, and infrared analysis indicate a triplet ground state with a quasilinear structure. Infrared experiments reveal photochemical reaction to penten-3-yne upon UV irradiation. Further experimental and computational results pertaining to the structure and photochemistry will be presented. Seburg, R. A.; Patterson, E. V.; McMahon, R. J., Structure of Triplet Propynylidene (HCCCH) as Probed by IR, UV/vis, and EPR Spectroscopy of Isotopomers. Journal of the American Chemical Society 2009, 131 (26), 9442-9455.

  20. Oriented and covalent immobilization of target molecules to solid supports: synthesis and application of a light-activatable and thiol-reactive cross-linking reagent.

    PubMed

    Collioud, A; Clémence, J F; Sänger, M; Sigrist, H

    1993-01-01

    Light-dependent oriented and covalent immobilization of target molecules has been achieved by combining two modification procedures: light-dependent coupling of target molecules to inert surfaces and thiol-selective reactions occurring at macromolecule or substrate surfaces. For immobilization purposes the heterobifunctional reagent N-[m-[3-(trifluoromethyl)diazirin-3-yl]phenyl]-4-maleimidobutyr amide was synthesized and chemically characterized. The photosensitivity of the carbene-generating reagent and its reactivity toward thiols were ascertained. Light-induced cross-linking properties of the reagent were documented (i) by reacting first the maleimide function with a thiolated surface, followed by carbene insertion into applied target molecules, (ii) by photochemical coupling of the reagent to an inert support followed by thermochemical reactions with thiol functions, and (iii) by thermochemical modification of target molecules prior to carbene-mediated insertion into surface materials. Procedures mentioned led to light-dependent covalent immobilization of target molecules including amino acids, a synthetic peptide, and antibody-derived F(ab') fragments. Topically selective, light-dependent immobilization was attained with the bifunctional reagent by irradiation of coated surfaces through patterned masks. Glass and polystyrene served as substrates. Molecular orientation is asserted by inherently available or selectively introduced terminal thiol functions in F(ab') fragments and synthetic polypeptides, respectively.

  1. Microwave assisted synthesis of bis and tris(ω-bromoacetophenones): versatile precursors for novel bis(imidazo[1,2-a]pyridines), bis(imidazo[1,2-a]pyrimidines) and their tris-analogs

    PubMed Central

    2013-01-01

    Background α-Bromination of the side chain of aromatic ketones using NBS in the presence of p-toluenesulfonic acid (p-TsOH) in acetonitrile is very common. However, regioselective bromination of bis and tris(ω-bromoacetophenones) with NBS in the presence of p-TsOH in acetonitrile under microwave irradiation is quite novel. The bis- and tris(ω-bromoacetophenones) are used in synthesis of bis and tris(heterocycles). bis(heterocycles) have received a great deal of attention, because many biologically active natural and synthetic products have molecular symmetry. The use of the pressurized microwave irradiation is very advantageous to many syntheses and provide a large rate enhancement. Results Bis and tris(ω-bromoacetophenones) were obtained as single monobrominated derivatives in a shorter time than the conventional conditions. The results clearly demonstrate the better reactivity and selectivity of NBS/p-TsOH/CH3CN as a brominating mixture under microwave conditions. The reaction of bis and tris(ω-bromoacetophenone) with 2-aminopyridine and 2-aminopyrimidine proceeded smoothly in a mixture of anhydrous ethanol and DMF under reflux or using 300 W/105°C/ 20 min microwave irradiation conditions to afford the corresponding bis(imidazo[1,2-a]pyridine), bis(imidazo[1,2-a]pyrimidine) and tris(imidazo[1,2-a]pyridine) derivatives in moderate to excellent yields. The carbonyl analogue of the targeted bis(imidazopyridines) could be synthesized by the reaction of N,N-dimethyl-N'-(pyridin-2-yl)formimidamide with bis(ω-bromoacetophenone) in refluxing ethanol. The structures of the newly synthesized compounds were confirmed by their spectral data as well as their elemental analyses. Conclusion In conclusion, selective α-bromination of bis- and tris(acetophenones) has been accomplished efficiently utilizing NBS/p-TsOH/CH3CN under microwave irradiation. In addition, a facile synthesis of novel series of bis- and tris(imidazopyridine) and bis(imidazopyrimidine) derivatives. PMID:23782550

  2. Metal-organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-01

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L)2]n (1) and [Co3(L)4(N3)2·2MeOH]n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (42.6)2(44.62.88.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co3] units. And the magnetic properties of 1 and 2 have been studied.

  3. Concise copper-catalyzed synthesis of tricyclic biaryl ether-linked aza-heterocyclic ring systems.

    PubMed

    Mestichelli, Paola; Scott, Matthew J; Galloway, Warren R J D; Selwyn, Jamie; Parker, Jeremy S; Spring, David R

    2013-11-01

    A new method for the synthesis of tricyclic biaryl ether-linked ring systems incorporating seven-, eight-, and nine-membered ring amines is presented. In the presence of catalytic quantities of copper(I), readily accessible acyclic precursors undergo an intramolecular carbon-oxygen bond-forming reaction facilitated by a "templating" chelating nitrogen atom. The methodology displays a broad substrate scope, is practical, and generates rare and biologically interesting tricyclic heteroaromatic products that are difficult to access by other means.

  4. Curcumin derivatives inhibit or modulate beta-amyloid precursor protein metabolism.

    PubMed

    Narlawar, Rajeshwar; Baumann, Karlheinz; Schubenel, Robert; Schmidt, Boris

    2007-01-01

    Curcumin-derived oxazoles and pyrazoles were synthesized in order to minimize the metal chelation properties of curcumin. The reduced rotational freedom and the absence of stereoisomers was anticipated to enhance the inhibition of gamma-secretase. Accordingly, the replacement of the 1,3-dicarbonyl moiety by isosteric heterocycles turned curcumin analogue oxazoles and pyrazoles into potent gamma-secretase inhibitors. Compounds 4a-i were found to be potent inhibitors of gamma-secretase and displayed activity in the low micromolar range. 2007 S. Karger AG, Basel

  5. Oxidative demetalation of cyclohexadienyl ruthenium(II) complexes: a net Ru-mediated dearomatization.

    PubMed

    Pigge, F Christopher; Coniglio, John J; Rath, Nigam P

    2003-05-29

    [reaction: see text] An experimentally simple method for the demetalation of spirocyclic cyclohexadienylruthenium(II) complexes has been developed. Treatment of an alkoxy-substituted cyclohexadienyl complex with CuCl(2) affords either azaspiro[4.5]decane derivatives or heavily functionalized tetrahydroisoquinolines. The former reaction manifold completes a net Ru-mediated dearomatization as the organometallic starting materials are prepared from (eta(6)-arene)Ru(II) precursors. Both of these heterocyclic products are well suited for further synthetic elaboration.

  6. Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells

    DOEpatents

    Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo

    2014-10-28

    The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.

  7. Synthesis of 7-azabicyclo[2.2.1]heptane and 2-oxa-4-azabicyclo[3.3.1]non-3-ene derivatives by base-promoted heterocyclization of alkyl N-(cis(trans)-3,trans(cis)-4-dibromocyclohex-1-yl)carbamates and N-(cis(trans)-3,trans(cis)-4-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamides.

    PubMed

    Gómez-Sanchez, Elena; Soriano, Elena; Marco-Contelles, José

    2007-11-09

    We have studied the base-promoted heterocyclization of alkyl N-(cis(trans)-3,trans(cis)-4-dibromocyclohex-1-yl)carbamates and N-(cis(trans)-3,trans(cis)-4-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamides, investigating the effect of the nitrogen protecting group and the relative configuration of the leaving group at C3 and C4 on the outcome of this reaction. We have observed that the sodium hydride-promoted heterocyclization of alkyl N-(cis-3,trans-4-dibromocyclohex-1-yl)carbamates (10, 12, 14, 16, 18) is a convenient method for the synthesis of 7-azabicyclo[2.2.1]heptane derivatives. For instance, the reaction of tert-butyl N-(cis-3,trans-4-dibromocyclohex-1-yl)carbamate (10) with sodium hydride in DMF at room temperature provides 2-bromo-7-[(tert-butoxy)carbonyl]-7-azabicyclo[2.2.1]heptane (2) (52% yield), whose t-BuOK-promoted hydrogen bromide elimination affords 7-[(tert-butoxy)carbonyl]-7-azabicyclo[2.2.1]hept-2-ene (31) in 78% yield, an intermediate in the total synthesis of epibatidine (1). However, the NaH/DMF-mediated heterocyclization of alkyl N-(trans-3,cis-4-dibromocyclohex-1-yl)carbamates (11, 13) is a more structure dependent reaction, where the nucleophilic attack of the oxygen atom of the protecting group controls the outcome of the reaction, giving rise to benzooxazolone and 2-oxa-4-azabicyclo[3.3.1]non-3-ene derivatives, respectively, from low to moderate yields, in complex reaction mixtures. Conversely, the NaH/DMF heterocyclizations of N-(cis-3,trans-4-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamide (40) or N-(trans-3,cis-4-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamide (42) are very clean reactions giving 7-azabicyclo[2.2.1]heptane or 2-oxa-4-azabicyclo[3.3.1]non-3-ene derivatives, respectively, in good yields. Finally, a mechanistic investigation, based on DFT calculations, has been carried out to rationalize the formation of the different adducts.

  8. Novel thiophene-based cycloruthenated compounds: synthesis, characterization, and reactivity.

    PubMed

    Cuesta, Luciano; Maluenda, Irene; Soler, Tatiana; Navarro, Rafael; Urriolabeitia, Esteban P

    2011-01-03

    The reactions between a series of thiophene-based imines with [(η(6)-C(6)H(6))RuCl(μ-Cl)](2), in a basic medium, and in MeCN give a family of ruthenacycles of stoichiometry [Ru(C^N)(NCMe)(4)]PF(6) (C^N = orthometalated thiopheneimine). In these species, the C-H activation process is produced in most cases at the thiophene ring. When two C-H bonds are competing (thiophene vs aryl), the cyclometalation can be driven regioselectively to the thiophene unit or to the aryl ring as a function of the location of the iminic C=N bond. Cyclometalation can also be oriented to positions 2 or 3 of the thiophene depending on the situation of the imine in the heterocycle (3 or 2, respectively). In all studied cases, the η(6)-C(6)H(6) ligand was substituted by acetonitrile. The X-ray structures of two representative complexes have been determined. These thiophene-based metallacycles react with iodine under very mild conditions affording, after hydrolysis, substituted 3-iodo-2-formyl(benzo)thiophenes or substituted 2-iodo-3-formyl(benzo)thiophenes, as a function of the organometallic precursor.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Materese, Christopher K.; Nuevo, Michel; Sandford, Scott A., E-mail: christopher.k.materese@nasa.gov

    Aromatic heterocyclic molecules are an important class of molecules of astrophysical and biological significance that include pyridine, pyrimidine, and their derivatives. Such compounds are believed to exist in interstellar and circumstellar environments, though they have never been observed in the gas phase. Regardless of their presence in the gas phase in space, numerous heterocycles have been reported in carbonaceous meteorites, which indicates that they are formed under astrophysical conditions. The experimental work described here shows that N- and O-heterocyclic molecules can form from the ultraviolet (UV) irradiation of the homocyclic aromatic molecules benzene (C{sub 6}H{sub 6}) or naphthalene (C{sub 10}H{submore » 8}) mixed in ices containing H{sub 2}O and NH{sub 3}. This represents an alternative way to generate aromatic heterocycles to those considered before and may have important implications for astrochemistry and astrobiology.« less

  10. Catalytic Transformation of Aldehydes with Nickel Complexes through η(2) Coordination and Oxidative Cyclization.

    PubMed

    Hoshimoto, Yoichi; Ohashi, Masato; Ogoshi, Sensuke

    2015-06-16

    Chemists no longer doubt the importance of a methodology that could activate and utilize aldehydes in organic syntheses since many products prepared from them support our daily life. Tremendous effort has been devoted to the development of these methods using main-group elements and transition metals. Thus, many organic chemists have used an activator-(aldehyde oxygen) interaction, namely, η(1) coordination, whereby a Lewis or Brønsted acid activates an aldehyde. In the field of coordination chemistry, η(2) coordination of aldehydes to transition metals by coordination of a carbon-oxygen double bond has been well-studied; this activation mode, however, is rarely found in transition-metal catalysis. In view of the distinctive reactivity of an η(2)-aldehyde complex, unprecedented reactions via this intermediate are a distinct possibility. In this Account, we summarize our recent results dealing with nickel(0)-catalyzed transformations of aldehydes via η(2)-aldehyde nickel and oxanickelacycle intermediates. The combination of electron-rich nickel(0) and strong electron-donating N-heterocyclic carbene (NHC) ligands adequately form η(2)-aldehyde complexes in which the aldehyde is highly activated by back-bonding. With Ni(0)/NHC catalysts, processes involving intramolecular hydroacylation of alkenes and homo/cross-dimerization of aldehydes (the Tishchenko reaction) have been developed, and both proceed via the simultaneous η(2) coordination of aldehydes and other π components (alkenes or aldehydes). The results of the mechanistic studies are consistent with a reaction pathway that proceeds via an oxanickelacycle intermediate generated by the oxidative cyclization with a nickel(0) complex. In addition, we have used the η(2)-aldehyde nickel complex as an effective activator for an organosilane in order to generate a silicate reactant. These reactions show 100% atom efficiency, generate no wastes, and are conducted under mild conditions.

  11. White Light Emission from Planar Remote Phosphor Based on NHC Cycloplatinated Complexes.

    PubMed

    Fuertes, Sara; Chueca, Andrés J; Perálvarez, Mariano; Borja, Pilar; Torrell, Marc; Carreras, Josep; Sicilia, Violeta

    2016-06-29

    We report on the generation of bright white luminescence through solid-state illumination of remote phosphors based on novel cycloplatinated N-heterocyclic carbene (NHC) compounds. Following a stepwise protocol we got the new NHC compound [{Pt(μ-Cl)(C(∧)C*)}2] (4) (HC(∧)C*-κC* = 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazol-2-ylidene), which was used together with the related ones 4a (HC(∧)C*-κC*= 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene) and 4b (HC(∧)C*-κC*= 3-methyl-1-(naphthalen-2-yl)-1H-imidazol-2-ylidene) as starting materials for the synthesis of the new ionic derivatives [Pt(R-C(∧)C*) (CNR')2]PF6 (R = -COOEt, R' = t-Bu (5), Xyl (6); R = -CN, R' = t-Bu (7), Xyl (8); R(∧)C = Naph, R' = t-Bu (9), Xyl (10)). The X-ray structures of 6 and 8-10 have been determined. The photophysical properties of these cationic compounds have been studied and supported by the time-dependent-density functional theory (TD-DFT) calculations. The compounds 5, 8, and 9 have been revealed as the most efficient emitters in the solid state with quantum yields of 41%, 21%, and 40%, respectively. White-light remote-phosphors have been prepared just by stacking different combinations of these compounds and [Pt(bzq) (CN) (CN(t)Bu)] (R1) as blue (5, 8), yellow (9), and red (R1) components onto the same substrate. The CCT (correlated color temperature) and the CRI (color rendering index) of the emitted white-light have been tuned by accurately controlling the individual contributions.

  12. Catalytic activation of carbon–carbon bonds in cyclopentanones

    PubMed Central

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2017-01-01

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon–carbon single bonds (C–C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds1–13. The challenge in achieving such activation is the kinetic inertness of C–C bonds and the relative weakness of newly formed carbon–metal bonds6,14. The most common tactic starts with a three- or four-membered carbon-ring system9–13, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C–C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C–C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C–C bond can be activated; this is followed by activation of a carbon–hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones—a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate. PMID:27806379

  13. Tuning the Electronic Structure of Fe(II) Polypyridines via Donor Atom and Ligand Scaffold Modifications: A Computational Study.

    PubMed

    Bowman, David N; Bondarev, Alexey; Mukherjee, Sriparna; Jakubikova, Elena

    2015-09-08

    Fe(II) polypyridines are an important class of pseudo-octahedral metal complexes known for their potential applications in molecular electronic switches, data storage and display devices, sensors, and dye-sensitized solar cells. Fe(II) polypyridines have a d(6) electronic configuration and pseudo-octahedral geometry and can therefore possess either a high-spin (quintet) or a low-spin (singlet) ground state. In this study, we investigate a series of complexes based on [Fe(tpy)2](2+) (tpy = 2,2';6',2″-terpyridine) and [Fe(dcpp)2](2+) (dcpp = 2,6-bis(2-carboxypyridyl)pyridine). The ligand field strength in these complexes is systematically tuned by replacing the central pyridine with five-membered (N-heterocyclic carbene, pyrrole, furan) or six-membered (aryl, thiazine-1,1-dioxide, 4-pyrone) moieties. To determine the impact of ligand substitutions on the relative energies of metal-centered states, the singlet, triplet, and quintet states of the Fe(II) complexes were optimized in water (PCM) using density functional theory at the B3LYP+D2 level with 6-311G* (nonmetals) and SDD (Fe) basis sets. It was found that the dcpp ligand scaffold allows for a more ideal octahedral coordination environment in comparison to the tpy ligand scaffold. The presence of six-membered central rings also allows for a more ideally octahedral coordination environment relative to five-membered central rings, regardless of the ligand scaffold. We find that the ligand field strength in the Fe(II) polypyridines can be tuned by altering the donor atom identity, with C donor atoms providing the strongest ligand field.

  14. Quantum chemical studies on hypothetical Fischer type Mo(CO)5[C(OEt)Me] and Mo(CO)5[C(OMe)Et] carbene complexes

    NASA Astrophysics Data System (ADS)

    Gövdeli, Nezafet; Karakaş, Duran

    2018-07-01

    Quantum chemical calculations at B3LYP/LANL2DZ/6-31G(d) level were made on anti-eclipsed, anti-staggered, syn-eclipsed, syn-staggered conformers of hypothetical Fischer type Mo(CO)5[C(OEt)Me] and Mo(CO)5[C(OMe)Et] carbene complexes in the gas phase. The most stable conformer of the complexes was found to be anti-staggered according to the total energy values calculated at given level. Structural parameters, vibration spectra, charge distributions, molecular orbital energy diagrams, contour diagrams of frontier orbitals, molecular electrostatic potential maps and some electronic structure descriptors were obtained for the most stable conformers. NMR spectra of the most stable conformers were calculated at GIAO/B3LYP/LANL2DZ level. The most stable conformer geometry was found to be distorted octahedral. IR and NMR spectra of the complexes are consistent with their geometry. HOMOs of the complexes were found to be center-atomic character and LUMOs were carbene-carbon character. From the calculated charge analysis and molecular electrostatic potential maps, it is found that carbene-carbon acts as electrofil and metal center nucleophile. It is suggested that the catalytic properties of the carbene complexes may be due to the fact that the carbene-carbon behave as electrophile and metal center nucleophile. Some electronic structure descriptors of the complexes were calculated and the molecular properties were estimated.

  15. First application of an efficient and versatile ligand for copper-catalyzed cross-coupling reactions of vinyl halides with N-heterocycles and phenols.

    PubMed

    Kabir, M Shahjahan; Lorenz, Michael; Namjoshi, Ojas A; Cook, James M

    2010-02-05

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency, that is, mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance.

  16. First Application of An Efficient and Versatile Ligand for Copper-Catalyzed Cross-Coupling Reactions of Vinyl Halides with N-Heterocycles and Phenols

    PubMed Central

    Kabir, M. Shahjahan; Lorenz, Michael; Namjoshi, Ojas A.; Cook, James M.

    2010-01-01

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency i.e., mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance. PMID:20039699

  17. Synthesis and Reactivity of Backfluorinated NHC Carbene Complexes (Briefing Charts)

    DTIC Science & Technology

    2015-07-01

    Distribution A: Approved for public release 13 Preparation of Perfluoroalkyl Grignard Reagents F(CF2CF2)nCH2CH2I Mg, Et2O ref lux F(CF2CF2)nCH2CH2MgI F...Synthetic Method #1 Grignard Addition/Reduction/Cyclization • Very general reaction pathway: suitable for all Grignard reagents • Attempts at...dialkylation unsuccessful • Slight excess of Grignard reagent ensures complete monoalkylation N N MesMes N N MesMes F2 C MgX Et2O, rt N N MesMes CF2 MgX 2

  18. Synthesis and biological evaluation of novel aromatic and heterocyclic bis-sulfonamide Schiff bases as carbonic anhydrase I, II, VII and IX inhibitors.

    PubMed

    Akocak, Suleyman; Lolak, Nabih; Nocentini, Alessio; Karakoc, Gulcin; Tufan, Anzel; Supuran, Claudiu T

    2017-06-15

    A series of sixteen novel aromatic and heterocyclic bis-sulfonamide Schiff bases were prepared by conjugation of well known aromatic and heterocyclic aminosulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitor pharmacophores with aromatic and heterocyclic bis-aldehydes. The obtained bis-sulfonamide Schiff bases were investigated as inhibitors of four selected human (h) CA isoforms, hCA I, hCA II, hCA VII and hCA IX. Most of the newly synthesized compounds showed a good inhibitory profile against isoforms hCA II and hCA IX, also showing moderate selectivity against hCA I and VII. Several efficient lead compounds were identified among this bis-sulfonamide Schiff bases with low nanomolar to sub-nanomolar activity against hCA II (K i s ranging between 0.4 and 861.1nM) and IX (K i s between 0.5 and 933.6nM). Since hCA II and hCA IX are important drug targets (antiglaucoma and anti-tumor agents), these isoform-selective inhibitors may be considered of interest for various biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Reagent-based DOS: developing a diastereoselective methodology to access spirocyclic- and fused heterocyclic ring systems.

    PubMed

    Damerla, V Surendra Babu; Tulluri, Chiranjeevi; Gundla, Rambabu; Naviri, Lava; Adepally, Uma; Iyer, Pravin S; Murthy, Y L N; Prabhakar, Nampally; Sen, Subhabrata

    2012-10-01

    Herein, we report a diversity-oriented-synthesis (DOS) approach for the synthesis of biologically relevant molecular scaffolds. Our methodology enables the facile synthesis of fused N-heterocycles, spirooxoindolones, tetrahydroquinolines, and fused N-heterocycles. The two-step sequence starts with a chiral-bicyclic-lactam-directed enolate-addition/substitution step. This step is followed by a ring-closure onto the built-in scaffold electrophile, thereby leading to stereoselective carbocycle- and spirocycle-formation. We used in silico tools to calibrate our compounds with respect to chemical diversity and selected drug-like properties. We evaluated the biological significance of our scaffolds by screening them in two cancer cell-lines. In summary, our DOS methodology affords new, diverse scaffolds, thereby resulting in compounds that may have significance in medicinal chemistry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles.

    PubMed

    Banerjee, Bubun

    2017-03-01

    Heterocycles are the backbone of organic compounds. Specially, N- &O-containing heterocycles represent privileged structural subunits well distributed in naturally occurring compounds with immense biological activities. Multicomponent reactions (MCRs) are becoming valuable tool for synthesizing structurally diverse molecular entities. On the other hand, the last decade has seen a tremendous outburst in modifying chemical processes to make them sustainable for the betterment of our environment. The application of ultrasound in organic synthesis is fulfilling some of the goals of 'green and sustainable chemistry' as it has some advantages over the traditional thermal methods in terms of reaction rates, yields, purity of the products, product selectivity, etc. Therefore the synthesis of biologically relevant heterocycles using one-pot multi-component technique coupled with the application of ultrasound is one of the thrusting areas in the 21st Century among the organic chemists. The present review deals with the "up to date" developments on ultrasound assisted one-pot multi-component synthesis of biologically relevant heterocycles reported so far. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. An Exploratory Research and Development Program Leading to Specifications for Aviation Turbine Fuel from Whole Crude Shale Oil. Part V.

    DTIC Science & Technology

    1982-03-01

    Velocity LP Linear Program LP Sep Low Pressure Separator Mo Molybdenum N2 Nitrogen Gas NA Not Available NH3 Ammonia Gas xiv LIST OF SYMBOLS AND...part, is present as heterocyclic compounds. It is reduced to ammonia and re- moved as such or the heterocyclic compounds are saturated to basic nitro...the carbon-nitrogen bond and then removing the nitrogen from the amine as ammonia .(4) -2- ------- C5HI 1 NH2 +H2 -5l H . - 2C5H2 + NH3 N N H It can be

  2. Carbene Chemistry. I. Stereochemical Integrity at C Alpha in Ketone Tosylhydrazones. II. Hydrogen Migration in 2-Carbena-6,6-Dimethylnorbornane.

    DTIC Science & Technology

    1978-02-01

    H20, 10% Na2 CO3 , H20, and dried over MqSO 4 . Yields were typically ca. 75%. "! 33 CARBENE CHEMISTRY PART II. HYDROGEN MIGRATION IN 2-CARBENA-6,6...any a delocaliza- tion. Thus if one assumes a single product determining intermediate, carbene 54 is classical in the usual sense of the word. It has...placed in a refrigerator. The crystalline product was re- crystallized from methanol-O-d/D20 yielding purified tosylhydrazone with mp 156-1580. 58

  3. EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions

    PubMed Central

    Xiang, Longkuan; Kalaitzis, John A.; Moore, Bradley S.

    2004-01-01

    The bacteriostatic natural product enterocin from the marine microbe “Streptomyces maritimus” has an unprecedented carbon skeleton that is derived from an aromatic polyketide biosynthetic pathway. Its caged tricyclic, nonaromatic core is derived from a linear poly-β-ketide precursor that formally undergoes a Favorskii-like oxidative rearrangement. In vivo characterization of the gene encM through mutagenesis and heterologous biosynthesis demonstrated that its protein product not only is solely responsible for the oxidative C—C rearrangement, but also facilitates two aldol condensations plus two heterocycle forming reactions. In total, at least five chiral centers and four rings are generated by this multifaceted flavoprotein. Heterologous expression of the enterocin biosynthesis genes encABCDLMN in Streptomyces lividans resulted in the formation of the rearranged metabolite desmethyl-5-deoxyenterocin and the shunt products wailupemycins D-G. Addition of the methyltransferase gene encK, which was previously proposed through mutagenesis to additionally assist EncM in the Favorskii rearrangement, shifted the production to the O-methyl derivative 5-deoxyenterocin. The O-methyltransferase EncK seems to be specific for the pyrone ring of enterocin, because bicyclic polyketides bearing pyrone rings are not methylated in vivo. Expression of encM with different combinations of homologous actinorhodin biosynthesis genes did not result in the production of oxidatively rearranged enterocin-actinorhodin hybrid compounds as anticipated, suggesting that wild-type EncM may be specific for its endogenous type II polyketide synthase or for benzoyl-primed polyketide precursors. PMID:15505225

  4. Structural and spectral comparisons between isomeric benzisothiazole and benzothiazole based aromatic heterocyclic dyes

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Ge; Wang, Yue-Hua; Tao, Tao; Qian, Hui-Fen; Huang, Wei

    2015-09-01

    A pair of isomeric heterocyclic compounds, namely 3-amino-5-nitro-[2,1]-benzisothiazole and 2-amino-6-nitrobenzothiazole, are used as the diazonium components to couple with two N-substituted 4-aminobenzene derivatives. As a result, two pairs of isomeric aromatic heterocyclic azo dyes have been produced and they are structurally and spectrally characterized and compared including single-crystal structures, electronic spectra, solvatochromism and reversible acid-base discoloration, thermal stability and theoretically calculations. It is concluded that both benzisothiazole and benzothiazole based dyes show planar molecular structures and offset π-π stacking interactions, solvatochromism and reversible acid-base discoloration. Furthermore, benzisothiazole based aromatic heterocyclic dyes exhibit higher thermal stability, larger solvatochromic effects and maximum absorption wavelengths than corresponding benzothiazole based ones, which can be explained successfully by the differences of their calculated isomerization energy, dipole moment and molecular band gaps.

  5. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertrand, Guy

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry”more » since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH 3 and NH 2NH 2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH 3- and NH 2NH 2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require high temperatures and long reaction times. To address this issue, we have developed several new families of carbon- and boron-based ligands, which are even better donors. The corresponding metal complexes (particularly gold, rhodium, iridium, and ruthenium) of all these species will be tested in the Markovnikov and anti-Markovnikov hydroamination of alkynes, allenes, and also alkenes with ammonia and hydrazine. We will also develop metal-free catalytic processes for the functionalization of ammonia and hydrazine. By possessing both a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble and can mimic the chemical behavior of transition metals. Our preliminary results demonstrate that specially designed carbenes can split the N–H bond of ammonia by an initial nucleophilic activation that prevents the formation of Lewis acid-base adducts, which is the major hurdle for the transition metal catalyzed functionalization of NH 3. The use of purely organic compounds as catalysts will eliminate the major drawbacks of transition-metal-catalysis technology, which are the excessive cost of metal complexes (metal + ligands) and in many cases the toxicity of the metal.« less

  6. The Formation of Nucleobases from the Irradiation of Purine in Astophysical Ices and Comparisons with Meteorites.

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Materese, C. K.; Nuevo, M.

    2016-01-01

    N-heterocycles have been identified in meteorites and their extraterrestrial origins are suggested by isotopic ratio measurements. Although small N- heterocycles have not been detected in the interstellar medium (ISM), recent experiments in our lab have shown that the irradiation of the aromatic molecules like benzene (C6H6) and naphthalene (C10H8) in mixed molecular ices leads to the formation of O- and N-heterocyclic molecules. Among the class of N-heterocycles are the nucleobases, which are of astrobiological interest because they are the information bearing units of DNA and RNA. Nucleobases have been detected in meteorites [3-5], with isotopic signatures that are also consistent with an extraterrestrial origin. Three of the biologically relevant nucleobases (uracil, cytosine, and guanine) have a pyrimidine core structure while the remaining two (adenine and guanine) possess a purine core. Previous experiments in our lab have demonstrated that all of the bio-logical nucleobases (and numerous other molecules) with a pyrimidine core structure can be produced by irradiating pyrimidine in mixed molecular ices of several compositions [6-8]. In this work, we study the formation of purine-based molecules, including the nucleobases adenine, and guanine, from the ultraviolet (UV) irradiation of purine in ices consisting mixtures of H2O and NH3 at low temperature. The experiments are designed to simulate the astrophysical conditions under which these species may be formed in dense molecular clouds, protoplanetary disks, or on the surfaces of icy bodies in planetary systems.

  7. Mechanism of UVA-dependent DNA damage induced by an antitumor drug dacarbazine in relation to its photogenotoxicity.

    PubMed

    Iwamoto, Takuya; Hiraku, Yusuke; Okuda, Masahiro; Kawanishi, Shosuke

    2008-03-01

    It has been reported that dacarbazine (DTIC) is photogenotoxic. The purpose of this study is to clarify the mechanism of photogenotoxicity induced by DTIC. We examined DNA damage induced by UVA-irradiated DTIC using 32P-5'-end-labeled DNA fragments obtained from human genes. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA was measured by high performance liquid chromatograph with an electrochemical detector. Electron spin resonance (ESR) spin-trapping experiments were performed to detect radical species generated from UVA-irradiated DTIC. UVA-irradiated DTIC caused DNA damage at guanine residues, especially at the 5'-GGT-3' sequence in the presence of Cu(II) and also induced 8-oxodG generation in calf thymus DNA. DTIC-induced photodamage to DNA fragments was partially inhibited by catalase, whereas 8-oxodG formation was significantly increased by catalase. NaN3, a carbene scavenger, inhibited DNA damage and 8-oxodG formation in a dose-dependent manner, suggesting that carbene intermediates are involved. The ESR spin-trapping experiments demonstrated the generation of aryl radicals in the process of photodegradation of DTIC. Photoactivated DTIC generates the carbene and aryl radicals, which may induce both DNA adduct and 8-oxodG formation, resulting in photogenotoxicity. This study could provide an insight into the safe usage of DTIC.

  8. Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Hult, M.F.

    1985-01-01

    Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.

  9. Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles

    NASA Astrophysics Data System (ADS)

    Kreituss, Imants; Bode, Jeffrey W.

    2017-05-01

    Kinetic resolution is a common method to obtain enantioenriched material from a racemic mixture. This process will deliver enantiopure unreacted material when the selectivity factor of the process, s, is greater than 1; however, the scalemic reaction product is often discarded. Parallel kinetic resolution, on the other hand, provides access to two enantioenriched products from a single racemic starting material, but suffers from a variety of practical challenges regarding experimental design that limit its applications. Here, we describe the development of a flow-based system that enables practical parallel kinetic resolution of saturated N-heterocycles. This process provides access to both enantiomers of the starting material in good yield and high enantiopurity; similar results with classical kinetic resolution would require selectivity factors in the range of s = 100. To achieve this, two immobilized quasienantiomeric acylating agents were designed for the asymmetric acylation of racemic saturated N-heterocycles. Using the flow-based system we could efficiently separate, recover and reuse the polymer-supported reagents. The amide products could be readily separated and hydrolysed to the corresponding amines without detectable epimerization.

  10. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    PubMed

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structural and Functional Dissection of the Heterocyclic Peptide Cytotoxin Streptolysin S*S⃞

    PubMed Central

    Mitchell, Douglas A.; Lee, Shaun W.; Pence, Morgan A.; Markley, Andrew L.; Limm, Joyce D.; Nizet, Victor; Dixon, Jack E.

    2009-01-01

    The human pathogen Streptococcus pyogenes secretes a highly cytolytic toxin known as streptolysin S (SLS). SLS is a key virulence determinant and responsible for the β-hemolytic phenotype of these bacteria. Despite over a century of research, the chemical structure of SLS remains unknown. Recent experiments have revealed that SLS is generated from an inactive precursor peptide that undergoes extensive post-translational modification to an active form. In this work, we address outstanding questions regarding the SLS biosynthetic process, elucidating the features of substrate recognition and sites of posttranslational modification to the SLS precursor peptide. Further, we exploit these findings to guide the design of artificial cytolytic toxins that are recognized by the SLS biosynthetic enzymes and others that are intrinsically cytolytic. This new structural information has ramifications for future antimicrobial therapies. PMID:19286651

  12. Synthesis of a Novel Energetic Heterocyclic Oxidizer with Higher Energy and Lower Sensitivity Final Report CRADA No. TC02099.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagoria, P.; Racoveanu, A.

    2017-09-08

    The project involved the synthesis of 5g of a target energetic compound, 3,4-bis(5-nitro-1,2,5- oxadiazol-4-yl)-1,2,5-oxadiazole-1-oxide (DNTF. The deliverables were the synthesis of 5g of DNTF along with quantities of the precursor compounds. In addition, small-scale safety tests on DNTF were performed, which to confirmed that DNTF has no undesirable safety properties before scaling up the synthesis in Phase II of this project.

  13. "Nanorust"-catalyzed benign oxidation of amines for selective synthesis of nitriles.

    PubMed

    Jagadeesh, Rajenahally V; Junge, Henrik; Beller, Matthias

    2015-01-01

    Organic nitriles constitute key precursors and central intermediates in organic synthesis. In addition, nitriles represent a versatile motif found in numerous medicinally and biologically important compounds. Generally, these nitriles are synthesized by traditional cyanation procedures using toxic cyanides. Herein, we report the selective and environmentally benign oxidative conversion of primary amines for the synthesis of structurally diverse aromatic, aliphatic and heterocyclic nitriles using a reusable "nanorust" (nanoscale Fe2 O3 )-based catalysts applying molecular oxygen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Chemistry of Hexaazatriphenylene Hexanitrile, a Polyfunctional Heterocycle with Potential Utility in the Formulation of Thermostable Polymers

    DTIC Science & Technology

    1989-06-01

    in Anhydrous Trifluoroacetic Acid Media: A Modification for Insoluble or Deactivated Amine and Amida Precursors", Synthesis 1988,. 566 K. Kanakarajan...Organiscne Chemnie. Johannes Gutenburg Univhe~sitat K L De ~rres l 6500 Mvainz. W~est Germany - ... .... u’r .i, j3"eer’r𔃺 .,versht’Vof Ul.an. J. C. Salamone 0...hexaester, and trianhydride 6 de . complished readily using concentrated sulfuric acid at rivatives. room temperature for 3 days (Scheme 11). As in every

  15. Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to β-Azido Alcohols.

    PubMed

    Sun, Xiang; Li, Xinyao; Song, Song; Zhu, Yuchao; Liang, Yu-Feng; Jiao, Ning

    2015-05-13

    An efficient Mn-catalyzed aerobic oxidative hydroxyazidation of olefins for synthesis of β-azido alcohols has been developed. The aerobic oxidative generation of azido radical employing air as the terminal oxidant is disclosed as the key process for this transformation. The reaction is appreciated by its broad substrate scope, inexpensive Mn-catalyst, high efficiency, easy operation under air, and mild conditions at room temperature. This chemistry provides a novel approach to high value-added β-azido alcohols, which are useful precursors of aziridines, β-amino alcohols, and other important N- and O-containing heterocyclic compounds. This chemistry also provides an unexpected approach to azido substituted cyclic peroxy alcohol esters. A DFT calculation indicates that Mn catalyst plays key dual roles as an efficient catalyst for the generation of azido radical and a stabilizer for peroxyl radical intermediate. Further calculation reasonably explains the proposed mechanism for the control of C-C bond cleavage or for the formation of β-azido alcohols.

  16. Nitrenes, carbenes, diradicals, and ylides. Interconversions of reactive intermediates.

    PubMed

    Wentrup, Curt

    2011-06-21

    Rearrangements of aromatic and heteroaromatic nitrenes and carbenes can be initiated with either heat or light. The thermal reaction is typically induced by flash vacuum thermolysis, with isolation of the products at low temperatures. Photochemical experiments are conducted either under matrix isolation conditions or in solution at ambient temperature. These rearrangements are usually initiated by ring expansion of the nitrene or carbene to a seven-membered ring ketenimine, carbodiimide, or allene (that is, a cycloheptatetraene or an azacycloheptatetraene when a nitrogen is involved). Over the last few years, we have found that two types of ring opening take place as well. Type I is an ylidic ring opening that yields nitrile ylides or diazo compounds as transient intermediates. Type II ring opening produces either dienylnitrenes (for example, from 2-pyridylnitrenes) or 1,7-(1,5)-diradicals (such as those formed from 2-quinoxalinylnitrenes), depending on which of these species is better stabilized by resonance. In this Account, we describe our achievements in elucidating the nature of the ring-opened species and unraveling the connections between the various reactive intermediates. Both of these ring-opening reactions are found, at least in some cases, to dominate the subsequent chemistry. Examples include the formation of ring-opened ketenimines and carbodiimides, as well as the ring contraction reactions that form five-membered ring nitriles (such as 2- and 3-cyanopyrroles from pyridylnitrenes, N-cyanoimidazoles from 2-pyrazinyl and 4-pyrimidinylnitrenes, N-cyanopyrazoles from 2-pyrimidinylnitrenes and 3-pyridazinylnitrenes, and so forth). The mechanisms of formation of the open-chain and ring-contraction products were unknown at the onset of this study. In the course of our investigation, several reactions with three or more consecutive reactive intermediates have been unraveled, such as nitrene, seven-membered cyclic carbodiimide, and open-chain nitrile ylide. It has been possible in some cases to observe them all and determine their interrelationships by means of a combination of matrix-isolation spectroscopy, photochemistry, flash vacuum thermolysis, and computational chemistry. These studies have led to a deeper understanding of the nature of reactive intermediates and chemical reactivity. Moreover, the results indicate new directions for further exploration: ring-opening reactions of carbenes, nitrenes, and cyclic cumulenes can be expected in many other systems.

  17. NMR spectroscopic study of the carbon and nitrogen dynamics of grass-derived pyrogenic organic material during 2.3 years of incubation in soil

    NASA Astrophysics Data System (ADS)

    Hilscher, André; Knicker, Heike

    2010-05-01

    Incomplete combustion of vegetation results in pyrogenic organic material (PyOM) which occurs ubiquitously in soils and sediments. To understand the C sequestration potential of PyOM in environmental systems knowledge is required about the respective degradation and humification mechanisms and the stability of the different chemical PyOM structures. The present study focuses on the microbial recalcitrance of PyOM on molecular scale. Therefore, microcosms incubation experiments were performed using PyOM produced from highly isotopically enriched 13C and 15N rye grass (Lolium perenne) at 350°C under oxic conditions for one (1M) and four minutes (4M). Solid-state CPMAS 13C and 15N NMR studies were accomplished to obtain insights into the involved humification mechanisms at different stages the PyOM degradation. In total up to 38% of the bulk PyOM C was mineralised during the 28 months of incubation. The O/N-alkyl C and alkyl C residues which survived the charring process were effectively decomposed. At the end of the incubation up to 73% and 57% of the initial O/N-alkyl C and alkyl C amount were mineralised or converted to other C groups, respectively. The total aryl C group recovery of the PyOM decreased significantly during the 28 months of incubation (P ≤ 0.001). After 20 months of incubation between 26% and 40% of the initial aryl C amount was lost. For this group, relative short half time periods in the range of 3.0 and 3.8 years were obtained. The observed loss of aromatic C structures may be attributed to two simultaneous processes, the mineralisation to CO2 and the conversion to other C groups by partial oxidation. The presence of a readily decomposable co-substrate showed no significant changes in the degradation pattern of the different PyOM, possibly because decomposable sources were already available in the starting PyOM. Most of the organic bound N of the fresh PyOM was assignable to heterocyclic aromatic compounds such as pyrrole and indole-like structures with contributions of 62% and 72% for PyOM 1M and PyOM 4M, respectively. The other part of the 15N NMR signal intensity was assignable to amide-like structures. No major alteration of the amide and heterocyclic N contribution was detected for the PyOM 1M incubates. For the more charred PyOM 4M, the relative heterocyclic N contribution decreased. After the 28 months of incubation no significant difference in the chemical N composition of PyOM 4M related to the PyOM 1M treatments could be observed (P=0.472). Further, we detect a continuous degrease of the total amounts for the amide and heterocyclic N compounds. After 20 months, only 49% to 59% of the heterocyclic N compounds were recovered. The respective amide N recoveries were larger with 59% to 87%. It can be concluded, that PyOM may not be as highly refractory as it is commonly assumed. During the efficient degradation not only a considerable PyOM amount is mineralised, but also the chemical structure of the remaining PyOM is strongly modified. This includes the formation of O-containing functional groups and the loss of aromatic C and N containing heterocyclic domains by mineralisation and conversion to other C and N groups.

  18. Pairing Heterocyclic Cations with closo-dodecafluorododecaborate (2-) Synthesis of Binary Heterocyclium (1+) Salts and a Ag4(heterocycle)8(4+) Salt of B12F12(2-)

    DTIC Science & Technology

    2011-01-01

    10989). 13. SUPPLEMENTARY NOTES Journal article published in the Journal of Fluorine Chemistry, Vol. 132, Nov 2011. PA Case Number: 10989...TELEPHONE NUMBER (include area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Journal of Fluorine Chemistry 132 (2011... Fluorine Chemistry jo ur n al h o mep ag e: www .e lsev ier . c om / loc ate / f luo r1. Introduction Eight new binary salts that pair the icosahedral

  19. Stereodivergent Synthesis of N-Heterocycles by Catalyst-Controlled, Activity-Directed Tandem Annulation of Diazo Compounds with Amino Alkynes.

    PubMed

    Liu, Kai; Zhu, Chenghao; Min, Junxiang; Peng, Shiyong; Xu, Guangyang; Sun, Jiangtao

    2015-10-26

    A stereodivergent synthesis of five-membered N-heterocycles, such as 2,3-dihydropyrroles, and 2-methylene and 3-methylene pyrrolidines, has been developed through a tandem annulation of amino alkynes with diazo compounds and involves the trapping of in situ formed intermediates. Mechanistic investigations indicate that the copper-catalyzed tandem annulations proceed by allenoate formation and subsequent intramolecular hydroamination. In contrast, the rhodium-catalyzed protocol features a carbenoid insertion into the NH bond and subsequent Conia-ene cyclization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evaluation of maillard reaction variables and their effect on heterocyclic amine formation in chemical model systems.

    PubMed

    Dennis, Cara; Karim, Faris; Smith, J Scott

    2015-02-01

    Heterocyclic amines (HCAs), highly mutagenic and potentially carcinogenic by-products, form during Maillard browning reactions, specifically in muscle-rich foods. Chemical model systems allow examination of in vitro formation of HCAs while eliminating complex matrices of meat. Limited research has evaluated the effects of Maillard reaction parameters on HCA formation. Therefore, 4 essential Maillard variables (precursors molar concentrations, water amount, sugar type, and sugar amounts) were evaluated to optimize a model system for the study of 4 HCAs: 2-amino-3-methylimidazo-[4,5-f]quinoline, 2-amino-3-methylimidazo[4,5-f]quinoxaline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline. Model systems were dissolved in diethylene glycol, heated at 175 °C for 40 min, and separated using reversed-phase liquid chromatography. To define the model system, precursor amounts (threonine and creatinine) were adjusted in molar increments (0.2/0.2, 0.4/0.4, 0.6/0.6, and 0.8/0.8 mmol) and water amounts by percentage (0%, 5%, 10%, and 15%). Sugars (lactose, glucose, galactose, and fructose) were evaluated in several molar amounts proportional to threonine and creatinine (quarter, half, equi, and double). The precursor levels and amounts of sugar were significantly different (P < 0.05) in regards to total HCA formation, with 0.6/0.6/1.2 mmol producing higher levels. Water concentration and sugar type also had a significant effect (P < 0.05), with 5% water and lactose producing higher total HCA amounts. A model system containing threonine (0.6 mmol), creatinine (0.6 mmol), and glucose (1.2 mmol), with 15% water was determined to be the optimal model system with glucose and 15% water being a better representation of meat systems. © 2015 Institute of Food Technologists®

  1. Pyrolysis of furan in a microreactor

    NASA Astrophysics Data System (ADS)

    Urness, Kimberly N.; Guan, Qi; Golan, Amir; Daily, John W.; Nimlos, Mark R.; Stanton, John F.; Ahmed, Musahid; Ellison, G. Barney

    2013-09-01

    A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) rightleftharpoons α-carbene or β-carbene. The α-carbene fragments to CH2=C=O + HC≡CH while the β-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C≡CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.

  2. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    PubMed Central

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  3. Crystal structure of poly[di­aqua­(μ2-benzene-1,4-di­carboxyl­ato-κ2 O 1:O 4)(μ2-benzene-1,4-di­carboxyl­ato-κ4 O 1,O 1′:O 4,O 4′)bis­(μ2-3,3′,5,5′-tetra­methyl-4,4′-bi­pyrazole-κ2 N:N′)dinickel(II)

    PubMed Central

    Wu, Chao; Cao, Peng

    2015-01-01

    The asymmetric unit of the polymeric title compound, [Ni(C8H4O4)(C10H14N4)(H2O)]n, contains one Ni2+ cation, one coordinating water mol­ecule, one 3,3′,5,5′-tetra­methyl-4,4′-bi­pyrazole ligand and half each of two benzene-1,4-di­carboxyl­ate anions, the other halves being generated by inversion symmetry. The Ni2+ cation exhibits an octa­hedral N2O4 coordination sphere defined by the O atoms of the water mol­ecule and two different anions and the N atoms of two symmetry-related N-heterocycles. The N-heterocycles and both anions bridge adjacent Ni2+ cations into a three-dimensional network structure, with one of the anions in a bis-bidentate and the other in a bis-monodentate bridging mode. N—H⋯O and O—H⋯O hydrogen bonds between the N-heterocycles and water mol­ecules as donor groups and the carboxyl­ate O atoms as acceptor groups consolidate the crystal packing. PMID:26090165

  4. Bonding properties and bond activation of ylides: recent findings and outlook.

    PubMed

    Urriolabeitia, Esteban P

    2008-11-14

    The interaction of phosphorus and nitrogen ylides with metallic precursors has been examined from different points of view. The first one is related to the bonding properties of the ylides. Ylides with a unique stabilizing group bond through different atoms (the Calpha or the heteroatoms); while ylides with two stabilizing groups never coordinate through the Calpha atom. In the second section we examine the cause of the stereoselective coordination of bisylides of phosphorus, nitrogen and arsenic, and of mixed bisylides. We describe here the very interesting conformational preferences found in these systems, which have been determined and characterized. The DFT study of these bisylides has allowed for the characterization of strong intramolecular PO and AsO interactions, as well as moderate CHO[double bond, length as m-dash]C hydrogen bonds as the source of these conformational preferences. The third topic is related to the amazing reactivity of phosphorus ylides in bond activation processes. Depending on the nature of the metallic precursors, ylides can behave as sources of carbenes, of phosphine derivatives, of other ylides or of orthometallated complexes through P[double bond, length as m-dash]C, P-C or C-H bond activation reactions.

  5. Formation Mechanism of NDMA from Ranitidine, Trimethylamine, and Other Tertiary Amines during Chloramination: A Computational Study

    PubMed Central

    2015-01-01

    Chloramination of drinking waters has been associated with N-nitrosodimethylamine (NDMA) formation as a disinfection byproduct. NDMA is classified as a probable carcinogen and thus its formation during chloramination has recently become the focus of considerable research interest. In this study, the formation mechanisms of NDMA from ranitidine and trimethylamine (TMA), as models of tertiary amines, during chloramination were investigated by using density functional theory (DFT). A new four-step formation pathway of NDMA was proposed involving nucleophilic substitution by chloramine, oxidation, and dehydration followed by nitrosation. The results suggested that nitrosation reaction is the rate-limiting step and determines the NDMA yield for tertiary amines. When 45 other tertiary amines were examined, the proposed mechanism was found to be more applicable to aromatic tertiary amines, and there may be still some additional factors or pathways that need to be considered for aliphatic tertiary amines. The heterolytic ONN(Me)2–R+ bond dissociation energy to release NDMA and carbocation R+ was found to be a criterion for evaluating the reactivity of aromatic tertiary amines. A structure–activity study indicates that tertiary amines with benzyl, aromatic heterocyclic ring, and diene-substituted methenyl adjacent to the DMA moiety are potentially significant NDMA precursors. The findings of this study are helpful for understanding NDMA formation mechanism and predicting NDMA yield of a precursor. PMID:24968236

  6. Formation mechanism of NDMA from ranitidine, trimethylamine, and other tertiary amines during chloramination: a computational study.

    PubMed

    Liu, Yong Dong; Selbes, Meric; Zeng, Chengchu; Zhong, Rugang; Karanfil, Tanju

    2014-01-01

    Chloramination of drinking waters has been associated with N-nitrosodimethylamine (NDMA) formation as a disinfection byproduct. NDMA is classified as a probable carcinogen and thus its formation during chloramination has recently become the focus of considerable research interest. In this study, the formation mechanisms of NDMA from ranitidine and trimethylamine (TMA), as models of tertiary amines, during chloramination were investigated by using density functional theory (DFT). A new four-step formation pathway of NDMA was proposed involving nucleophilic substitution by chloramine, oxidation, and dehydration followed by nitrosation. The results suggested that nitrosation reaction is the rate-limiting step and determines the NDMA yield for tertiary amines. When 45 other tertiary amines were examined, the proposed mechanism was found to be more applicable to aromatic tertiary amines, and there may be still some additional factors or pathways that need to be considered for aliphatic tertiary amines. The heterolytic ONN(Me)2-R(+) bond dissociation energy to release NDMA and carbocation R(+) was found to be a criterion for evaluating the reactivity of aromatic tertiary amines. A structure-activity study indicates that tertiary amines with benzyl, aromatic heterocyclic ring, and diene-substituted methenyl adjacent to the DMA moiety are potentially significant NDMA precursors. The findings of this study are helpful for understanding NDMA formation mechanism and predicting NDMA yield of a precursor.

  7. Investigation of various N-heterocyclic substituted piperazine versions of 5/ 7-{[2-(4-Aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol: Effect on affinity and selectivity for dopamine D3 receptor

    PubMed Central

    Brown, Dennis A.; Mishra, Manoj; Zhang, Suhong; Biswas, Swati; Parrington, Ingrid; Antonio, Tamara; Reith, Maarten E. A.; Dutta, Aloke K.

    2009-01-01

    Here we report on the design and synthesis of several heterocyclic analogues belonging to the 5/ 7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol series of molecules. Compounds were subjected to [3H]spiperone binding assays, carried out with HEK-293 cells expressing either D2 or D3 dopamine receptors, in order to evaluate their inhibition constant (Ki) at these receptors. Results indicate that N-substitution on the piperazine ring can accommodate various substituted indole rings. The results also show that in order to maintain high affinity and selectivity for the D3 receptor the heterocyclic ring does not need to be connected directly to the piperazine ring as the majority of compounds included here are linked either via an amide or a methylene linker to the heterocyclic moiety. The enantiomers of the most potent racemic compound 10e exhibited differential activity with (-)-10e (Ki; D2 = 47.5 nM, D3 = 0.57 nM) displaying higher affinity at both D2 and D3 receptors compared to its enantiomer (+)-10e (Ki; D2 = 113 nM, D3 = 3.73 nM). Additionally, compound (-)-10e was more potent and selective for the D3 receptor compared to either 7-OH-DPAT or 5-OH-DPAT. Among the bioisosteric derivatives, the indazole derivative 10g and benzo[b]thiophene derivative 10i exhibited the highest affinity for D2 and D3 receptors. In the functional GTPγS binding study, one of the lead molecules, (-)-15, exhibited potent agonist activity at both D2 and D3 receptors with preferential activity at D3. PMID:19427222

  8. Imidazoline phosphonic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redmore, D.

    1972-07-04

    Nitrogen-heterocyclic phosphonic acids and derivatives are characterized by aminomethyl (or substituted methyl) phosphonic acids or derivatives thereof bonded directly or indirectly, i.e., through a N-side chain to the nitrogen atom in the heterocyclic ring, for example those containing in the molecule at least one of the following units: ..pi..Equation/sup -/ where represents a heterocyclic ring having a nitrogen atom on the ring; -R'N- represents an amino- terminated side chain attached directly to the ring nitrogen (which side chain may or may not be present); and ..pi..Equation/sup -/ represents a methyl (or substituted methyl) phosphonic acid group where M is hydrogen,more » an alcohol or a salt moiety, and X and Y are hydrogen or a substituted group such as alkyl, aryl, etc., of which one or 2 units may be present depending on the available nitrogen bonded by hydrogens, and to uses for these compounds, for example, as scale inhibitors, corrosion inhibitors, etc. (5 claims)« less

  9. Rhodium(II)-Catalyzed and Thermally Induced Intramolecular Migration of N-Sulfonyl-1,2,3-triazoles: New Approaches to 1,2-Dihydroisoquinolines and 1-Indanones.

    PubMed

    Sun, Run; Jiang, Yu; Tang, Xiang-Ying; Shi, Min

    2016-04-11

    New rhodium(II)-catalyzed or thermally induced intramolecular alkoxy group migration of N-sulfonyl-1,2,3-triazoles has been developed, affording divergent synthesis of 1,2-dihydroisoquinoline and 1-indanone derivatives according to different conditions. N-Sulfonyl keteneimine is the key intermediate for the synthesis of dihydroisoquinoline, whereas the aza-vinyl carbene intermediate results in the formation of 1-indanone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Adhesive curing through low-voltage activation

    PubMed Central

    Ping, Jianfeng; Gao, Feng; Chen, Jian Lin; Webster, Richard D.; Steele, Terry W. J.

    2015-01-01

    Instant curing adhesives typically fall within three categories, being activated by either light (photocuring), heat (thermocuring) or chemical means. These curing strategies limit applications to specific substrates and can only be activated under certain conditions. Here we present the development of an instant curing adhesive through low-voltage activation. The electrocuring adhesive is synthesized by grafting carbene precursors on polyamidoamine dendrimers and dissolving in aqueous solvents to form viscous gels. The electrocuring adhesives are activated at −2 V versus Ag/AgCl, allowing tunable crosslinking within the dendrimer matrix and on both electrode surfaces. As the applied voltage discontinued, crosslinking immediately terminated. Thus, crosslinking initiation and propagation are observed to be voltage and time dependent, enabling tuning of both material properties and adhesive strength. The electrocuring adhesive has immediate implications in manufacturing and development of implantable bioadhesives. PMID:26282730

  11. Palladium coupling catalysts for pharmaceutical applications.

    PubMed

    Doucet, Henri; Hierso, Jean-Cyrille

    2007-11-01

    This review discusses recent advances made in the area of palladium-catalyzed coupling reactions and describes a selection of the catalytic systems that are useful in the preparation of valuable compounds for the pharmaceutical industry. Most of these types of syntheses have used either simple palladium salts or palladium precursors associated with electron-rich mono- or bidentate phosphine ligands as catalysts. For some reactions, ligands such as triphenyl phosphine, 1,1'-bis(diphenylphosphino)ferrocene, a carbene or a bipyridine have also been employed. Several new procedures for the Suzuki cross-coupling reaction, the activation of aryl chlorides, the functionalization of aromatics and the synthesis of heteroaromatics are discussed. The C-H activation/ functionalization reactions of aryl and heteroaryl derivatives have emerged as powerful tools for the preparation of biaryl compounds, and the recent procedures and catalysts employed in this promising field are also highlighted herein.

  12. Stabilities of nitrogen containing heterocyclic radicals and geometrical influences on non-radiative processes in organic molecules

    NASA Technical Reports Server (NTRS)

    Evleth, E. M.

    1972-01-01

    Stabilities of nitrogen containing heterocyclic radicals were studied to detect radicals of the type R-N-R, and to theoretically rationalize their electronic structure. The computation of simple potential energy surfaces for ground and excited states is discussed along with the photophysical properties of indolizine. Methods of calculation and problems associated with the calculations are presented. Results, tables, diagrams, discussions, and references are included.

  13. Dietary Carcinogens and Breast Cancer.

    DTIC Science & Technology

    1997-07-01

    11) proposed that L-proyl-tRNA synthetase could esterify N-hydroxy heterocyclic amines and that ATP was required to add the amino acid to the 16...need to be depleted of endogenous amino acids . To test this notion, tRNA synthetase substrates were removed by dialysis in one experiment, and activation...carcinogens in pyrolysates of amino acids and proteins and cooked foods: heterocyclic aromatic amines. In: Y.T. Woo (ed.) Chemical Induction of Cancer

  14. Copper-Catalyzed Tandem Reactions for Synthesis of Pyrazolo[5,1-a]isoquinolines with Heterocyclic Ketene Aminals as Ligands.

    PubMed

    Wen, Li-Rong; Jin, Xian-Jun; Niu, Xiao-Dong; Li, Ming

    2015-01-02

    A CuI-catalyzed tandem reaction of 5-(2-bromoaryl)-N-aryl-1H-pyrazol-3-amines with active acetonitrile derivatives to prepare pyrazolo[5,1-a]isoquinolines in good to excellent yields has been successfully developed under mild conditions with heterocyclic ketene aminals (HKAs) as new ligands. This is the first time HKAs have been used as ligands for copper-catalyzed coupling reactions.

  15. Heterobimetallic complexes with redox-active mesoionic carbenes as metalloligands: electrochemical properties, electronic structures and catalysis.

    PubMed

    Hettmanczyk, Lara; Manck, Sinja; Hoyer, Carolin; Hohloch, Stephan; Sarkar, Biprajit

    2015-07-11

    A mesoionic carbene with a ferrocene backbone is used as a metalloligand to generate the first example of their Fe-Au heterobimetallic complexes. The details of geometric and electronic structures in different redox states and preliminary catalytic results are presented.

  16. Insights into the O-Acetylation Reaction of Hydroxylated Heterocyclic Amines by Human Arylamine N-Acetyltransferases: A Computational Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, E Y; Felton, J S; Lightstone, F C

    2006-06-06

    A computational study was performed to better understand the differences between human arylamine N-acetyltransferase (NAT) 1 and 2. Homology models were constructed from available crystal structures and comparisons of the active site residues 125, 127, and 129 for these two enzymes provide insight into observed substrate differences. The NAT2 model provided a basis for understanding how some of the common mutations may affect the structure of the protein. Molecular dynamics simulations of the human NAT models and the template structure (NAT from Mycobacterium smegmatis) were performed and showed the models to be stable and reasonable. Docking studies of hydroxylated heterocyclicmore » amines in the models of NAT1 and NAT2 probed the differences exhibited by these two proteins with mutagenic agents. The hydroxylated heterocyclic amines were only able to fit into the NAT2 active site, and an alternative binding site by the P-loop was found using our models and will be discussed. Additionally, quantum mechanical calculations were performed to study the O-acetylation reaction of the hydroxylated heterocyclic amines N-OH MeIQx and N-OH PhIP. This study has given us insight into why there are substrate differences among isoenzymes and explains some of the polymorphic activity differences.« less

  17. Stable singlet carbenes as mimics for transition metal centers

    PubMed Central

    Martin, David; Soleilhavoup, Michele

    2011-01-01

    This perspective summarizes recent results, which demonstrate that stable carbenes can activate small molecules (CO, H2, NH3 and P4) and stabilize highly reactive intermediates (main group elements in the zero oxidation state and paramagnetic species). These two tasks were previously exclusive for transition metal complexes. PMID:21743834

  18. Cross enyne metathesis of para-substituted styrenes: a kinetic study of enyne metathesis.

    PubMed

    Giessert, Anthony J; Diver, Steven T

    2005-01-20

    [Reaction: see text] The intermolecular enyne metathesis between alkynes and styrene derivatives was developed to study electronic effects in enyne metathesis. A Hammett plot for the overall reaction, catalyst initiation and vinyl carbene turnover was determined with the second generation Grubbs ruthenium carbene catalyst.

  19. Mechanochemical synthesis and structural characterization of three novel cocrystals of dimethylglyoxime with N-heterocyclic aromatic compounds and acetamide

    NASA Astrophysics Data System (ADS)

    Abidi, Syed Sibte Asghar; Azim, Yasser; Gupta, Abhishek Kumar; Pradeep, Chullikkattil P.

    2017-12-01

    With an aim to explore the interactions of (RR'Cdbnd Nsbnd OH) oxime moiety of dimethylglyoxime (DMG) with pyridyl ring of N-heterocyclic aromatic compounds and acetamide, three novel cocrystals of dimethylglyoxime with acridine (ACR), 1,10-phenanthroline monohydrate (PT) and acetamide (ACT) are reported. These three cocrystals were obtained with a mechanochemical synthesis approach and were characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Additionally, Hirshfeld surface analysis is used to investigate the intermolecular interaction and the crystal packing of cocrystals.

  20. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-15

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less

  1. Carbenes and Nitrenes: Recent Developments in Fundamental Chemistry.

    PubMed

    Wentrup, Curt

    2018-05-29

    There has been significant progress in the direct observation of carbenes, nitrenes, and many other reactive intermediates in recent years due to the application of matrix photolysis and flash vacuum pyrolysis linked with matrix isolation at cryogenic temperatures. Our understanding of singlet and triplet states has improved through the interplay of spectroscopy and computations. Bistable carbenes and nitrenes as well as many examples of tunneling have been discovered. Numerous rearrangements and fragmentations have been documented. This minireview aims to give an overview of some of these developments but will not generally cover laser flash photolysis and chemical reactions in liquid solution. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mesomorphic behaviors of a series of heterocyclic thiophene-imine-ester-based liquid crystals

    NASA Astrophysics Data System (ADS)

    Foo, K.-L.; Ha, S.-T.; Yeap, G. Y.; Lee, S. L.

    2018-05-01

    The synthesis and characterization of a series of heterocyclic liquid crystal, 4-{[(thiophen-2-yl)methylidene]amino}phenyl 4-alkoxybenzoates possessing even number of carbon atoms at the alkoxy chain (CnH2n+1O-, n = 6, 8, 10, 12, 14, 16, 18) are reported. The molecular structures of title compounds were elucidated using Fourier-transform infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopic techniques along with mass spectrometric analysis. The phase behavior of these compounds was characterized and studied by differential scanning calorimetry and polarizing optical microscopy. All members exhibited enantiotropic nematic phase except for the highest member (n = 18) which is a non-mesogen. Influence of alkoxy chain length on the transition temperatures of crystal-to-nematic (melting point) and nematic-to-isotropic (clearing point) was studied. Nematic phase range was found to increase from n = 6 to n = 10, then it started to descend from n = 12 to n = 16 and finally the nematic phase disappeared when n changed to 18.

  3. Complementary Strategies for Directed C(sp3 )-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer.

    PubMed

    Chu, John C K; Rovis, Tomislav

    2018-01-02

    The functionalization of C(sp 3 )-H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C-H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition-metal-catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp 3 )-H bonds. For each strategy, the scope, the reactivity of different C-H bonds, the position of the reacting C-H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C-H functionalization reactions and inspire future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Potential of silver against human colon cancer: (synthesis, characterization and crystal structures of xylyl (Ortho, meta, &Para) linked bis-benzimidazolium salts and Ag(I)-NHC complexes: In vitro anticancer studies)

    PubMed Central

    2013-01-01

    Background Since the first successful synthesis of Ag(I)-N-heterocyclic carbene complex in 1993, this class of compounds has been extensively used for transmetallation reactions where the direct synthesis using other metal ions was either difficult or impossible. Initially, silver(I)-NHC complexes were tested for their catalytic potential but could not get fame because of lower potential compare to other competent compounds in this field; however, these compounds proved to have vital antimicrobial activities. These encouraging biomedical applications further convinced researchers to test these compounds against cancer. The current work has been carried out with this aim. Results N-ipropylbenzimidazole was synthesized by reaction of benzimidazole with ipropyl bromide. The subsequent treatment of the resulting N-alkylbenzimidazole with ortho/meta/para-(bromomethylene) benzene afforded corresponding bis-benzimidazolium bromides (5-7). The counter anion (Br-) of each salt was replaced by hexaflourophosphate (PF6-) for the ease of handling and further purification (8-10). Each salt (Ligand), in halide form, was further allowed to react with Ag2O with stirring at room temperature for a period of two days to synthesize dinuclear Ag(I)-NHC complexes (11-13). All synthesized compounds were characterized by spectroscopic techniques and microanalysis. Molecular structures of compounds 5, 9 &10 were established through single crystal x-ray diffraction technique. All the compounds were assessed for their anti-proliferation test on human colorectal cancer cell line (HCT 116). Results showed that the ligands (5-10) showed mild to negligible cytotoxicity on HCT 116 cells whereas respective silver complexes (11-13) exhibited dose dependent cytotoxicity towards the colon cancer cells with IC50 ranges between 9.7 to 44.5 μM. Interestingly, the complex 13 having para-xylyl spacer was found the most active (IC50 9.7 μM) that verifies our previously reported results. Conclusions All the bis-benzimidazolium salts (8-10) were found inactive whereas after bonding with silver cations, the Ag(I)-NHC complexes (11-13) showed a dose dependent cytotoxic activity. This proved that silver practice an important role in death of cancer cells. Also, the N-alkyl/aryl substitutions and ortho/metal/para xylyl units regulate the cytotoxicity. PMID:23391345

  5. Recyclable catalysts methods of making and using the same

    DOEpatents

    Dioumaev, Vladimir K.; Bullock, R. Morris

    2006-02-28

    Organometallic complexes are provided, which include a catalyst containing a transition metal, a ligand and a component having the formula GAr.sup.F. Ar.sup.F is an aromatic ring system selected from phenyl, naphthalenyl, anthracenyl, fluorenyl, or indenyl. The aromatic ring system has at least a substituent selected from fluorine, hydrogen, hydrocarbyl or fluorinated hydrocarbyl, G is substituted or unsubstituted (CH.sub.2).sub.n or (CF.sub.2).sub.n, wherein n is from 1 to 30, wherein further one or more CH.sub.2 or CF.sub.2 groups are optionally replaced by NR, PR, SiR.sub.2, BR, O or S, or R is hydrocarbyl or substituted hydrocarbyl, GAr.sup.F being covalently bonded to either said transition metal or said ligand of said catalyst, thereby rendering said cationic organometallic complex liquid. The catalyst of the organometallic complex can be [CpM(CO).sub.2(NHC)L.sub.k].sup.+A.sup.-, wherein M is an atom of molybdenum or tungsten, Cp is substituted or unsubstituted cyclopentadienyl radical represented by the formula [C.sub.5Q.sup.1Q.sup.2Q.sup.3Q.sup.4Q.sup.5], wherein Q.sup.1 to Q.sup.5 are independently selected from the group consisting of H radical, GAr.sup.F C.sub.1-20 hydrocarbyl radical, substituted hydrocarbyl radical, substituted hydrocarbyl radical substituted by GAr.sup.F, halogen radical, halogen-substituted hydrocarbyl radical, --OR, --C(O)R', --CO.sub.2R', --SiR'.sub.3 and --NR'R'', wherein R' and R'' are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, halogen radical, and halogen-substituted hydrocarbyl radical, wherein said Q.sup.1 to Q.sup.5 radicals are optionally linked to each other to form a stable bridging group, NHC is any N-heterocyclic carbene ligand, L is either any neutral electron donor ligand, wherein k is a number from 0 to 1 or L is an anionic ligand wherein k is 2, and A.sup.- is an anion. Processes using the organometallic complexes as catalysts in catalytic reactions, such as for example, the hydrosilylation of aldehydes, ketones and esters are also provided.

  6. Fischer and Schrock Carbene Complexes: A Molecular Modeling Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2015-01-01

    An exercise in molecular modeling that demonstrates the distinctive features of Fischer and Schrock carbene complexes is presented. Semi-empirical calculations (PM3) demonstrate the singlet ground electronic state, restricted rotation about the C-Y bond, the positive charge on the carbon atom, and hence, the electrophilic nature of the Fischer…

  7. Curcumin-derived pyrazoles and isoxazoles: Swiss army knives or blunt tools for Alzheimer's disease?

    PubMed

    Narlawar, Rajeshwar; Pickhardt, Marcus; Leuchtenberger, Stefanie; Baumann, Karlheinz; Krause, Sabine; Dyrks, Thomas; Weggen, Sascha; Mandelkow, Eckhard; Schmidt, Boris

    2008-01-01

    Curcumin binds to the amyloid beta peptide (Abeta) and inhibits or modulates amyloid precursor protein (APP) metabolism. Therefore, curcumin-derived isoxazoles and pyrazoles were synthesized to minimize the metal chelation properties of curcumin. The decreased rotational freedom and absence of stereoisomers was predicted to enhance affinity toward Abeta(42) aggregates. Accordingly, replacement of the 1,3-dicarbonyl moiety with isosteric heterocycles turned curcumin analogue isoxazoles and pyrazoles into potent ligands of fibrillar Abeta(42) aggregates. Additionally, several compounds are potent inhibitors of tau protein aggregation and depolymerized tau protein aggregates at low micromolar concentrations.

  8. Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives.

    PubMed

    Manaa, M Riad; Reed, Evan J; Fried, Laurence E; Goldman, Nir

    2009-04-22

    We report the first quantum-based multiscale simulations to study the reactivity of shocked perfect crystals of the insensitive energetic material triaminotrinitrobenzene (TATB). Tracking chemical transformations of TATB experiencing overdriven shock speeds of 9 km/s for up to 0.43 ns and 10 km/s for up to 0.2 ns reveal high concentrations of nitrogen-rich heterocyclic clusters. Further reactivity of TATB toward the final decomposition products of fluid N(2) and solid carbon is inhibited due to the formation of these heterocycles. Our results thus suggest a new mechanism for carbon-rich explosive materials that precedes the slow diffusion-limited process of forming the bulk solid from carbon clusters and provide fundamental insight at the atomistic level into the long reaction zone of shocked TATB.

  9. 4-Aminobiphenyl Downregulation of NAT2 Acetylator Genotype–Dependent N- and O-acetylation of Aromatic and Heterocyclic Amine Carcinogens in Primary Mammary Epithelial Cell Cultures from Rapid and Slow Acetylator Rats

    PubMed Central

    Jefferson, Felicia A.; Xiao, Gong H.; Hein, David W.

    2009-01-01

    Aromatic and heterocyclic amine carcinogens present in the diet and in cigarette smoke induce breast tumors in rats. N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2) enzymes have important roles in their metabolic activation and deactivation. Human epidemiological studies suggest that genetic polymorphisms in NAT1 and/or NAT2 modify breast cancer risk in women exposed to these carcinogens. p-Aminobenzoic acid (selective for rat NAT2) and sulfamethazine (SMZ; selective for rat NAT1) N-acetyltransferase catalytic activities were both expressed in primary cultures of rat mammary epithelial cells. PABA, 2-aminofluorene, and 4-aminobiphenyl N-acetyltransferase and N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine and N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline O-acetyltransferase activities were two- to threefold higher in mammary epithelial cell cultures from rapid than slow acetylator rats. In contrast, SMZ (a rat NAT1-selective substrate) N-acetyltransferase activity did not differ between rapid and slow acetylators. Rat mammary cells cultured in the medium supplemented 24 h with 10μM ABP showed downregulation in the N-and O-acetylation of all substrates tested except for the NAT1-selective substrate SMZ. This downregulation was comparable in rapid and slow NAT2 acetylators. These studies clearly show NAT2 acetylator genotype–dependent N- and O-acetylation of aromatic and heterocyclic amine carcinogens in rat mammary epithelial cell cultures to be subject to downregulation by the arylamine carcinogen ABP. PMID:18842621

  10. AN EFFICIENT AQUEOUS N-HETEROCYCLIZATION OF ANILINE DERIVATIVES: MICROWAVE-ASSISTED SYNTHESIS OF N-ARYL AZACYCLOALKANES

    EPA Science Inventory

    N-aryl azacycloalkanes, an important class of building blocks in natural product and pharmaceuticals, are synthesized via an efficient and simple eco-friendly protocol that involves double N-alkylation of aniline derivatives. The reaction is accelerated by exposure to microwaves ...

  11. Prediction of Setschenow constants of N-heteroaromatics in NaCl solutions based on the partial charge on the heterocyclic nitrogen atom.

    PubMed

    Yang, Bin; Li, Zhongjian; Lei, Lecheng; Sun, Feifei; Zhu, Jingke

    2016-02-01

    The solubilities of 19 different kinds of N-heteroaromatic compounds in aqueous solutions with different concentrations of NaCl were determined at 298.15 K with a UV-vis spectrophotometry and titration method, respectively. Setschenow constants, Ks, were employed to describe the solubility behavior, and it is found that the higher ring numbers of N-heteroaromatics gave rise to the lower values of Ks. Moreover, Ks showed a good linear relationship with the partial charge on the nitrogen atom (QN) for either QN > 0 or QN < 0 N-heteroaromatics. It further revealed that QN was well-matched in the prediction of salting-out effect for N-heteroaromatics compared to the conventional descriptors such as molar volume (VH) and the octanol-water partition coefficient (Kow). The heterocyclic N in N-heteroaromatics may interact with Na(+) ions in NaCl solution for QN < 0 and with Cl(-) for QN > 0.

  12. N-Heterocyclic Olefins as Robust Organocatalyst for the Chemical Conversion of Carbon Dioxide to Value-Added Chemicals.

    PubMed

    Saptal, Vitthal B; Bhanage, Bhalchandra M

    2016-08-09

    In this report, the activity of N-heterocyclic olefins (NHOs) as a newly emerging class of organocatalyst is investigated for the chemical fixation of carbon dioxide through reactions with aziridines to form oxazolidinones and the N-formylation of amines with polymethylhydrosiloxane (PMHS) or 9-borabicyclo[3.3.1]nonane (9-BBN) as the reducing agent under mild conditions. The exocyclic carbon atoms of NHOs are highly nucleophilic owing to the electron-donating ability of the two nitrogen atoms. This high nucleophilicity of the NHOs activates CO2 molecules to form zwitterionic NHO-carboxylate (NHO-CO2 ) adducts, which are active in formylation reactions as well as the carboxylation of aziridines to oxazolidinones. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Copper-catalyzed domino reactions for the synthesis of cyclic compounds.

    PubMed

    Liao, Qian; Yang, Xianghua; Xi, Chanjuan

    2014-09-19

    Copper-catalyzed domino reactions are one of the most useful strategies for the construction of various cyclic compounds. In this Synopsis, we mainly focus on the latest advances in copper-catalyzed cross-coupling or addition-initiated domino reactions in the synthesis of cyclic compounds, including double alkenylation of N- or S-nucleophiles, alkenylation or alkynlation followed by cyclization of amides or amines, addition and cyclization of heteroallenes affording heterocycles, and coupling and cyclization of 1,3-dicarbonyl compounds toward heterocycles.

  14. Electrochemical methods for monitoring of environmental carcinogens.

    PubMed

    Barek, J; Cvacka, J; Muck, A; Quaiserová, V; Zima, J

    2001-04-01

    The use of modern electroanalytical techniques, namely differential pulse polarography, differential pulse voltammetry on hanging mercury drop electrode or carbon paste electrode, adsorptive stripping voltammetry and high performance liquid chromatography with electrochemical detection for the determination of trace amounts of carcinogenic N-nitroso compounds, azo compounds, heterocyclic compounds, nitrated polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines is discussed. Scope and limitations of these methods are described and some practical applications based on their combination with liquid-liquid or solid phase extraction are given.

  15. Stacking interactions between nitrogen-containing six-membered heterocyclic aromatic rings and substituted benzene: studies in solution and in the solid state.

    PubMed

    Gung, Benjamin W; Wekesa, Francis; Barnes, Charles L

    2008-03-07

    The stacking interactions between an aromatic ring and a pyridine or a pyrimidine ring are studied by using a series of triptycene-derived scaffolds. The indicative ratios of the syn and anti conformers were determined by variable-temperature NMR spectroscopy. The syn conformer aligns the attached aromatic ring and the heterocycle in a parallel-displaced orientation while the anti conformer sets the two rings apart from each other. Comparing to the corresponding control compounds where a benzene ring is in the position of the heterocycle, higher attractive interactions are observed as indicated by the higher syn/anti ratios. In general, the attractive interactions are much less sensitive to the substituent effects than the corresponding nonheterocycles. The greatest attractive interactions were observed between a pyrimidine ring and a N,N-dimethylaminobenzene, consistent with a predominant donor-acceptor interaction. The interactions between a pyridine ring and a substituted benzene ring show that the pyridine is comparable to that of a NO2- or a CN-substituted benzene ring except for the unpredictable substituent effects.

  16. Identification of a Lead Candidate in the Search for Carbene-Stabilised Homoaromatics.

    PubMed

    Mattock, James D; Vargas, Alfredo; Dewhurst, Rian D

    2015-11-16

    The effect of carbenes as Lewis donor groups on the homoaromaticity of mono- and bicyclic organic molecules is surveyed. The search for viable carbene-stabilised homoaromatics resulted in a large amount of rejected candidates as well as nine promising candidates that are further analysed for their homoaromaticity by using a number of metrics. Of these, five appeared to show modest homoaromaticity, whereas another compound showed a level of homoaromaticity comparable with the homotropylium cation benchmark compound. Isoelectronic analogues and constitutional isomers of the lead compound were investigated, however, none of these showed comparable homoaromaticity. The implications of these calculations on the design of donor-stabilised homoaromatics are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evolution of structure and reactivity in a series of iconic carbenes.

    PubMed

    Zhang, Min; Moss, Robert A; Thompson, Jack; Krogh-Jespersen, Karsten

    2012-01-20

    We present experimental activation parameters for the reactions of six carbenes (CCl(2), CClF, CF(2), ClCOMe, FCOMe, and (MeO)(2)C) with six alkenes (tetramethylethylene, cyclohexene, 1-hexene, methyl acrylate, acrylonitrile, and α-chloroacrylonitrile). Activation energies range from -1 kcal/mol for the addition of CCl(2) to tetramethylethylene to 11 kcal/mol for the addition of FCOMe to acrylonitrile. A generally satisfactory analysis of major trends in the evolution of carbenic structure and reactivity is afforded by qualitative applications of frontier molecular orbital theory, although the observed entropies of activation appear to fall in a counterintuitive pattern. An analysis of computed cyclopropanation transition state parameters reveals significant nucleophilic selectivity of (MeO)(2)C toward α-chloroacrylonitrile.

  18. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste.

    PubMed

    Wang, Tengfei; Zhai, Yunbo; Zhu, Yun; Peng, Chuan; Xu, Bibo; Wang, Tao; Li, Caiting; Zeng, Guangming

    2018-01-01

    The influence of temperature (180-260°C) on the fate of nitrogen during hydrothermal carbonization (HTC) of food waste (FW) was assessed. The distribution and evolution of nitrogen in aqueous products and bio-oil, as well as hydrochar, were conducted. Results suggested that elevated temperature enhanced the deamination and the highest ammonium concentration (929.75mg/L) was acquired at 260°C. At temperatures above 220°C, the total N in the hydrochar became stable, whereas the mass percentage of N increased. Amines and heterocyclic-N compounds from protein cracking and Maillard reactions were identified as the main nitrogen-containing compounds in the bio-oil. As to the hydrochar, increasing temperature resulted in condensed nitrogen-containing aromatic heterocycles (e.g. pyridine-N and quaternary-N). In particular, remarkable Maillard reactions at 180°C and the highest temperature at 260°C enhanced nitrogen incorporation (i.e. quaternary-N) into hydrochar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Design, synthesis, antiviral activity and mode of action of phenanthrene-containing N-heterocyclic compounds inspired by the phenanthroindolizidine alkaloid antofine.

    PubMed

    Yu, Xiuling; Wei, Peng; Wang, Ziwen; Liu, Yuxiu; Wang, Lizhong; Wang, Qingmin

    2016-02-01

    The phenanthroindolizidine alkaloid antofine and its analogues have excellent antiviral activity against tobacco mosaic virus (TMV). To simplify the structure and the synthesis of the phenanthroindolizidine alkaloid, a series of phenanthrene-containing N-heterocyclic compounds (compounds 1 to 33) were designed and synthesised, based on the intermolecular interaction of antofine and TMV RNA, and systematically evaluated for their anti-TMV activity. Most of these compounds exhibited good to reasonable anti-TMV activity. The optimum compounds 5, 12 and 21 displayed higher activity than the lead compound antofine and commercial ribavirin. Compound 12 was chosen for field trials of antiviral efficacy against TMV, and was found to exhibit better activity than control plant virus inhibitors. Compounds 5 and 12 were chosen for mode of action studies. The changes in fluorescence intensity of compounds 5 and 12 on separated TMV RNA showed that these small molecules can also bind to TMV RNA, but the mode is very different from that of antofine. The compounds combining phenanthrene and an N-heterocyclic ring could maintain the anti-TMV activity of phenanthroindolizidines, but their modes of action are different from that of antofine. The present study lays a good foundation for us to find more efficient anti-plant virus reagents. © 2015 Society of Chemical Industry.

  20. Nonthrombogenic Hydrogel Coatings with Carbene-Cross-Linking Bioadhesives.

    PubMed

    Nanda, Himansu Sekhar; Shah, Ankur Harish; Wicaksono, Gautama; Pokholenko, Oleksandr; Gao, Feng; Djordjevic, Ivan; Steele, Terry W J

    2018-05-14

    Bioadhesives are a current unmet clinical need for mending of blood contacting soft tissues without inducing thrombosis. Recent development of carbene precursor bioadhesives with the advantages of on-demand curing, tuneable modulus, and wet adhesion have been synthesized by grafting diazirine onto poly (amidoamine) (PAMAM-G5) dendrimers. Herein, the structure activity relationships of platelet adhesion and activation is evaluated for the first time on the cured PAMAM-g-diazirine bioadhesives. Three strategies were employed to prevent healthy human donor platelets from adhering and activating on light-cured bioadhesive surfaces: (1) Attenuation of cationic surface charge, (2) antifouling composites by incorporating heparin and alginate in uncured formulation, and (3) heparin wash of cured bioadhesive surface. Topographical imaging of cured and ethanol dehydrated bioadhesive surfaces was used to quantify the adhered and activated platelets with scanning electron microscopy, whose resolution allowed identification of round senescent, short dendritic, and long dendritic platelets. Cured surfaces of PAMAM-g-diazirine (15%) had 10300 ± 500 adhered platelets mm -2 with 99.7% activation into short/long dendritic cells. Reduction of primary amines by higher degree of diazirine grafting or capping of free amines by acetylation reduces platelet adherence (2400 ± 200 vs 3000 ± 300, respectively). Physical incorporation of heparin and alginate in the formulations reduced the activated platelet; 1300 ± 300 and 300 ± 50, activated platelets mm -2 , in comparison with additive free adhesive formulation. Similarly, heparin rinse of the surface of additive free bioadhesive reduced the activated platelet to platelets of heparin composites at 600 ± 100 platelets mm -2 . PAMAM-g-diazirine (15%) bioadhesive retained the photocured mechanical properties and lap shear adhesion despite the addition of heparin and alginate additives.

  1. Iodine(III) Reagents in Radical Chemistry

    PubMed Central

    2017-01-01

    Conspectus The chemistry of hypervalent iodine(III) compounds has gained great interest over the past 30 years. Hypervalent iodine(III) compounds show valuable ionic reactivity due to their high electrophilicity but also express radical reactivity as single electron oxidants for carbon and heteroatom radical generation. Looking at ionic chemistry, these iodine(III) reagents can act as electrophiles to efficiently construct C–CF3, X–CF3 (X = heteroatom), C–Rf (Rf = perfluoroalkyl), X–Rf, C–N3, C–CN, S–CN, and C–X bonds. In some cases, a Lewis or a Bronsted acid is necessary to increase their electrophilicity. In these transformations, the iodine(III) compounds react as formal “CF3+”, “Rf+”, “N3+”, “Ar+”, “CN+”, and “X+” equivalents. On the other hand, one electron reduction of the I(III) reagents opens the door to the radical world, which is the topic of this Account that focuses on radical reactivity of hypervalent iodine(III) compounds such as the Togni reagent, Zhdankin reagent, diaryliodonium salts, aryliodonium ylides, aryl(cyano)iodonium triflates, and aryl(perfluoroalkyl)iodonium triflates. Radical generation starting with I(III) reagents can also occur via thermal or light mediated homolysis of the weak hypervalent bond in such reagents. This reactivity can be used for alkane C–H functionalization. We will address important pioneering work in the area but will mainly focus on studies that have been conducted by our group over the last 5 years. We entered the field by investigating transition metal free single electron reduction of Togni type reagents using the readily available sodium 2,2,6,6-tetramethylpiperidine-1-oxyl salt (TEMPONa) as an organic one electron reductant for clean generation of the trifluoromethyl radical and perfluoroalkyl radicals. That valuable approach was later successfully also applied to the generation of azidyl and aryl radicals starting with the corresponding benziodoxole (Zhdankin reagent) and iodonium salts. In the presence of alkenes as radical acceptors, vicinal trifluoromethyl-, azido-, and arylaminoxylation products result via a sequence comprising radical addition to the alkene and subsequent TEMPO trapping. Electron-rich arenes also react with I(III) reagents via single electron transfer (SET) to give arene radical cations, which can then engage in arylation reactions. We also recognized that the isonitrile functionality in aryl isonitriles is a highly efficient perfluoroalkyl radical acceptor, and reaction of Rf-benziodoxoles (Togni type reagents) in the presence of a radical initiator provides various perfluoroalkylated N-heterocycles (indoles, phenanthridines, quinolines, etc.). We further found that aryliodonium ylides, previously used as carbene precursors in metal-mediated cyclopropanation reactions, react via SET reduction with TEMPONa to the corresponding aryl radicals. As a drawback of all these transformations, we realized that only one ligand of the iodine(III) reagent gets transferred to the substrate. To further increase atom-economy of such conversions, we identified cyano or perfluoroalkyl iodonium triflate salts as valuable reagents for stereoselective vicinal alkyne difunctionalization, where two ligands from the I(III) reagent are sequentially transferred to an alkyne acceptor. Finally, we will discuss alkynyl-benziodoxoles as radical acceptors for alkynylation reactions. Similar reactivity was found for the Zhdankin reagent that has been successfully applied to azidation of C-radicals, and also cyanation is possible with a cyano I(III) reagent. To summarize, this Account focuses on the design, development, mechanistic understanding, and synthetic application of hypervalent iodine(III) reagents in radical chemistry. PMID:28636313

  2. Crystal Structure of Two V-shaped Ligands with N-Heterocycles

    NASA Astrophysics Data System (ADS)

    Wang, Gao-Feng; Sun, Shu-Wen; Zhang, Xiao; Sun, Shu-Gang

    2017-12-01

    Two V-shaped ligands with N-heterocycles, bis(4-(1 H-imidazol-1-yl) phenyl)methanone ( 1), and bis(4-(1 H-benzo[d]imidazol-1-yl)phenyl)methanone ( 2) have been synthesized and characterized by elemental analyses, IR and 1 H NMR spectroscopy. Crystal structures of 1 and 2 have been determined by X-ray diffraction. The crystal of 1 is monoclinic, sp. gr. P21/ c, Z = 4. The crystal of 2 is orthorhombic, sp. gr. Fdd2, Z = 8. X-ray diffraction analyses show that the V-shaped angles of 1 and 2 are 122.72(15)° and 120.7(4)°, respectively. Intermolecular C-H···O, C-H···N, C-H···π, and π···π interactions link the components into three-dimensional networks in the crystal structures.

  3. Past, present, and future of mutagens in cooked foods.

    PubMed

    Sugimura, T

    1986-08-01

    Mutation assay with Salmonella typhimurium enabled us to detect various types of mutagens in cooked foods. A series of mutagenic heterocyclic amines has been isolated and identified in broiled fish and meat and in pyrolyzates of amino acids and proteins. Feeding experiments showed these mutagens to be carcinogenic in mice and rats. The mechanism of formation and pathway of metabolic activation of these heterocyclic amines have been elucidated. Their contents in various cooked foods have been determined. The presence of mutagenic nitropyrenes (some of which were confirmed as carcinogens) in grilled chicken was also established. Roasted coffee beans also yield mutagens such as methylglyoxal. The formation of mutagen precursors, including beta-carboline derivatives and tyramine which become mutagens with nitrite treatment, was found during food processing. Oncogene activation in animal tumors induced by some of these food mutagens/carcinogens has been confirmed. The role of mutagens/carcinogens in cooked foods in human cancer development has not yet been exactly evaluated. In order to do this, more information on their carcinogenic potency, human intake, metabolism in the human body, and the effects of combined administration with other initiators, promoters and other modifying factors in food is required.

  4. Highly efficient and direct heterocyclization of dipyridyl ketone to N,N-bidentate ligands

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Dyers, Leon Jr; Mason, Richard Jr; Amoyaw, Prince; Bu, Xiu R.

    2005-01-01

    [reaction: see text] Reaction of various aromatic aldehydes with 2,2'-dipyridyl ketone and ammonium acetate in hot acetic acid provides ready access to a series of substituted 1-pyridylimidazo[1,5-a]pyridines, a class of ligands possessing an N,N-bidentate feature, in good yields.

  5. Structural and electronic properties of barbituric acid and melamine-containing ribonucleosides as plausible components of prebiotic RNA: implications for prebiotic self-assembly.

    PubMed

    Kaur, Sarabjeet; Sharma, Purshotam; Wetmore, Stacey D

    2017-11-22

    The RNA world hypothesis assumes that RNA was the first informational polymer that originated from prebiotic chemical soup. However, since the reaction of d-ribose with canonical nucleobases (A, C, G and U) fails to yield ribonucleosides (rNs) in substantial amounts, the spontaneous origin of rNs and the subsequent synthesis of RNA remains an unsolved mystery. To this end, it has been suggested that RNA may have evolved from primitive genetic material (preRNA) composed of simpler prebiotic heterocycles that spontaneously form glycosidic bonds with ribose. As an effort toward evaluating this hypothesis, the present study uses density functional theory (DFT) to assess the suitability of barbituric acid (BA) and melamine (MM) to act as prebiotic nucleobases, both of which have recently been shown to spontaneously form a glycosidic bond with ribose and organize into supramolecular assemblies in solution. The significant strength of hydrogen bonds involving BA and MM indicates that such interactions may have played a crucial role in their preferential selection over competing heterocycles that interact solely through stacking interactions from the primordial soup during the early phase of evolution. However, the greater stability of stacked dimers involving BA or MM and the canonical nucleobases compared to those consisting solely of BA and/or MM points towards the possible evolution of intermediate informational polymers consisting of prebiotic and canonical nucleobases, which could have eventually evolved into RNA. Analysis of the associated rNs reveals an anti conformational preference for the biologically-relevant β-anomer of both BA and MM rNs, which will allow complementary WC-like hydrogen bonding that can stabilize preRNA polymers. Large calculated deglycosylation barriers suggest BA rNs containing C-C glycosidic bonds are relevant in challenging prebiotic environments such as volcanic geotherms, while lower barriers indicate the MM rNs containing C-N-C glycosidic linkages may have been more likely synthesized from simple precursors such as urea-ice in icy (polar) regions. Together, our quantum chemical data clarifies the physicochemical interactions and stability of potential prebiotically-relevant constituents of BA and MM polymeric assemblies, and complements information from previous experimental studies to bolster the candidature of these heterocycles as prebiotic nucleobases.

  6. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: a protein model compound study.

    PubMed

    Zhang, Jun; Tian, Yu; Cui, Yanni; Zuo, Wei; Tan, Tao

    2013-03-01

    The nitrogen transformations with attention to NH3 and HCN were investigated at temperatures of 300-800°C during microwave pyrolysis of a protein model compound. The evolution of nitrogenated compounds in the char, tar and gas products were conducted. The amine-N, heterocyclic-N and nitrile-N compounds were identified as three important intermediates during the pyrolysis. NH3 and HCN were formed with comparable activation energies competed to consume the same reactive substances at temperatures of 300-800°C. The deamination and dehydrogenation of amine-N compounds from protein cracking contributed to the formation of NH3 (about 8.9% of Soy-N) and HCN (6.6%) from 300 to 500°C. The cracking of nitrile-N and heterocyclic-N compounds from the dehydrogenation and polymerization of amine-N generated HCN (13.4%) and NH3 (31.3%) between 500 and 800°C. It might be able to reduce the HCN and NH3 emissions through controlling the intermediates production at temperatures of 500-800°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Bonding in Heavier Group 14 Zero-Valent Complexes-A Combined Maximum Probability Domain and Valence Bond Theory Approach.

    PubMed

    Turek, Jan; Braïda, Benoît; De Proft, Frank

    2017-10-17

    The bonding in heavier Group 14 zero-valent complexes of a general formula L 2 E (E=Si-Pb; L=phosphine, N-heterocyclic and acyclic carbene, cyclic tetrylene and carbon monoxide) is probed by combining valence bond (VB) theory and maximum probability domain (MPD) approaches. All studied complexes are initially evaluated on the basis of the structural parameters and the shape of frontier orbitals revealing a bent structural motif and the presence of two lone pairs at the central E atom. For the VB calculations three resonance structures are suggested, representing the "ylidone", "ylidene" and "bent allene" structures, respectively. The influence of both ligands and central atoms on the bonding situation is clearly expressed in different weights of the resonance structures for the particular complexes. In general, the bonding in the studied E 0 compounds, the tetrylones, is best described as a resonating combination of "ylidone" and "ylidene" structures with a minor contribution of the "bent allene" structure. Moreover, the VB calculations allow for a straightforward assessment of the π-backbonding (E→L) stabilization energy. The validity of the suggested resonance model is further confirmed by the complementary MPD calculations focusing on the E lone pair region as well as the E-L bonding region. Likewise, the MPD method reveals a strong influence of the σ-donating and π-accepting properties of the ligand. In particular, either one single domain or two symmetrical domains are found in the lone pair region of the central atom, supporting the predominance of either the "ylidene" or "ylidone" structures having one or two lone pairs at the central atom, respectively. Furthermore, the calculated average populations in the lone pair MPDs correlate very well with the natural bond orbital (NBO) populations, and can be related to the average number of electrons that is backdonated to the ligands. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A novel Zn-based heterocycle metal-organic framework for high C2H2/C2H4, CO2/CH4 and CO2/N2 separations

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Jiang, Ke; Yang, Yu; Cui, Yuanjing; Chen, Banglin; Qian, Guodong

    2017-11-01

    Efficient separation of the small gas molecules especially the hydrocarbons is essential to social economy. The microporous metal-organic frameworks (MOFs) are taking precedence in this respect by virtue of their irreplaceable advantages. Herein, the new organic linker 5-(5-carboxypyridin-3-yl)isophthalic acid simplified as H3L-N has been excavated to construct successfully the novel Zn-based heterocycle metal-organic framework ZnL·(DMF)1.5·(H2O)6.0 (ZJU-197, ZJU = Zhejiang University, DMF = N,N-dimethylformamide). ZJU-197 has been structurally characterized and explored in details for gas separation. It is commendable that the activated ZJU-197a has exhibited excellent C2H2/C2H4, CO2/CH4 and CO2/N2 separations simultaneously with IAST selectivity of 137.8, 53.0 and 514.1 respectively at ambient conditions.

  9. N-Heterocycle-Fused Pentalenes by a Gold-Catalyzed Annulation of Diethynyl-Quinoxalines and -Phenazines.

    PubMed

    Sekine, Kohei; Stuck, Fabian; Schulmeister, Jürgen; Wurm, Thomas; Zetschok, Dominik; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K

    2018-06-19

    The gold-catalyzed annulation of diethynyl N-heterocycles for the synthesis of quinoxaline-/phenazine-based pentalenes, and the study of their optoelectronic properties is described. The inhibition of the gold catalyst by the nitrogen centers in the substrate and the product could be overcome by increasing the reaction temperature to 130 °C, which in gold catalysis usually leads to catalyst decomposition. At 130 °C 6,7-di(arylethynyl)quinoxalines in chlorobenzene at afford the corresponding pentalenes. The annulation of 2,3-di(arylethynyl)quinoxalines requires an even higher temperature under microwave irradiation. The quinoxaline-based pentalenes showed lower LUMO levels compared to the corresponding naphthalene-based pentalenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Diels-Alder reactions of five-membered heterocycles containing one heteroatom

    PubMed Central

    Ding, Xiaoyuan; Nguyen, Son T.; Williams, John D.; Peet, Norton P.

    2015-01-01

    Diels-Alder reactions of five-membered heterocycles containing one heteroatom with an N-arylmaleimide were studied. Cycloaddition of 2,5-dimethylfuran (4) with 2-(4-methylphenyl)maleimide (3) in toluene at 60 °C gave bicyclic adduct 5. Cycloadditions of 3 with 2,5-dimethylthiophene (11) and 1,2,5-trimethylpyrrole (14) were also studied. Interestingly, the bicyclic compound 5 cleanly rearranged, with loss of water, when treated with p-toluenesulfonic acid in toluene at 80 °C to give 4,7-dimethyl-2-p-tolylisoindoline-1,3-dione (6). PMID:25838605

  11. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Cioce, Christian R.

    Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene sigma donates, and subsequent back-bonding occurs into a pi* antibonding orbital. This is a different type of interaction not seen in the three existing classes of metal-carbene complexes, namely Fischer, Schrock, and Grubbs. Finally, the virtual engineering of enhanced chemical warfare agent (CWA) detection systems is discussed. As part of a U.S. Department of Defense supported research project, in silico chemical modifications to a previously synthesized zinc-porphyrin, ZnCS1, were made to attempt to achieve preferential binding of the nerve agent sarin versus its simulant, DIMP (diisopropyl methylphosphonate). Upon modification, a combination of steric effects and induced hydrogen bonding allowed for the selective binding of sarin. The success of this work demonstrates the role that high performance computing can play in national security research, without the associated costs and high security required for experimentation.

  12. Sulfonamide inhibition studies of two β-carbonic anhydrases from the ascomycete fungus Sordaria macrospora, CAS1 and CAS2.

    PubMed

    Vullo, Daniela; Lehneck, Ronny; Pöggeler, Stefanie; Supuran, Claudiu T

    2018-12-01

    The two β-carbonic anhydrases (CAs, EC 4.2.1.1) recently cloned and purified from the ascomycete fungus Sordaria macrospora, CAS1 and CAS2, were investigated for their inhibition with a panel of 39 aromatic, heterocyclic, and aliphatic sulfonamides and one sulfamate, many of which are clinically used agents. CAS1 was efficiently inhibited by tosylamide, 3-fluorosulfanilamide, and 3-chlorosulfanilamide (K I s in the range of 43.2-79.6 nM), whereas acetazolamide, methazolamide, topiramate, ethoxzolamide, dorzolamide, and brinzolamide were medium potency inhibitors (K I s in the range of 360-445 nM). CAS2 was less sensitive to sulfonamide inhibitors. The best CAS2 inhibitors were 5-amino-1,3,4-thiadiazole-2-sulfonamide (the deacetylated acetazolamide precursor) and 4-hydroxymethyl-benzenesulfonamide, with K I s in the range of 48.1-92.5 nM. Acetazolamide, dorzolamide, ethoxzolamide, topiramate, sulpiride, indisulam, celecoxib, and sulthiame were medium potency CAS2 inhibitors (K I s of 143-857 nM). Many other sulfonamides showed affinities in the high micromolar range or were ineffective as CAS1/2 inhibitors. Small changes in the structure of the inhibitor led to important differences of the activity. As these enzymes may show applications for the removal of anthropically generated polluting gases, finding modulators of their activity may be crucial for designing environmental-friendly CO 2 capture processes.

  13. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules.

    PubMed

    Maluendes, S A; McLean, A D

    1992-12-18

    We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.

  14. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules

    NASA Technical Reports Server (NTRS)

    Maluendes, S. A.; McLean, A. D.; Loew, G. H. (Principal Investigator)

    1992-01-01

    We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.

  15. Cl⋯N weak interactions. Conformational analysis of imidazol-2-ylum heterocycles bearing N-β-chloroethyl and N-vinyl pendant groups

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, Germán; Montes-Tolentino, Pedro; Sánchez-Ruiz, Sonia; Villaseñor-Granados, Tayde Osvaldo; Flores-Parra, Angelina

    2017-11-01

    Enantiomerically pure and racemic mixtures of β-chloroethylamines hydrochlorides with one and two stereogenic centres were used to synthesise 1,4-dialkyl-1,3-diimines, which in turn gave place to a series of imidazolium chlorides and tetraphenylborates bearing pendant N-β-chloroethyl substituents (sbnd CHEt-CH2Cl; sbnd CHMe-CHPhCl). Stereoselective dehydrochlorination of imidazolium compounds afforded in good yield the corresponding heterocycles bearing N-vinyl groups (-CEt=CH2; -CMe=CHPh). The volume of the N-substituents provides a steric screening of the cationic ring. The structure of the new compounds was determined by IR, mass spectra, NMR and X-ray diffraction analyses as well as DFT calculations of the optimized geometries. Uncommon stabilising intramolecular Cl⋯N weak interactions are described, together with H⋯Cl and H···π hydrogen bonds. The existence of the non-covalent weak intramolecular bonds was deduced from the X-ray diffraction analysis and confirmed by calculations of the electrostatic potential, electronic density distributions and the maps of the Laplacian functions of the electronic density.

  16. Quantitative Structure-Cytotoxicity Relationship of Bioactive Heterocycles by the Semi-empirical Molecular Orbital Method with the Concept of Absolute Hardness

    NASA Astrophysics Data System (ADS)

    Ishihara, Mariko; Sakagami, Hiroshi; Kawase, Masami; Motohashi, Noboru

    The relationship between the cytotoxicity of N-heterocycles (13 4-trifluoromethylimidazole, 15 phenoxazine and 12 5-trifluoromethyloxazole derivatives), O-heterocycles (11 3-formylchromone and 20 coumarin derivatives) and seven vitamin K2 derivatives against eight tumor cell lines (HSC-2, HSC-3, HSC-4, T98G, HSG, HepG2, HL-60, MT-4) and a maximum of 15 chemical descriptors was investigated using CAChe Worksystem 4.9 project reader. After determination of the conformation of these compounds and approximation to the molecular form present in vivo (biomimetic) by CONFLEX5, the most stable structure was determined by CAChe Worksystem 4.9 MOPAC (PM3). The present study demonstrates the best relationship between the cytotoxic activity and molecular shape or molecular weight of these compounds. Their biological activities can be estimated by hardness and softness, and by using η-χ activity diagrams.

  17. Anaerobic biodegradation of halogenated and nonhalogenated N-, s-, and o-heterocyclic compounds in aquifer slurries

    USGS Publications Warehouse

    Adrian, Neal R.; Suflita, Joseph M.

    1994-01-01

    The fate of several halogenated and nonhalogenated heterocyclic compounds in anoxic aquifer slurries was investigated Substrate depletion and methane formation were monitored in serum bottle incubations by HPLC and GC, respectively Pyridine, pyrimidine, thiophene, and furan were not mineralized following an 11-month incubation, but the corresponding carboxylated or oxygenated compounds were That is, >74% of the theoretically expected amount of methane was recovered from nicotinic acid, uracil, or 2-furoic acid Chlorinated derivatives, like 2 chloro- or 6-chloronicotinic acid, as well as 4 chloro- and 5-chlorouracil resisted mineralization However, 5-bromouracil was reductively dehalogenated to stoichiometric amounts of uracil, whereas 2-chloropyrimidine was metabolized to a more polar unidentified compound that resisted further anaerobic biodegradation Microorganisms acclimated to 5-bromouracil were unable to transform 4 chloro or 5 chlorouracil These findings illustrate how the structure of heterocyclic contaminants influences their susceptibility to anaerobic decay

  18. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    USGS Publications Warehouse

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  19. Photochemistry of the Stilbenes in Methanol. Trapping the Common Phantom Singlet State.

    PubMed

    Saltiel, Jack; Gupta, Shipra

    2018-06-21

    A comparative study of the photochemistry of cis- and trans-stilbene in methanol shows that both isomers undergo methanol photoaddition giving similar yields of α-methoxybibenzyl in competition with cis-trans photoisomerization. Methanol addition occurs primarily following torsional relaxation of the lowest excited singlet states of each isomer, 1 c* and 1 t*, to a common twisted singlet excited state intermediate, 1 p*, initially called the phantom singlet state. The addition is consistent with the zwitterionic character of 1 p*. Ether forms by direct 1,2-addition of CH 3 OH to the central carbon atoms and by 1,1-addition following rearrangement to 1-benzyl-1-phenylcarbene. Use of CD 3 OD and GC/MS (gas chromatographic/mass spectroscopic) analysis of the ether products revealed that the ratio of carbene/direct addition pathways is higher starting from cis-stilbene. We conclude that 1 p* formed from 1 c* is hotter than 1 p* formed from 1 t*. Surprisingly, except for favoring the carbene pathway, the use of higher energy photons (254 vs 313 nm) does not affect the overall ether quantum yield starting from cis-stilbene, but significantly enhances both pathways starting from trans-stilbene. It appears that carbene formation and direct methanol addition to higher trans-stilbene excited state(s) compete with relaxation to S 1 . Substitution of D for the vinyl Hs of stilbene enhances the direct addition pathway more than two-fold and strongly suppresses the carbene insertion pathway, revealing a large, k pc d0 / k pc d2 = 6.3, primary deuterium isotope effect in the carbene rearrangement. The two-fold increase in the ether quantum yield is due primarily to a 2.75-fold increase in the lifetime of 1 p* on deuterium substitution of the vinyl hydrogens.

  20. Amino Acid Insertion Frequencies Arising from Photoproducts Generated Using Aliphatic Diazirines

    NASA Astrophysics Data System (ADS)

    Ziemianowicz, Daniel S.; Bomgarden, Ryan; Etienne, Chris; Schriemer, David C.

    2017-10-01

    Mapping proteins with chemical reagents and mass spectrometry can generate a measure of accessible surface area, which in turn can be used to support the modeling and refinement of protein structures. Photolytically generated carbenes are a promising class of reagent for this purpose. Substituent effects appear to influence surface mapping properties, allowing for a useful measure of design control. However, to use carbene labeling data in a quantitative manner for modeling activities, we require a better understanding of their inherent amino acid reactivity, so that incorporation data can be normalized. The current study presents an analysis of the amino acid insertion frequency of aliphatic carbenes generated by the photolysis of three different diazirines: 3,3'-azibutyl-1-ammonium, 3,3'-azibutan-1-ol, and 4,4'-azipentan-1-oate. Leveraging an improved photolysis system for single-shot labeling of sub-microliter frozen samples, we used EThCD to localize insertion products in a large population of labeled peptides. Counting statistics were drawn from data-dependent LC-MS2 experiments and used to estimate the frequencies of insertion as a function of amino acid. We observed labeling of all 20 amino acids over a remarkably narrow range of insertion frequencies. However, the nature of the substituent could influence relative insertion frequencies, within a general preference for larger polar amino acids. We confirm a large (6-fold) increase in labeling yield when carbenes were photogenerated in the solid phase (77 K) relative to the liquid phase (293 K), and we suggest that carbene labeling should always be conducted in the frozen state to avoid information loss in surface mapping experiments. [Figure not available: see fulltext.

  1. Transient UV pump-IR probe investigation of heterocyclic ring-opening dynamics in the solution phase: the role played by nσ* states in the photoinduced reactions of thiophenone and furanone.

    PubMed

    Murdock, Daniel; Harris, Stephanie J; Luke, Joel; Grubb, Michael P; Orr-Ewing, Andrew J; Ashfold, Michael N R

    2014-10-21

    The heterocyclic ring-opening dynamics of thiophenone and furanone dissolved in CH3CN have been probed by ultrafast transient infrared spectroscopy. Following irradiation at 267 nm (thiophenone) or 225 nm (furanone), prompt (τ < 1 ps) ring-opening is confirmed by the appearance of a characteristic antisymmetric ketene stretching feature around 2150 cm(-1). The ring-opened product molecules are formed highly vibrationally excited, and cool subsequently on a ∼6.7 ps timescale. By monitoring the recovery of the parent (S0) bleach, it is found that ∼60% of the initially photoexcited thiophenone molecules reform the parent molecule, in stark contrast with the case in furanone where there is less than 10% parent bleach recovery. Complementary ab initio calculations of potential energy cuts along the S-C([double bond, length as m-dash]O) and O-C([double bond, length as m-dash]O) ring-opening coordinate reveals insights into the reaction mechanism, and the important role played by dissociative (n/π)σ* states in the UV-induced photochemistry of such heterocyclic systems.

  2. Allene formation by gold catalyzed cross-coupling of masked carbenes and vinylidenes

    PubMed Central

    Lavallo, Vincent; Frey, Guido D.; Kousar, Shazia; Donnadieu, Bruno; Bertrand, Guy

    2007-01-01

    Addition of a sterically demanding cyclic (alkyl)(amino)carbene (CAAC) to AuCl(SMe2) followed by treatment with [Et3Si(Tol)]+[B(C6F5)4]− in toluene affords the isolable [(CAAC)Au(η2-toluene)]+[B(C6F5)4]− complex. This cationic Au(I) complex efficiently mediates the catalytic coupling of enamines and terminal alkynes to yield allenes and not propargyl amines as observed with other catalysts. Mono-, di-, and tri-substituted enamines can be used, as well as aryl-, alkyl-, and trimethylsilyl-substituted terminal alkynes. The reaction tolerates sterically hindered substrates and is diastereoselective. This general catalytic protocol directly couples two unsaturated carbon centers to form the three-carbon allenic core. The reaction most probably proceeds through an unprecedented “carbene/vinylidene cross-coupling.” PMID:17698808

  3. Iridium complexes containing mesoionic C donors: selective C(sp3)-H versus C(sp2)-H bond activation, reactivity towards acids and bases, and catalytic oxidation of silanes and water.

    PubMed

    Petronilho, Ana; Woods, James A; Mueller-Bunz, Helge; Bernhard, Stefan; Albrecht, Martin

    2014-11-24

    Metalation of a C2-methylated pyridylimidazolium salt with [IrCp*Cl2]2 affords either an ylidic complex, resulting from C(sp(3))-H bond activation of the C2-bound CH3 group if the metalation is performed in the presence of a base, such as AgO2 or Na2CO3, or a mesoionic complex via cyclometalation and thermally induced heterocyclic C(sp(2))-H bond activation, if the reaction is performed in the absence of a base. Similar cyclometalation and complex formation via C(sp(2))-H bond activation is observed when the heterocyclic ligand precursor consists of the analogous pyridyltriazolium salt, that is, when the metal bonding at the C2 position is blocked by a nitrogen rather than a methyl substituent. Despite the strongly mesoionic character of both the imidazolylidene and the triazolylidene, the former reacts rapidly with D(+) and undergoes isotope exchange at the heterocyclic C5 position, whereas the triazolylidene ligand is stable and only undergoes H/D exchange under basic conditions, where the imidazolylidene is essentially unreactive. The high stability of the Ir-C bond in aqueous solution over a broad pH range was exploited in catalytic water oxidation and silane oxidation. The catalytic hydrosilylation of ketones proceeds with turnover frequencies as high as 6,000 h(-1) with both the imidazolylidene and the triazolylidene system, whereas water oxidation is enhanced by the stronger donor properties of the imidazol-4-ylidene ligands and is more than three times faster than with the triazolylidene analogue. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mechanistic switch in dual gold catalysis of diynes: C(sp(3))-H activation through bifurcation--vinylidene versus carbene pathways.

    PubMed

    Hansmann, Max M; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2013-02-25

    The other side of the mountain: Changing the framework of diyne systems opens up new cyclization modes for dual gold catalysis. Instead of a 5-endo cyclization and gold vinylidenes a 6-endo cyclization gives rise to gold-stabilized carbenes as key intermediates for selective C-H insertions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The effect of perfluorination on the aromaticity of benzene and heterocyclic six-membered rings.

    PubMed

    Wu, Judy I; Pühlhofer, Frank G; Schleyer, Paul von Ragué; Puchta, Ralph; Kiran, Boggavarapu; Mauksch, Michael; Hommes, Nico J R van Eikema; Alkorta, Ibon; Elguero, José

    2009-06-18

    Despite having six highly electronegative F's, perfluorobenzene C(6)F(6) is as aromatic as benzene. Ab initio block-localized wave function (BLW) computations reveal that both C(6)F(6) and benzene have essentially the same extra cyclic resonance energies (ECREs). Localized molecular orbital (LMO)-nucleus-independent chemical shifts (NICS) grids demonstrates that the F's induce only local paratropic contributions that are not related to aromaticity. Thus, all of the fluorinated benzenes (C(6)F(n)H((6-n)), n = 1-6) have similar ring-LMO-NICS(pi zz) values. However, 1,3-difluorobenzene 2b and 1,3,5-trifluorobenzene 3c are slightly less aromatic than their isomers due to a greater degree of ring charge alternation. Isoelectronic C(5)H(5)Y heterocycles (Y = BH(-), N, NH(+)) are as aromatic as benzene, based on their ring-LMO-NICS(pi zz) and ECRE values, unless extremely electronegative heteroatoms (e.g., Y = O(+)) are involved.

  6. Syntheses, structural, computational, and thermal analysis of acid-base complexes of picric acid with N-heterocyclic bases.

    PubMed

    Goel, Nidhi; Singh, Udai P

    2013-10-10

    Four new acid-base complexes using picric acid [(OH)(NO2)3C6H2] (PA) and N-heterocyclic bases (1,10-phenanthroline (phen)/2,2';6',2"-terpyridine (terpy)/hexamethylenetetramine (hmta)/2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz)) were prepared and characterized by elemental analysis, IR, NMR and X-ray crystallography. Crystal structures provide detailed information of the noncovalent interactions present in different complexes. The optimized structures of the complexes were calculated in terms of the density functional theory. The thermolysis of these complexes was investigated by TG-DSC and ignition delay measurements. The model-free isoconversional and model-fitting kinetic approaches have been applied to isothermal TG data for kinetics investigation of thermal decomposition of these complexes.

  7. Multicomponent click synthesis of new 1,2,3-triazole derivatives of pyrimidine nucleobases: promising acidic corrosion inhibitors for steel.

    PubMed

    González-Olvera, Rodrigo; Espinoza-Vázquez, Araceli; Negrón-Silva, Guillermo E; Palomar-Pardavé, Manuel E; Romero-Romo, Mario A; Santillan, Rosa

    2013-12-06

    A series of new mono-1,2,3-triazole derivatives of pyrimidine nucleobases were synthesized by one-pot copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between N-1-propargyluracil and thymine, sodium azide and several benzyl halides. The desired heterocyclic compounds were obtained in good yields and characterized by NMR, IR, and high resolution mass spectrometry. These compounds were investigated as corrosion inhibitors for steel in 1 M HCl solution, using electrochemical impedance spectroscopy (EIS) technique. The results indicate that these heterocyclic compounds are promising acidic corrosion inhibitors for steel.

  8. Divergent Reactivity of Rhodium(I) Carbenes Derived from Indole Annulations.

    PubMed

    Li, Xiaoxun; Li, Hui; Song, Wangze; Tseng, Po-Sen; Liu, Lingyan; Guzei, Ilia A; Tang, Weiping

    2015-10-26

    Rhodium(I) carbenes were generated from propargylic alcohol derivatives as the result of a dehydrative indole annulation. Depending on the choice of the electron-withdrawing group on the aniline nitrogen nucleophile, either a cyclopropanation product or dimerization product was obtained chemoselectively. Intramolecular hydroamidation occurred for the same type of propargylic alcohol derivatives when other transition-metal catalysts were employed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cyclometalated ruthenium(II) complexes with a bis-carbene CCC-pincer ligand.

    PubMed

    Zhang, You-Ming; Shao, Jiang-Yang; Yao, Chang-Jiang; Zhong, Yu-Wu

    2012-08-21

    The first series of cyclometalated ruthenium complexes with a CCC-pincer bis-carbene ligand have been obtained as bench-stable compounds. Single-crystal X-ray analysis of one of these complexes with 4'-di-p-anisylamino-2,2':6',2''-terpyridine is presented. The Ru(II/III) redox potentials and MLCT absorptions of these complexes can be varied by attaching an electron-donating or -withdrawing group on the noncyclometalating ligand.

  10. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions.

    PubMed

    Brandenberg, Oliver F; Fasan, Rudi; Arnold, Frances H

    2017-10-01

    The surge in reports of heme-dependent proteins as catalysts for abiotic, synthetically valuable carbene and nitrene transfer reactions dramatically illustrates the evolvability of the protein world and our nascent ability to exploit that for new enzyme chemistry. We highlight the latest additions to the hemoprotein-catalyzed reaction repertoire (including carbene Si-H and C-H insertions, Doyle-Kirmse reactions, aldehyde olefinations, azide-to-aldehyde conversions, and intermolecular nitrene C-H insertion) and show how different hemoprotein scaffolds offer varied reactivity and selectivity. Preparative-scale syntheses of pharmaceutically relevant compounds accomplished with these new catalysts are beginning to demonstrate their biotechnological relevance. Insights into the determinants of enzyme lifetime and product yield are providing generalizable cues for engineering heme-dependent proteins to further broaden the scope and utility of these non-natural activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. N-O chemistry for antibiotics: discovery of N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds as selective antibacterial agents using nitroso Diels-Alder and ene chemistry.

    PubMed

    Wencewicz, Timothy A; Yang, Baiyuan; Rudloff, James R; Oliver, Allen G; Miller, Marvin J

    2011-10-13

    The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ∼100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring-opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC(90) = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds.

  12. N-O Chemistry for Antibiotics: Discovery of N-Alkyl-N-(pyridin-2-yl)hydroxylamine Scaffolds as Selective Antibacterial Agents Using Nitroso Diels-Alder and Ene Chemistry

    PubMed Central

    Wencewicz, Timothy A.; Yang, Baiyuan; Rudloff, James R.; Oliver, Allen G.; Miller, Marvin J.

    2011-01-01

    The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ~100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC90 = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds. PMID:21859126

  13. Shell crosslinked nanoparticles carrying silver antimicrobials as therapeutics†

    PubMed Central

    Li, Yali; Hindi, Khadijah; Watts, Kristin M.; Taylor, Jane B.; Zhang, Ke; Li, Zicheng

    2010-01-01

    Amphiphilic polymer nanoparticles loaded with silver cations or/and N-heterocyclic carbene–silver complexes were assessed as antimicrobial agents against Gram-negative pathogens Escherichia coli and Pseudomonas aeruginosa. PMID:20024313

  14. Structural, spectral and magnetic studies of two Co(II)-N-heterocyclic diphosphonates based on multinuclear units

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Ma, Kui-Rong; Zhang, Yu; Kan, Yu-He; Li, Rong-Qing; Hu, Hua-You

    2016-01-01

    Two examples of Co(II)-N-heterocyclic coordination polymers based on 1-hydroxyethylidenediphosphonic acid (H5L = CH3C(OH)(PO3H2)2), namely 0.5(H3NCH2CH2NH3)·[Co6(Cl2)(H3L)2(H2L)(HL)(2,2‧-bipy)6] 1 and 2(NH4)·[Co3(HL)2(H2O)2(phen)2]·2(H2O) 2, have been solvothermally obtained by introducing the second ligands 2,2‧-bipyridine/1,10-phenanthroline (2,2‧-bipy/phen) and characterized by powder X-ray diffraction (PXRD), elemental analysis, IR, TG-DSC. The single-crystal X-ray diffractions show that compound 1 possesses a 0-D structure with hexa-nuclear cluster [Co6(O-P-O)8] built through single/double O-P-O bridges and compound 2 displays a 1-D ladder-like chain structure with magnetic topology building blocks [Co4(O-P-O)4]n. Then H-bonding and π-π stacking interactions further expand the two low-dimensional structures into three-dimensional supramolecular frameworks. Fluorescent measurements reveal that both the maximum emission peaks of 1-2 are centered at 423 nm, mainly deriving from intraligand π*-π transition state of N-heterocyclic ligand 2,2‧-bipy/phen, respectively. Magnetism data indicate that 1 exhibits antiferromagnetic behavior within hexa-nuclear Co(II) clusters, while 2 shows weak ferromagnetic interactions in 1-D topology Co(II)-chain, showing promising potential as magnetic materials.

  15. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Compounds and their Ions. 6; Polycyclic Aromatic Nitrogen Heterocycles

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, Douglas M.; Bauschlicher, C. W., Jr.; Rosi, M.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The matrix-isolation technique has been employed to measure the mid-infrared spectra of several polycyclic aromatic nitrogen heterocycles in both neutral and cationic forms. The species studied include: 7,8 benzoquinoline (C13H9N); 2-azapyrene (C15H9N); 1- and 2-azabenz(a)anthracene (C17H11N); and 1-, 2-, and 4-azachrysene (also C17H11N). The experimentally measured band frequencies and intensities for each molecule are tabulated and compared with their theoretically calculated values computed using density functional theory at the B3LYP/4-31G level. The overall agreement between experiment and theory is quite good, in keeping with previous investigations involving the parent aromatic hydrocarbons. Several interesting spectroscopic trends are found to accompany nitrogen substitution into the aromatic framework of these compounds. First, for the neutral species, the nitrogen atom produces a significant increase in the total integrated infrared intensity across the 1600 - 1100/cm region and plays an essential role in the molecular vibration that underlies an uncharacteristically intense, discrete feature that is observed near 1400/cm in the spectra of 7,8 benzoquinoline, 1-azabenz(a)anthracene, and 4-azachrysene. The origin of this enhanced infrared activity and the nature of the new 1400/cm vibrational mode are explored. Finally, in contrast to the parent hydrocarbon species, these aromatic nitrogen heterocycles possess a significant permanent dipole moment. Consequently, these dipole moments and the rotational constants are reported for these species in their neutral and ionized forms.

  16. Rate constant calculations in the dimerization of diaminocarbene: a direct dynamics study

    NASA Astrophysics Data System (ADS)

    Oliva, Josep M.

    1999-03-01

    Generalized transition state theory calculations are performed on the dimerization of diaminocarbene [(H 2N) 2C:] ( 1) to tetrakis(amino)ethene [(H 2N) 2CC(NH 2) 2] ( 2). This process involves the formation of a double bond from two carbenes and therefore inclusion of correlation energy is vital. The density functionals BPW91, B3LYP and the QCISD(T)//MP2 model are used in the electronic structure calculations of reactants, transition states and products. The goal of this work is to gain insight into the mechanism of dimerization of the diaminocarbenes [(R 2N) 2C:] (R=H, Me), where experimental activation parameters are already available for R=Me.

  17. On the Origin of the Canonical Nucleobases: An Assessment of Selection Pressures across Chemical and Early Biological Evolution

    PubMed Central

    Rios, Andro C.

    2014-01-01

    The native bases of RNA and DNA are prominent examples of the narrow selection of organic molecules upon which life is based. How did nature “decide” upon these specific heterocycles? Evidence suggests that many types of heterocycles could have been present on the early Earth. It is therefore likely that the contemporary composition of nucleobases is a result of multiple selection pressures that operated during early chemical and biological evolution. The persistence of the fittest heterocycles in the prebiotic environment towards, for example, hydrolytic and photochemical assaults, may have given some nucleobases a selective advantage for incorporation into the first informational polymers. The prebiotic formation of polymeric nucleic acids employing the native bases remains, however, a challenging problem to reconcile. Hypotheses have proposed that the emerging RNA world may have included many types of nucleobases. This is supported by the extensive utilization of non-canonical nucleobases in extant RNA and the resemblance of many of the modified bases to heterocycles generated in simulated prebiotic chemistry experiments. Selection pressures in the RNA world could have therefore narrowed the composition of the nucleic acid bases. Two such selection pressures may have been related to genetic fidelity and duplex stability. Considering these possible selection criteria, the native bases along with other related heterocycles seem to exhibit a certain level of fitness. We end by discussing the strength of the N-glycosidic bond as a potential fitness parameter in the early DNA world, which may have played a part in the refinement of the alphabetic bases. PMID:25284884

  18. Studies of the mechanisms of turbine fuel instability

    NASA Technical Reports Server (NTRS)

    Daniel, S. R.

    1983-01-01

    The formation of insoluble deposits in a Jet A, a Diesel, and a model fuel (1/10 v/v tetralin/dodecane) was studied. Experiments were conducted using glass containers at 394 K with an air/fuel ratio of 14/1. The effects of addition of ppm levels of various compounds on deposit formation were evaluated. Nitrogen heterocycles were shown to produce a basicity dependent acceleration of deposition. Thiols and thiophene were shown to increase deposition while sulfides and disulfides act as inhibitors. Copper metal and its salts also promote deposition. Results of various instrumental analyses of deposits and development of a high performance liquid chromatographic method for monitoring deposit precursors are discussed.

  19. Diaryl-1,2,3-Triazolylidene Platinum(II) Complexes.

    PubMed

    Soellner, Johannes; Strassner, Thomas

    2018-04-11

    Control of the excited state geometry by rational ligand design leads to a new class of phosphorescent emitters with extraordinary photophysical properties. Extension of the π-system in the triplet state leading to a significant bathochromic shift of the emission was avoided by introduction of additional steric demand. We report the synthesis, characterization and photophysical properties of novel platinum(II) complexes bearing C^C* cyclometalated mesoionic carbene (MIC) with different β-diketonate ligands. The MIC ligand precursors were prepared from 1-phenyl-1,2,3-triazole using arylation protocols, introducing phenyl or mesityl functionalities. A solid state structure confirming the NMR assignments is presented. The emission properties were investigated in detail at room temperature and 77 K and are supported by DFT calculations and cyclic voltammetry. All complexes, with emission maxima between 502-534 nm, emit with quantum efficiencies ranging from 70-84 % in PMMA films. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interfacial charge separation and photovoltaic efficiency in Fe(ii)-carbene sensitized solar cells.

    PubMed

    Pastore, Mariachiara; Duchanois, Thibaut; Liu, Li; Monari, Antonio; Assfeld, Xavier; Haacke, Stefan; Gros, Philippe C

    2016-10-12

    The first combined theoretical and photovoltaic characterization of both homoleptic and heteroleptic Fe(ii)-carbene sensitized photoanodes in working dye sensitized solar cells (DSSCs) has been performed. Three new heteroleptic Fe(ii)-NHC dye sensitizers have been synthesized, characterized and tested. Despite an improved interfacial charge separation in comparison to the homoleptic compounds, the heteroleptic complexes did not show boosted photovoltaic performances. The ab initio quantitative analysis of the interfacial electron and hole transfers and the measured photovoltaic data clearly evidenced fast recombination reactions for heteroleptics, even associated with un unfavorable directional electron flow, and hence slower injection rates, in the case of homoleptics. Notably, quantum mechanics calculations revealed that deprotonation of the not anchored carboxylic function in the homoleptic complex can effectively accelerate the electron injection rate and completely suppress the electron recombination to the oxidized dye. This result suggests that introduction of strong electron-donating substituents on the not-anchored carbene ligand in heteroleptic complexes, in such a way of mimicking the electronic effects of the carboxylate functionality, should yield markedly improved interfacial charge generation properties. The present results, providing for the first time a detailed understanding of the interfacial electron transfers and photovoltaic characterization in Fe(ii)-carbene sensitized solar cells, open the way to a rational molecular engineering of efficient iron-based dyes for photoelectrochemical applications.

  1. Alterations in Red Blood Cell Functionality Induced by an Indole Scaffold Containing a Y-Iminodiketo Moiety: Potential Antiproliferative Conditions

    PubMed Central

    Scala, Angela; Ficarra, Silvana; Russo, Annamaria; Giunta, Elena; Galtieri, Antonio; Tellone, Ester

    2016-01-01

    We have recently proposed a new erythrocyte-based model of study to predict the antiproliferative effects of selected heterocyclic scaffolds. Starting from the metabolic similarity between erythrocytes and cancer cells, we have demonstrated how the metabolic derangement induced by an indolone-based compound (DPIT) could be related to its antiproliferative effects. In order to prove the validity of our biochemical approach, in the present study the effects on erythrocyte functionality of its chemical precursor (PID), whose synthesis we reported, were investigated. The influence of the tested compound on band 3 protein (B3), oxidative state, ATP efflux, caspase 3, metabolism, intracellular pH, and Ca2+ homeostasis has been evaluated. PID crosses the membrane localizing into the cytosol, increases anion exchange, induces direct caspase activation, shifts the erythrocytes towards an oxidative state, and releases less ATP than in normal conditions. Analysis of phosphatidylserine externalization shows that PID slightly induces apoptosis. Our findings indicate that, due to its unique features, erythrocyte responses to exogenous molecular stimuli can be fruitfully correlated at structurally more complex cells, such as cancer cells. Overall, our work indicates that erythrocyte is a powerful study tool to elucidate the biochemical/biological effects of selected heterocycles opening considerable perspectives in the field of drug discovery. PMID:27651854

  2. Chemical and thermal stability of N-heterocyclic ionic liquids in catalytic C-H activation reactions.

    PubMed

    Chen, Guanyi; Kang, Shujuan; Ma, Qisheng; Chen, Weiqun; Tang, Yongchun

    2014-11-01

    (1)H-NMR spectrum analyses are applied to study the chemical and thermal stability of selected N-heterocyclic ionic liquids within the reaction system that can highly efficiently activate a C-H bond of methane and convert it into the C-O bond in methanol. Our results indicate that under such reaction conditions involving using a powerful Pt-based catalyst and strong acidic solvent, the aromatic ring of an imidazolium cation becomes unstable generating an ammonium ion (NH(4)(+)). Our results also suggest that the instability of the imidazolium ring is more chemically (participation in reactions) than thermally based. Modifications of the aromatic ring structure such as pyrazolium and triazolium cations can increase the chemical/thermal stability of ionic liquids under these reaction conditions. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Nucleobases and Other Prebiotic Species from the UV Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Materese, Christopher; Nuevo, Michel

    2012-01-01

    Nucleobases are aromatic N-heterocycles that constitute the informational subunits of DNA and RNA and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no N-heterocycles have been individually identified in the ISM, the 6.2-micron interstellar emission feature seen towards many astronomical objects suggests a population of such molecules is likely present. We report on a study of the formation of pyrimidine-based molecules, including nucleobases and other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in low temperature ices containing H2O, NH3, C3OH, and CH4, to simulate the astrophysical conditions under which prebiotic species may be formed in the Solar System.

  4. Effect of oven cooking method on formation of heterocyclic amines and quality characteristics of chicken patties: steam-assisted hybrid oven versus convection ovens.

    PubMed

    Isleroglu, Hilal; Kemerli, Tansel; Özdestan, Özgül; Uren, Ali; Kaymak-Ertekin, Figen

    2014-09-01

    The aim of this study was to evaluate effect of steam-assisted hybrid oven cooking method in comparison with convection ovens (natural and forced) on quality characteristics (color, hardness, cooking loss, soluble protein content, fat retention, and formation of heterocyclic aromatic amines) of chicken patties. The cooking experiments of chicken patties (n = 648) were conducted at oven temperatures of 180, 210, and 240°C until 3 different end point temperatures (75, 90, and 100°C) were reached. Steam-assisted hybrid oven cooking enabled faster cooking than convection ovens and resulted in chicken patties having lower a* and higher L* value, lower hardness, lower fat, and soluble protein content (P < 0.05), and higher cooking loss than convection ovens. Steam-assisted hybrid oven could reduce the formation of heterocyclic aromatic amines that have mutagenic and carcinogenic effects on humans. © 2014 Poultry Science Association Inc.

  5. Effect of heterocyclic based organoclays on the properties of polyimide-clay nanocomposites.

    PubMed

    Krishnan, P Santhana Gopala; Joshi, Mangala; Bhargava, Prachur; Valiyaveettil, Suresh; He, Chaobin

    2005-07-01

    Polyimide-clay nanocomposites were prepared from their precursor, namely, polyamic acid, by the solution-casting method. Organomodified montmorillonite (MMT) clay was prepared by treating Na+MMT (Kunipia F) with three different intercalating agents, namely, piperazine dihydrochloride, 1,3-bis(4-piperidinylpropane) dihydrochloride and 4,4'-bipiperidine dihydrochloride at 80 degrees C. Polyamic acid solutions containing various weight percentages of organomodified MMT were prepared by reacting 4,4'-(1,1'-biphenyl-4,4'-diyldioxy)dianiline with bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride in N-methyl-2-pyrrolidinone containing dispersed particles of organomodified MMT at 20 degrees C. Nanocomposite films were prepared from these solutions by solution casting and heated subsequently at a programmed heating rate. These films were transparent and brown in color. The extent of layer separation in nanocomposite films depends upon the chemical structure of the organoclay. These films were characterized by inherent viscosity, FT-IR, DSC, TMA, WAXD, TEM, UV, and TGA. The tensile behavior and surface energy studies were also investigated. The nanocomposite films had superior tensile properties, thermal behavior, and solvent resistance. Among the three organoclays, piperazine dihydrochloride was the best modifier.

  6. One-pot synthesis, quantum chemical calculations and X-ray diffraction studies of thiazolyl-coumarin hybrid compounds

    NASA Astrophysics Data System (ADS)

    Saeed, Aamer; Arif, Mubeen; Erben, Mauricio F.; Flörke, Ulrich; Simpson, Jim

    2018-06-01

    Two closely related hybrid species containing both, thiazolyl and coumarin groups, were synthesized by using two different one-pot procedures from a common precursor. The reaction of α-bromoacetylcoumarin with thioacetamide in methanol furnished 3‑(2‑methylthiazol‑4‑yl)‑2H‑chromen‑2‑one (2), whereas refluxing α‑bromoacetylcoumarin with potassium thiocyanate in ethanol afforded 3‑(2‑ethoxythiazol‑4‑yl)‑2H‑chromen‑2‑one (3). Both derivatives were fully characterized by spectroscopic methods, elemental analysis and X-ray diffraction studies. Intramolecular C4sbnd H⋯N and C5‧sbnd H⋯Odbnd C hydrogen bonds between the heterocycles determine the conformational behavior. The co-planarity of the coumarin and thiazolyl rings favors the occurrence of two remote orbital interactions involving the oxygen and nitrogen lone pairs and the corresponding σ*Csbnd H electron acceptor, as demonstrated by Natural Bond Orbital population analysis. The 2-substitution of the thiazol‑4‑yl group has little effect on the molecular structures but causes significant differences in the crystal packing of the two compounds.

  7. Nucleophilic addition of nitrogen to aryl cations: mimicking Titan chemistry.

    PubMed

    Li, Anyin; Jjunju, Fred P M; Cooks, R Graham

    2013-11-01

    The reactivity of aryl cations toward molecular nitrogen is studied systematically in an ion trap mass spectrometer at 10(2) Pascal of nitrogen, the pressure of the Titan main haze layer. Nucleophilic addition of dinitrogen occurs and the nature of aryl group has a significant influence on the reactivity, through inductive effects and by changing the ground state spin multiplicity. The products of nitrogen activation, aryldiazonium ions, react with typical nitriles, aromatic amines, and alkynes (compounds that are relevant as possible Titan atmosphere constituents) to form covalently bonded heterocyclic products. Theoretical calculations at the level [DFT(B3LYP)/6-311++G(d,p)] indicate that the N2 addition reaction is exothermic for the singlet aryl cations but endothermic for their triplet spin isomers. The -OH and -NH2 substituted aryl ions are calculated to have triplet ground states, which is consistent with their decreased nitrogen addition reactivity. The energy needed for the generation of the aryl cations from their protonated precursors (ca. 340 kJ/mol starting with protonated aniline) is far less than that required to directly activate the nitrogen triple bond (the lowest energy excited state of N2 lies ca. 600 kJ/mol above the ground state). The formation of aza-aromatics via arene ionization and subsequent reactions provide a conceivable route to the genesis of nitrogen-containing organic molecules in the interstellar medium and Titan haze layers.

  8. 6-Azabicyclo[3.2.1]octanes Via Copper-Catalyzed Enantioselective Alkene Carboamination

    PubMed Central

    Casavant, Barbara J.; Hosseini, Azade S.

    2014-01-01

    Bridged bicyclic rings containing nitrogen heterocycles are important motifs in bioactive small organic molecules. An enantioselective copper-catalyzed alkene carboamination reaction that creates bridged heterocycles is reported herein. Two new rings are formed in this alkene carboamination reaction where N-sulfonyl-2-aryl-4-pentenamines are converted to 6-azabicyclo[3.2.1]octanes using [Ph-Box-Cu](OTf)2 or related catalysts in the presence of MnO2 as stoichiometric oxidant in moderate to good yields and generally excellent enantioselectivities. Two new stereocenters are formed in the reaction, and the C-C bond-forming arene addition is a net C-H functionalization. PMID:25484848

  9. Palladium-Catalyzed Dynamic Kinetic Asymmetric Transformations of Vinyl Aziridines with Nitrogen Heterocycles: Rapid Access to Biologically Active Pyrroles and Indoles

    PubMed Central

    Trost, Barry M.; Osipov, Maksim; Dong, Guangbin

    2010-01-01

    We report that nitrogen heterocycles can serve as competent nucleophiles in the palladium-catalyzed dynamic kinetic asymmetric alkylation of vinyl aziridines. The resulting alkylated products were obtained with high regio-, chemo-, and enantioselectivity. Both substituted 1H-pyrroles and 1H-indoles were successfully employed to give exclusively the branched N-alkylated products. The synthetic utility of this process was demonstrated by applying this method to the preparation of several medicinal chemistry lead compounds and bromopyrrole alkaloids including longamide B, longamide B methyl ester, hanishin, agesamides A and B, and cyclooroidin. PMID:20949972

  10. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Robinson, Andrew B; Heu, Celine; Garvey, Christopher J; Ratcliffe, Julian; Waddington, Lynne J; Gardiner, James; Thordarson, Pall

    2017-03-08

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy.

  11. Iodine-catalyzed diazo activation to access radical reactivity.

    PubMed

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  12. Rhodium-catalyzed NH insertion of pyridyl carbenes derived from pyridotriazoles: a general and efficient approach to 2-picolylamines and imidazo[1,5-a]pyridines.

    PubMed

    Shi, Yi; Gulevich, Anton V; Gevorgyan, Vladimir

    2014-12-15

    A general and efficient NH insertion reaction of rhodium pyridyl carbenes derived from pyridotriazoles was developed. Various NH-containing compounds, including amides, anilines, enamines, and aliphatic amines, smoothly underwent the NH insertion reaction to afford 2-picolylamine derivatives. The developed transformation was further utilized in a facile one-pot synthesis of imidazo[1,5-a]pyridines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Magnetic Study of the Novel Polynuclear Compound [Cu(II)(6-Mercaptopurinolate 2-)] n

    NASA Astrophysics Data System (ADS)

    Acevedo-Chávez, Rodolfo; Costas, María. Eugenia; Escudero, Roberto

    1997-08-01

    Chemical reactions between Cu(II) and 6-mercaptopurine, both in aqueous and in methanolic media, yield the novel amorphous polynuclear compound [Cu(II)(6-mercaptopurinolate)2-]n, which is also obtained from diverse Cu(II)-heterocyclic ligand competitive reactions. The kinetic and thermodynamic stabilities associated with the formation of this compound are inferred as remarkable. The spectroscopic data let us suggest the involvement of the exocyclic S(6) donor site and the N atoms in the imidazolic moiety of the deprotonated heterocyclic ligand in the coordination to Cu(II) atoms, forming a distorted bidimensional metallic network. The magnetic studies show the existence of very weak antiferromagnetic coupling in the solid sample. This system represents the first example of a 1 : 1 metal : 6-mercaptopurinolate2-system with ad-type open shell metallic center. The magnetic study carried out also represents the first example of magnetic characterization for this type of polynuclear Cu(II) systems with the dianionic 6-mercaptopurine ligand.

  14. Environment-dependent conformation investigation of 3-amino-1,2,4-triazole (3-AT): Raman Spectroscopy and density functional theory

    NASA Astrophysics Data System (ADS)

    Meng, Shuang; Zhao, Yanying; Xue, Jiadan; Zheng, Xuming

    2018-02-01

    In the paper, diverse tautomers of 3-amino-1,2,4-triazole (3AT) in solid and polar solvent have been explored by FT-IR, FT-Raman and 488 nm Raman experiments combing with quantum chemical theoretical calculation using PCM solvent model and normal mode analysis. The vibrational spectra prefer the 3-amino-1,2,4-2H-triazole (2H-3AT) dimer in solid, while in a polar solvent 3AT is apt to the 3-amino-1,2,4-2H-triazole (2H-3AT) monomer. The significant wavenumber difference and Raman intensity patterns in solid and different solvents are induced by hydrogen bond perturbation along > NH ⋯ N ≤ hydrogen bonds on five-membered N-heterocyclic ring. The ground state proton transfer reaction mechanism along the five-membered N-heterocyclic ring is supported by intermolecular hydrogen bonding between 3AT and protonic solvent molecules.

  15. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules.

    PubMed

    Bolleddula, Jayaprakasam; DeMent, Kevin; Driscoll, James P; Worboys, Philip; Brassil, Patrick J; Bourdet, David L

    2014-08-01

    Aliphatic nitrogen heterocycles such as piperazine, piperidine, pyrrolidine, morpholine, aziridine, azetidine, and azepane are well known building blocks in drug design and important core structures in approved drug therapies. These core units have been targets for metabolic attack by P450s and other drug metabolizing enzymes such as aldehyde oxidase and monoamine oxidase (MAOs). The electron rich nitrogen and/or α-carbons are often major sites of metabolism of alicyclic amines. The most common biotransformations include N-oxidation, N-conjugation, oxidative N-dealkylation, ring oxidation, and ring opening. In some instances, the metabolic pathways generate electrophilic reactive intermediates and cause bioactivation. However, potential bioactivation related adverse events can be attenuated by structural modifications. Hence it is important to understand the biotransformation pathways to design stable drug candidates that are devoid of metabolic liabilities early in the discovery stage. The current review provides a comprehensive summary of biotransformation and bioactivation pathways of aliphatic nitrogen containing heterocycles and strategies to mitigate metabolic liabilities.

  16. Photo-induced oxidant-free oxidative C-H/N-H cross-coupling between arenes and azoles

    NASA Astrophysics Data System (ADS)

    Niu, Linbin; Yi, Hong; Wang, Shengchun; Liu, Tianyi; Liu, Jiamei; Lei, Aiwen

    2017-02-01

    Direct cross-coupling between simple arenes and heterocyclic amines under mild conditions is undoubtedly important for C-N bonds construction. Selective C(sp2)-H amination is more valuable. Herein we show a selective C(sp2)-H amination of arenes (alkyl-substituted benzenes, biphenyl and anisole derivatives) accompanied by hydrogen evolution by using heterocyclic azoles as nitrogen sources. The reaction is selective for C(sp2)-H bonds, providing a mild route to N-arylazoles. The KIE (kinetic isotope effect) experiment reveals the cleavage of C-H bond is not involved in the rate-determining step. Kinetic studies indicate the first-order behaviour with respect to the arene component. It is interesting that this system works without the need for any sacrificial oxidant and is highly selective for C(sp2)-H activation, whereas C(sp3)-H bonds are unaffected. This study may have significant implications for the functionalization of methylarenes which are sensitive to oxidative conditions.

  17. β-Lactam Ring Opening: A Useful Entry to Amino Acids and Relevant Nitrogen-Containing Compounds

    NASA Astrophysics Data System (ADS)

    Palomo, C.; Oiarbide, M.

    The main strategies for the ring opening of β-lactams by chemical means are described. The discovery of each approach is put into context, sometimes in connection to processes occurring in biological systems, and the synthetic opportunities each approach offers are shown. Thus, this β-lactam route affords a number of synthetically relevant building-blocks, including α-amino acids, β-amino acids, their derived peptides, and other nitrogen containing heterocycles and open chain molecules. The content, which encompases references to initial work, further major development, and the most relevant recent literature contributions, is categorized according to the ring bond cleavaged (N 1-C 2, C 2-C 3, C 3 -C 4 , N 1-C 4), to finish with ring opening strategies leading to large heterocyclic compounds. Within each category, distinction has been made according to the type of nucleophilic agent employed, principally O-, N-, and C-nucleophiles. Also, a variety of applications of the strategy to the synthesis of interesting target compounds are shown.

  18. MICROWAVE-ASSISTED CHEMISTRY: SYNTHESIS OF AMINES AND HETEROCYCLES VIA CARBON-NITROGEN BOND FORMATION IN AQUEOUS MEDIA

    EPA Science Inventory

    Improved C-N bond formation under MW influence is demonstrated by a) solventless three-component coupling reaction to generate propargyl amines that uses only Cu (I); b) aqueous N-alkylation of amines by alkyl halides that proceeds expeditiously in the presence of NaOH to deliver...

  19. Laboratory Studies of Stabilities of Heterocyclic Aromatic Molecules: Suggested Gas Phase Ion-Molecule Routes to Production in Interstellar Gas Clouds

    NASA Technical Reports Server (NTRS)

    Adams, Nigel G.; Fondren, L. Dalila; McLain, Jason L.; Jackson, Doug M.

    2006-01-01

    Several ring compounds have been detected in interstellar gas clouds, ISC, including the aromatic, benzene. Polycyclic aromatic hydrocarbons, PAHs, have been implicated as carriers of diffuse interstellar bands (DIBs) and unidentified infrared (UIR) bands. Heterocyclic aromatic rings of intermediate size containing nitrogen, possibly PreLife molecules, were included in early searches but were not detected and a recent search for Pyrimidine was unsuccessful. Our laboratory investigations of routes to such molecules could establish their existence in ISC and suggest conditions under which their concentrations would be maximized thus aiding the searches. The stability of such ring compounds (C5H5N, C4H4N2, C5H11N and C4H8O2) has been tested in the laboratory using charge transfer excitation in ion-molecule reactions. The fragmentation paths, including production of C4H4(+), C3H3N(+) and HCN, suggest reverse routes to the parent molecules, which are presently under laboratory investigation as production sources.

  20. A mechanistic study of the interaction of water-soluble borate glass with apatite-bound heterocyclic nitrogen-containing bisphosphonates.

    PubMed

    Pramanik, Chandrani; Sood, Parveen; Niu, Li-Na; Yuan, He; Ghoshal, Sushanta; Henderson, Walter; Liu, Yaodong; Jang, Seung Soon; Kumar, Satish; Pashley, David H; Tay, Franklin R

    2016-02-01

    Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) is associated with osteonecrosis of the jaw. Although N-BPs bind strongly to bone surfaces via non-covalent bonds, it is possible for extrinsic ions to dissociate bound N-BPs from mineralized bone by competitive desorption. Here, we investigate the effects and mechanism of using an ionic cocktail derived from borate bioactive glass for sequestration of heterocyclic N-BPs bound to apatite. By employing solid-state and solution-state analytical techniques, we confirmed that sequestration of N-BPs from bisphosphonate-bound apatite occurs in the presence of the borate-containing ionic cocktail. Simulations by density functional theory computations indicate that magnesium cation and borate anion are well within the extent of the risedronate or zoledronate anion to form precipitate complexes. The sequestration mechanism is due to the borate anion competing with bisphosphonates for similar electron-deficient sites on the apatite surface for binding. Thus, application of the borate-containing ionic cocktail represents a new topical lavage approach for removing apatite-bound heterocyclic N-BPs from exposed necrotic bone in bisphosphonate-related osteonecrosis of the jaw. Long-term oral consumption and injections of nitrogen-containing bisphosphonates (N-BPs) may result in death of the jaw bone when there is traumatic injury to the bone tissues. To date, there is no effective treatment for such a condition. This work reported the use of an ionic cocktail derived from water-soluble borate glass microfibers to displace the most potent type of N-BPs that are bound strongly to the mineral component on bone surfaces. The mechanism responsible for such an effect has been identified to be cation-mediated complexation of borate anions with negatively-charged N-BPs, allowing them to be released from the mineral surface. This borate-containing cocktail may be developed into a novel topical rinse for removing mineral-bound N-BPs from exposed dead bone. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Top