Science.gov

Sample records for n-iminoethyl-l-lysine improves memory

  1. Event boundaries and memory improvement.

    PubMed

    Pettijohn, Kyle A; Thompson, Alexis N; Tamplin, Andrea K; Krawietz, Sabine A; Radvansky, Gabriel A

    2016-03-01

    The structure of events can influence later memory for information that is embedded in them, with evidence indicating that event boundaries can both impair and enhance memory. The current study explored whether the presence of event boundaries during encoding can structure information to improve memory. In Experiment 1, memory for a list of words was tested in which event structure was manipulated by having participants walk through a doorway, or not, halfway through the word list. In Experiment 2, memory for lists of words was tested in which event structure was manipulated using computer windows. Finally, in Experiments 3 and 4, event structure was manipulated by having event shifts described in narrative texts. The consistent finding across all of these methods and materials was that memory was better when the information was distributed across two events rather than combined into a single event. Moreover, Experiment 4 demonstrated that increasing the number of event boundaries from one to two increased the memory benefit. These results are interpreted in the context of the Event Horizon Model of event cognition.

  2. Can verbal working memory training improve reading?

    PubMed

    Banales, Erin; Kohnen, Saskia; McArthur, Genevieve

    2015-01-01

    The aim of the current study was to determine whether poor verbal working memory is associated with poor word reading accuracy because the former causes the latter, or the latter causes the former. To this end, we tested whether (a) verbal working memory training improves poor verbal working memory or poor word reading accuracy, and whether (b) reading training improves poor reading accuracy or verbal working memory in a case series of four children with poor word reading accuracy and verbal working memory. Each child completed 8 weeks of verbal working memory training and 8 weeks of reading training. Verbal working memory training improved verbal working memory in two of the four children, but did not improve their reading accuracy. Similarly, reading training improved word reading accuracy in all children, but did not improve their verbal working memory. These results suggest that the causal links between verbal working memory and reading accuracy may not be as direct as has been assumed.

  3. Improving Children's Working Memory and Classroom Performance

    ERIC Educational Resources Information Center

    St Clair-Thompson, Helen; Stevens, Ruth; Hunt, Alexandra; Bolder, Emma

    2010-01-01

    Previous research has demonstrated close relationships between working memory and children's scholastic attainment. The aim of the present study was to explore a method of improving working memory, using memory strategy training. Two hundred and fifty-four children aged five to eight years were tested on measures of the phonological loop,…

  4. Working memory training improves visual short-term memory capacity.

    PubMed

    Schwarb, Hillary; Nail, Jayde; Schumacher, Eric H

    2016-01-01

    Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1-2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87-185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297-314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46-60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity-a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622-628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.

  5. Memory Improvement in Assisted Living Elders

    PubMed Central

    McDougall, Graham J.

    2008-01-01

    The Cognitive Behavioral Model of Everyday Memory (CBMEM), an eight-session cognitive enhancement program, entitled “MEMORIES, MEMORIES, Can We Improve Ours?” was tested with older adults living in an assisted living facility in the Middle West. The aims of this quasi-experimental study were: to improve everyday memory, memory self-efficacy, and metamemory. A total of 19 older adults (14 female, 5 male) with an average age of 83 years and an average MMSE score of 26 participated. At pretest there were 16 individuals in the experimental and 3 individuals in the comparison group. There were no differences between experimental and comparison groups on the study variables. The experimental group was post tested at one week after completing the intervention. At posttest memory self-efficacy scores significantly increased in the experimental group (M1 = 52.13, M2 = 68.50). Total memory performance scores were not significantly different at posttest; however the prospective memory items of asking for an appointment (M1=.56, M2=1.25), asking for a belonging M1=.62, M2=.88), and delivering a message (M1=1.00, M2=1.19) significantly improved. PMID:10839062

  6. Improving Memory Error Handling Using Linux

    SciTech Connect

    Carlton, Michael Andrew; Blanchard, Sean P.; Debardeleben, Nathan A.

    2014-07-25

    As supercomputers continue to get faster and more powerful in the future, they will also have more nodes. If nothing is done, then the amount of memory in supercomputer clusters will soon grow large enough that memory failures will be unmanageable to deal with by manually replacing memory DIMMs. "Improving Memory Error Handling Using Linux" is a process oriented method to solve this problem by using the Linux kernel to disable (offline) faulty memory pages containing bad addresses, preventing them from being used again by a process. The process of offlining memory pages simplifies error handling and results in reducing both hardware and manpower costs required to run Los Alamos National Laboratory (LANL) clusters. This process will be necessary for the future of supercomputing to allow the development of exascale computers. It will not be feasible without memory error handling to manually replace the number of DIMMs that will fail daily on a machine consisting of 32-128 petabytes of memory. Testing reveals the process of offlining memory pages works and is relatively simple to use. As more and more testing is conducted, the entire process will be automated within the high-performance computing (HPC) monitoring software, Zenoss, at LANL.

  7. Exponential lifetime improvement in topological quantum memories

    NASA Astrophysics Data System (ADS)

    Bardyn, Charles-Edouard; Karzig, Torsten

    2016-09-01

    We propose a simple yet efficient mechanism for passive error correction in topological quantum memories. Our scheme relies on driven-dissipative ancilla systems which couple to local excitations (anyons) and make them "sink" in energy, with no required interaction among ancillae or anyons. Through this process, anyons created by some thermal environment end up trapped in potential "trenches" that they themselves generate, which can be interpreted as a "memory foam" for anyons. This self-trapping mechanism provides an energy barrier for anyon propagation and removes entropy from the memory by favoring anyon recombination over anyon separation (responsible for memory errors). We demonstrate that our scheme leads to an exponential increase of the memory-coherence time with system size L , up to an upper bound Lmax, which can increase exponentially with Δ /T , where T is the temperature and Δ is some energy scale defined by potential trenches. This results in a double exponential increase of the memory time with Δ /T , which greatly improves over the Arrhenius (single-exponential) scaling found in typical quantum memories.

  8. Memory Loss: 7 Tips to Improve Your Memory

    MedlinePlus

    ... re not alone. Everyone forgets things occasionally. Still, memory loss is nothing to take lightly. Although there are no guarantees when it comes to preventing memory loss or dementia, certain activities might help. Consider ...

  9. Improved Writing-Conductor Designs For Magnetic Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1994-01-01

    Writing currents reduced to practical levels. Improved conceptual designs for writing conductors in micromagnet/Hall-effect random-access integrated-circuit memory reduces electrical current needed to magnetize micromagnet in each memory cell. Basic concept of micromagnet/Hall-effect random-access memory presented in "Magnetic Analog Random-Access Memory" (NPO-17999).

  10. When Delays Improve Memory: Stabilizing Memory in Children May Require Time.

    PubMed

    Darby, Kevin P; Sloutsky, Vladimir M

    2015-12-01

    Memory is critical for learning, cognition, and cognitive development. Recent work has suggested that preschool-age children are vulnerable to catastrophic levels of memory interference, in which new learning dramatically attenuates memory for previously acquired knowledge. In the work reported here, we investigated the effects of consolidation on children's memory by introducing a 48-hr delay between learning and testing. In Experiment 1, the delay improved children's memory and eliminated interference. Results of Experiment 2 suggest that the benefit of this delay is limited to situations in which children are given enough information to form complex memory structures. These findings have important implications for understanding consolidation processes and memory development.

  11. Can Interactive Working Memory Training Improve Learning?

    ERIC Educational Resources Information Center

    Alloway, Tracy

    2012-01-01

    Background: Working memory is linked to learning outcomes and there is emerging evidence that training working memory can yield gains in working memory and fluid intelligence. Aims: The aim of the present study was to investigate whether interactive working memory training would transfer to acquired cognitive skills, such as vocabulary and…

  12. Improved MCNP Memory Locality by Neutron Grouping

    NASA Astrophysics Data System (ADS)

    Bly, Aaron

    This research presents new code for Monte Carlo N-Particle (MCNP) to achieve an improved time during criticality calculations. Modifications implementing the grouping and sorting of neutrons takes advantage of memory locality by processing all neutrons in a group to achieve the temporal reuse of cross section data. This prevents unnecessary data lookups. Various groupings and their results are compared. The modified code utilizing neutron energy groups provided the best result of a 16.7% +/- 0.5% speedup for a criticality determination of a two slab tank experiment. This is a savings of 2 ½ hours for a system that normally takes approximately 15 ½ hours to execute. The code implemented was chosen to require minimal modifications to the MCNP program thus avoiding the need to rewrite a new version. Verification and validation is still needed in order to show that a speedup using neutron groups can be achieved in all cases.

  13. Solcoseryl improves learning and memory in rats.

    PubMed

    Winnicka, M M; Braszko, J J; Wisniewski, K

    1996-01-01

    Our previous experiments have shown that Solcoseryl (S), a protein-free extract of calves' blood stimulates locomotor activity and decreases haloperidol catalepsy in rats. In this study the influence of S on acquisition, consolidation, and recall of both, conditioned avoidance responses (CARs) and passive avoidance behaviour was tested. S at the intraperitoneal (i.p.) dose of 1.25 ml/kg significantly improved acquisition and at the dose of 1.0 ml/kg recall of CARs. In the passive avoidance situation the significant effect on acquisition and recall of information was observed after i.p. injection of 1.0 ml/kg of S, and on consolidation after 0.75 ml/kg. These data indicate that S may positively affect the CNS processes responsible for learning and memory.

  14. Working memory training improves emotion regulation ability: Evidence from HRV.

    PubMed

    Xiu, Lichao; Zhou, Renlai; Jiang, Yihan

    2016-03-01

    Emotion regulation during social situations plays a pivotal role in health and interpersonal functioning. In this study, we propose a working memory training approach to improve emotion regulation ability. This training promotes an updating function that is a crucial modulated process for emotion regulation. In the present study, the participants in the training group completed a running memory task over 20 days of training. Their working memory capability and high-frequency heart rate variability (HF-HRV) data on pretest and posttest were assessed and analyzed. Compared with the control group, the training group's reaction time in the 2-back working memory task was reduced significantly. In addition, the HF-HRV in the emotion regulation condition was increased after the 20-day training, which indicates that the working memory training effect could transfer to emotion regulation. In other words, working memory training improved emotion regulation ability.

  15. A Memory Pacer for Improving Stimulus Generalization.

    ERIC Educational Resources Information Center

    Browning, Ellen R.

    1983-01-01

    The Memory Tracer, which provides prompts by playing prerecorded appropriate messages, was effective in maintaining a low rate of negative verbalizations by six adolescents with autism, schizophrenia, and severe behavior problems. (CL) 4B

  16. Improving Outcome of Psychosocial Treatments by Enhancing Memory and Learning

    PubMed Central

    Harvey, Allison G.; Lee, Jason; Williams, Joseph; Hollon, Steven D.; Walker, Matthew P.; Thompson, Monique A.; Smith, Rita

    2014-01-01

    Mental disorders are prevalent and lead to significant impairment. Progress toward establishing treatments has been good. However, effect sizes are small to moderate, gains may not persist, and many patients derive no benefit. Our goal is to highlight the potential for empirically-supported psychosocial treatments to be improved by incorporating insights from cognitive psychology and research on education. Our central question is: If it were possible to improve memory for content of sessions of psychosocial treatments, would outcome substantially improve? This question arises from five lines of evidence: (a) mental illness is often characterized by memory impairment, (b) memory impairment is modifiable, (c) psychosocial treatments often involve the activation of emotion, (d) emotion can bias memory and (e) memory for psychosocial treatment sessions is poor. Insights from scientific knowledge on learning and memory are leveraged to derive strategies for a transdiagnostic and transtreatment cognitive support intervention. These strategies can be applied within and between sessions and to interventions delivered via computer, the internet and text message. Additional novel pathways to improving memory include improving sleep, engaging in exercise and imagery. Given that memory processes change across the lifespan, services to children and older adults may benefit from cognitive support. PMID:25544856

  17. Improved Reading Gate For Vertical-Bloch-Line Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1994-01-01

    Improved design for reading gate of vertical-Bloch-line magnetic-bubble memory increases reliability of discrimination between binary ones and zeros. Magnetic bubbles that signify binary "1" and "0" produced by applying sufficiently large chopping currents to memory stripes. Bubbles then propagated differentially in bubble sorter. Method of discriminating between ones and zeros more reliable.

  18. Event Segmentation Improves Event Memory up to One Month Later.

    PubMed

    Flores, Shaney; Bailey, Heather R; Eisenberg, Michelle L; Zacks, Jeffrey M

    2017-04-06

    When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer this question, participants viewed movies of naturalistic activity with instructions to remember the activity for a later test, and in some conditions additionally pressed a button to segment the movies into meaningful events or performed a control condition that required button-pressing but not attending to segmentation. In 5 experiments, memory for the movies was assessed at intervals ranging from immediately following viewing to 1 month later. Performing the event segmentation task led to superior memory at delays ranging from 10 min to 1 month. Further, individual differences in segmentation ability predicted individual differences in memory performance for up to a month following encoding. This study provides the first evidence that manipulating event segmentation affects memory over long delays and that individual differences in event segmentation are related to differences in memory over long delays. These effects suggest that attending to how an activity breaks down into meaningful events contributes to memory formation. Instructing people to more effectively segment events may serve as a potential intervention to alleviate everyday memory complaints in aging and clinical populations. (PsycINFO Database Record

  19. Is the link from working memory to analogy causal? No analogy improvements following working memory training gains.

    PubMed

    Richey, J Elizabeth; Phillips, Jeffrey S; Schunn, Christian D; Schneider, Walter

    2014-01-01

    Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data, but less work has tested this relationship through experimental manipulation. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants' performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks. Participants' improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning.

  20. Improving older adults' memory performance using prior task success.

    PubMed

    Geraci, Lisa; Miller, Tyler M

    2013-06-01

    Holding negative aging stereotypes can lead older adults to perform poorly on memory tests. We attempted to improve older adults' memory performance by giving them task experience that would counter their negative performance expectations. Before participating in a memory experiment, younger and older adults were given a cognitive task that they could either successfully complete, not successfully complete, or they were given no prior task. For older adults, recall was significantly higher and self-reported anxiety was significantly lower for the prior task success group relative to the other groups. There was no effect of prior task experience on younger adults' memory performance. Results suggest that older adults' memory can be improved with a single successful prior task experience.

  1. Improved Readout For Micromagnet/Hall-Effect Memories

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1993-01-01

    Two improved readout circuits for micromagnet/Hall-effect random-access memories designed to eliminate current shunts introducing errors into outputs of older readout circuits. Incorporate additional switching transistors to isolate Hall sensors as needed.

  2. Improvement of mouse memory by Myristica fragrans seeds.

    PubMed

    Parle, Milind; Dhingra, Dinesh; Kulkarni, S K

    2004-01-01

    Memory is one of the most complex functions of the brain and involves multiple neural pathways and neurotransmitter systems. The present study was undertaken to investigate the effect of Myristica fragrans (MF) seeds on learning and memory in mice. The n-hexane extract of MF was administered orally in three doses (5, 10, and 20 mg/kg p.o.) for 3 successive days to different groups of young and aged mice. The learning and memory parameters were assessed using elevated plus-maze and passive-avoidance apparatus. The effect of MF extract on scopolamine (0.4 mg/kg i.p.)- and diazepam (1 mg/kg i.p.)-induced impairment in learning and memory was also studied. MF extract at the lowest dose of 5 mg/kg p.o. administered for 3 successive days significantly improved learning and memory of young and aged mice. This extract also reversed scopolamine- and diazepam-induced impairment in learning and memory of young mice. MF extract enhanced learning and retention capacities of both young and aged mice. The exact mechanism of the memory-improving effect of MF extract was not explored in the present study. But, the observed memory-enhancing effect may be attributed to a variety of properties (individually or in combination) the plant is reported to possess, such as antioxidant, anti-inflammatory, or perhaps procholinergic activity.

  3. Visual memory improved by non-invasive brain stimulation.

    PubMed

    Chi, Richard P; Fregni, Felipe; Snyder, Allan W

    2010-09-24

    Our visual memories are susceptible to errors, but less so in people who have a more literal cognitive style. This inspired us to attempt to improve visual memory with non-invasive brain stimulation. We applied 13 min of bilateral transcranial direct current stimulation (tDCS) to the anterior temporal lobes. Our stimulation protocol included 3 conditions, each with 12 neurotypical participants: (i) left cathodal stimulation together with right anodal stimulation, (ii) left anodal stimulation together with right cathodal stimulation, and (iii) sham (control) stimulation. Only participants who received left cathodal stimulation (decrease in excitability) together with right anodal stimulation (increase in excitability) showed an improvement in visual memory. This 110% improvement in visual memory was similar to the advantage people with autism, who are known to be more literal, show over normal people in the identical visual task. Importantly, participants receiving stimulation of the opposite polarity (left anodal together with right cathodal stimulation) failed to show any change in memory performance. This is the first demonstration that visual memory can be enhanced in healthy people using non-invasive brain stimulation.

  4. A study of the viability of exploiting memory content similarity to improve resilience to memory errors

    SciTech Connect

    Levy, Scott; Ferreira, Kurt B.; Bridges, Patrick G.; Thompson, Aidan P.; Trott, Christian

    2014-12-09

    Building the next-generation of extreme-scale distributed systems will require overcoming several challenges related to system resilience. As the number of processors in these systems grow, the failure rate increases proportionally. One of the most common sources of failure in large-scale systems is memory. In this paper, we propose a novel runtime for transparently exploiting memory content similarity to improve system resilience by reducing the rate at which memory errors lead to node failure. We evaluate the viability of this approach by examining memory snapshots collected from eight high-performance computing (HPC) applications and two important HPC operating systems. Based on the characteristics of the similarity uncovered, we conclude that our proposed approach shows promise for addressing system resilience in large-scale systems.

  5. A study of the viability of exploiting memory content similarity to improve resilience to memory errors

    DOE PAGES

    Levy, Scott; Ferreira, Kurt B.; Bridges, Patrick G.; ...

    2014-12-09

    Building the next-generation of extreme-scale distributed systems will require overcoming several challenges related to system resilience. As the number of processors in these systems grow, the failure rate increases proportionally. One of the most common sources of failure in large-scale systems is memory. In this paper, we propose a novel runtime for transparently exploiting memory content similarity to improve system resilience by reducing the rate at which memory errors lead to node failure. We evaluate the viability of this approach by examining memory snapshots collected from eight high-performance computing (HPC) applications and two important HPC operating systems. Based on themore » characteristics of the similarity uncovered, we conclude that our proposed approach shows promise for addressing system resilience in large-scale systems.« less

  6. Endurance factors improve hippocampal neurogenesis and spatial memory in mice

    PubMed Central

    Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette

    2011-01-01

    Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor δ agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and neurogenesis. Mice were injected with GW for 7 d or AICAR for 7 or 14 d. Two weeks thereafter mice were tested in the Morris water maze. AICAR (7 d) and GW improved spatial memory. Moreover, AICAR significantly, and GW modestly, elevated dentate gyrus neurogenesis. Thus, pharmacological activation of skeletal muscle may mediate cognitive effects. PMID:21245211

  7. Coccomyxa Gloeobotrydiformis Improves Learning and Memory in Intrinsic Aging Rats.

    PubMed

    Sun, Luning; Jin, Ying; Dong, Liming; Sui, Hai-Juan; Sumi, Ryo; Jahan, Rabita; Hu, Dahai; Li, Zhi

    2015-01-01

    Declining in learning and memory is one of the most common and prominent problems during the aging process. Neurotransmitter changes, oxidative stress, mitochondrial dysfunction and abnormal signal transduction were considered to participate in this process. In the present study, we examined the effects of Coccomyxa gloeobotrydiformis (CGD) on learning and memory ability of intrinsic aging rats. As a result, CGD treated (50 mg/kg·d or 100 mg/kg ·d for a duration of 8 weeks) 22-month-old male rats, which have shown significant improvement on learning and spatial memory ability compared with control, which was evidently revealed in both the hidden platform tasks and probe trials. The following immunohistochemistry and Western blot experiments suggested that CGD could increase the content of Ach and thereby improve the function of the cholinergic neurons in the hippocampus, and therefore also improving learning and memory ability of the aged rats by acting as an anti-inflammatory agent. The effects of CGD on learning and memory might also have an association with the ERK/CREB signalling. The results above suggest that the naturally made drug CGD may have several great benefit as a multi-target drug in the process of prevention and/or treatment of age-dependent cognitive decline and aging process.

  8. Memory improves precision of cell sensing in fluctuating environments

    NASA Astrophysics Data System (ADS)

    Aquino, Gerardo; Tweedy, Luke; Heinrich, Doris; Endres, Robert G.

    2014-07-01

    Biological cells are often found to sense their chemical environment near the single-molecule detection limit. Surprisingly, this precision is higher than simple estimates of the fundamental physical limit, hinting towards active sensing strategies. In this work, we analyse the effect of cell memory, e.g. from slow biochemical processes, on the precision of sensing by cell-surface receptors. We derive analytical formulas, which show that memory significantly improves sensing in weakly fluctuating environments. However, surprisingly when memory is adjusted dynamically, the precision is always improved, even in strongly fluctuating environments. In support of this prediction we quantify the directional biases in chemotactic Dictyostelium discoideum cells in a flow chamber with alternating chemical gradients. The strong similarities between cell sensing and control engineering suggest universal problem-solving strategies of living matter.

  9. Memory improves precision of cell sensing in fluctuating environments

    PubMed Central

    Aquino, Gerardo; Tweedy, Luke; Heinrich, Doris; Endres, Robert G.

    2014-01-01

    Biological cells are often found to sense their chemical environment near the single-molecule detection limit. Surprisingly, this precision is higher than simple estimates of the fundamental physical limit, hinting towards active sensing strategies. In this work, we analyse the effect of cell memory, e.g. from slow biochemical processes, on the precision of sensing by cell-surface receptors. We derive analytical formulas, which show that memory significantly improves sensing in weakly fluctuating environments. However, surprisingly when memory is adjusted dynamically, the precision is always improved, even in strongly fluctuating environments. In support of this prediction we quantify the directional biases in chemotactic Dictyostelium discoideum cells in a flow chamber with alternating chemical gradients. The strong similarities between cell sensing and control engineering suggest universal problem-solving strategies of living matter. PMID:25023459

  10. Multifaceted Prospective Memory Intervention to Improve Medication Adherence

    PubMed Central

    Insel, Kathie C.; Einstein, Gilles O.; Morrow, Daniel G.; Koerner, Kari M.; Hepworth, Joseph T.

    2015-01-01

    Background/Objectives Older adults do not take medication as prescribed, diminishing the benefits of treatment and increasing costs to individuals and society. A multifaceted prospective memory intervention for improving adherence to antihypertensive medication was tested and assessed if executive function/working memory processes moderated intervention effects. Design A two group longitudinal randomized control trial was used. Setting and Participants and Measurements The sample consisted of community-based older adults (≥ 65 years of age) without signs of dementia or symptoms of severe depression who were self-managing prescribed medication. Following four weeks of initial adherence monitoring using a medication event monitoring system (MEMS®), individuals with 90% or less adherence were randomly assigned to groups. Intervention The prospective memory intervention was designed to provide strategies that switch older adults from relying on executive function/working memory processes (that show effects of cognitive aging) to mostly automatic associative processes (that are relatively spared with normal aging) for remembering to take one’s medications. Strategies included establishing a routine, establishing cues strongly associated with medication taking actions, performing the action immediately upon thinking about it, using a medication organizer, and imagining medication taking to enhance encoding and improve cuing. Results There was significant improvement in adherence for the intervention group (57% at baseline to 78% post intervention), but most of these gains were lost after 5 months. The control condition started at 68%, was stable during the intervention, but dropped to 62%. Executive function/working memory moderated the intervention effect, with the intervention producing greater benefit for those with lower executive function/working memory. Conclusion The intervention improved adherence, but the benefits were not sustained. Further research is

  11. Brahmi rasayana improves learning and memory in mice.

    PubMed

    Joshi, Hanumanthachar; Parle, Milind

    2006-03-01

    Cure of cognitive disorders such as amnesia, attention deficit and Alzheimer's disease is still a nightmare in the field of medicine. Nootropic agents such as piracetam, aniracetam and choline esterase inhibitors like Donepezil are being used to improve memory, mood and behavior, but the resulting side effects associated with these agents have made their use limited. The present study was undertaken to assess the potential of Brahmi rasayana (BR) as a memory enhancer. BR (100 and 200 mg kg(-1) p.o.) was administered for eight successive days to both young and aged mice. Elevated plus maze and passive-avoidance paradigm were employed to evaluate learning and memory parameters. Scopolamine (0.4 mg kg(-1) i.p.) was used to induce amnesia in mice. The effect of BR on whole brain AChE activity was also assessed. Piracetam (200 mg kg(-1) i.p.) was used as a standard nootropic agent. BR significantly improved learning and memory in young mice and reversed the amnesia induced by both scopolamine (0.4 mg kg(-1) i.p.) and natural aging. BR significantly decreased whole brain acetyl cholinesterase activity. BR might prove to be a useful memory restorative agent in the treatment of dementia seen in elderly.

  12. Improved Hall-Effect Sensors For Magnetic Memories

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.; Chen, Y. C.; Bhattacharya, Pallab K.

    1993-01-01

    High-electron-mobility sensor films deposited on superlattice buffer (strain) layers. Improved Hall-effect sensors offer combination of adequate response and high speed needed for use in micromagnet/Hall-effect random-access memories. Hall-effect material chosen for use in sensors is InAs.

  13. Endurance Factors Improve Hippocampal Neurogenesis and Spatial Memory in Mice

    ERIC Educational Resources Information Center

    Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette

    2011-01-01

    Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor [delta] agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and…

  14. Working Memory Training: Improving Intelligence--Changing Brain Activity

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,…

  15. Nardostachys jatamansi improves learning and memory in mice.

    PubMed

    Joshi, Hanumanthachar; Parle, Milind

    2006-01-01

    Cure of cognitive disorders such as amnesia, attention deficit, and Alzheimer's disease is still far from being realized in the field of medicine. Nootropic agents such as piracetam, aniracetam, and choline esterase inhibitors like donepezil are being used for improving memory, mood, and behavior, but the resulting side effects associated with these agents have made their applicability limited. In Ayurveda, the roots of Nardostachys jatamansi have been clinically employed for their anti-ischemic, antioxidant, anticonvulsant, and neuroprotective activities. The present study was undertaken to assess the potential of N. jatmansi as a memory enhancer. The elevated plus maze and the passive avoidance paradigm were employed to evaluate learning and memory parameters. Three doses (50, 100, and 200 mg/kg, p.o.) of an ethanolic extract of N. jatamansi were administered for 8 successive days to both young and aged mice. The 200 mg/kg dose of N. jatmansi ethanolic extract significantly improved learning and memory in young mice and also reversed the amnesia induced by diazepam (1 mg/kg, i.p.) and scopolamine (0.4 mg/kg, i.p.). Furthermore, it also reversed aging-induced amnesia due to natural aging of mice. As scopolamine-induced amnesia was reversed, it is possible that the memory improvement may be because of facilitation of cholinergic transmission in the brain. Hence, N. jatmansi might prove to be a useful memory restorative agent in the treatment of dementia seen in elderly persons. The underlying mechanism of action can be attributed to its antioxidant property.

  16. Does working memory training lead to generalized improvements in children with low working memory? A randomized controlled trial

    PubMed Central

    Dunning, Darren L; Holmes, Joni; Gathercole, Susan E

    2013-01-01

    Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first randomized controlled trial with low working memory children investigated whether the benefits of training extend beyond standard working memory tasks to other more complex activities typical of the classroom in which working memory plays a role, as well as to other cognitive skills and developing academic abilities. Children aged 7–9 years received either adaptive working memory training, non-adaptive working memory training with low memory loads, or no training. Adaptive training was associated with selective improvements in multiple untrained tests of working memory, with no evidence of changes in classroom analogues of activities that tax working memory, or any other cognitive assessments. Gains in verbal working memory were sustained one year after training. Thus the benefits of working memory training delivered in this way may not extend beyond structured working memory tasks. PMID:24093880

  17. Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors.

    PubMed

    Provencio, Jose Javier; Swank, Valerie; Lu, Haiyan; Brunet, Sylvain; Baltan, Selva; Khapre, Rohini V; Seerapu, Himabindu; Kokiko-Cochran, Olga N; Lamb, Bruce T; Ransohoff, Richard M

    2016-05-01

    Cognitive deficits after aneurysmal subarachnoid hemorrhage (SAH) are common and disabling. Patients who experience delayed deterioration associated with vasospasm are likely to have cognitive deficits, particularly problems with executive function, verbal and spatial memory. Here, we report neurophysiological and pathological mechanisms underlying behavioral deficits in a murine model of SAH. On tests of spatial memory, animals with SAH performed worse than sham animals in the first week and one month after SAH suggesting a prolonged injury. Between three and six days after experimental hemorrhage, mice demonstrated loss of late long-term potentiation (L-LTP) due to dysfunction of the NMDA receptor. Suppression of innate immune cell activation prevents delayed vasospasm after murine SAH. We therefore explored the role of neutrophil-mediated innate inflammation on memory deficits after SAH. Depletion of neutrophils three days after SAH mitigates tissue inflammation, reverses cerebral vasoconstriction in the middle cerebral artery, and rescues L-LTP dysfunction at day 6. Spatial memory deficits in both the short and long-term are improved and associated with a shift of NMDA receptor subunit composition toward a memory sparing phenotype. This work supports further investigating suppression of innate immunity after SAH as a target for preventative therapies in SAH.

  18. Transcranial direct current stimulation during sleep improves declarative memory.

    PubMed

    Marshall, Lisa; Mölle, Matthias; Hallschmid, Manfred; Born, Jan

    2004-11-03

    In humans, weak transcranial direct current stimulation (tDCS) modulates excitability in the motor, visual, and prefrontal cortex. Periods rich in slow-wave sleep (SWS) not only facilitate the consolidation of declarative memories, but in humans, SWS is also accompanied by a pronounced endogenous transcortical DC potential shift of negative polarity over frontocortical areas. To experimentally induce widespread extracellular negative DC potentials, we applied anodal tDCS (0.26 mA) [correction] repeatedly (over 30 min) bilaterally at frontocortical electrode sites during a retention period rich in SWS. Retention of declarative memories (word pairs) and also nondeclarative memories (mirror tracing skills) learned previously was tested after this period and compared with retention performance after placebo stimulation as well as after retention intervals of wakefulness. Compared with placebo stimulation, anodal tDCS during SWS-rich sleep distinctly increased the retention of word pairs (p < 0.005). When applied during the wake retention interval, tDCS did not affect declarative memory. Procedural memory was also not affected by tDCS. Mood was improved both after tDCS during sleep and during wake intervals. tDCS increased sleep depth toward the end of the stimulation period, whereas the average power in the faster frequency bands (,alpha, and beta) was reduced. Acutely, anodal tDCS increased slow oscillatory activity <3 Hz. We conclude that effects of tDCS involve enhanced generation of slow oscillatory EEG activity considered to facilitate processes of neuronal plasticity. Shifts in extracellular ionic concentration in frontocortical tissue (expressed as negative DC potentials during SWS) may facilitate sleep-dependent consolidation of declarative memories.

  19. No Evidence for Improved Associative Memory Performance Following Process-Based Associative Memory Training in Older Adults

    PubMed Central

    Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne

    2017-01-01

    Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults (Mage = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults. PMID:28119597

  20. Controlled architecture for improved macromolecular memory within polymer networks.

    PubMed

    DiPasquale, Stephen A; Byrne, Mark E

    2016-08-01

    This brief review analyzes recent developments in the field of living/controlled polymerization and the potential of this technique for creating imprinted polymers with highly structured architecture with macromolecular memory. As a result, it is possible to engineer polymers at the molecular level with increased homogeneity relating to enhanced template binding and transport. Only recently has living/controlled polymerization been exploited to decrease heterogeneity and substantially improve the efficiency of the imprinting process for both highly and weakly crosslinked imprinted polymers. Living polymerization can be utilized to create imprinted networks that are vastly more efficient than similar polymers produced using conventional free radical polymerization, and these improvements increase the role that macromolecular memory can play in the design and engineering of new drug delivery and sensing platforms.

  1. Some Improvements in Utilization of Flash Memory Devices

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    Two developments improve the utilization of flash memory devices in the face of the following limitations: (1) a flash write element (page) differs in size from a flash erase element (block), (2) a block must be erased before its is rewritten, (3) lifetime of a flash memory is typically limited to about 1,000,000 erases, (4) as many as 2 percent of the blocks of a given device may fail before the expected end of its life, and (5) to ensure reliability of reading and writing, power must not be interrupted during minimum specified reading and writing times. The first development comprises interrelated software components that regulate reading, writing, and erasure operations to minimize migration of data and unevenness in wear; perform erasures during idle times; quickly make erased blocks available for writing; detect and report failed blocks; maintain the overall state of a flash memory to satisfy real-time performance requirements; and detect and initialize a new flash memory device. The second development is a combination of hardware and software that senses the failure of a main power supply and draws power from a capacitive storage circuit designed to hold enough energy to sustain operation until reading or writing is completed.

  2. Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory.

    PubMed

    Parihar, V K; Hattiangady, B; Kuruba, R; Shuai, B; Shetty, A K

    2011-02-01

    Maintenance of neurogenesis in adult hippocampus is important for functions such as mood and memory. As exposure to unpredictable chronic stress (UCS) results in decreased hippocampal neurogenesis, enhanced depressive- and anxiety-like behaviors, and memory dysfunction, it is believed that declined hippocampal neurogenesis mainly underlies the behavioral and cognitive abnormalities after UCS. However, the effects of predictable chronic mild stress (PCMS) such as the routine stress experienced in day-to-day life on functions such as mood, memory and hippocampal neurogenesis are unknown. Using FST and EPM tests on a prototype of adult rats, we demonstrate that PCMS (comprising 5 min of daily restraint stress for 28 days) decreases depressive- and anxiety-like behaviors for prolonged periods. Moreover, we illustrate that decreased depression and anxiety scores after PCMS are associated with ~1.8-fold increase in the production and growth of new neurons in the hippocampus. Additionally, we found that PCMS leads to enhanced memory function in WMT as well as NORT. Collectively, these findings reveal that PCMS is beneficial to adult brain function, which is exemplified by increased hippocampal neurogenesis and improved mood and cognitive function.

  3. Improving digit span assessment of short-term verbal memory.

    PubMed

    Woods, David L; Kishiyamaa, Mark M; Lund, E William; Herron, Timothy J; Edwards, Ben; Poliva, Oren; Hink, Robert F; Reed, Bruce

    2011-01-01

    We measured digit span (DS) in two experiments that used computerized presentation of randomized auditory digits with performance-adapted list length adjustment. A new mean span (MS) metric of DS was developed that showed reduced variance, improved test-retest reliability, and higher correlations with the results of other neuropsychological test results when compared to traditional DS measures. The MS metric also enhanced the sensitivity of forward versus backward span comparisons, enabled the development of normative performance criteria with subdigit precision, and elucidated changes in DS performance with age and education level. Computerized stimulus delivery and improved scoring metrics significantly enhance the precision of DS assessments of short-term verbal memory.

  4. Acute exercise improves motor memory: exploring potential biomarkers.

    PubMed

    Skriver, Kasper; Roig, Marc; Lundbye-Jensen, Jesper; Pingel, Jessica; Helge, Jørn Wulff; Kiens, Bente; Nielsen, Jens Bo

    2014-12-01

    We have recently shown that a single bout of acute cardiovascular exercise improves motor skill learning through an optimization of long-term motor memory. Here we expand this previous finding, to explore potential exercise-related biomarkers and their association with measures of motor memory and skill acquisition. Thirty-two healthy young male subjects were randomly allocated into either an exercise or control group. Following either an intense bout of cycling or rest subjects practiced a visuomotor tracking task. Motor skill acquisition was assessed during practice and retention 1 h, 24 h and 7 days after practice. Plasma levels of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1), epinephrine, norepinephrine, dopamine and lactate were analyzed at baseline, immediately after exercise or rest and during motor practice. The exercise group showed significantly better skill retention 24h and 7 days after acquisition. The concentration of all blood compounds increased significantly immediately after exercise and remained significantly elevated for 15 min following exercise except for BDNF and VEGF. Higher concentrations of norepinephrine and lactate immediately after exercise were associated with better acquisition. Higher concentrations of BDNF correlated with better retention 1 h and 7 days after practice. Similarly, higher concentrations of norepinephrine were associated with better retention 7 days after practice whereas lactate correlated with better retention 1h as well as 24 h and 7 days after practice. Thus, improvements in motor skill acquisition and retention induced by acute cardiovascular exercise are associated with increased concentrations of biomarkers involved in memory and learning processes. More mechanistic studies are required to elucidate the specific role of each biomarker in the formation of motor memory.

  5. Improving memory following prefrontal cortex damage with the PQRST method

    PubMed Central

    Ciaramelli, Elisa; Neri, Francesco; Marini, Luca; Braghittoni, Davide

    2015-01-01

    We tested (1) whether the PQRST method, involving Preview (P), Question (Q), Read (R), State (S), and Test (T) phases, is effective in enhancing long-term memory in patients with mild memory problems due to prefrontal cortex lesions, and (2) whether patients also benefit from a more self-initiated version of the PQRST. Seven patients with prefrontal lesions encoded new texts under three different conditions: the Standard condition, requiring to read texts repeatedly, the PQRST-Other condition, in which the experimenter formulated questions about the text (Q phase), and the PQRST-Self condition, in which patients formulated the relevant questions on their own. Compared to the Standard condition, both the PQRST-Other and the PQRST-Self condition resulted in higher immediate and delayed recall rates, as well as a higher ability to answer questions about the texts. Importantly, the two PQRST conditions did not differ in efficacy. These results confirm that the PQRST method is effective in improving learning of new material in brain-injured populations with mild memory problems. Moreover, they indicate that the PQRST proves effective even under conditions with higher demands on patients’ autonomy and self-initiation, which encourages its application to real-life situations. PMID:26321932

  6. Working Memory Training Does Not Improve Intelligence in Healthy Young Adults

    ERIC Educational Resources Information Center

    Chooi, Weng-Tink; Thompson, Lee A.

    2012-01-01

    Jaeggi and her colleagues claimed that they were able to improve fluid intelligence by training working memory. Subjects who trained their working memory on a dual n-back task for a period of time showed significant improvements in working memory span tasks and fluid intelligence tests such as the Raven's Progressive Matrices and the Bochumer…

  7. Improving Memory Span in Children with Down Syndrome

    ERIC Educational Resources Information Center

    Conners, F. A.; Rosenquist, C. J.; Arnett, L.; Moore, M. S.; Hume, L. E.

    2008-01-01

    Background: Down syndrome (DS) is characterized by impaired memory span, particularly auditory verbal memory span. Memory span is linked developmentally to several language capabilities, and may be a basic capacity that enables language learning. If children with DS had better memory span, they might benefit more from language intervention. The…

  8. Tocotrienol improves learning and memory deficit of aged rats

    PubMed Central

    Kaneai, Nozomi; Sumitani, Kazumi; Fukui, Koji; Koike, Taisuke; Takatsu, Hirokatsu; Urano, Shiro

    2016-01-01

    To define whether tocotrienol (T-3) improves cognitive deficit during aging, effect of T-3 on learning and memory functions of aged rats was assessed. It was found that T-3 markedly counteracts the decline in learning and memory function in aged rats. Quantitative analysis of T-3 content in the rat brain showed that the aged rats fed T-3 mixture-supplemented diet revealed the transport of α- and γ-T-3 to the brain. In contrast, normal young rats fed the same diet did not exhibit brain localization. Furthermore, the T-3 inhibited age-related decreases in the expression of certain blood brain barrier (BBB) proteins, including caludin-5, occludin and junctional adhesion molecule (JAM). It was found that the activation of the cellular proto-oncogene c-Src and extracellular signal-regulated protein kinase (ERK), in the mitogen-activated protein kinase (MAPK) cell signaling pathway for neuronal cell death, was markedly inhibited by T-3. These results may reveal that aging induces partial BBB disruption caused by oxidative stress, thereby enabling the transport of T-3 through the BBB to the central nervous system, whereupon neuronal protection may be mediated by inhibition of c-Src and/or ERK activation, resulting in an improvement in age-related cognitive deficits. PMID:27013777

  9. A Short Executive Function Training Program Improves Preschoolers' Working Memory.

    PubMed

    Blakey, Emma; Carroll, Daniel J

    2015-01-01

    Cognitive training has been shown to improve executive functions (EFs) in middle childhood and adulthood. However, fewer studies have targeted the preschool years-a time when EFs undergo rapid development. The present study tested the effects of a short four session EF training program in 54 four-year-olds. The training group significantly improved their working memory from pre-training relative to an active control group. Notably, this effect extended to a task sharing few surface features with the trained tasks, and continued to be apparent 3 months later. In addition, the benefits of training extended to a measure of mathematical reasoning 3 months later, indicating that training EFs during the preschool years has the potential to convey benefits that are both long-lasting and wide-ranging.

  10. Refreshing memory traces: thinking of an item improves retrieval from visual working memory.

    PubMed

    Souza, Alessandra S; Rerko, Laura; Oberauer, Klaus

    2015-03-01

    This article provides evidence that refreshing, a hypothetical attention-based process operating in working memory (WM), improves the accessibility of visual representations for recall. "Thinking of", one of several concurrently active representations, is assumed to refresh its trace in WM, protecting the representation from being forgotten. The link between refreshing and WM performance, however, has only been tenuously supported by empirical evidence. Here, we controlled which and how often individual items were refreshed in a color reconstruction task by presenting cues prompting participants to think of specific WM items during the retention interval. We show that the frequency with which an item is refreshed improves recall of this item from visual WM. Our study establishes a role of refreshing in recall from visual WM and provides a new method for studying the impact of refreshing on the amount of information we can keep accessible for ongoing cognition.

  11. Chlorella sorokiniana Extract Improves Short-Term Memory in Rats.

    PubMed

    Morgese, Maria Grazia; Mhillaj, Emanuela; Francavilla, Matteo; Bove, Maria; Morgano, Lucia; Tucci, Paolo; Trabace, Luigia; Schiavone, Stefania

    2016-09-29

    Increasing evidence shows that eukaryotic microalgae and, in particular, the green microalga Chlorella, can be used as natural sources to obtain a whole variety of compounds, such as omega (ω)-3 and ω-6 polyunsatured fatty acids (PUFAs). Although either beneficial or toxic effects of Chlorella sorokiniana have been mainly attributed to its specific ω-3 and ω-6 PUFAs content, the underlying molecular pathways remain to be elucidated yet. Here, we investigate the effects of an acute oral administration of a lipid extract of Chlorella sorokiniana, containing mainly ω-3 and ω-6 PUFAs, on cognitive, emotional and social behaviour in rats, analysing possible underlying neurochemical alterations. Our results showed improved short-term memory in Chlorella sorokiniana-treated rats compared to controls, without any differences in exploratory performance, locomotor activity, anxiety profile and depressive-like behaviour. On the other hand, while the social behaviour of Chlorella sorokiniana-treated animals was significantly decreased, no effects on aggressivity were observed. Neurochemical investigations showed region-specific effects, consisting in an elevation of noradrenaline (NA) and serotonin (5-HT) content in hippocampus, but not in the prefrontal cortex and striatum. In conclusion, our results point towards a beneficial effect of Chlorella sorokiniana extract on short-term memory, but also highlight the need of caution in the use of this natural supplement due to its possible masked toxic effects.

  12. Do intensive studies of a foreign language improve associative memory performance?

    PubMed

    Mårtensson, Johan; Lövdén, Martin

    2011-01-01

    Formal education has been proposed to shape life-long cognitive development. Studies reporting that gains from cognitive training transfer to untrained tasks suggest direct effects of mental activity on cognitive processing efficiency. However, associative memory practice has not been known to produce transfer effects, which is odd considering that the key neural substrate of associative memory, the hippocampus, is known to be particularly plastic. We investigated whether extremely intensive studies of a foreign language, entailing demands on associative memory, cause improvements in associative memory performance. In a pretest-training-post-test design, military conscript interpreters and undergraduate students were measured on a battery of cognitive tasks. We found transfer from language studies to a face-name associative-memory task, but not to measures of working memory, strategy-sensitive episodic memory, or fluid intelligence. These findings provide initial evidence suggesting that associative memory performance can be improved in early adulthood, and that formal education can have such effects.

  13. Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role.

    PubMed

    Perez-Garcia, G; Meneses, A

    2008-12-16

    Traditionally, the search for memory circuits has been focused on examinations of amnesic and AD patients, cerebral lesions and neuroimaging. A complementary alternative has become the use of autoradiography with radioligands, aiming to identify neurobiological markers associated with memory formation, amnesia states and (more recently) recovery from memory deficits. Indeed, ex vivo autoradiographic studies offer the advantage of detecting functionally active receptors altered by pharmacological tools during memory formation, amnesia states and memory recovery. Moreover, serotonin (5-hydroxytryptamine, 5-HT) systems have become a pharmacological and genetic target in the treatment of memory disorders. Herein evidence from studies involving expression of 5-HT(1A), 5-HT(2A), 5-HT(4), and 5-HT(6) receptors in memory formation, amnesia conditions (e.g., pharmacological models or aging) and recovery of memory is reviewed. Thus, specific 5-HT receptors were expressed in trained animals relative to untrained in brain areas such as cortex, hippocampus and amygdala. However, relative to the control group, rats showing amnesia or recovered memory, showed in the hippocampus, region where explicit memory is formed, a complex pattern of 5-HT receptor expression. An intermediate expression occurred in amygdala, septum and some cortical areas in charge of explicit memory storage. Even in brain areas thought to be in charge of procedural memory such as basal ganglia, animals showing recovered memory displayed an intermediate expression, while amnesic groups, depending on the pharmacological amnesia model, showed up- or down-regulation. In conclusion, evidence indicates that autoradiography, by using specific radioligands, offers excellent opportunities to map dynamic changes in brain areas engaged in these cognitive processes. The 5-HT modulatory role strengthens or suppresses memory is critically depend on the timing of the memory formation.

  14. Longitudinal Neurostimulation in Older Adults Improves Working Memory

    PubMed Central

    Jones, Kevin T.; Stephens, Jaclyn A.; Alam, Mahtab; Bikson, Marom; Berryhill, Marian E.

    2015-01-01

    An increasing concern affecting a growing aging population is working memory (WM) decline. Consequently, there is great interest in improving or stabilizing WM, which drives expanded use of brain training exercises. Such regimens generally result in temporary WM benefits to the trained tasks but minimal transfer of benefit to untrained tasks. Pairing training with neurostimulation may stabilize or improve WM performance by enhancing plasticity and strengthening WM-related cortical networks. We tested this possibility in healthy older adults. Participants received 10 sessions of sham (control) or active (anodal, 1.5 mA) tDCS to the right prefrontal, parietal, or prefrontal/parietal (alternating) cortices. After ten minutes of sham or active tDCS, participants performed verbal and visual WM training tasks. On the first, tenth, and follow-up sessions, participants performed transfer WM tasks including the spatial 2-back, Stroop, and digit span tasks. The results demonstrated that all groups benefited from WM training, as expected. However, at follow-up 1-month after training ended, only the participants in the active tDCS groups maintained significant improvement. Importantly, this pattern was observed for both trained and transfer tasks. These results demonstrate that tDCS-linked WM training can provide long-term benefits in maintaining cognitive training benefits and extending them to untrained tasks. PMID:25849358

  15. Reward improves long-term retention of a motor memory through induction of offline memory gains

    PubMed Central

    Abe, Mitsunari; Schambra, Heidi; Wassermann, Eric M; Luckenbaugh, Dave; Schweighofer, Nicolas; Cohen, Leonardo G

    2011-01-01

    Summary In humans, training in which good performance is rewarded or bad performance punished results in transient behavioral improvements [1–3]. Their relative effects on consolidation and long-term retention, critical behavioral stages for successful learning [4, 5], are not known. Here, we investigated the effects of reward and punishment on these different stages of human motor skill learning. We studied healthy subjects who trained on a motor task under rewarded, punished, or neutral control conditions. Performance was tested before, and immediately, 6 hs, 24 hs and 30 days after training in the absence of reward or punishment. Performance improvements immediately after training were comparable in the three groups. At 6 hs, the rewarded group maintained performance gains while the other two groups experienced significant forgetting. At 24 hs, the reward group showed significant offline (posttraining) improvements while the other two groups did not. At 30 days, the rewarded group retained the gains identified at 24 hs, while the other two groups experienced significant forgetting. We conclude that training under rewarded conditions is more effective than training under punished or neutral conditions in eliciting lasting motor learning, an advantage driven by offline memory gains that persist over time. PMID:21419628

  16. Memory

    MedlinePlus

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  17. Analysis of memory use for improved design and compile-time allocation of local memory

    NASA Technical Reports Server (NTRS)

    Mcniven, Geoffrey D.; Davidson, Edward S.

    1986-01-01

    Trace analysis techniques are used to study memory referencing behavior for the purpose of designing local memories and determining how to allocate them for data and instructions. In an attempt to assess the inherent behavior of the source code, the trace analysis system described here reduced the effects of the compiler and host architecture on the trace by using a technical called flattening. The variables in the trace, their associated single-assignment values, and references are histogrammed on the basis of various parameters describing memory referencing behavior. Bounds are developed specifying the amount of memory space required to store all live values in a particular histogram class. The reduction achieved in main memory traffic by allocating local memory is specified for each class.

  18. Methionine increases BDNF DNA methylation and improves memory in epilepsy

    PubMed Central

    Parrish, R Ryley; Buckingham, Susan C; Mascia, Katherine L; Johnson, Jarvis J; Matyjasik, Michal M; Lockhart, Roxanne M; Lubin, Farah D

    2015-01-01

    Objective Temporal lobe epilepsy (TLE) patients exhibit signs of memory impairments even when seizures are pharmacologically controlled. Surprisingly, the underlying molecular mechanisms involved in TLE-associated memory impairments remain elusive. Memory consolidation requires epigenetic transcriptional regulation of genes in the hippocampus; therefore, we aimed to determine how epigenetic DNA methylation mechanisms affect learning-induced transcription of memory-permissive genes in the epileptic hippocampus. Methods Using the kainate rodent model of TLE and focusing on the brain-derived neurotrophic factor (Bdnf) gene as a candidate of DNA methylation-mediated transcription, we analyzed DNA methylation levels in epileptic rats following learning. After detection of aberrant DNA methylation at the Bdnf gene, we investigated functional effects of altered DNA methylation on hippocampus-dependent memory formation in our TLE rodent model. Results We found that behaviorally driven BdnfDNA methylation was associated with hippocampus-dependent memory deficits. Bisulfite sequencing revealed that decreased BdnfDNA methylation levels strongly correlated with abnormally high levels of BdnfmRNA in the epileptic hippocampus during memory consolidation. Methyl supplementation via methionine (Met) increased BdnfDNA methylation and reduced BdnfmRNA levels in the epileptic hippocampus during memory consolidation. Met administration reduced interictal spike activity, increased theta rhythm power, and reversed memory deficits in epileptic animals. The rescue effect of Met treatment on learning-induced BdnfDNA methylation, Bdnf gene expression, and hippocampus-dependent memory, were attenuated by DNA methyltransferase blockade. Interpretation Our findings suggest that manipulation of DNA methylation in the epileptic hippocampus should be considered as a viable treatment option to ameliorate memory impairments associated with TLE. PMID:25909085

  19. Improved memory word line configuration allows high storage density

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Plated wire memory word drive line allows high storage density, good plated wire transmission and a simplified memory plane configuration. A half-turn word drive line with a magnetic keeper is used. The ground plane provides the return path for both the word current and the plated wire transmission line.

  20. Do Computerised Training Programmes Designed to Improve Working Memory Work?

    ERIC Educational Resources Information Center

    Apter, Brian J. B.

    2012-01-01

    A critical review of working memory training research during the last 10 years is provided. Particular attention is given to research that has attempted to investigate the efficacy of commercially marketed computerised training programmes such as "Cogmed" and "Jungle Memory". Claimed benefits are questioned on the basis that research methodologies…

  1. Memory.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Discusses current research (including that involving amnesiacs and snails) into the nature of the memory process, differentiating between and providing examples of "fact" memory and "skill" memory. Suggests that three brain parts (thalamus, fornix, mammilary body) are involved in the memory process. (JN)

  2. Do transactive memory and participative teamwork improve nurses' quality of work life?

    PubMed

    Brunault, Paul; Fouquereau, Evelyne; Colombat, Philippe; Gillet, Nicolas; El-Hage, Wissam; Camus, Vincent; Gaillard, Philippe

    2014-03-01

    Improvement in nurses' quality of work life (QWL) has become a major issue in health care organizations. We hypothesized that the level of transactive memory (defined as the way groups collectively encode, store, and retrieve knowledge) and participative teamwork (an organizational model of care based on vocational training, a specific service's care project, and regular interdisciplinary staffing) positively affect nurses' QWL. This cross-sectional study enrolled 84 ward-based psychiatric nurses. We assessed transactive memory, participative teamwork, perceived organizational justice, perceived organizational support, and QWL using psychometrically reliable and valid scales. Participative teamwork and transactive memory were positively associated with nurses' QWL. Perceived organizational support and organizational justice fully mediated the relationship between participative teamwork and QWL, but not between transactive memory and QWL. Improved transactive memory could directly improve nurses' QWL. Improved participative teamwork could improve nurses' QWL through better perceived organizational support and perceived organizational justice.

  3. The Senior WISE study: Improving everyday memory in older adults

    PubMed Central

    McDougall, Graham J.; Becker, Heather; Pituch, Keenan; Acee, Taylor W.; Vaughan, Phillip W.; Delville, Carol L.

    2009-01-01

    We tested whether at-risk older adults receiving memory training showed better memory self-efficacy, metamemory, memory performance, and function in instrumental activities of daily living than participants receiving a health promotion training comparison condition. We followed participants for 26 months. The sample was mostly female (79%) and Caucasian (71%), with 17% Hispanics, and 12% African Americans; average age was 75 years and average education was 13 years. The memory training group made greater gains on global cognition and had fewer memory complaints, but both groups generally maintained their performance on the other cognitive measures and IADLs throughout the 24-month study period. Black and Hispanic participants made greater gains than Whites did on some memory performance measures but not on memory self-efficacy. The unexpected finding that minority elders made the largest gains merits further study. This study contributed to the knowledge base of geropsychiatric nursing by providing evidence for an effective psychosocial intervention that could be delivered by advanced practice nurses. Trial Registration ClinicalTrials.gov NCT00094731 PMID:20851321

  4. Working memory training to improve speech perception in noise across languages.

    PubMed

    Ingvalson, Erin M; Dhar, Sumitrajit; Wong, Patrick C M; Liu, Hanjun

    2015-06-01

    Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners.

  5. Working memory training to improve speech perception in noise across languages

    PubMed Central

    Ingvalson, Erin M.; Dhar, Sumitrajit; Wong, Patrick C. M.; Liu, Hanjun

    2015-01-01

    Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners. PMID:26093435

  6. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings.

    PubMed

    Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F

    2014-01-01

    Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients.

  7. Modafinil administration improves working memory in methamphetamine-dependent individuals who demonstrate baseline impairment.

    PubMed

    Kalechstein, Ari D; De La Garza, Richard; Newton, Thomas F

    2010-01-01

    Modafinil improves working memory in healthy subjects and individuals diagnosed with schizophrenia and Attention Deficit/Hyperactivity Disorder, though the effects of modafinil have not been evaluated on working memory in methamphetamine-dependent subjects. This double-blind, placebo-controlled study evaluated whether a daily dose of 400 mg of modafinil, administered over three consecutive days, would enhance performance on a measure of working memory relative to test performance at baseline and following 3 days of placebo administration in 11 methamphetamine addicted, nontreatment-seeking volunteers. The results revealed that participants demonstrating relatively poor performance on the third day of a 3-day washout period (ie, at baseline), showed significant improvement on measures of working memory, but not on measures of episodic memory or information processing speed. In contrast, for participants demonstrating relatively high performance at baseline, modafinil administration did not affect test scores. The findings provide an initial indication that modafinil can reverse methamphetamine-associated impairments in working memory.

  8. Neural conflict-control mechanisms improve memory for target stimuli.

    PubMed

    Krebs, Ruth M; Boehler, Carsten N; De Belder, Maya; Egner, Tobias

    2015-03-01

    According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory.

  9. 10 Hz flicker improves recognition memory in older people

    PubMed Central

    Williams, Jonathan; Ramaswamy, Deepa; Oulhaj, Abderrahim

    2006-01-01

    Background 10 Hz electroencephalographic (EEG) alpha rhythms correlate with memory performance. Alpha and memory decline in older people. We wished to test if alpha-like EEG activity contributes to memory formation. Flicker can elicit alpha-like EEG activity. We tested if alpha-frequency flicker enhances memory in older people. Pariticpants aged 67–92 identified short words that followed 1 s of flicker at 9.0 Hz, 9.5 Hz, 10.0 Hz, 10.2 Hz, 10.5 Hz, 11.0 Hz, 11.5 Hz or 500 Hz. A few minutes later, we tested participants' recognition of the words (without flicker). Results Flicker frequencies close to 10 Hz (9.5–11.0 Hz) facilitated the identification of the test words in older participants. The same flicker frequencies increased recognition of the words more than other frequencies (9.0 Hz, 11.5 Hz and 500 Hz), irrespective of age. Conclusion The frequency-specificity of flicker's effects in our participants paralleled the power spectrum of EEG alpha in the general population. This indicates that alpha-like EEG activity may subserve memory processes. Flicker may be able to help memory problems in older people. PMID:16515710

  10. An improved car-following model considering headway changes with memory

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Shi, Zhongke

    2015-03-01

    To describe car-following behaviors in complex situations better, increase roadway traffic mobility and minimize cars' fuel consumptions, the linkage between headway changes with memory and car-following behaviors was explored with the field car-following data by using the gray correlation analysis method, and then an improved car-following model considering headway changes with memory on a single lane was proposed based on the full velocity difference model. Some numerical simulations were carried out by employing the improved car-following model to explore how headway changes with memory affected each car's velocity, acceleration, headway and fuel consumptions. The research results show that headway changes with memory have significant effects on car-following behaviors and fuel consumptions and that considering headway changes with memory in designing the adaptive cruise control strategy can improve the traffic flow stability and minimize cars' fuel consumptions.

  11. When Kids Act Out: A Comparison of Embodied Methods to Improve Children's Memory for a Story

    ERIC Educational Resources Information Center

    Berenhaus, Molly; Oakhill, Jane; Rusted, Jennifer

    2015-01-01

    Over the last decade, embodied cognition, the idea that sensorimotor processes facilitate higher cognitive processes, has proven useful for improving children's memory for a story. In order to compare the benefits of two embodiment techniques, active experiencing (AE) and indexing, for children's memory for a story, we compared the immediate…

  12. Utilizing Computerized Cognitive Training to Improve Working Memory and Encoding: Piloting a School-Based Intervention

    ERIC Educational Resources Information Center

    Wiest, Dudley J.; Wong, Eugene H.; Minero, Laura P.; Pumaccahua, Tessy T.

    2014-01-01

    Working memory has been well documented as a significant predictor of academic outcomes (e.g., reading and math achievement as well as general life outcomes). The purpose of this study was to investigate the effectiveness of computerized cognitive training to improve both working memory and encoding abilities in a school setting. Thirty students…

  13. Improvement in Working Memory Is Not Related to Increased Intelligence Scores

    ERIC Educational Resources Information Center

    Colom, Roberto; Quiroga, Ma. Angeles; Shih, Pei Chun; Martinez, Kenia; Burgaleta, Miguel; Martinez-Molina, Agustin; Roman, Francisco J.; Requena, Laura; Ramirez, Isabel

    2010-01-01

    The acknowledged high relationship between working memory and intelligence suggests common underlying cognitive mechanisms and, perhaps, shared biological substrates. If this is the case, improvement in working memory by repeated exposure to challenging span tasks might be reflected in increased intelligence scores. Here we report a study in which…

  14. Electrophysiological Correlates of Improved Short-Term Memory for Emotional Faces

    ERIC Educational Resources Information Center

    Langeslag, Sandra J. E.; Morgan, Helen M.; Jackson, Margaret C.; Linden, David E. J.; Van Strien, Jan W.

    2009-01-01

    Long-term memory (LTM) is enhanced for emotional information, but the influence of stimulus emotionality on short-term memory (STM) is less clear. We examined the electrophysiological correlates of improved visual STM for emotional face identity, focusing on the P1, N170, P3b and N250r event-related potential (ERP) components. These correlates are…

  15. Improved uncertainty relation in the presence of quantum memory

    NASA Astrophysics Data System (ADS)

    Xiao, Yunlong; Jing, Naihuan; Fei, Shao-Ming; Li-Jost, Xianqing

    2016-12-01

    Berta et al’s uncertainty principle in the presence of quantum memory (Berta et al 2010 Nat. Phys. 6 659) reveals uncertainties with quantum side information between the observables. In the recent important work of Coles and Piani (2014 Phys. Rev. A 89 022112), the entropic sum is controlled by the first and second maximum overlaps between the two projective measurements. We generalize the entropic uncertainty relation in the presence of quantum memory and find the exact dependence on all d largest overlaps between two measurements on any d-dimensional Hilbert space. Our bound is rigorously shown to be strictly tighter than previous entropic bounds in the presence of quantum memory, which have potential applications to quantum cryptography with entanglement witnesses and quantum key distributions.

  16. Improved memory loading techniques for the TSRV display system

    NASA Technical Reports Server (NTRS)

    Easley, W. C.; Lynn, W. A.; Mcluer, D. G.

    1986-01-01

    A recent upgrade of the TSRV research flight system at NASA Langley Research Center retained the original monochrome display system. However, the display memory loading equipment was replaced requiring design and development of new methods of performing this task. This paper describes the new techniques developed to load memory in the display system. An outdated paper tape method for loading the BOOTSTRAP control program was replaced by EPROM storage of the characters contained on the tape. Rather than move a tape past an optical reader, a counter was implemented which steps sequentially through EPROM addresses and presents the same data to the loader circuitry. A cumbersome cassette tape method for loading the applications software was replaced with a floppy disk method using a microprocessor terminal installed as part of the upgrade. The cassette memory image was transferred to disk and a specific software loader was written for the terminal which duplicates the function of the cassette loader.

  17. Tart cherries improve working memory in aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aged rats show impaired performance on cognitive tasks that require the use of spatial learning and memory. In previous studies, we have shown the beneficial effects of various dark-colored berry fruits (blueberries, strawberries, and blackberries) in reversing age-related deficits in behavioral and...

  18. Memory and Language Improvements Following Cognitive Control Training

    ERIC Educational Resources Information Center

    Hussey, Erika K.; Harbison, J. Isaiah; Teubner-Rhodes, Susan E.; Mishler, Alan; Velnoskey, Kayla; Novick, Jared M.

    2017-01-01

    Cognitive control refers to adjusting thoughts and actions when confronted with conflict during information processing. We tested whether this ability is causally linked to performance on certain language and memory tasks by using cognitive control training to systematically modulate people's ability to resolve information-conflict across domains.…

  19. Improving the Patron Experience: Sterling Memorial Library's Single Service Point

    ERIC Educational Resources Information Center

    Sider, Laura Galas

    2016-01-01

    This article describes the planning process and implementation of a single service point at Yale University's Sterling Memorial Library. While much recent scholarship on single service points (SSPs) has focused on the virtues or hazards of eliminating reference desks in libraries nationwide, this essay explores the ways in which single service…

  20. Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers

    NASA Astrophysics Data System (ADS)

    Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2016-09-01

    A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.

  1. Spermidine improves the persistence of reconsolidated fear memory and neural differentiation in vitro: Involvement of BDNF.

    PubMed

    Signor, Cristiane; Girardi, Bruna Amanda; Lorena Wendel, Arithane; Frühauf, Pâmella Karina Santana; Pillat, Micheli M; Ulrich, Henning; Mello, Carlos F; Rubin, Maribel A

    2017-04-01

    Putrescine, spermidine and spermine are organic cations implicated in learning, memory consolidation, reconsolidation and neurogenesis. These physiological processes are closely related, and convincing evidence indicates that neurogenesis is implicated both, in the establishment and maintenance of remote contextual fear memory. Although brain-derived neurotrophic factor (BDNF) is a key mediator involved in both neurogenesis and memory consolidation, effects of spermidine on persistence of memory after reactivation (reconsolidation) and possible involvement of BDNF have not been investigated. Here, we investigated whether the intrahippocampal infusion of spermidine improves the persistence of reconsolidated contextual fear conditioning memory in rats and whether these possible changes depend on BDNF/TrkB signaling in the hippocampus. The infusion of spermidine immediately and 12h post-reactivation improved fear memory of the animals tested seven but not two days after reactivation. The facilitatory effect of spermidine on the persistence of reconsolidated memory was blocked by the TrkB inhibitor ANA-12 (73.6pmol/site) and accompanied by mature BDNF level increase in the hippocampus, indicating that it depends on the BDNF/TrkB pathway. We also investigated whether spermidine alters BDNF levels and neural progenitor cell differentiation in vitro. Spermidine increased BDNF levels in vitro, facilitating neuritogenesis and neural migration. Spermidine-induced neuritogenesis in vitro was also blocked by ANA-12 (10µM). Since spermidine increases BDNF levels and facilitates neural differentiation in vitro, similar mechanisms may be involved in spermidine-induced facilitation of the persistence of reconsolidated memory.

  2. Cognitive training to improve memory in individuals undergoing electroconvulsive therapy: Negative findings.

    PubMed

    Choi, Jimmy; Wang, Yuanjia; Feng, Tianshu; Prudic, Joan

    2017-03-24

    Although electroconvulsive therapy (ECT) remains the most effective treatment for severe depression, some patients report persistent memory problems following ECT that impact their quality of life and their willingness to consent to further ECT. While cognitive training has been shown to improve memory performance in various conditions, this approach has never been applied to help patients regain their memory after ECT. In a double-blind study, we tested the efficacy of a new cognitive training program called Memory Training for ECT (Mem-ECT), specifically designed to target anterograde and retrograde memory that can be compromised following ECT. Fifty-nine patients with treatment-resistant depression scheduled to undergo ultra-brief right unilateral ECT were randomly assigned to either: (a) Mem-ECT, (b) active control comprised of nonspecific mental stimulation, or (c) treatment as usual. Participants were evaluated within one week prior to the start of ECT and then again within 2 weeks following the last ECT session. All three groups improved in global function, quality of life, depression, and self-reported memory abilities without significant group differences. While there was a decline in verbal delayed recall and mental status, there was no decline in general retrograde memory or autobiographical memory in any of the groups, with no significant memory or clinical benefit for the Mem-ECT or active control conditions compared to treatment as usual. While we report negative findings, these results continue to promote the much needed discussion on developing effective strategies to minimize the adverse memory side effects of ECT, in hopes it will make ECT a better and more easily tolerated treatment for patients with severe depression who need this therapeutic option.

  3. Weight and see: loading working memory improves incidental identification of irrelevant faces.

    PubMed

    Carmel, David; Fairnie, Jake; Lavie, Nilli

    2012-01-01

    Are task-irrelevant stimuli processed to a level enabling individual identification? This question is central both for perceptual processing models and for applied settings (e.g., eye-witness testimony). Lavie's load theory proposes that working memory actively maintains attentional prioritization of relevant over irrelevant information. Loading working memory thus impairs attentional prioritization, leading to increased processing of task-irrelevant stimuli. Previous research has shown that increased working memory load leads to greater interference effects from response-competing distractors. Here we test the novel prediction that increased processing of irrelevant stimuli under high working memory load should lead to a greater likelihood of incidental identification of entirely irrelevant stimuli. To test this, we asked participants to perform a word-categorization task while ignoring task-irrelevant images. The categorization task was performed during the retention interval of a working memory task with either low or high load (defined by memory set size). Following the final experimental trial, a surprise question assessed incidental identification of the irrelevant image. Loading working memory was found to improve identification of task-irrelevant faces, but not of building stimuli (shown in a separate experiment to be less distracting). These findings suggest that working memory plays a critical role in determining whether distracting stimuli will be subsequently identified.

  4. Effects of working memory and reading acceleration training on improving working memory abilities and reading skills among third graders.

    PubMed

    Nevo, Einat; Breznitz, Zvia

    2014-01-01

    Working memory (WM) plays a crucial role in supporting learning, including reading. This study investigated the influence of reading acceleration and WM training programs on improving reading skills and WM abilities. Ninety-seven children in third grade were divided into three study groups and one control group. The three study groups each received a different combination of two training programs: only reading acceleration, WM followed by reading acceleration, and reading acceleration followed by WM. All training programs significantly improved reading skills and WM abilities. Compared with the control group, the group trained with only the reading acceleration program improved word accuracy, whereas the groups trained with a combination of reading and WM programs improved word and pseudo-word fluency. The reading-acceleration-alone group and the WM-program-followed-by-reading-acceleration group improved phonological complex memory. We conclude that a training program that combines a long reading acceleration program and a short WM program is the most effective for improving the abilities most related to scholastic achievement.

  5. Improving Memory Subsystem Performance Using ViVA: Virtual Vector Architecture

    SciTech Connect

    Gebis, Joseph; Oliker, Leonid; Shalf, John; Williams, Samuel; Yelick, Katherine

    2009-01-12

    The disparity between microprocessor clock frequencies and memory latency is a primary reason why many demanding applications run well below peak achievable performance. Software controlled scratchpad memories, such as the Cell local store, attempt to ameliorate this discrepancy by enabling precise control over memory movement; however, scratchpad technology confronts the programmer and compiler with an unfamiliar and difficult programming model. In this work, we present the Virtual Vector Architecture (ViVA), which combines the memory semantics of vector computers with a software-controlled scratchpad memory in order to provide a more effective and practical approach to latency hiding. ViVA requires minimal changes to the core design and could thus be easily integrated with conventional processor cores. To validate our approach, we implemented ViVA on the Mambo cycle-accurate full system simulator, which was carefully calibrated to match the performance on our underlying PowerPC Apple G5 architecture. Results show that ViVA is able to deliver significant performance benefits over scalar techniques for a variety of memory access patterns as well as two important memory-bound compact kernels, corner turn and sparse matrix-vector multiplication -- achieving 2x-13x improvement compared the scalar version. Overall, our preliminary ViVA exploration points to a promising approach for improving application performance on leading microprocessors with minimal design and complexity costs, in a power efficient manner.

  6. Improvement of Written-State Retentivity by Scaling Down MNOS Memory Devices

    NASA Astrophysics Data System (ADS)

    Minami, Shin-ichi; Kamigaki, Yoshiaki; Uchida, Ken; Furusawa, Kazunori; Hagiwara, Takaaki

    1988-11-01

    New MNOS retention characteristic phenomena are demonstrated. Shrunk MNOS memory devices are closely evaluated. While charge retentivity of the erased state depends only slightly on silicon nitride thickness, written-state retentivity is improved by reducing silicon nitride thickness. These new phenomena are applied to memory device design. A 1 M bit MNOS EEPROM can be designed with silicon nitride thickness 20.0 nm and programming voltage 10.7 V. These results show the MNOS memory device to be a very promising candidate for Megabit EEPROM’s.

  7. Performance Evaluation and Improvement of Ferroelectric Field-Effect Transistor Memory

    NASA Astrophysics Data System (ADS)

    Yu, Hyung Suk

    Flash memory is reaching scaling limitations rapidly due to reduction of charge in floating gates, charge leakage and capacitive coupling between cells which cause threshold voltage fluctuations, short retention times, and interference. Many new memory technologies are being considered as alternatives to flash memory in an effort to overcome these limitations. Ferroelectric Field-Effect Transistor (FeFET) is one of the main emerging candidates because of its structural similarity to conventional FETs and fast switching speed. Nevertheless, the performance of FeFETs have not been systematically compared and analyzed against other competing technologies. In this work, we first benchmark the intrinsic performance of FeFETs and other memories by simulations in order to identify the strengths and weaknesses of FeFETs. To simulate realistic memory applications, we compare memories on an array structure. For the comparisons, we construct an accurate delay model and verify it by benchmarking against exact HSPICE simulations. Second, we propose an accurate model for FeFET memory window since the existing model has limitations. The existing model assumes symmetric operation voltages but it is not valid for the practical asymmetric operation voltages. In this modeling, we consider practical operation voltages and device dimensions. Also, we investigate realistic changes of memory window over time and retention time of FeFETs. Last, to improve memory window and subthreshold swing, we suggest nonplanar junctionless structures for FeFETs. Using the suggested structures, we study the dimensional dependences of crucial parameters like memory window and subthreshold swing and also analyze key interference mechanisms.

  8. Global Processing Training to Improve Visuospatial Memory Deficits after Right-Brain Stroke

    PubMed Central

    Chen, Peii; Hartman, Ashley J.; Priscilla Galarza, C.; DeLuca, John

    2012-01-01

    Visuospatial stimuli are normally perceived from the global structure to local details. A right-brain stroke often disrupts this perceptual organization, resulting in piecemeal encoding and thus poor visuospatial memory. Using a randomized controlled design, the present study examined whether promoting the global-to-local encoding improves retrieval accuracy in right-brain-damaged stroke survivors with visuospatial memory deficits. Eleven participants received a single session of the Global Processing Training (global-to-local encoding) or the Rote Repetition Training (no encoding strategy) to learn the Rey–Osterrieth Complex Figure. The result demonstrated that the Global Processing Training significantly improved visuospatial memory deficits after a right-brain stroke. On the other hand, rote practice without a step-by-step guidance limited the degree of memory improvement. The treatment effect was observed both immediately after the training procedure and 24 h post-training. Overall, the present findings are consistent with the long-standing principle in cognitive rehabilitation that an effective treatment is based on specific training aimed at improving specific neurocognitive deficits. Importantly, visuospatial memory deficits after a right-brain stroke may improve with treatments that promote global processing at encoding. PMID:23070314

  9. Improving working memory performance in brain-injured patients using hypnotic suggestion.

    PubMed

    Lindeløv, Jonas K; Overgaard, Rikke; Overgaard, Morten

    2017-02-04

    Working memory impairment is prevalent in brain injured patients across lesion aetiologies and severities. Unfortunately, rehabilitation efforts for this impairment have hitherto yielded small or no effects. Here we show in a randomized actively controlled trial that working memory performance can be effectively restored by suggesting to hypnotized patients that they have regained their pre-injury level of working memory functioning. Following four 1-h sessions, 27 patients had a medium-sized improvement relative to 22 active controls (Bayes factors of 342 and 37.5 on the two aggregate outcome measures) and a very large improvement relative to 19 passive controls (Bayes factor = 1.7 × 1013). This was a long-term effect as revealed by no deterioration following a 6.7 week no-contact period (Bayes factors = 7.1 and 1.3 in favour of no change). To control for participant-specific effects, the active control group was crossed over to the working memory suggestion and showed superior improvement. By the end of the study, both groups reached a performance level at or above the healthy population mean with standardized mean differences between 1.55 and 2.03 relative to the passive control group. We conclude that, if framed correctly, hypnotic suggestion can effectively improve working memory following acquired brain injury. The speed and consistency with which this improvement occurred, indicate that there may be a residual capacity for normal information processing in the injured brain.

  10. Retrieval Effort Improves Memory and Metamemory in the Face of Misinformation

    ERIC Educational Resources Information Center

    Bulevich, John B.; Thomas, Ayanna K.

    2012-01-01

    Retrieval demand, as implemented through test format and retrieval instructions, was varied across two misinformation experiments. Our goal was to examine whether increasing retrieval demand would improve the relationship between confidence and memory performance, and thereby reduce misinformation susceptibility. We hypothesized that improving the…

  11. Divided attention improves delayed, but not immediate retrieval of a consolidated memory.

    PubMed

    Kessler, Yoav; Vandermorris, Susan; Gopie, Nigel; Daros, Alexander; Winocur, Gordon; Moscovitch, Morris

    2014-01-01

    A well-documented dissociation between memory encoding and retrieval concerns the role of attention in the two processes. The typical finding is that divided attention (DA) during encoding impairs future memory, but retrieval is relatively robust to attentional manipulations. However, memory research in the past 20 years had demonstrated that retrieval is a memory-changing process, in which the strength and availability of information are modified by various characteristics of the retrieval process. Based on this logic, several studies examined the effects of DA during retrieval (Test 1) on a future memory test (Test 2). These studies yielded inconsistent results. The present study examined the role of memory consolidation in accounting for the after-effect of DA during retrieval. Initial learning required a classification of visual stimuli, and hence involved incidental learning. Test 1 was administered 24 hours after initial learning, and therefore required retrieval of consolidated information. Test 2 was administered either immediately following Test 1 or after a 24-hour delay. Our results show that the effect of DA on Test 2 depended on this delay. DA during Test 1 did not affect performance on Test 2 when it was administered immediately, but improved performance when Test 2 was given 24-hours later. The results are consistent with other findings showing long-term benefits of retrieval difficulty. Implications for theories of reconsolidation in human episodic memory are discussed.

  12. Chronic nicotine improves working and reference memory performance and reduces hippocampal NGF in aged female rats.

    PubMed

    French, Kristen L; Granholm, Ann-Charlotte E; Moore, Alfred B; Nelson, Matthew E; Bimonte-Nelson, Heather A

    2006-05-15

    The cholinergic system is involved in cognition and several forms of dementia, including Alzheimer's disease, and nicotine administration has been shown to improve cognitive performance in both humans and rodents. While experiments with humans have shown that nicotine improves the ability to handle an increasing working memory load, little work has been done in animal models evaluating nicotine effects on performance as working memory load increases. In this report, we demonstrate that in aged rats nicotine improved the ability to handle an increasing working memory load as well as enhanced performance on the reference memory component of the water radial arm maze task. The dose required to exert these effects (0.3mg/kg/day) was much lower than doses shown to be effective in young rats and appears to be a lower maintenance dose than is seen in light to moderate smokers. In addition, our study reports a nicotine-induced reduction in nerve growth factor (NGF) protein levels in the hippocampus of the aged rat. The effects of nicotine on hippocampal NGF levels are discussed as a potential mechanism of nicotine-induced improvements in working and reference memory.

  13. Improving Academic Performance and Working Memory in Health Science Graduate Students Using Progressive Muscle Relaxation Training.

    PubMed

    Hubbard, Kurt K; Blyler, Diane

    Research involving working memory has indicated that stress and anxiety compete for attentional resources when a person engages in attention-dependent cognitive processing. The purpose of this study was to investigate the impact of perceived stress and state anxiety on working memory and academic performance among health science students and to explore whether the reduction of stress and anxiety was achieved through progressive muscle relaxation (PMR) training. A convenience sample of 128 graduate students participated in this study. Using an experimental pretest-posttest design, we randomly assigned participants to a PMR group or a control group. Results indicated that PMR reduced state anxiety, F(1, 126) = 15.58, p < .001, thereby freeing up working memory and leading to improved academic performance in the treatment group. The results of this study contribute to the literature on Attentional Control Theory by clarifying the process through which working memory and anxiety affect cognitive performance.

  14. Working memory training improves emotional states of healthy individuals

    PubMed Central

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Hashizume, Hiroshi; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Sassa, Yuko; Kawashima, Ryuta

    2014-01-01

    Working memory (WM) capacity is associated with various emotional aspects, including states of depression and stress, reactions to emotional stimuli, and regulatory behaviors. We have previously investigated the effects of WM training (WMT) on cognitive functions and brain structures. However, the effects of WMT on emotional states and related neural mechanisms among healthy young adults remain unknown. In the present study, we investigated these effects in young adults who underwent WMT or received no intervention for 4 weeks. Before and after the intervention, subjects completed self-report questionnaires related to their emotional states and underwent scanning sessions in which brain activities related to negative emotions were measured. Compared with controls, subjects who underwent WMT showed reduced anger, fatigue, and depression. Furthermore, WMT reduced activity in the left posterior insula during tasks evoking negative emotion, which was related to anger. It also reduced activity in the left frontoparietal area. These findings show that WMT can reduce negative mood and provide new insight into the clinical applications of WMT, at least among subjects with preclinical-level conditions. PMID:25360090

  15. Bandlimited computerized improvements in characterization of nonlinear systems with memory

    NASA Astrophysics Data System (ADS)

    Nuttall, Albert H.; Katz, Richard A.; Hughes, Derke R.; Koch, Robert M.

    2016-05-01

    The present article discusses some inroads in nonlinear signal processing made by the prime algorithm developer, Dr. Albert H. Nuttall and co-authors, a consortium of research scientists from the Naval Undersea Warfare Center Division, Newport, RI. The algorithm, called the Nuttall-Wiener-Volterra 'NWV' algorithm is named for its principal contributors [1], [2],[ 3] over many years of developmental research. The NWV algorithm significantly reduces the computational workload for characterizing nonlinear systems with memory. Following this formulation, two measurement waveforms on the system are required in order to characterize a specified nonlinear system under consideration: (1) an excitation input waveform, x(t) (the transmitted signal); and, (2) a response output waveform, z(t) (the received signal). Given these two measurement waveforms for a given propagation channel, a 'kernel' or 'channel response', h= [h0,h1,h2,h3] between the two measurement points, is computed via a least squares approach that optimizes modeled kernel values by performing a best fit between measured response z(t) and a modeled response y(t). New techniques significantly diminish the exponential growth of the number of computed kernel coefficients at second and third order in order to combat and reasonably alleviate the curse of dimensionality.

  16. Does Working Memory Training Lead to Generalized Improvements in Children with Low Working Memory? A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.

    2013-01-01

    Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first…

  17. Improved Damage Resistant Composite Materials Incorporating Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Paine, Jeffrey S. N.; Rogers, Craig A.

    1996-01-01

    Metallic shape memory alloys (SMA) such as nitinol have unique shape recovery behavior and mechanical properties associated with a material phase change that have been used in a variety of sensing and actuation applications. Recent studies have shown that integrating nitinol-SMA actuators into composite materials increases the composite material's functionality. Hybrid composites of conventional graphite/epoxy or glass/epoxy and nitinol-SMA elements can perform functions in applications where monolithic composites perform inadequately. One such application is the use of hybrid composites to function both in load bearing and armor capacities. While monolithic composites with high strength-to-weight ratios function efficiently as loadbearing structures, because of their brittle nature, impact loading can cause significant catastrophic damage. Initial composite failure modes such as delamination and matrix cracking dissipate some impact energy, but when stress exceeds the composite's ultimate strength, fiber fracture and material perforation become dominant. One of the few methods that has been developed to reduce material perforation is hybridizing polymer matrix composites with tough kevlar or high modulus polyethynylene plies. The tough fibers increase the impact resistance and the stiffer and stronger graphite fibers carry the majority of the load. Similarly, by adding nitinol-SMA elements that absorb impact energy through the stress-induced martensitic phase transformation, the composites' impact perforation resistance can be greatly enhanced. The results of drop-weight and high velocity gas-gun impact testing of various composite materials will be presented. The results demonstrate that hybridizing composites with nitinol-SMA elements significantly increases perforation resistance compared to other traditional toughening elements. Inspection of the composite specimens at various stages of perforation by optical microscope illustrates the mechanisms by which

  18. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice

    PubMed Central

    Wheelan, Nicola; Webster, Scott P.; Kenyon, Christopher J.; Caughey, Sarah; Walker, Brian R.; Holmes, Megan C.; Seckl, Jonathan R.; Yau, Joyce L.W.

    2015-01-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. PMID:25497454

  19. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice.

    PubMed

    Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W

    2015-04-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals.

  20. Memories.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    1998-01-01

    This theme issue of the journal "Exploring" covers the topic of "memories" and describes an exhibition at San Francisco's Exploratorium that ran from May 22, 1998 through January 1999 and that contained over 40 hands-on exhibits, demonstrations, artworks, images, sounds, smells, and tastes that demonstrated and depicted the biological,…

  1. Hippocampal corticosterone impairs memory consolidation during sleep but improves consolidation in the wake state.

    PubMed

    Kelemen, Eduard; Bahrendt, Marie; Born, Jan; Inostroza, Marion

    2014-05-01

    We studied the interaction between glucocorticoid (GC) level and sleep/wake state during memory consolidation. Recent research has accumulated evidence that sleep supports memory consolidation in a unique physiological process, qualitatively distinct from consolidation occurring during wakefulness. This appears particularly true for memories that rely on the hippocampus, a region with abundant expression of GC receptors. Against this backdrop we hypothesized that GC effects on consolidation depend on the brain state, i.e., sleep and wakefulness. Following exploration of two objects in an open field, during 80 min retention periods rats received an intrahippocampal infusion of corticosterone (10 ng) or vehicle while asleep or awake. Then the memory was tested in the hippocampus-dependent object-place recognition paradigm. GCs impaired memory consolidation when administered during sleep but improved consolidation during the wake retention interval. Intrahippocampal infusion of GC or sleep/wake manipulations did not alter novel-object recognition performance that does not require the hippocampus. This work corroborates the notion of distinct consolidation processes occurring in sleep and wakefulnesss, and identifies GCs as a key player controlling distinct hippocampal memory consolidation processes in sleep and wake conditions.

  2. Enriched environment increases neurogenesis and improves social memory persistence in socially isolated adult mice.

    PubMed

    Monteiro, Brisa M M; Moreira, Fabrício A; Massensini, André R; Moraes, Márcio F D; Pereira, Grace S

    2014-02-01

    Social memory consists of the information necessary to identify and recognize cospecifics and is essential to many forms of social interaction. Social memory persistence is strongly modulated by the animal's experiences. We have shown in previous studies that social isolation (SI) in adulthood impairs social memory persistence and that an enriched environment (EE) prevents this impairment. However, the mechanisms involved in the effects of SI and EE on social memory persistence remain unknown. We hypothesized that the mechanism by which SI and EE affect social memory persistence is through their modulation of neurogenesis. To investigate this hypothesis, adult mice were submitted to 7 days of one of the following conditions: group-housing in a standard (GH) or enriched environment (GH+EE); social isolation in standard (SI) or enriched environment (SI+EE). We observed an increase in the number of newborn neurons in the dentate gyrus of the hippocampus (DG) and glomerular layer of the olfactory bulb (OB) in both GH+EE and SI+EE mice. However, this increase of newborn neurons in the granule cell layer of the OB was restricted to the GH+EE group. Furthermore, both SI and SI+EE groups showed less neurogenesis in the mitral layer of the OB. Interestingly, the performance of the SI mice in the buried food-finding task was inferior to that of the GH mice. To further analyze whether increased neurogenesis is in fact the mechanism by which the EE improves social memory persistence in SI mice, we administered the mitotic inhibitor AraC or saline directly into the lateral ventricles of the SI+EE mice. We found that the AraC treatment decreased cell proliferation in both the DG and OB, and impaired social memory persistence in the SI+EE mice. Taken together, our results strongly suggest that neurogenesis is what supports social memory persistence in socially isolated mice.

  3. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults.

    PubMed

    Papalambros, Nelly A; Santostasi, Giovanni; Malkani, Roneil G; Braun, Rosemary; Weintraub, Sandra; Paller, Ken A; Zee, Phyllis C

    2017-01-01

    Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60-84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses ("ON interval") was followed by a pause of approximately equal length ("OFF interval"). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity.

  4. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults

    PubMed Central

    Papalambros, Nelly A.; Santostasi, Giovanni; Malkani, Roneil G.; Braun, Rosemary; Weintraub, Sandra; Paller, Ken A.; Zee, Phyllis C.

    2017-01-01

    Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60–84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses (“ON interval”) was followed by a pause of approximately equal length (“OFF interval”). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity. PMID:28337134

  5. Strength and Aerobic Exercises Improve Spatial Memory in Aging Rats Through Stimulating Distinct Neuroplasticity Mechanisms.

    PubMed

    Vilela, Thais Ceresér; Muller, Alexandre Pastoris; Damiani, Adriani Paganini; Macan, Tamires Pavei; da Silva, Sabrina; Canteiro, Paula Bortoluzzi; de Sena Casagrande, Alisson; Pedroso, Giulia Dos Santos; Nesi, Renata Tiscoski; de Andrade, Vanessa Moraes; de Pinho, Ricardo Aurino

    2016-11-22

    Aging is associated with impaired cognition and memory and increased susceptibility to neurodegenerative disorders. Physical exercise is neuroprotective; however, the major evidence of this effect involves studies of only aerobic training in young animals. The benefits of other exercise protocols such as strength training in aged animals remains unknown. Here, we investigated the effect of aerobic and strength training on spatial memory and hippocampal plasticity in aging rats. Aging Wistar rats performed aerobic or strength training for 50 min 3 to 4 days/week for 8 weeks. Spatial memory and neurotrophic and glutamatergic signaling in the hippocampus of aged rats were evaluated after aerobic or strength training. Both aerobic and strength training improved cognition during the performance of a spatial memory task. Remarkably, the improvement in spatial memory was accompanied by an increase in synaptic plasticity proteins within the hippocampus after exercise training, with some differences in the intracellular functions of those proteins between the two exercise protocols. Moreover, neurotrophic signaling (CREB, BDNF, and the P75(NTR) receptor) increased after training for both exercise protocols, and aerobic exercise specifically increased glutamatergic proteins (NMDA receptor and PSD-95). We also observed a decrease in DNA damage after aerobic training. In contrast, strength training increased levels of PKCα and the proinflammatory factors TNF-α and IL-1β. Overall, our results show that both aerobic and strength training improved spatial memory in aging rats through inducing distinct molecular mechanisms of neuroplasticity. Our findings extend the idea that exercise protocols can be used to improve cognition during aging.

  6. Extinction Memory Improvement by the Metabolic Enhancer Methylene Blue

    ERIC Educational Resources Information Center

    Gonzalez-Lima, F.; Bruchey, Aleksandra K.

    2004-01-01

    We investigated whether postextinction administration of methylene blue (MB) could enhance retention of an extinguished conditioned response. MB is a redox compound that at low doses elevates cytochrome oxidase activity, thereby improving brain energy production. Saline or MB (4 mg/kg intraperitoneally) were administered to rats for 5 d following…

  7. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory.

    PubMed

    Duffy, S N; Craddock, K J; Abel, T; Nguyen, P V

    2001-01-01

    cAMP-dependent protein kinase (PKA) is critical for the expression of some forms of long-term potentiation (LTP) in area CA1 of the mouse hippocampus and for hippocampus-dependent memory. Exposure to spatially enriched environments can modify LTP and improve behavioral memory in rodents, but the molecular bases for the enhanced memory performance seen in enriched animals are undefined. We tested the hypothesis that exposure to a spatially enriched environment may alter the PKA dependence of hippocampal LTP. Hippocampal slices from enriched mice showed enhanced LTP following a single burst of 100-Hz stimulation in the Schaffer collateral pathway of area CA1. In slices from nonenriched mice, this single-burst form of LTP was less robust and was unaffected by Rp-cAMPS, an inhibitor of PKA. In contrast, the enhanced LTP in enriched mice was attenuated by Rp-cAMPS. Enriched slices expressed greater forskolin-induced, cAMP-dependent synaptic facilitation than did slices from nonenriched mice. Enriched mice showed improved memory for contextual fear conditioning, whereas memory for cued fear conditioning was unaffected following enrichment. Our data indicate that exposure of mice to spatial enrichment alters the PKA dependence of LTP and enhances one type of hippocampus-dependent memory. Environmental enrichment can transform the pharmacological profile of hippocampal LTP, possibly by altering the threshold for activity-dependent recruitment of the cAMP-PKA signaling pathway following electrical and chemical stimulation. We suggest that experience-dependent plasticity of the PKA dependence of hippocampal LTP may be important for regulating the efficacy of hippocampus-based memory.

  8. Apelin-13 exerts antidepressant-like and recognition memory improving activities in stressed rats.

    PubMed

    Li, E; Deng, Haifeng; Wang, Bo; Fu, Wan; You, Yong; Tian, Shaowen

    2016-03-01

    Apelin is the endogenous ligand for the G-protein-coupled receptor (APJ). The localization of APJ in limbic structures suggests a potential role for apelin in emotional processes. However, the role of apelin in the regulation of stress-induced responses such as depression and memory impairment is largely unknown. In the present study, we evaluated the role of apelin-13 in the regulation of stress-induced depression and memory impairment in rats. We report that repeated intracerebroventricular injections of apelin-13 reversed behavioral despair (immobility) in the forced swim (FS) test, a model widely used for the selection of new antidepressant agents. Apelin-13 also reversed behavioral deficits (escape failure) in the learned helplessness test. The magnitude of the antiimmobility and anti-escape failure effects of apelin-13 was comparable to that of imipramine, a classic antidepressant used as a positive control. Rats exposed to FS stress showed memory performance impairment in the novel object recognition test, and this impairment was improved by apelin-13 treatment. Apelin-13 did not affect recognition memory performance in non-stressed rats. Furthermore, the pretreatment of LY294002 (PI3K inhibitors) or PD98059 (ERK1/2 inhibitor) blocked apelin-13-mediated activities in FS-stressed rats. These findings suggest that apelin-13 exerts antidepressant-like and recognition memory improving activities through activating PI3K and ERK1/2 signaling pathways in stressed rats.

  9. Improvement/rehabilitation of memory functioning with neurotherapy/QEEG biofeedback.

    PubMed

    Thornton, K

    2000-12-01

    This article presents a new approach to the remediation of memory deficits by studying the electrophysiological functioning involved in memory and applying biofeedback techniques. A Quantitative EEG (QEEG) activation database was obtained with 59 right-handed subjects during two auditory memory tasks (prose passages and word lists). Memory performance was correlated with the QEEG variables. Clinical cases were administered the same QEEG activation study to determine their deviations from the values that predicted success for the reference group. EEG biofeedback interventions were designed to increase the value (to normal levels) of the specific electrophysiological variable that was related to successful memory function and deviant in the subject. Case examples are presented that indicate the successful use of this intervention style in normal subjects and in subjects with brain injury; improvement cannot be fully explained by spontaneous recovery, given the time postinjury. Five cases (two normal, two subjects with brain injury, and one subject who had stereotactic surgery of the hippocampus for seizure control) are presented. Improvements ranged from 68% to 181% in the group of patients with brain injury, as a result of the interventions.

  10. Repeated administration of histamine improves memory retrieval of inhibitory avoidance by lithium in mice.

    PubMed

    Zarrindast, Mohammad Reza; Parsaei, Leila; Ahmadi, Shamseddin

    2008-01-01

    The influence of repeated administration of histamine on lithium-induced state dependency has been investigated. A single-trial step-down inhibitory avoidance task was used to assess memory in adult male NMRI mice. Intraperitoneal (i.p.) administration of lithium (10 mg/kg), immediately after training (post-training), impaired inhibitory avoidance memory on the test day. Pre-test administration of lithium reversed amnesia induced by the drug given after training, with the maximum response at a dose of 10 mg/kg. Repeated intracerebroventricular (i.c.v.) administration of histamine (20 microg/mouse) for 3 consecutive days followed by 5 days of no drug treatment improved memory retrieval of inhibitory avoidance by a pre-test lower dose (5 mg/kg i.p.) of lithium. In contrast, 3 days of i.c.v. injections of both the histamine H1 receptor antagonist pyrilamine (40 microg/mouse) and the histamine H2 receptor antagonist ranitidine (6.25 and 12.5 microg/mouse) prevented the improving effect of pre-test lithium (10 mg/kg i.p.) on memory retrieval. The results suggest that the repeated administration of histaminergic agents may induce a sensitization which affects the memory impairment induced by lithium.

  11. Improving the Memory Sections of the Standardized Assessment of Concussion Using Item Analysis

    ERIC Educational Resources Information Center

    McElhiney, Danielle; Kang, Minsoo; Starkey, Chad; Ragan, Brian

    2014-01-01

    The purpose of the study was to improve the immediate and delayed memory sections of the Standardized Assessment of Concussion (SAC) by identifying a list of more psychometrically sound items (words). A total of 200 participants with no history of concussion in the previous six months (aged 19.60 ± 2.20 years; N?=?93 men, N?=?107 women)…

  12. Improved Learning and Memory in Aged Mice Deficient in Amyloid β-Degrading Neutral Endopeptidase

    PubMed Central

    Walther, Thomas; Albrecht, Doris; Becker, Matthias; Schubert, Manja; Kouznetsova, Elena; Wiesner, Burkard; Maul, Björn; Schliebs, Reinhard; Grecksch, Gisela; Furkert, Jens; Sterner-Kock, Anja; Schultheiss, Heinz-Peter; Becker, Axel; Siems, Wolf-Eberhard

    2009-01-01

    Background Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key enzymes in initial human amyloid-β (Aβ) degradation. The aim of our study was to explore the impact of NEP deficiency on the initial development of dementia-like symptoms in mice. Methodology/Principal Findings We found that while endogenous Aβ concentrations were elevated in the brains of NEP-knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect any Aβ deposits even in old NEP knockout mice. Surprisingly, tests of learning and memory revealed that the ability to learn was not reduced in old NEP-deficient mice but instead had significantly improved, and sustained learning and memory in the aged mice was congruent with improved long-term potentiation (LTP) in brain slices of the hippocampus and lateral amygdala. Our data suggests a beneficial effect of pharmacological inhibition of cerebral NEP on learning and memory in mice due to the accumulation of peptides other than Aβ degradable by NEP. By conducting degradation studies and peptide measurements in the brain of both genotypes, we identified two neuropeptide candidates, glucagon-like peptide 1 and galanin, as first potential candidates to be involved in the improved learning in aged NEP-deficient mice. Conclusions/Significance Thus, the existence of peptides targeted by NEP that improve learning and memory in older individuals may represent a promising avenue for the treatment of neurodegenerative diseases. PMID:19240795

  13. Visual Working Memory in Deaf Children with Diverse Communication Modes: Improvement by Differential Outcomes

    ERIC Educational Resources Information Center

    Lopez-Crespo, Ginesa; Daza, Maria Teresa; Mendez-Lopez, Magdalena

    2012-01-01

    Although visual functions have been proposed to be enhanced in deaf individuals, empirical studies have not yet established clear evidence on this issue. The present study aimed to determine whether deaf children with diverse communication modes had superior visual memory and whether their performance was improved by the use of differential…

  14. Improving Reasoning Skills in Secondary History Education by Working Memory Training

    ERIC Educational Resources Information Center

    Ariës, Roel Jacobus; Groot, Wim; van den Brink, Henriette Maassen

    2015-01-01

    Secondary school pupils underachieve in tests in which reasoning abilities are required. Brain-based training of working memory (WM) may improve reasoning abilities. In this study, we use a brain-based training programme based on historical content to enhance reasoning abilities in history courses. In the first experiment, a combined intervention…

  15. Spermidine-Induced Improvement of Reconsolidation of Memory Involves Calcium-Dependent Protein Kinase in Rats

    ERIC Educational Resources Information Center

    Girardi, Bruna Amanda; Ribeiro, Daniela Aymone; Signor, Cristiane; Muller, Michele; Gais, Mayara Ana; Mello, Carlos Fernando; Rubin, Maribel Antonello

    2016-01-01

    In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus.…

  16. Recall Improves in Short-Term Memory The More Recall Context Resembles Learning Context

    ERIC Educational Resources Information Center

    Falkenberg, Philippe R.

    1972-01-01

    Eight experiments are reported: the first four demonstrate the context effects in short-term-memory (that retrieval from STM improves as the context for learning is made more similar to the context for retrieval), and four more experiments examine the mechanism by which the context effect might operate. (Author/MB)

  17. Six Rehearsal Techniques for the Public Speaker: Improving Memory, Increasing Delivery Skills and Reducing Speech Stress.

    ERIC Educational Resources Information Center

    Crane, Loren D.

    This paper describes six specific techniques that speech communication students may use in rehearsals to improve memory, to increase delivery skills, and to reduce speech stress. The techniques are idea association, covert modeling, desensitization, language elaboration, overt modeling, and self-regulation. Recent research is reviewed that…

  18. Static ferroelectric memory transistor having improved data retention

    DOEpatents

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.

    1996-01-01

    An improved ferroelectric FET structure in which the ferroelectric layer is doped to reduce retention loss. A ferroelectric FET according to the present invention includes a semiconductor layer having first and second contacts thereon, the first and second contacts being separated from one another. The ferroelectric FET also includes a bottom electrode and a ferroelectric layer which is sandwiched between the semiconductor layer and the bottom electrode. The ferroelectric layer is constructed from a perovskite structure of the chemical composition ABO.sub.3 wherein the B site comprises first and second elements and a dopant element that has an oxidation state greater than +4 in sufficient concentration to impede shifts in the resistance measured between the first and second contacts with time. The ferroelectric FET structure preferably comprises Pb in the A-site. The first and second elements are preferably Zr and Ti, respectively. The preferred B-site dopants are Niobium, Tantalum, and Tungsten at concentrations between 1% and 8%.

  19. Self-generated retrievals while multitasking improve memory for names.

    PubMed

    Helder, Elizabeth; Shaughnessy, John J

    2011-11-01

    We used a translational research paradigm to investigate whether distributed retrievals could benefit name learning in social situations. Undergraduates (N=64) were trained to generate distributed retrievals while they were multitasking. Students learned to generate distributed retrievals according to either an expanding or a uniform schedule. Their self-generated distributed retrievals while they were multitasking were effective in improving name recall for both retrieval schedules. The increase with self-generated retrievals while multitasking was greater (η² =.76) than the increase that Helder and Shaughnessy ( 2008 ) found with experimenter-controlled retrievals while multitasking (η² =.42). These findings provide evidence that the beneficial effect of distributed retrievals can extend to learning names in a social situation.

  20. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats.

    PubMed

    Hritcu, Lucian; Cioanca, Oana; Hancianu, Monica

    2012-04-15

    Lavender is reported to be an effective medical plant in treating inflammation, depression, stress and mild anxiety in Europe and the USA. The present study investigated the effects of two different lavender essential oils from Lavandula angustifolia ssp. angustifolia Mill. (Lamiaceae) and Lavandula hybrida Rev. (Lamiaceae) on neurological capacity of male Wistar rats subjected to scopolamine (0.7mg/kg)-induced dementia rat model. Chronic exposures to lavender essential oils (daily, for 7 continuous days) significantly reduced anxiety-like behavior and inhibited depression in elevated plus-maze and forced swimming tests, suggesting anxiolytic and antidepressant activity. Also, spatial memory performance in Y-maze and radial arm-maze tasks was improved, suggesting positive effects on memory formation. Taken together, multiple exposures to lavender essential oils could effectively reverse spatial memory deficits induced by dysfunction of the cholinergic system in the rat brain and might provide an opportunity for management neurological abnormalities in dementia conditions.

  1. Improved memory characteristics of charge trap memory by employing double layered ZrO2 nanocrystals and inserted Al2O3

    NASA Astrophysics Data System (ADS)

    Tang, Z. J.; Li, R.; Zhang, X. W.; Hu, D.; Zhao, Y. G.

    2016-07-01

    The charge trap memory capacitors incorporating a stacked charge trapping layer consisting of double layered ZrO2 nanocrystals (NCs) and inserted Al2O3 have been fabricated and investigated. It is observed that the memory capacitor with stacked trapping layer exhibits a hysteresis window as large as 14.3 V for ±10 V sweeping gate voltage range, faster program/erase speed, improved endurance performance, and good data retention characteristics with smaller extrapolated ten years charge loss at room temperature and 125 °C compared to single layered NCs. The special energy band alignment and the introduced additional traps of double layered ZrO2 NCs and inserted Al2O3 change the trapping and loss behavior of charges, and jointly contribute to the remarkable memory characteristics. Therefore, the memory capacitor with a stacked charge trapping layer is a promising candidate in future nonvolatile charge trap memory device design and application.

  2. Intake of Wild Blueberry Powder Improves Episodic-Like and Working Memory during Normal Aging in Mice.

    PubMed

    Beracochea, Daniel; Krazem, Ali; Henkouss, Nadia; Haccard, Guillaume; Roller, Marc; Fromentin, Emilie

    2016-08-01

    The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity.

  3. An Improved Fitness Evaluation Mechanism with Memory in Spatial Prisoner's Dilemma Game on Regular Lattices

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Liu, Li-Na; Dong, En-Zeng; Wang, Li

    2013-03-01

    To deeply understand the emergence of cooperation in natural, social and economical systems, we present an improved fitness evaluation mechanism with memory in spatial prisoner's dilemma game on regular lattices. In our model, the individual fitness is not only determined by the payoff in the current game round, but also by the payoffs in previous round bins. A tunable parameter, termed as the memory strength (μ), which lies between 0 and 1, is introduced into the model to regulate the ratio of payoffs of current and previous game rounds in the individual fitness calculation. When μ = 0, our model is reduced to the standard prisoner's dilemma game; while μ = 1 represents the case in which the payoff is totally determined by the initial strategies and thus it is far from the realistic ones. Extensive numerical simulations indicate that the memory effect can substantially promote the evolution of cooperation. For μ < 1, the stronger the memory effect, the higher the cooperation level, but μ = 1 leads to a pathological state of cooperation, but can partially enhance the cooperation in the very large temptation parameter. The current results are of great significance for us to account for the role of memory effect during the evolution of cooperation among selfish players.

  4. Six-Year Training Improves Everyday Memory in Healthy Older People. Randomized Controlled Trial

    PubMed Central

    Requena, Carmen; Turrero, Agustín; Ortiz, Tomás

    2016-01-01

    Purpose of the study: Everyday memory of older persons does not improve with intensive memory training programs. This study proposes a change in these programs based on a time-extended and massive intervention format. Design and Methods: The sample of 1007 healthy older persons (mean age 71.85; SD = 5.12) was randomized into 2 groups. The experimental group followed an extended 6 years of training (192 sessions over 192 weeks) whereas the control group received an intensive training (3 sessions per week for a total of 32 sessions in 11 weeks). The program included cognitive and emotional content whose effects were assessed with the Rivermead Behavioral Memory Test (RBMT) and with the Mini-Mental State Examination (MMSE). Both groups were evaluated initially, after 32 sessions, and again after 6 years. Results: The relative improvements measured with Blom’s derivative showed that everyday memory and mental status of the experimental group were significantly better both in the short (Δ% 8.31 in RBMT and Δ% 1.51 in MMSE) and in the long term (Δ% 12.54 in RBMT and Δ% 2.56 in MMSE). For everyday memory and mental level, the overall gain estimate representing the mean difference in pre-post change between time-extended and intensive groups was 0.27 (95% CI: 0.13–0.40) and 0.54 (95% CI: 0.40–0.67), respectively. Time-extended programs have significantly improved everyday memory in contrast with the usual intensive programs whose effects decay with time. There are also significant increases in mental level scores while daily life functionality is preserved in all subjects who completed the training. Implications: These results suggest that it is possible to preserve everyday memory in the long term with continuous training and practice. Massive and time-extended formats may contribute in the future to a paradigm shift in memory programs for healthy older people. PMID:27375479

  5. Cronobacter sakazakii infection alters serotonin transporter and improved fear memory retention in the rat

    PubMed Central

    Sivamaruthi, Bhagavathi S.; Madhumita, Rajkumar; Balamurugan, Krishnaswamy; Rajan, Koilmani E.

    2015-01-01

    It is well established that Cronobacter sakazakii infection cause septicemia, necrotizing enterocolitis and meningitis. In the present study, we tested whether the C. sakazakii infection alter the learning and memory through serotonin transporter (SERT). To investigate the possible effect on SERT, on postnatal day-15 (PND-15), wistar rat pups were administered with single dose of C. sakazakii culture (infected group; 107 CFU) or 100 μL of Luria-Bertani broth (medium control) or without any treatment (naïve control). All the individuals were subjected to passive avoidance test on PND-30 to test their fear memory. We show that single dose of C. sakazakii infection improved fear memory retention. Subsequently, we show that C. sakazakii infection induced the activation of toll-like receptor-3 and heat-shock proteins-90 (Hsp-90). On the other hand, level of serotonin (5-hydroxytryptamine) and SERT protein was down-regulated. Furthermore, we show that C. sakazakii infection up-regulate microRNA-16 (miR-16) expression. The observed results highlight that C. sakazakii infections was responsible for improved fear memory retention and may have reduced the level of SERT protein, which is possibly associated with the interaction of up-regulated Hsp-90 with SERT protein or miR-16 with SERT mRNA. Taken together, observed results suggest that C. sakazakii infection alter the fear memory possibly through SERT. Hence, this model may be effective to test the C. sakazakii infection induced changes in synaptic plasticity through SERT and effect of other pharmacological agents against pathogen induced memory disorder. PMID:26388777

  6. Treadmill Exercise Improves Memory Function Depending on Circadian Rhythm Changes in Mice

    PubMed Central

    2016-01-01

    Purpose Exercise enhances memory function by increasing neurogenesis in the hippocampus, and circadian rhythms modulate synaptic plasticity in the hippocampus. The circadian rhythm-dependent effects of treadmill exercise on memory function in relation with neurogenesis were investigated using mice. Methods The step-down avoidance test was used to evaluate short-term memory, the 8-arm maze test was used to test spatial learning ability, and 5-bromo-2’-deoxyuridine immunofluorescence was used to assess neurogenesis. Western blotting was also performed to assess levels of synaptic plasticity-associated proteins, such as brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element-binding protein, early growth response protein 1, postsynaptic density protein 95, and growth-associated protein 43. The mice in the treadmill exercise at zeitgeber 1 group started exercising 1 hour after sunrise, the mice in the treadmill exercise at zeitgeber 6 group started exercising 6 hours after sunrise, and the mice in the treadmill exercise at zeitgeber 13 group started exercising 1 hour after sunset. The mice in the exercise groups were forced to run on a motorized treadmill for 30 minutes once a day for 7 weeks. Results Treadmill exercise improved short-term memory and spatial learning ability, and increased hippocampal neurogenesis and the expression of synaptic plasticity-associated proteins. These effects of treadmill exercise were stronger in mice that exercised during the day or in the evening than in mice that exercised at dawn. Conclusions Treadmill exercise improved memory function by increasing neurogenesis and the expression of synaptic plasticity-associated proteins. These results suggest that the memory-enhancing effect of treadmill exercise may depend on circadian rhythm changes. PMID:27915477

  7. Future thinking improves prospective memory performance and plan enactment in older adults.

    PubMed

    Altgassen, Mareike; Rendell, Peter G; Bernhard, Anka; Henry, Julie D; Bailey, Phoebe E; Phillips, Louise H; Kliegel, Matthias

    2015-01-01

    Efficient intention formation might improve prospective memory by reducing the need for resource-demanding strategic processes during the delayed performance interval. The present study set out to test this assumption and provides the first empirical assessment of whether imagining a future action improves prospective memory performance equivalently at different stages of the adult lifespan. Thus, younger (n = 40) and older (n = 40) adults were asked to complete the Dresden Breakfast Task, which required them to prepare breakfast in accordance with a set of rules and time restrictions. All participants began by generating a plan for later enactment; however, after making this plan, half of the participants were required to imagine themselves completing the task in the future (future thinking condition), while the other half received standard instructions (control condition). As expected, overall younger adults outperformed older adults. Moreover, both older and younger adults benefited equally from future thinking instructions, as reflected in a higher proportion of prospective memory responses and more accurate plan execution. Thus, for both younger and older adults, imagining the specific visual-spatial context in which an intention will later be executed may serve as an easy-to-implement strategy that enhances prospective memory function in everyday life.

  8. Extra virgin olive oil improves learning and memory in SAMP8 mice.

    PubMed

    Farr, Susan A; Price, Tulin O; Dominguez, Ligia J; Motisi, Antonio; Saiano, Filippo; Niehoff, Michael L; Morley, John E; Banks, William A; Ercal, Nuran; Barbagallo, Mario

    2012-01-01

    Polyphenols are potent antioxidants found in extra virgin olive oil (EVOO); antioxidants have been shown to reverse age- and disease-related learning and memory deficits. We examined the effects of EVOO on learning and memory in SAMP8 mice, an age-related learning/memory impairment model associated with increased amyloid-β protein and brain oxidative damage. We administered EVOO, coconut oil, or butter to 11 month old SAMP8 mice for 6 weeks. Mice were tested in T-maze foot shock avoidance and one-trial novel object recognition with a 24 h delay. Mice which received EVOO had improved acquisition in the T-maze and spent more time with the novel object in one-trial novel object recognition versus mice which received coconut oil or butter. Mice that received EVOO had improve T-maze retention compared to the mice that received butter. EVOO increased brain glutathione levels suggesting reduced oxidative stress as a possible mechanism. These effects plus increased glutathione reductase activity, superoxide dismutase activity, and decreased tissue levels of 4-hydroxynoneal and 3-nitrotyrosine were enhanced with enriched EVOO (3 × and 5 × polyphenols concentration). Our findings suggest that EVOO has beneficial effects on learning and memory deficits found in aging and diseases, such as those related to the overproduction of amyloid-β protein, by reversing oxidative damage in the brain, effects that are augmented with increasing concentrations of polyphenols in EVOO.

  9. Honokiol improves learning and memory impairments induced by scopolamine in mice.

    PubMed

    Xian, Yan-Fang; Ip, Siu-Po; Mao, Qing-Qiu; Su, Zi-Ren; Chen, Jian-Nan; Lai, Xiao-Ping; Lin, Zhi-Xiu

    2015-08-05

    Honokiol, a lignan isolated from the bark of Magnolia officinalis, has been reported to ameliorate the learning and memory impairments in senesed (SAMP8) mice. However, whether honokiol could improve scopolamine (SCOP)-induced learning and memory deficits in mice is still unknown. In this study, we aimed to investigate whether honokiol could reverse the SCOP-induced learning and memory impairments in mice and to elucidate its underlying mechanisms of action. Mice were given daily intraperitoneal injection of honokiol (10 and 20mg/kg) for 21 consecutive days. The results showed that honokiol significantly improved spatial learning and memory function (as assessed by the Morris water maze test) in the SCOP-treated mice. In addition, treatment with honokiol significantly decreased the protein and mRNA levels of interleukin (IL)-1β and the activity of acetylcholinesterase (AChE), while significantly increased the protein and mRNA levels of IL-10, and the level of acetylcholine (Ach) in the brain of the SCOP-treated mice. Moreover, honokiol also significantly suppressed the production of prostaglandin E 2 (PGE2) and mRNA expression of cyclooxygenase-2 (COX-2) in the brain of the SCOP-treated mice. Mechanistic investigations revealed that honokiol could markedly reverse the amount of phosphorylated Akt and extracellular regulated kinases 1/2 (ERK1/2) changes in the brain of the SCOP-treated mice. These results amply demonstrated that honokiol could improve learning and memory impairments induced by SCOP in mice, and the protective action may be mediated, at least in part, by inhibition of AChE activity, and amelioration of the neuroinflammatory processes in the SCOP-treated mice.

  10. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms.

    PubMed

    Cassilhas, R C; Lee, K S; Fernandes, J; Oliveira, M G M; Tufik, S; Meeusen, R; de Mello, M T

    2012-01-27

    A growing body of scientific evidence indicates that exercise has a positive impact on human health, including neurological health. Aerobic exercise, which is supposed to enhance cardiovascular functions and metabolism, also induces neurotrophic factors that affect hippocampal neurons, thereby improving spatial learning and memory. Alternatively, little is known about the effect of resistance exercise on hippocampus-dependent memory, although this type of exercise is increasingly recommended to improve muscle strength and bone density and to prevent age-related disabilities. Therefore, we evaluated the effects of resistance training on spatial memory and the signaling pathways of brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1), comparing these effects with those of aerobic exercise. Adult male Wistar rats underwent 8 weeks of aerobic training on a treadmill (AERO group) or resistance training on a vertical ladder (RES group). Control and sham groups were also included. After the training period, both AERO and RES groups showed improved learning and spatial memory in a similar manner. However, both groups presented distinct signaling pathways. Although the AERO group showed increased level of IGF-1, BDNF, TrkB, and β-CaMKII (calcium/calmodulin-dependent kinase II) in the hippocampus, the RES group showed an induction of peripheral and hippocampal IGF-1 with concomitant activation of receptor for IGF-1 (IGF-1R) and AKT in the hippocampus. These distinct pathways culminated in an increase of synapsin 1 and synaptophysin expression in both groups. These findings demonstrated that both aerobic and resistance exercise can employ divergent molecular mechanisms but achieve similar results on learning and spatial memory.

  11. The PDE4 inhibitor roflumilast improves memory in rodents at non-emetic doses.

    PubMed

    Vanmierlo, Tim; Creemers, Pim; Akkerman, Sven; van Duinen, Marlies; Sambeth, Anke; De Vry, Jochen; Uz, Tolga; Blokland, Arjan; Prickaerts, Jos

    2016-04-15

    Enhancement of central availability of the second messenger cAMP is a promising approach to improve cognitive function. Pharmacological inhibition of phosphodiesterase type 4 (PDE4), a group of cAMP hydrolyzing enzymes in the brain, has been shown to improve cognitive performances in rodents and monkeys. However, inhibition of PDE4 is generally associated with severe emetic side-effects. Roflumilast, an FDA-approved PDE4 inhibitor for treatment of chronic obstructive pulmonary disease (COPD), is yielding only mild emetic side effects. In the present study we investigate the potential of roflumilast as a cognition enhancer and to determine the potential coinciding emetic response in comparison to rolipram, a classic PDE4 inhibitor with pronounced emetic effects. Cognition enhancement was evaluated in mice and it was found that both roflumilast and rolipram enhanced memory in an object location task (0.03mg/kg), whereas only roflumilast was effective in a spatial Y-maze (0.1mg/kg). Emetic potential was measured using competition of PDE4 inhibition for α2-adrenergic receptor antagonism in which recovery from xylazine/ketamine-mediated anesthesia is used as a surrogate marker. While rolipram displayed emetic properties at a dose 10 times the memory-enhancing dose, roflumilast only showed increased emetic-like properties at a dose 100 times the memory-enhancing dose. Moreover, combining sub-efficacious doses of the approved cognition-enhancer donepezil and roflumilast, which did not improve memory when given alone, fully restored object recognition memory deficit in rats induced by the muscarinic receptor antagonist scopolamine. These findings suggest that roflumilast offers a more favorable window for treatment of cognitive deficits compared to rolipram.

  12. Intensive video gaming improves encoding speed to visual short-term memory in young male adults.

    PubMed

    Wilms, Inge L; Petersen, Anders; Vangkilde, Signe

    2013-01-01

    The purpose of this study was to measure the effect of action video gaming on central elements of visual attention using Bundesen's (1990) Theory of Visual Attention. To examine the cognitive impact of action video gaming, we tested basic functions of visual attention in 42 young male adults. Participants were divided into three groups depending on the amount of time spent playing action video games: non-players (<2h/month, N=12), casual players (4-8h/month, N=10), and experienced players (>15h/month, N=20). All participants were tested in three tasks which tap central functions of visual attention and short-term memory: a test based on the Theory of Visual Attention (TVA), an enumeration test and finally the Attentional Network Test (ANT). The results show that action video gaming does not seem to impact the capacity of visual short-term memory. However, playing action video games does seem to improve the encoding speed of visual information into visual short-term memory and the improvement does seem to depend on the time devoted to gaming. This suggests that intense action video gaming improves basic attentional functioning and that this improvement generalizes into other activities. The implications of these findings for cognitive rehabilitation training are discussed.

  13. Working Memory Training Does Not Improve Performance on Measures of Intelligence or Other Measures of “Far Transfer”

    PubMed Central

    Melby-Lervåg, Monica; Redick, Thomas S.; Hulme, Charles

    2016-01-01

    It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of “real-world” cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. PMID:27474138

  14. Visual working memory in deaf children with diverse communication modes: improvement by differential outcomes.

    PubMed

    López-Crespo, Ginesa; Daza, María Teresa; Méndez-López, Magdalena

    2012-01-01

    Although visual functions have been proposed to be enhanced in deaf individuals, empirical studies have not yet established clear evidence on this issue. The present study aimed to determine whether deaf children with diverse communication modes had superior visual memory and whether their performance was improved by the use of differential outcomes. Severely or profoundly deaf children who employed spoken Spanish, Spanish Sign Language (SSL), and both spoken Spanish and SSL modes of communication were tested in a delayed matching-to-sample task for visual working memory assessment. Hearing controls were used to compare performance. Participants were tested in two conditions, differential outcome and non-differential outcome conditions. Deaf groups with either oral or SSL modes of communication completed the task with less accuracy than bilingual and control hearing children. In addition, the performances of all groups improved through the use of differential outcomes.

  15. Treadmill walking during vocabulary encoding improves verbal long-term memory

    PubMed Central

    2014-01-01

    Moderate physical activity improves various cognitive functions, particularly when it is applied simultaneously to the cognitive task. In two psychoneuroendocrinological within-subject experiments, we investigated whether very low-intensity motor activity, i.e. walking, during foreign-language vocabulary encoding improves subsequent recall compared to encoding during physical rest. Furthermore, we examined the kinetics of brain-derived neurotrophic factor (BDNF) in serum and salivary cortisol. Previous research has associated both substances with memory performance. In both experiments, subjects performed better when they were motorically active during encoding compared to being sedentary. BDNF in serum was unrelated to memory performance. In contrast we found a positive correlation between salivary cortisol concentration and the number of correctly recalled items. In summary, even very light physical activity during encoding is beneficial for subsequent recall. PMID:25015595

  16. Structured floral arrangement programme for improving visuospatial working memory in schizophrenia

    PubMed Central

    Mochizuki-Kawai, Hiroko; Yamakawa, Yuriko; Mochizuki, Satoshi; Anzai, Shoko; Arai, Masanobu

    2010-01-01

    Several cognitive therapies have been developed for patients with schizophrenia. However, little is known about the outcomes of these therapies in terms of non-verbal/visuospatial working memory, even though this may affect patients’ social outcomes. In the present pilot study, we investigated the effect of a structured floral arrangement (SFA) programme, where participants were required to create symmetrical floral arrangements. In this programme, the arrangement pattern and the order of placing each of the natural materials was predetermined. Participants have to identify where to place each material, and memorise the position temporarily to complete the floral arrangement. The schizophrenic patients who participated in this programme showed significant improvement in their scores for a block-tapping task backward version; whereas, non-treated control patients did not show such an improvement. The present results suggest that the SFA programme may positively stimulate visuospatial working memory in patients. PMID:20467963

  17. Memory retrieval improvement by Ptychopetalum olacoides in young and aging mice.

    PubMed

    da Silva, Adriana L; Piato, Angelo L S; Bardini, Simone; Netto, Carlos A; Nunes, Domingos S; Elisabetsky, Elaine

    2004-12-01

    Amazonian peoples use traditional remedies prepared with Ptychopetalum olacoides (PO) roots for treating various age-related conditions. This study shows that a single intraperitoneally (i.p.) administration of Ptychopetalum olacoides ethanol extract (POEE, 50 and 100mg/kg) improved memory retrieval in step-down inhibitory avoidance (P memory amelioration was also observed (P memory deficit (14.95 [10.8-41]) as compared to adult (2.5 months) mice (57 [15.7-141.2]), with the extract given acutely i.p. 100 mg/kg (300 [133.1-300] versus control 14.95 [10.8-41]) or p.o. 800 mg/kg (28.4 [15.1-84.6] versus control 11.5 [7.8-23.3]). Indeed, aging mice treated with POEE (800 mg/kg, p.o.) performed as well as adult mice. Consistently with its traditional use, the data suggest that POEE facilitates memory retrieval. Although the antioxidant and acetylcholinesterase inhibitory properties previously described for this extract may be of relevance, the molecular mechanism(s) underlying the improvement in memory retrieval here reported merit further scrutiny.

  18. Adjunctive raloxifene treatment improves attention and memory in men and women with schizophrenia

    PubMed Central

    Weickert, T W; Weinberg, D; Lenroot, R; Catts, S V; Wells, R; Vercammen, A; O'Donnell, M; Galletly, C; Liu, D; Balzan, R; Short, B; Pellen, D; Curtis, J; Carr, V J; Kulkarni, J; Schofield, P R; Weickert, C S

    2015-01-01

    There is increasing clinical and molecular evidence for the role of hormones and specifically estrogen and its receptor in schizophrenia. A selective estrogen receptor modulator, raloxifene, stimulates estrogen-like activity in brain and can improve cognition in older adults. The present study tested the extent to which adjunctive raloxifene treatment improved cognition and reduced symptoms in young to middle-age men and women with schizophrenia. Ninety-eight patients with a diagnosis of schizophrenia or schizoaffective disorder were recruited into a dual-site, thirteen-week, randomized, double-blind, placebo-controlled, crossover trial of adjunctive raloxifene treatment in addition to their usual antipsychotic medications. Symptom severity and cognition in the domains of working memory, attention/processing speed, language and verbal memory were assessed at baseline, 6 and 13 weeks. Analyses of the initial 6-week phase of the study using a parallel groups design (with 39 patients receiving placebo and 40 receiving raloxifene) revealed that participants receiving adjunctive raloxifene treatment showed significant improvement relative to placebo in memory and attention/processing speed. There was no reduction in symptom severity with treatment compared with placebo. There were significant carryover effects, suggesting some cognitive benefits are sustained even after raloxifene withdrawal. Analysis of the 13-week crossover data revealed significant improvement with raloxifene only in attention/processing speed. This is the first study to show that daily, oral adjunctive raloxifene treatment at 120 mg per day has beneficial effects on attention/processing speed and memory for both men and women with schizophrenia. Thus, raloxifene may be useful as an adjunctive treatment for cognitive deficits associated with schizophrenia. PMID:25980345

  19. Adjunctive raloxifene treatment improves attention and memory in men and women with schizophrenia.

    PubMed

    Weickert, T W; Weinberg, D; Lenroot, R; Catts, S V; Wells, R; Vercammen, A; O'Donnell, M; Galletly, C; Liu, D; Balzan, R; Short, B; Pellen, D; Curtis, J; Carr, V J; Kulkarni, J; Schofield, P R; Weickert, C S

    2015-06-01

    There is increasing clinical and molecular evidence for the role of hormones and specifically estrogen and its receptor in schizophrenia. A selective estrogen receptor modulator, raloxifene, stimulates estrogen-like activity in brain and can improve cognition in older adults. The present study tested the extent to which adjunctive raloxifene treatment improved cognition and reduced symptoms in young to middle-age men and women with schizophrenia. Ninety-eight patients with a diagnosis of schizophrenia or schizoaffective disorder were recruited into a dual-site, thirteen-week, randomized, double-blind, placebo-controlled, crossover trial of adjunctive raloxifene treatment in addition to their usual antipsychotic medications. Symptom severity and cognition in the domains of working memory, attention/processing speed, language and verbal memory were assessed at baseline, 6 and 13 weeks. Analyses of the initial 6-week phase of the study using a parallel groups design (with 39 patients receiving placebo and 40 receiving raloxifene) revealed that participants receiving adjunctive raloxifene treatment showed significant improvement relative to placebo in memory and attention/processing speed. There was no reduction in symptom severity with treatment compared with placebo. There were significant carryover effects, suggesting some cognitive benefits are sustained even after raloxifene withdrawal. Analysis of the 13-week crossover data revealed significant improvement with raloxifene only in attention/processing speed. This is the first study to show that daily, oral adjunctive raloxifene treatment at 120 mg per day has beneficial effects on attention/processing speed and memory for both men and women with schizophrenia. Thus, raloxifene may be useful as an adjunctive treatment for cognitive deficits associated with schizophrenia.

  20. Daily supplementation with mushroom (Agaricus bisporus) improves balance and working memory in aged rats.

    PubMed

    Thangthaeng, Nopporn; Miller, Marshall G; Gomes, Stacey M; Shukitt-Hale, Barbara

    2015-12-01

    Decline in brain function during normal aging is partly due to the long-term effects of oxidative stress and inflammation. Several fruits and vegetables have been shown to possess antioxidant and anti-inflammatory properties. The present study investigated the effects of dietary mushroom intervention on mobility and memory in aged Fischer 344 rats. We hypothesized that daily supplementation of mushroom would have beneficial effects on behavioral outcomes in a dose-dependent manner. Rats were randomly assigned to receive a diet containing either 0%, 0.5%, 1%, 2%, or 5% lyophilized white button mushroom (Agaricus bisporus); after 8 weeks on the diet, a battery of behavioral tasks was given to assess balance, coordination, and cognition. Rats on the 2% or 5% mushroom-supplemented diet consumed more food, without gaining weight, than rats in the other diet groups. Rats in the 0.5% and 1% group stayed on a narrow beam longer, indicating an improvement in balance. Only rats on the 0.5% mushroom diet showed improved performance in a working memory version of the Morris water maze. When taken together, the most effective mushroom dose that produced improvements in both balance and working memory was 0.5%, equivalent to about 1.5 ounces of fresh mushrooms for humans. Therefore, the results suggest that the inclusion of mushroom in the daily diet may have beneficial effects on age-related deficits in cognitive and motor function.

  1. Exercise improves object recognition memory and induces BDNF expression and cell proliferation in cognitively enriched rats.

    PubMed

    Bechara, R G; Kelly, Á M

    2013-05-15

    Exercise and environmental enrichment are behavioural interventions that have been shown to improve learning and increase neurogenesis in rodents, possibly via neurotrophin-mediated mechanisms. However, many enrichment protocols incorporate exercise, which can itself be viewed as a source of cognitive stimulation in animals housed in standard laboratory conditions. In this experiment we investigate the effect of each intervention separately and in combination on object recognition memory, and analyse associated changes in the dentate gyrus: specifically, in BDNF expression and cell division. We show that both exercise and enrichment improve object recognition memory, but that BDNF mRNA expression and cell proliferation in the dentate gyrus of the hippocampus increase only in exercised rats. These results are in general agreement with recent studies suggesting that the exercise component is the major neurogenic and neurotrophic stimulus in environmental enrichment protocols. We add to the expanding literature several novel aspects including the finding that enrichment in the absence of exercise can improve object recognition memory, probably via mechanisms that are independent of BDNF upregulation and neurogenesis in the dentate gyrus.

  2. Two-silicon-nanocrystal layer memory structure with improved retention characteristics.

    PubMed

    Nassiopoulou, A G; Salonidou, A

    2007-01-01

    It was demonstrated in the literature that the use of self-aligned doubly-stacked Si dots improves retention characteristics of a nanocrystal memory. In this paper, we show that a similar effect may be obtained by using two distinct layers of silicon nanocrystals within the gate dielectric of the MOS structure, if the nanocrystal density in each layer is high enough (above 10(12) dots/cm2) so as to get an average effect of at least one smaller dot underneath each larger one. The relative distance of the layers and their position from the silicon substrate and the gate metal are critical for optimum memory operation. Two different double-nanocrystal-layer structures were investigated. In the first structure the two nanocrystal layers were close together and they were composed of dots of different size (lower layer: 3 nm, upper layer: 5 nm), while in the second structure the dot layers were composed of dots of equal diameter (d = 3 nm) and their inter-distance was much larger. In both cases, the retention characteristics of the structure were improved compared with a single dot layer structure. In the second case this improvement was significantly larger than in the first case. Extrapolation of the data to ten years memory operation, showed that the charge loss after this time was only approximately 12%.

  3. Oral administration of squid lecithin-transphosphatidylated phosphatidylserine improves memory impairment in aged rats.

    PubMed

    Lee, Bombi; Sur, Bong-Jun; Han, Jeong-Jun; Shim, Insop; Her, Song; Lee, Yang-Seok; Lee, Hye-Jung; Hahm, Dae-Hyun

    2015-01-02

    Recently, lecithin-derived phosphatidylserine (PS), which originates from marine life, has received much attention as a viable alternative to bovine cerebral cortex PS. In this study, the use of squid phosphatidylcholine-transphosphatidylated PS (SQ-PS) was evaluated through examination of its ameliorating effects on age-associated learning and memory deficits in rats. Aged rats were orally administered SQ-PS (10, 20, or 50 mg/kg per day) once a day for seven days 30 min prior to behavioral assessment in a Morris water maze. SQ-PS administration produced significant dose-dependent improvements in escape latency for finding the platform in the Morris water maze in the aged rats even though Soy-PS administration also exhibited comparable improvements with SQ-PS. Biochemical alterations in the hippocampal cholinergic system, including changes in choline acetyltransferase and acetylcholinesterase immunoreactivity, were consistent with the behavioral results. In addition, SQ-PS treatment significantly restored age-associated decreases of choline transporter and muscarinic acetylcholine receptor type 1 mRNA expression in the hippocampus. These results demonstrate that orally administered SQ-PS dose-dependently aids in the improvement of memory deficits that occur during normal aging in rats. This suggests that SQ-PS may be a useful therapeutic agent in the treatment of diminished memory function in elderly people.

  4. Increasing stimulus duration improves attention and memory performance in elderly with cognitive impairment

    PubMed Central

    Lavner, Yizhar; Rabinowitz, Israel

    2015-01-01

    Objectives: In this study, we investigated whether increasing stimulus duration could improve performance on a test of attention and short-term memory in cognitively impaired individuals. Methods: A computer-generated forward digit span test was administered to 65 patients with mild cognitive impairment or dementia (28 intervention and 37 controls). After point of failure, testing in the intervention group was continued at the same rate, but with an average 150% digit lengthening to 800 ms. Testing of controls was continued using the standard digit span test. Results: In the intervention group, 13/28 (46.4%) improved their digit span test performance, compared to 2/37 (5.4%) in the control group (p = 0.00005). Conclusion: Cognitively impaired elderly participants improved performance on a test of attention and short-term memory, when stimulus duration was increased in proportion to elongation of the finger tap touch-phase previously found in a similar cohort. A possible mechanism for the effect of increased stimulus duration on attention and short-term memory is discussed. PMID:27081485

  5. Describe yourself to improve your autobiographical memory: A study in Alzheimer's disease.

    PubMed

    El Haj, Mohamad; Antoine, Pascal

    2017-03-01

    This study investigated whether retrieval of information related to conceptual self (i.e., self-images that encompass general factual and evaluative knowledge of one's identity) would improve autobiographical memory in Alzheimer's disease (AD). Participants with AD and controls were asked to retrieve autobiographical memories after providing statements to the question "Who am I? and after a control condition consisting of reading a general text. Autobiographical recall was analyzed with respect to specificity (general vs specific event), context recall (information describing the "when, where, and who" as well as affective states), and reliving (the subjective experience of recall). AD participants showed higher specificity, context recall and reliving after the "Who am I?" statements than after the text reading, and controls showed higher context recall after the former than after the latter condition. These findings highlight the relationship between self and autobiographical memory in AD and demonstrate how retrieval of information related to conceptual self may influence autobiographical memory in the disease.

  6. Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease.

    PubMed

    Bang, Shraddha R; Ambavade, Shirishkumar D; Jagdale, Priti G; Adkar, Prafulla P; Waghmare, Arun B; Ambavade, Prashant D

    2015-07-01

    Lacosamide, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of epilepsy. Some HDAC inhibitors have been proven effective for the treatment of memory disorders. The present investigation was designed to evaluate the effect of lacosamide on memory and brain HDAC levels. The effect on memory was evaluated in animals with scopolamine-induced amnesia using the elevated plus maze, object recognition test, and radial arm maze. The levels of acetylcholinesterase and HDAC in the cerebral cortex were evaluated. Lacosamide at doses of 10 and 30mg/kg significantly reduced the transfer latency in the elevated plus maze. Lacosamide at a dose of 30mg/kg significantly increased the time spent with a familiar object in the object recognition test at the 24h interval and decreased the time spent in the baited arm. Moreover, at this dose, the number of errors in the radial arm maze at 3 and 24h intervals was minimized and a reduction in the level of HDAC1, but not acetylcholinesterase, was observed in the cerebral cortex. These effects of lacosamide are equivalent to those of piracetam at a dose of 300mg/kg. These results suggest that lacosamide at a 30mg/kg dose improves disrupted memory, possibly by inhibiting HDAC, and could be used to treat amnesic symptoms of Alzheimer's disease.

  7. Memantine improves memory for taste-avoidance learning in day-old chicks exposed to isolation stress.

    PubMed

    Barber, Teresa A; Meyers, Ryan A; McGettigan, Brian F

    2010-04-01

    Activation of NMDA receptors by glutamate is particularly important in the initial stages of memory consolidation. Memantine, a noncompetitive NMDA receptor antagonist, ameliorates memory impairment under certain circumstances, despite blocking the activation of NMDA receptors. The present experiments tested the hypothesis that memantine can improve memory deficits induced by isolation stress in day-old chicks (Gallus gallus domesticus) trained in a one-trial taste-avoidance task. Three experiments assessed the effects of memantine at different concentrations and in combination with isolation stress. The results of Experiment 1 indicate that, under normal, non-stressed conditions, memory in control animals is strong and 15.0 mM memantine impairs memory, similar to that seen in many studies of the effects of NMDA receptor antagonists on learning. However, the results of Experiments 2 and 3 showed that, when chicks were exposed to isolation stress during the pre-training period, memory formation for saline-injected control animals was impaired and 5.0 mM memantine significantly improved memory in an inverted U-shaped dose response function. The current results extend the findings that memantine can ameliorate memory impairment and supports the hypothesis that memantine, despite its action to reduce NMDA receptor activity, can facilitate normalized memory acquisition.

  8. Computerized Memory Training Leads to Sustained Improvement in Visuospatial Short-Term Memory Skills in Children with Down Syndrome

    ERIC Educational Resources Information Center

    Bennett, Stephanie J.; Holmes, Joni; Buckley, Sue

    2013-01-01

    This study evaluated the impact of a computerized visuospatial memory training intervention on the memory and behavioral skills of children with Down syndrome. Teaching assistants were trained to support the delivery of a computerized intervention program to individual children over a 10-16 week period in school. Twenty-one children aged 7-12…

  9. Cathepsin B Improves ß-Amyloidosis and Learning and Memory in Models of Alzheimer's Disease.

    PubMed

    Embury, Christine M; Dyavarshetty, Bhagyalaxmi; Lu, Yaman; Wiederin, Jayme L; Ciborowski, Pawel; Gendelman, Howard E; Kiyota, Tomomi

    2016-12-13

    Amyloid-ß (Aß) precursor protein (APP) metabolism engages neuronal endolysosomal pathways for Aß processing and secretion. In Alzheimer's disease (AD), dysregulation of APP leads to excess Aß and neuronal dysfunction; suggesting that neuronal APP/Aß trafficking can be targeted for therapeutic gain. Cathepsin B (CatB) is a lysosomal cysteine protease that can lower Aß levels. However, whether CatB-modulation of Aß improves learning and memory function deficits in AD is not known. To this end, progenitor neurons were infected with recombinant adenovirus expressing CatB and recovered cell lysates subjected to proteomic analyses. The results demonstrated Lamp1 deregulation and linkages between CatB and the neuronal phagosome network. Hippocampal injections of adeno-associated virus expressing CatB reduced Aß levels, increased Lamp1 and improved learning and memory. The findings were associated with the emergence of c-fos + cells. The results support the idea that CatB can speed Aß metabolism through lysosomal pathways and as such reduce AD-associated memory deficits.

  10. Tualang honey supplement improves memory performance and hippocampal morphology in stressed ovariectomized rats.

    PubMed

    Al-Rahbi, Badriya; Zakaria, Rahimah; Othman, Zahiruddin; Hassan, Asma; Mohd Ismail, Zul Izhar; Muthuraju, Sangu

    2014-01-01

    Recently, our research team has reported that Tualang honey was able to improve immediate memory in postmenopausal women comparable with that of estrogen progestin therapy. Therefore the aim of the present study was to examine the effects of Tualang honey supplement on hippocampal morphology and memory performance in ovariectomized (OVX) rats exposed to social instability stress. Female Sprague-Dawley rats were divided into six groups: (i) sham-operated controls, (ii) stressed sham-operated controls, (iii) OVX rats, (iv) stressed OVX rats, (v) stressed OVX rats treated with 17β-estradiol (E2), and (vi) stressed OVX rats treated with Tualang honey. These rats were subjected to social instability stress procedure followed by novel object recognition (NOR) test. Right brain hemispheres were subjected to Nissl staining. The number and arrangement of pyramidal neurons in regions of CA1, CA2, CA3 and the dentate gyrus (DG) were recorded. Two-way ANOVA analyses showed significant interactions between stress and OVX in both STM and LTM test as well as number of Nissl-positive cells in all hippocampal regions. Both E2 and Tualang honey treatments improved both short-term and long-term memory and enhanced the neuronal proliferation of hippocampal CA2, CA3 and DG regions compared to that of untreated stressed OVX rats.

  11. A multifaceted prospective memory intervention to improve medication adherence: design of a randomized control trial.

    PubMed

    Insel, Kathleen C; Einstein, Gilles O; Morrow, Daniel G; Hepworth, Joseph T

    2013-01-01

    Adherence to prescribed antihypertensive agents is critical because control of elevated blood pressure is the single most important way to prevent stroke and other end organ damage. Unfortunately, nonadherence remains a significant problem. Previous interventions designed to improve adherence have demonstrated only small benefits of strategies that target single facets such as understanding medication directions. The intervention described here is informed by prospective memory theory and performance of older adults in laboratory-based paradigms and uses a comprehensive, multifaceted approach to improve adherence. It incorporates multiple strategies designed to support key components of prospective remembering involved in taking medication. The intervention is delivered by nurses in the home with an education control group for comparison. Differences between groups in overall adherence following the intervention and 6 months later will be tested. Systolic and diastolic blood pressure levels also will be examined between groups and as they relate to adherence. Intra-individual regression is planned to examine change in adherence over time and its predictors. Finally, we will examine the association between executive function/working memory and adherence, predicting that adherence will be related to executive/working memory in the control group but not in the intervention group.

  12. Dehydroepiandrosterone administration improves memory deficits following transient brain ischemia through sigma-1 receptor stimulation.

    PubMed

    Yabuki, Yasushi; Shinoda, Yasuharu; Izumi, Hisanao; Ikuno, Tatuya; Shioda, Norifumi; Fukunaga, Kohji

    2015-10-05

    Dehydroepiandrosterone (DHEA) is the most abundant neurosteroid synthesized de novo in the central nervous system. Oral DHEA administration elicits neuroprotection and cognitive improvement, but mechanisms underlying these functions in cerebral ischemia have remained unclear. Since DHEA is the endogenous ligand for the sigma-1 receptor (σ1R), we determined whether oral DHEA administration prevents neuronal cell death and improves cognition via σ1R stimulation in brain ischemia using a 20-min bilateral common carotid artery occlusion (BCCAO) mouse model. Twenty-four hours after BCCAO ischemia, mice were administered DHEA (15 or 30mg/kg p.o.) daily for 11 consecutive days. Memory deficits following brain ischemia were improved by DHEA administration dose-dependently. Accordingly, DHEA administration significantly prevented neuronal cell death in the hippocampal CA1 region in BCCAO mice. Interestingly, DHEA administration rescued decreases in Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) in the CA1 region. Moreover, DHEA administration significantly ameliorated decreases in adenosine 5'-triphosphate (ATP) levels and decreased σ1R expression levels in CA1 following BCCAO ischemia. Finally, co-treatment of mice with the σ1R antagonist NE-100 (1mg/kg, p.o.) blocked DHEA effects on memory improvement and neuroprotection in ischemic mice. Taken together, DHEA prevents neuronal cell death and activates CaMKII via σ1R stimulation, thereby improving cognitive deficits following brain ischemia.

  13. Tart cherry supplementation improves working memory, hippocampal inflammation, and autophagy in aged rats.

    PubMed

    Thangthaeng, Nopporn; Poulose, Shibu M; Gomes, Stacey M; Miller, Marshall G; Bielinski, Donna F; Shukitt-Hale, Barbara

    2016-12-01

    High consumption of fruits and vegetables has been associated with reduced risk of debilitating diseases and improved cognition in aged populations. These beneficial effects have been attributed to the phytochemicals found in fruits and vegetables, which have previously been shown to be anti-inflammatory and modulate autophagy. Tart cherries contain a variety of potentially beneficial phytochemicals; however, little research has been done to investigate the effects of tart cherry on the aging brain. Therefore, the purpose of this study was to determine if tart cherry supplementation can improve cognitive and motor function of aged rats via modulation of inflammation and autophagy in the brain. Thirty 19-month-old male Fischer 344 rats were weight-matched and assigned to receive either a control diet or a diet supplemented with 2 % Montmorency tart cherry. After 6 weeks on the diet, rats were given a battery of behavioral tests to assess for strength, stamina, balance, and coordination, as well as learning and working memory. Although no significant effects were observed on tests of motor performance, tart cherry improved working memory of aged rats. Following behavioral testing, the hippocampus was collected for western/densitometric analysis of inflammatory (GFAP, NOX-2, and COX-2) and autophagy (phosphorylated mTOR, Beclin 1, and p62/SQSTM) markers. Tart cherry supplementation significantly reduced inflammatory markers and improved autophagy function. Daily consumption of tart cherry reduced age-associated inflammation and promoted protein/cellular homeostasis in the hippocampus, along with improvements in working memory. Therefore, addition of tart cherry to the diet may promote healthy aging and/or delay the onset of neurodegenerative diseases.

  14. Material engineering of GexTe100-x compounds to improve phase-change memory performances

    NASA Astrophysics Data System (ADS)

    Navarro, G.; Sousa, V.; Persico, A.; Pashkov, N.; Toffoli, A.; Bastien, J.-C.; Perniola, L.; Maitrejean, S.; Roule, A.; Zuliani, P.; Annunziata, R.; De Salvo, B.

    2013-11-01

    In this paper we provide a detailed physical and electrical characterization of Germanium Telluride compounds (GexTe100-x) targeting phase-change memory applications. Thin films of Germanium-rich as well as Tellurium-rich phase-change materials are deposited for material analysis (XRD, resistivity and optical characterization). GexTe100-x compounds are then integrated in lance-type analytical phase-change memory devices allowing for a thorough analysis of the switching characteristics, data retention and endurance performances. Tellurium-rich GeTe alloys exhibit stable programming characteristics and can sustain endurance up to 107 cycles, while Germanium-rich compounds show an unstable RESET state during repeated write/erase cycles, probably affected by Ge segregation. Finally we demonstrate that data retention is strongly improved departing from Ge50Te50 stoichiometric composition.

  15. Retraction: High uniformity and improved nonlinearity by embedding nanocrystals in selector-less resistive random access memory

    NASA Astrophysics Data System (ADS)

    Banerjee, Writam; Lu, Nianduan; Li, Ling; Sun, Pengxiao; Liu, Qi; Lv, Hangbing; Long, Shibing; Liu, Ming

    2015-03-01

    Retraction of `High uniformity and improved nonlinearity by embedding nanocrystals in selector-less resistive random access memory' by Writam Banerjee et al., Nanoscale, 2014, advance article (C4NR05077K)

  16. 4-Aminopyridine Improves Spatial Memory in a Murine Model of HIV-1 Encephalitis

    PubMed Central

    Keblesh, James P.; Dou, Huanyu; Gendelman, Howard E.; Xiong, Huangui

    2011-01-01

    HIV-1-associated neurocognitive disorders (HAND) remains a significant source of morbidity in the era of wide spread use of highly active antiretroviral therapy. Disease is precipitated by low levels of viral growth and glial immune activation within the central nervous system. Blood borne macrophage and microglia affect a proinflammatory response and release viral proteins that affects neuronal viability and leads to death of nerve cells. Increasing evidence supports the notion that HAND is functional channelopathy, but proof of this concept remains incomplete. Based on their role in learning and memory processes, we now posit that voltage-gated potassium (Kv) channels could be a functional substrate for disease. This was tested in the severe combined immunodeficient (SCID) mouse model of HIV-1 encephalitis (HIVE) by examining whether the Kv channel blocker, 4-aminopyridine (4-AP), could affect behavioral, electrophysiological, and morphological measures of learning and memory. HIVE SCID mice showed impaired spatial memory in radial arm water maze tests. Electrophysiology studies revealed a reduction of long-term potentiation (LTP) in the CA1 region of the hippocampus. Importantly, systemic administration of 4-AP blocked HIV-1-associated reduction of LTP and improved animal performance in the radial arm water maze. These results support the importance of Kv channel dysfunction in disease but, more importantly, provide a potential target for adjunctive therapies for HAND. PMID:19462247

  17. Properties of Dopants in HfOx for Improving the Performance of Nonvolatile Memory

    NASA Astrophysics Data System (ADS)

    Duncan, Dan; Magyari-Köpe, Blanka; Nishi, Yoshio

    2017-03-01

    Doping is an increasingly popular technique for improving the characteristics of cutting-edge HfOx nonvolatile memory devices, but relatively few dopant species have been investigated. In this work, the properties of 50 different cation and anion dopants in HfOx are explored using density-functional theory and are corroborated with experimental data. Depending on the atomic species, dopants are found to preferentially form on either substitutional or interstitial lattice sites and to reduce the formation energy of oxygen vacancies in the surrounding oxide. The behavior of cation dopants in HfOx is also found to be well predicted by six properties: dopant valence, atomic radius, native-oxide enthalpy of formation, coordination number, magnetization, and charge transfer with the HfOx lattice. These results can be used to optimize dopant selection for tuning of the switching characteristics of HfOx -based resistance-change random-access-memory and conductive-bridge random-access-memory devices.

  18. Improved memory for reward cues following acute buprenorphine administration in humans.

    PubMed

    Syal, Supriya; Ipser, Jonathan; Terburg, David; Solms, Mark; Panksepp, Jaak; Malcolm-Smith, Susan; Bos, Peter A; Montoya, Estrella R; Stein, Dan J; van Honk, Jack

    2015-03-01

    In rodents, there is abundant evidence for the involvement of the opioid system in the processing of reward cues, but this system has remained understudied in humans. In humans, the happy facial expression is a pivotal reward cue. Happy facial expressions activate the brain's reward system and are disregarded by subjects scoring high on depressive mood who are low in reward drive. We investigated whether a single 0.2mg administration of the mixed mu-opioid agonist/kappa-antagonist, buprenorphine, would influence short-term memory for happy, angry or fearful expressions relative to neutral faces. Healthy human subjects (n38) participated in a randomized placebo-controlled within-subject design, and performed an emotional face relocation task after administration of buprenorphine and placebo. We show that, compared to placebo, buprenorphine administration results in a significant improvement of memory for happy faces. Our data demonstrate that acute manipulation of the opioid system by buprenorphine increases short-term memory for social reward cues.

  19. Nicotine improves AF64A-induced spatial memory deficits in Morris water maze in rats.

    PubMed

    Yamada, Kazuo; Furukawa, Satoshi; Iwasaki, Tsuneo; Ichitani, Yukio

    2010-01-18

    Ethylcholine mustard aziridinium ion (AF64A) is a neurotoxic derivative of choline that produces not only long-term presynaptic cholinergic deficits, but also various memory deficits in rats similar to some characteristics observed in Alzheimer's disease patients. This study investigated whether nicotine (NCT) administration attenuated spatial learning deficits induced by intracerebroventricular AF64A treatment. AF64A (6 nmol/6 microl)-or saline (SAL)-treated rats were trained in Morris water maze task. NCT (0.025-0.25mg/kg) was subcutaneously injected 5 min before the training every day. The results showed that moderate dose (0.10mg/kg) of NCT attenuated AF64A-induced prolongation of escape latency. Furthermore, NCT dose-dependently recovered the AF64A-induced decrease of time spent in the target quadrant in the probe test. These results suggest that NCT improves AF64A-induced spatial memory deficits, and thus it is a potential therapeutic agent for the treatment of memory deficits in dementia.

  20. Mitochondrial modulators improve lipid composition and attenuate memory deficits in experimental model of Huntington's disease.

    PubMed

    Mehrotra, Arpit; Sood, Abhilasha; Sandhir, Rajat

    2015-12-01

    3-Nitropropionic acid (3-NP) is an irreversible inhibitor of succinate dehydrogenase and induces neuropathological changes similar to those observed in Huntington's disease (HD). The objective of the present study was to investigate neuroprotective effect of mitochondrial modulators; alpha-lipoic acid (ALA) and acetyl-L-carnitine (ALCAR) on 3-NP-induced alterations in mitochondrial lipid composition, mitochondrial structure and memory functions. Experimental model of HD was developed by administering 3-NP at sub-chronic doses, twice daily for 17 days. The levels of conjugated dienes, cholesterol and glycolipids were significantly increased, whereas the levels of phospholipids (phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine) including cardiolipin were significantly decreased in the mitochondria isolated from the striatum of 3-NP-treated animals. In addition, the difference in molecular composition of each phospholipid class was also evaluated using mass spectrometry. Mitochondria lipid from 3-NP-treated animals showed increased cholesterol to phospholipid ratio, suggesting decreased mitochondrial membrane fluidity. 3-NP administration also resulted in ultra-structural changes in mitochondria, accompanied by swelling as assessed by transmission electron microscopy. The 3-NP administered animals had impaired spatial memory evaluated using elevated plus maze test. However, combined supplementation with ALA + ALCAR for 21 days normalized mitochondrial lipid composition, improved mitochondrial structure and ameliorated memory impairments in 3-NP-treated animals, suggesting an imperative role of these two modulators in combination in the management of HD.

  1. Metformin improves metabolic memory in high fat diet (HFD)-induced renal dysfunction.

    PubMed

    Tikoo, Kulbhushan; Sharma, Ekta; Amara, Venkateswara Rao; Pamulapati, Himani; Dhawale, Vaibhav Shrirang

    2016-08-22

    Recently, we have shown that high fat diet (HFD) in vivo and in vitro generates metabolic memory by altering H3K36me2 and H3K27me3 on the promoter of FOXO1 (transcription factor of gluconeogenic genes) (Kumar et al., 2015). Here we checked the hypothesis, whether concomitant diet reversal and metformin could overcome HFD-induced metabolic memory and renal damage. Male adult Sprague Dawley rats were rendered insulin resistant by feeding high fat diet for 16 weeks. Then the rats were subjected to diet reversal (REV) alone and along with metformin (REV+MET) for 8 weeks. Biochemical and histological markers of insulin resistance and kidney function were measured. Blood pressure and in vivo vascular reactivity to Angiotensin II (200 mgkg-1) were also checked. Diet reversal could improve lipid profile but could not prevent renal complications induced by HFD. Interestingly, metformin along with diet reversal restored the levels of blood glucose, triglycerides, cholesterol, blood urea nitrogen and creatinine. In kidney, metformin increased the activation of AMPK, decreased inflammatory markers-COX-2, IL-1β and apoptotic markers-PARP, Caspase3. Metformin was effective in lowering the elevated basal blood pressure, acute change in mean arterial pressure (ΔMAP) in response to Ang II. It also attenuated the tubulointerstitial fibrosis and glomerulosclerosis induced by HFD-feeding in kidney. Here we report for the first time, that metformin treatment overcomes metabolic memory and prevents HFD-induced renal damage.

  2. Intelligent structures based on the improved activation of shape memory polymers using Peltier cells

    NASA Astrophysics Data System (ADS)

    Díaz Lantada, Andrés; Lafont Morgado, Pilar; Muñoz Sanz, José Luis; Muñoz García, Julio; Munoz-Guijosa, Juan Manuel; Echávarri Otero, Javier

    2010-05-01

    This study is focused on obtaining intelligent structures manufactured from shape memory polymers possessing the ability to change their geometry in successive or 'step-by-step' actions. This objective has been reached by changing the conventionally used shape memory activation systems (heating resistance, laser or induction heating). The solution set out consists in using Peltier cells as a heating system capable of heating (and activating) a specific zone of the device in the first activation, while the opposite zone keeps its original geometry. By carefully reversing the polarity of the electrical supply to the Peltier cell, in the second activation, the as yet unchanged zone is activated while the already changed zone in the first activation remains unaltered. We have described the criteria for the selection, calibration and design of this alternative heating (activation) system based on the thermoelectric effect, together with the development of different 'proof of concept' prototypes that have enabled us to validate the concepts put forward, as well as suggest future improvements for 'intelligent' shape memory polymer-based devices.

  3. Attentional Filter Training but Not Memory Training Improves Decision-Making

    PubMed Central

    Schmicker, Marlen; Müller, Patrick; Schwefel, Melanie; Müller, Notger G.

    2017-01-01

    Decision-making has a high practical relevance for daily performance. Its relation to other cognitive abilities such as executive control and memory is not fully understood. Here we asked whether training of either attentional filtering or memory storage would influence decision-making as indexed by repetitive assessments of the Iowa Gambling Task (IGT). The IGT was developed to assess and simulate real-life decision-making (Bechara et al., 2005). In this task, participants gain or lose money by developing advantageous or disadvantageous decision strategies. On five consecutive days we trained 29 healthy young adults (20–30 years) either in working memory (WM) storage or attentional filtering and measured their IGT scores after each training session. During memory training (MT) subjects performed a computerized delayed match-to-sample task where two displays of bars were presented in succession. During filter training (FT) participants had to indicate whether two simultaneously presented displays of bars matched or not. Whereas in MT the relevant target stimuli stood alone, in FT the targets were embedded within irrelevant distractors (bars in a different color). All subjects within each group improved their performance in the trained cognitive task. For the IGT, we observed an increase over time in the amount of money gained in the FT group only. Decision-making seems to be influenced more by training to filter out irrelevant distractors than by training to store items in WM. Selective attention could be responsible for the previously noted relationship between IGT performance and WM and is therefore more important for enhancing efficiency in decision-making. PMID:28386225

  4. Attentional Filter Training but Not Memory Training Improves Decision-Making.

    PubMed

    Schmicker, Marlen; Müller, Patrick; Schwefel, Melanie; Müller, Notger G

    2017-01-01

    Decision-making has a high practical relevance for daily performance. Its relation to other cognitive abilities such as executive control and memory is not fully understood. Here we asked whether training of either attentional filtering or memory storage would influence decision-making as indexed by repetitive assessments of the Iowa Gambling Task (IGT). The IGT was developed to assess and simulate real-life decision-making (Bechara et al., 2005). In this task, participants gain or lose money by developing advantageous or disadvantageous decision strategies. On five consecutive days we trained 29 healthy young adults (20-30 years) either in working memory (WM) storage or attentional filtering and measured their IGT scores after each training session. During memory training (MT) subjects performed a computerized delayed match-to-sample task where two displays of bars were presented in succession. During filter training (FT) participants had to indicate whether two simultaneously presented displays of bars matched or not. Whereas in MT the relevant target stimuli stood alone, in FT the targets were embedded within irrelevant distractors (bars in a different color). All subjects within each group improved their performance in the trained cognitive task. For the IGT, we observed an increase over time in the amount of money gained in the FT group only. Decision-making seems to be influenced more by training to filter out irrelevant distractors than by training to store items in WM. Selective attention could be responsible for the previously noted relationship between IGT performance and WM and is therefore more important for enhancing efficiency in decision-making.

  5. Exploring new dielectrics to improve switching speeds of carbon nanotube memory devices

    NASA Astrophysics Data System (ADS)

    Lucas, Kristin Anne

    2011-12-01

    The hysteresis in carbon nanotube field effect transistor's (CNTFET) current vs. gate voltage curves can be used for memory devices. Testing possible changes to device structure and design, could improve both their endurance and switching speed characteristics. Preliminary work in the literature shows that the type of dielectric layer is a large factor in the device switching speed. Here, a new dielectric layer and a different device design will be tested to study how they affect the device performance. Results are compared to devices that are commercially available.

  6. An improved tuned mass damper (SMA-TMD) assisted by a shape memory alloy spring

    NASA Astrophysics Data System (ADS)

    Mishra, Sudib K.; Gur, Sourav; Chakraborty, Subrata

    2013-09-01

    The tuned mass damper (TMD) is a well acclaimed passive control device for vibration control of structures. However, the requirement of a higher mass ratio restricts its applicability for seismic vibration control of civil engineering structures. Improving the performance of TMDs has been attempted by supplementing them with nonlinear restoring devices. In this regard, the ability of shape memory alloy (SMA) in dissipating energy through a hysteretic phase transformation of its microstructure triggered by cyclic loading is notable. An improved version of TMD assisted by a nonlinear shape memory alloy (SMA) spring, referred as SMA-TMD, is studied here for seismic vibration mitigation. Extensive numerical simulations are conducted based on nonlinear random vibration analysis via stochastic linearization of the nonlinear force-deformation hysteresis of the SMA. A design optimization based on minimizing the root mean square displacement of the main structure is also carried out to postulate the optimal design parameters for the proposed system. The viability of the optimal design is verified with respect to its performance under recorded earthquake motions. Significant improvements of the control efficiency and a reduction of the TMD displacement at a much reduced mass ratio are shown to be achieved in the proposed SMA-TMD over those in the linear TMD.

  7. Selective GABAA α5 Positive Allosteric Modulators Improve Cognitive Function in Aged Rats with Memory Impairment

    PubMed Central

    Koh, Ming Teng; Rosenzweig-Lipson, Sharon; Gallagher, Michela

    2012-01-01

    A condition of excess activity in the hippocampal formation is observed in the aging brain and in conditions that confer additional risk during aging for Alzheimer’s disease. Compounds that act as positive allosteric modulators at GABAA α5 receptors might be useful in targeting this condition because GABAA α5 receptors mediate tonic inhibition of principal neurons in the affected network. While agents to improve cognitive function in the past focused on inverse agonists, which are negative allosteric modulators at GABAA α5 receptors, research supporting that approach used only young animals and predated current evidence for excessive hippocampal activity in age-related conditions of cognitive impairment. Here, we used two compounds, Compound 44 [6,6-dimethyl-3-(3-hydroxypropyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one] and Compound 6 [methyl 3,5-diphenylpyridazine-4-carboxylate], with functional activity as potentiators of γ-aminobutyric acid at GABAA α5 receptors, to test their ability to improve hippocampal-dependent memory in aged rats with identified cognitive impairment. Improvement was obtained in aged rats across protocols differing in motivational and performance demands and across varying retention intervals. Significant memory improvement occurred after either intracereboventricular infusion with Compound 44 (100 μg) in a water maze task or systemic administration with Compound 6 (3 mg/kg) in a radial arm maze task. Furthermore, systemic administration improved behavioral performance at dosing shown to provide drug exposure in the brain and in vivo receptor occupancy in the hippocampus. These data suggest a novel approach to improve neural network function in clinical conditions of excess hippocampal activity. PMID:22732440

  8. Improvement of Allocentric Spatial Memory Resolution in Children from 2 to 4 Years of Age

    ERIC Educational Resources Information Center

    Lambert, Farfalla Ribordy; Lavenex, Pierre; Lavenex, Pamela Banta

    2015-01-01

    Allocentric spatial memory, the memory for locations coded in relation to objects comprising our environment, is a fundamental component of episodic memory and is dependent on the integrity of the hippocampal formation in adulthood. Previous research from different laboratories reported that basic allocentric spatial memory abilities are reliably…

  9. Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.

    2010-01-01

    A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.

  10. Escitalopram improves memory deficits induced by maternal separation in the rat.

    PubMed

    Couto, Frederico Simões do; Batalha, Vânia L; Valadas, Jorge S; Data-Franca, João; Ribeiro, Joaquim A; Lopes, Luísa V

    2012-11-15

    Maternal separation (MS) induces depressive-like behavior and long-term changes in cognition in rats. Escitalopram is an antidepressant drug shown to reverse the depressive-like features caused by this stress model. However, it is not known if it can ameliorate the affected cognition. We now characterized the effect of escitalopram on hippocampal-dependent memory in rats submitted to the MS protocol. Male Wistar rats were assigned either to control (CTR) or maternal separated (MS) group. MS were separated from their dams between 2-14 postnatal days (PND) for 180min daily. Escitalopram was given in food pellets (0.34g/kg/day first 2 weeks and 0.41g/kg/day the subsequent period, average dose 25mg/kg) from PND 43 onwards, during 1 month. Depressive behavior was assessed in the forced swimming test (FST), and memory performance in the Morris water maze (MWM). Escitalopram significantly improved the FST's latency to despair in the MS group (n=6), but did not change the immobility time. All groups showed a significant learning effect in the MWM over time, but no differences have been found upon treatment (n=6). However, escitalopram treatment significantly increased the time spent on the platform quadrant in the probe trial in the MS group. We report here that chronic treatment with escitalopram is able to improve hippocampal dependent memory in a chronic stress model, while not changing the learning ability. Moreover, this is accompanied by an amelioration of the depressive like behavior. These results support the use of escitalopram to tackle underlying cognitive deficits caused by stress in early-life.

  11. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory

    PubMed Central

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:27551263

  12. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory.

    PubMed

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  13. Promising therapeutics with natural bioactive compounds for improving learning and memory--a review of randomized trials.

    PubMed

    Kumar, Hemant; More, Sandeep Vasant; Han, Sang-Don; Choi, Jin-Yong; Choi, Dong-Kug

    2012-09-03

    Cognitive disorders can be associated with brain trauma, neurodegenerative disease or as a part of physiological aging. Aging in humans is generally associated with deterioration of cognitive performance and, in particular, learning and memory. Different therapeutic approaches are available to treat cognitive impairment during physiological aging and neurodegenerative or psychiatric disorders. Traditional herbal medicine and numerous plants, either directly as supplements or indirectly in the form of food, improve brain functions including memory and attention. More than a hundred herbal medicinal plants have been traditionally used for learning and memory improvement, but only a few have been tested in randomized clinical trials. Here, we will enumerate those medicinal plants that show positive effects on various cognitive functions in learning and memory clinical trials. Moreover, besides natural products that show promising effects in clinical trials, we briefly discuss medicinal plants that have promising experimental data or initial clinical data and might have potential to reach a clinical trial in the near future.

  14. Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer's disease

    PubMed Central

    Ramezani, Matin; Darbandi, Niloufar; Khodagholi, Fariba; Hashemi, Azam

    2016-01-01

    There is currently no treatment for effectively slowing the progression of Alzheimer's disease, so early prevention is very important. Numerous studies have shown that flavonoids can improve memory impairment. The present study investigated the effects of myricetin, a member of the flavonoids, on intracerebroventricular streptozotocin induced neuronal loss and memory impairment in rat models of Alzheimer's disease. Myricetin at 5 or 10 mg/kg was intraperitoneally injected into rats over 21 days. Control rats were treated with 10 mL/kg saline. Behavioral test (the shuttle box test) was performed on day 22 to examine learning and memory in rats. Immediately after that, hematoxylin-eosin staining was performed to observe the morphological change in hippocampal CA3 pyramidal neurons. Myricetin greatly increased the number of hippocampal CA3 pyramidal neurons and improved learning and memory impairments in rats with Alzheimer's disease. These findings suggest that myricetin is beneficial for treatment of Alzheimer's disease. PMID:28197195

  15. Virtual Environmental Enrichment through Video Games Improves Hippocampal-Associated Memory

    PubMed Central

    Clemenson, Gregory D.

    2015-01-01

    The positive effects of environmental enrichment and their neural bases have been studied extensively in the rodent (van Praag et al., 2000). For example, simply modifying an animal's living environment to promote sensory stimulation can lead to (but is not limited to) enhancements in hippocampal cognition and neuroplasticity and can alleviate hippocampal cognitive deficits associated with neurodegenerative diseases and aging. We are interested in whether these manipulations that successfully enhance cognition (or mitigate cognitive decline) have similar influences on humans. Although there are many “enriching” aspects to daily life, we are constantly adapting to new experiences and situations within our own environment on a daily basis. Here, we hypothesize that the exploration of the vast and visually stimulating virtual environments within video games is a human correlate of environmental enrichment. We show that video gamers who specifically favor complex 3D video games performed better on a demanding recognition memory task that assesses participants' ability to discriminate highly similar lure items from repeated items. In addition, after 2 weeks of training on the 3D video game Super Mario 3D World, naive video gamers showed improved mnemonic discrimination ability and improvements on a virtual water maze task. Two control conditions (passive and training in a 2D game, Angry Birds), showed no such improvements. Furthermore, individual performance in both hippocampal-associated behaviors correlated with performance in Super Mario but not Angry Birds, suggesting that how individuals explored the virtual environment may influence hippocampal behavior. SIGNIFICANCE STATEMENT The hippocampus has long been associated with episodic memory and is commonly thought to rely on neuroplasticity to adapt to the ever-changing environment. In animals, it is well understood that exposing animals to a more stimulating environment, known as environmental enrichment, can

  16. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M

    2016-03-01

    Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p < 0.0001) and no change in performance on an additional task (delayed logical memory). In this study, although insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND

  17. Improvement in memory and static balance with abstinence in alcoholic men and women: selective relations with change in brain structure.

    PubMed

    Rosenbloom, Margaret J; Rohlfing, Torsten; O'Reilly, Anne W; Sassoon, Stephanie A; Pfefferbaum, Adolf; Sullivan, Edith V

    2007-07-15

    We investigated whether changes in memory or static balance in chronic alcoholics, occurring with abstinence or relapse, are associated with changes in lateral and fourth ventricular volume. Alcoholics meeting DSM-IV criteria for Alcohol Dependence (n=15) and non-alcoholic controls (n=26) were examined twice at a mean interval of 2 years with standard Wechsler Abbreviated Scale of Intelligence (WASI), Wechsler Memory Scale-Revised (WMS-R) tests, an ataxia battery, and structural MRI. At study entry, alcoholics had been abstinent on average for over 4 months and achieved lower scores than controls on WASI General IQ Index, WMS-R General Memory Index, and the ataxia battery. The 10 alcoholics who maintained sobriety at retest did not differ at study entry in socio-demographic measures, alcohol use, or WASI and WMS-R summary scores from the five relapsers. At follow-up, abstainers improved more than controls on the WMS-R General Memory Index. Ataxia tended to improve in abstainers relative to controls. Associations were observed between memory and lateral ventricular volume change and between ataxia and fourth ventricular volume change in alcoholics but not in the controls. Both memory and ataxia can improve with sustained sobriety, and brain-behavior associations suggest selective brain structural substrates for the changes observed.

  18. Methylphenidate Improves Working Memory and Set-Shifting in AD/HD: Relationships to Baseline Memory Capacity

    ERIC Educational Resources Information Center

    Mehta, Mitul A.; Goodyer, Ian M.; Sahakian, Barbara J.

    2004-01-01

    Objective: Catecholamine stimulant drugs are highly efficacious treatments for attention deficit/hyperactivity disorders (AD/HD). Catecholamine modulation in humans influences performance of numerous cognitive tasks, including tests of attention and working memory (WM). Clear delineation of the effects of methylphenidate upon such cognitive…

  19. No age deficits in the ability to use attention to improve visual working memory.

    PubMed

    Souza, Alessandra S

    2016-08-01

    Maintenance of information in mind to the moment-to-moment cognition is accomplished by working memory (WM). WM capacity is reduced in old age, but the nature of this decline is yet not clear. The current study examined the hypothesis that the decline in visual WM performance with age is related to a reduced ability to use attention to control the contents of WM. Young (M = 26 years) and old (M = 71 years) adults performed a color reproduction task in which the precise color of a set of dots had to be maintained in mind over a brief interval and later reproduced using a continuous color wheel. Attention was manipulated by presenting a spatial cue before the onset of the memory array (a precue) or during the maintenance phase (retro-cue). The cue indicated with 100% certainty the item to be tested at the end of the trial. A precue allows the selective encoding of only the relevant item to WM, whereas a retro-cue allows WM contents to be updated by refreshing the relevant (cued) item and removing nonrelevant (noncued) items. Aging was associated with a lower capacity in the baseline (no-cue) condition. Precues and (to a smaller extent) retro-cues improved WM performance (in terms of probability of recall and memory precision). Critically, the benefits of cueing were of similar magnitude in young and older adults showing that the ability to use attention to selectively encode and update the contents of WM is preserved with aging. (PsycINFO Database Record

  20. Nicotine improves working memory span capacity in rats following sub-chronic ketamine exposure.

    PubMed

    Rushforth, Samantha L; Steckler, Thomas; Shoaib, Mohammed

    2011-12-01

    Ketamine, an NMDA-receptor antagonist, produces cognitive deficits in humans in a battery of tasks involving attention and memory. Nicotine can enhance various indices of cognitive performance, including working memory span capacity measured using the odor span task (OST). This study examined the effects of a sub-chronic ketamine treatment to model cognitive deficits associated with schizophrenia, and to evaluate the effectiveness of nicotine, antipsychotic clozapine, and the novel mGlu2/3 agonist, LY404039, in restoring OST performance. Male hooded Lister rats were trained in the OST, a working memory task involving detection of a novel odor from an increasing number of presented odors until they exhibited asymptotic levels of stable performance. Sub-chronic ketamine exposure (10 and 30 mg/kg i.p. for 5 consecutive days) produced a dose-dependent impairment that was stable beyond 14 days following exposure. In one cohort, administration of graded doses of nicotine (0.025-0.1 mg/kg) acutely restored the performance in ketamine-treated animals, while significant improvements in odor span were observed in control subjects. In a second cohort of rats, acute tests with clozapine (1-10 mg/kg) and LY404039 (0.3-10 mg/kg) failed to reverse ketamine-induced deficits in doses that were observed to impair performance in the control groups. These data suggest that sub-chronic ketamine exposure in the OST presents a valuable method to examine novel treatments to restore cognitive impairments associated with neuropsychiatric disorders such as schizophrenia. Moreover, it highlights a central role for neuronal nicotinic receptors as viable targets for intervention that may be useful adjuncts to the currently prescribed anti-psychotics.

  1. Chronic rhein treatment improves recognition memory in high-fat diet-induced obese male mice.

    PubMed

    Wang, Sen; Huang, Xu-Feng; Zhang, Peng; Wang, Hongqin; Zhang, Qingsheng; Yu, Shijia; Yu, Yinghua

    2016-10-01

    High-fat (HF) diet modulates gut microbiota and increases plasma concentration of lipopolysaccharide (LPS) which is associated with obesity and its related low-grade inflammation and cognitive decline. Rhein is the main ingredient of the rhubarb plant which has been used as an anti-inflammatory agent for several millennia. However, the potential effects of rhein against HF diet-induced obesity and its associated alteration of gut microbiota, inflammation and cognitive decline have not been studied. In this study, C57BL/6J male mice were fed an HF diet for 8 weeks to induce obesity, and then treated with oral rhein (120 mg/kg body weight/day in HF diet) for a further 6 weeks. Chronic rhein treatment prevented the HF diet-induced recognition memory impairment assessed by the novel object recognition test, neuroinflammation and brain-derived neurotrophic factor (BDNF) deficits in the perirhinal cortex. Furthermore, rhein inhibited the HF diet-induced increased plasma LPS level and the proinflammatory macrophage accumulation in the colon and alteration of microbiota, including decreasing Bacteroides-Prevotella spp. and Desulfovibrios spp. DNA and increasing Bifidobacterium spp. and Lactobacillus spp. DNA. Moreover, rhein also reduced body weight and improved glucose tolerance in HF diet-induced obese mice. In conclusion, rhein improved recognition memory and prevented obesity in mice on a chronic HF diet. These beneficial effects occur via the modulation of microbiota, hypoendotoxinemia, inhibition of macrophage accumulation, anti-neuroinflammation and the improvement of BDNF expression. Therefore, supplementation with rhein-enriched food or herbal medicine could be beneficial as a preventive strategy for chronic HF diet-induced cognitive decline, microbiota alteration and neuroinflammation.

  2. Cholinesterase inhibitors improve both memory and complex learning in aged beagle dogs.

    PubMed

    Araujo, Joseph A; Greig, Nigel H; Ingram, Donald K; Sandin, Johan; de Rivera, Christina; Milgram, Norton W

    2011-01-01

    Similar to patients with Alzheimer's disease (AD), dogs exhibit age-dependent cognitive decline, amyloid-β (Aβ) pathology, and evidence of cholinergic hypofunction. The present study sought to further investigate the role of cholinergic hypofunction in the canine model by examining the effect of the cholinesterase inhibitors phenserine and donepezil on performance of two tasks, a delayed non-matching-to-position task (DNMP) designed to assess working memory, and an oddity discrimination learning task designed to assess complex learning, in aged dogs. Phenserine (0.5 mg/kg; PO) significantly improved performance on the DNMP at the longest delay compared to wash-out and partially attenuated scopolamine-induced deficits (15 μg/kg; SC). Phenserine also improved learning on a difficult version of an oddity discrimination task compared to placebo, but had no effect on an easier version. We also examined the effects of three doses of donepezil (0.75, 1.5, and 6 mg/kg; PO) on performance of the DNMP. Similar to the results with phenserine, 1.5 mg/kg of donepezil improved performance at the longest delay compared to baseline and wash-out, indicative of memory enhancement. These results further extend the findings of cholinergic hypofunction in aged dogs and provide pharmacological validation of the canine model with a cholinesterase inhibitor approved for use in AD. Collectively, these studies support utilizing the aged dog in future screening of therapeutics for AD, as well as for investigating the links among cholinergic function, Aβ pathology, and cognitive decline.

  3. Working memory training with tDCS improves behavioral and neurophysiological symptoms in pilot group with post-traumatic stress disorder (PTSD) and with poor working memory.

    PubMed

    Saunders, Nerida; Downham, Russell; Turman, Bulent; Kropotov, Juri; Clark, Richard; Yumash, Rustam; Szatmary, Arielle

    2015-01-01

    This pilot study investigated the feasibility of treating people suffering from both post-traumatic stress disorder (PTSD) and poor working memory by employing a combination of computerized working memory training and transcranial direct current stimulation (tDCS). After treatment, all four participants showed clinically significant improvements on a range of cognitive and emotional performance measures. Moreover, these improvements were accompanied by theoretically significant neurophysiological changes between pre- and post-treatment electroencephalographic (EEG) recordings. Specifically, the P3a component of participants' event related potentials (ERP) in response to novelty stimuli, characteristically abnormal in this clinical population, shifted significantly toward database norms. So, participants' initially slow alpha peak frequency (APF), theorized to underlie impaired cognitive processing abilities, also increased in both frequency and amplitude as a result of treatment. On the basis of these promising results, more extensive controlled studies are warranted.

  4. Improving working memory abilities in individuals with Down syndrome: a treatment case study

    PubMed Central

    Costa, Hiwet Mariam; Purser, Harry R. M.; Passolunghi, Maria Chiara

    2015-01-01

    Working memory (WM) skills of individuals with Down’s syndrome (DS) tend to be very poor compared to typically developing children of similar mental age. In particular, research has found that in individuals with DS visuo-spatial WM is better preserved than verbal WM. This study investigated whether it is possible to train short-term memory (STM) and WM abilities in individuals with DS. The cases of two teenage children are reported: EH, 17 years and 3 months, and AS, 15 years and 11 months. A school-based treatment targeting visuo-spatial WM was given to EH and AS for six weeks. Both prior to and after the treatment, they completed a set of assessments to measure WM abilities and their performance was compared with younger typically developing non-verbal mental age controls. The results showed that the trained participants improved their performance in some of the trained and non-trained WM tasks proposed, especially with regard to the tasks assessing visuo-spatial WM abilities. These findings are discussed on the basis of their theoretical, educational, and clinical implications. PMID:26441713

  5. Preexisting semantic representation improves working memory performance in the visuospatial domain.

    PubMed

    Rudner, Mary; Orfanidou, Eleni; Cardin, Velia; Capek, Cheryl M; Woll, Bencie; Rönnberg, Jerker

    2016-05-01

    Working memory (WM) for spoken language improves when the to-be-remembered items correspond to preexisting representations in long-term memory. We investigated whether this effect generalizes to the visuospatial domain by administering a visual n-back WM task to deaf signers and hearing signers, as well as to hearing nonsigners. Four different kinds of stimuli were presented: British Sign Language (BSL; familiar to the signers), Swedish Sign Language (SSL; unfamiliar), nonsigns, and nonlinguistic manual actions. The hearing signers performed better with BSL than with SSL, demonstrating a facilitatory effect of preexisting semantic representation. The deaf signers also performed better with BSL than with SSL, but only when WM load was high. No effect of preexisting phonological representation was detected. The deaf signers performed better than the hearing nonsigners with all sign-based materials, but this effect did not generalize to nonlinguistic manual actions. We argue that deaf signers, who are highly reliant on visual information for communication, develop expertise in processing sign-based items, even when those items do not have preexisting semantic or phonological representations. Preexisting semantic representation, however, enhances the quality of the gesture-based representations temporarily maintained in WM by this group, thereby releasing WM resources to deal with increased load. Hearing signers, on the other hand, may make strategic use of their speech-based representations for mnemonic purposes. The overall pattern of results is in line with flexible-resource models of WM.

  6. Improved self-healing of polyethylene/carbon black nanocomposites by their shape memory effect.

    PubMed

    Wang, Xiaoyan; Zhao, Jun; Chen, Min; Ma, Lan; Zhao, Xiaodong; Dang, Zhi-Min; Wang, Zhenwen

    2013-02-07

    In this work, the improved self-healing of cross-linked polyethylene (PE) (cPE)/carbon black (CB) nanocomposites by their shape memory effect (SME) is investigated. CB nanoparticles are found to be homogeneously dispersed in the PE matrix and significantly increase the strength of the materials. Compared with the breaking of linear PE (lPE) at the melting temperature (T(m)), the cPE and cPE/CB nanocomposites still have high strength above T(m) due to the formation of networks. The cPE and cPE/CB nanocomposites show both high strain fixity ratio (R(f)) and high strain recovery ratio (R(r)). Crystallization-induced elongation is observed for all the prepared shape memory polymer (SMP) materials and the effect becomes less remarkable with increasing volume fraction of CB nanoparticles (v(CB)). The scratch self-healing tests show that the cross-linking of PE matrix, the addition of CB nanoparticles, and the previous stretching in the direction perpendicular to the scratch favor the closure of the scratch and its complete healing. This SME-aided self-healing could have potential applications in diverse fields such as coating and structure materials.

  7. Self-compliance-improved resistive switching using Ir/TaOx/W cross-point memory

    PubMed Central

    2013-01-01

    Resistive switching properties of a self-compliance resistive random access memory device in cross-point architecture with a simple stack structure of Ir/TaO x /W have been investigated. A transmission electron microscope and atomic force microscope were used to observe the film properties and morphology of the stack. The device has shown excellent switching cycle uniformity with a small operation of ±2.5 V and a resistance ratio of >100. The device requires neither any frorming-process nor current compliance limit for repeatable operation in contrast to conventional resistive random access memory devices. The effect of bottom electrode morphology and surface roughness is also studied. The improvement is due to the enhanced electric field at the nanotips in the bottom electrode and the defective TaO x switching layer which enable controlled filament formation/rupture. The device area dependence of the low resistance state indicates multifilament formation. The device has shown a robust alternating current endurance of >105 cycles and a data retention of >104 s. PMID:24341544

  8. Neoechinulin A induced memory improvements and antidepressant-like effects in mice.

    PubMed

    Sasaki-Hamada, Sachie; Hoshi, Maho; Niwa, Yuki; Ueda, Yudai; Kokaji, Aya; Kamisuki, Shinji; Kuramochi, Kouji; Sugawara, Fumio; Oka, Jun-Ichiro

    2016-11-03

    Neoechinulin A is an isoprenyl indole alkaloid that exhibits scavenging, neurotrophic factor-like, and anti-apoptotic activities. However, the effectiveness of neoechinulin A in animal models of disease has not yet been explored. In the present study, we investigated the effects of neoechinulin A on memory impairment in lipopolysaccharide (LPS)-treated mice and its antidepressant-like effects in mice. In the Y-maze test, the intracerebroventicular (i.c.v.) administration of LPS (10μg/mouse) significantly decreased spontaneous alternation behavior, which was prevented by the prior administration of neoechinulin A (300ng/mouse, i.c.v.). None of the treatments altered the locomotor activity of mice. Moreover, the administration of neoechinulin A decreased the immobility time in the forced-swim test or tail suspension test, which was prevented by the prior administration of WAY100635 (an antagonist of 5-HT1A receptors) and parachlorophenylalanine (an inhibitor of tryptophan hydroxylase). These results suggest that neoechinulin A improves memory functions in LPS-treated mice, and also exerts antidepressant-like effects through changes in the 5-HT system.

  9. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer's disease mice.

    PubMed

    Alves, Sandro; Churlaud, Guillaume; Audrain, Mickael; Michaelsen-Preusse, Kristin; Fol, Romain; Souchet, Benoit; Braudeau, Jérôme; Korte, Martin; Klatzmann, David; Cartier, Nathalie

    2016-12-20

    Interleukin-2 (IL-2)-deficient mice have cytoarchitectural hippocampal modifications and impaired learning and memory ability reminiscent of Alzheimer's disease. IL-2 stimulates regulatory T cells whose role is to control inflammation. As neuroinflammation contributes to neurodegeneration, we investigated IL-2 in Alzheimer's disease. Therefore, we investigated IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease relative to age-matched control individuals. We then treated APP/PS1ΔE9 mice having established Alzheimer's disease with IL-2 for 5 months using single administration of an AAV-IL-2 vector. We first found decreased IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease. In mice, IL-2-induced systemic and brain regulatory T cells expansion and activation. In the hippocampus, IL-2 induced astrocytic activation and recruitment of astrocytes around amyloid plaques, decreased amyloid-β42/40 ratio and amyloid plaque load, improved synaptic plasticity and significantly rescued spine density. Of note, this tissue remodelling was associated with recovery of memory deficits, as assessed in the Morris water maze task. Altogether, our data strongly suggest that IL-2 can alleviate Alzheimer's disease hallmarks in APP/PS1ΔE9 mice with established pathology. Therefore, this should prompt the investigation of low-dose IL-2 in Alzheimer's disease and other neuroinflammatory/neurodegenerative disorders.

  10. Action video game playing is associated with improved visual sensitivity, but not alterations in visual sensory memory.

    PubMed

    Appelbaum, L Gregory; Cain, Matthew S; Darling, Elise F; Mitroff, Stephen R

    2013-08-01

    Action video game playing has been experimentally linked to a number of perceptual and cognitive improvements. These benefits are captured through a wide range of psychometric tasks and have led to the proposition that action video game experience may promote the ability to extract statistical evidence from sensory stimuli. Such an advantage could arise from a number of possible mechanisms: improvements in visual sensitivity, enhancements in the capacity or duration for which information is retained in visual memory, or higher-level strategic use of information for decision making. The present study measured the capacity and time course of visual sensory memory using a partial report performance task as a means to distinguish between these three possible mechanisms. Sensitivity measures and parameter estimates that describe sensory memory capacity and the rate of memory decay were compared between individuals who reported high evels and low levels of action video game experience. Our results revealed a uniform increase in partial report accuracy at all stimulus-to-cue delays for action video game players but no difference in the rate or time course of the memory decay. The present findings suggest that action video game playing may be related to enhancements in the initial sensitivity to visual stimuli, but not to a greater retention of information in iconic memory buffers.

  11. Improving Working Memory Efficiency by Reframing Metacognitive Interpretation of Task Difficulty

    ERIC Educational Resources Information Center

    Autin, Frederique; Croizet, Jean-Claude

    2012-01-01

    Working memory capacity, our ability to manage incoming information for processing purposes, predicts achievement on a wide range of intellectual abilities. Three randomized experiments (N = 310) tested the effectiveness of a brief psychological intervention designed to boost working memory efficiency (i.e., state working memory capacity) by…

  12. Methylphenidate Improves Visual-Spatial Memory in Children with Attention-Deficit- hyperactivity Disorder

    ERIC Educational Resources Information Center

    Bedard, Anne-Claude; Martinussen, Rhonda; Ickowicz, Abel; Tannock, Rosemary

    2004-01-01

    Objective: To investigate the effect of methylphenidate (MPH) on visual-spatial memory, as measured by subtests of the Cambridge Neuropsychological Testing Automated Battery (CANTAB), in children with attention-deficit/hyperactivity disorder (ADHD). Visual-spatial memory is a core component of working memory that has been shown to be impaired in…

  13. Working memory load can both improve and impair selective attention: evidence from the Navon paradigm.

    PubMed

    Ahmed, Lubna; de Fockert, Jan W

    2012-10-01

    Selective attention to relevant targets has been shown to depend on the availability of working memory (WM). Under conditions of high WM load, processing of irrelevant distractors is enhanced. Here we showed that this detrimental effect of WM load on selective attention efficiency is reversed when the task requires global- rather than local-level processing. Participants were asked to attend to either the local or the global level of a hierarchical Navon stimulus while keeping either a low or a high load in WM. In line with previous findings, during attention to the local level, distractors at the global level produced more interference under high than under low WM load. By contrast, loading WM had the opposite effect of improving selective attention during attention to the global level. The findings demonstrate that the impact of WM load on selective attention is not invariant, but rather is dependent on the level of the to-be-attended information.

  14. Improving the Spacelab mass memory unit tape layout with a simulation model

    NASA Technical Reports Server (NTRS)

    Noneman, S. R.

    1984-01-01

    A tape drive called the Mass Memory Unit (MMU) stores software used by Spacelab computers. MMU tape motion must be minimized during typical flight operations to avoid a loss of scientific data. A projection of the tape motion is needed for evaluation of candidate tape layouts. A computer simulation of the scheduled and unscheduled MMU tape accesses is developed for this purpose. This simulation permits evaluations of candidate tape layouts by tracking and summarizing tape movements. The factors that affect tape travel are investigated and a heuristic is developed to find a good tape layout. An improved tape layout for Spacelab I is selected after the evaluation of fourteen candidates. The simulation model will provide the ability to determine MMU layouts that substantially decrease the tape travel on future Spacelab flights.

  15. Spermidine-induced improvement of memory involves a cross-talk between protein kinases C and A.

    PubMed

    Guerra, Gustavo P; Mello, Carlos F; Bochi, Guilherme V; Pazini, Andréia M; Rosa, Michelle M; Ferreira, Juliano; Rubin, Maribel A

    2012-07-01

    Spermidine (SPD) is an endogenous aliphatic amine with polycationic structure that modulates NMDA receptor activity and improves memory. Recent evidence suggests that cAMP-dependent protein kinase (PKA) and cAMP response element-binding protein (CREB) play a role in SPD-induced improvement of memory. In the current study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in SPD-induced facilitation of memory of inhibitory avoidance task in adult rats. The post-training administration of the PKC inhibitor, 3-[1-(dimethylaminopropyl)indol-3-yl]-4-(indol-3-yl)maleimide hydrochloride [GF 109203X, 2.5 ρmol, intrahippocampal (ih)] with SPD (0.2 nmol, ih) prevented memory improvement induced by SPD. Intrahippocampal administration of SPD (0.2 nmol) facilitated PKC phosphorylation in the hippocampus, 30 min after administration. GF 109203X prevented not only the stimulatory effect of SPD on PKC but also PKA and CREB phosphorylation. These results suggest that memory enhancement induced by the ih administration of SPD involves the cross-talk between PKC and PKA/CREB, with sequential activation of PKC and PKA/CREB pathways, in rats.

  16. Increase in c-Fos and Arc protein in retrosplenial cortex after memory-improving lateral hypothalamic electrical stimulation treatment.

    PubMed

    Kádár, Elisabeth; Vico-Varela, Eva; Aldavert-Vera, Laura; Huguet, Gemma; Morgado-Bernal, Ignacio; Segura-Torres, Pilar

    2016-02-01

    Post-training Intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH), a kind of rewarding deep-brain stimulation, potentiates learning and memory and increases c-Fos protein expression in specific memory-related brain regions. In a previous study, Aldavert-Vera et al. (2013) reported that post-acquisition LH-ICSS improved 48 h retention of a delay two-way active avoidance conditioning (TWAA) and induced c-Fos expression increase in CA3 at 90 min after administration. Nevertheless, this c-Fos induction was only observed after the acquisition session and not after the retention test at 48 h, when the ICSS improving effect was observed on memory. This current study aims to examine the hypothesis that post-training ICSS treatment may stimulate c-Fos expression at the time of the TWAA retention test in retrosplenial cortex (RSC), a hippocampus-related brain region more closely related with long-lasting memory storage. Effects of ICSS on Arc protein, a marker of memory-associated synaptic plasticity, were also measured by immunohistochemistry in granular and agranular RSC. The most innovative results are that the ICSS treatment potentiates the c-Fos induction across TWAA conditions (no conditioning, acquisition and retention), specifically in layer V of the granular RSC, along with increases of Arc protein levels in the granular but not in agranular areas of RSC ipsilaterally few hours after ICSS. This leads us to suggest that plasticity-related protein activation in the granular RSC could be involved in the positive modulatory effects of ICSS on TWAA memory consolidation, opening a new approach for future research in ICSS memory facilitation.

  17. Feasibility of a 6-month exercise and recreation program to improve executive functioning and memory of individuals with chronic stroke

    PubMed Central

    Rand, Debbie; Eng, Janice J.; Liu-Ambrose, Teresa; Tawashy, Amira E.

    2011-01-01

    Background Physical activity has been shown to be beneficial for improving cognitive function in healthy older adults. However there is limited research on the benefits of physical activity on cognitive performance after stroke. Objective To determine if a combined exercise and recreation program can improve the executive functioning and memory in individuals with chronic stroke. Methods 11 ambulatory subjects with chronic stroke (mean age 67±10.8 years) participated in a 6 month program of exercise for 2 hours and recreation for 1 hour weekly. Executive functions and memory were assessed at baseline, 3, and 6 months by a battery of standard neuropsychological tests including response inhibition, cognitive flexibility, dual task (motor plus cognitive) and memory. Motor ability was also assessed. Non-parametric statistics were used to assess the differences between the three assessments. Results At baseline, substantial deficits in all aspects of executive functioning were revealed. From baseline to 3 mo, the mean improvement was 10±14% (χ2=9.3, p=0.0025) for the dual task (Walking while Talking), −3±22% (χ2=2.4, p>0.05) for response inhibition (Stroop test) and 61±69% (χ2=8.0, p=0.04) for memory (Rey Auditory Verbal Learning Test - long delay). From baseline to 6 months, the mean improvement was 7±7.5% (χ2=12.0, p=0.007) for response inhibition (Stroop Test). In addition, knee strength and walking speed improved significantly at 3 months. Conclusions This pilot study suggests that exercise and recreation may improve memory and executive functions of community dwelling individuals with stroke. Further studies require a larger sample size and a control group. PMID:20460494

  18. Collaboration can improve individual recognition memory: evidence from immediate and delayed tests.

    PubMed

    Rajaram, Suparna; Pereira-Pasarin, Luciane P

    2007-02-01

    In two experiments, we tested the effects of collaboration on individual recognition memory. In Experiment 1, participants studied pictures and words either for meaning or for surface properties and made recognition memory judgments individually either following group discussion among 3 members (collaborative condition) or in the absence of discussion (noncollaborative condition). Levels of processing and picture superiority effects were replicated, and collaboration significantly increased individual recognition memory. Experiment 2 replicated this positive effect and showed that even though memory sensitivity declined at longer delays (48 h and 1 week), collaboration continued to exert a positive influence. These findings show that (1) consensus is not necessary for producing benefits of collaboration on individual recognition, (2) collaborative facilitation on individual memory is robust, and (3) collaboration enhances individual memory further if conditions predispose individual accuracy in the absence of collaboration.

  19. Improving Problem Solving in Primary School Students: The Effect of a Training Programme Focusing on Metacognition and Working Memory

    ERIC Educational Resources Information Center

    Cornoldi, Cesare; Carretti, Barbara; Drusi, Silvia; Tencati, Chiara

    2015-01-01

    Background: Despite doubts voiced on their efficacy, a series of studies has been carried out on the capacity of training programmes to improve academic and reasoning skills by focusing on underlying cognitive abilities and working memory in particular. No systematic efforts have been made, however, to test training programmes that involve both…

  20. Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats

    PubMed Central

    Speisman, Rachel. B.; Kumar, Ashok; Rani, Asha; Foster, Thomas C.; Ormerod, Brandi K.

    2012-01-01

    We tested whether daily exercise modulates immune and neuroimmune cytokines, hippocampus-dependent behavior and hippocampal neurogenesis in aging male F344 rats (18 mo upon arrival). Twelve weeks after conditioned running or control group assignment (n = 6 per group), the rats were trained and tested in a rapid water maze followed by an inhibitory avoidance task. The rats were BrdU-injected beginning 12 days after behavioral testing and killed 3 weeks later to quantify cytokines and neurogenesis. Daily exercise increased neurogenesis and improved immediate and 24 h water maze discrimination index (DI) scores and 24 h inhibitory avoidance retention latencies. Daily exercise decreased cortical VEGF, hippocampal IL-1β and serum MCP-1, GRO-KC and leptin levels but increased hippocampal GRO-KC and IL-18 concentrations. Serum leptin concentration correlated negatively with new neuron number and both DI scores while hippocampal IL-1β concentration correlated negatively with memory scores in both tasks. Cortical VEGF, serum GRO-KC and serum MCP-1 levels correlated negatively with immediate DI score and we found a novel positive correlation between hippocampal IL-18 and GRO-KC levels and new neuron number. Pathway analyses revealed distinct serum, hippocampal and cortical compartment cytokine relationships. Our results suggest that daily exercise potentially improves cognition in aging rats by modulating hippocampal neurogenesis and immune and neuroimmune cytokine signaling. PMID:23078985

  1. Can physical exercise in old age improve memory and hippocampal function?

    PubMed Central

    van Praag, Henriette; Sendtner, Michael

    2016-01-01

    Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer’s disease. While the long-term health-promoting and protective effects of exercise are encouraging, it’s potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry—brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer’s disease pathology, vascular and metabolic risk factors and genetic variability. PMID:26912638

  2. Novel television-based cognitive training improves working memory and executive function.

    PubMed

    Shatil, Evelyn; Mikulecká, Jaroslava; Bellotti, Francesco; Bureš, Vladimír

    2014-01-01

    The main study objective was to investigate the effect of interactive television-based cognitive training on cognitive performance of 119 healthy older adults, aged 60-87 years. Participants were randomly allocated to a cognitive training group or to an active control group in a single-blind controlled two-group design. Before and after training interactive television cognitive performance was assessed on well validated tests of fluid, higher-order ability, and system usability was evaluated. The participants in the cognitive training group completed a television-based cognitive training programme, while the participants in the active control group completed a TV-based programme of personally benefiting activities. Significant improvements were observed in well validated working memory and executive function tasks in the cognitive training but not in the control group. None of the groups showed statistically significant improvement in life satisfaction score. Participants' reports of "adequate" to "high" system usability testify to the successful development and implementation of the interactive television-based system and compliant cognitive training contents. The study demonstrates that cognitive training delivered by means of an interactive television system can generate genuine cognitive benefits in users and these are measurable using well-validated cognitive tests. Thus, older adults who cannot use or afford a computer can easily use digital interactive television to benefit from advanced software applications designed to train cognition.

  3. Can physical exercise in old age improve memory and hippocampal function?

    PubMed

    Duzel, Emrah; van Praag, Henriette; Sendtner, Michael

    2016-03-01

    Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer's disease. While the long-term health-promoting and protective effects of exercise are encouraging, it's potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry-brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer's disease pathology, vascular and metabolic risk factors and genetic variability.

  4. [Study on effect of astragali radix polysaccharides in improving learning and memory functions in aged rats and its mechanism].

    PubMed

    Yao, Hui; Gu, Li-Jia; Guo, Jian-You

    2014-06-01

    To observe the effect of Astragali Radix polysaccharides (APS) on the learning and memory functions of aged rats, in order to explore its mechanism for improving the learning and memory functions. Natural aging female SD rats were selected in the animal model and randomly divided into the control group, the APS low-dose group (50 mg x kg(-1)), the APS high-dose group (150 mg x kg(-1)) and the piracetam-treated group (560 mg x kg(-1)). They were orally administered with the corresponding drugs for consecutively 60 days. Besides, a young control group was set. The learning and memory functions of the rats were tested by the open-field test and the Morris water maze task. The Western-blot method was used to observe the levels of relevant neural plasticity protein N-methyl-D-aspartate receptor (NMDA receptor) in hippocampus, calcium/calmodulin dependent protein kinase II (CaMK II), protein kinase (PKA), the phosphorylation level of CAMP response element binding protein (CREB) and the protein expression of brain derived neurotrophic factor(BDNF). In this study, the authors found that the learning and memory functions and the hippocampus neural plasticity protein expression of the aged rat group were much lower than that of the young control group (P < 0.01). Compared with the aged rat group, the APS group showed the significant improvement in the impaired learning and memory functions of aged rats and the up-regulation in the hippocampus neural plasticity protein expression. The results showed that APS may improve the learning and memory functions of aged rats by increasing the expressions of relevant neural plasticity proteins.

  5. Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice

    PubMed Central

    Kennard, John A.; Harrison, Fiona E.

    2014-01-01

    The present study investigated the effects of a single intravenous (i.v.) dose of Vitamin C (ascorbate, ASC) on spatial memory in APP/PSEN1 mice, an Alzheimer's disease model. First, we confirmed the uptake time course in ASC-depleted gulo (−/−) mice, which cannot synthesize ASC. Differential tissue uptake was seen based on ASC transporter distribution. Liver (SVCT1 & SVCT2) ASC was elevated at 30, 60 and 120 min post-treatment (125 mg/kg, i.v.), whereas spleen (SVCT2) ASC increased at 60 and 120 min. There was no detectable change in cortical (SVCT2 at choroid plexus, and neurons) ASC within the 2-hour interval, although the cortex preferentially retained ASC. APP/PSEN1 and wild type (WT) mice at three ages (3, 9, or 20 months) were treated with ASC (125 mg/kg, i.v.) or saline 45 min before testing on the Modified Y-maze, a two-trial task of spatial memory. Memory declined with age and ASC treatment improved performance in 9 month-old APP/PSEN1 and WT mice. APP/PSEN1 mice displayed no behavioral impairment relative to WT controls. Although dopamine and metabolite DOPAC decreased in the nucleus accumbens with age, and improved spatial memory was correlated with increased dopamine in saline treated mice, acute ASC treatment did not alter monoamine levels in the nucleus accumbens. These data show that the Modified Y-maze is sensitive to age-related deficits, but not additional memory deficits due to amyloid pathology in APP/PSEN1 mice. They also suggest improvements in short-term spatial memory were not due to changes in the neuropathological features of AD or monoamine signaling. PMID:24508240

  6. An Adaptive Memory Interface Controller for Improving Bandwidth Utilization of Hybrid and Reconfigurable Systems

    SciTech Connect

    Castellana, Vito G.; Tumeo, Antonino; Ferrandi, Fabrizio

    2014-05-30

    Emerging applications such as data mining, bioinformatics, knowledge discovery, social network analysis are irregular. They use data structures based on pointers or linked lists, such as graphs, unbalanced trees or unstructures grids, which generates unpredictable memory accesses. These data structures usually are large, but difficult to partition. These applications mostly are memory bandwidth bounded and have high synchronization intensity. However, they also have large amounts of inherent dynamic parallelism, because they potentially perform a task for each one of the element they are exploring. Several efforts are looking at accelerating these applications on hybrid architectures, which integrate general purpose processors with reconfigurable devices. Some solutions, which demonstrated significant speedups, include custom-hand tuned accelerators or even full processor architectures on the reconfigurable logic. In this paper we present an approach for the automatic synthesis of accelerators from C, targeted at irregular applications. In contrast to typical High Level Synthesis paradigms, which construct a centralized Finite State Machine, our approach generates dynamically scheduled hardware components. While parallelism exploitation in typical HLS-generated accelerators is usually bound within a single execution flow, our solution allows concurrently running multiple execution flow, thus also exploiting the coarser grain task parallelism of irregular applications. Our approach supports multiple, multi-ported and distributed memories, and atomic memory operations. Its main objective is parallelizing as many memory operations as possible, independently from their execution time, to maximize the memory bandwidth utilization. This significantly differs from current HLS flows, which usually consider a single memory port and require precise scheduling of memory operations. A key innovation of our approach is the generation of a memory interface controller, which

  7. Adaptive working memory training improved brain function in human immunodeficiency virus–seropositive patients

    PubMed Central

    Løhaugen, Gro C.; Andres, Tamara; Jiang, Caroline S.; Douet, Vanessa; Tanizaki, Naomi; Walker, Christina; Castillo, Deborrah; Lim, Ahnate; Skranes, Jon; Otoshi, Chad; Miller, Eric N.; Ernst, Thomas M.

    2016-01-01

    Objective We aimed to evaluate the effectiveness of an adaptive working memory (WM) training (WMT) program, the corresponding neural correlates, and LMX1A‐rs4657412 polymorphism on the adaptive WMT, in human immunodeficiency virus (HIV) participants compared to seronegative (SN) controls. Methods A total of 201 of 206 qualified participants completed baseline assessments before randomization to 25 sessions of adaptive WMT or nonadaptive WMT. A total of 74 of 76 (34 HIV, 42 SN) completed adaptive WMT and all 40 completed nonadaptive WMT (20 HIV, 20 SN) and were assessed after 1 month, and 55 adaptive WMT participants were also assessed after 6 months. Nontrained near‐transfer WM tests (Digit‐Span, Spatial‐Span), self‐reported executive functioning, and functional magnetic resonance images during 1‐back and 2‐back tasks were performed at baseline and each follow‐up visit, and LMX1A‐rs4657412 was genotyped in all participants. Results Although HIV participants had slightly lower cognitive performance and start index than SN at baseline, both groups improved on improvement index (>30%; false discovery rate [FDR] corrected p < 0.0008) and nontrained WM tests after adaptive WMT (FDR corrected, p ≤ 0.001), but not after nonadaptive WMT (training by training type corrected, p = 0.01 to p = 0.05) 1 month later. HIV participants (especially LMX1A‐G carriers) also had poorer self‐reported executive functioning than SN, but both groups reported improvements after adaptive WMT (Global: training FDR corrected, p = 0.004), and only HIV participants improved after nonadaptive WMT. HIV participants also had greater frontal activation than SN at baseline, but brain activation decreased in both groups at 1 and 6 months after adaptive WMT (FDR corrected, p < 0.0001), with normalization of brain activation in HIV participants, especially the LMX1A‐AA carriers (LMX1A genotype by HIV status, cluster‐corrected‐p < 0

  8. An investigation of errorless learning in memory-impaired patients: improving the technique and clarifying theory.

    PubMed

    Tailby, Rebecca; Haslam, Catherine

    2003-01-01

    In rehabilitating individuals who demonstrate severe memory impairment, errorless learning techniques have proven particularly effective. Prevention of errors during acquisition of information leads to better memory than does learning under errorful conditions. This paper presents results of a study investigating errorless learning in three patient groups: those demonstrating mild, moderate, and severe memory impairments. The first goal of the study was to trial a new version of errorless learning, one encouraging more active participation in learning by patients via the use of elaboration and self-generation. This technique led to significantly better memory performance than seen under standard errorless conditions. This finding highlights the value of encouraging active and meaningful involvement by patients in errorless learning, to build upon the benefits flowing from error prevention. A second goal of the study was to clarify the mechanisms underlying errorless learning. Memory performance under errorless and errorful conditions was compared within and across each group of patients, to facilitate theoretical insight into the memory processes underlying performance. The pattern of results observed was equivocal. The data most strongly supported the hypothesis that the benefits seen under errorless learning reflect the operation of residual explicit memory processes, however a concurrent role for implicit memory processes was not ruled out.

  9. Does an Activity-Based Learning Strategy Improve Preschool Children's Memory for Narrative Passages?

    ERIC Educational Resources Information Center

    Biazak, Janna E.; Marley, Scott C.; Levin, Joel R.

    2010-01-01

    Contemporary embodiment theory's indexical hypothesis predicts that engaging in text-relevant activity while listening to a story will: (1) enhance memory for enacted story content; and, (2) result in relatively greater memory enhancement for enacted atypical events than for typical ones ([Glenberg and Robertson, 1999] and [Glenberg and Robertson,…

  10. No Evidence of Intelligence Improvement after Working Memory Training: A Randomized, Placebo-Controlled Study

    ERIC Educational Resources Information Center

    Redick, Thomas S.; Shipstead, Zach; Harrison, Tyler L.; Hicks, Kenny L.; Fried, David E.; Hambrick, David Z.; Kane, Michael J.; Engle, Randall W.

    2013-01-01

    Numerous recent studies seem to provide evidence for the general intellectual benefits of working memory training. In reviews of the training literature, Shipstead, Redick, and Engle (2010, 2012) argued that the field should treat recent results with a critical eye. Many published working memory training studies suffer from design limitations…

  11. Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model.

    PubMed

    Choi, Ji Yeon; Cho, Eun Ju; Lee, Hae Song; Lee, Jeong Min; Yoon, Young-Ho; Lee, Sanghyun

    2013-03-01

    Protective effects of Tartary buckwheat (TB) and common buckwheat (CB) on amyloid beta (Aβ)-induced impairment of cognition and memory function were investigated in vivo in order to identify potential therapeutic agents against Alzheimer's disease (AD) and its associated progressive memory deficits, cognitive impairment, and personality changes. An in vivo mouse model of AD was created by injecting the brains of ICR mice with Aβ(25-35), a fragment of the full-length Aβ protein. Damage of mice recognition ability through following Aβ(25-35) brain injections was confirmed using the T-maze test, the object recognition test, and the Morris water maze test. Results of behavior tests in AD model showed that oral administration of the methanol (MeOH) extracts of TB and CB improved cognition and memory function following Aβ(25-35) injections. Furthermore, in groups receiving the MeOH extracts of TB and CB, lipid peroxidation was significantly inhibited, and nitric oxide levels in tissue, which are elevated by injection of Aβ(25-35), were also decrease. In particular, the MeOH extract of TB exerted a stronger protective activity than CB against Aβ(25-35)-induced memory and cognition impairment. The results indicate that TB may play a promising role in preventing or reversing memory and cognition loss associated with Aβ(25-35)-induced AD.

  12. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood.

    PubMed

    Daugherty, Ana M; Flinn, Robert; Ofen, Noa

    2017-03-22

    Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution images in a sample of healthy participants (age 8-25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus.

  13. Aqueous and hydroalcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice.

    PubMed

    Rubio, Julio; Dang, Haixia; Gong, Mengjuan; Liu, Xinmin; Chen, Shi-Lin; Gonzales, Gustavo F

    2007-10-01

    Lepidium meyenii Walp. (Brassicaceae), known as Maca, is a Peruvian hypocotyl growing exclusively between 4,000 and 4,500 m altitude in the central Peruvian Andes, particularly in Junin plateau. Previously, Black variety of Maca showed to be more beneficial than other varieties of Maca on learning and memory in ovariectomized mice on the water finding test. The present study aimed to test two different doses of aqueous (0.50 and 2.00 g/kg) and hydroalcoholic (0.25 and 1.00 g/kg) extracts of Black Maca administered for 35 days on memory impairment induced by scopolamine (1mg/kg body weight i.p.) in male mice. Memory and learning were evaluated using the water Morris maze and the step-down avoidance test. Brain acetylcholinesterase (AChE) and monoamine oxidase (MAO) activities in brain were also determined. Both extracts of Black Maca significantly ameliorated the scopolamine-induced memory impairment as measured in both the water Morris maze and the step-down avoidance tests. Black Maca extracts inhibited AChE activity, whereas MAO activity was not affected. These results indicate that Black Maca improves scopolamine-induced memory deficits.

  14. Low-speed treadmill running exercise improves memory function after transient middle cerebral artery occlusion in rats.

    PubMed

    Shimada, Haruka; Hamakawa, Michiru; Ishida, Akimasa; Tamakoshi, Keigo; Nakashima, Hiroki; Ishida, Kazuto

    2013-04-15

    Physical exercise may enhance the recovery of impaired memory function in stroke rats. However the appropriate conditions of exercise and the mechanisms underlying these beneficial effects are not yet known. Therefore, the purpose of this study was to investigate the effect exercise intensity on memory function after cerebral infarction in rats. The animals were subjected to middle cerebral artery occlusion (MCAO) for 90 min to induce stroke and were randomly assigned to four groups; Low-Ex, High-Ex, Non-Ex and Sham. On the fourth day after surgery, rats in the Low-Ex and High-Ex groups were forced to exercise using a treadmill for 30 min every day for four weeks. Memory functions were examined during the last 5 days of the experiment (27-32 days after MCAO) by three types of tests: an object recognition test, an object location test and a passive avoidance test. After the final memory test, the infarct volume, number of neurons and microtubule-associated protein 2 (MAP2) immunoreactivity in the hippocampus were analyzed by histochemistry. Memory functions in the Low-Ex group were improved in all tests. In the High-Ex group, only the passive avoidance test improved, but not the object recognition or object location tests. Both the Low-Ex and High-Ex groups had reduced infarct volumes. Although the number of neurons in the hippocampal dentate gyrus of the Low-Ex and High-Ex groups was increased, the number for the Low-Ex group increased more than that for the High-Ex group. Moreover hippocampal MAP2 immunoreactivity in the High-Ex group was reduced compared to that in the Low-Ex group. These data suggest that the effects of exercise on memory impairment after cerebral infarction depend on exercise intensity.

  15. Improvement of brain energy metabolism and cholinergic functions contributes to the beneficial effects of silibinin against streptozotocin induced memory impairment.

    PubMed

    Tota, Santoshkumar; Kamat, Pradeep Kumar; Shukla, Rakesh; Nath, Chandishwar

    2011-08-01

    Recently, silibinin, a clinically used hepatoprotectant, has been reported to prevent amyloid beta induced memory impairment by reducing oxidative stress and inflammation in mice brain. However, the exact mechanism of neuroprotective effect of silibinin has not been properly studied especially in context of brain energy metabolism and cholinergic functions, the essential factors that undergo impairment in Alzheimer's disease. Therefore, the present study investigated the effect of silibinin on impairment in memory, brain energy metabolism and cholinergic function following intracerebral (IC) streptozotocin (STZ) administration in mice. STZ (0.5mg/kg), administered twice at an interval of 48h, caused significant memory impairment tested by Morris water maze. Further, STZ significantly decreased ATP and increased synaptosomal calcium level in mice brain. Increased oxidative and nitrosative stress was also observed in IC STZ injected mice brain. STZ IC induced memory impairment is associated with increased activity and mRNA expression of acetylcholinesterase (AChE) and decreased α-7 nicotinic acetylcholine receptor (α-7-nAChR) mRNA expression in mice brain. Pretreatment with silibinin (100 and 200mg/kg, po) attenuated STZ induced memory impairment by reducing oxidative and nitrosative stress and synaptosomal calcium ion level. Further, silibinin dose dependently restored ATP level indicating improvement in brain energy metabolism. The activity and mRNA expression of AChE was restored by silibinin. Moreover, α-7-nAChR mRNA expression was significantly increased by silibinin in STZ treated mice brain. The present study clearly demonstrates that beneficial effects of silibinin in STZ induced memory impairment in mice is due to improvement in brain energy metabolism and cholinergic function.

  16. Performance improvement of gadolinium oxide resistive random access memory treated by hydrogen plasma immersion ion implantation

    SciTech Connect

    Wang, Jer-Chyi Hsu, Chih-Hsien; Ye, Yu-Ren; Ai, Chi-Fong; Tsai, Wen-Fa

    2014-03-15

    Characteristics improvement of gadolinium oxide (Gd{sub x}O{sub y}) resistive random access memories (RRAMs) treated by hydrogen plasma immersion ion implantation (PIII) was investigated. With the hydrogen PIII treatment, the Gd{sub x}O{sub y} RRAMs exhibited low set/reset voltages and a high resistance ratio, which were attributed to the enhanced movement of oxygen ions within the Gd{sub x}O{sub y} films and the increased Schottky barrier height at Pt/Gd{sub x}O{sub y} interface, respectively. The resistive switching mechanism of Gd{sub x}O{sub y} RRAMs was dominated by Schottky emission, as proved by the area dependence of the resistance in the low resistance state. After the hydrogen PIII treatment, a retention time of more than 10{sup 4} s was achieved at an elevated measurement temperature. In addition, a stable cycling endurance with the resistance ratio of more than three orders of magnitude of the Gd{sub x}O{sub y} RRAMs can be obtained.

  17. Spermine improves recognition memory deficit in a rodent model of Huntington's disease.

    PubMed

    Velloso, Nádia A; Dalmolin, Gerusa D; Gomes, Guilherme M; Rubin, Maribel A; Canas, Paula M; Cunha, Rodrigo A; Mello, Carlos F

    2009-11-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder associated with motor and cognitive impairment. Intrastriatal administration of quinolinic acid (QA) causes neurodegeneration, glial proliferation and cognitive impairment in animals, which are similar to these seen in human HD. Since polyamines improve memory in cognitive tasks, we now tested if the post-training intrastriatal administration of spermine, an agonist of the polyamine site at the NMDA receptor, reverses the deficits in the object recognition task induced by QA. Bilateral striatal injections of QA (180 or 360 nmol/site) caused object recognition impairment, neuronal death and reactive astrogliosis. A single injection of spermine (0.1 and 1 nmol/site), 5 days after QA injection, reversed QA-induced impairment of object recognition task. Spermine (0.1 nmol/site) also inhibited QA-induced reactive astrogliosis measured by a semi-quantitative determination of GFAP immunolabelling, but did not alter neuronal death, measured by a semi-quantitative determination of fluoro-Jade C staining. These results suggest that polyamine binding sites may be considered a novel therapeutic target to prevent reactive astrogliosis and mnemonic deficits in HD.

  18. NGF improves spatial memory in aged rodents as a function of age.

    PubMed

    Fischer, W; Björklund, A; Chen, K; Gage, F H

    1991-07-01

    Aged rats were tested for place navigation in a circular water maze for spatial memory ability at 18 and 30 months of age; 45% of the 18-month-old rats displayed impaired place navigation performance relative to young control rats, while essentially all of the 30-month-old rats were impaired. The aged impaired rats were retested twice during NGF or vehicle infusion in the right lateral ventricle. In the 18-month-old group, NGF-infused rats showed improved retention of previously acquired place navigation performance and improved spatial acuity over the former platform site when the invisible platform was removed. NGF infusion also had a significant effect in the much more severely impaired 30-month-old rats: while the vehicle-infused aged rats showed a progressive decline in the performance between the first and second test weeks, the performance of the NGF-infused rats remained stable throughout the infusion period. The interpretation of these effects in the oldest animals, however, was confounded by a progressive decline in swim speed seen in the vehicle-infused animals. The 30-month-old vehicle-infused control rats showed a significant cell loss and cell shrinkage relative to the young control rats in the septal/diagonal band area, the striatum, and the nucleus basalis as assessed by NGF-receptor (NGFr) and ChAT double-label immunocytochemistry. A significant increase in the size but not in the number of cells was observed on the side of the NGF infusion in the 30-month-old NGF-infused rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Lithium activates brain phospholipase A2 and improves memory in rats: implications for Alzheimer's disease.

    PubMed

    Mury, Fábio B; da Silva, Weber C; Barbosa, Nádia R; Mendes, Camila T; Bonini, Juliana S; Sarkis, Jorge Eduardo Souza; Cammarota, Martin; Izquierdo, Ivan; Gattaz, Wagner F; Dias-Neto, Emmanuel

    2016-10-01

    Phospholipase A2 (Pla2) is required for memory retrieval, and its inhibition in the hippocampus has been reported to impair memory acquisition in rats. Moreover, cognitive decline and memory deficits showed to be reduced in animal models after lithium treatment, prompting us to evaluate possible links between Pla2, lithium and memory. Here, we evaluated the possible modulation of Pla2 activity by a long-term treatment of rats with low doses of lithium and its impact in memory. Wistar rats were trained for the inhibitory avoidance task, treated with lithium for 100 days and tested for perdurability of long-term memory. Hippocampal samples were used for quantifying the expression of 19 brain-expressed Pla2 genes and for evaluating the enzymatic activity of Pla2 using group-specific radio-enzymatic assays. Our data pointed to a significant perdurability of long-term memory, which correlated with increased transcriptional and enzymatic activities of certain members of the Pla2 family (iPla2 and sPla2) after the chronic lithium treatment. Our data suggest new possible targets of lithium, add more information on its pharmacological activity and reinforce the possible use of low doses of lithium for the treatment of neurodegenerative conditions such as the Alzheimer's disease.

  20. Neural Differentiation Tracks Improved Recall of Competing Memories Following Interleaved Study and Retrieval Practice.

    PubMed

    Hulbert, J C; Norman, K A

    2015-10-01

    Selective retrieval of overlapping memories can generate competition. How does the brain adaptively resolve this competition? One possibility is that competing memories are inhibited; in support of this view, numerous studies have found that selective retrieval leads to forgetting of memories that are related to the just-retrieved memory. However, this retrieval-induced forgetting (RIF) effect can be eliminated or even reversed if participants are given opportunities to restudy the materials between retrieval attempts. Here, we outline an explanation for such a reversal, rooted in a neural network model of RIF that predicts representational differentiation when restudy is interleaved with selective retrieval. To test this hypothesis, we measured changes in pattern similarity of the BOLD fMRI signal elicited by related memories after undergoing interleaved competitive retrieval and restudy. Reduced pattern similarity within the hippocampus positively correlated with retrieval-induced facilitation of competing memories. This result is consistent with an adaptive differentiation process that allows individuals to learn to distinguish between once-confusable memories.

  1. Effects of Medhya Rasayana and Yogic practices in improvement of short-term memory among school-going children

    PubMed Central

    Sarokte, Atul Shankar; Rao, Mangalagowri V.

    2013-01-01

    treatment is cost effective and devoid of side effects, which can be beneficial for the community. Mean increase after first follow-up in group B was higher as compared to group C. This shows that Medhya Rasayanas are quick in action and bring about improvement in memory faster when compared with Yogic practices. So, on the whole, group B can be considered to be the most efficient among the three groups. PMID:24695779

  2. Improvement in γ-hydroxybutyrate-induced contextual fear memory deficit by systemic administration of NCS-382

    PubMed Central

    Ishiwari, Keita

    2016-01-01

    Low, nonsedative doses of γ-hydroxybutyric acid (GHB) produce short-term anterograde amnesia in humans and memory impairments in experimental animals. We have previously shown that acute systemic treatment of GHB in adolescent female rats impairs the acquisition, but not the expression, of contextual fear memory while sparing both the acquisition and the expression of auditory cued fear memory. In the brain, GHB binds to specific GHB-binding sites as well as to γ-aminobutyric acid type B (GABAB) receptors. Although many of the behavioral effects of GHB at high doses have been attributed to its effects on the GABAB receptor, it is unclear which receptor mediates its relatively low-dose memory-impairing effects. The present study examined the ability of the putative GHB receptor antagonist NCS-382 to block the disrupting effects of GHB on fear memory in adolescent rat. Groups of rats received either a single dose of NCS-382 (3–10 mg/kg, intraperitoneally) or vehicle, followed by an injection of either GHB (100 mg/kg, intraperitoneally) or saline. All rats were trained in the fear paradigm, and tested for contextual fear memory and auditory cued fear memory. NCS-382 dose-dependently reversed deficits in the acquisition of contextual fear memory induced by GHB in adolescent rats, with 5 mg/kg of NCS-382 maximally increasing freezing to the context compared with the group administered GHB alone. When animals were tested for cued fear memory, treatment groups did not differ in freezing responses to the tone. These results suggest that low-dose amnesic effects of GHB are mediated by GHB receptors. PMID:27105320

  3. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor.

    PubMed

    Rendeiro, Catarina; Vauzour, David; Rattray, Marcus; Waffo-Téguo, Pierre; Mérillon, Jean Michel; Butler, Laurie T; Williams, Claire M; Spencer, Jeremy P E

    2013-01-01

    Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w), results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively), to a similar extent to that following blueberry supplementation (p = 0.002). These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01), suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.

  4. The quantitative evaluation of cholinergic markers in spatial memory improvement induced by nicotine-bucladesine combination in rats.

    PubMed

    Azami, Kian; Etminani, Maryam; Tabrizian, Kaveh; Salar, Fatemeh; Belaran, Maryam; Hosseini, Asieh; Hosseini-Sharifabad, Ali; Sharifzadeh, Mohammad

    2010-06-25

    We previously showed that post-training intra-hippocampal infusion of nicotine-bucladesine combination enhanced spatial memory retention in the Morris water maze. Here we investigated the role of cholinergic markers in nicotine-bucladesine combination-induced memory improvement. We assessed the expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in CA1 region of the hippocampus and medial septal area (MSA) of the brain. Post-training bilateral infusion of a low concentration of either nicotine or bucladesine into the CA1 region of the hippocampus did not affect spatial memory significantly. Quantitative immunostaining analysis of optical density in CA1 regions and evaluation of immunopositive neurons in medial septal area of brain sections from all combination groups revealed a significant increase (P<0.001) in the ChAT and VAChT immunoreactivity. The maximum increase was observed with combination of 10-microM/side bucladesine and 0.5 microg/side nicotine and in a concentration dependent manner. Also, increase in the optical density and amount of ChAT and VAChT immunostaining correlated with the decrease in escape latency and traveled distance in rats treated with nicotine and low dose of bucladesine. Taken together, these results suggest that significant increases of ChAT and VAChT protein expressions in the CA1 region and medial septal area are the possible mechanisms of spatial memory improvement induced by nicotine-bucladesine combination.

  5. Angiotensin II and the transcription factor Rel/NF-kappaB link environmental water shortage with memory improvement.

    PubMed

    Frenkel, L; Freudenthal, R; Romano, A; Nahmod, V E; Maldonado, H; Delorenzi, A

    2002-01-01

    One of the essential requirements even in the most ancient life forms is to be able to preserve body fluid medium. In line with such requirement, animals need to perform different behaviors to cope with water shortages. As angiotensin II (ANGII) is involved on a widespread range of functions in vertebrates, including memory modulation, an integrative role, in response to an environmental water shortage, has been envisioned. Previous work on the semi-terrestrial and brackish-water crab Chasmagnathus granulatus showed that endogenous ANGII enhanced an associative long-term memory and, in addition, that high salinity environment induces both an increase of brain ANGII levels and memory improvement. Here, we show that in the crab Chasmagnathus air exposure transiently increases blood sodium concentration, significantly increases brain ANGII immunoreactivity, and has a facilitatory effect on memory that is abolished by a non-selective ANGII receptor antagonist, saralasin. Furthermore, Rel/NF-kappaB, a transcription factor activated by ANGII in mammals and during memory consolidation in Chasmagnathus brain, is induced in the crab's brain by air exposure. Moreover, nuclear brain NF-kappaB is activated by ANGII, and this effect is reversed by saralasin. Our results constitute the first demonstration in an invertebrate that cognitive functions are modulated by an environmental stimulus through a neuropeptide and give evolutionary support to the role of angiotensins in memory processes. Moreover, these results suggest that angiotensinergic system is preserved across evolution not only in its structure and molecular mechanisms, but also in its capability of coordinating specific adaptative responses.

  6. Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood.

    PubMed

    Chaby, Lauren E; Cavigelli, Sonia A; Hirrlinger, Amy M; Lim, James; Warg, Kendall M; Braithwaite, Victoria A

    2015-01-01

    HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory.Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats.Adolescent-stress exposure made working memory more vulnerable to disturbance.Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not as well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal) and memory (both reference and working) starting 110 days after completion of an adolescent-stress treatment. We found that adolescent-stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent-stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans.

  7. Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory.

    PubMed

    Rasch, Björn; Pommer, Julian; Diekelmann, Susanne; Born, Jan

    2009-04-01

    Rapid eye movement (REM) sleep has been considered important for consolidation of memories, particularly of skills. Contrary to expectations, we found that REM sleep suppression by administration of selective serotonin or norepinephrine re-uptake inhibitors after training did not impair consolidation of skills or word-pairs in healthy men but rather enhanced gains in finger tapping accuracy together with sleep spindles. Our results indicate that REM sleep as a unitary phenomenon is not required for skill-memory consolidation.

  8. Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood

    PubMed Central

    Chaby, Lauren E.; Cavigelli, Sonia A.; Hirrlinger, Amy M.; Lim, James; Warg, Kendall M.; Braithwaite, Victoria A.

    2015-01-01

    HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory.Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats.Adolescent-stress exposure made working memory more vulnerable to disturbance.Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not as well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal) and memory (both reference and working) starting 110 days after completion of an adolescent-stress treatment. We found that adolescent-stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent-stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans. PMID:26696849

  9. Improving Memory Performances by Adjusting the Symmetry and Polarity of O-Fluoroazobenzene-Based Molecules.

    PubMed

    Liu, Quan; Dong, Huilong; Li, Youyong; Li, Hua; Chen, Dongyun; Wang, Lihua; Xu, Qingfeng; Lu, Jianmei

    2016-02-18

    Three O-fluoroazobenzene-based molecules were chosen as memory-active molecules: FAZO-1 with a D-A2-D symmetric structure, FAZO-2 with an A1-A2-A1 symmetric structure, and FAZO-3 with a D-A2-A1 asymmetric structure. Both FAZO-1 and FAZO-2 had a lower molecular polarity, whereas FAZO-3 had a higher polarity. The fabricated indium-tin oxide (ITO)/FAZO-1/Al (Au) and ITO/FAZO-2/Al (Au) memory devices both exhibited volatile static random access memory (SRAM) behavior, whereas the ITO/FAZO-3/Al (Au) device showed nonvolatile ternary write-once-read-many-times (WORM) behavior. It should be noted that the reproducibility of these devices was considerably high, which is significant for practical application in memory devices. In addition, the different memory performances of the three active materials were determined to be attributable to the stability of electric-field-induced charge-transfer complexes. Therefore, the switching memory behavior could be tuned by adjusting the molecular polarity.

  10. Working Memory Training Does Not Improve Performance on Measures of Intelligence or Other Measures of "Far Transfer": Evidence From a Meta-Analytic Review.

    PubMed

    Melby-Lervåg, Monica; Redick, Thomas S; Hulme, Charles

    2016-07-01

    It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of "real-world" cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills.

  11. Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism.

    PubMed

    de Souza Silva, Maria A; Lenz, Bernd; Rotter, Andrea; Biermann, Teresa; Peters, Oliver; Ramirez, Alfredo; Jessen, Frank; Maier, Wolfgang; Hüll, Michael; Schröder, Johannes; Frölich, Lutz; Teipel, Stefan; Gruber, Oliver; Kornhuber, Johannes; Huston, Joseph P; Müller, Christian P; Schäble, Sandra

    2013-09-10

    Impaired learning and memory performance is often found in aging as an early sign of dementia. It is associated with neuronal loss and reduced functioning of cholinergic networks. Here we present evidence that the neurokinin3 receptors (NK3-R) and their influence on acetylcholine (ACh) release may represent a crucial mechanism that underlies age-related deficits in learning and memory. Repeated pharmacological stimulation of NK3-R in aged rats was found to improve learning in the water maze and in object-place recognition. This treatment also enhanced in vivo acetylcholinergic activity in the frontal cortex, hippocampus, and amygdala but reduced NK3-R mRNA expression in the hippocampus. Furthermore, NK3-R agonism incurred a significantly higher increase in ACh levels in aged animals that showed superior learning than in those that were most deficient in learning. Our findings suggest that the induced activation of ACh, rather than basal ACh activity, is associated with superior learning in the aged. To test whether natural variation in NK3-R function also determines learning and memory performance in aged humans, we investigated 209 elderly patients with cognitive impairments. We found that of the 15 analyzed single single-nucleotide ploymorphism (SNPs) of the NK3-R-coding gene, TACR3, the rs2765 SNP predicted the degree of impairment of learning and memory in these patients. This relationship could be partially explained by a reduced right hippocampus volume in a subsample of 111 tested dementia patients. These data indicate the NK3-R as an important target to predict and improve learning and memory performance in the aged organism.

  12. Methylene blue improves streptozotocin-induced memory deficit by restoring mitochondrial function in rats.

    PubMed

    Li, Lei; Qin, Li; Lu, Hai-Long; Li, Ping-Jing; Song, Yuan-Jian; Yang, Rong-Li

    2017-02-15

    The pathogenesis of Alzheimer's disease (AD) is well documented to involve mitochondrial dysfunction which causes subsequent oxidative stress and energy metabolic failure in hippocampus. Methylene blue (MB) has been implicated to be neuroprotective in a variety of neurodegenerative diseases by restoring mitochondrial function. The present work was to examine if MB was able to improve streptozotocin (STZ)-induced Alzheimer's type dementia in a rat model by attenuating mitochondrial dysfunction-derived oxidative stress and ATP synthesis decline. MB was administrated at a dose of 0.5mg/kg/day for consecutive 7days after bilateral STZ intracerebroventricular (ICV) injection (2.5mg/kg). We first demonstrated that MB treatment significantly ameliorated STZ-induced hippocampus-dependent memory loss in passive avoidance test. We also found that MB has the properties to preserve neuron survival and attenuate neuronal degeneration in hippocampus CA1 region after STZ injection. In addition, oxidative stress was subsequently evaluated by measuring the content of lipid peroxidation products malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Importantly, results from our study showed a remarkable suppression of MB treatment on both MDA production and 4-HNE immunoactivity. Finally, energy metabolism in CA1 region was examined by detecting mitochondrial cytochrome c oxidase (CCO) activity and the resultant ATP production. Of significant interest, our result displayed a robust facilitation of MB on CCO activity and the consequent ATP synthesis. The current study indicates that MB may be a promising therapeutic agent targeting oxidative damage and ATP synthesis failure during AD progression.

  13. Aging and memory improvement through semantic clustering: The role of list-presentation format.

    PubMed

    Kuhlmann, Beatrice G; Touron, Dayna R

    2016-11-01

    The present study examined how the presentation format of the study list influences younger and older adults' semantic clustering. Spontaneous clustering did not differ between age groups or between an individual-words (presentation of individual study words in consecution) and a whole-list (presentation of the whole study list at once for the same total duration) presentation format in 132 younger (18-30 years, M = 19.7) and 120 older (60-84 years, M = 69.5) adults. However, after instructions to use semantic clustering (second list) age-related differences in recall magnified, indicating a utilization deficiency, and both age groups achieved higher recall in the whole-list than in the individual-words format. While this whole-list benefit was comparable across age groups, it is notable that older adults were only able to improve their average recall performance after clustering instructions in the whole-list but not in the individual-words format. In both formats, instructed clustering was correlated with processing resources (processing speed and, especially, working memory capacity), particularly in older adults. Spontaneous clustering, however, was not related to processing resources but to metacognitive beliefs about the efficacy and difficulty of semantic clustering, neither of which indicated awareness of the benefits of the whole-list presentation format in either age group. Taken together, the findings demonstrate that presentation format has a nontrivial influence on the utilization of semantic clustering in adults. The analyses further highlight important differences between output-based and list-based clustering measures. (PsycINFO Database Record

  14. Ketogenic diet improves the spatial memory impairment caused by exposure to hypobaric hypoxia through increased acetylation of histones in rats

    PubMed Central

    Zhao, Ming; Huang, Xin; Cheng, Xiang; Lin, Xiao; Zhao, Tong; Wu, Liying; Yu, Xiaodan; Wu, Kuiwu; Fan, Ming

    2017-01-01

    Exposure to hypobaric hypoxia causes neuron cell damage, resulting in impaired cognitive function. Effective interventions to antagonize hypobaric hypoxia-induced memory impairment are in urgent need. Ketogenic diet (KD) has been successfully used to treat drug-resistant epilepsy and improves cognitive behaviors in epilepsy patients and other pathophysiological animal models. In the present study, we aimed to explore the potential beneficial effects of a KD on memory impairment caused by hypobaric hypoxia and the underlying possible mechanisms. We showed that the KD recipe used was ketogenic and increased plasma levels of ketone bodies, especially β-hydroxybutyrate. The results of the behavior tests showed that the KD did not affect general locomotor activity but obviously promoted spatial learning. Moreover, the KD significantly improved the spatial memory impairment caused by hypobaric hypoxia (simulated altitude of 6000 m, 24 h). In addition, the improving-effect of KD was mimicked by intraperitoneal injection of BHB. The western blot and immunohistochemistry results showed that KD treatment not only increased the acetylated levels of histone H3 and histone H4 compared to that of the control group but also antagonized the decrease in the acetylated histone H3 and H4 when exposed to hypobaric hypoxia. Furthermore, KD-hypoxia treatment also promoted PKA/CREB activation and BDNF protein expression compared to the effects of hypoxia alone. These results demonstrated that KD is a promising strategy to improve spatial memory impairment caused by hypobaric hypoxia, in which increased modification of histone acetylation plays an important role. PMID:28355243

  15. Calcium homeostasis and protein kinase/phosphatase balance participate in nicotine-induced memory improvement in passive avoidance task in mice.

    PubMed

    Michalak, Agnieszka; Biala, Grazyna

    2017-01-15

    Long-term potentiation (LTP) and long-term depression (LTD) depend on specific postsynaptic Ca(2+)/calmodulin concentration. LTP results from Ca(2+) influx through the activated NMDA receptors or voltage-gated calcium channels (VGCCs) and is linked with activation of protein kinases including mitogen-activated protein kinase (MAPK). Weaker synaptic stimulation, as a result of low Ca(2+) influx, leads to activation of Ca(2+)/calmodulin-dependent phosphatase (calcineurin - CaN) and triggers LTD. Interestingly, both memory formation and drug addiction share similar neuroplastic changes. Nicotine, which is one of the most common addictive drugs, manifests its memory effects through nicotinic acetylcholine receptors (nAChRs). Because nAChRs may also gate Ca(2+), it is suggested that calcium signaling pathways are involved in nicotine-induced memory effects. Within the scope of the study was to evaluate the importance of calcium homeostasis and protein kinase/phosphatase balance in nicotine-induced short- and long-term memory effects. To assess memory function in mice passive avoidance test was used. The presented results confirm that acute nicotine (0.1mg/kg) improves short- and long-term memory. Pretreatment with L-type VGCC blockers (amlodipine, nicardipine verapamil) increased nicotine-induced memory improvement in the context of short- and long-term memory. Pretreatment with FK-506 (a potent CaN inhibitor) enhanced short- but not long-term memory effects of nicotine, while SL-327 (a selective MAPK/ERK kinase inhibitor) attenuated both nicotine-induced short- and long-term memory improvement. Acute nicotine enhances both types of memory via L-type VGCC blockade and via ERK1/2 activation. Only short- but not long-term memory enhancement induced by nicotine is dependent on CaN inhibition.

  16. Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment.

    PubMed

    Hara, Yuko; Yuk, Frank; Puri, Rishi; Janssen, William G M; Rapp, Peter R; Morrison, John H

    2014-01-07

    Humans and nonhuman primates are vulnerable to age- and menopause-related decline in working memory, a cognitive function reliant on the energy-demanding recurrent excitation of neurons within Brodmann's Area 46 of the dorsolateral prefrontal cortex (dlPFC). Here, we tested the hypothesis that the number and morphology (straight, curved, or donut-shaped) of mitochondria in dlPFC presynaptic boutons are altered with aging and menopause in rhesus monkeys (Macaca mulatta) and that these metrics correlate with delayed response (DR) accuracy, a well-characterized measure of dlPFC-dependent working memory. Although presynaptic bouton density or size was not significantly different across groups distinguished by age or menses status, DR accuracy correlated positively with the number of total and straight mitochondria per dlPFC bouton. In contrast, DR accuracy correlated inversely with the frequency of boutons containing donut-shaped mitochondria, which exhibited smaller active zone areas and fewer docked synaptic vesicles than those with straight or curved mitochondria. We then examined the effects of estrogen administration to test whether a treatment known to improve working memory influences mitochondrial morphology. Aged ovariectomized monkeys treated with vehicle displayed significant working memory impairment and a concomitant 44% increase in presynaptic donut-shaped mitochondria, both of which were reversed with cyclic estradiol treatment. Together, our data suggest that hormone replacement therapy may benefit cognitive aging, in part by promoting mitochondrial and synaptic health in the dlPFC.

  17. Acetylpuerarin reduces inflammation and improves memory function in a rat model of Alzheimer's disease induced by Abeta1-42.

    PubMed

    Meng, Q H; Lou, F L; Hou, W X; Liu, M; Guo, H; Zhang, X M

    2013-11-01

    This study was performed to determine if acetylpuerarin (compound N-2211) could reduce amyloid-beta1-42 (Abeta1-42) induced learning and memory deficits and to examine its anti-neuroinflammatory effects in a rat model. Forty Wistar rats were randomly divided into four groups (n = 10 each): control, model (Abeta1-42 injected), low-dose and high-dose acetylpuerarin groups. The acetylpuerarin groups received peritoneal acetylpuerarin every day for 12 days after 2 weeks of Abeta1-42 (5 microg/1 microl) intrahippocampal injections. The Morris water maze (MWM) was used to assess rats' learning and memory abilities. Immunohistochemistry was used to assess expression levels of ionized calcium-binding adaptor molecule (Ibal), protein kinase C delta (PKCdelta), IkappaB kinase beta (IKKbeta), and inducible nitric oxide synthase (iNOS) in hippocampus. After Abeta1-42 injection, the learning and memory abilities of rats were reduced, and acetylpuerarin treatment ameliorated the observed deficits. Abeta1-42 injection resulted in microglia transforming from resting microglia into an activated state, but this was reduced by acetylpuerarin treatment. Furthermore, hippocampal expression of PKCdelta, IKKbeta, and iNOS increased following Abeta1-42 treatment, and acetylpuerarin could suppressed the levels of PKCdelta, iNOS, and IKKbeta. Acetylpuerarin improves learning and memory functions in Abeta1-42 induced rat models. These effects may be due to anti-neuroinflammatory effects.

  18. Functional Compensation in the Ventromedial Prefrontal Cortex Improves Memory-Dependent Decisions in Older Adults

    PubMed Central

    Huettel, Scott A.; Cabeza, Roberto

    2014-01-01

    Everyday consumer choices frequently involve memory, as when we retrieve information about consumer products when making purchasing decisions. In this context, poor memory may affect decision quality, particularly in individuals with memory decline, such as older adults. However, age differences in choice behavior may be reduced if older adults can recruit additional neural resources that support task performance. Although such functional compensation is well documented in other cognitive domains, it is presently unclear whether it can support memory-guided decision making and, if so, which brain regions play a role in compensation. The current study engaged younger and older humans in a memory-dependent choice task in which pairs of consumer products from a popular online-shopping site were evaluated with different delays between the first and second product. Using functional imaging (fMRI), we found that the ventromedial prefrontal cortex (vmPFC) supports compensation as defined by three a priori criteria: (1) increased vmPFC activation was observed in older versus younger adults; (2) age-related increases in vmPFC activity were associated with increased retrieval demands; and (3) increased vmPFC activity was positively associated with performance in older adults—evidence of successful compensation. Extending these results, we observed evidence for compensation in connectivity between vmPFC and the dorsolateral PFC during memory-dependent choice. In contrast, we found no evidence for age differences in value-related processing or age-related compensation for choices without delayed retrieval. Together, these results converge on the conclusion that age-related decline in memory-dependent choice performance can be minimized via functional compensation in vmPFC. PMID:25411493

  19. Functional compensation in the ventromedial prefrontal cortex improves memory-dependent decisions in older adults.

    PubMed

    Lighthall, Nichole R; Huettel, Scott A; Cabeza, Roberto

    2014-11-19

    Everyday consumer choices frequently involve memory, as when we retrieve information about consumer products when making purchasing decisions. In this context, poor memory may affect decision quality, particularly in individuals with memory decline, such as older adults. However, age differences in choice behavior may be reduced if older adults can recruit additional neural resources that support task performance. Although such functional compensation is well documented in other cognitive domains, it is presently unclear whether it can support memory-guided decision making and, if so, which brain regions play a role in compensation. The current study engaged younger and older humans in a memory-dependent choice task in which pairs of consumer products from a popular online-shopping site were evaluated with different delays between the first and second product. Using functional imaging (fMRI), we found that the ventromedial prefrontal cortex (vmPFC) supports compensation as defined by three a priori criteria: (1) increased vmPFC activation was observed in older versus younger adults; (2) age-related increases in vmPFC activity were associated with increased retrieval demands; and (3) increased vmPFC activity was positively associated with performance in older adults-evidence of successful compensation. Extending these results, we observed evidence for compensation in connectivity between vmPFC and the dorsolateral PFC during memory-dependent choice. In contrast, we found no evidence for age differences in value-related processing or age-related compensation for choices without delayed retrieval. Together, these results converge on the conclusion that age-related decline in memory-dependent choice performance can be minimized via functional compensation in vmPFC.

  20. Verbal to visual code switching improves working memory in older adults: an fMRI study.

    PubMed

    Osaka, Mariko; Otsuka, Yuki; Osaka, Naoyuki

    2012-01-01

    The effect of verbal to visual code switching training on working memory performance was investigated in individuals aged 63 and older. During verbal working memory task performance, the training group (n = 25) was introduced to a verbal to visual code switching strategy while the control group (n = 25) was not exposed to such a strategy. Working memory recognition accuracy was enhanced only in the training group. To explore the neural substrates underlying these strategy effects, fMRI was used to measure brain activity in both groups during working memory task performance before and after an attention training period. In a comparison between pre- and post-training sessions, results showed increased activation in the anterior cingulate cortex (ACC). Relative to the control group, the post-training group exhibited increased activation in the left and right inferior parietal lobules (IPLs) and right superior parietal lobule (SPL). These findings suggest that use of a verbal to visual code switching strategy may assist older individuals in the maintenance of information in working memory.

  1. Allium sativum L. Improves Visual Memory and Attention in Healthy Human Volunteers

    PubMed Central

    Tasnim, Sara; Haque, Parsa Sanjana; Bari, Md. Sazzadul; Hossain, Md. Monir; Islam, Sardar Mohd. Ashraful; Shahriar, Mohammad; Bhuiyan, Mohiuddin Ahmed; Bin Sayeed, Muhammad Shahdaat

    2015-01-01

    Studies have shown that Allium sativum L. (AS) protects amyloid-beta peptide-induced apoptosis, prevents oxidative insults to neurons and synapses, and thus prevent Alzheimer's disease progression in experimental animals. However, there is no experimental evidence in human regarding its putative role in memory and cognition. We have studied the effect of AS consumption by healthy human volunteers on visual memory, verbal memory, attention, and executive function in comparison to control subjects taking placebo. The study was conducted over five weeks and twenty volunteers of both genders were recruited and divided randomly into two groups: A (AS) and B (placebo). Both groups participated in the 6 computerized neuropsychological tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB) twice: at the beginning and after five weeks of the study. We found statistically significant difference (p < 0.05) in several parameters of visual memory and attention due to AS ingestion. We also found statistically nonsignificant (p > 0.05) beneficial effects on verbal memory and executive function within a short period of time among the volunteers. Study for a longer period of time with patients suffering from neurodegenerative diseases might yield more relevant results regarding the potential therapeutic role of AS. PMID:26351508

  2. Nicotine improves ethanol-induced impairment of memory: possible involvement of nitric oxide in the dorsal hippocampus of mice.

    PubMed

    Raoufi, N; Piri, M; Moshfegh, A; Shahin, M-S

    2012-09-06

    In the present study, the possible involvement of nitric oxide (NO) systems in the dorsal hippocampus in nicotine's effect on ethanol-induced amnesia and ethanol state-dependent memory was investigated. Adult male mice were cannulated in the CA1 regions of the dorsal hippocampus and trained on a passive avoidance learning task for memory assessment. We found that pre-training intraperitoneal (i.p.) administration of ethanol (1 g/kg) decreased inhibitory avoidance memory when tested 24 h later. The response induced by pre-training ethanol was significantly reversed by pre-test administration of the drug. Similar to ethanol, pre-test administration of nicotine (0.4 and 0.8 μg/mouse, intra-CA1) alone and nicotine (0.2, 0.4 and 0.8 μg/mouse) plus an ineffective dose of ethanol also significantly reversed the amnesia induced by ethanol. Ethanol amnesia was also prevented by pre-test administration of L-arginine (1.2 μg/mouse, intra-CA1), a NO precursor. Interestingly, an ineffective dose of nicotine (0.2 μg/mouse) in combination with a low dose of L-arginine (0.8 μg/mouse) synergistically improved memory performance impaired by ethanol given before training. In contrast, pre-test intra-CA1 microinjection of L-NAME (NG-nitro-L-arginine methyl ester), a nitric oxide synthase (NOS) inhibitor (0.4 and 0.8 μg/mouse), which reduced memory retrieval in inhibitory avoidance task by itself, in combination with an effective dose of nicotine (0.4 μg/mouse) prevented the improving effect of nicotine on memory impaired by pre-training ethanol. Moreover, intra-CA1 microinjection of L-NAME reversed the L-arginine-induced potentiation of the nicotine response. The results suggest the importance of NO system(s) in the CA1 regions of the dorsal hippocampus for improving the effect of nicotine on the ethanol-induced amnesia.

  3. Improved Social Interaction, Recognition and Working Memory with Cannabidiol Treatment in a Prenatal Infection (poly I:C) Rat Model.

    PubMed

    Osborne, Ashleigh L; Solowij, Nadia; Babic, Ilijana; Huang, Xu-Feng; Weston-Green, Katrina

    2017-03-22

    Neuropsychiatric disorders such as schizophrenia are associated with cognitive impairment, including learning, memory and attention deficits. Antipsychotic drugs are limited in their efficacy to improve cognition; therefore, new therapeutic agents are required. Cannabidiol (CBD), the non-intoxicating component of cannabis, has anti-inflammatory, neuroprotective and antipsychotic-like properties; however, its ability to improve the cognitive deficits of schizophrenia remains unclear. Using a prenatal infection model, we examined the effect of chronic CBD treatment on cognition and social interaction. Time-mated pregnant Sprague-Dawley rats (n=16) were administered polyinosinic-polycytidilic acid (poly I:C) (POLY; 4 mg/kg) or saline (CONT) at gestation day 15. Male offspring (PN56) were injected twice daily with 10 mg/kg CBD (CONT+CBD, POLY+CBD; n=12 per group) or vehicle (VEH; CONT+VEH, POLY+VEH; n=12 per group) for 3 weeks. Body weight, food and water intake was measured weekly. The Novel Object Recognition and rewarded T-maze alternation tests assessed recognition and working memory, respectively, and the social interaction test assessed sociability. POLY+VEH offspring exhibited impaired recognition and working memory, and reduced social interaction compared to CONT+VEH offspring (p<0.01). CBD treatment significantly improved recognition, working memory and social interaction deficits in the poly I:C model (p<0.01 vs POLY+VEH), did not affect total body weight gain, food or water intake, and had no effect in control animals (all p>0.05). In conclusion, chronic CBD administration can attenuate the social interaction and cognitive deficits induced by prenatal poly I:C infection. These novel findings present interesting implications for potential use of CBD in treating the cognitive deficits and social withdrawal of schizophrenia.Neuropsychopharmacology advance online publication, 22 March 2017; doi:10.1038/npp.2017.40.

  4. Negative air ionization improves memory and attention in learning-disabled and mentally retarded children.

    PubMed

    Morton, L L; Kershner, J R

    1984-06-01

    The effect of increased concentrations of ambient negative air ions on incidental visual memory for words and purposive auditory memory for dichotic digits was investigated in 20 normal grade 4 children, 8 learning-disabled children, and 8 mildly mentally retarded children. Half in each group were assigned randomly to an unmodified air-placebo condition under double-blind testing procedures. All of the children breathing negatively ionized air were superior in incidental memory. In dichotic listening, the negative ions produced a counter-priming effect in the two learning-impaired groups, offsetting the difficulties that they showed under placebo in switching attention selectively from one ear to the other. The action of negative ions on the neurotransmitter, serotonin, may be the mechanism by which negative ions produce such behavioral effects. In view of the important environmental and remedial implications of these novel findings, interpretations should be made cautiously pending larger-scale replications.

  5. Tetrahydroxystilbene glucoside improves learning and (or) memory ability of aged rats and may be connected to the APP pathway.

    PubMed

    Hou, Ying; Yang, Qidong; Zhou, Lin; Du, Xiaoping; Li, Min; Yuan, Mei; Zhou, Zhiwen; Li, Zhenguo

    2011-11-01

    The aim of this study is to evaluate the protective effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) on learning and (or) memory deficit in aged rats, as well as to explore the possible connection between TSG and the β-amyloid precursor protein (APP) pathway. Sprague-Dawley rats were randomly divided into a young control group (age, 4 months), an aged control group (age, 22 months), and a TSG-treated group (age, 22 months). TSG at doses of 50 mg·kg(-1)·day(-1) was intragastrically administered to 22-month-old rats for 4 weeks. The learning and (or) memory ability was measured using the Morris water maze (MWM) test, and the mRNA and protein expression of APP pathway proteins was measured by real-time polymerase chain reaction (RT-PCR) and Western blot, respectively. The aged rats exhibited obvious learning and (or) memory deficit when compared with the young rats, but TSG treatment significantly improved the learning and (or) memory ability in the aged rats, as noted from the MWM test. RT-PCR and Western blot analysis showed an increase in the expression of beta-site APP cleaving enzyme 1 (BACE1) and A Disintegrin And Metalloproteinase 17 (ADAM17) in aged rats, and a decrease in ADAM10; however, TSG treatment significantly increased the mRNA and protein expression of ADAM10 (p < 0.01, compared with aged control rats). These results provide solid evidence for the therapeutic effect of TSG on age-related cognitive impairment, especially spatial learning and memory deficit. TSG might exert this effect through the APP pathway, although further studies on the topic are required.

  6. PDE5 Inhibition Improves Object Memory in Standard Housed Rats but Not in Rats Housed in an Enriched Environment: Implications for Memory Models?

    PubMed Central

    Bruder, Ann K.; Wolfs, Kevin H. M.; De Vry, Jochen; Vanmierlo, Tim; Blokland, Arjan

    2014-01-01

    Drug effects are usually evaluated in animals housed under maximally standardized conditions. However, it is assumed that an enriched environment (EE) more closely resembles human conditions as compared to maximally standardized laboratory conditions. In the present study, we examined the acute cognition enhancing effects of vardenafil, a PDE5 inhibitor, which stimulates protein kinase G/CREB signaling in cells, in three different groups of male Wistar rats tested in an object recognition task (ORT). Rats were either housed solitarily (SOL) or socially (SOC) under standard conditions, or socially in an EE. Although EE animals remembered object information longer in the vehicle condition, vardenafil only improved object memory in SOL and SOC animals. While EE animals had a heavier dorsal hippocampus, we found no differences between experimental groups in total cell numbers in the dentate gyrus, CA2–3 or CA1. Neither were there any differences in markers for pre- and postsynaptic density. No changes in PDE5 mRNA- and protein expression levels were observed. Basal pCREB levels were increased in EE rats only, whereas β-catenin was not affected, suggesting specific activation of the MAP kinase signaling pathway and not the AKT pathway. A possible explanation for the inefficacy of vardenafil could be that CREB signaling is already optimally stimulated in the hippocampus of EE rats. Since previous data has shown that acute PDE5 inhibition does not improve memory performance in humans, the use of EE animals could be considered as a more valid model for testing cognition enhancing drugs. PMID:25372140

  7. Global view of the mechanisms of improved learning and memory capability in mice with music-exposure by microarray.

    PubMed

    Meng, Bo; Zhu, Shujia; Li, Shijia; Zeng, Qingwen; Mei, Bing

    2009-08-28

    Music has been proved beneficial to improve learning and memory in many species including human in previous research work. Although some genes have been identified to contribute to the mechanisms, it is believed that the effect of music is manifold, behind which must concern a complex regulation network. To further understand the mechanisms, we exposed the mice to classical music for one month. The subsequent behavioral experiments showed improvement of spatial learning capability and elevation of fear-motivated memory in the mice with music-exposure as compared to the naïve mice. Meanwhile, we applied the microarray to compare the gene expression profiles of the hippocampus and cortex between the mice with music-exposure and the naïve mice. The results showed approximately 454 genes in cortex (200 genes up-regulated and 254 genes down-regulated) and 437 genes in hippocampus (256 genes up-regulated and 181 genes down-regulated) were significantly affected in music-exposing mice, which mainly involved in ion channel activity and/or synaptic transmission, cytoskeleton, development, transcription, hormone activity. Our work may provide some hints for better understanding the effects of music on learning and memory.

  8. Curcumin Improves Amyloid β-Peptide (1-42) Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway.

    PubMed

    Zhang, Lu; Fang, Yu; Xu, Yuming; Lian, Yajun; Xie, Nanchang; Wu, Tianwen; Zhang, Haifeng; Sun, Limin; Zhang, Ruifang; Wang, Zhenhua

    2015-01-01

    Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD). However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working memory and spatial reference memory in rats that received a ventricular injection of amyloid-β1-42 (Aβ1-42), representing a rodent model of Alzheimer's disease (AD). The rats treated with Aβ1-42 exhibited obvious cognitive deficits in behavioral tasks. Chronic (seven consecutive days, once per day) but not acute (once a day) curcumin treatments (50, 100, and 200 mg/kg) improved the cognitive functions in a dose-dependent manner. In addition, the beneficial effect of curcumin is accompanied by increased BDNF levels and elevated levels of phosphorylated ERK in the hippocampus. Furthermore, the cognition enhancement effect of curcumin could be mimicked by the overexpression of BDNF in the hippocampus and blocked by either bilateral hippocampal injections with lentiviruses that express BDNF shRNA or a microinjection of ERK inhibitor. These findings suggest that chronic curcumin ameliorates AD-related cognitive deficits and that upregulated BDNF-ERK signaling in the hippocampus may underlie the cognitive improvement produced by curcumin.

  9. Tailored Information and Automated Reminding to Improve Medication Adherence in Spanish- and English-Speaking Elders Treated for Memory Impairment.

    PubMed

    Ownby, Raymond L; Hertzog, Christopher; Czaja, Sara J

    2012-05-01

    Medication adherence is recognized as an issue of critical importance within health care, as many patients do not take their medications as prescribed. This study evaluated two interventions targeted at improving adherence in elderly patients being treated for memory impairments. Twenty-seven participants were randomly assigned to control (n = 11), automated reminding (n = 8), or tailored information conditions (n = 8). Medication adherence was evaluated with an electronic pill bottle. Generalized estimating equation (GEE) models assessed the effects of the interventions on electronically monitored medication adherence after controlling for covariates. Results showed that individuals in both intervention groups had higher levels of medication adherence than those in the control group. The presence of a caregiver was associated with substantially higher levels of adherence. Verbal memory, but not general cognitive status, predicted better adherence. Mood, health literacy, and executive functions were not associated with adherence. Results thus suggest that both automated reminding and tailored information interventions may improve medication adherence in elders, even among those with memory impairments.

  10. Experimental febrile seizures induce age-dependent structural plasticity and improve memory in mice.

    PubMed

    Tao, K; Ichikawa, J; Matsuki, N; Ikegaya, Y; Koyama, R

    2016-03-24

    Population-based studies have demonstrated that children with a history of febrile seizure (FS) perform better than age-matched controls at hippocampus-dependent memory tasks. Here, we report that FSs induce two distinct structural reorganizations in the hippocampus and bidirectionally modify future learning abilities in an age-dependent manner. Compared with age-matched controls, adult mice that had experienced experimental FSs induced by hyperthermia (HT) on postnatal day 14 (P14-HT) performed better in a cognitive task that requires dentate granule cells (DGCs). The enhanced memory performance correlated with an FS-induced persistent increase in the density of large mossy fiber terminals (LMTs) of the DGCs. The memory enhancement was not observed in mice that had experienced HT-induced seizures at P11 which exhibited abnormally located DGCs in addition to the increased LMT density. The ectopic DGCs of the P11-HT mice were abolished by the diuretic bumetanide, and this pharmacological treatment unveiled the masked memory enhancement. Thus, this work provides a novel basis for age-dependent structural plasticity in which FSs influence future brain function.

  11. Methylene blue improves brain oxidative metabolism and memory retention in rats.

    PubMed

    Callaway, Narriman Lee; Riha, Penny D; Bruchey, Aleksandra K; Munshi, Zeenat; Gonzalez-Lima, F

    2004-01-01

    Methylene blue (MB) increases mitochondrial oxygen consumption and restores memory retention in rats metabolically impaired by inhibition of cytochrome c oxidase. This study tested two related hypotheses using biochemical and behavioral techniques: (1) that low-level MB would enhance brain cytochrome c oxidation, as tested in vitro in brain homogenates and after in vivo administration to rats and (2) that corresponding low-dose MB would enhance spatial memory retention in normal rats, as tested 24 h after rats were trained in a baited holeboard maze for 5 days with daily MB posttraining injections. The biochemical in vitro studies showed an increased rate of brain cytochrome c oxidation with the low but not the high MB concentrations tested. The in vivo administration studies showed that the corresponding MB low dose (1 mg/kg) increased brain cytochrome c oxidation 24 h after intraperitoneal injection, but not after 1 or 2 h postinjection. In the behavioral studies, spatial memory retention in probe trials (percentage of visits to training-baited holes compared to total visits) was significantly better for MB-treated than saline control groups (66% vs. 31%). Together the findings suggest that low-dose MB enhances spatial memory retention in normal rats by increasing brain cytochrome c oxidase activity.

  12. Reorganization of functional brain networks mediates the improvement of cognitive performance following real-time neurofeedback training of working memory.

    PubMed

    Zhang, Gaoyan; Yao, Li; Shen, Jiahui; Yang, Yihong; Zhao, Xiaojie

    2015-05-01

    Working memory (WM) is essential for individuals' cognitive functions. Neuroimaging studies indicated that WM fundamentally relied on a frontoparietal working memory network (WMN) and a cinguloparietal default mode network (DMN). Behavioral training studies demonstrated that the two networks can be modulated by WM training. Different from the behavioral training, our recent study used a real-time functional MRI (rtfMRI)-based neurofeedback method to conduct WM training, demonstrating that WM performance can be significantly improved after successfully upregulating the activity of the target region of interest (ROI) in the left dorsolateral prefrontal cortex (Zhang et al., [2013]: PloS One 8:e73735); however, the neural substrate of rtfMRI-based WM training remains unclear. In this work, we assessed the intranetwork and internetwork connectivity changes of WMN and DMN during the training, and their correlations with the change of brain activity in the target ROI as well as with the improvement of post-training behavior. Our analysis revealed an "ROI-network-behavior" correlation relationship underlying the rtfMRI training. Further mediation analysis indicated that the reorganization of functional brain networks mediated the effect of self-regulation of the target brain activity on the improvement of cognitive performance following the neurofeedback training. The results of this study enhance our understanding of the neural basis of real-time neurofeedback and suggest a new direction to improve WM performance by regulating the functional connectivity in the WM related networks.

  13. Using cascading Bloom filters to improve the memory usage for de Brujin graphs

    PubMed Central

    2014-01-01

    Background De Brujin graphs are widely used in bioinformatics for processing next-generation sequencing data. Due to a very large size of NGS datasets, it is essential to represent de Bruijn graphs compactly, and several approaches to this problem have been proposed recently. Results In this work, we show how to reduce the memory required by the data structure of Chikhi and Rizk (WABI’12) that represents de Brujin graphs using Bloom filters. Our method requires 30% to 40% less memory with respect to their method, with insignificant impact on construction time. At the same time, our experiments showed a better query time compared to the method of Chikhi and Rizk. Conclusion The proposed data structure constitutes, to our knowledge, currently the most efficient practical representation of de Bruijn graphs. PMID:24565280

  14. Effectiveness of different memory training programs on improving hyperphagic behaviors of residents with dementia: a longitudinal single-blind study

    PubMed Central

    Kao, Chieh-Chun; Lin, Li-Chan; Wu, Shiao-Chi; Lin, Ker-Neng; Liu, Ching-Kuan

    2016-01-01

    Background Hyperphagia increases eating-associated risks for people with dementia and distress for caregivers. The purpose of this study was to compare the long-term effectiveness of spaced retrieval (SR) training and SR training combined with Montessori activities (SR + M) for improving hyperphagic behaviors of special care unit residents with dementia. Methods The study enrolled patients with dementia suffering from hyperphagia resident in eight institutions and used a cluster-randomized single-blind design, with 46 participants in the SR group, 49 in the SR + M group, and 45 participants in the control group. For these three groups, trained research assistants collected baseline data on hyperphagic behavior, pica, changes in eating habits, short meal frequency, and distress to caregivers. The SR and SR + M groups underwent memory training over a 6-week training period (30 sessions), and a generalized estimating equation was used to compare data of all the three groups of subjects obtained immediately after the training period and at follow-ups 1 month, 3 months, and 6 months later. Results Results showed that the hyperphagic and pica behaviors of both the SR and SR + M groups were significantly improved (P<0.001) and that the effect lasted for 3 months after training. The improvement of fast eating was significantly superior in the SR + M group than in the SR group. The improvement in distress to caregivers in both intervention groups lasted only until the posttest. Improvement in changes in eating habits of the two groups was not significantly different from that of the control group. Conclusion SR and SR + M training programs can improve hyperphagic behavior of patients with dementia. The SR + M training program is particularly beneficial for the improvement of rapid eating. Caregivers can choose a suitable memory training program according to the eating problems of their residents. PMID:27307717

  15. The multi-herbal formula Chong-Myung-Tang improves spatial memory and increases cell genesis in the dentate gyrus of aged mice.

    PubMed

    Liu, Lei; Zhang, Mingwei; Zhang, Ruifen; Lee, Mira; Wang, Zhen; Hou, Jingang; Sung, Chang-Keun

    2014-01-01

    Chong-Myung-Tang (CMT) is a multi-herbal formula that has been used to improve memory. However, the potential mechanism remains unknown. The present study investigated the effects of CMT (50, 100, and 200 mg/kg) on spatial memory of aged mice. The behavioral training tests indicated that 200 mg/kg CMT treatment can significantly improve spatial memory of aged mice in the Morris water maze. Moreover, cell survival was examined by injecting bromodeoxyuridine (BrdU) on the first three days. The result showed that 200 mg/kg CMT treatment significantly increased cell survival in the dentate gyrus. Cell proliferation was determined by injecting BrdU 2 h before the mice were killed. The result suggested that CMT treatments had no influence on cell proliferation in the dentate gyrus. Thus, an increase in cell survival in the dentate gyrus stimulated by CMT may be involved in the effect of CMT on spatial memory improvement.

  16. Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities

    PubMed Central

    Swanson, H. Lee

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures. PMID:26300803

  17. Improving potato drought tolerance through the induction of long-term water stress memory.

    PubMed

    Ramírez, D A; Rolando, J L; Yactayo, W; Monneveux, P; Mares, V; Quiroz, R

    2015-09-01

    Knowledge of drought tolerance in potato is limited and very little is known about stress memory in this crop. In the present study, long-term stress memory was tested on tuber yield and drought tolerance related traits in three potato varieties (Unica, Désirée and Sarnav) with contrasted yields under water restriction. Seed tubers produced by plants grown under non-restricted (non-primed tubers) and restricted (primed tubers) water conditions were sown and exposed to similar watering treatments. Tuber yield and leaf greenness of plants from primed and non-primed seeds as well as tuber carbon isotope discrimination (Δ(13)C) and antioxidant activity (AA) responses to watering treatments were compared. Higher tuber yield, both under non-restricted and restricted water regimes, was produced by primed Sarnav plants. The decrease of tuber yield and Δ(13)C with water restriction was lower in primed Unica plants. Long-term stress memory consequently appears to be highly genotype-dependent in potato. Its expression in plants originated from primed tubers and facing water restriction seems to be positively associated to the degree of inherent capability of the cultivar to yield under water restriction. However, other effects of priming appear to be genotype-independent as priming enhanced the tuber AA in response to water restriction in the three varieties.

  18. Xanthoceraside attenuates learning and memory deficits via improving insulin signaling in STZ-induced AD rats.

    PubMed

    Liu, Peng; Zou, Libo; Jiao, Qing; Chi, Tianyan; Ji, Xuefei; Qi, Yue; Xu, Qian; Wang, Lihua

    2013-05-24

    Xanthoceraside, a triterpenoid saponin extracted from the fruit husks of Xanthoceras sorbifolia Bunge, has been shown to reverse the cognitive deficits observed in several Alzheimer's disease (AD) animal models. Increasing evidence suggests the involvement of the insulin signaling pathway in neurodegenerative disorders such as AD. Thus, we used an AD animal model of cognitive impairment induced by the intracerebroventricular (ICV) injection of streptozotocin (STZ) to test the effects of xanthoceraside on behavioral impairments and insulin signaling mechanisms. In our present study, memory impairment was assessed using the Morris water maze test. The expression of IR, IGF-1R and Raf-1/ERK/CREB was tested by western blotting. The STZ group showed memory deficits in the Morris water maze test and significant decreases in IR and IGF-1R protein levels in the hippocampus. Xanthoceraside treatment significantly rescued memory deficits, as well as IR and IGF-1R protein expression levels. STZ inhibited the Ras/ERK signaling cascade and decreased the phosphorylation of CREB; these effects were also attenuated by xanthoceraside treatment. These results suggest the potential use of xanthoceraside for the treatment of neurodegenerative disorders in which brain insulin signaling may be involved.

  19. Dietary supplementation of walnuts improves memory deficits and learning skills in transgenic mouse model of Alzheimer's disease.

    PubMed

    Muthaiyah, Balu; Essa, Musthafa M; Lee, Moon; Chauhan, Ved; Kaur, Kulbir; Chauhan, Abha

    2014-01-01

    Previous in vitro studies have shown that walnut extract can inhibit amyloid-β (Aβ) fibrillization, can solubilize its fibrils, and has a protective effect against Aβ-induced oxidative stress and cellular death. In this study, we analyzed the effect of dietary supplementation with walnuts on learning skills, memory, anxiety, locomotor activity, and motor coordination in the Tg2576 transgenic (tg) mouse model of Alzheimer's disease (AD-tg). From the age of 4 months, the experimental groups of AD-tg mice were fed custom-mixed diets containing 6% walnuts (T6) or 9% walnuts (T9), i.e., equivalent to 1 or 1.5 oz, respectively, of walnuts per day in humans. The control groups, i.e., AD-tg and wild-type mice, were fed a diet without walnuts (T0, Wt). These experimental and control mice were examined at the ages of 13-14 months by Morris water maze (for spatial memory and learning ability), T maze (for position discrimination learning ability), rotarod (for psychomotor coordination), and elevated plus maze (for anxiety-related behavior). AD-tg mice on the control diet (T0) showed memory deficit, anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability, and motor coordination compared to the Wt mice on the same diet. The AD-tg mice receiving the diets with 6% or 9% walnuts (T6 and T9) showed a significant improvement in memory, learning ability, anxiety, and motor development compared to the AD-tg mice on the control diet (T0). There was no statistically significant difference in behavioral performance between the T6/T9 mice on walnuts-enriched diets and the Wt group on the control diet. These findings suggest that dietary supplementation with walnuts may have a beneficial effect in reducing the risk, delaying the onset, or slowing the progression of, or preventing AD.

  20. Remediation of language processing in aphasia: Improving activation and maintenance of linguistic representations in (verbal) short-term memory

    PubMed Central

    Kalinyak-Fliszar, Michelene; Kohen, Francine; Martin, Nadine

    2012-01-01

    Background Verbal short-term memory (STM) impairments are invariably present in aphasia. Word processing involves a minimal form of verbal STM, i.e., the time course over which semantic and phonological representations are activated and maintained until they are comprehended, produced, or repeated. Thus it is reasonable that impairments of word processing and verbal STM may co-occur. The co-occurrence of language and STM impairments in aphasia has motivated an active area of research that has revealed much about the relationship of these two systems and the effect of their impairment on language function and verbal learning (Freedman & Martin, 2001; Martin & Saffran, 1999; Trojano & Grossi, 1995). In keeping with this view a number of researchers have developed treatment protocols to improve verbal STM in order to improve language function (e.g., Koenig-Bruhin & Studer-Eichenberger, 2007). This account of aphasia predicts that treatment of a fundamental ability, such as STM, which supports language function, should lead to improvements that generalise to content and tasks beyond those implemented in treatment. Aims We investigated the efficacy of a treatment for language impairment that targets two language support processes: verbal short-term memory (STM) and executive processing, in the context of a language task (repetition). We hypothesised that treatment of these abilities would improve repetition abilities and performance on other language tasks that require STM. Method A single-participant, multiple-baseline, multiple-probe design across behaviours was used with a participant with conduction aphasia. The treatment involved repetition of words and nonwords under three “interval” conditions, which varied the time between hearing and repeating the stimulus. Measures of treatment effects included acquisition, maintenance, and follow-up data, effect sizes, and pre- and post-treatment performance on a test battery that varies the STM and executive function

  1. Environmental Enrichment Improves Spatial Learning and Memory in Vascular Dementia Rats with Activation of Wnt/β-Catenin Signal Pathway

    PubMed Central

    Jin, Xinhao; Li, Tao; Zhang, Lina; Ma, Jingxi; Yu, Lehua; Li, Changqing; Niu, Lingchuan

    2017-01-01

    Background Environmental enrichment (EE) has a beneficial effect on some neuropsychiatric disorders. In this study, we aimed to investigate whether environmental enrichment could improve the spatial learning and memory in rats with vascular dementia (VaD) and the mechanism underpinning it. Material/Methods Bilateral common carotid occlusion (2-vessel occlusion [2VO]) was used to develop the animal model of vascular dementia. Adult male Sprague-Dawley (SD) rats were used in the experiment and were randomly divided into 4 groups: sham group, 2VO group, sham+EE group, and 2VO+EE group (n=19/group). The 2VO group and 2VO+EE group underwent bilateral common carotid occlusion. Two different housing conditions were used in this experiment: standard environment (SE) and enriched environment (EE). Rats in the sham group and 2VO group were put into SE cages for 4 weeks, while rats in the sham+EE group and 2VO+EE group were put in EE cages for 4 weeks. The Morris water maze and Y-maze were used to assess spatial learning and memory. Apoptosis was detected by TUNEL. The damage of neurons in the hippocampus was assessed by Nissl staining. The level of wnt pathway proteins were detected by Western blot. Results Compared with the 2VO group, the rats in the 2VO+EE group had better behavioral performance, fewer apoptotic neurons, and more surviving neurons. Western blot analysis showed that the levels of wnt pathway proteins were higher in 2VO+EE rats than in the 2VO group. Conclusions Environmental enrichment can improve the spatial learning and memory in rats with vascular dementia, and the mechanism may be related to activation of the wnt/β-catenin signal pathway. PMID:28082734

  2. Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer's disease.

    PubMed

    Rangani, Ritesh J; Upadhya, Manoj A; Nakhate, Kartik T; Kokare, Dadasaheb M; Subhedar, Nishikant K

    2012-02-01

    We investigated the role of endogenous neuropeptide Y (NPY) system in nicotine-mediated improvement of learning and memory in rat model of Alzheimer's disease (AD). Intracerebroventricular (icv) colchicine treatment induced AD-like condition in rats and showed increased escape latency (decreased learning), and amnesic condition in probe test in Morris water maze. In these rats, nicotine (0.5mg/kg, intraperitoneal), NPY (100 ng/rat, icv) or NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY (0.04 ng/rat, icv) decreased escape latency by 54.76%, 55.81% and 44.18%, respectively, on day 4 of the acquisition. On the other hand, selective NPY Y1 receptor antagonist, BIBP3226 (icv) produced opposite effect (44.18%). In the probe test conducted at 24h time point, nicotine, NPY or [Leu(31), Pro(34)]-NPY increased the time spent by 72.72%, 44.11% and 26.47%, respectively; while BIBP3226 caused reduction (8.82%). It seems that while NPY or [Leu(31), Pro(34)]-NPY potentiated, BIBP3226 attenuated the learning and memory enhancing effects of nicotine. Brains of colchicine treated rats showed significant reduction in NPY-immunoreactivity in the nucleus accumbens shell (cells 62.23% and fibers 50%), bed nucleus of stria terminalis (fibers 71.58%), central nucleus of amygdala (cells 74.33%), arcuate nucleus (cells 70.97% and fibers 69.65%) and dentate gyrus (cells 58.54%). However, in these rats nicotine treatment for 4 days restored NPY-immunoreactivity to the control level. We suggest that NPY, perhaps acting via NPY Y1 receptors, might interact with the endogenous cholinergic system and play a role in improving the learning and memory processes in the rats with AD-like condition.

  3. Improvement in performance of reinforced concrete structures using shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2015-04-01

    Shape memory alloys (SMA) are a unique class of materials which have ability to undergo large deformation and also regain its undeformed shape by removal of stress or by heating. This unique property could be effectively utilized to enhance the safety of a structure. This paper presents the pushover analysis performance of a Reinforced Concrete moment resistance frame with the traditional steel reinforcement replaced partially with Nickel-Titanium (Nitinol) SMA. The results are compared with the RC structure reinforced with conventional steel. Partial replacement of traditional steel reinforcement by SMA shows better performance.

  4. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly.

    PubMed

    Shah, T; Verdile, G; Sohrabi, H; Campbell, A; Putland, E; Cheetham, C; Dhaliwal, S; Weinborn, M; Maruff, P; Darby, D; Martins, R N

    2014-12-02

    Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In this nonrandomized study, 224 healthy community-dwelling older adults (60-85 years) were assigned to 16 weeks home-based PA (n=64), computerized cognitive stimulation (n=62), a combination of both (combined, n=51) or a control group (n=47). Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points. A subset (total n=45) of participants underwent [(18)F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE) status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy older adults.

  5. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly

    PubMed Central

    Shah, T; Verdile, G; Sohrabi, H; Campbell, A; Putland, E; Cheetham, C; Dhaliwal, S; Weinborn, M; Maruff, P; Darby, D; Martins, R N

    2014-01-01

    Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In this nonrandomized study, 224 healthy community-dwelling older adults (60–85 years) were assigned to 16 weeks home-based PA (n=64), computerized cognitive stimulation (n=62), a combination of both (combined, n=51) or a control group (n=47). Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points. A subset (total n=45) of participants underwent [18F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE) status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy older adults. PMID:25463973

  6. Cerebral dopamine neurotrophic factor improves long-term memory in APP/PS1 transgenic mice modeling Alzheimer's disease as well as in wild-type mice.

    PubMed

    Kemppainen, Susanna; Lindholm, Päivi; Galli, Emilia; Lahtinen, Hanna-Maija; Koivisto, Henna; Hämäläinen, Elina; Saarma, Mart; Tanila, Heikki

    2015-09-15

    Cerebral dopamine neurotrophic factor (CDNF) protects and repairs dopamine neurons in animal models of Parkinson's disease, which motivated us to investigate its therapeutic effect in an animal model of Alzheimer's disease (AD). We employed an established APP/PS1 mouse model of AD and gave intrahippocampal injections of CDNF protein or CDNF transgene in an AAV2 viral vector to 1-year-old animals. We performed a behavioral test battery 2 weeks after the injections and collected tissue samples after the 3-week test period. Intrahippocampal CDNF-therapy improved long-term memory in both APP/PS1 mice and wild-type controls, but did not affect spontaneous exploration, object neophobia or early stages of spatial learning. The memory improvement was not associated with decreased brain amyloid load or enhanced hippocampal neurogenesis. Intracranial CDNF treatment has beneficial effects on long-term memory and is well tolerated. The CDNF molecular mechanisms of action on memory await further studies.

  7. Erythropoietin improves memory function with reducing endothelial dysfunction and amyloid-beta burden in Alzheimer's disease models.

    PubMed

    Lee, Soon-Tae; Chu, Kon; Park, Jung-Eun; Jung, Keun-Hwa; Jeon, Daejong; Lim, Ji-Youn; Lee, Sang Kun; Kim, Manho; Roh, Jae-Kyu

    2012-01-01

    Neurovascular degeneration contributes to the pathogenesis of Alzheimer's disease (AD). Because erythropoietin (EPO) promotes endothelial regeneration, we investigated the therapeutic effects of EPO in animal models of AD. In aged Tg2576 mice, EPO receptors (EPORs) were expressed in the cortex and hippocampus. Tg2576 mice were treated with daily injection of EPO (5000 IU/kg/day) for 5 days. At 14 days, EPO improved contextual memory as measured by fear-conditioning test. EPO enhanced endothelial proliferation and the level of synaptophysin expression in the brain. EPO also increased capillary density, and decreased the level of the receptor for advanced glycation endproducts (RAGE) in the brain, while decreasing in the amount of amyloid plaque and amyloid-β (Aβ). In cultured human endothelial cells, EPO enhanced angiogenesis and suppressed the expression of the RAGE. These results show that EPO improves memory and ameliorates endothelial degeneration induced by Aβ in AD models. This pre-clinical evidence suggests that EPO may be useful for the treatment of AD.

  8. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain.

    PubMed

    Ozarowski, Marcin; Mikolajczak, Przemyslaw L; Bogacz, Anna; Gryszczynska, Agnieszka; Kujawska, Malgorzata; Jodynis-Liebert, Jadwiga; Piasecka, Anna; Napieczynska, Hanna; Szulc, Michał; Kujawski, Radoslaw; Bartkowiak-Wieczorek, Joanna; Cichocka, Joanna; Bobkiewicz-Kozlowska, Teresa; Czerny, Boguslaw; Mrozikiewicz, Przemyslaw M

    2013-12-01

    Rosmarinus officinalis L. leaf as part of a diet and medication can be a valuable proposal for the prevention and treatment of dementia. The aim of the study was to assess the effects of subchronic (28-fold) administration of a plant extract (RE) (200 mg/kg, p.o.) on behavioral and cognitive responses of rats linked with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity and their mRNA expression level in the hippocampus and frontal cortex. The passive avoidance test results showed that RE improved long-term memory in scopolamine-induced rats. The extract inhibited the AChE activity and showed a stimulatory effect on BuChE in both parts of rat brain. Moreover, RE produced a lower mRNA BuChE expression in the cortex and simultaneously an increase in the hippocampus. The study suggests that RE led to improved long-term memory in rats, which can be partially explained by its inhibition of AChE activity in rat brain.

  9. A daily-life-oriented intervention to improve prospective memory and goal-directed behaviour in ageing: a pilot study.

    PubMed

    Burkard, Christina; Rochat, Lucien; Blum, Anaëlle; Emmenegger, Joëlle; Juillerat Van der Linden, Anne-Claude; Van der Linden, Martial

    2014-01-01

    Difficulties in the execution of goal-directed behaviours, and particularly their prospective memory component, can arise in ageing and have important consequences for autonomy. The first objective of this article is to present an intervention that trained older individuals who reported prospective memory or goal-directed behaviour problems to use "implementation intentions". This technique, which has been shown to improve different aspects of goal-directed behaviour enactment, consists of establishing a mental (verbal and/or visual) link between the action that must be performed and the situation in which it must be performed. Our programme proposes exercises of progressively increasing difficulty that are targeted at daily life situations. Our second objective was to test the programme in small groups of older adults. Preliminary data regarding the programme's feasibility and its initial efficacy show a significant improvement in the main outcome measure, a questionnaire assessing goal-directed behaviours in everyday life. The participants also reported being significantly less bothered by their difficulties, although there were no significant changes in quality of life, self-esteem, anxiety or depression. Two participants with different psychological profiles, who benefited differently from the intervention, are then presented in more detail.

  10. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    PubMed

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  11. Language and Memory Improvements following tDCS of Left Lateral Prefrontal Cortex

    PubMed Central

    Hussey, Erika K.; Ward, Nathan; Christianson, Kiel; Kramer, Arthur F.

    2015-01-01

    Recent research demonstrates that performance on executive-control measures can be enhanced through brain stimulation of lateral prefrontal regions. Separate psycholinguistic work emphasizes the importance of left lateral prefrontal cortex executive-control resources during sentence processing, especially when readers must override early, incorrect interpretations when faced with temporary ambiguity. Using transcranial direct current stimulation, we tested whether stimulation of left lateral prefrontal cortex had discriminate effects on language and memory conditions that rely on executive-control (versus cases with minimal executive-control demands, even in the face of task difficulty). Participants were randomly assigned to receive Anodal, Cathodal, or Sham stimulation of left lateral prefrontal cortex while they (1) processed ambiguous and unambiguous sentences in a word-by-word self-paced reading task and (2) performed an n-back memory task that, on some trials, contained interference lure items reputed to require executive-control. Across both tasks, we parametrically manipulated executive-control demands and task difficulty. Our results revealed that the Anodal group outperformed the remaining groups on (1) the sentence processing conditions requiring executive-control, and (2) only the most complex n-back conditions, regardless of executive-control demands. Together, these findings add to the mounting evidence for the selective causal role of left lateral prefrontal cortex for executive-control tasks in the language domain. Moreover, we provide the first evidence suggesting that brain stimulation is a promising method to mitigate processing demands encountered during online sentence processing. PMID:26528814

  12. Cinnamon Converts Poor Learning Mice to Good Learners: Implications for Memory Improvement.

    PubMed

    Modi, Khushbu K; Rangasamy, Suresh B; Dasarathi, Sridevi; Roy, Avik; Pahan, Kalipada

    2016-12-01

    This study underlines the importance of cinnamon, a commonly used natural spice and flavoring material, and its metabolite sodium benzoate (NaB) in converting poor learning mice to good learning ones. NaB, but not sodium formate, was found to upregulate plasticity-related molecules, stimulate NMDA- and AMPA-sensitive calcium influx and increase of spine density in cultured hippocampal neurons. NaB induced the activation of CREB in hippocampal neurons via protein kinase A (PKA), which was responsible for the upregulation of plasticity-related molecules. Finally, spatial memory consolidation-induced activation of CREB and expression of different plasticity-related molecules were less in the hippocampus of poor learning mice as compared to good learning ones. However, oral treatment of cinnamon and NaB increased spatial memory consolidation-induced activation of CREB and expression of plasticity-related molecules in the hippocampus of poor-learning mice and converted poor learners into good learners. These results describe a novel property of cinnamon in switching poor learners to good learners via stimulating hippocampal plasticity.

  13. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing

    NASA Astrophysics Data System (ADS)

    Kang, Dae Yun; Lee, Tae-Ho; Kim, Tae Geun

    2016-08-01

    The authors report an improvement in resistive switching (RS) characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO)-based resistive random access memory devices using hydrogen post-annealing. Because this a-IGZO thin film has oxygen off-stoichiometry in the form of deficient and excessive oxygen sites, the film properties can be improved by introducing hydrogen atoms through the annealing process. After hydrogen post-annealing, the device exhibited a stable bipolar RS, low-voltage set and reset operation, long retention (>105 s), good endurance (>106 cycles), and a narrow distribution in each current state. The effect of hydrogen post-annealing is also investigated by analyzing the sample surface using X-ray photon spectroscopy and atomic force microscopy.

  14. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition

    PubMed Central

    2014-01-01

    Introduction Tau pathology is associated with a number of age-related neurodegenerative disorders. Few treatments have been demonstrated to diminish the impact of tau pathology in mouse models and none are yet effective in humans. Histone deacetylase 6 (HDAC6) is an enzyme that removes acetyl groups from cytoplasmic proteins, rather than nuclear histones. Its substrates include tubulin, heat shock protein 90 and cortactin. Tubastatin A is a selective inhibitor of HDAC6. Modification of tau pathology by specific inhibition of HDAC6 presents a potential therapeutic approach in tauopathy. Methods We treated rTg4510 mouse models of tau deposition and non-transgenic mice with tubastatin (25 mg/kg) or saline (0.9%) from 5 to 7 months of age. Cognitive behavior analysis, histology and biochemical analysis were applied to access the effect of tubastatin on memory, tau pathology and neurodegeneration (hippocampal volume). Results We present data showing that tubastatin restored memory function in rTg4510 mice and reversed a hyperactivity phenotype. We further found that tubastatin reduced the levels of total tau, both histologically and by western analysis. Reduction in total tau levels was positively correlated with memory improvement in these mice. However, there was no impact on phosphorylated forms of tau, either by histology or western analysis, nor was there an impact on silver positive inclusions histologically. Conclusion Potential mechanisms by which HDAC6 inhibitors might benefit the rTg4510 mouse include stabilization of microtubules secondary to increased tubulin acetylation, increased degradation of tau secondary to increased acetylation of HSP90 or both. These data support the use of HDAC6 inhibitors as potential therapeutic agents against tau pathology. PMID:24576665

  15. Evaluation of the antidepressant, anxiolytic and memory-improving efficacy of aripiprazole and fluoxetine in ethanol-treated rats.

    PubMed

    Burda-Malarz, Kinga; Kus, Krzysztof; Ratajczak, Piotr; Czubak, Anna; Hardyk, Szymon; Nowakowska, Elżbieta

    2014-07-01

    Some study results indicate a positive effect of aripiprazole (ARI) on impaired cognitive functions caused by brain damage resulting from chronic EtOH abuse. However, other research shows that to manifest itself, an ARI antidepressant effect requires a combined therapy with another selective serotonin reuptake inhibitor antidepressant, namely, fluoxetine (FLX). The aim of this article was to assess antidepressant and anxiolytic effects of ARI as well as its effect on spatial memory in ethanol-treated (alcoholized) rats. On the basis of alcohol consumption pattern, groups of (1) ethanol-preferring rats, with mean ethanol intake above 50%, and (2) ethanol-nonpreferring rats (EtNPRs), with mean ethanol intake below 50% of total daily fluid intake, were formed. The group of EtNPRs was used for this study, subdivided further into three groups administered ARI, FLX and a combination of both, respectively. Behavioral tests such as Porsolt's forced swimming test, the Morris water maze test and the two-compartment exploratory test were employed. Behavioral test results demonstrated (1) no antidepressant effect of ARI in EtNPRs in subchronic treatment and (2) no procognitive effect of ARI and FLX in EtNPRs in combined single administration. Combined administration of both drugs led to an anxiogenic effect and spatial memory deterioration in study animals. ARI had no antidepressant effect and failed to improve spatial memory in rats. However, potential antidepressant, anxiolytic and procognitive properties of the drug resulting from its mechanism of action encourage further research aimed at developing a dose of both ARI and FLX that will prove such effects in alcoholized EtNPRs.

  16. The dopamine D1 receptor agonist SKF 38393 improves temporal order memory performance in maternally deprived rats.

    PubMed

    Lejeune, Stéphanie; Dourmap, Nathalie; Martres, Marie-Pascale; Giros, Bruno; Daugé, Valérie; Naudon, Laurent

    2013-11-01

    Previously, we showed that maternal deprivation (MD) (3h/day, postnatal-day 1-14) impaired the performance at adulthood in the object temporal order memory task (TMT) that principally implicates the medial prefrontal cortex (mPFC). Dopamine (DA) transmission in the PFC may play a critical role in the achievement of the TMT. Here, to investigate whether MD could results in dysfunction of the DA system in the mPFC, we assessed in this region the tissue contents and extracellular levels of DA and its metabolites, as the density of D1 receptor. Besides we examined whether an agonist of the DA receptor D1, the SKF38393, could have a beneficial effect on the performance of deprived (D) rats in the TMT. We observed that MD induced a significant reduction of the extracellular level of DOPAC in the mPFC and in the density of the D1 receptor in the anterior cingulate cortex, a sub-region of mPFC. On the other hand, we observed that an acute systemic injection of a D1 receptor agonist, SKF38393, was effective to correct the memory deficiency of D rats in the TMT, when administered before the retrieval phase. We showed that a stress suffered by rats during the perinatal period led to dysfunction of the adult DA system, possibly triggering greater vulnerability to cognitive and mood disorders. Interestingly, an acute administration of a D1 receptor agonist in adulthood was sufficient to improve the deficit in the temporal memory. A better understanding of this phenomenon would permit the development of treatments adapted to patients with a history of early traumatic experiences.

  17. Psychological distance can improve decision making under information overload via gist memory.

    PubMed

    Fukukura, Jun; Ferguson, Melissa J; Fujita, Kentaro

    2013-08-01

    Making a decision can be especially difficult when it is based upon a large amount of information. A number of demonstrations in the literature suggest that decision making under information overload leads to suboptimal outcomes. In this article, we draw on construal level theory (Trope & Liberman, 2003) and fuzzy-trace theory (Brainerd & Reyna, 1993) to suggest that psychologically distancing oneself from the information can be beneficial to decision making under information overload. Specifically, we propose that distancing prompts organization of information in terms of its gist. Across 4 studies, we demonstrated that increasing spatial distance, temporal distance, and abstraction lead to better decision outcomes when decision makers were overloaded with many pieces of information per decision. Furthermore, we showed that the relationship between psychological distance and decision outcome is mediated by gist memory.

  18. Exercise improves learning and memory impairments in sleep deprived female rats.

    PubMed

    Saadati, Hakimeh; Esmaeili-Mahani, Saeed; Esmaeilpour, Khadije; Nazeri, Masoud; Mazhari, Shahrzad; Sheibani, Vahid

    2015-01-01

    Inadequate sleep is a common problem in modern societies. It has been previously shown that female rats are more vulnerable to the deleterious effects of sleep deprivation on cognitive functions. Physical exercise has been suggested to attenuate the cognitive impairments induced by sleep deprivation in male rats. The objective of the current study was to investigate the effects of physical exercise on cognitive functions of female rats following paradoxical sleep deprivation. Intact and ovariectomized (OVX) female Wistar rats were used in the present study. The exercise protocol was 4 weeks of treadmill running. The multiple platform method was applied for the induction of 72h paradoxical sleep deprivation and the cognitive function was evaluated using Morris water maze (MWM). Plasma corticosterone level was evaluated in separate groups of study. ANOVA and repeated measures were used to analyze the data and P<0.05 was considered statistically significant. Throughout the investigation, significant learning impairment was observed in sleep-deprived OVX rats compared to the intact and the other OVX groups. Short term memory impairment was observed in both sleep-deprived OVX and intact groups. Physical exercise alleviated the PSD-induced learning and memory impairments in both intact and OVX groups. Corticosterone levels were not statistically significant among the different groups. The results of our study confirmed the negative effects of PSD on cognitive functions in female rats and regular physical exercise seems to protect rats from these effects. Further studies are suggested to be carried out in order to evaluate the possible underlying mechanisms, and also to evaluate the possible interactions between sex hormones and PSD-induced cognitive impairments.

  19. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory

    PubMed Central

    Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects’ performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode. PMID:27314235

  20. New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility.

    PubMed

    Michiardi, A; Aparicio, C; Planell, J A; Gil, F J

    2006-05-01

    Various oxidation treatments were applied to nearly equiatomic NiTi alloys so as to form a Ni-free protective oxide on the surface. Sample surfaces were analyzed by X-ray Photoelectron Spectroscopy, and NiTi transformation temperatures were determined by differential scanning calorimetry (DSC) before and after the surface treatment. An ion release experiment was carried out up to one month of immersion in SBF for both oxidized and untreated surfaces. The results show that oxidation treatment in a low-oxygen pressure atmosphere leads to a high surface Ti/Ni ratio, a very low Ni surface concentration and a thick oxide layer. This oxidation treatment does not significantly affect the shape memory properties of the alloy. Moreover, the oxide formed significantly decreases Ni release into exterior medium comparing with untreated surfaces. As a consequence, this new oxidation treatment could be of great interest for biomedical applications, as it could minimize sensitization and allergies and improve biocompatibility and corrosion resistance of NiTi shape memory alloys.

  1. The Use of Melodic and Rhythmic Mnemonics to Improve Memory and Recall in Elementary Students in the Content Areas

    ERIC Educational Resources Information Center

    Hayes, Orla C.

    2009-01-01

    Mnemonic strategies that use imagery and visual cues to facilitate memory recall are commonly used in the classroom. A familiar tune, song or jingle, used as a mnemonic device is another popular memory aid. Studies of the brain and memory reveal that exposure to music not only alters but increases brain function in students. The purpose of this…

  2. Resistance controllability and variability improvement in a TaO{sub x}-based resistive memory for multilevel storage application

    SciTech Connect

    Prakash, A. E-mail: amit.knp02@gmail.com Song, J.; Hwang, H. E-mail: amit.knp02@gmail.com; Deleruyelle, D.; Bocquet, M.

    2015-06-08

    In order to obtain reliable multilevel cell (MLC) characteristics, resistance controllability between the different resistance levels is required especially in resistive random access memory (RRAM), which is prone to resistance variability mainly due to its intrinsic random nature of defect generation and filament formation. In this study, we have thoroughly investigated the multilevel resistance variability in a TaO{sub x}-based nanoscale (<30 nm) RRAM operated in MLC mode. It is found that the resistance variability not only depends on the conductive filament size but also is a strong function of oxygen vacancy concentration in it. Based on the gained insights through experimental observations and simulation, it is suggested that forming thinner but denser conductive filament may greatly improve the temporal resistance variability even at low operation current despite the inherent stochastic nature of resistance switching process.

  3. Polymorphisms in the dopamine receptor 2 gene region influence improvements during working memory training in children and adolescents.

    PubMed

    Söderqvist, Stina; Matsson, Hans; Peyrard-Janvid, Myriam; Kere, Juha; Klingberg, Torkel

    2014-01-01

    Studying the effects of cognitive training can lead to finding better treatments, but it can also be a tool for investigating factors important for brain plasticity and acquisition of cognitive skills. In this study, we investigated how single-nucleotide polymorphisms (SNPs) and ratings of intrinsic motivation were associated to interindividual differences in improvement during working memory training. The study included 256 children aged 7-19 years who were genotyped for 13 SNPs within or near eight candidate genes previously implicated in learning: COMT, SLC6A3 (DAT1), DRD4, DRD2, PPP1R1B (DARPP32), MAOA, LMX1A, and BDNF. Ratings on the intrinsic motivation inventory were also available for 156 of these children. All participants performed at least 20 sessions of working memory training, and performance during the training was logged and used as the outcome variable. We found that two SNPs, rs1800497 and rs2283265, located near and within the dopamine receptor 2 (DRD2) gene, respectively, were significantly associated with improvements during training (p < .003 and p < .0004, respectively). Scores from a questionnaire regarding intrinsic motivation did not correlate with training outcome. However, we observed both the main effect of genotype at those two loci as well as the interaction between genotypes and ratings of intrinsic motivation (perceived competence). Both SNPs have previously been shown to affect DRD2 receptor density primarily in the BG. Our results suggest that genetic variation is accounting for some interindividual differences in how children acquire cognitive skills and that part of this effect is also seen on intrinsic motivation. Moreover, they suggest that dopamine D2 transmission in the BG is a key factor for cognitive plasticity.

  4. Learning and Memory Improvement through Chemistry: Dream or Reality in the Offing?

    ERIC Educational Resources Information Center

    Hansl, Nikolaus R.; Hansl, Adele B.

    1979-01-01

    Reports on PRL-8-53, an experimental drug that will boost the chemical system in the brain called the cholinergic system and thereby improve one's ability to retrieve information from a preexisting information pool. (Author/IRT)

  5. CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory.

    PubMed

    Wake, G; Court, J; Pickering, A; Lewis, R; Wilkins, R; Perry, E

    2000-02-01

    Certain Lamiaceous and Asteraceous plants have long histories of use as restoratives of lost or declining cognitive functions in western European systems of traditional medicine. Investigations were carried out to evaluate human CNS cholinergic receptor binding activity in extracts of those European medicinal plants reputed to enhance or restore mental functions including memory. Ethanolic extracts were prepared from accessions of these plants and a number of other species related by genus. Amongst the plant extracts screened for contents able to displace [3H]-(N)-nicotine and [3H]-(N)-scopolamine from nicotinic receptors and muscarinic receptors, respectively in homogenates of human cerebral cortical cell membranes, the most potent extracts, prepared from one accession of Melissa officinalis, three Salvia species and Artemisia absinthium had IC50 concentrations of < 1 mg/ml. The displacement curves of some extracts were comparable with that of carbamylcholine chloride, a potent acetylcholine analogue. Choline, a weak nicotinic ligand (IC50 = 3 x 10(-4) M) was found in extracts of all plants studied at concentrations of 10(-6)-10(-5) M. These concentrations could not account for not more than 5% of the displacement activity observed. Some extracts displayed differential displacement at nicotinic and muscarinic acetylcholine receptors, with M. officinalis 0033 having the highest [3H]-(N)-nicotine displacement value and Salvia elegans with the highest [3H]-(N)-scopolamine displacement value. There was also considerable variation in cholinoreceptor interactions between different accessions of a single plant species. Although most plant extracts screened showed some nicotinic and muscarinic activity, only some showed dose-dependent receptor activity typical of materials with genuine cholinergic activity.

  6. Endocannabinoid-mediated improvement on a test of aversive memory in a mouse model of fragile X syndrome.

    PubMed

    Qin, Mei; Zeidler, Zachary; Moulton, Kristen; Krych, Leland; Xia, Zengyan; Smith, Carolyn B

    2015-09-15

    Silencing the gene FMR1 in fragile X syndrome (FXS) with consequent loss of its protein product, FMRP, results in intellectual disability, hyperactivity, anxiety, seizure disorders, and autism-like behavior. In a mouse model (Fmr1 knockout (KO)) of FXS, a deficit in performance on the passive avoidance test of learning and memory is a robust phenotype. We report that drugs acting on the endocannabinoid (eCB) system can improve performance on this test. We present three lines of evidence: (1) Propofol (reported to inhibit fatty acid amide hydrolase (FAAH) activity) administered 30 min after training on the passive avoidance test improved performance in Fmr1 KO mice but had no effect on wild type (WT). FAAH catalyzes the metabolism of the eCB, anandamide, so its inhibition should result in increased anandamide levels. (2) The effect of propofol was blocked by prior administration of the cannabinoid receptor 1 antagonist AM-251. (3) Treatment with the FAAH inhibitor, URB-597, administered 30 min after training on the passive avoidance test also improved performance in Fmr1 KO mice but had no effect on WT. Our results indicate that the eCB system is involved in FXS and suggest that the eCB system is a promising target for treatment of FXS.

  7. Endocannabinoid-mediated improvement on a test of aversive memory in a mouse model of fragile X syndrome

    PubMed Central

    Qin, Mei; Zeidler, Zachary; Moulton, Kristen; Krych, Leland; Xia, Zengyan; Smith, Carolyn B.

    2016-01-01

    Silencing the gene FMR1 in fragile X syndrome (FXS) with consequent loss of its protein product, FMRP, results in intellectual disability, hyperactivity, anxiety, seizure disorders, and autism-like behavior. In a mouse model (Fmr1 knockout (KO)) of FXS, a deficit in performance on the passive avoidance test of learning and memory is a robust phenotype. We report that drugs acting on the endocannabinoid (eCB) system can improve performance on this test. We present three lines of evidence: (1) Propofol (reported to inhibit fatty acid amide hydrolase (FAAH) activity) administered 30 min after training on the passive avoidance test improved performance in Fmr1 KO mice but had no effect on wild type (WT). FAAH catalyzes the metabolism of the eCB, anandamide, so its inhibition should result in increased anandamide levels. (2) The effect of propofol was blocked by prior administration of the cannabinoid receptor 1 antagonist AM-251. (3) Treatment with the FAAH inhibitor, URB-597, administered 30 min after training on the passive avoidance test also improved performance in Fmr1 KO mice but had no effect on WT. Our results indicate that the eCB system is involved in FXS and suggest that the eCB system is a promising target for treatment of FXS. PMID:25979787

  8. Improvements in concentration, working memory and sustained attention following consumption of a natural citicoline-caffeine beverage.

    PubMed

    Bruce, Steven E; Werner, Kimberly B; Preston, Brittany F; Baker, Laurie M

    2014-12-01

    This study examined the neurocognitive and electrophysiological effects of a citicoline-caffeine-based beverage in 60 healthy adult participants enrolled in a randomized, double-blind, placebo-controlled trial. Measures of electrical brain activity using electroencephalogram (EEG) and neuropsychological measures examining attention, concentration and reaction time were administered. Compared to placebo, participants receiving the citicoline-caffeine beverage exhibited significantly faster maze learning times and reaction times on a continuous performance test, fewer errors in a go/no-go task and better accuracy on a measure of information processing speed. EEG results examining P450 event-related potentials revealed that participants receiving the citicoline-caffeine beverage exhibited higher P450 amplitudes than controls, suggesting an increase in sustained attention. Overall, these findings suggest that the beverage significantly improved sustained attention, cognitive effort and reaction times in healthy adults. Evidence of improved P450 amplitude indicates a general improvement in the ability to accommodate new and relevant information within working memory and overall enhanced brain activation.

  9. Improvements in Concentration, Working Memory, and Sustained Attention Following Consumption of a Natural Citicoline-Caffeine Beverage

    PubMed Central

    Bruce, Steven E.; Werner, Kimberly B.; Preston, Brittany F.; Baker, Laurie M.

    2015-01-01

    The present study examined the neurocognitive and electrophysiological effects of a citicoline-caffeine-based beverage in 60 healthy adult participants enrolled in a randomized, double-blind, placebo-controlled trial. Measures of electrical brain activity using electroencephalogram (EEG) and neuropsychological measures examining attention, concentration, and reaction time were administered. Compared to placebo, participants receiving the citicoline-caffeine beverage exhibited significantly faster maze learning times and reaction times on a continuous performance test, fewer errors in a Go No-Go task, and better accuracy on a measure of information processing speed. EEG results examining P450 event related potentials (ERP) revealed that participants receiving the citicoline-caffeine beverage exhibited higher P450 amplitudes than controls, suggesting an increase in sustained attention. Overall, these findings suggest that the beverage significantly improved sustained attention, cognitive effort, and reaction times in healthy adults. Evidence of improved P450 amplitude indicates a general improvement in the ability to accommodate new and relevant information within working memory and overall enhanced brain activation. PMID:25046515

  10. Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer's disease.

    PubMed

    Hritcu, Lucian; Noumedem, Jaurès A; Cioanca, Oana; Hancianu, Monica; Kuete, Victor; Mihasan, Marius

    2014-04-01

    The present study analyzed the possible memory-enhancing and antioxidant proprieties of the methanolic extract of Piper nigrum L. fruits (50 and 100 mg/kg, orally, for 21 days) in amyloid beta(1-42) rat model of Alzheimer's disease. The memory-enhancing effects of the plant extract were studied by means of in vivo (Y-maze and radial arm-maze tasks) approaches. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase-, catalase-, glutathione peroxidase-specific activities and the total content of reduced glutathione, malondialdehyde, and protein carbonyl levels. The amyloid beta(1-42)-treated rats exhibited the following: decrease of spontaneous alternations percentage within Y-maze task and increase of working memory and reference memory errors within radial arm-maze task. Administration of the plant extract significantly improved memory performance and exhibited antioxidant potential. Our results suggest that the plant extract ameliorates amyloid beta(1-42)-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.

  11. Chunking Improves Symbolic Sequence Processing and Relies on Working Memory Gating Mechanisms

    ERIC Educational Resources Information Center

    Solopchuk, Oleg; Alamia, Andrea; Olivier, Etienne; Zénon, Alexandre

    2016-01-01

    Chunking, namely the grouping of sequence elements in clusters, is ubiquitous during sequence processing, but its impact on performance remains debated. Here, we found that participants who adopted a consistent chunking strategy during symbolic sequence learning showed a greater improvement of their performance and a larger decrease in cognitive…

  12. Tart cherry supplementation improves working memory, hippocampal inflammation and autophagy in aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High consumption of fruits and vegetables has been associated with reduced risk of debilitating diseases and improved cognition in aged populations. These beneficial effects have been attributed to the antioxidant/anti-inflammation properties of phytochemicals found in fruits and vegetables. Tart ch...

  13. The role of the central histaminergic receptors in the exercise-induced improvements of the spatial learning and memory in rats.

    PubMed

    Taati, Majid; Moghaddasi, Mehrnoush; Esmaeili, Masoumeh; Pourkhodadad, Soheila; Nayebzadeh, Hassan

    2014-10-31

    While it is well known that exercise can improve cognitive performance, the underlying mechanisms are not fully understood. There is now evidence that histamine can modulate learning and memory in different types of behavioral tasks. The present study was designed to examine the possible role of central histamine H1 and H2 receptors in forced treadmill running-induced enhancement of learning and memory in rats. For this purpose the animals received intracerebroventricularly chlorpheniramine (H1 receptor blocker) and cimetidine (H2 receptor blocker) before each day of fifteen consecutive days of exercise. Then their learning and memory were tested on the water maze task using a four-trial-per-day for 4 consecutive days. A probe trial was performed after the last training day. Our data showed that cimetidine reversed the exercise-induced improvement in learning and memory in rats; however, this was not the case regarding chlorpheniramine. Our findings indicate that central histamine H2 receptors play an important role in mediating the beneficial effects of forced exercise on learning and memory.

  14. Improving Working Memory in Children with Attention-Deficit/Hyperactivity Disorder: The Separate and Combined Effects of Incentives and Stimulant Medication

    ERIC Educational Resources Information Center

    Strand, Michael T.; Hawk, Larry W., Jr.; Bubnik, Michelle; Shiels, Keri; Pelham, William E., Jr.; Waxmonsky, James G.

    2012-01-01

    Working memory (WM) is considered a core deficit in Attention-Deficit/Hyperactivity Disorder (ADHD), with numerous studies demonstrating impaired WM among children with ADHD. We tested the degree to which WM in children with ADHD was improved by performance-based incentives, an analog of behavioral intervention. In two studies, WM performance was…

  15. Long-Term Electrophysiological and Behavioral Analysis on the Improvement of Visual Working Memory Load, Training Gains, and Transfer Benefits.

    PubMed

    Kuo, Ching-Chang; Zhang, Cheng; Rissman, Robert A; Chiu, Alan W L

    2014-05-01

    Recent evidence demonstrates that with training, one can enhance visual working memory (VWM) capacity and attention over time in the near transfer tasks. Not only do these studies reveal the characteristics of VWM load and the influences of training, they may also provide insights into developing effective rehabilitation for patients with VWM deficiencies. However, few studies have investigated VWM over extended periods of time and evaluated transfer benefits on non-trained tasks. Here, we combined behavioral and electroencephalographical approaches to investigate VWM load, training gains, and transfer benefits. Our results reveal that VWM capacity is directly correlated to the difference of event-related potential waveforms. In particular, the "magic number 4" can be observed through the contralateral delay amplitude and the average capacity is 3.25-item over 15 participants. Furthermore, our findings indicate that VWM capacity can be improved through training; and after training exercises, participants from the training group are able to dramatically improve their performance. Likewise, the training effects on non-trained tasks can also be observed at the 12th week after training. Therefore, we conclude that participants can benefit from training gains, and augmented VWM capacity sustained over long periods of time on specific variety of tasks.

  16. Improvement of lithography process by using a FlexRay illuminator for memory applications

    NASA Astrophysics Data System (ADS)

    Huang, Thomas; Huang, Chun-Yen; Chiou, Tsann-Bim; Hsu, Michael; Shih, Chiang-Lin; Chen, Alek; Wei, Ming-Kang

    2011-04-01

    As is well recognized, source mask optimization (SMO) is a highly effective means of extending the lifetime of a certain photolithography generation without an expensive upgrade to the next generation optical system. More than an academic theory, source optimization first found practical applications in the debut of the pixel-like programmable illuminator in 2009 for producing near freeform illumination. Based on programmed illumination, related studies have demonstrated a nearly identical optical performance to that generated by the conventionally adopted diffractive optical element (DOE) device without the prolonged manufacturing time and relatively high cost of stocking up various DOEs. By using a commercially available pixel-like programmable illuminator from ASML, i.e. the FlexRay, this study investigates the effectiveness of FlexRay in enhancing image contrast and common process window. Before wafer exposure, full SMO and source-only (SO) optimization are implemented by Tachyon SMO software to select the optimum illumination source. Wafer exposure is performed by ASML XT:1950i scanner equipped with a FlexRay illuminator on a critical layer of DRAM process with known hotspots of resist peeling. Pupil information is collected by a sensor embedded in the scanner to confirm the produced source shape against the programmed source and the optically simulated CD. When the FlexRay illuminator is used, experimental results indicate that lithography hotspots are eliminated and depth of focus is improved by as much as 50% in comparison with those from a traditional AERIAL illuminator. Regular focus-exposure matrix (FEM) and the subsequent critical defects scanning reveal that the common process window of the tight-pitched array and the periphery can be enhanced simultaneously with no hotspot identified. Therefore, a programmed source is undoubtedly invaluable in terms of additional manufacturing flexibility and lower cost of ownership when attempting to improve product

  17. Resveratrol Attenuates Obesity-Associated Peripheral and Central Inflammation and Improves Memory Deficit in Mice Fed a High-Fat Diet

    PubMed Central

    Jeon, Byeong Tak; Jeong, Eun Ae; Shin, Hyun Joo; Lee, Younghyurk; Lee, Dong Hoon; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Choi, Wan Sung; Roh, Gu Seob

    2012-01-01

    Obesity-induced diabetes is associated with chronic inflammation and is considered a risk factor for neurodegeneration. We tested the hypothesis that an AMP-activated protein kinase activator, resveratrol (RES), which is known to exert potent anti-inflammatory effects, would attenuate peripheral and central inflammation and improve memory deficit in mice fed a high-fat diet (HFD). C57BL/6J mice were fed an HFD or an HFD supplemented with RES for 20 weeks. Metabolic parameters in serum were evaluated, and Western blot analysis and immunohistochemistry in peripheral organs and brain were completed. We used the Morris water maze test to study the role of RES on memory function in HFD-treated mice. RES treatment reduced hepatic steatosis, macrophage infiltration, and insulin resistance in HFD-fed mice. In the hippocampus of HFD-fed mice, the protein levels of tumor necrosis factor-α and Iba-1 expression were reduced by RES treatment. Choline acetyltransferase was increased, and the phosphorylation of tau was decreased in the hippocampus of HFD-fed mice upon RES treatment. In particular, we found that RES significantly improved memory deficit in HFD-fed mice. These findings indicate that RES reverses obesity-related peripheral and central inflammation and metabolic derangements and improves memory deficit in HFD-fed diabetic mice. PMID:22362175

  18. Saffron (Crocus sativus L.) extract prevents and improves D-galactose and NaNO2 induced memory impairment in mice

    PubMed Central

    Dashti-r, M.H.; Zeinali, F.; Anvari, M.; Hosseini, S.M.

    2012-01-01

    This study was conducted to examine the effects of saffron extract on preventing D-galactose and NaNO2 induced memory impairment and improving learning and memory deficits in amnestic mice. In this study, the learning and memory functions in ovariectomized mice were examined by the one way passive and active avoidance tests. In active avoidance test, training in amnestic treated (AT) and amnestic prophylaxis (AP) groups, was improved so that there was a significant difference between them and the amnestic control (AC) group. In passive avoidance test, animal's step through latency, as an index for learning, in all test groups was significantly greater than control group. Total time spent in dark room (DS), which opposes the memory retention ability, in AC was significantly greater than AT group at 1 and 2 hours after full training, while there was not any significant difference between this index in AP and AT as compared with normal control (NC) group. Our findings indicate that saffron hydro-alcoholic extract prevents and improves amnesia induced by D-galactose and NaNO2 in mice. PMID:27418908

  19. A novel melatonin agonist Neu-P11 facilitates memory performance and improves cognitive impairment in a rat model of Alzheimer' disease.

    PubMed

    He, Pingping; Ouyang, Xinping; Zhou, Shouhong; Yin, Weidong; Tang, Chaoke; Laudon, Moshe; Tian, Shaowen

    2013-06-01

    Previous studies have shown that melatonin is implicated in modulating learning and memory processing. Melatonin also exerts neuroprotective activities against Aβ-induced injury in vitro and in vivo. Neu-P11 (piromelatine, N-(2-(5-methoxy-1H-indol-3-yl)ethyl)-4-oxo-4H-pyran-2-carboxamide) is a novel melatonin (MT1/MT2) receptor agonist and a serotonin 5-HT1A/1D receptor agonist recently developed for the treatment of insomnia. In the present study we firstly investigated whether Neu-P11 and melatonin enhance memory performance in the novel object recognition (NOR) task in rats, and then assessed whether Neu-P11 and melatonin improve neuronal and cognitive impairment in a rat model of Alzheimer' disease (AD) induced by intrahippocampal Aβ(1-42) injection. The results showed that a single morning or afternoon administration of Neu-P11 enhanced object recognition memory measured at 4 or 24h after training. Melatonin was effective in the memory facilitating effects only when administered in the afternoon. Further results showed that intrahippocampal Aβ(1-42) injection resulted in hippocampal cellular loss, as well as decreased learning ability and memory in the Y maze and NOR tasks in rats. Neu-P11 but not melatonin attenuated cellular loss and cognitive impairment in the rat AD model. The current data suggest that Neu-P11 may serve as a novel agent for the treatment of AD.

  20. Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots

    PubMed Central

    2012-01-01

    Improved resistive switching memory characteristics by controlling the formation polarity in an IrOx/Al2O3/IrOx-ND/Al2O3/WOx/W structure have been investigated. High density of 1 × 1013/cm2 and small size of 1.3 nm in diameter of the IrOx nano-dots (NDs) have been observed by high-resolution transmission electron microscopy. The IrOx-NDs, Al2O3, and WOx layers are confirmed by X-ray photo-electron spectroscopy. Capacitance-voltage hysteresis characteristics show higher charge-trapping density in the IrOx-ND memory as compared to the pure Al2O3 devices. This suggests that the IrOx-ND device has more defect sites than that of the pure Al2O3 devices. Stable resistive switching characteristics under positive formation polarity on the IrOx electrode are observed, and the conducting filament is controlled by oxygen ion migration toward the Al2O3/IrOx top electrode interface. The switching mechanism is explained schematically based on our resistive switching parameters. The resistive switching random access memory (ReRAM) devices under positive formation polarity have an applicable resistance ratio of > 10 after extrapolation of 10 years data retention at 85°C and a long read endurance of 105 cycles. A large memory size of > 60 Tbit/sq in. can be realized in future for ReRAM device application. This study is not only important for improving the resistive switching memory performance but also help design other nanoscale high-density nonvolatile memory in future. PMID:22439604

  1. Forced exercise improves passive avoidance memory in morphine-exposed rats.

    PubMed

    Saadipour, K; Sarkaki, A; Alaei, H; Badavi, M; Rahim, F

    2009-09-01

    The aim of this study was to investigate the effect of short-term forced exercise protocol on passive avoidance retention in morphine-exposed rats. Effects of morphine on acquisition and retrieval of retention have been proven in the avoidance paradigms. Twenty four male Wistar rats weighing 250-300 g were used in this study. Animals were randomly divided into four groups including: (1) non-morphine-exposed without exercise (nA.nE) (2) non-morphine-exposed with exercise (nA.E) (3) morphine-exposed without exercise (A.nE) and (4) morphine-exposed with exercise (A.E). Rats ran as forced exercise on the motorized treadmill 1 h daily for ten days. Morphine-exposed animals received intraperitoneal morphine during first 5 days of the exercise period and their dependence to morphine was confirmed by naloxane admistration (10 mg kg(-1), i.p.) and withdrawal test. After 10 days of forced exercise, step down latency was tested and Inflexion Ratio (IR) was evaluated in each rat. Baseline step down latencies before any morphine exposing or exercise have shown no significant alteration in all groups. Inflexion Ratio (IR) ofnA.E group has increased significantly (p<0.001) at 1, 3, 7 and 14 days after receiving shock (learning) compared to nA.nE and A.E groups. Our data showed that short-term forced exercise on treadmill improved retention in both morphine-exposed and non morphine-exposed rats at least up to 7 days and more than 14 days, respectively. Alteration in retention between exercised groups may attribute the release of adrenal stress hormones such as epinephrine and corticosterone because of the emotional arousal.

  2. [Effect of improving memory and inhibiting acetylcholinesterase activity by invigorating-qi and warming-yang recipe].

    PubMed

    Liu, Z Y; Yang, Y G; Zheng, B

    1993-11-01

    Invigorating-Qi and Warming-Yang (IQWY) had a good curative effect to some senile diseases such as senile dementia, senile hypomnesia etc. This experiment was designed for probing into the therapeutical mechanism of IQWY recipe. BALB/C pure bred mice were divided into five groups. Group I was taken per os of invigorating Qi (IQ), Group II warming Yang (WY), Group III IQWY drugs, Group IV was dysmnesia model, and Group V blank control group injected with normal saline only. All groups except Group V were injected scopolamine (5mg/kg) intraperitoneally to induce dysmnesia model after medication. IQ drug consisted of Codonopsis pilosula, Astragalus membranaceus, Poria cocos, and Glycyrrhiza uralensis, WY drug of Cynomorium songoricum, Epimedium brevicornum and Cuscuta chinensis, while IQWY recipe consisted of both IQ and WY drugs. The results showed that IQ, WY and IQWY had an evident antagonistic action to Scopolamine induced dysmnesia mice, and could improve their memory. The erroneous times of the animal's reaction in Group I, II and III were less than those in Group IV, P < 0.05 or P < 0.01. Acetylcholinesterase (AchE) activity in the mice could be inhibited by IQ, WY and IQWY also. The activity in Group I, II and III was less than that in Group IV and V, P < 0.05 or P < 0.01. The therapeutic mechanism of IQWY was in connection with its effect to M-cholinergic transmitters of central nervous system.

  3. Addition of HfO2 interface layer for improved synaptic performance of phase change memory (PCM) devices

    NASA Astrophysics Data System (ADS)

    Suri, M.; Bichler, O.; Hubert, Q.; Perniola, L.; Sousa, V.; Jahan, C.; Vuillaume, D.; Gamrat, C.; DeSalvo, B.

    2013-01-01

    In this work, we will focus on the use of phase change memory (PCM) to emulate synaptic behavior in emerging neuromorphic system-architectures. In particular, we will show that the performance and energy-efficiency of large scale neuromorphic systems can be improved by engineering individual PCM devices used as synapses. This is obtained by adding a thin HfO2 interface layer to standard GST PCM devices, allowing for the lowering of the Set/Reset currents and the increase of the number of intermediate resistance states (or synaptic weights) in the synaptic potentiation characteristics. The experimentally obtained potentiation characteristics of such PCM devices are used to simulate a 2-layer ultra-dense spiking neural network (SNN) and to perform a complex visual pattern extraction from a test case based on real world data (i.e. cars passing on a 6-lane freeway). The total power dissipated in the learning mode, for the pattern extraction experiment is estimated to be as low as 60 μW. Average detection rate of cars is found to be greater than 90%.

  4. Amniotic Mesenchymal Stem Cells Decrease Aβ Deposition and Improve Memory in APP/PS1 Transgenic Mice.

    PubMed

    Zheng, Xiao-Yu; Wan, Qian-Quan; Zheng, Chuan-Yi; Zhou, Hong-Long; Dong, Xing-Yu; Deng, Qing-Shan; Yao, Hui; Fu, Qiang; Gao, Mou; Yan, Zhong-Jie; Wang, Shan-Shan; You, Yu; Lv, Jun; Wang, Xiang-Yu; Chen, Ke-En; Zhang, Mao-Ying; Xu, Ru-Xiang

    2017-04-10

    Transplantation of human amniotic mesenchymal stem cells (hAM-MSCs) seems to be a promising strategy for the treatment of neurodegenerative disorders, including Alzheimer's disease (AD). However, the clinical therapeutic effects of hAM-MSCs and their mechanisms of action in AD remain to be determined. Here, we used amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic mice to evaluate the effects of hAM-MSC transplantation on AD-related neuropathology and cognitive dysfunction. We found that hAM-MSC transplantation into the hippocampus dramatically reduced amyloid-β peptide (Aβ) deposition and rescued spatial learning and memory deficits in APP/PS1 mice. Interestingly, these effects were associated with increasing in Aβ-degrading factors, elevations in activated microglia, and the modulation of neuroinflammation. Furthermore, enhanced hippocampal neurogenesis in the subgranular zone (SGZ) of the dentate gyrus (DG) and enhanced synaptic plasticity following hAM-MSC treatment could be another important factor in reversing the cognitive decline in APP/PS1 mice. Instead, the mechanism underlying the improved cognition apparently involves a robust increase in hippocampal synaptic density and neurogenesis that is mediated by brain-derived neurotrophic factor (BDNF). In conclusion, our data suggest that hAM-MSCs may be a new and effective therapy for the treatment of AD.

  5. Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer's disease mouse model.

    PubMed

    Kim, J A; Ha, S; Shin, K Y; Kim, S; Lee, K J; Chong, Y H; Chang, K-A; Suh, Y-H

    2015-06-18

    Alzheimer's disease (AD) is characterized by neuronal loss in several regions of the brain. Recent studies have suggested that stem cell transplantation could serve as a potential therapeutic strategy to halt or ameliorate the inexorable disease progression. However, the optimal stage of the disease for stem cell transplantation to have a therapeutic effect has yet to be determined. Here, we demonstrated that transplantation of neural stem cells into 12-month-old Tg2576 brains markedly improved both cognitive impairments and neuropathological features by reducing β-amyloid processing and upregulating clearance of β-amyloid, secretion of anti-inflammatory cytokines, endogenous neurogenesis, as well as synapse formation. In contrast, the stem cell transplantation did not recover cognitive dysfunction and β-amyloid neuropathology in Tg2576 mice aged 15 months when the memory loss is manifest. Overall, this study underscores that stem cell therapy at optimal time frame is crucial to obtain maximal therapeutic effects that can restore functional deficits or stop the progression of AD.

  6. A cross-disciplinary response to improve test activities: The corporate memory capitalization in Ariane4 test domain

    NASA Technical Reports Server (NTRS)

    Vo, Dinh Phuoc; Soler, Christian; Aussenac, N.; Macchion, D.

    1993-01-01

    The Assembly, Integration, Test, and Validation (AIT/AIV) of the Ariane4 Vehicle Equipment Bay was held at Matra Marconi Space (MMS) site of Toulouse for several years. For this activity, incident interpretation necessitates a great deal of different knowledge. When complex faults occur, particularly those appearing during overall control tests, experts of various domains (EGSE, software, on-board equipment) have to join for investigation sessions. Thus, an assistance tool for the identification of faulty equipment will improve the efficiency of diagnosis and the overall productivity of test activities. As a solution, the Aramiihs laboratory proposed considering the opportunity of a knowledge based system intended to assist the tester in diagnosis. This knowledge based system is, in fact, a short-term achievement of a long-term goal which is the capitalization of corporate memory in the Ariane4 test domain. Aramiihs is a research unit where engineers from MMS and researchers from the IRIT-CNRS cooperate on problems concerning new types of man-system interaction.

  7. Improvement of short-term memory performance in aged beagles by a nutraceutical supplement containing phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine

    PubMed Central

    Araujo, Joseph A.; Landsberg, Gary M.; Milgram, Norton W.; Miolo, Alda

    2008-01-01

    Aged dogs demonstrate cognitive decline that is linked to brain aging. The purpose of the present study was to examine if a commercially available nutraceutical supplement that may be neuroprotective and contains phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine could improve cognitive function in aged beagles. Nine aged beagles were tested on performance on a delayed-non-matching-to-position task, which is a neuropsychological test of short-term visuospatial memory. All subjects were tested on 5 baseline sessions; then, to assess the supplement, a crossover design was used in which 1 group received the supplement and the other a control substance in the 1st phase, with treatment conditions being reversed in the 2nd phase. Performance accuracy was significantly improved in supplemented dogs compared with control dogs and the effect was long lasting. These findings suggest that the nutraceutical supplement can improve memory in aged dogs. PMID:18481547

  8. Long-Term Supplementation with Beta Serum Concentrate (BSC), a Complex of Milk Lipids, during Post-Natal Brain Development Improves Memory in Rats.

    PubMed

    Guan, Jian; MacGibbon, Alastair; Fong, Bertram; Zhang, Rong; Liu, Karen; Rowan, Angela; McJarrow, Paul

    2015-06-05

    We have previously reported that the supplementation of ganglioside-enriched complex-milk-lipids improves cognitive function and that a phospholipid-enriched complex-milk-lipid prevents age-related cognitive decline in rats. This current study evaluated the effects of post-natal supplementation of ganglioside- and phospholipid-enriched complex-milk-lipids beta serum concentrate (BSC) on cognitive function in young rats. The diet of male rats was supplemented with either gels formulated BSC (n = 16) or blank gels (n = 16) from post-natal day 10 to day 70. Memory and anxiety-like behaviors were evaluated using the Morris water maze, dark-light boxes, and elevated plus maze tests. Neuroplasticity and white matter were measured using immunohistochemical staining. The overall performance in seven-day acquisition trials was similar between the groups. Compared with the control group, BSC supplementation reduced the latency to the platform during day one of the acquisition tests. Supplementation improved memory by showing reduced latency and improved path efficiency to the platform quadrant, and smaller initial heading error from the platform zone. Supplemented rats showed an increase in striatal dopamine terminals and hippocampal glutamate receptors. Thus BSC supplementation during post-natal brain development improved learning and memory, independent from anxiety. The moderately enhanced neuroplasticity in dopamine and glutamate may be biological changes underlying the improved cognitive function.

  9. Allowing Brief Delays in Responding Improves Event-Based Prospective Memory for Young Adults Living with HIV Disease

    PubMed Central

    Loft, Shayne; Doyle, Katie L.; Naar-King, Sylvie; Outlaw, Angulique Y.; Nichols, Sharon L.; Weber, Erica; Blackstone, Kaitlin; Woods, Steven Paul

    2014-01-01

    Event-based prospective memory (PM) tasks require individuals to remember to perform an action when they encounter a specific cue in the environment, and have clear relevance for daily functioning for individuals with HIV. In many everyday tasks, the individual must not only maintain the intent to perform the PM task, but the PM task response also competes with the alternative and more habitual task response. The current study examined whether event-based PM can be improved by slowing down the pace of the task environment. Fifty-seven young adults living with HIV performed an ongoing lexical decision task while simultaneously performing a PM task of monitoring for a specific word (which was focal to the ongoing task of making lexical decisions) or syllable contained in a word (which was nonfocal). Participants were instructed to refrain from making task responses until after a tone was presented, which occurred at varying onsets (0–1600ms) after each stimulus appeared. Improvements in focal and non-focal PM accuracy were observed with response delays of 600ms. Furthermore, the difference in PM accuracy between the low demand focal PM task and the resource demanding non-focal PM task was reduced by half across increasingly longer delays, falling from 31% at 0ms delay to only 14% at 1600ms delay. The degree of ongoing task response slowing for the PM conditions, relative to a control condition that did not have a PM task and made lexical decisions only, also decreased with increased delay. Overall, the evidence indicates that delaying the task responses of younger HIV-infected adults increased the probability that the PM relevant features of task stimuli were adequately assessed prior to the ongoing task response, and by implication that younger HIV infected adults can more adequately achieve PM goals when the pace of the task environment is slowed down. PMID:25116075

  10. Male mice retain a metabolic memory of improved glucose tolerance induced during adult onset, short-term dietary restriction

    PubMed Central

    2012-01-01

    Background Chronic dietary restriction (DR) has been shown to have beneficial effects on glucose homeostasis and insulin sensitivity. These factors show rapid and robust improvements when rodents were crossed over from an ad libitum (AL) diet to DR in mid life. We aimed to determine whether the beneficial effects induced by short-term exposure to DR can be retained as a ‘metabolic memory’ when AL feeding is resumed (AL-DR-AL) and vice versa: whether the effects of long-term DR can be reversed by a period of AL feeding (DR-AL-DR). C57BL/6 male and female mice were used to examine sex differences (N = 10/sex/group). Mice were fed AL or DR from 3 until 15 months (baseline) and each dietary crossover lasted approximately 5 months. Results In females, body and fat mass were proportional to the changes in feeding regime and plasma insulin and glucose tolerance were unaffected by the crossovers. However, in male mice, glucose tolerance and plasma insulin levels were reversed within 6 to 12 weeks. When males returned to AL intake following 5 months DR (AL-DR-AL), body mass was maintained below baseline, proportional to changes in fat mass. Glucose tolerance was also significantly better compared to baseline. Conclusions Male mice retained a metabolic memory of 5 months of DR feeding in terms of reduced body mass and improved glucose tolerance. This implies that some of the beneficial effects induced by a period of DR in adult life may be beneficial, even when free feeding is resumed at least in males. However, under continuous DR, lifespan extension was more prominent in females than in males. PMID:24764509

  11. Fabrication and Characterization of NOR-Type Tri-Gate Flash Memory with Improved Inter-Poly Dielectric Layer by Rapid Thermal Oxidation

    NASA Astrophysics Data System (ADS)

    Kamei, Takahiro; Liu, Yongxun; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Hayashida, Tetsuro; Sakamoto, Kunihiro; Ogura, Atsushi; Masahara, Meishoku

    2012-06-01

    Floating-gate (FG)-type tri-gate flash memories with an improved inter-poly dielectric (IPD) layer have been successfully fabricated by introducing a newly developed rapid thermal oxidation (RTO) process, and their NOR-mode operation including threshold voltage (Vt) variations before and after one program/erase (P/E) cycle have been systematically investigated. It was experimentally confirmed that the gate breakdown voltage (BVg) is greatly increased from 12 to 19 V by introducing the RTO process thanks to the high quality and thin thermal silicon dioxide (SiO2) formation on the FG surface and etched edge regions, which effectively blocks the leakage pass of the IPD layer. A source-drain (SD) breakdown voltage (BVDS) as high as 4.5 V was obtained even when the gate length (Lg) was as small as 117 nm. It was also experimentally confirmed that the memory window increases with increasing gate voltage (Vg) in NOR-mode programming thanks to the increased efficiency of channel hot electron (CHE) injection. The developed tri-gate flash memory with improved IPD layer is useful for the further scaling of NOR-type flash memory.

  12. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction.

    PubMed

    Nathan, Pradeep J; Watson, Jeannette; Lund, Jesper; Davies, Ceri H; Peters, Gary; Dodds, Chris M; Swirski, Bridget; Lawrence, Philip; Bentley, Graham D; O'Neill, Barry V; Robertson, Jon; Watson, Stephen; Jones, Gareth A; Maruff, Paul; Croft, Rodney J; Laruelle, Marc; Bullmore, Edward T

    2013-05-01

    Episodic memory deficits are a core feature of neurodegenerative disorders. Muscarinic M(1) receptors play a critical role in modulating learning and memory and are highly expressed in the hippocampus. We examined the effect of GSK1034702, a potent M(1) receptor allosteric agonist, on cognitive function, and in particular episodic memory, in healthy smokers using the nicotine abstinence model of cognitive dysfunction. The study utilized a randomized, double-blind, placebo-controlled, cross-over design in which 20 male nicotine abstained smokers were tested following single doses of placebo, 4 and 8 mg GSK1034702. Compared to the baseline (nicotine on-state), nicotine abstinence showed statistical significance in reducing immediate (p=0.019) and delayed (p=0.02) recall. GSK1034702 (8 mg) significantly attenuated (i.e. improved) immediate recall (p=0.014) but not delayed recall. None of the other cognitive domains was modulated by either nicotine abstinence or GSK1034702. These findings suggest that stimulating M(1) receptor mediated neurotransmission in humans with GSK1034702 improves memory encoding potentially by modulating hippocampal function. Hence, selective M(1) receptor allosteric agonists may have therapeutic benefits in disorders of impaired learning including Alzheimer's disease.

  13. Systemic administration of the neurotensin NTS₁-receptor agonist PD149163 improves performance on a memory task in naturally deficient male brown Norway rats.

    PubMed

    Keiser, Ashley A; Matazel, Katelin S; Esser, Melissa K; Feifel, David; Prus, Adam J

    2014-12-01

    Agonists for the neurotensin NTS₁ receptor consistently exhibit antipsychotic effects in animal models without producing catalepsy, suggesting that NTS₁-receptor agonists may be a novel class of drugs to treat schizophrenia. Moreover, studies utilizing NTS₁ agonists have reported improvements in some aspects of cognitive functioning, including prepulse inhibition and learning procedures, which suggest an ability of NTS₁-receptor agonists to diminish neurocognitive deficits. The present study sought to assess both baseline delay-induced memory performance and the effects of NTS₁-receptor activation on learning and memory consolidation in male Long-Evans and Brown Norway rats using a delayed nonmatch-to-position task radial arm-maze task. In the absence of drugs, Brown Norway rats displayed a significant increase in spatial memory errors following 3-, 7-, and 24-hr delay, whereas Long-Evans rats exhibited an increase in spatial memory errors following only a 7-, and 24-hr delay. With Brown Norway rats, administration of PD149163 before or after an information trial significantly reduced errors during a retention trial after a 24 hr delay. Administration of the NTS(1/2)-receptor antagonist SR142948 prior to the information trial did not affect retention-trial errors. These data are consistent with previous findings that Brown Norway rats have natural cognitive deficits and that they may be useful for assessing putative antipsychotic drugs for cognitive efficacy. Moreover, the results of this study support previous findings suggesting that NTS₁-receptor agonists may improve some aspects of cognitive functioning.

  14. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-08-15

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  15. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-05-16

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  16. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model.

    PubMed

    Akinyemi, Ayodele Jacob; Okonkwo, Princess Kamsy; Faboya, Opeyemi Ayodeji; Onikanni, Sunday Amos; Fadaka, Adewale; Olayide, Israel; Akinyemi, Elizabeth Olufisayo; Oboh, Ganiyu

    2017-02-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes has been reported to exert cognitive enhancing potential with limited scientific basis. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities in cadmium (Cd)-induced memory impairment in rats. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. Rats received Cd (2.5 mg/kg) and curcumin (12.5 and 25 mg/kg, respectively) by gavage for 7 days. The results of this study revealed that cerebral cortex AChE and ADA activities were increased in Cd-poisoned rats, and curcumin co-treatment reversed these activities to the control levels. Furthermore, Cd intoxication increased the level of lipid peroxidation in cerebral cortex with a concomitant decreased in functional sulfuhydryl (-SH) group and nitric oxide (NO), a potent neurotransmitter and neuromodulatory agent. However, the co-treatment with curcumin at 12.5 and 25 mg/kg, respectively increased the non-enzymatic antioxidant status and NO in cerebral cortex with a decreased in malondialdehyde (MDA) level. Therefore, inhibition of AChE and ADA activities as well as increased antioxidant status by curcumin in Cd-induced memory dysfunction could suggest some possible mechanism of action for their cognitive enhancing properties.

  17. Investigating the Improvement of Decoding Abilities and Working Memory in Children with Incremental or Entity Personal Conceptions of Intelligence: Two Case Reports

    PubMed Central

    Alesi, Marianna; Rappo, Gaetano; Pepi, Annamaria

    2016-01-01

    One of the most significant current discussions has led to the hypothesis that domain-specific training programs alone are not enough to improve reading achievement or working memory abilities. Incremental or Entity personal conceptions of intelligence may be assumed to be an important prognostic factor to overcome domain-specific deficits. Specifically, incremental students tend to be more oriented toward change and autonomy and are able to adopt more efficacious strategies. This study aims at examining the effect of personal conceptions of intelligence to strengthen the efficacy of a multidimensional intervention program in order to improve decoding abilities and working memory. Participants included two children (M age = 10 years) with developmental dyslexia and different conceptions of intelligence. The children were tested on a whole battery of reading and spelling tests commonly used in the assessment of reading disabilities in Italy. Afterwards, they were given a multimedia test to measure motivational factors such as conceptions of intelligence and achievement goals. The children took part in the T.I.R.D. Multimedia Training for the Rehabilitation of Dyslexia (Rappo and Pepi, 2010) reinforced by specific units to improve verbal working memory for 3 months. This training consisted of specific tasks to rehabilitate both visual and phonological strategies (sound blending, word segmentation, alliteration test and rhyme test, letter recognition, digraph recognition, trigraph recognition, and word recognition as samples of visual tasks) and verbal working memory (rapid words and non-words recognition). Posttest evaluations showed that the child holding the incremental theory of intelligence improved more than the child holding a static representation. On the whole this study highlights the importance of treatment programs in which both specificity of deficits and motivational factors are both taken into account. There is a need to plan multifaceted intervention

  18. Animal models of source memory.

    PubMed

    Crystal, Jonathon D

    2016-01-01

    Source memory is the aspect of episodic memory that encodes the origin (i.e., source) of information acquired in the past. Episodic memory (i.e., our memories for unique personal past events) typically involves source memory because those memories focus on the origin of previous events. Source memory is at work when, for example, someone tells a favorite joke to a person while avoiding retelling the joke to the friend who originally shared the joke. Importantly, source memory permits differentiation of one episodic memory from another because source memory includes features that were present when the different memories were formed. This article reviews recent efforts to develop an animal model of source memory using rats. Experiments are reviewed which suggest that source memory is dissociated from other forms of memory. The review highlights strengths and weaknesses of a number of animal models of episodic memory. Animal models of source memory may be used to probe the biological bases of memory. Moreover, these models can be combined with genetic models of Alzheimer's disease to evaluate pharmacotherapies that ultimately have the potential to improve memory.

  19. Xanthoceraside Ameliorates Mitochondrial Dysfunction Contributing to the Improvement of Learning and Memory Impairment in Mice with Intracerebroventricular Injection of Aβ1-42

    PubMed Central

    Ji, Xue-Fei; Chi, Tian-Yan; Xu, Qian; He, Xiao-Lu; Zhou, Xiao-Yu; Zhang, Rui; Zou, Li-Bo

    2014-01-01

    The effects of xanthoceraside on learning and memory impairment were investigated and the possible mechanism associated with the protection of mitochondria was also preliminarily explored in Alzheimer's disease (AD) mice model induced by intracerebroventricular (i.c.v.) injection of Aβ1-42. The results indicated that xanthoceraside (0.08–0.32 mg/kg) significantly improved learning and memory impairment in Morris water maze test and Y-maze test. Xanthoceraside significantly reversed the aberrant decrease of ATP levels and attenuated the abnormal increase of ROS levels both in the cerebral cortex and hippocampus in mice injected with Aβ1-42. Moreover, xanthoceraside dose dependently reversed the decrease of COX, PDHC, and KGDHC activity in isolated cerebral cortex mitochondria of the mice compared with Aβ1-42 injected model mice. In conclusion, xanthoceraside could improve learning and memory impairment, promote the function of mitochondria, decrease the production of ROS, and inhibit oxidative stress. The improvement effects on mitochondria may be through withstanding the damage of Aβ to mitochondrial respiratory chain and the key enzymes in Kreb's cycle. Therefore, the results from present study and previous study indicate that xanthoceraside could be a competitive candidate for the treatment of AD. PMID:24976855

  20. Prostaglandin E2 EP1 receptor antagonist improves motor deficits and rescues memory decline in R6/1 mouse model of Huntington's disease.

    PubMed

    Anglada-Huguet, Marta; Xifró, Xavier; Giralt, Albert; Zamora-Moratalla, Alfonsa; Martín, Eduardo D; Alberch, Jordi

    2014-04-01

    In this study, we evaluated the potential beneficial effects of antagonizing prostaglandin E2 (PGE2) EP1 receptor on motor and memory deficits in Huntington's disease (HD). To this aim, we implanted an osmotic mini-pump system to chronically administrate an EP1 receptor antagonist (SC-51089) in the R6/1 mouse model of HD, from 13 to 18 weeks of age, and used different paradigms to assess motor and memory function. SC-51089 administration ameliorated motor coordination and balance dysfunction in R6/1 mice as analyzed by rotarod, balance beam, and vertical pole tasks. Long-term memory deficit was also rescued after EP1 receptor antagonism as assessed by the T-maze spontaneous alternation and the novel object recognition tests. Additionally, treatment with SC-51089 improved the expression of specific synaptic markers and reduced the number of huntingtin nuclear inclusions in the striatum and hippocampus of 18-week-old R6/1 mice. Moreover, electrophysiological studies showed that hippocampal long-term potentiation was significantly recovered in R6/1 mice after EP1 receptor antagonism. Altogether, these results show that the antagonism of PGE2 EP1 receptor has a strong therapeutic effect on R6/1 mice and point out a new therapeutic candidate to treat motor and memory deficits in HD.

  1. Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats.

    PubMed

    Kalalian-Moghaddam, Hamid; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Goshadrou, Fatemeh; Ronaghi, Abdolaziz

    2013-01-05

    Chronic diabetes mellitus initiates apoptosis and negatively affects synaptic plasticity in the hippocampus with ensuing impairments of learning and memory. Berberine, an isoquinoline alkaloid, exhibits anti-diabetic, antioxidant and nootropic effects. This study was conducted to evaluate the effect of berberine on hippocampal CA1 neuronal apoptosis, synaptic plasticity and learning and memory of streptozotocin (STZ)-diabetic rats. Long-term potentiation (LTP) in perforant path-dentate gyrus synapses was recorded for assessment of synaptic plasticity and field excitatory post-synaptic potential (fEPSP) slope and population spike (PS) amplitude. PS amplitude and fEPSP significantly decreased in diabetic group versus control, and chronic berberine treatment (100mg/kg/day, p.o.) restored PS amplitude and fEPSP and ameliorated learning and memory impairment and attenuated apoptosis of pyramidal neurons in the CA1 area, as determined by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling method. In summary, chronic berberine treatment of STZ-diabetic rats significantly ameliorates learning and memory impairment and part of its beneficial effect could be attributed to improvement of synaptic dysfunction and anti-apoptotic property.

  2. Integrating a novel shape memory polymer into surgical meshes to improve device performance during laparoscopic hernia surgery

    NASA Astrophysics Data System (ADS)

    Zimkowski, Michael M.

    About 600,000 hernia repair surgeries are performed each year. The use of laparoscopic minimally invasive techniques has become increasingly popular in these operations. Use of surgical mesh in hernia repair has shown lower recurrence rates compared to other repair methods. However in many procedures, placement of surgical mesh can be challenging and even complicate the procedure, potentially leading to lengthy operating times. Various techniques have been attempted to improve mesh placement, including use of specialized systems to orient the mesh into a specific shape, with limited success and acceptance. In this work, a programmed novel Shape Memory Polymer (SMP) was integrated into commercially available polyester surgical meshes to add automatic unrolling and tissue conforming functionalities, while preserving the intrinsic structural properties of the original surgical mesh. Tensile testing and Dynamic Mechanical Analysis was performed on four different SMP formulas to identify appropriate mechanical properties for surgical mesh integration. In vitro testing involved monitoring the time required for a modified surgical mesh to deploy in a 37°C water bath. An acute porcine model was used to test the in vivo unrolling of SMP integrated surgical meshes. The SMP-integrated surgical meshes produced an automated, temperature activated, controlled deployment of surgical mesh on the order of several seconds, via laparoscopy in the animal model. A 30 day chronic rat model was used to test initial in vivo subcutaneous biocompatibility. To produce large more clinical relevant sizes of mesh, a mold was developed to facilitate manufacturing of SMP-integrated surgical mesh. The mold is capable of manufacturing mesh up to 361 cm2, which is believed to accommodate the majority of clinical cases. Results indicate surgical mesh modified with SMP is capable of laparoscopic deployment in vivo, activated by body temperature, and possesses the necessary strength and

  3. Improved Long-Term Memory via Enhancing cGMP-PKG Signaling Requires cAMP-PKA Signaling

    PubMed Central

    Bollen, Eva; Puzzo, Daniela; Rutten, Kris; Privitera, Lucia; De Vry, Jochen; Vanmierlo, Tim; Kenis, Gunter; Palmeri, Agostino; D'Hooge, Rudi; Balschun, Detlef; Steinbusch, Harry MW; Blokland, Arjan; Prickaerts, Jos

    2014-01-01

    Memory consolidation is defined by the stabilization of a memory trace after acquisition, and consists of numerous molecular cascades that mediate synaptic plasticity. Commonly, a distinction is made between an early and a late consolidation phase, in which early refers to the first hours in which labile synaptic changes occur, whereas late consolidation relates to stable and long-lasting synaptic changes induced by de novo protein synthesis. How these phases are linked at a molecular level is not yet clear. Here we studied the interaction of the cyclic nucleotide-mediated pathways during the different phases of memory consolidation in rodents. In addition, the same pathways were studied in a model of neuronal plasticity, long-term potentiation (LTP). We demonstrated that cGMP/protein kinase G (PKG) signaling mediates early memory consolidation as well as early-phase LTP, whereas cAMP/protein kinase A (PKA) signaling mediates late consolidation and late-phase-like LTP. In addition, we show for the first time that early-phase cGMP/PKG signaling requires late-phase cAMP/PKA-signaling in both LTP and long-term memory formation. PMID:24813825

  4. Physical exercise exacerbates memory deficits induced by intracerebroventricular STZ but improves insulin regulation of H₂O₂ production in mice synaptosomes.

    PubMed

    Muller, Alexandre P; Zimmer, Eduardo Rigon; Kalinine, Eduardo; Haas, Clarissa B; Oses, Jean Pierre; Martimbianco de Assis, Adriano; Galina, Antonio; Souza, Diogo O; Portela, Luis Valmor

    2012-01-01

    Insulin brain resistant state is associated with cognitive deficits and Alzheimer's disease by mechanisms that may involve mitochondrial damage and oxidative stress. Conversely, physical exercise improves cognitive function and brain insulin signaling. The intracerebroventricular (i.c.v.) administration of streptozotocin (STZ) in rodents is an established model of insulin-resistant brain state. This study evaluates the effects of physical exercise on memory performance of i.c.v., STZ-treated mice(1 and 3 mg/kg) and whether insulin (50 and 100 ng/ml) modulates mitochondrial H₂O₂ generation in synaptosomes. S100B levels and SOD and CAT activities were assessed as markers of brain damage caused by STZ. Sedentary and exercise vehicle-treated mice demonstrated similar performance in object recognition memory task. In the water maze test, exercise vehicle-treated mice showed improvement performance in the acquisition and retrieval phases. The administration of STZ (1 mg/kg) before thirty days of voluntary physical exercise protocol impaired recognition and spatial memory only in exercised mice, whereas STZ (3 mg/kg) impaired the performance of sedentary and exercise groups. Moreover, STZ (3 mg/kg) increased hippocampal S100B levels in both groups and SOD/CAT ratio in the sedentary animals. Insulin decreased synaptosomal H₂O₂ production in exercised compared to sedentary mice; however, both STZ doses abolished this effect. Normal brain insulin signaling is mechanistically involved in the improvement of cognitive function induced by exercise through the regulation of mitochondrial H₂O₂ production. However, a prior blockade of brain insulin signaling with STZ abolished the benefits of exercise on memory performance and mitochondrial H₂O₂ regulation.

  5. Oral administration of the 5-HT6 receptor antagonists SB-357134 and SB-399885 improves memory formation in an autoshaping learning task.

    PubMed

    Perez-García, Georgina; Meneses, Alfredo

    2005-07-01

    In this work we aimed to re-examine the 5-HT6 receptor role, by testing the selective antagonists SB-357134 (1-30 mg/kg p.o.) and SB-399885 (1-30 mg/kg p.o.) during memory consolidation of conditioned responses (CR%), in an autoshaping Pavlovian/instrumental learning task. Bioavailability, half-life and minimum effective dose to induce inappetence for SB-357134 were 65%, 3.4 h, and 30 mg/kg p.o., and for SB-399885 were 52%, 2.2 h, and 50 mg/kg p.o., respectively. Oral acute and chronic administration of either SB-357134 or SB-399885 improved memory consolidation compared to control groups. Acute administration of SB-357134, at 1, 3, 10 and 30 mg/kg, produced a CR% inverted-U curve, eliciting the latter dose a 7-fold increase relative to saline group. Acute injection of SB-399885 produced significant CR% increments, being 1 mg/kg the most effective dose. Repeated administration (7 days) of either SB-357134 (10 mg/kg) or SB-399885 (1 mg/kg) elicited the most significant CR% increments. Moreover, modeling the potential therapeutic benefits of 5-HT6 receptor blockade, acute or repeated administration of SB-399885, at 10 mg/kg reversed memory deficits produced by scopolamine or dizocilpine, and SB-357134 (3 and 10 mg/kg) prevented amnesia and even improved performance. These data support the notion that endogenously 5-HT acting, via 5-HT6 receptor, improves memory consolidation.

  6. Genistein Improves 3-NPA-Induced Memory Impairment in Ovariectomized Rats: Impact of Its Antioxidant, Anti-Inflammatory and Acetylcholinesterase Modulatory Properties

    PubMed Central

    Menze, Esther T.; Esmat, Ahmed; Tadros, Mariane G.; Abdel-Naim, Ashraf B.; Khalifa, Amani E.

    2015-01-01

    Huntington’s disease (HD) is a progressive neurodegenerative disorder. The pre-motor symptomatic stages of the disease are commonly characterized by cognitive problems including memory loss. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that produces selective lesions in the brain similar to that of HD and was proven to cause memory impairment in rodents. Phytoestrogens have well-established neuroprotective and memory enhancing effects with fewer side effects in comparison to estrogens. This study investigated the potential neuroprotective and memory enhancing effect of genistein (5, 10 and 20 mg/kg), a phytoestrogen, in ovariectomized rats challenged with 3-NPA (20 mg/kg). These potential effects were compared to those of 17β-estradiol (2.5 mg/kg). Systemic administration of 3-NPA for 4 consecutive days impaired locomotor activity, decreased retention latencies in the passive avoidance task, decreased striatal, cortical and hippocampal ATP levels, increased oxidative stress, acetylcholinesterase (AChE) activity, cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. Pretreatment with genistein and 17β-estradiol attenuated locomotor hypoactivity, increased retention latencies in the passive avoidance task, increased ATP levels, improved the oxidative stress profile, attenuated the increase in AChE activity and decreased the expression of COX-2 and iNOS. Overall, the higher genistein dose (20 mg/kg) was the most effective. In conclusion, this study suggests neuroprotective and memory enhancing effects for genistein in a rat model of HD. These effects might be attributed to its antioxidant, anti-inflammatory and cholinesterase inhibitory activities. PMID:25675218

  7. Improving Read Disturb Characteristics by Using Double Common Source Line and Dummy Switch Architecture in Multi Level Cell NAND Flash Memory with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Kang, Myounggon; Park, Ki-Tae; Song, Youngsun; Lim, Youngho; Suh, Kang-Deog; Shin, Hyungcheol

    2011-04-01

    Two new NAND structures using double common source line (CSL) and dummy switch and their read operation schemes as a solution for NAND flash memories have been proposed. Compared with conventional scheme, the proposed read schemes improves read disturb characteristics beyond sub-30 nm technology node. By using proposed read scheme, the number of fail bits of proposed NAND was decreased than those of conventional NAND at read cycles. Also, it was proven that they contribute to improve the performance and suppress the power consumption. The proposed NAND was verified by both simulation and experimental measurements in a fabricated 40 nm multi level cell (MLC) NAND device.

  8. Prefronto–cerebellar transcranial direct current stimulation improves visuospatial memory, executive functions, and neurological soft signs in patients with euthymic bipolar disorder

    PubMed Central

    Minichino, Amedeo; Bersani, Francesco Saverio; Bernabei, Laura; Spagnoli, Francesco; Vergnani, Lucilla; Corrado, Alessandra; Taddei, Ines; Biondi, Massimo; Delle Chiaie, Roberto

    2015-01-01

    Objective The aim of the study was to improve neuropsychological functioning of euthymic patients with bipolar disorder (BD) using transcranial direct current stimulation (tDCS) applied to cerebellar and prefrontal cortices. Methods Twenty-five BD outpatients underwent prefrontal (anodal) and cerebellar (cathodal) tDCS for 3 consecutive weeks. All participants were assessed through the Rey Complex Figure Test delay and copy and the Neurological Examination Scale at baseline and after therapy with tDCS. Results After tDCS treatment, patients showed significant improvements in visuospatial memory tasks. Patients with worse baseline cognitive performances also showed a significant improvement in executive functioning tasks. Neurological Examination Scale total score and motor coordination subscale significantly improved. Conclusion Prefrontal-excitatory and cerebellar-inhibitory stimulations in euthymic BD patients may lead to better neurocognitive performances. This improvement could result from the modulation of prefronto–thalamic–cerebellar circuit activity pattern, which can be disrupted in BD. PMID:26356034

  9. Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease.

    PubMed Central

    Fine, A; Dunnett, S B; Björklund, A; Iversen, S D

    1985-01-01

    The memory dysfunction of Alzheimer disease has been associated with a cortical cholinergic deficiency and loss of cholinergic neurons of the nucleus basalis of Meynert. This cholinergic component of Alzheimer disease can be modeled in the rat by ibotenic acid lesions of the cholinergic nucleus basalis magnocellularis. The memory impairment caused by such unilateral lesions, as reflected in passive avoidance behavior, is reversed by grafts into the deafferented neocortex of embryonic neurons of the cholinergic ventral forebrain, but not by grafts of noncholinergic hippocampal cells. Images PMID:3860857

  10. Activation of matrix metalloproteinase in dorsal hippocampus drives improvement in spatial working memory after intra-VTA nicotine infusion in rats.

    PubMed

    Shu, Hui; Zheng, Guo-qing; Wang, Xiaona; Sun, Yanyun; Liu, Yushan; Weaver, John Michael; Shen, Xianzhi; Liu, Wenlan; Jin, Xinchun

    2015-10-01

    The hippocampus receives dopaminergic projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences hippocampus-dependent behaviors. Enhancements in working memory performance have been previously reported following acute smoking/nicotine exposure. However, the underlying mechanism remains unclear. This study investigated the effects of nicotine on spatial working memory (SWM) and the mechanisms involved. Delayed alternation T-maze task was used to assess SWM. In situ and gel gelatin zymography were used to detect matrix metalloproteinase-9 (MMP-9) in SWM. Systemic or local (intra-VTA) administration of nicotine significantly improves SWM, which was accompanied by increased MMP-9 activity in dorsal hippocampus (dHPC). Intra-dHPC administration of MMP inhibitor FN-439 abolished the memory enhancement induced by intra-VTA nicotine infusion. FN-439 had no effect on locomotor behavior. Our data suggest that intra-VTA nicotine infusion activates MMP-9 in dHPC to improve SWM in rats.

  11. Improvement of two-way active avoidance memory requires protein kinase a activation and brain-derived neurotrophic factor expression in the dorsal hippocampus.

    PubMed

    Datta, Subimal; Siwek, Donald F; Huang, Max P

    2009-07-01

    Previous studies have shown that two-way active avoidance (TWAA) memory processing involves a functional interaction between the pontine wave (P wave) generator and the CA3 region of the dorsal hippocampus (DH-CA3). The present experiments examined whether the interaction between P wave generator activity and the DH-CA3 involves the intracellular protein kinase A (PKA) signaling system. In the first series of experiments, rats were subjected to a session of TWAA training followed immediately by bilateral microinjection of either the PKA activation inhibitor (KT-5720) or vehicle control into the DH-CA3 and tested for TWAA memory 24 h later. The results indicated that immediate KT-5720 infusion impaired improvement of TWAA performance. Additional experiments showed that KT-5720 infusion also blocked TWAA training-induced BDNF expression in the DH-CA3. Together, these findings suggest that the PKA activation and BDNF expression in the DH-CA3 is essential for the improvement of TWAA memory.

  12. Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats.

    PubMed

    Kim, Bo-Kyun; Shin, Mal-Soon; Kim, Chang-Ju; Baek, Sang-Bin; Ko, Yeong-Chan; Kim, Young-Pyo

    2014-02-01

    Alzheimer's disease is one of the most devastating neurodegenerative disorders, and this disease is characterized by severe memory impairment and decline of cognition. Hippocampal neurons are vulnerable to injury induced by Alzheimer's disease. Physical exercise is known to promote cell survival and functional recovery after brain injuries. In the present study, we investigated the effects of treadmill exercise on short-term memory in relation with neurogenesis in the rats with amyloid β25-35 (Aβ25-35)-induced Alzheimer's disease. The rat model of Alzheimer's disease was induced by the intracerebroventricular (ICV) injection of Aβ25-35, using a stereotaxic instrument. The rats in the exercise group were forced to run on a treadmill for 30 min once daily for 4 consecutive weeks, starting 2 days after Aβ25-35 injection. Presently, short-term memory was deteriorated and apical dendritic length in the hippocampus was shortened in the hippocampus by Aβ25-35 injection. In contrast, treadmill exercise alleviated memory impairment and increased apical dendritic length in the Aβ25-35-injected rats. Neurogenesis and brain-derived neurotorphic factor (BDNF) and tyrosine kinase B (trkB) in the hippocampal dentate gyrus were decreased by Aβ25-35 injection. Treadmill exercise increased neurogenesis and expressions of BDNF and trkB expressions. The present study shows that treadmill exercise may provide therapeutic value for the alleviating symptoms of Alzheimer's disease.

  13. Blockade of IP[subscript 3]-Mediated SK Channel Signaling in the Rat Medial Prefrontal Cortex Improves Spatial Working Memory

    ERIC Educational Resources Information Center

    Brennan, Avis R.; Dolinsky, Beth; Vu, Mai-Anh T.; Stanley, Marion; Yeckel, Mark F.; Arnsten, Amy F. T.

    2008-01-01

    Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP[subscript 3]-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP[subscript 3] receptor (IP[subscript…

  14. Resveratrol improved the spatial learning and memory in subclinical hypothyroidism rat induced by hemi-thyroid electrocauterization.

    PubMed

    Ge, Jin-Fang; Xu, Ya-Yun; Li, Ning; Zhang, Yue; Qiu, Guo-Liang; Chu, Cheng-Hao; Wang, Cai-Yun; Qin, Gan; Chen, Fei-Hu

    2015-01-01

    The major purpose of this study was to investigate the effect of resveratrol (RES) on the spatial learning and memory ability in subclinical hypothyroidism (SCH) rat model and the potential mechanism. A SCH rat model was induced by hemi-thyroid electrocauterization and the activity of hypothalamus-pituitary-thyroid (HPT) axis was detected. The spatial learning and memory ability was tested using Morris water maze (MWM) and Y-maze. The protein expressions of synaptotagmin-1 (syt-1) and brain-derived neurotrophic factor (BDNF) in the hippocampus were measured via western blot. The results showed that SCH rat model was successfully duplicated. The SCH rats showed impaired learning and memory in the behavioral tests. However, these changes were reversed by the treatment of RES (15mg/kg) and levothyroxine (LT4). Moreover, RES treated rats exhibited reduced plasma TSH level and hypothalamic thyrotropin releasing hormone (TRH) mRNA expression, which suggested that the imbalance of HPT axis in the SCH rats could be reversed by RES treatment. Furthermore, RES treatment up-regulated the protein levels of syt-1 and BDNF in hippocampus. These findings indicated an amelioration effect of RES on the spatial learning and memory in the SCH rats, the mechanism of which might be involved with its ability of modifying the hyperactive HPT axis and up-regulating the hippocampal hypo-expression of syt-1 and BDNF.

  15. Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats

    PubMed Central

    Kim, Bo-Kyun; Shin, Mal-Soon; Kim, Chang-Ju; Baek, Sang-Bin; Ko, Yeong-Chan; Kim, Young-Pyo

    2014-01-01

    Alzheimer’s disease is one of the most devastating neurodegenerative disorders, and this disease is characterized by severe memory impairment and decline of cognition. Hippocampal neurons are vulnerable to injury induced by Alzheimer’s disease. Physical exercise is known to promote cell survival and functional recovery after brain injuries. In the present study, we investigated the effects of treadmill exercise on short-term memory in relation with neurogenesis in the rats with amyloid β25–35 (Aβ25–35)-induced Alzheimer’s disease. The rat model of Alzheimer’s disease was induced by the intracerebroventricular (ICV) injection of Aβ25–35, using a stereotaxic instrument. The rats in the exercise group were forced to run on a treadmill for 30 min once daily for 4 consecutive weeks, starting 2 days after Aβ25–35 injection. Presently, short-term memory was deteriorated and apical dendritic length in the hippocampus was shortened in the hippocampus by Aβ25–35 injection. In contrast, treadmill exercise alleviated memory impairment and increased apical dendritic length in the Aβ25–35-injected rats. Neurogenesis and brain-derived neurotorphic factor (BDNF) and tyrosine kinase B (trkB) in the hippocampal dentate gyrus were decreased by Aβ25–35 injection. Treadmill exercise increased neurogenesis and expressions of BDNF and trkB expressions. The present study shows that treadmill exercise may provide therapeutic value for the alleviating symptoms of Alzheimer’s disease. PMID:24678498

  16. Long-term treadmill exercise improves spatial memory of male APPswe/PS1dE9 mice by regulation of BDNF expression and microglia activation.

    PubMed

    Xiong, J Y; Li, S C; Sun, Y X; Zhang, X S; Dong, Z Z; Zhong, P; Sun, X R

    2015-11-01

    Increasing evidence suggests that physical activity could delay or attenuate the symptoms of Alzheimer's disease (AD). But the underlying mechanisms are still not fully understood. To investigate the effect of long-term treadmill exercise on the spatial memory of AD mice and the possible role of β-amyloid, brain-derived neurotrophic factor (BDNF) and microglia in the effect, male APPswe/PS1dE9 AD mice aged 4 months were subjected to treadmill exercise for 5 months with 6 sessions per week and gradually increased load. A Morris water maze was used to evaluate the spatial memory. Expression levels of β-amyloid, BDNF and Iba-1 (a microglia marker) in brain tissue were detected by immunohistochemistry. Sedentary AD mice and wildtype C57BL/6J mice served as controls. The results showed that 5-month treadmill exercise significantly decreased the escape latencies (P < 0.01 on the 4th day) and improved the spatial memory of the AD mice in the water maze test. Meanwhile, treadmill exercise significantly increased the number of BDNF-positive cells and decreased the ratios of activated microglia in both the cerebral cortex and the hippocampus. However, treadmill exercise did not significantly alleviate the accumulation of β-amyloid in either the cerebral cortex or the hippocampus of the AD mice (P > 0.05). The study suggested that long-term treadmill exercise could improve the spatial memory of the male APPswe/PS1dE9 AD mice. The increase in BDNF-positive cells and decrease in activated microglia might underpin the beneficial effect.

  17. Long-term treadmill exercise improves spatial memory of male APPswe/PS1dE9 mice by regulation of BDNF expression and microglia activation

    PubMed Central

    Xiong, JY; Li, SC; Sun, YX; Zhang, XS; Dong, ZZ; Zhong, P

    2015-01-01

    Increasing evidence suggests that physical activity could delay or attenuate the symptoms of Alzheimer's disease (AD). But the underlying mechanisms are still not fully understood. To investigate the effect of long-term treadmill exercise on the spatial memory of AD mice and the possible role of β-amyloid, brain-derived neurotrophic factor (BDNF) and microglia in the effect, male APPswe/PS1dE9 AD mice aged 4 months were subjected to treadmill exercise for 5 months with 6 sessions per week and gradually increased load. A Morris water maze was used to evaluate the spatial memory. Expression levels of β-amyloid, BDNF and Iba-1 (a microglia marker) in brain tissue were detected by immunohistochemistry. Sedentary AD mice and wildtype C57BL/6J mice served as controls. The results showed that 5-month treadmill exercise significantly decreased the escape latencies (P < 0.01 on the 4th day) and improved the spatial memory of the AD mice in the water maze test. Meanwhile, treadmill exercise significantly increased the number of BDNF-positive cells and decreased the ratios of activated microglia in both the cerebral cortex and the hippocampus. However, treadmill exercise did not significantly alleviate the accumulation of β-amyloid in either the cerebral cortex or the hippocampus of the AD mice (P > 0.05). The study suggested that long-term treadmill exercise could improve the spatial memory of the male APPswe/PS1dE9 AD mice. The increase in BDNF-positive cells and decrease in activated microglia might underpin the beneficial effect. PMID:26681831

  18. Memory Matters

    MedlinePlus

    ... different parts. Some of them are important for memory. The hippocampus (say: hih-puh-KAM-pus) is one of the more important parts of the brain that processes memories. Old information and new information, or memories, are ...

  19. Tiliacora triandra, an Anti-Intoxication Plant, Improves Memory Impairment, Neurodegeneration, Cholinergic Function, and Oxidative Stress in Hippocampus of Ethanol Dependence Rats

    PubMed Central

    Phunchago, Nattaporn; Wattanathorn, Jintanaporn; Chaisiwamongkol, Kowit

    2015-01-01

    Oxidative stress plays an important role in brain dysfunctions induced by alcohol. Since less therapeutic agent against cognitive deficit and brain damage induced by chronic alcohol consumption is less available, we aimed to assess the effect of Tiliacora triandra extract, a plant possessing antioxidant activity, on memory impairment, neuron density, cholinergic function, and oxidative stress in hippocampus of alcoholic rats. Male Wistar rats were induced ethanol dependence condition by semivoluntary intake of alcohol for 15 weeks. Alcoholic rats were orally given T. triandra at doses of 100, 200, and 400 mg·kg−1BW for 14 days. Memory assessment was performed every 7 days while neuron density, activities of AChE, SOD, CAT, and GSH-Px and, MDA level in hippocampus were assessed at the end of study. Interestingly, the extract mitigated the increased escape latency, AChE and MDA level. The extract also mitigated the decreased retention time, SOD, CAT, and GSH-Px activities, and neurons density in hippocampus induced by alcohol. These data suggested that the extract improved memory deficit in alcoholic rats partly via the decreased oxidative stress and the suppression of AChE. Therefore, T. triandra is the potential reagent for treating brain dysfunction induced by alcohol. However, further researches are necessary to understand the detail mechanism and possible active ingredient. PMID:26180599

  20. Development of a Memory Game to Improve Knowledge Retention in Preparation for Broad Scope Exams in an Introductory Earth Science Course

    NASA Astrophysics Data System (ADS)

    Cook, H. M.; Bilsley, N. A.

    2015-12-01

    As the demand for introductory earth science classes rises at educational institutions, large class sizes place strain on the educator's time and ability to offer extensive project-based assignments. As a result, exams covering a broad spectrum of material are more heavily weighted in students' grades. Students often struggle on the first exam, as they attempt to retain a large amount of information from several different topics, while having no exposure to the type of questions that will be asked. This frequently leads to a large dropout rate early in the academic term, or at least a sense of discouragement and stress among struggling students. To better prepare students for a broad scope exam, a review activity modelled after the traditional Milton Bradley "Memory" game was developed to remind students of what would be covered on the exam, prepare them for the style of questions that may be asked, as well as provide a fun, interactive, and educational activity. The Earth Science Memory Game was developed to have interchangeable sets to cover a broad range of topics and thus also be reusable for the duration of the course. Example games sets presented include, but are not limited to, the scientific method, minerals, rocks, topographic maps, tectonics, geologic structures, volcanoes, and weather. The Earth Science Memory Game not only provides an effective review tool to improve success rates on broad scope exams, but is also customizable by the instructor, reusable, and easily constructed by common office supplies.

  1. Using cholinergic M1 receptor positive allosteric modulators to improve memory via enhancement of brain cholinergic communication.

    PubMed

    Chambon, Caroline; Jatzke, Claudia; Wegener, Nico; Gravius, Andreas; Danysz, Wojciech

    2012-12-15

    Benzylquinolone carboxylic acid (BQCA) is a recently described cholinergic muscarinic M(1) receptor positive allosteric modulator having potential as cognitive enhancer in dementia. The present study focused on the characterisation of BQCA's mode of action in relation to positive effects on memory and side-effects in an animal model. To get insight into this mode of action, in vitro receptor potency/left shift experiments in cells stably expressing the rat's M(1) receptor were performed. They revealed an inflection point value of BQCA corresponding to 306nM, and potentiation of the agonist response up to 47-fold in presence of 10μM of BQCA. In vivo, brain microdialysis showed a maximal brain level of 270nM, 40min after i.p. administration at 10mg/kg. Based on in vitro data obtained with this dose, it can be concluded that BQCA reaches brain levels which should potentiate the agonist response about 4-fold. Behavioural data confirmed that BQCA used at 10mg/kg attenuated scopolamine-induced memory deficit in a spontaneous alternation task. Moreover, BQCA showed no side effect at 10mg/kg and above in spontaneous locomotion and salivation tests. The profile of BQCA observed in the present study displays a clear advantage over the M(1)-M(3) agonist cevimeline. The present data show the therapeutic potential of the M(1) receptor positive allosteric modulator BQCA for the treatment of memory deficits observed in Alzheimer's disease.

  2. A novel cyclic squamosamide analogue compound FLZ improves memory impairment in artificial senescence mice induced by chronic injection of D-galactose and NaNO2.

    PubMed

    Fang, Fang; Liu, Gengtao

    2007-12-01

    The aim of the present study was to access the protective effect of a novel synthesized squamosamide cyclic analogue, compound FLZ, on memory impairment in artificially senescent mice induced by chronic injection of D-galactose and sodium nitrite (NaNO(2)). Artificially senescent mouse model was induced by consecutive injection of D-galactose (120 mg/kg) and NaNO(2) (90 mg/kg) once daily for 60 days. Compound FLZ (75 and 150 mg/kg) was orally administered once daily for 30 days after D-galactose and NaNO(2) injection for 30 days. The water maze test was used to evaluate the learning and memory function of mice. The content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum were determined using different biochemical kits. The alterations in hippocampus morphology were assessed by light and electronic microscope. Immunoreactive cells of Bcl-2 in the hippocampus were counted by immunohistochemical staining, and Bcl-2 protein expression was analysed by Western blot method. The results indicate that injection of D-galactose and NaNO(2) induces memory impairment and neuronal damage in hippocampus of mice. In addition, serum SOD and GSH-Px activities decreased, while MDA level increased. Bcl-2-positive neurons and Bcl-2 protein expression in the hippocampus decreased remarkably. Oral administration of FLZ for 30 days significantly improved the cognitive deficits and the biochemical markers mentioned above, and also reduced the pathological alterations in mouse hippocampus. The results suggest that FLZ ameliorates memory deficits and pathological injury in artificially senescent mice induced by chronic injection of D-galactose and NaNO(2), indicating that FLZ is worth further studies for fighting antisenescence and dementia.

  3. Improvement of spatial memory function in APPswe/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D.

    PubMed

    Sierksma, A S R; van den Hove, D L A; Pfau, F; Philippens, M; Bruno, O; Fedele, E; Ricciarelli, R; Steinbusch, H W M; Vanmierlo, T; Prickaerts, J

    2014-02-01

    Phosphodiesterase type 4 inhibitors (PDE4-Is) have received increasing attention as cognition-enhancers and putative treatment strategies for Alzheimer's disease (AD). By preventing cAMP breakdown, PDE4-Is can enhance intracellular signal transduction and increase the phosphorylation of cAMP response element-binding protein (CREB) and transcription of proteins related to synaptic plasticity and associated memory formation. Unfortunately, clinical development of PDE4-Is has been seriously hampered by emetic side effects. The new isoform-specific PDE4D-I, GEBR-7b, has shown to have beneficial effects on memory at non-emetic doses. The aim of the current study was to investigate chronic cognition-enhancing effects of GEBR-7b in a mouse model of AD. To this extent, 5-month-old (5M) APPswe/PS1dE9 mice received daily subcutaneous injections with GEBR-7b (0.001 mg/kg) or vehicle for a period of 3 weeks, and were tested on affective and cognitive behavior at 7M. We demonstrated a cognition-enhancing potential in APPswe/PS1dE9 mice as their spatial memory function at 7M in the object location test was improved by prior GEBR-7b treatment. APPswe/PS1dE9 mice displayed lower levels of CREB phosphorylation, which remained unaltered after chronic GEBR-7b treatment, and higher levels of tau in the hippocampus. Hippocampal brain-derived neurotrophic factor levels and synaptic densities were not different between experimental groups and no effects were observed on hippocampal GSK3β and tau phosphorylation or Aβ levels. In conclusion, GEBR-7b can enhance spatial memory function in the APPswe/PS1dE9 mouse model of AD. Although the underlying mechanisms of its cognition-enhancing potential remain to be elucidated, PDE4D inhibition appears an interesting novel therapeutic option for cognitive deficits in AD.

  4. The cognitive effects of listening to background music on older adults: processing speed improves with upbeat music, while memory seems to benefit from both upbeat and downbeat music

    PubMed Central

    Bottiroli, Sara; Rosi, Alessia; Russo, Riccardo; Vecchi, Tomaso; Cavallini, Elena

    2014-01-01

    Background music refers to any music played while the listener is performing another activity. Most studies on this effect have been conducted on young adults, while little attention has been paid to the presence of this effect in older adults. Hence, this study aimed to address this imbalance by assessing the impact of different types of background music on cognitive tasks tapping declarative memory and processing speed in older adults. Overall, background music tended to improve performance over no music and white noise, but not always in the same manner. The theoretical and practical implications of the empirical findings are discussed. PMID:25360112

  5. Improved spatial learning and memory by perilla diet is correlated with immunoreactivities to neurofilament and α-synuclein in hilus of dentate gyrus

    PubMed Central

    2012-01-01

    Background Perilla (Perilla frutescens) oil is very rich in α-linolenic acid, an omega-3 fatty acid. As it is widely reported that omega-3 fatty acid supplementation improves cognitive function in children and adults, feeding rats with perilla diets followed by analysis of proteomic changes in the hippocampus can provide valuable information on the mechanism of learning and memory at the molecular level. To identify proteins playing roles in learning and memory, differentially expressed proteins in the hippocampus of the 5 week old rats fed perilla diets for 3 weeks or 3 months were identified by proteomic analysis and validated by immunological assays. Results The perilla diet groups showed improved spatial learning and memory performances in a T-maze test. They also displayed elevated level of 22:6n-3 fatty acid, an omega-3 fatty acid (p<0.05), in the brain compared to the control diet group. Quantitative proteomic analysis using 2-D gels as well as functional annotation grouping with the differentially expressed proteins in the hippocampus showed that those proteins involved in cytoskeleton and transport were the major differentially expressed proteins in the 3-week group, whereas those involved in energy metabolism, neuron projection and apoptosis in addition to cytoskeleton and transport were the major ones in the 3 month group. Differential protein expression in the hippocampus was validated by Western blotting using four selected proteins, known to be involved in synaptic plasticity; AMPA receptor, neurofilament, α-synuclein, and β-soluble NSF attachment protein. Brain sections from the perilla-diet groups showed enhanced immunoreactivities to α-synuclein and neurofilament. Especially, neurofilament immunoreactive cells manifested longer neurite projections in the hilus of dentate gyrus of the perilla-diet groups. Conclusion Improved cognitive function upon administration of n-3 fatty acid-rich perilla diet is associated with the differential expression

  6. Hypnosis, memory and amnesia.

    PubMed Central

    Kihlstrom, J F

    1997-01-01

    Hypnotized subjects respond to suggestions from the hypnotist for imaginative experiences involving alterations in perception and memory. Individual differences in hypnotizability are only weakly related to other forms of suggestibility. Neuropsychological speculations about hypnosis focus on the right hemisphere and/or the frontal lobes. Posthypnotic amnesia refers to subjects' difficulty in remembering, after hypnosis, the events and experiences that transpired while they were hypnotized. Posthypnotic amnesia is not an instance of state-dependent memory, but it does seem to involve a disruption of retrieval processes similar to the functional amnesias observed in clinical dissociative disorders. Implicit memory, however, is largely spared, and may underlie subjects' ability to recognize events that they cannot recall. Hypnotic hypermnesia refers to improved memory for past events. However, such improvements are illusory: hypermnesia suggestions increase false recollection, as well as subjects' confidence in both true and false memories. Hypnotic age regression can be subjectively compelling, but does not involve the ablation of adult memory, or the reinstatement of childlike modes of mental functioning, or the revivification of memory. The clinical and forensic use of hypermnesia and age regression to enhance memory in patients, victims and witnesses (e.g. recovered memory therapy for child sexual abuse) should be discouraged. PMID:9415925

  7. Mnemonic strategy training improves memory for object location associations in both healthy elderly and patients with amnestic mild cognitive impairment: a randomized, single-blind study

    PubMed Central

    Hampstead, Benjamin M.; Sathian, K.; Phillips, Pamela A.; Amaraneni, Akshay; Delaune, William R.; Stringer, Anthony Y.

    2012-01-01

    Objectives To evaluate the efficacy of mnemonic strategy training versus a matched-exposure control condition and also to examine the relationship between training-related gains, neuropsychological abilities, and medial temporal lobe volumetrics in patients with amnestic mild cognitive impairment (aMCI) and age-matched healthy controls. Methods Twenty-three of 45 screened healthy controls and 29 of 42 screened aMCI were randomized to mnemonic strategy or matched-exposure groups. Groups were run in parallel, with participants blind to the other intervention. All participants completed five sessions within two weeks. Memory testing for object-location associations was performed during sessions one and five and at a one-month follow-up. During sessions 2–4, participants received either mnemonic strategy training or a matched number of exposures with corrective feedback for a total of 45 object-location associations. Structural MRI was performed in most participants and medial temporal lobe volumetrics were acquired. Results Twenty-one healthy controls and 28 aMCI patients were included in data analysis. Mnemonic strategy training was significantly more beneficial than matched-exposure immediately after training, p =.006, pη2 = .16, and at one month, p<.001, pη2 = .35, regardless of diagnostic group (healthy controls or aMCI). Although aMCI patients demonstrated gains comparable to the healthy control groups, their overall performance generally remained reduced. Mnemonic strategy-related improvement was positively correlated with baseline memory and executive functioning and negatively with inferior lateral ventricle volume in aMCI patients; no significant relationships were evident in matched-exposure patients. Conclusions Mnemonic strategies effectively improve memory for specific content for at least one month in aMCI. PMID:22409311

  8. Low-dose memantine-induced working memory improvement in the allothetic place avoidance alternation task (APAAT) in young adult male rats

    PubMed Central

    Wesierska, Malgorzata J.; Duda, Weronika; Dockery, Colleen A.

    2013-01-01

    N-methyl-D-aspartate receptors (NMDAR) are involved in neuronal plasticity. To assess their role simultaneously in spatial working memory and non-cognitive learning, we used NMDAR antagonists and the Allothetic Place Avoidance Alternation Task (APAAT). In this test rats should avoid entering a place where shocks were presented on a rotating arena which requires cognitive coordination for the segregation of stimuli. The experiment took place 30 min after intraperitoneal injection of memantine (5, 10, 20 mg/kg b.w.: MemL, MemM, MemH, respectively) and (+)MK-801 (0.1, 0.2, 0.3 mg/kg b.w.: MK-801L, MK-801M, MK-801H, respectively). Rats from the control group were intact or injected with saline (0.2 ml/kg). Over three consecutive days the rats underwent habituation, two avoidance training intervals with shocks, and a retrieval test. The shock sector was alternated daily. The after-effects of the agents were tested on Day 21. Rats treated with low dose memantine presented a longer maximum time avoided and fewer entrances than the MemH, MK-801M, MK-801H and Control rats. The shocks per entrances ratio, used as an index of cognitive skill learning, showed skill improvement after D1, except for rats treated by high doses of the agents. The activity levels, indicated by the distance walked, were higher for the groups treated with high doses of the agents. On D21 the MK801H rats performed the memory task better than the MemH rats, whereas the rats' activity depended on condition, not on the group factor. These results suggest that in naïve rats mild NMDAR blockade by low-dose memantine improves working memory related to a highly challenging task. PMID:24385956

  9. Voluntary wheel running, but not a diet containing (-)-epigallocatechin-3-gallate and β-alanine, improves learning, memory and hippocampal neurogenesis in aged mice

    PubMed Central

    Gibbons, Trisha E.; Pence, Brandt D.; Petr, Geraldine; Ossyra, Jessica M.; Mach, Houston C.; Battacharya, Tushar K.; Perez, Samuel; Martin, Stephen A.; McCusker, Robert H.; Kelley, Keith W.; Rhodes, Justin S.; Johnson, Rodney W.; Woods, Jeffrey A.

    2015-01-01

    Aging is associated with impaired learning and memory accompanied by reductions in adult hippocampal neurogenesis and brain expression of neurotrophic factors among other processes. Epigallocatechin-3-gallate (EGCG, a green tea catechin), β-alanine (β-ala, the precursor of carnosine), and exercise have independently been shown to be neuroprotective and to reduce inflammation and oxidative stress in the central nervous system. We hypothesized that EGCG, β-ala supplementation or exercise alone would improve learning and memory and increase neurogenesis in aged mice, and the combined intervention would be better than either treatment alone. Male Balb/cByJ mice (19 mo) were given AIN-93M diet with or without EGCG (182 mg/kg/d) and β-ala (417 mg/kg/d). Half of the mice were given access to a running wheel (VWR). The first 10 days, animals received 50 mg/kg bromodeoxyuridine (BrdU) daily. After 28 days, learning and memory was assessed by Morris water maze (MWM) and contextual fear conditioning (CFC). Brains were collected for immunohistochemical detection of BrdU and quantitative mRNA expression in the hippocampus. VWR increased the number of BrdU cells in the dentate gyrus, increased expression of brain-derived neurotrophic factor, decreased expression of the inflammatory cytokine interleukin-1β, and improved performance in the MWM and CFC tests. The dietary intervention reduced brain oxidative stress as measured by 4-hydroxynonenal in the cerebellum, but had no effect on BrdU labeling or behavioral performance. These results suggest that exercise, but not a diet containing EGCG and β-ala, exhibit pro-cognitive effects in aged mice when given at these doses in this relatively short time frame. PMID:25004447

  10. Targeting molecular and cellular inhibitory mechanisms for improvement of antitumor memory responses reactivated by tumor cell vaccine.

    PubMed

    Webster, W Scott; Thompson, R Houston; Harris, Kimberley J; Frigola, Xavier; Kuntz, Susan; Inman, Brant A; Dong, Haidong

    2007-09-01

    Development of effective vaccination approaches to treat established tumors represents a focus of intensive research because such approaches offer the promise of enhancing immune system priming against tumor Ags via restimulation of pre-existing (memory) antitumoral helper and effector immune cells. However, inhibitory mechanisms, which function to limit the recall responses of tumor-specific immunity, remain poorly understood and interfere with therapies anticipated to induce protective immunity. The mouse renal cell carcinoma (RENCA) tumor model was used to investigate variables affecting vaccination outcomes. We demonstrate that although a whole cell irradiated tumor cell vaccine can trigger a functional antitumor memory response in the bone marrows of mice with established tumors, these responses do not culminate in the regression of established tumors. In addition, a CD103+ regulatory T (Treg) cell subset accumulates within the draining lymph nodes of tumor-bearing mice. We also show that B7-H1 (CD274, PD-L1), a negative costimulatory ligand, and CD4+ Treg cells collaborate to impair the recall responses of tumor-specific memory T cells. Specifically, mice bearing large established RENCA tumors were treated with tumor cell vaccination in combination with B7-H1 blockade and CD4+ T cell depletion (triple therapy treatment) and monitored for tumor growth and survival. Triple treatment therapy induced complete regression of large established RENCA tumors and raised long-lasting protective immunity. These results have implications for developing clinical antitumoral vaccination regimens in the setting in which tumors express elevated levels of B7-H1 in the presence of abundant Treg cells.

  11. Blockade of IP3-mediated SK channel signaling in the rat medial prefrontal cortex improves spatial working memory

    PubMed Central

    Brennan, Avis R.; Dolinsky, Beth; Vu, Mai-Anh T.; Stanley, Marion; Yeckel, Mark F.; Arnsten, Amy F.T.

    2008-01-01

    Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP3-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP3 receptor (IP3R)-evoked calcium release results in SK channel-dependent hyperpolarization of prefrontal neurons. However, the effects of IP3R signaling on prefrontal function have not been investigated. The present findings demonstrate that blockade of IP3R or SK channels in the prefrontal cortex enhances WM performance in rats, suggesting that both arms of the PI cascade influence prefrontal cognitive function. PMID:18285467

  12. Improvement in Long-Term Memory following Chronic Administration of Eryngium planum Root Extract in Scopolamine Model: Behavioral and Molecular Study

    PubMed Central

    Ozarowski, Marcin; Thiem, Barbara; Mikolajczak, Przemyslaw L.; Piasecka, Anna; Kachlicki, Piotr; Szulc, Michal; Kaminska, Ewa; Bogacz, Anna; Kujawski, Radoslaw; Bartkowiak-Wieczorek, Joanna; Kujawska, Malgorzata; Jodynis-Liebert, Jadwiga; Budzianowski, Jaromir; Kędziora, Izabela; Seremak-Mrozikiewicz, Agnieszka; Czerny, Boguslaw; Bobkiewicz-Kozłowska, Teresa

    2015-01-01

    Eryngium planum L. (EP) is as a rare medicinal plant with a lot of potentials as pharmaceutical crops. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 70% ethanol extract of EP roots (200 mg/kg, p.o.) on behavioral and cognitive responses in Wistar rats linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex. On the last day of experiment, 30 min after the last dose of EP or Huperzine A (HU), scopolamine (SC) was given at a dose of 0.5 mg/kg b.w. intraperitoneally. The results of a passive avoidance test showed an improvement in long-term memory produced by the EP extract in both scopolamine-induced rats and control group. EP caused an insignificant inhibition of AChE and BuChE activities in the frontal cortex and the hippocampus. EP decreased mRNA AChE, BuChE, and BACE-1 levels, especially in the cortex. Our results suggest that the EP extract led to the improvement of the long-term memory in rats coupled with total saponin content. The mechanism of EP action is probably complicated, since HPLC-MS analysis showed 64 chemical compounds (phenolics, saponins) in the extract of EP roots. PMID:26483842

  13. Mixture of Peanut Skin Extract and Fish Oil Improves Memory in Mice via Modulation of Anti-Oxidative Stress and Regulation of BDNF/ERK/CREB Signaling Pathways

    PubMed Central

    Xiang, Lan; Cao, Xue-Li; Xing, Tian-Yan; Mori, Daisuke; Tang, Rui-Qi; Li, Jing; Gao, Li-Juan; Qi, Jian-Hua

    2016-01-01

    Long-term use of fish oil (FO) is known to induce oxidative stress and increase the risk of Alzheimer’s disease in humans. In the present study, peanut skin extract (PSE), which has strong antioxidant capacity, was mixed with FO to reduce its side effects while maintaining its beneficial properties. Twelve-week Institute of Cancer Research (ICR) mice were used to conduct animal behavior tests in order to evaluate the memory-enhancing ability of the mixture of peanut skin extract and fish oil (MPF). MPF significantly increased alternations in the Y-maze and cognitive index in the novel object recognition test. MPF also improved performance in the water maze test. We further sought to understand the mechanisms underlying these effects. A significant decrease in superoxide dismutase (SOD) activity and an increase in malonyldialdehyde (MDA) in plasma were observed in the FO group. The MPF group showed reduced MDA level and increased SOD activity in the plasma, cortex and hippocampus. Furthermore, the gene expression levels of brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in the hippocampus were increased in the MPF group, while phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK) and CREB in the hippocampus were enhanced. MPF improves memory in mice via modulation of anti-oxidative stress and activation of BDNF/ERK/CREB signaling pathways. PMID:27136583

  14. AAV2/1 CD74 Gene Transfer Reduces β-amyloidosis and Improves Learning and Memory in a Mouse Model of Alzheimer's Disease.

    PubMed

    Kiyota, Tomomi; Zhang, Gang; Morrison, Christine M; Bosch, Megan E; Weir, Robert A; Lu, Yaman; Dong, Weiguo; Gendelman, Howard E

    2015-11-01

    Modulation of the amyloid-β (Aβ) trafficking pathway heralds a new therapeutic frontier for Alzheimer's disease (AD). As CD74 binds to the amyloid-β precursor protein (APP) and can suppresses Aβ processing, we investigated whether recombinant adeno-associated virus (AAV) delivery of CD74 could reduce Aβ production and affect disease outcomes. This idea was tested in a mouse AD model. Cotransduction of AAV-tetracycline-controlled transactivator (tTA) and AAV-tet-response element (TRE)-CD74 resulted in CD74 expression, reduced Aβ production in mouse neurons containing the human APP with familial AD-linked mutations. Stereotaxic injection of AAV-TRE-GFP or CD74 into the hippocampi of an AD mouse, defined as a TgCRND8 × calmodulin-dependent protein kinase II derived promoter-tTA double-transgenic, reduced Aβ loads and pyramidal neuronal Aβ accumulation in the hippocampus. Immunofluorescent studies showed that APP colocalization with Lamp1 was increased in CD74-expressing neurons. Moreover, Morris water maze tasks demonstrated that mice treated with AAV-TRE-CD74 showed improved learning and memory compared to AAV-TRE-GFP control animals. These results support the idea that CD74-induced alteration of Aβ processing could improve AD-associated memory deficits as shown in mouse models of human disease.

  15. CaMKII-dependent dendrite ramification and spine generation promote spatial training-induced memory improvement in a rat model of sporadic Alzheimer's disease.

    PubMed

    Jiang, Xia; Chai, Gao-Shang; Wang, Zhi-Hao; Hu, Yu; Li, Xiao-Guang; Ma, Zhi-Wei; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2015-02-01

    Participation in cognitively stimulating activities can preserve memory capacities in patients with Alzheimer's disease (AD), but the mechanism is not fully understood. Here, we used a rat model with hyperhomocysteinemia, an independent risk factor of AD, to study whether spatial training could remodel the synaptic and/or dendritic plasticity and the key molecular target(s) involved. We found that spatial training in water maze remarkably improved the subsequent short-term and long-term memory performance in contextual fear conditioning and Barnes maze. The trained rats showed an enhanced dendrite ramification, spine generation and plasticity in dentate gyrus (DG) neurons, and stimulation of long-term potentiation between perforant path and DG circuit. Spatial training also increased the levels of postsynaptic GluA1, GluN2A, GluN2B, and PSD93 with selective activation of calcium/calmodulin-dependent protein kinase II (CaMKII), although inhibition of CaMKII by stereotaxic injection of KN93 into hippocampal DG, abolished the training-induced cognitive improvement, dendrite ramification, and spine generation. We conclude that spatial training can preserve the cognitive function by CaMKII-dependent remodeling of dendritic plasticity in hyperhomocysteinemia-induced sporadic AD-like rats.

  16. Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine-induced learning and memory impairment in mice.

    PubMed

    Wang, Qiong; Sun, Li-Hua; Jia, William; Liu, Xin-Min; Dang, Hai-Xia; Mai, Wen-Li; Wang, Ning; Steinmetz, Andre; Wang, Yu-Qin; Xu, Chang-Jiang

    2010-12-01

    Rg1 and Rb1 are two major active compounds of ginseng that facilitate learning and memory. The present study aimed to compare the nootropic effects of Rg1 and Rb1 in a scopolamine induced dementia mice model. After 6 and 12 mg/kg of Rg1 and Rb1 intraperitoneal administration to mice for 7 days, their effects were assessed using the step-down passive avoidance (SD) and the Morris water maze (MWM) tests, the acetylcholinesterase (AChE) activity, acetylcholine (ACh) content and serotonin (5-HT) level in the hippocampus were analysed after SD and MWM tests. The results showed that Rg1 and Rb1 ameliorated cognition-deficiency in mice with dementia. Rg1 showed stronger effects than Rb1 on escape acquisition in MWM. Both Rg1 and Rb1 increased ACh levels in the hippocampus, but Rg1 inhibited AChE activity while Rb1 had no effect on AChE activity. Both Rg1 and Rb1 inhibited the decrease of 5-HT induced by scopolamine, but Rb1 was more active than the same dose of Rg1. These results demonstrate that multiple administrations of Rg1 and Rb1 are effective in improving memory deficiency induced by scopolamine. Rg1 appears to be more potent than Rb1 in improving acquisition impairment, and the two ginsenosides may act through different mechanisms.

  17. Role of Si in Improving the Shape Recovery of FeMnSiCrNi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Maji, Bikas C.; Krishnan, Madangopal; Gouthama; Ray, R. K.

    2011-08-01

    The effect of Si addition on the microstructure and shape recovery of FeMnSiCrNi shape memory alloys has been studied. The microstructural observations revealed that in these alloys the microstructure remains single-phase austenite ( γ) up to 6 pct Si and, beyond that, becomes two-phase γ + δ ferrite. The Fe5Ni3Si2 type intermetallic phase starts appearing in the microstructure after 7 pct Si and makes these alloys brittle. Silicon addition does not affect the transformation temperature and mechanical properties of the γ phase until 6 pct, though the amount of shape recovery is observed to increase monotonically. Alloys having more than 6 pct Si show poor recovery due to the formation of δ-ferrite. The shape memory effect (SME) in these alloys is essentially due to the γ to stress-induced ɛ martensite transformation, and the extent of recovery is proportional to the amount of stress-induced ɛ martensite. Alloys containing less than 4 pct and more than 6 pct Si exhibit poor recovery due to the formation of stress-induced α' martensite through γ- ɛ- α' transformation and the large volume fraction of δ-ferrite, respectively. Silicon addition decreases the stacking fault energy (SFE) and the shear modulus of these alloys and results in easy nucleation of stress-induced ɛ martensite; consequently, the amount of shape recovery is enhanced. The amount of athermal ɛ martensite formed during cooling is also observed to decrease with the increase in Si.

  18. Flaxseed mitigates brain mass loss, improving motor hyperactivity and spatial memory, in a rodent model of neonatal hypoxic-ischemic encephalopathy.

    PubMed

    Mucci, Daniela de Barros; Fernandes, Flávia Spreafico; Souza, Amanda Dos Santos; Sardinha, Fátima Lúcia de Carvalho; Soares-Mota, Márcia; Tavares do Carmo, Maria das Graças

    2015-06-01

    Neonatal hypoxic-ischemic (HI) encephalopathy is a major cause of perinatal morbimortality. There is growing evidence that n-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), attenuate brain injury. This study aimed to investigate the possible neuroprotective effect of maternal intake of flaxseed, rich in DHA׳s precursor α-linolenic acid, in the young male offspring subjected to perinatal HI. Wistar rats were divided in six groups, according to maternal diet and offspring treatment at day 7: Control HI (CHI) and Flaxseed HI (FHI); Control Sham and Flaxseed Sham; Control Control and Flaxseed Control. Flaxseed diet increased offspring׳s hippocampal DHA content and lowered depressive behavior. CHI pups presented brain mass loss, motor hyperactivity and poor spatial memory, which were improved in FHI rats. Maternal flaxseed intake may prevent depressive symptoms in the offspring and promote neuroprotective effects, in the context of perinatal HI, improving brain injury and its cognitive and behavioral impairments.

  19. The future of memory

    NASA Astrophysics Data System (ADS)

    Marinella, M.

    In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.

  20. Peripheral and central administration of T3 improved the histological changes, memory and the dentate gyrus electrophysiological activity in an animal model of Alzheimer's disease.

    PubMed

    Farbood, Yaghoob; Shabani, Sahreh; Sarkaki, Alireza; Mard, Seyyed Ali; Ahangarpour, Akram; Khorsandi, Layasadat

    2017-01-26

    The amyloid beta (Aβ) induced Alzheimer's disease (AD) is associated with formation the amyloid plaques, cognitive impairments and decline in spontaneous discharge of neurons. In the current study, we evaluated the effect of subcutaneous (S. C) and intrahippocampal (I. H) administrations of triiodothyronine (T3) on the histological changes, memory and the dentate gyrus (DG) electrophysiological activity in an animal model of AD. Eighty adult male Wistar rats (250-300 g) were divided randomly into five groups: Sham-Operated (Sh-O), AD + Vehicle (S. C), AD + Vehicle (I. H), AD+ T3 (S. C) and AD + T3 (I. H). In order to induce animal model of AD, Aβ (10 ng/μl, bilaterally) were injected intrahippocampally. Rats were treated with T3 and/or normal saline for 10 days. Passive avoidance and spatial memory were evaluated in shuttle box apparatus and Morris water maze, respectively. Neuronal single unit recording was assessed from hippocampal DG. The percent of total time that animals spent in target quarter, the mean latency time (sec), the step through latency and the average number of spikes/bin were decreased significantly in AD rats compared with the Sh-O group (p < 0.001) and were increased significantly in AD groups that have received T3 (S. C and I. H) in compared with AD group (p < 0.01, p < 0.001). Also, formation of amyloid plaques was decreased in AD rats treated with T3.The results showed that T3 injection (S. C and I. H), by reduction of neural damage and increment of neuronal spontaneous activity improved the memory deficits in Aβ-induced AD rats.

  1. Blockade of hippocampal bradykinin B1 receptors improves spatial learning and memory deficits in middle-aged rats.

    PubMed

    Bitencourt, Rafael M; Guerra de Souza, Ana C; Bicca, Maíra A; Pamplona, Fabrício A; de Mello, Nelson; Passos, Giselle F; Medeiros, Rodrigo; Takahashi, Reinaldo N; Calixto, João B; Prediger, Rui D

    2017-01-01

    Previous studies have demonstrated that targeting bradykinin receptors is a promising strategy to counteract the cognitive impairment related with aging and Alzheimer's disease (AD). The hippocampus is critical for cognition, and abnormalities in this brain region are linked to the decline in mental ability. Nevertheless, the impact of bradykinin signaling on hippocampal function is unknown. Therefore, we sought to determine the role of hippocampal bradykinin receptors B1R and B2R on the cognitive decline of middle-aged rats. Twelve-month-old rats exhibited impaired ability to acquire and retrieve spatial information in the Morris water maze task. A single intra-hippocampal injection of the selective B1R antagonist des-Arg(9)-[Leu(8)]-bradykinin (DALBK, 3 nmol), but not the selective B2R antagonist D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)]-BK (Hoe 140, 3 nmol), reversed the spatial learning and memory deficits on these animals. However, both drugs did not affect the cognitive function in 3-month-old rats, suggesting absence of nootropic properties. Molecular biology analysis revealed an up-regulation of B1R expression in the hippocampal CA1 sub-region and in the pre-frontal cortex of 12-month-old rats, whereas no changes in the B2R expression were observed in middle-aged rats. These findings provide new evidence that inappropriate hippocampal B1R expression and activation exert a critical role on the spatial learning and memory deficits in middle-aged rats. Therefore, selective B1R antagonists, especially orally active non-peptide antagonists, may represent drugs of potential interest to counteract the age-related cognitive decline.

  2. Tualang honey improves memory performance and decreases depressive-like behavior in rats exposed to loud noise stress.

    PubMed

    Azman, Khairunnuur Fairuz; Zakaria, Rahimah; AbdAziz, CheBadariah; Othman, Zahiruddin; Al-Rahbi, Badriya

    2015-01-01

    Recent evidence has exhibited dietary influence on the manifestation of different types of behavior induced by stressor tasks. The present study examined the effects of Tualang honey supplement administered with the goal of preventing or attenuating the occurrence of stress-related behaviors in male rats subjected to noise stress. Forty-eight adult male rats were randomly divided into the following four groups: i) nonstressed with vehicle, ii) nonstressed with Tualang honey, iii) stressed with vehicle, and iv) stressed with honey. The supplement was given once daily via oral gavage at 0.2 g/kg body weight. Two types of behavioral tests were performed, namely, the novel object recognition test to evaluate working memory and the forced swimming test to evaluate depressive-like behavior. Data were analyzed by a two-way analysis of variance (ANOVA) using IBM SPSS 18.0. It was observed that the rats subjected to noise stress expressed higher levels of depressive-like behavior and lower memory functions compared to the unexposed control rats. In addition, our results indicated that the supplementation regimen successfully counteracted the effects of noise stress. The forced swimming test indicated that climbing and swimming times were significantly increased and immobility times significantly decreased in honey-supplemented rats, thereby demonstrating an antidepressant-like effect. Furthermore, cognitive function was shown to be intensely affected by noise stress, but the effects were counteracted by the honey supplement. These findings suggest that subchronic exposure to noise stress induces depressive-like behavior and reduces cognitive functions, and that these effects can be attenuated by Tualang honey supplementation. This warrants further studies to examine the role of Tulang honey in mediating such effects.

  3. Bangle (Zingiber purpureum) Improves Spatial Learning, Reduces Deficits in Memory, and Promotes Neurogenesis in the Dentate Gyrus of Senescence-Accelerated Mouse P8.

    PubMed

    Nakai, Megumi; Iizuka, Michiro; Matsui, Nobuaki; Hosogi, Kazuko; Imai, Akiko; Abe, Noriaki; Shiraishi, Hisashi; Hirata, Ayumu; Yagi, Yusuke; Jobu, Kohei; Yokota, Junko; Kato, Eishin; Hosoda, Shinya; Yoshioka, Saburo; Harada, Kenichi; Kubo, Miwa; Fukuyama, Yoshiyasu; Miyamura, Mitsuhiko

    2016-05-01

    Bangle (Zingiber purpureum) is a tropical ginger that is used as a spice in Southeast Asia. Phenylbutenoid dimers isolated from Bangle have exhibited neurotrophic effects in primary cultured rat cortical neurons and PC12 cells. Furthermore, chronic treatment with phenylbutenoid dimers enhances hippocampal neurogenesis in olfactory bulbectomized mice. In this study, we investigated the effects of Bangle extract on behavior and hippocampal neurogenesis in vivo. SAMP8 mice, which are an established model for accelerated aging, with age-related learning and memory impairments, were given a Bangle-containing diet for 1 month, and subsequent behavioral tests and immunohistochemistry for Ki67, a proliferating cell marker, were performed. We found that the Bangle-containing diet improved spatial learning and memory deficits in the Morris water maze and significantly increased the numbers of Ki67-positive cells in the dentate gyrus of the SAMP8 mice. In addition, the Bangle extract exhibited a neurotrophin-like activity as indicated by the induction of neurite sprouting in PC12 cells. Our results suggest that Bangle is beneficial for the prevention of age-related progression of cognitive impairment.

  4. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia

    PubMed Central

    Griebel, Guy; Pichat, Philippe; Boulay, Denis; Naimoli, Vanessa; Potestio, Lisa; Featherstone, Robert; Sahni, Sukhveen; Defex, Henry; Desvignes, Christophe; Slowinski, Franck; Vigé, Xavier; Bergis, Olivier E.; Sher, Rosy; Kosley, Raymond; Kongsamut, Sathapana; Black, Mark D.; Varty, Geoffrey B.

    2016-01-01

    Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ35S binding assays. SAR218645 augmented the mGluR2-mediated response to glutamate in a rat recombinant mGluR2 forced-coupled Ca2+ mobilization assay. SAR218645 potentiated mGluR2 agonist-induced contralateral turning. When SAR218645 was tested in models of the positive symptoms of schizophrenia, it reduced head twitch behavior induced by DOI, but it failed to inhibit conditioned avoidance and hyperactivity using pharmacological and transgenic models. Results from experiments in models of the cognitive symptoms associated with schizophrenia showed that SAR218645 improved MK-801-induced episodic memory deficits in rats and attenuated working memory impairment in NMDA Nr1neo−/− mice. The drug reversed disrupted latent inhibition and auditory-evoked potential in mice and rats, respectively, two endophenotypes of schizophrenia. This profile positions SAR218645 as a promising candidate for the treatment of cognitive symptoms of patients with schizophrenia, in particular those with abnormal attention and sensory gating abilities. PMID:27734956

  5. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia.

    PubMed

    Griebel, Guy; Pichat, Philippe; Boulay, Denis; Naimoli, Vanessa; Potestio, Lisa; Featherstone, Robert; Sahni, Sukhveen; Defex, Henry; Desvignes, Christophe; Slowinski, Franck; Vigé, Xavier; Bergis, Olivier E; Sher, Rosy; Kosley, Raymond; Kongsamut, Sathapana; Black, Mark D; Varty, Geoffrey B

    2016-10-13

    Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ(35)S binding assays. SAR218645 augmented the mGluR2-mediated response to glutamate in a rat recombinant mGluR2 forced-coupled Ca(2+) mobilization assay. SAR218645 potentiated mGluR2 agonist-induced contralateral turning. When SAR218645 was tested in models of the positive symptoms of schizophrenia, it reduced head twitch behavior induced by DOI, but it failed to inhibit conditioned avoidance and hyperactivity using pharmacological and transgenic models. Results from experiments in models of the cognitive symptoms associated with schizophrenia showed that SAR218645 improved MK-801-induced episodic memory deficits in rats and attenuated working memory impairment in NMDA Nr1(neo-/-) mice. The drug reversed disrupted latent inhibition and auditory-evoked potential in mice and rats, respectively, two endophenotypes of schizophrenia. This profile positions SAR218645 as a promising candidate for the treatment of cognitive symptoms of patients with schizophrenia, in particular those with abnormal attention and sensory gating abilities.

  6. Electroacupuncture Treatment Improves Learning-Memory Ability and Brain Glucose Metabolism in a Mouse Model of Alzheimer's Disease: Using Morris Water Maze and Micro-PET

    PubMed Central

    Jiang, Jing; Gao, Kai; Zhou, Yuan; Xu, Anping; Shi, Suhua; Liu, Gang; Li, Zhigang

    2015-01-01

    Introduction. Alzheimer's disease (AD) causes progressive hippocampus dysfunctions leading to the impairment of learning and memory ability and low level of uptake rate of glucose in hippocampus. What is more, there is no effective treatment for AD. In this study, we evaluated the beneficial and protective effects of electroacupuncture in senescence-accelerated mouse prone 8 (SAMP8). Method. In the electroacupuncture paradigm, electroacupuncture treatment was performed once a day for 15 days on 7.5-month-old SAMP8 male mice. In the normal control paradigm and AD control group, 7.5-month-old SAMR1 male mice and SAMP8 male mice were grabbed and bandaged while electroacupuncture group therapy, in order to ensure the same treatment conditions, once a day, 15 days. Results. From the Morris water maze (MWM) test, we found that the treatment of electroacupuncture can improve the spatial learning and memory ability of SAMP8 mouse, and from the micro-PET test, we proved that after the electroacupuncture treatment the level of uptake rate of glucose in hippocampus was higher than normal control group. Conclusion. These results suggest that the treatment of electroacupuncture may provide a viable treatment option for AD. PMID:25821477

  7. A Novel 1,4-Dihydropyridine Derivative Improves Spatial Learning and Memory and Modifies Brain Protein Expression in Wild Type and Transgenic APPSweDI Mice.

    PubMed

    Jansone, Baiba; Kadish, Inga; van Groen, Thomas; Beitnere, Ulrika; Moore, Doyle Ray; Plotniece, Aiva; Pajuste, Karlis; Klusa, Vija

    2015-01-01

    Ca2+ blockers, particularly those capable of crossing the blood-brain barrier (BBB), have been suggested as a possible treatment or disease modifying agents for neurodegenerative disorders, e.g., Alzheimer's disease. The present study investigated the effects of a novel 4-(N-dodecyl) pyridinium group-containing 1,4-dihydropyridine derivative (AP-12) on cognition and synaptic protein expression in the brain. Treatment of AP-12 was investigated in wild type C57BL/6J mice and transgenic Alzheimer's disease model mice (Tg APPSweDI) using behavioral tests and immunohistochemistry, as well as mass spectrometry to assess the blood-brain barrier (BBB) penetration. The data demonstrated the ability of AP-12 to cross the BBB, improve spatial learning and memory in both mice strains, induce anxiolytic action in transgenic mice, and increase expression of hippocampal and cortical proteins (GAD67, Homer-1) related to synaptic plasticity. The compound AP-12 can be seen as a prototype molecule for use in the design of novel drugs useful to halt progression of clinical symptoms (more specifically, anxiety and decline in memory) of neurodegenerative diseases, particularly Alzheimer's disease.

  8. Lithium and memantine improve spatial memory impairment and neuroinflammation induced by β-amyloid 1-42 oligomers in rats.

    PubMed

    Budni, J; Feijó, D P; Batista-Silva, H; Garcez, M L; Mina, F; Belletini-Santos, T; Krasilchik, L R; Luz, A P; Schiavo, G L; Quevedo, J

    2017-03-27

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. The main hallmarks of this disease include progressive cognitive dysfunction and an accumulation of soluble oligomers of β-amyloid (Aβ) 1-42 peptide. In this research, we show the effects of lithium and memantine on spatial memory and neuroinflammation in an Aβ1-42 oligomers-induced animal model of dementia in rats. Aβ 1-42 oligomers were administered intrahippocampally to male wistar rats to induce dementia. Oral treatments with memantine (5mg/kg), lithium (5mg/kg), or both drugs in combination were performed over a period of 17days. 14days after the administration of the Aβ1-42 oligomers, the radial arm-maze task was performed. At the end of the test period, the animals were euthanized, and the frontal cortex and hippocampus were removed for use in our analysis. Our results showed that alone treatments with lithium or memantine ameliorate the spatial memory damage caused by Aβ1-42. The animals that received combined doses of lithium and memantine showed better cognitive performance in their latency time and total errors to find food when compared to the results from alone treatments. Moreover, in our study, lithium and/or memantine were able to reverse the decreases observed in the levels of interleukin (IL)-4 that were induced by Aβ1-42 in the frontal cortex. In the hippocampus, only memantine and the association of memantine and lithium were able to reverse this effect. Alone doses of lithium and memantine or the association of lithium and memantine caused reductions in the levels of IL-1β in the frontal cortex and hippocampus, and decreased the levels of TNF-α in the hippocampus. Taken together, these data suggest that lithium and memantine might be a potential therapy against cognitive impairment and neuroinflammation induced by Aβ1-42, and their association may be a promising alternative to be investigated in the treatment of AD-like dementia.

  9. Diet rich in date palm fruits improves memory, learning and reduces beta amyloid in transgenic mouse model of Alzheimer's disease

    PubMed Central

    Subash, Selvaraju; Essa, Musthafa Mohamed; Braidy, Nady; Awlad-Thani, Kathyia; Vaishnav, Ragini; Al-Adawi, Samir; Al-Asmi, Abdullah; Guillemin, Gilles J.

    2015-01-01

    Background: At present, the treatment options available to delay the onset or slow down the progression of Alzheimer's disease (AD) are not effective. Recent studies have suggested that diet and lifestyle factors may represent protective strategies to minimize the risk of developing AD. Date palm fruits are a good source of dietary fiber and are rich in total phenolics and natural antioxidants, such as anthocyanins, ferulic acid, protocatechuic acid and caffeic acid. These polyphenolic compounds have been shown to be neuroprotective in different model systems. Objective: We investigated whether dietary supplementation with 2% and 4% date palm fruits (grown in Oman) could reduce cognitive and behavioral deficits in a transgenic mouse model for AD (amyloid precursor protein [APPsw]/Tg2576). Materials and Methods: The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 2% and 4% date fruits. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in all the animals at the age of 4 months and after 14 months of treatment using the Morris water maze test, rota-rod test, elevated plus maze test, and open-field test. We have also analyzed the levels of amyloid beta (Aβ) protein (1–40 and 1–42) in plasma of control and experimental animals. Results: Standard diet-fed Tg mice showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination when compared to wild-type on the same diet and Tg mice fed 2% and 4% date supplementation at the age of 18 months. The levels of both Aβ proteins were significantly lowered in date fruits supplemented groups than the Tg mice without the diet supplement. The neuroprotective effect offered by 4% date fruits diet to AD mice is higher than 2% date fruits diet. Conclusions: Our results suggest that date

  10. Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis.

    PubMed

    Jeong, Da Un; Lee, Ji Eun; Lee, Sung Eun; Chang, Won Seok; Kim, Sung June; Chang, Jin Woo

    2014-01-01

    Deep brain stimulation (DBS) has been found to have therapeutic effects in patients with dementia, but DBS mechanisms remain elusive. To provide evidence for the effectiveness of DBS as a treatment for dementia, we performed DBS in a rat model of dementia with intracerebroventricular administration of 192 IgG-saporins. We utilized four groups of rats, group 1, unlesioned control; group 2, cholinergic lesion; group 3, cholinergic lesion plus medial septum (MS) electrode implantation (sham stimulation); group 4, cholinergic lesions plus MS electrode implantation and stimulation. During the probe test in the water maze, performance of the lesion group decreased for measures of time spent and the number of swim crossings over the previous platform location. Interestingly, the stimulation group showed an equivalent performance to the normal group on all measures. And these are partially reversed by the electrode implantation. Acetylcholinesterase activity in the hippocampus was decreased in lesion and implantation groups, whereas activity in the stimulation group was not different from the normal group. Hippocampal neurogenesis was increased in the stimulation group. Our results revealed that DBS of MS restores spatial memory after damage to cholinergic neurons. This effect is associated with an increase in hippocampal cholinergic activity and neurogenesis.

  11. Improved multi-level capability in Si3N4-based resistive switching memory using continuous gradual reset switching

    NASA Astrophysics Data System (ADS)

    Kim, Sungjun; Park, Byung-Gook

    2017-01-01

    In this letter, we compare three different types of reset switching behavior in a bipolar resistive random-access memory (RRAM) system that is housed in a Ni/Si3N4/Si structure. The abrupt, step-like gradual and continuous gradual reset transitions are largely determined by the low-resistance state (LRS). For abrupt reset switching, the large conducting path shows ohmic behavior or has a weak nonlinear current-voltage (I-V) characteristics in the LRS. For gradual switching, including both the step-like and continuous reset types, trap-assisted direct tunneling is dominant in the low-voltage regime, while trap-assisted Fowler-Nordheim tunneling is dominant in the high-voltage regime, thus causing nonlinear I-V characteristics. More importantly, we evaluate the multi-level capabilities of the two different gradual switching types, including both step-like and continuous reset behavior, using identical and incremental voltage conditions. Finer control of the conductance level with good uniformity is achieved in continuous gradual reset switching when compared to that in step-like gradual reset switching. For continuous reset switching, a single conducting path, which initially has a tunneling gap, gradually responds to pulses with even and identical amplitudes, while for step-like reset switching, the multiple conducting paths only respond to incremental pulses to obtain effective multi-level states.

  12. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Min Huang, Wei

    2013-06-01

    The present work studies the synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotube (CNT) and carbon fiber on the electrical property and electro-activated recovery behavior of shape memory polymer (SMP) nanocomposites. The combination of CNT and carbon fiber results in improved electrical conductivity in the SMP nanocomposites. Carboxylic acid-functionalized CNTs are grafted onto the carbon fibers and then self-assembled by deposition to significantly enhance the reliability of the bonding between carbon fiber and SMP via van der Waals and covalent crosslink. Furthermore, the self-assembled carboxylic acid-functionalized CNTs and carbon fibers enable the SMP nanocomposites for Joule heating triggered shape recovery.

  13. Memory Matters

    MedlinePlus

    ... blood vessel (which carries the blood) bursts. continue Brain Injuries Affect Memory At any age, an injury to ... with somebody's memory. Some people who recover from brain injuries need to learn old things all over again, ...

  14. Memorial symptom assessment scale.

    PubMed

    Chang, Victor T; Hwang, Shirley S; Thaler, Howard T; Kasimis, Basil S; Portenoy, Russell K

    2004-04-01

    Patients with advanced illnesses often have multiple symptoms. As interest in palliative care and interventions for symptom control increase, the ability to assess multiple symptoms has become more important. A number of instruments have been developed to meet this need in cancer patients. This article reviews the development and applications of a multidimensional instrument, the Memorial Symptom Assessment Scale. The Memorial Symptom Assessment Scale has 32 symptoms and three dimensions of frequency, severity, and distress. Shorter versions - The Memorial Symptom Assessment Scale Short Form (32 symptoms with one dimension) and the Condensed Memorial Symptom Assessment Scale (14 symptoms with one dimension), and a version for children aged 7-12 years, have also been developed. A distinctive feature is the summary subscales for physical distress, psychological distress, and The Global Distress Index. The Memorial Symptom Assessment Scale has proven useful in description of symptom epidemiology, the role of symptoms in pain, fatigue, and spirituality; as a predictor of survival, and in proxy assessments of pain. The Memorial Symptom Assessment Scale has been used in studies of cancer and AIDS patients, and patients with advanced medical illnesses. Possible future roles of instruments such as the Memorial Symptom Assessment Scale include use in clinical trials, for pharmacoeconomic analyses, definition of symptom clusters and symptom burden, the development of symptom outcome measures, symptom monitoring, and improving care for patients. Continued research is needed for the versions of the Memorial Symptom Assessment Scale and other symptom instruments in different populations and applications.

  15. [Memory disorders in schizophrenia].

    PubMed

    Danion, J M; Peretti, S; Gras-Vincendon, A; Singer, L

    1992-01-01

    The current interest in memory disorders in schizophrenia results from the way perceptions of schizophrenia--whose organic origin is becoming increasingly evident--and memory--according to which there exist not one, but several memories--have developed. Memory disorders in the schizophrenic cannot be considered in isolation from knowledge accumulated in other areas of the cognitive and neuro-sciences; a more detailed understanding of these disorders requires a comparison of the different cognitive approaches, both with each other and with the neurobiological and clinical approaches, so that they can be integrated. Despite numerous methodological and conceptual difficulties, it now appears to have been established that the schizophrenic's memory deficit should be seen in the context of a wider cognitive deficit, that the memory tasks are not all disturbed and that the memory deficit cannot be identified with one specific form of memory. Thus, iconic formation, short-term memory in the traditionally accepted sense and implicit memory are hardly, if at all, affected; in contrast, the early processing of information, working memory and explicit memory are disturbed, probably to the extent that they require the implementation of strategies to organise the information to be memorized. Finally, in certain tasks, such as those evaluating latent inhibition or negative priming, schizophrenics perform better than normal subjects, suggesting that schizophrenics' cognitive deficit is localised. This profile of memory disorders is compatible with a dysfunction predominating in the frontal and temporo-hippocampal regions. Neuroleptics and anticholinergics have opposite effects on cognitive and mnesic performance, which is improved by the former and aggravated by the latter. The influence of clinical symptoms, positive or negative, institutionalisation of patients and chronic tardive dyskinesia is unclear. Among the theoretical proposals put forward to account for the observed

  16. Memory Dysfunction

    PubMed Central

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  17. Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid.

    PubMed

    Kang, Suna; Moon, Na Rang; Kim, Da Sol; Kim, Sung Hoon; Park, Sunmin

    2015-09-01

    , whereas during the second part it was suppressed in AD-G as much as Non-AD. In conclusion, central acylated ghrelin in rats prevented the deterioration of memory function, and energy and glucose metabolisms were partially improved, possibly due to less β-amyloid accumulation. This research suggests that interventions such as intermittent fasting to facilitate sustained elevations of acyl-ghrelin should be investigated for cognitive and metabolic benefits, especially in person with early symptoms of memory impairment.

  18. An Improved Genetic Fuzzy Logic Control Method to Reduce the Enlargement of Coal Floor Deformation in Shearer Memory Cutting Process

    PubMed Central

    Tan, Chao; Xu, Rongxin; Wang, Zhongbin; Si, Lei; Liu, Xinhua

    2016-01-01

    In order to reduce the enlargement of coal floor deformation and the manual adjustment frequency of rocker arms, an improved approach through integration of improved genetic algorithm and fuzzy logic control (GFLC) method is proposed. The enlargement of coal floor deformation is analyzed and a model is built. Then, the framework of proposed approach is built. Moreover, the constituents of GA such as tangent function roulette wheel selection (Tan-RWS) selection, uniform crossover, and nonuniform mutation are employed to enhance the performance of GFLC. Finally, two simulation examples and an industrial application example are carried out and the results indicate that the proposed method is feasible and efficient. PMID:27217824

  19. An Improved Genetic Fuzzy Logic Control Method to Reduce the Enlargement of Coal Floor Deformation in Shearer Memory Cutting Process.

    PubMed

    Tan, Chao; Xu, Rongxin; Wang, Zhongbin; Si, Lei; Liu, Xinhua

    2016-01-01

    In order to reduce the enlargement of coal floor deformation and the manual adjustment frequency of rocker arms, an improved approach through integration of improved genetic algorithm and fuzzy logic control (GFLC) method is proposed. The enlargement of coal floor deformation is analyzed and a model is built. Then, the framework of proposed approach is built. Moreover, the constituents of GA such as tangent function roulette wheel selection (Tan-RWS) selection, uniform crossover, and nonuniform mutation are employed to enhance the performance of GFLC. Finally, two simulation examples and an industrial application example are carried out and the results indicate that the proposed method is feasible and efficient.

  20. Memory protection

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.

  1. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    PubMed

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress.

  2. Vitamin D2-Enriched Button Mushroom (Agaricus bisporus) Improves Memory in Both Wild Type and APPswe/PS1dE9 Transgenic Mice

    PubMed Central

    Bennett, Louise; Kersaitis, Cindy; Macaulay, Stuart Lance; Münch, Gerald; Niedermayer, Garry; Nigro, Julie; Payne, Matthew; Sheean, Paul; Vallotton, Pascal; Zabaras, Dimitrios; Bird, Michael

    2013-01-01

    Vitamin D deficiency is widespread, affecting over 30% of adult Australians, and increasing up to 80% for at-risk groups including the elderly (age>65). The role for Vitamin D in development of the central nervous system is supported by the association between Vitamin D deficiency and incidence of neurological and psychiatric disorders including Alzheimer’s disease (AD). A reported positive relationship between Vitamin D status and cognitive performance suggests that restoring Vitamin D status might provide a cognitive benefit to those with Vitamin D deficiency. Mushrooms are a rich source of ergosterol, which can be converted to Vitamin D2 by treatment with UV light, presenting a new and convenient dietary source of Vitamin D2. We hypothesised that Vitamin D2-enriched mushrooms (VDM) could prevent the cognitive and pathological abnormalities associated with dementia. Two month old wild type (B6C3) and AD transgenic (APPSwe/PS1dE9) mice were fed a diet either deficient in Vitamin D2 or a diet which was supplemented with VDM, containing 1±0.2 µg/kg (∼54 IU/kg) vitamin D2, for 7 months. Effects of the dietary intervention on memory were assessed pre- and post-feeding. Brain sections were evaluated for amyloid β (Aβ) plaque loads and inflammation biomarkers using immuno-histochemical methods. Plasma vitamin D metabolites, Aβ40, Aβ42, calcium, protein and cholesterol were measured using biochemical assays. Compared with mice on the control diet, VDM-fed wild type and AD transgenic mice displayed improved learning and memory, had significantly reduced amyloid plaque load and glial fibrillary acidic protein, and elevated interleukin-10 in the brain. The results suggest that VDM might provide a dietary source of Vitamin D2 and other bioactives for preventing memory-impairment in dementia. This study supports the need for a randomised clinical trial to determine whether or not VDM consumption can benefit cognitive performance in the wider population. PMID

  3. n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats.

    PubMed

    Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Al Mamun, Abdullah; Inoue, Takayuki; Hossain, Shahdat; Arita, Makoto; Shido, Osamu

    2015-02-01

    We investigated whether a highly purified eicosapentaenoic acid (EPA) and a concentrated n-3 fatty acid formulation (prescription TAK-085) containing EPA and docosahexaenoic acid (DHA) ethyl ester could improve the learning ability of aged rats and whether this specific outcome had any relation with the brain levels of EPA-derived eicosanoids and DHA-derived docosanoids. The rats were tested for reference memory errors (RMEs) and working memory errors (WMEs) in an eight-arm radial maze. Fatty acid compositions were analyzed by GC, whereas brain eicosanoid/docosanoids were measured by LC-ESI-MS-MS-based analysis. The levels of lipid peroxides (LPOs) were measured by thiobarbituric acid reactive substances. The administration of TAK-085 at 300 mg·kg⁻¹day⁻¹ for 17 weeks reduced the number of RMEs in aged rats compared with that in the control rats. Both TAK-085 and EPA administration increased plasma EPA and DHA levels in aged rats, with concurrent increases in DHA and decreases in arachidonic acid in the corticohippocampal brain tissues. TAK-085 administration significantly increased the formation of EPA-derived 5-HETE and DHA-derived 7-, 10-, and 17-HDoHE, PD1, RvD1, and RvD2. ARA-derived PGE2, PGD2, and PGF2α significantly decreased in TAK-085-treated rats. DHA-derived mediators demonstrated a significantly negative correlation with the number of RMEs, whereas EPA-derived mediators did not exhibit any relationship. Furthermore, compared with the control rats, the levels of LPO in the plasma, cerebral cortex, and hippocampus were significantly reduced in TAK-085-treated rats. The findings of the present study suggest that long-term EPA+DHA administration may be a possible preventative strategy against age-related cognitive decline.

  4. Passive immunization targeting the N-terminal region of phosphorylated tau (residues 68-71) improves spatial memory in okadaic acid induced tauopathy model rats.

    PubMed

    Subramanian, Sarada; Savanur, Ganesh; Madhavadas, Sowmya

    2017-01-29

    Alzheimer's disease (AD) is the leading cause of dementia, characterized by progressive loss of memory and other cognitive functions. The cognitive impairment in patients with AD is closely associated with loss of synapses and the formation of neurofibrillary tangles (NFT) containing hyperphosphorylated tau in the hippocampus. Effective treatment for AD is still not available. In this study, the sequence comprising of residues 50-71 in the N-terminal region of tau, containing theoretically predicted B- and T-cell epitopes in close proximity to pathologically relevant phospho-serine (residue 68) and phospho-threonine (residues 69, 71) was selected as a potential immunotherapeutic peptide. This 22-residue long phospho-peptide ((50)TPTEDGSEEPGSETSDAKpSpTPpT(71)) was custom synthesized and its therapeutic potential was tested in experimental rats. For this purpose, adult Sprague-Dawley rats were intranasally treated with okadaic acid (OA), a selective inhibitor of protein phosphatase PP2A. Within a day of OA administration, these rats showed marked impairment in cognitive functions with a significant increase in p-tau/t-tau ratio in the hippocampal homogenates. Passive immunization studies conducted in these OA treated rats with polyclonal anti-phospho-peptide antibodies resulted in a significant improvement in learning and memory functions in Barne's maze task. Further, p-tau levels in the hippocampal homogenates were reduced. In addition, these antibodies effectively prevented the aggregation of recombinant tau in vitro. These results demonstrate that targeting N-terminal region of tau harbouring the phospho-residue cluster 68-71 would be beneficial and may present an effective therapeutic opportunity for AD and other tauopathies.

  5. Acute or Delayed Treatment with Anatabine Improves Spatial Memory and Reduces Pathological Sequelae at Late Time-Points after Repetitive Mild Traumatic Brain Injury.

    PubMed

    Ferguson, Scott; Mouzon, Benoit; Paris, Daniel; Aponte, Destinee; Abdullah, Laila; Stewart, William; Mullan, Michael; Crawford, Fiona

    2017-01-20

    Traumatic brain injury (TBI) has chronic and long-term consequences for which there are currently no approved pharmacological treatments. We have previously characterized the chronic neurobehavioral and pathological sequelae of a mouse model of repetitive mild TBI (r-mTBI) through to 2 years post-TBI. Despite the mild nature of the initial insult, secondary injury processes are initiated that involve neuroinflammatory and neurodegenerative pathways persisting and progressing for weeks and months post-injury and providing a potential window of opportunity for therapeutic intervention. In this study we examined the efficacy of a novel anti-inflammatory compound, anatabine, in modifying outcome after TBI. Our model of r-mTBI involves a series of five mild impacts (midline impact at 5 m/sec, 1 mm strike depth, 200 msec dwell time) with an interval of 48 h. Anatabine treatment was administered starting 30 min after injury and was delivered continuously through drinking water. At 6 months after TBI, anatabine treatment improved spatial memory in injured mice. Nine months after TBI, a cohort of mice was euthanized for pathological analysis that revealed reductions in astroglial (glial fibrillary acid protein, GFAP) and microglial (ionized calcium-binding adapter molecule 1, IBA1) responses in treated, injured animals. Treatments for the remaining mice were then crossed-over to assess the effects of late treatment administration and the effects of treatment termination. Nine months following crossover the remaining mice showed no effect of injury on their spatial memory, and whereas pathological analysis showed improvements in mice that had received delayed treatment, corpus callosum IBA1 increased in post-crossover placebo r-mTBI mice. These data demonstrate efficacy of both early and late initiation of treatment with anatabine in improving long term behavioral and pathology outcomes after mild TBI. Future studies will characterize the treatment window, the time

  6. Antroquinonol Lowers Brain Amyloid-β Levels and Improves Spatial Learning and Memory in a Transgenic Mouse Model of Alzheimer’s Disease

    PubMed Central

    Chang, Wen-Han; Chen, Miles C.; Cheng, Irene H.

    2015-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. The deposition of brain amyloid-β peptides (Aβ), which are cleaved from amyloid precursor protein (APP), is one of the pathological hallmarks of AD. Aβ-induced oxidative stress and neuroinflammation play important roles in the pathogenesis of AD. Antroquinonol, a ubiquinone derivative isolated from Antrodia camphorata, has been shown to reduce oxidative stress and inflammatory cytokines via activating the nuclear transcription factor erythroid-2-related factor 2 (Nrf2) pathway, which is downregulated in AD. Therefore, we examined whether antroquinonol could improve AD-like pathological and behavioral deficits in the APP transgenic mouse model. We found that antroquinonol was able to cross the blood-brain barrier and had no adverse effects via oral intake. Two months of antroquinonol consumption improved learning and memory in the Morris water maze test, reduced hippocampal Aβ levels, and reduced the degree of astrogliosis. These effects may be mediated through the increase of Nrf2 and the decrease of histone deacetylase 2 (HDAC2) levels. These findings suggest that antroquinonol could have beneficial effects on AD-like deficits in APP transgenic mouse. PMID:26469245

  7. 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner.

    PubMed

    Meyer, E M; Tay, E T; Papke, R L; Meyers, C; Huang, G L; de Fiebre, C M

    1997-09-12

    The alpha7 nicotinic receptor agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB; GTS-21) was investigated for its ability to: (1) activate a variety of nicotinic receptor subtypes in Xenopus oocytes; (2) improve passive avoidance and spatial Morris water task performances in mecamylamine-sensitive manners in bilaterally nucleus basalis lesioned rats; and (3) elevate high-affinity [3H]acetylcholine (ACh) and high-affinity alpha-[125I]bungarotoxin binding in rat neocortex following 2 weeks of daily injections. DMXB (100 microM) activated alpha7 homo-oligomeric receptors, without significant activity at alpha2-, alpha3- and alpha4-containing subtypes. Mecamylamine blocked rat alpha7 receptors weakly if co-administered with agonist, but much more potently when pre-applied. Bilateral ibotenic acid lesions of the nucleus basalis interfered with passive avoidance and spatial memory-related behaviors. DMXB (0.5 mg/kg, i.p.) improved passive avoidance behavior in lesioned animals in a mecamylamine-sensitive manner. DMXB (0.5 mg/kg 15 min before each session) also improved performance in the training and probe components of the Morris water task. DMXB-induced improvement in the probe component but not the training phase was mecamylamine-sensitive. [3H]ACh binding was elevated after 14 days of daily i.p. injections with 0.2 mg/kg nicotine but not after 1 mg/kg DMXB. Neither drug elevated high-affinity alpha-[125I]bungarorotoxin binding over this interval.

  8. Flashbulb Memories

    PubMed Central

    Hirst, William; Phelps, Elizabeth A.

    2015-01-01

    We review and analyze the key theories, debates, findings, and omissions of the existing literature on flashbulb memories (FBMs), including what factors affect their formation, retention, and degree of confidence. We argue that FBMs do not require special memory mechanisms and are best characterized as involving both forgetting and mnemonic distortions, despite a high level of confidence. Factual memories for FBM-inducing events generally follow a similar pattern. Although no necessary and sufficient factors straightforwardly account for FBM retention, media attention particularly shapes memory for the events themselves. FBMs are best characterized in term of repetitions, even of mnemonic distortions, whereas event memories evidence corrections. The bearing of this literature on social identity and traumatic memories is also discussed. PMID:26997762

  9. Virtual memory

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Virtual memory was conceived as a way to automate overlaying of program segments. Modern computers have very large main memories, but need automatic solutions to the relocation and protection problems. Virtual memory serves this need as well and is thus useful in computers of all sizes. The history of the idea is traced, showing how it has become a widespread, little noticed feature of computers today.

  10. Skilled Memory.

    DTIC Science & Technology

    1980-11-06

    Morse code (Bryan & Harter , 1899). In every case, memory performance of the expert seems to violate the established limits of short- term memory. How is...of immediate memory. Quarterly Journal of Experimental psychology, 1958, 10, 12-21. Bryan, W. L., & Harter N. psychological Review, 1899, 6, 345-375...16, 1980 Page 5 Civil Govt Non Govt Dr. Susan Chipman 1 Dr. John R. Anderson Learning and Development Department of Psychology National Institute of

  11. Improvement of switching uniformity in Cu/SiO2/Pt resistive memory achieved by voltage prestress

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Yi; Lin, Chao-Han; Liu, Shin-Hung; Bai, Chang-Zong; Zhang, Yu-Xuan

    2015-03-01

    A Cu/SiO2/Pt structure was fabricated to investigate its resistive switching characteristics. The application of DC voltages with different polarities allowed for the reversible manipulation of the structure’s resistance. This resistive switching phenomenon is the result of the formation and rupture of Cu conducting filaments near the Cu/SiO2 interface. However, significant switching dispersion occurred during successive switching cycles, which resulted in operational difficulties and switching failure. In this study, a voltage prestress was applied to the structure in an attempt to minimize the switching dispersion. A statistical technique was used to analyze the status of formation/rupture sites, and a schematic model is proposed to explain the reason for the dispersion improvement. It is suggested that the voltage prestress builds nonconnected filaments and reduces the number of sites of filament formation/rupture. This reduction in the number of sites leads to reduced switching dispersion.

  12. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2016-12-14

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  13. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  14. Comparison of Wechsler Memory Scale-Fourth Edition (WMS-IV) and Third Edition (WMS-III) dimensional structures: improved ability to evaluate auditory and visual constructs.

    PubMed

    Hoelzle, James B; Nelson, Nathaniel W; Smith, Clifford A

    2011-03-01

    Dimensional structures underlying the Wechsler Memory Scale-Fourth Edition (WMS-IV) and Wechsler Memory Scale-Third Edition (WMS-III) were compared to determine whether the revised measure has a more coherent and clinically relevant factor structure. Principal component analyses were conducted in normative samples reported in the respective technical manuals. Empirically supported procedures guided retention of dimensions. An invariant two-dimensional WMS-IV structure reflecting constructs of auditory learning/memory and visual attention/memory (C1 = .97; C2 = .96) is more theoretically coherent than the replicable, heterogeneous WMS-III dimension (C1 = .97). This research suggests that the WMS-IV may have greater utility in identifying lateralized memory dysfunction.

  15. The cognitive neuroscience of human memory since H.M.

    PubMed

    Squire, Larry R; Wixted, John T

    2011-01-01

    Work with patient H.M., beginning in the 1950s, established key principles about the organization of memory that inspired decades of experimental work. Since H.M., the study of human memory and its disorders has continued to yield new insights and to improve understanding of the structure and organization of memory. Here we review this work with emphasis on the neuroanatomy of medial temporal lobe and diencephalic structures important for memory, multiple memory systems, visual perception, immediate memory, memory consolidation, the locus of long-term memory storage, the concepts of recollection and familiarity, and the question of how different medial temporal lobe structures may contribute differently to memory functions.

  16. Improvement of spatial memory disorder and hippocampal damage by exposure to electromagnetic fields in an Alzheimer's disease rat model.

    PubMed

    Liu, Xiao; Zuo, Hongyan; Wang, Dewen; Peng, Ruiyun; Song, Tao; Wang, Shuiming; Xu, Xinping; Gao, Yabing; Li, Yang; Wang, Shaoxia; Wang, Lifeng; Zhao, Li

    2015-01-01

    Although some epidemiological investigations showed a potential association between long-term exposure of extremely low frequency electromagnetic fields (ELF-EMF) and Alzheimer's disease (AD), no reasonable mechanism can explain this association, and the related animal experiments are rare. In this study, ELF-EMF exposure (50 Hz 400 µT 60 d) combined with D-galactose intraperitoneal (50 mg/kg, q.d., 42 d) and Aβ25-35 hippocampal (5 μl/unilateral, bilateral, single-dose) injection was implemented to establish a complex rat model. Then the effects of ELF-EMF exposure on AD development was studied by using the Morris water maze, pathological analysis, and comparative proteomics. The results showed that ELF-EMF exposure delayed the weight gain of rats, and partially improved cognitive and clinicopathologic symptoms of AD rats. The differential proteomic analysis results suggest that synaptic transmission, oxidative stress, protein degradation, energy metabolism, Tau aggregation, and inflammation involved in the effects mentioned above. Therefore, our findings indicate that certain conditions of ELF-EMF exposure could delay the development of AD in rats.

  17. Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice.

    PubMed

    Wang, Pengwen; Su, Caixin; Li, Ruisheng; Wang, Hong; Ren, Ying; Sun, Haiyun; Yang, Jinduo; Sun, Jianning; Shi, Jing; Tian, Jinzhou; Jiang, Shucui

    2014-02-01

    Evidence suggests that curcumin, the phytochemical agent in the spice turmeric, might be a potential therapy for Alzheimer's disease (AD). Its antioxidant, anti-inflammatory properties have been investigated extensively. Studies have also shown that curcumin can reduce amyloid pathology in AD. The underlying mechanism, however, is complex and is still being explored. In this study, we used the APPswe/PS1dE9 double transgenic mice, an AD model, to investigate the effects and mechanisms of curcumin in the prevention and treatment of AD. The water maze test indicated that curcumin can improve spatial learning and memory ability in mice. Immunohistochemical staining and Western blot analysis were used to test major proteins in β-amyloid aggregation, β-amyloid production, and β-amyloid clearance. Data showed that, 3 months after administration, curcumin treatment reduced Aβ40 , Aβ42 , and aggregation of Aβ-derived diffusible ligands in the mouse hippocampal CA1 area; reduced the expression of the γ-secretase component presenilin-2; and increased the expression of β-amyloid-degrading enzymes, including insulin-degrading enzymes and neprilysin. This evidence suggests that curcumin, as a potential AD therapeutic method, can reduce β-amyloid pathological aggregation, possibly through mechanisms that prevent its production by inhibiting presenilin-2 and/or by accelerating its clearance by increasing degrading enzymes such as insulin-degrading enzyme and neprilysin.

  18. Placenta-derived mesenchymal stem cells improve memory dysfunction in an Aβ1-42-infused mouse model of Alzheimer's disease.

    PubMed

    Yun, H-M; Kim, H S; Park, K-R; Shin, J M; Kang, A R; il Lee, K; Song, S; Kim, Y-B; Han, S B; Chung, H-M; Hong, J T

    2013-12-12

    Mesenchymal stem cells (MSCs) promote functional recoveries in pathological experimental models of central nervous system (CNS) and are currently being tested in clinical trials for neurological disorders, but preventive mechanisms of placenta-derived MSCs (PD-MSCs) for Alzheimer's disease are poorly understood. Herein, we investigated the inhibitory effect of PD-MSCs on neuronal cell death and memory impairment in Aβ1-42-infused mice. After intracerebroventrical (ICV) infusion of Aβ1-42 for 14 days, the cognitive function was assessed by the Morris water maze test and passive avoidance test. Our results showed that the transplantation of PD-MSCs into Aβ1-42-infused mice significantly improved cognitive impairment, and behavioral changes attenuated the expression of APP, BACE1, and Aβ, as well as the activity of β-secretase and γ-secretase. In addition, the activation of glia cells and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited by the transplantation of PD-MSCs. Furthermore, we also found that PD-MSCs downregulated the release of inflammatory cytokines as well as prevented neuronal cell death and promoted neuronal cell differentiation from neuronal progenitor cells in Aβ1-42-infused mice. These data indicate that PD-MSC mediates neuroprotection by regulating neuronal death, neurogenesis, glia cell activation in hippocampus, and altering cytokine expression, suggesting a close link between the therapeutic effects of MSCs and the damaged CNS in Alzheimer's disease.

  19. Age Differences in the Transfer and Maintenance of Practice-Induced Improvements in Task Switching: The Impact of Working-Memory and Inhibition Demands.

    PubMed

    Kray, Jutta; Fehér, Balázs

    2017-01-01

    Recent aging studies on training in task switching found that older adults showed larger improvements to an untrained switching task as younger adults do. However, less clear is what type of cognitive control processes can explain these training gains as participants were trained with a particular type of switching task including bivalent stimuli, requiring high inhibition demands, and no task cues helping them keeping track of the task sequence, and by this, requiring high working-memory (WM) demands. The aims of this study were first to specify whether inhibition, WM, or switching demands are critical for the occurrence of transfer and whether this transfer depends on the degree of overlap between training and transfer situation; and second to assess whether practiced-induced gains in task switching can be maintained over a longer period of time. To this end, we created five training conditions that varied in switching (switching vs. single task training), inhibition (switching training with bivalent or univalent stimuli), and WM demands (switching training with or without task cues). We investigated 81 younger adults and 82 older adults with a pretest-training-posttest design and a follow-up measurement after 6 months. Results indicated that all training and age groups showed improvements in task switching and a differential effect of training condition on improvements to an untrained switching task in younger and older adults. For younger adults, we found larger improvements in task switching for the switching groups than the single-task training group independently of inhibition and WM demands, suggesting that practice in switching is most critical. However, these benefits disappeared after 6 months. In contrast, for older adults training groups practicing task switching under high inhibition demands showed larger improvements to untrained switching tasks than the other groups. Moreover, these benefits were maintained over time. We also found that the transfer

  20. Age Differences in the Transfer and Maintenance of Practice-Induced Improvements in Task Switching: The Impact of Working-Memory and Inhibition Demands

    PubMed Central

    Kray, Jutta; Fehér, Balázs

    2017-01-01

    Recent aging studies on training in task switching found that older adults showed larger improvements to an untrained switching task as younger adults do. However, less clear is what type of cognitive control processes can explain these training gains as participants were trained with a particular type of switching task including bivalent stimuli, requiring high inhibition demands, and no task cues helping them keeping track of the task sequence, and by this, requiring high working-memory (WM) demands. The aims of this study were first to specify whether inhibition, WM, or switching demands are critical for the occurrence of transfer and whether this transfer depends on the degree of overlap between training and transfer situation; and second to assess whether practiced-induced gains in task switching can be maintained over a longer period of time. To this end, we created five training conditions that varied in switching (switching vs. single task training), inhibition (switching training with bivalent or univalent stimuli), and WM demands (switching training with or without task cues). We investigated 81 younger adults and 82 older adults with a pretest-training-posttest design and a follow-up measurement after 6 months. Results indicated that all training and age groups showed improvements in task switching and a differential effect of training condition on improvements to an untrained switching task in younger and older adults. For younger adults, we found larger improvements in task switching for the switching groups than the single-task training group independently of inhibition and WM demands, suggesting that practice in switching is most critical. However, these benefits disappeared after 6 months. In contrast, for older adults training groups practicing task switching under high inhibition demands showed larger improvements to untrained switching tasks than the other groups. Moreover, these benefits were maintained over time. We also found that the transfer

  1. Episodic Memories

    ERIC Educational Resources Information Center

    Conway, Martin A.

    2009-01-01

    An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of "episodic elements," summary records of experience often in the form of visual images, associated to a "conceptual frame" that provides a…

  2. Collaging Memories

    ERIC Educational Resources Information Center

    Wallach, Michele

    2011-01-01

    Even middle school students can have memories of their childhoods, of an earlier time. The art of Romare Bearden and the writings of Paul Auster can be used to introduce ideas about time and memory to students and inspire works of their own. Bearden is an exceptional role model for young artists, not only because of his astounding art, but also…

  3. Exercising Control Over Memory Consolidation.

    PubMed

    Robertson, Edwin M; Takacs, Adam

    2017-03-28

    Exercise can improve human cognition. A mechanistic connection between exercise and cognition has been revealed in several recent studies. Exercise increases cortical excitability and this in turn leads to enhanced memory consolidation. Together these studies dovetail with our growing understanding of memory consolidation and how it is regulated through changes in motor cortical excitability.

  4. Perilla frutescens var. japonica and rosmarinic acid improve amyloid-β25-35 induced impairment of cognition and memory function

    PubMed Central

    Lee, Ah Young; Hwang, Bo Ra; Lee, Myoung Hee; Lee, Sanghyun

    2016-01-01

    BACKGROUND/OBJECTIVES The accumulation of amyloid-β (Aβ) in the brain is a hallmark of Alzheimer's disease (AD) and plays a key role in cognitive dysfunction. Perilla frutescens var. japonica extract (PFE) and its major compound, rosmarinic acid (RA), have shown antioxidant and anti-inflammatory activities. We investigated whether administration of PFE and RA contributes to cognitive improvement in an Aβ25-35-injected mouse model. MATERIALS/METHODS Male ICR mice were intracerebroventricularly injected with aggregated Aβ25-35 to induce AD. Aβ25-35-injected mice were fed PFE (50 mg/kg/day) or RA (0.25 mg/kg/day) for 14 days and examined for learning and memory ability through the T-maze, object recognition, and Morris water maze test. RESULTS Our present study demonstrated that PFE and RA administration significantly enhanced cognition function and object discrimination, which were impaired by Aβ25-35, in the T-maze and object recognition tests, respectively. In addition, oral administration of PFE and RA decreased the time to reach the platform and increased the number of crossings over the removed platform when compared with the Aβ25-35-induced control group in the Morris water maze test. Furthermore, PFE and RA significantly decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in the brain, kidney, and liver. In particular, PFE markedly attenuated oxidative stress by inhibiting production of NO and MDA in the Aβ25-35-injected mouse brain. CONCLUSIONS These results suggest that PFE and its active compound RA have beneficial effects on cognitive improvement and may help prevent AD induced by Aβ. PMID:27247723

  5. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  6. 76 FR 24783 - Workers Memorial Day, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... 2, 2011 Part V The President Proclamation 8658--Workers Memorial Day, 2011 #0; #0; #0; Presidential...;#0; #0; #0;Title 3-- #0;The President ] Proclamation 8658 of April 27, 2011 Workers Memorial Day... Memorial Day, we celebrate the improvements in American workplaces and remember those who have been...

  7. Impact of electrically formed interfacial layer and improved memory characteristics of IrOx/high-κx/W structures containing AlOx, GdOx, HfOx, and TaOx switching materials

    PubMed Central

    2013-01-01

    Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled ‘SET/RESET’ current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications. PMID:24011235

  8. Influence of cooling rate in planar thermally assisted magnetic random access memory: Improved writeability due to spin-transfer-torque influence

    SciTech Connect

    Chavent, A.; Ducruet, C.; Portemont, C.; Creuzet, C.; Alvarez-Hérault, J.; Vila, L.; Sousa, R. C.; Prejbeanu, I. L.; Dieny, B.

    2015-09-14

    This paper investigates the effect of a controlled cooling rate on magnetic field reversal assisted by spin transfer torque (STT) in thermally assisted magnetic random access memory. By using a gradual linear decrease of the voltage at the end of the write pulse, the STT decays more slowly or at least at the same rate as the temperature. This condition is necessary to make sure that the storage layer magnetization remains in the desired written direction during cooling of the cell. The influence of the write current pulse decay rate was investigated on two exchange biased synthetic ferrimagnet (SyF) electrodes. For a NiFe based electrode, a significant improvement in writing reproducibility was observed using a gradual linear voltage transition. The write error rate decreases by a factor of 10 when increasing the write pulse fall-time from ∼3 ns to 70 ns. For comparison, a second CoFe/NiFe based electrode was also reversed by magnetic field assisted by STT. In this case, no difference between sharp and linear write pulse fall shape was observed. We attribute this observation to the higher thermal stability of the CoFe/NiFe electrode during cooling. In real-time measurements of the magnetization reversal, it was found that Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling in the SyF electrode vanishes for the highest pulse voltages that were used due to the high temperature reached during write. As a result, during the cooling phase, the final state is reached through a spin-flop transition of the SyF storage layer.

  9. Synaptic Plasticity and Memory Formation

    DTIC Science & Technology

    1993-06-30

    the new drugs was then tested extensively in large numbers of rats across three learning tasks; as predicted, this compound produced substantial improvements in the encoding of short and long-term memories.

  10. Memory loss

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003257.htm Memory loss To use the sharing features on this ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  11. Short-term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a time-dependent manner.

    PubMed

    Birch, Amy M; McGarry, Niamh B; Kelly, Aine M

    2013-06-01

    Environmental manipulations can enhance neuroplasticity in the brain, with enrichment-induced cognitive improvements being linked to increased expression of growth factors, such as neurotrophins, and enhanced hippocampal neurogenesis. There is, however, a great deal of variation in environmental enrichment protocols used in the literature, making it difficult to assess the role of particular aspects of enrichment upon memory and the underlying associated mechanisms. This study sought to evaluate the efficacy of environmental enrichment, in the absence of exercise, as a cognitive enhancer and assess the role of Nerve Growth Factor (NGF), neurogenesis and synaptogenesis in this process. We report that rats housed in an enriched environment for 3 and 6 weeks (wk) displayed improved recognition memory, while rats enriched for 6 wk also displayed improved spatial and working memory. Neurochemical analyses revealed significant increases in NGF concentration and subgranular progenitor cell survival (as measured by BrdU+ nuclei) in the dentate gyrus of rats enriched for 6 wk, suggesting that these cellular changes may mediate the enrichment-induced memory improvements. Further analysis revealed a significant positive correlation between recognition task performance and BrdU+ nuclei. In addition, rats enriched for 6 wk showed a significant increase in expression of synaptophysin and synapsin I in the dentate gyrus, indicating that environmental enrichment can increase synaptogenesis. These data indicate a time-dependent cognitive-enhancing effect of environmental enrichment that is independent of physical activity. These data also support a role for increased concentration of NGF in dentate gyrus, synaptogenesis, and neurogenesis in mediating this effect.

  12. The n-Butanol Fraction and Rutin from Tartary Buckwheat Improve Cognition and Memory in an In Vivo Model of Amyloid-β-Induced Alzheimer's Disease.

    PubMed

    Choi, Ji Yeon; Lee, Jeong Min; Lee, Dong Gu; Cho, Sunghun; Yoon, Young-Ho; Cho, Eun Ju; Lee, Sanghyun

    2015-06-01

    This study examined the beneficial effects of the n-butanol fraction and rutin extracted from tartary buckwheat (TB) on learning and memory deficits in a mouse model of amyloid β (Aβ)-induced Alzheimer's disease (AD). Learning and memory were assessed using the T-maze, object recognition, and Morris water maze tests. Animals administered Aβ showed impaired cognition and memory, which were alleviated by oral administration of an n-butanol fraction and rutin extracted from TB. Similarly, Aβ-induced increases in nitric oxide formation and lipid peroxidation in the brain, liver, and kidneys were attenuated by treatment with n-butanol fraction and rutin from TB in addition to antioxidant effects observed in control (nonAβ-treated) animals. The results of the present study suggest that the n-butanol fraction and rutin extracted from TB are protective against and have possible therapeutic applications for the treatment of AD.

  13. Memory for details with self-referencing.

    PubMed

    Serbun, Sarah J; Shih, Joanne Y; Gutchess, Angela H

    2011-11-01

    Self-referencing benefits item memory, but little is known about the ways in which referencing the self affects memory for details. Experiment 1 assessed whether the effects of self-referencing operate only at the item, or general, level or whether they also enhance memory for specific visual details of objects. Participants incidentally encoded objects by making judgements in reference to the self, a close other (one's mother), or a familiar other (Bill Clinton). Results indicate that referencing the self or a close other enhances both specific and general memory. Experiments 2 and 3 assessed verbal memory for source in a task that relied on distinguishing between different mental operations (internal sources). The results indicate that self-referencing disproportionately enhances source memory, relative to conditions referencing other people, semantic, or perceptual information. We conclude that self-referencing not only enhances specific memory for both visual and verbal information, but can also disproportionately improve memory for specific internal source details.

  14. Fear Memory.

    PubMed

    Izquierdo, Ivan; Furini, Cristiane R G; Myskiw, Jociane C

    2016-04-01

    Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.

  15. Protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments in ovariectomized rats

    PubMed Central

    Hejazian, Seyed Hassan; Karimi, Sareh; Hosseini, Mahmoud; Mousavi, Seyed Mojtaba; Soukhtanloo, Mohammad

    2016-01-01

    Background: Regarding the anti-oxidative effects on the central nervous system, the possible protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments was investigated in ovariectomized (OVX) rats. Materials and Methods: The OVX rats treated by (1) vehicle, (2) scopolamine, and (3–4) scopolamine plus estradiol (20 or 20 or 60 μg/kg). Estradiol was administered (20 or 60 μg/kg, intraperitoneally) daily for 6 weeks after ovariectomy. The rats were examined for learning and memory using passive avoidance test. Scopolamine (2 mg/kg) was injected 30 min after training in the test. The brains were then removed to determine malondialdehyde (MDA) and thiol contents. Results: Scopolamine shortened the time latency to enter the dark compartment in (P < 0.01). Compared to scopolamine, pretreatment by both doses of estradiol prolonged the latency to enter the dark compartment (P < 0.01). The brain tissues MDA concentration as an index of lipid peroxidation was decreased (P < 0.05). Pretreatment by estradiol lowered the concentration of MDA, while it increased thiol content compared to scopolamine (P < 0.05 and P < 0.01). Conclusions: These results allow us to suggest a protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments in OVX rats. PMID:27563633

  16. Relation of Physical Activity to Memory Functioning in Older Adults: The Memory Workout Program.

    ERIC Educational Resources Information Center

    Rebok, George W.; Plude, Dana J.

    2001-01-01

    The Memory Workout, a CD-ROM program designed to help older adults increase changes in physical and cognitive activity influencing memory, was tested with 24 subjects. Results revealed a significant relationship between exercise time, exercise efficacy, and cognitive function, as well as interest in improving memory and physical activity.…

  17. Inhibitor of Phosphodiestearse-4 improves memory deficits, oxidative stress, neuroinflammation and neuropathological alterations in mouse models of dementia of Alzheimer's Type.

    PubMed

    Kumar, Amit; Singh, Nirmal

    2017-04-01

    The study investigates the potential of Rolipram a phosphodiesterase-4 inhibitor in cognitive deficits induced by streptozotocin (STZ, 3mg/kg intracerebroventricularly) and natural ageing in mice. Morris water maze (MWM) test was employed to evaluate learning and memory of the animals. Extent of oxidative stress was measured by estimating the levels of brain glutathione (GSH) and thiobarbituric acid reactive species (TBARS). Brain acetylcholinestrase (AChE) activity was also estimated. The brain activity of myeloperoxidase (MPO) was measured as a marker of inflammation. STZ and ageing results in marked decline in MWM performance of the animals, reflecting impairment of learning and memory. STZ treated mice and aged mice exhibited a marked accentuation of AChE activity, TBARS and MPO activity along with fall in GSH level. Further the stained micrographs of STZ treated mice and aged mice indicate pathological changes, severe neutrophilic infiltration and amyloid deposition. Rolipram treatment significantly attenuated STZ induced and age related memory deficits, biochemical and histopathological alterations. The findings demonstrate the potential of Rolipram in memory dysfunctions which may probably be attributed to its anti-cholinesterase, anti-amyloid, anti-oxidative and anti-inflammatory effects. The study concludes that PDE-4 can be explored as a potential therapeutic target in dementia.

  18. Improvement of Working Memory in Preschoolers and Its Impact on Early Literacy Skills: A Study in Deprived Communities of Rural and Urban Areas

    ERIC Educational Resources Information Center

    Rojas-Barahona, Cristian A.; Förster, Carla E.; Moreno-Ríos, Sergio; McClelland, Megan M.

    2015-01-01

    Research Findings: The present study evaluated the impact of a working memory (WM) stimulation program on the development of WM and early literacy skills (ELS) in preschoolers from socioeconomically deprived rural and urban schools in Chile. The sample consisted of 268 children, 144 in the intervention group and 124 in the comparison group. The…

  19. Enhancement of nose-to-brain delivery of basic fibroblast growth factor for improving rat memory impairments induced by co-injection of β-amyloid and ibotenic acid into the bilateral hippocampus.

    PubMed

    Feng, Chengcheng; Zhang, Chi; Shao, Xiayan; Liu, Qingfeng; Qian, Yong; Feng, Liang; Chen, Jie; Zha, Yuan; Zhang, Qizhi; Jiang, Xinguo

    2012-02-28

    Basic fibroblast growth factor (bFGF) delivery to the brain of animals appears to be an emerging potential therapeutic approach to neurodegenerative diseases, such as Alzheimer's disease (AD). The intranasal route of administration could provide an alternative to intracerebroventricular infusion. A nasal spray of bFGF had been developed previously and the objective of the present study was to investigate whether bFGF nasal spray could enhance brain uptake of bFGF and ameliorate memory impairment induced by co-injection of β-amyloid(25-35) and ibotenic acid into bilateral hippocampus of rats. The results of brain uptake study showed that the AUC(0-12h) of bFGF nasal spray in olfactory bulb, cerebrum, cerebellum and hippocampus was respectively 2.47, 2.38, 2.56 and 2.19 times that of intravenous bFGF solution, and 1.11, 1.95, 1.40 and 1.93 times that of intranasal bFGF solution, indicating that intranasal administration of bFGF nasal spray was an effective means of delivering bFGF to the brain, especially to cerebrum and hippocampus. In Morris water maze tasks, intravenous administration of bFGF solution at high dose (40 μg/kg) showed little improvement on spatial memory impairment. In contrast, bFGF solution of the same dose following intranasal administration could significantly ameliorate spatial memory impairment. bFGF nasal spray obviously improved spatial memory impairment even at a dose half (20 μg/kg) of bFGF solution, recovered their acetylcholinesterase and choline acetyltransferase activity to the sham control level, and alleviated neuronal degeneration in rat hippocampus, indicating neuroprotective effects on the central nerve system. In a word, bFGF nasal spray may be a new formulation of great potential for treating AD.

  20. ESP-102, a standardized combined extract of Angelica gigas, Saururus chinensis and Schizandra chinensis, significantly improved scopolamine-induced memory impairment in mice.

    PubMed

    Kang, So Young; Lee, Ki Yong; Koo, Kyung Ah; Yoon, Jeong Seon; Lim, Song Won; Kim, Young Choong; Sung, Sang Hyun

    2005-02-25

    We assessed the effects of oral treatments of ESP-102, a standardized combined extract of Angelica gigas, Saururus chinensis and Schizandra chinensis, on learning and memory deficit. The cognition-enhancing effect of ESP-102 was investigated in scopolamine-induced (1 mg/kg body weight, s.c.) amnesic mice with both passive avoidance and Morris water maze performance tests. Acute oral treatment (single administration prior to scopolamine treatment) of mice with ESP-102 (doses in the range of 10 to 100 mg/kg body weight) significantly reduced scopolamine-induced memory deficits in the passive avoidance performance test. Another noteworthy result included the fact that prolonged oral daily treatments of mice with much lower amounts of ESP-102 (1 and 10 mg/kg body weight) for ten days reversed scopolamine-induced memory deficits. In the Morris water maze performance test, both acute and prolonged oral treatments with ESP-102 (single administration of 100 mg/kg body weight or prolonged daily administration of 1 and 10 mg/kg body weight for ten days, respectively, significantly ameliorated scopolamine-induced memory deficits as indicated by the formation of long-term and/or short-term spatial memory. In addition, we investigated the effects of ESP-102 on neurotoxicity induced by amyloid-beta peptide (Abeta25-35) or glutamate in primary cultured cortical neurons of rats. Pretreatment of cultures with ESP-102 (0.001, 0.01 and 0.1 mug/ml) significantly protected neurons from neurotoxicity induced by either glutamate or Abeta25-35. These results suggest that ESP-102 may have some protective characteristics against neuronal cell death and cognitive impairments often observed in Alzheimer's disease, stroke, ischemic injury and other neurodegenerative diseases.

  1. Fueling Memories

    PubMed Central

    Powell, Jonathan D.; Pollizzi, Kristen

    2012-01-01

    A hallmark of the adaptive immune response is rapid and robust activation upon rechallenge. In the current issue of Immunity van der Windt et al. (2012) provide an important link between mitochondrial respiratory capacity and the development of CD8+ T cell memory. PMID:22284413

  2. Childhood Memories.

    ERIC Educational Resources Information Center

    Soto, Lourdes Diaz

    2001-01-01

    Describes how artwork can be a valuable catalyst for discussions in preservice education classes, allowing students to explore how their work as educators relates to their childhood memories and can be shaped by childhood experiences. Examines an art exhibition in which diverse artists depicted autobiographical text in their paintings. Discusses…

  3. Retracing Memories

    ERIC Educational Resources Information Center

    Harrison, David L.

    2005-01-01

    There are plenty of paths to poetry but few are as accessible as retracing ones own memories. When students are asked to write about something they remember, they are given them the gift of choosing from events that are important enough to recall. They remember because what happened was funny or scary or embarrassing or heartbreaking or silly.…

  4. Hollow memories

    NASA Astrophysics Data System (ADS)

    2014-04-01

    A hollow-core optical fibre filled with warm caesium atoms can temporarily store the properties of photons. Michael Sprague from the University of Oxford, UK, explains to Nature Photonics how this optical memory could be a useful building block for fibre-based quantum optics.

  5. The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Niehoff, Michael L; Morley, John E; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Farr, Susan A; Vrang, Niels

    2015-01-01

    Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer's disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by amyloid plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.c.) or vehicle once daily for 4 months. Vehicle-dosed age-matched 50% back-crossed as well as untreated young (4-month-old) SAMP8 mice were used as control groups for normal memory function. Vehicle-dosed 10-month-old SAMP8 mice showed significant learning and memory retention deficits in an active-avoidance T-maze, as compared to both control groups. Also, 10-month-old SAMP8 mice displayed no immunohistological signatures of amyloid-β plaques or hyperphosphorylated tau, indicating the onset of cognitive deficits prior to deposition of amyloid plaques and neurofibrillary tangles in this AD model. Liraglutide significantly increased memory retention and total hippocampal CA1 pyramidal neuron numbers in SAMP8 mice, as compared to age-matched vehicle-dosed SAMP8 mice. In conclusion, liraglutide delayed or partially halted the progressive decline in memory function associated with hippocampal neuronal loss in a mouse model of pathological aging with characteristics of neurobehavioral and neuropathological impairments observed in early-stage sporadic AD.

  6. Improvement by dynorphin A (1-13) of galanin-induced impairment of memory accompanied by blockade of reductions in acetylcholine release in rats.

    PubMed Central

    Hiramatsu, M.; Mori, H.; Murasawa, H.; Kameyama, T.

    1996-01-01

    1. Human galanin (0.32 nmol per rat, i.c.v.), an endogenous neuropeptide, administered 30 min before acquisition or retention trials, significantly impaired the acquisition of learning and recall of memory in a step-through type passive avoidance performance. 2. The role of dynorphin A (1-13) in learning and memory is controversial. Dynorphin A (1-13) (0.5 nmol per rat, i.c.v.) administered 5 min before galanin injection, completely antagonized these impairments. 3. Galanin significantly decreased acetylcholine release in the hippocampus 40 to 120 min after injection as determined by in vivo brain microdialysis. This peptide also decreased acetylcholine release, albeit to a lesser extent, from the frontal cortex. 4. Dynorphin A (1-13) (0.5 nmol per rat, i.c.v.) 5 min before galanin injection, completely blocked the decrease in extracellular acetylcholine concentration induced by galanin. 5. These antagonistic effects of dynorphin A (1-13) were abolished by treatment with norbinaltorphimine (5.44 nmol per rat, i.c.v.), a selective kappa-opioid receptor antagonist, 5 min before dynorphin A (1-13). 6. Dynorphin A (1-13) (0.5 nmol) itself had no effect on learning and memory and on the acetylcholine concentration in the hippocampus or the frontal cortex in normal rats. 7. These results suggest that the neuropeptide dynorphin A (1-13) ameliorates the galanin-induced impairment of learning and memory accompanied by abolition of reductions in acetylcholine release via kappa-opioid receptors. Images Figure 4 PMID:8735624

  7. Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task.

    PubMed

    Nikolaidis, Aki; Voss, Michelle W; Lee, Hyunkyu; Vo, Loan T K; Kramer, Arthur F

    2014-01-01

    Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research.

  8. Meloxicam-loaded nanocapsules as an alternative to improve memory decline in an Alzheimer's disease model in mice: involvement of Na(+), K(+)-ATPase.

    PubMed

    Ianiski, Francine R; Alves, Catiane B; Ferreira, Carla F; Rech, Virginia C; Savegnago, Lucielli; Wilhelm, Ethel A; Luchese, Cristiane

    2016-08-01

    The objective of this study was to investigate the effect of meloxicam-loaded nanocapsules (M-NC) on the treatment of the memory impairment induced by amyloid β-peptide (aβ) in mice. The involvement of Na(+), K(+)-ATPase and cyclooxygenase-2 (COX-2) activities in the hippocampus and cerebral cortex was also evaluated. Mice received aβ (3 nmol/ 3 μl/ per site, intracerebroventricular) or vehicle (3 μl/ per site, i.c.v.). The next day, the animals were treated with blank nanocapsules (17 mL/kg) or M-NC (5 mg/kg) or free meloxicam (M-F) (5 mg/kg). Treatments were performed every other day, until the twelfth day. Animals were submitted to the behavioral tasks (open-field, object recognition, Y-maze and step-down inhibitory avoidance tasks) from the twelfth day. Na(+), K(+)-ATPase and COX-2 activities were performed in hippocampus and cerebral cortex. aβ caused a memory deficit, an inhibition of the hippocampal Na(+), K(+)-ATPase activity and an increase in the hippocampal COX-2 activity. M-NC were effective against all behavioral and biochemical alterations, while M-F restored only the COX-2 activity. In conclusion, M-NC were able to reverse the memory impairment induced by aβ, and Na(+), K(+)-ATPase is involved in the effect of M-NC.

  9. EPA/DHA and Vitamin A Supplementation Improves Spatial Memory and Alleviates the Age-related Decrease in Hippocampal RXRγ and Kinase Expression in Rats.

    PubMed

    Létondor, Anne; Buaud, Benjamin; Vaysse, Carole; Richard, Emmanuel; Layé, Sophie; Pallet, Véronique; Alfos, Serge

    2016-01-01

    Studies suggest that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and vitamin A are critical to delay aged-related cognitive decline. These nutrients regulate gene expression in the brain by binding to nuclear receptors such as the retinoid X receptors (RXRs) and the retinoic acid receptors (RARs). Moreover, EPA/DHA and retinoids activate notably kinase signaling pathways such as AKT or MAPK, which includes ERK1/2. This suggests that these nutrients may modulate brain function in a similar way. Therefore, we investigated in middle-aged rats the behavioral and molecular effects of supplementations with EPA/DHA and vitamin A alone or combined. 18-month-old rats exhibited reference and working memory deficits in the Morris water maze, associated with a decrease in serum vitamin A and hippocampal EPA/DHA contents. RARα, RXRβ, and RXRγ mRNA expression and CAMKII, AKT, ERK1/2 expression were decreased in the hippocampus of middle-aged rats. A combined EPA/DHA and vitamin A supplementation had a beneficial additive effect on reference memory but not in working memory in middle-aged rats, associated with an alleviation of the age-related decrease in RXRγ, CAMKII, AKT, and ERK1 expression in the hippocampus. This study provides a new combined nutritional strategy to delay brain aging.

  10. Reading Aloud and Solving Simple Arithmetic Calculation Intervention (Learning Therapy) Improves Inhibition, Verbal Episodic Memory, Focus Attention and Processing Speed in Healthy Elderly People: Evidence from a Randomized Controlled Trial

    PubMed Central

    Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Nozawa, Takayuki; Sekiguchi, Atsushi; Kawashima, Ryuta

    2016-01-01

    Background: Previous reports have described that simple cognitive training using reading aloud and solving simple arithmetic calculations, so-called “learning therapy”, can improve executive functions and processing speed in the older adults. Nevertheless, it is not well-known whether learning therapy improve a wide range of cognitive functions or not. We investigated the beneficial effects of learning therapy on various cognitive functions in healthy older adults. Methods: We used a single-blinded intervention with two groups (learning therapy group: LT and waiting list control group: WL). Sixty-four elderly were randomly assigned to LT or WL. In LT, participants performed reading Japanese aloud and solving simple calculations training tasks for 6 months. WL did not participate in the intervention. We measured several cognitive functions before and after 6 months intervention periods. Results: Compared to WL, results revealed that LT improved inhibition performance in executive functions (Stroop: LT (Mean = 3.88) vs. WL (Mean = 1.22), adjusted p = 0.013 and reverse Stroop LT (Mean = 3.22) vs. WL (Mean = 1.59), adjusted p = 0.015), verbal episodic memory (Logical Memory (LM): LT (Mean = 4.59) vs. WL (Mean = 2.47), adjusted p = 0.015), focus attention (D-CAT: LT (Mean = 2.09) vs. WL (Mean = −0.59), adjusted p = 0.010) and processing speed compared to the WL control group (digit symbol coding: LT (Mean = 5.00) vs. WL (Mean = 1.13), adjusted p = 0.015 and Symbol Search (SS): LT (Mean = 3.47) vs. WL (Mean = 1.81), adjusted p = 0.014). Discussion: This randomized controlled trial (RCT) can be showed the benefit of LT on inhibition of executive functions, verbal episodic memory, focus attention and processing speed in healthy elderly people. Our results were discussed under overlapping hypothesis. PMID:27242481

  11. Standardised extract of Bacopa monniera (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases (PP1α, PP2A) in hippocampus.

    PubMed

    Preethi, Jayakumar; Singh, Hemant K; Venkataraman, Jois Shreyas; Rajan, Koilmani Emmanuvel

    2014-05-01

    Contextual fear conditioning is a paradigm for investigating cellular mechanisms involved in hippocampus-dependent memory. Earlier, we showed that standardised extract of Bacopa monniera (CDRI-08) improves hippocampus-dependent learning in postnatal rats by elevating the level of serotonin (5-hydroxytryptamine, 5-HT), activate 5-HT3A receptors, and cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein. In this study, we have further examined the molecular mechanism of CDRI-08 in hippocampus-dependent memory and compared to the histone deacetylase (HDACs) inhibitor sodium butyrate (NaB). To assess the hippocampus-dependent memory, wistar rat pups were subjected to contextual fear conditioning (CFC) following daily (postnatal days 15-29) administration of vehicle solution (0.5 % gum acacia + 0.9 % saline)/CDRI-08 (80 mg/kg, p.o.)/NaB (1.2 g/kg in PBS, i.p.). CDRI-08/NaB treated group showed enhanced freezing behavior compared to control group when re-exposed to the same context. Administration of CDRI-08/NaB resulted in activation of extracellular signal-regulated kinase ERK/CREB signaling cascade and up-regulation of p300, Ac-H3 and Ac-H4 levels, and down-regulation of HDACs (1, 2) and protein phosphatases (PP1α, PP2A) in hippocampus following CFC. This would subsequently result in an increased brain-derived neurotrophic factor (Bdnf) (exon IV) mRNA in hippocampus. Altogether, our results indicate that CDRI-08 enhances hippocampus-dependent contextual memory by differentially regulating histone acetylation and protein phosphatases in hippocampus.

  12. 39% access time improvement, 11% energy reduction, 32 kbit 1-read/1-write 2-port static random-access memory using two-stage read boost and write-boost after read sensing scheme

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yasue; Moriwaki, Shinichi; Kawasumi, Atsushi; Miyano, Shinji; Shinohara, Hirofumi

    2016-04-01

    We propose novel circuit techniques for 1 clock (1CLK) 1 read/1 write (1R/1W) 2-port static random-access memories (SRAMs) to improve read access time (tAC) and write margins at low voltages. Two-stage read boost (TSR-BST) and write word line boost (WWL-BST) after the read sensing schemes have been proposed. TSR-BST reduces the worst read bit line (RBL) delay by 61% and RBL amplitude by 10% at V DD = 0.5 V, which improves tAC by 39% and reduces energy dissipation by 11% at V DD = 0.55 V. WWL-BST after read sensing scheme improves minimum operating voltage (V min) by 140 mV. A 32 kbit 1CLK 1R/1W 2-port SRAM with TSR-BST and WWL-BST has been developed using a 40 nm CMOS.

  13. Experience and information loss in auditory and visual memory.

    PubMed

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  14. Nicotinic involvement in memory function in zebrafish.

    PubMed

    Levin, Edward D; Chen, Elaine

    2004-01-01

    Zebrafish are an emerging model for the study of the molecular mechanisms of brain function. To conduct studies of the neural bases of behavior in zebrafish, we must understand the behavioral function of zebrafish and how it is altered by perturbations of brain function. This study determined nicotine actions on memory function in zebrafish. With the methods that we have developed to assess memory in zebrafish using delayed spatial alternation (DSA), we determined the dose effect function of acute nicotine on memory function in zebrafish. As in rodents and primates, low nicotine doses improve memory in zebrafish, while high nicotine doses have diminished effect and can impair memory. This study shows that nicotine affects memory function in zebrafish much like in rats, mice, monkeys and humans. Now, zebrafish can be used to help understand the molecular mechanisms crucial to nicotine effects on memory.

  15. β-asarone improves learning and memory and reduces Acetyl Cholinesterase and Beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy.

    PubMed

    Deng, Minzhen; Huang, Liping; Ning, Baile; Wang, Nanbu; Zhang, Qinxin; Zhu, Caixia; Fang, Yongqi

    2016-12-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly, and studies have suggested that β-asarone has pharmacological effects on beta-amyloid (Aβ) injected in the rat hippocampus. However, the effect of β-asarone on autophagy in the APP/PS1 transgenic mouse is unreported. APP/PS1 transgenic mice were randomly divided into six groups (n=10/group): an untreated group, an Aricept-treated group, a 3-MA-treated group, a rapamycin-treated group, an LY294002-treated group, a β-asarone-treated group. The control group consisted of wild-type C57BL/6 mice. All treatments were administered to the mice for 30 days. Spatial learning and memory were assessed by water maze, passive avoidance, and step-down tests. AChE and Aβ42 levels in the hippocampus were determined by ELISA. p-Akt, p-mTOR, and LC3B expression were detected by flow cytometry. The expression of p-Akt, p-mTOR, Beclin-1, and p62 proteins was assessed by western blot. Changes in autophagy were viewed using a transmission electron microscope. APP and Beclin-1 mRNA levels were measured by Real-Time PCR. The learning and memory of APP/PS1 transgenic mice were improved significantly after β-asarone treatment compared with the untreated group. In addition, β-asarone treatment reduced AChE and Aβ42 levels, increased p-mTOR and p62 expression, decreased p-Akt, Beclin-1, and LC3B expression, decreased the number of autophagosomes and reduced APP mRNA and Beclin-1 mRNA levels compared with the untreated group. That is, β-asarone treatment can improve the learning and memory abilities of APP/PS1 transgenic mouse by inhibiting Beclin-1-dependent autophagy via the PI3K/Akt/mTOR pathway.

  16. Caffeine plus nicotine improves motor function, spatial and non-spatial working memory and functional indices in BALB/c male mice.

    PubMed

    Adeniyi, P A; Omatsuli, E P; Akinyemi, A J; Ishola, A O

    2016-12-01

    There is a greater prevalence of cigarette smoking among caffeine dependent individuals. This study therefore sought to assess the effect of nicotine and/or caffeine on some key biochemical indices and neurobehavioural parameters associated with brain function in male mice. Forty male BALB/c mice were divided into 4 groups of 10 animals each; Group A serve as the control and received normal saline (s.c), Group B received 2mg/kg body weight of nicotine (s.c), Group C received 2mg/kg body weight of caffeine (s.c) and Group D received 2mg/kg of nicotine and 2mg/kg of caffeine (s.c). The experiment lasted for 21 days, and then the animals were subjected to behavioral test. Thereafter the animals were sacrificed and their brain isolated for the determination of endothelial nitric oxide (NO) level, acetylcholinesterase (AChE), arginase (Arg) and adenosine deaminase (ADA) activities; as well as some antioxidant indices. Administration of nicotine or caffeine caused a significant (P<0.05) inhibition on AChE, ADA and Arg activities as well as a significant increase in NO level when compared with the control. However, it was observed from this study that nicotine enhances caffeine cognitive properties through a significant increase in non-spatial working memory whereas; it was otherwise on the spatial working memory and motor coordination. Therefore, we can suggest from our present study that caffeine enhances the effect of nicotine either synergistically or additively on memory and motor function and some key biochemical indices associated with brain function in male mice.

  17. [Neural correlates of memory].

    PubMed

    Fujii, Toshikatsu

    2013-01-01

    Memory can be divided into several types, although all of them involve three successive processes: encoding, storage, and retrieval. In terms of the duration of retention, neurologists classify memory into immediate, recent, and remote memories, whereas psychologists classify memory into short-term and long-term memories. In terms of the content, episodic, semantic, and procedural memories are considered to be different types of memory. Furthermore, researchers on memory have proposed relatively new concepts of memory, i.e., working memory and prospective memory. This article first provides explanations for these several types of memory. Next, neuropsychological characteristics of amnesic syndrome are briefly outlined. Finally, how several different types of memory are affected (or preserved) in patients with amnesic syndrome is described.

  18. Working memory plasticity and aging.

    PubMed

    Rhodes, Rebecca E; Katz, Benjamin

    2017-02-01

    The present research explores how the trajectory of learning on a working memory task changes throughout the life span, and whether gains in working memory performance are exclusively a question of initial working memory capacity (WMC) or whether age exerts an independent effect. In a large, cross-sectional study of younger, middle-aged, and older adults, we examined learning on a widely used working memory task-the dual n-back task-over 20 sessions of practice. We found that, while all age groups improved on the task, older adults demonstrated less improvement on the task, and also reached a lower asymptotic maximum performance than younger adults. After controlling for initial WMC, we found that age exerted independent effects on training gains and asymptotic performance; older adults tended to improve less and reached lower levels of performance than younger adults. The difference between younger and older adults' rates of learning depended in part on initial WMC. These results suggest that age-related effects on working memory include not only effects on capacity, but also plasticity and the ability to improve on a task. (PsycINFO Database Record

  19. Caffeine, extraversion and working memory.

    PubMed

    Smith, Andrew P

    2013-01-01

    Research has shown that extraverts performing a working memory task benefit more from caffeine than do introverts. The present study aimed to replicate this and extend our knowledge by using a lower dose of caffeine (65 mg) and a range of tasks related to different components of working memory. In addition, tasks assessing psychomotor speed and the encoding of new information were included to determine whether caffeine-extraversion interactions were restricted to working memory tasks. A double-blind design was used, with 128 participants being randomly assigned to caffeinated or de-caffeinated coffee conditions. The results showed that caffeine interacted with extraversion in the predicted direction for serial recall and running memory tasks. Caffeine improved simple reaction time and the speed of encoding of new information, effects which were not modified by extraversion. These results suggest possible biological mechanisms underlying effects of caffeine on cognitive performance.

  20. Prescription n-3 fatty acids, but not eicosapentaenoic acid alone, improve reference memory-related learning ability by increasing brain-derived neurotrophic factor levels in SHR.Cg-Lepr(cp)/NDmcr rats, a metabolic syndrome model.

    PubMed

    Hashimoto, Michio; Inoue, Takayuki; Katakura, Masanori; Tanabe, Yoko; Hossain, Shahdat; Tsuchikura, Satoru; Shido, Osamu

    2013-10-01

    Metabolic syndrome is implicated in the decline of cognitive ability. We investigated whether the prescription n-3 fatty acid administration improves cognitive learning ability in SHR.Cg-Lepr(cp)/NDmcr (SHR-cp) rats, a metabolic syndrome model, in comparison with administration of eicosapentaenoic acid (EPA, C20:5, n-3) alone. Administration of TAK-085 [highly purified and concentrated n-3 fatty acid formulation containing EPA ethyl ester and docosahexaenoic acid (DHA, C22:6, n-3) ethyl ester] at 300 mg/kg body weight per day for 13 weeks reduced the number of reference memory-related errors in SHR-cp rats, but EPA alone had no effect, suggesting that long-term TAK-085 administration improves cognitive learning ability in a rat model of metabolic syndrome. However, the working memory-related errors were not affected in either of the rat groups. TAK-085 and EPA administration increased plasma EPA and DHA levels of SHR-cp rats, associating with an increase in EPA and DHA in the cerebral cortex. The TAK-085 administration decreased the lipid peroxide levels and reactive oxygen species in the cerebral cortex and hippocampus of SHR-cp rats, suggesting that TAK-085 increases antioxidative defenses. Its administration also increased the brain-derived neurotrophic factor levels in the cortical and hippocampal tissues of TAK-085-administered rats. The present study suggests that long-term TAK-085 administration is a possible therapeutic strategy for protecting against metabolic syndrome-induced learning decline.

  1. Optoelectronic associative memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor)

    1993-01-01

    An associative optical memory including an input spatial light modulator (SLM) in the form of an edge enhanced liquid crystal light valve (LCLV) and a pair of memory SLM's in the form of liquid crystal televisions (LCTV's) forms a matrix array of an input image which is cross correlated with a matrix array of stored images. The correlation product is detected and nonlinearly amplified to illuminate a replica of the stored image array to select the stored image correlating with the input image. The LCLV is edge enhanced by reducing the bias frequency and voltage and rotating its orientation. The edge enhancement and nonlinearity of the photodetection improves the orthogonality of the stored image. The illumination of the replicate stored image provides a clean stored image, uncontaminated by the image comparison process.

  2. Twelve-Week Exercise Influences Memory Complaint but Not Memory Performance in Older Adults: A Randomized Controlled Study.

    PubMed

    Iuliano, Enzo; Fiorilli, Giovanni; Aquino, Giovanna; Di Costanzo, Alfonso; Calcagno, Giuseppe; di Cagno, Alessandra

    2017-03-14

    This study aimed to evaluate the effects of different types of exercise on memory performance and memory complaint after 12-week intervention. Eighty community-dwelling volunteers, aged 66.96 ± 11.73 years, were randomly divided into four groups: resistance, cardiovascular, postural and control groups (20 participants for each group). All participants were tested for their cognitive functions before and after their respective 12-weeks intervention using Rey memory words test, Prose memory test, and Memory Complaint Questionnaire (MAC-Q). Statistical analysis showed that the three experimental groups significantly improved MAC-Q scores in comparison with control group (p <.05). The variation of MAC-Q scores and the variations of Rey and Prose memory tests scores were not correlated. These results indicate that the 12-week interventions exclusively influenced memory complaint but not memory performance. Further investigations are needed to understand the relation between memory complaint and memory performance, and the factors that can influence this relationship.

  3. Electroacupuncture Ameliorates Learning and Memory and Improves Synaptic Plasticity via Activation of the PKA/CREB Signaling Pathway in Cerebral Hypoperfusion

    PubMed Central

    Lu, Min; Guo, Ya-Bi; Zhang, Feng-Xia; Liu, Hua

    2016-01-01

    Electroacupuncture (EA) has shown protective effects on cognitive decline. However, the underlying molecular mechanisms are ill-understood. The present study was undertaken to determine whether the cognitive function was ameliorated in cerebral hypoperfusion rats following EA and to investigate the role of PKA/CREB pathway. We used a rat 2-vessel occlusion (2VO) model and delivered EA at Baihui (GV20) and Dazhui (GV14) acupoints. Morris water maze (MWM) task, electrophysiological recording, Golgi silver stain, Nissl stain, Western blot, and real-time PCR were employed. EA significantly (1) ameliorated the spatial learning and memory deficits, (2) alleviated long-term potentiation (LTP) impairment and the reduction of dendritic spine density, (3) suppressed the decline of phospho-CREB (pCREB) protein, brain-derived neurotrophic factor (BDNF) protein, and microRNA132 (miR132), and (4) reduced the increase of p250GAP protein of 2VO rats. These changes were partially blocked by a selective protein kinase A (PKA) inhibitor, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide (H89), suggesting that the PKA/CREB pathway is potentially involved in the effects of EA. Moreover, any significant damage to the pyramidal cell layer of CA1 subregion was absent. These results demonstrated that EA could ameliorate learning and memory deficits and alleviate hippocampal synaptic plasticity impairment of cerebral hypoperfusion rats, potentially mediated by PKA/CREB signaling pathway. PMID:27829866

  4. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice.

    PubMed

    Chen, Shuyi; Sun, Jie; Zhao, Gang; Guo, Ai; Chen, Yanlin; Fu, Rongxia; Deng, Yanqiu

    2017-04-06

    The purpose of this study was to explore how liraglutide affects AD-like pathology and cognitive function in APP/PS1/Tau triple transgenic (3 × Tg) Alzheimer disease (AD) model mice. Male 3 × Tg mice and C57BL/6 J mice were treated for 8 weeks with liraglutide (300 μg/kg/day, subcutaneous injection) or saline. Levels of phosphorylated tau, neurofilaments (NFs), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in brain tissues were assessed with western blots. Fluoro-Jade-B labeling were applied to detect pathological changes. The Morris water maze (MWM) was used to assess the spatial learning and memory. Liraglutide decreased levels of hyperphosphorylated tau and NFs in 3 × Tg liraglutide-treated (Tg + LIR) mice, increased ERK phosphorylation, and decreased JNK phosphorylation. Liraglutide also decreased the number of degenerative neurons in the hippocampus and cortex of Tg + LIR mice, and shortened their escape latencies and increased their hidden platform crossings in the MWM task. Liraglutide did not significantly affect the animals' body weight (BW) or fasting blood glucose. Liraglutide can reduce hyperphosphorylation of tau and NFs and reduce neuronal degeneration, apparently through alterations in JNK and ERK signaling, which may be related to its positive effects on AD-like learning and memory impairment.

  5. Darbepoetin alfa (Aranesp) improves recognition memory in adult rats that have sustained bilateral ventral hippocampal lesions as neonates or young adults.

    PubMed

    Hori, S E; Powell, K J; Robertson, G S

    2007-01-05

    Recognition memory was assessed in adult rats that received bilateral injections of saline (sham lesions) or ibotenic acid (lesioned) in the ventral hippocampus as neonates (postnatal day 7, PD7) or young adult (42 days of age, PD42) using the Novel Object Recognition Test (NORT). Normal or sham-lesioned rats were able to distinguish novel from familiar objects over a 0.5 and 2 h delay between the sample and choice phases. Adult rats (PD70) lesioned as neonates performed progressively worse than sham-lesioned animals at delays of 0.5 and 2 h. A single injection of darbepoetin alfa (500 or 5000 U/kg, i.p.), given 1 h before the sample phase restored performance 0.5 or 2 h later in the choice phase to same levels as sham-lesioned rats. Adults lesioned on PD42 displayed deficits in NORT performance with a 2 h delay between the choice and sample phases that were completely reversed by administration of darbepoetin alfa (5000 U/kg, i.p.) 1 h before the sample phase. These results suggest that darbepoetin alfa may have utility in treating memory deficits associated with brain dysfunction related to developmental disorders such as schizophrenia.

  6. Conjugated linoleic acid-enriched butter improved memory and up-regulated phospholipase A2 encoding-genes in rat brain tissue.

    PubMed

    Gama, Marco A S; Raposo, Nádia R B; Mury, Fábio B; Lopes, Fernando C F; Dias-Neto, Emmanuel; Talib, Leda L; Gattaz, Wagner F

    2015-10-01

    Reduced phospholipase A2 (PLA2) activity has been reported in blood cells and in postmortem brains of patients with Alzheimer disease (AD), and there is evidence that conjugated linoleic acid (CLA) modulates the activity of PLA2 groups in non-brain tissues. As CLA isomers were shown to be actively incorporated and metabolized in the brains of rats, we hypothesized that feeding a diet naturally enriched in CLA would affect the activity and expression of Pla 2 -encoding genes in rat brain tissue, with possible implications for memory. To test this hypothesis, Wistar rats were trained for the inhibitory avoidance task and fed a commercial diet (control) or experimental diets containing either low CLA- or CLA-enriched butter for 4 weeks. After this period, the rats were tested for memory retrieval and killed for tissue collection. Hippocampal expression of 19 Pla 2 genes was evaluated by qPCR, and activities of PLA2 groups (cPLA2, iPLA2, and sPLA2) were determined by radioenzymatic assay. Rats fed the high CLA diet had increased hippocampal mRNA levels for specific PLA2 isoforms (iPla 2 g6γ; cPla 2 g4a, sPla 2 g3, sPla 2 g1b, and sPla 2 g12a) and higher enzymatic activity of all PLA2 groups as compared to those fed the control and the low CLA diet. The increment in PLA2 activities correlated significantly with memory enhancement, as assessed by increased latency in the step-down inhibitory avoidance task after 4 weeks of treatment (rs = 0.69 for iPLA2, P < 0.001; rs = 0.81 for cPLA2, P < 0.001; and rs = 0.69 for sPLA2, P < 0.001). In face of the previous reports showing reduced PLA2 activity in AD brains, the present findings suggest that dairy products enriched in cis-9, trans-11 CLA may be useful in the treatment of this disease.

  7. Working Memory Intervention: A Reading Comprehension Approach

    ERIC Educational Resources Information Center

    Perry, Tracy L.; Malaia, Evguenia

    2013-01-01

    For any complex mental task, people rely on working memory. Working memory capacity (WMC) is one predictor of success in learning. Historically, attempts to improve verbal WM through training have not been effective. This study provided elementary students with WM consolidation efficiency training to answer the question, Can reading comprehension…

  8. A Beginner's Guide to Memory.

    ERIC Educational Resources Information Center

    Hughes, Elizabeth M.

    1981-01-01

    This article is designed to equip the reader with the information needed to deal with questions of computer memory. Discussed are core memory; semiconductor memory; size of memory; expanding memory; charge-coupled device memories; magnetic bubble memory; and read-only and read-mostly memories. (KC)

  9. Effects of Methylphenidate on Memory Functions of Adults with ADHD.

    PubMed

    Fuermaier, Anselm B M; Tucha, Lara; Koerts, Janneke; Weisbrod, Matthias; Lange, Klaus W; Aschenbrenner, Steffen; Tucha, Oliver

    2016-04-18

    Neuropsychological research on adults with attention deficit hyperactivity disorder (ADHD) revealed considerable impairments in memory functions related to executive control. However, only limited evidence exists supporting the effects of pharmacological treatment using methylphenidate (MPH) on memory functions. The aim of the present study was, therefore, to explore the impact of MPH on various memory functions of adults with ADHD. Thirty-one adults with ADHD treated with MPH, 36 adults with ADHD not-treated with MPH, and 36 healthy individuals were assessed on several aspects of memory, including short-term memory, working memory, retrospective memory, prospective memory, and source memory. Multivariate statistical analyses were applied to compare memory functions between groups. Nonmedicated adults with ADHD showed considerable impairments in memory functions related to executive control. Adults with ADHD treated with MPH showed improved memory functions when compared to nonmedicated patients, but were still impaired when compared to healthy controls. The present study emphasized the severity of memory impairments of adults with ADHD. A pharmacological treatment with MPH appeared to improve memory, but does not normalize functioning. Additional treatment intervention (e.g., cognitive-behavioral therapy) is therefore necessary.

  10. A novel trimeric peptide, Neuropep-1-stimulating brain-derived neurotrophic factor expression in rat brain improves spatial learning and memory as measured by the Y-maze and Morris water maze.

    PubMed

    Shin, Min Kyoo; Kim, Hong Gi; Kim, Kil Lyong

    2011-01-01

    Abundant studies have shown possible links between low levels of brain-derived neurotrophic factor (BDNF) and neurological diseases such as Alzheimer's disease, Parkinson's disease, and depression, as well as stress and anxiety; therefore, BDNF could be a therapeutic target for neurological disorders. In the present study, a positional scanning-synthetic peptide combinatorial library was utilized to identify a peptide modulator of BDNF expression in the hippocampal neuronal cell line, H19-7. A novel tripeptide (Neuropep-1) induced a significant increase of BDNF mRNA and protein levels in H19-7 cells. Pre-treatment of TrkB inhibitor (K252a) did not block Neuropep-1-induced BDNF up-regulation. These results indicate that Neuropep-1 may up-regulate BDNF expression that might be independent of the TrkB receptor pathway. Tail vein injection of Neuropep-1 significantly up-regulated BDNF expression, TrkB phosphorylation, and its downstream signals including activation of Akt, ERK, and cAMP response element binding in the rat hippocampus. To evaluate improvement of spatial learning and memory (SLM) by Neuropep-1-induced BDNF up-regulation, the Y-maze and Morris water maze tests were performed. These results showed Neuropep-1 injection improved SLM performance with increase of BDNF and TrkB expression, activation of TrkB downstream signals in rat hippocampus compared with the control group. However, phosphorylation levels of TrkB were not changed when it was normalized to the level of TrkB expression. The difference on TrkB phosphorylation in Neuropep-1-injected rats may be affected by behavioral tests. These results suggest that Neuropep-1 may improve SLM via activation of the BDNF/TrkB signaling pathway in the rat hippocampus. Therefore, our findings represent that Neuropep-1 might be a potential candidate for treatment of learning and memory disorders as well as neurological diseases involving the abnormal expression of BDNF.

  11. TCR Signaling in T Cell Memory.

    PubMed

    Daniels, Mark A; Teixeiro, Emma

    2015-01-01

    T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR-peptide-MHC interactions impact the multiple fates a T cell can adopt in the memory pool.

  12. TCR Signaling in T Cell Memory

    PubMed Central

    Daniels, Mark A.; Teixeiro, Emma

    2015-01-01

    T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR–peptide–MHC interactions impact the multiple fates a T cell can adopt in the memory pool. PMID:26697013

  13. Memory Retrieval and Interference: Working Memory Issues

    ERIC Educational Resources Information Center

    Radvansky, Gabriel A.; Copeland, David E.

    2006-01-01

    Working memory capacity has been suggested as a factor that is involved in long-term memory retrieval, particularly when that retrieval involves a need to overcome some sort of interference (Bunting, Conway, & Heitz, 2004; Cantor & Engle, 1993). Previous work has suggested that working memory is related to the acquisition of information during…

  14. Object recognition memory in zebrafish.

    PubMed

    May, Zacnicte; Morrill, Adam; Holcombe, Adam; Johnston, Travis; Gallup, Joshua; Fouad, Karim; Schalomon, Melike; Hamilton, Trevor James

    2016-01-01

    The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour.

  15. Antisense Oligonucleotide Against GSK-3β in Brain of SAMP8 Mice Improves Learning and Memory and Decreases Oxidative Stress: Involvement of Transcription Factor Nrf2 and Implications for Alzheimer Disease

    PubMed Central

    Farr, Susan A.; Ripley, Jessica L.; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L.; Platt, Thomas L.; Murphy, M. Paul; Morley, John E.; Kumar, Vijaya; Butterfield, D. Allan

    2014-01-01

    Glycogen synthase kinase (GSK) -3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer’s disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ) and neurodegeneration. In this study we used 12 month old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured indicating decreased oxidative stress. Nuclear factor erythroid -2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with

  16. Use of a Structured Mirrors Intervention Does Not Reduce Delirium Incidence But May Improve Factual Memory Encoding in Cardiac Surgical ICU Patients Aged Over 70 Years: A Pilot Time-Cluster Randomized Controlled Trial

    PubMed Central

    Giraud, Kimberly; Pontin, Megan; Sharples, Linda D.; Fletcher, Paul; Dalgleish, Tim; Eden, Allaina; Jenkins, David P.; Vuylsteke, Alain

    2016-01-01

    Introduction: Post-operative delirium remains a significant problem, particularly in the older surgical patient. Previous evidence suggests that the provision of supplementary visual feedback about ones environment via the use of a mirror may positively impact on mental status and attention (core delirium diagnostic domains). We aimed to explore whether use of an evidence-based mirrors intervention could be effective in reducing delirium and improving post-operative outcomes such as factual memory encoding of the Intensive Care Unit (ICU) environment in older cardiac surgical patients. Methods: This was a pilot time-cluster randomized controlled trial at a 32-bed ICU, enrolling 223 patients aged 70 years and over, admitted to ICU after elective or urgent cardiac surgery from October 29, 2012 to June 23, 2013. The Mirrors Group received a structured mirrors intervention at set times (e.g., following change in mental status). The Usual Care Group received the standard care without mirrors. Primary outcome was ICU delirium incidence; secondary outcomes were ICU delirium days, ICU days with altered mental status or inattention, total length of ICU stay, physical mobilization (balance confidence) at ICU discharge, recall of factual and delusional ICU memories at 12 weeks, Health-Related Quality of Life at 12 weeks, and acceptability of the intervention. Results: The intervention was not associated with a significant reduction in ICU delirium incidence [Mirrors: 20/115 (17%); Usual Care: 17/108 (16%)] or duration [Mirrors: 1 (1–3); Usual Care: 2 (1–8)]. Use of the intervention on ICU was predictive of significantly higher recall of factual (but not delusional) items at 12 weeks after surgery (p = 0.003) and acceptability was high, with clinicians using mirrors at 86% of all recorded hourly observations. The intervention did not significantly impact on other secondary outcomes. Conclusion: Use of a structured mirrors intervention on the post-operative ICU does not

  17. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease.

    PubMed

    Farr, Susan A; Ripley, Jessica L; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L; Platt, Thomas L; Murphy, M Paul; Morley, John E; Kumar, Vijaya; Butterfield, D Allan

    2014-02-01

    Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased

  18. Optical memory

    DOEpatents

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  19. The Influence of Colour on Memory Performance: A Review

    PubMed Central

    Dzulkifli, Mariam Adawiah; Mustafar, Muhammad Faiz

    2013-01-01

    Human cognition involves many mental processes that are highly interrelated, such as perception, attention, memory, and thinking. An important and core cognitive process is memory, which is commonly associated with the storing and remembering of environmental information. An interesting issue in memory research is on ways to enhance memory performance, and thus, remembering of information. Can colour result in improved memory abilities? The present paper highlights the relationship between colours, attention, and memory performance. The significance of colour in different settings is presented first, followed by a description on the nature of human memory. The role of attention and emotional arousal on memory performance is discussed next. The review of several studies on colours and memory are meant to explain some empirical works done in the area and related issues that arise from such studies. PMID:23983571

  20. Order-memory and association-memory.

    PubMed

    Caplan, Jeremy B

    2015-09-01

    Two highly studied memory functions are memory for associations (items presented in pairs, such as SALT-PEPPER) and memory for order (a list of items whose order matters, such as a telephone number). Order- and association-memory are at the root of many forms of behaviour, from wayfinding, to language, to remembering people's names. Most researchers have investigated memory for order separately from memory for associations. Exceptions to this, associative-chaining models build an ordered list from associations between pairs of items, quite literally understanding association- and order-memory together. Alternatively, positional-coding models have been used to explain order-memory as a completely distinct function from association-memory. Both classes of model have found empirical support and both have faced serious challenges. I argue that models that combine both associative chaining and positional coding are needed. One such hybrid model, which relies on brain-activity rhythms, is promising, but remains to be tested rigourously. I consider two relatively understudied memory behaviours that demand a combination of order- and association-information: memory for the order of items within associations (is it William James or James William?) and judgments of relative order (who left the party earlier, Hermann or William?). Findings from these underexplored procedures are already difficult to reconcile with existing association-memory and order-memory models. Further work with such intermediate experimental paradigms has the potential to provide powerful findings to constrain and guide models into the future, with the aim of explaining a large range of memory functions, encompassing both association- and order-memory.

  1. Pitch Perception, Working Memory, and Second-Language Phonological Production

    ERIC Educational Resources Information Center

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  2. Training Planning and Working Memory in Third Graders

    ERIC Educational Resources Information Center

    Goldin, Andrea Paula; Segretin, Maria Soledad; Hermida, Maria Julia; Paz, Luciano; Lipina, Sebastian Javier; Sigman, Mariano

    2013-01-01

    Working memory and planning are fundamental cognitive skills supporting fluid reasoning. We show that 2 games that train working memory and planning skills in school-aged children promote transfer to 2 different tasks: an attentional test and a fluid reasoning test. We also show long-term improvement of planning and memory capacities in…

  3. Does overgeneral autobiographical memory result from poor memory for task instructions?

    PubMed

    Yanes, Paula K; Roberts, John E; Carlos, Erica L

    2008-10-01

    Considerable previous research has shown that retrieval of overgeneral autobiographical memories (OGM) is elevated among individuals suffering from various emotional disorders and those with a history of trauma. Although previous theories suggest that OGM serves the function of regulating acute negative affect, it is also possible that OGM results from difficulties in keeping the instruction set for the Autobiographical Memory Test (AMT) in working memory, or what has been coined "secondary goal neglect" (Dalgleish, 2004). The present study tested whether OGM is associated with poor memory for the task's instruction set, and whether an instruction set reminder would improve memory specificity over repeated trials. Multilevel modelling data-analytic techniques demonstrated a significant relationship between poor recall of instruction set and probability of retrieving OGMs. Providing an instruction set reminder for the AMT relative to a control task's instruction set improved memory specificity immediately afterward.

  4. Emotional memory persists longer than event memory.

    PubMed

    Kuriyama, Kenichi; Soshi, Takahiro; Fujii, Takeshi; Kim, Yoshiharu

    2010-03-01

    The interaction between amygdala-driven and hippocampus-driven activities is expected to explain why emotion enhances episodic memory recognition. However, overwhelming behavioral evidence regarding the emotion-induced enhancement of immediate and delayed episodic memory recognition has not been obtained in humans. We found that the recognition performance for event memory differs from that for emotional memory. Although event recognition deteriorated equally for episodes that were or were not emotionally salient, emotional recognition remained high for only stimuli related to emotional episodes. Recognition performance pertaining to delayed emotional memory is an accurate predictor of the context of past episodes.

  5. Action video gaming and cognitive control: playing first person shooter games is associated with improvement in working memory but not action inhibition.

    PubMed

    Colzato, Lorenza S; van den Wildenberg, Wery P M; Zmigrod, Sharon; Hommel, Bernhard

    2013-03-01

    The interest in the influence of videogame experience in our daily life is constantly growing. "First Person Shooter" (FPS) games require players to develop a flexible mindset to rapidly react and monitor fast moving visual and auditory stimuli, and to inhibit erroneous actions. This study investigated whether and to which degree experience with such videogames generalizes to other cognitive control tasks. Experienced video game players (VGPs) and individuals with little to no videogame experience (NVGPs) performed on a N-back task and a stop-signal paradigm that provide a relatively well-established diagnostic measure of the monitoring and updating of working memory (WM) and response inhibition (an index of behavioral impulsivity), respectively. VGPs were faster and more accurate in the monitoring and updating of WM than NVGPs, which were faster in reacting to go signals, but showed comparable stopping performance. Our findings support the idea that playing FPS games is associated with enhanced flexible updating of task-relevant information without affecting impulsivity.

  6. The uncoupled ATPase activity of the ABC transporter BtuC2D2 leads to a hysteretic conformational change, conformational memory, and improved activity

    PubMed Central

    Livnat-Levanon, Nurit; I. Gilson, Amy; Ben-Tal, Nir; Lewinson, Oded

    2016-01-01

    ABC transporters comprise a large and ubiquitous family of proteins. From bacteria to man they translocate solutes at the expense of ATP hydrolysis. Unlike other enzymes that use ATP as an energy source, ABC transporters are notorious for having high levels of basal ATPase activity: they hydrolyze ATP also in the absence of their substrate. It is unknown what are the effects of such prolonged and constant activity on the stability and function of ABC transporters or any other enzyme. Here we report that prolonged ATP hydrolysis is beneficial to the ABC transporter BtuC2D2. Using ATPase assays, surface plasmon resonance interaction experiments, and transport assays we observe that the constantly active transporter remains stable and functional for much longer than the idle one. Remarkably, during extended activity the transporter undergoes a slow conformational change (hysteresis) and gradually attains a hyperactive state in which it is more active than it was to begin with. This phenomenon is different from stabilization of enzymes by ligand binding: the hyperactive state is only reached through ATP hydrolysis, and not ATP binding. BtuC2D2 displays a strong conformational memory for this excited state, and takes hours to return to its basal state after catalysis terminates. PMID:26905293

  7. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors

    PubMed Central

    Blatnik, Renata; Lee, Lian N.; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D.; Marandu, Thomas F.; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K.; Meyer, Christine; Holtappels, Rafaela; Arens, Ramon; Früh, Klaus; Reddehase, Matthias J.; Riemer, Angelika B.; Cicin-Sain, Luka

    2016-01-01

    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy. PMID:27977791

  8. Memory skills mediating superior memory in a world-class memorist.

    PubMed

    Ericsson, K Anders; Cheng, Xiaojun; Pan, Yafeng; Ku, Yixuan; Ge, Yi; Hu, Yi

    2017-03-01

    Laboratory studies have investigated how individuals with normal memory spans attained digit spans over 80 digits after hundreds of hours of practice. Experimental analyses of their memory skills suggested that their attained memory spans were constrained by the encoding time, for the time needed will increase if the length of digit sequences to be memorised becomes longer. These constraints seemed to be violated by a world-class memorist, Feng Wang (FW), who won the World Memory Championship by recalling 300 digits presented at 1 digit/s. In several studies we examined FW's memory skills underlying his exceptional performance. First FW reproduced his superior memory span of 200 digits under laboratory condition, and we obtained his retrospective reports describing his encoding/retrieval processes (Experiment 1). Further experiments used self-paced memorisation to identify temporal characteristics of encoding of digits in 4-digit clusters (Experiment 2), and explored memory encoding at presentation speeds much faster than 1 digit/s (Experiment 3). FW's superiority over previous digit span experts is explained by his acquisition of well-known mnemonic techniques and his training that focused on rapid memorisation. His memory performance supports the feasibility of acquiring memory skills for improved working memory based on storage in long-term memory.

  9. Research about Memory Detection Based on the Embedded Platform

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Chu, Jian

    As is known to us all, the resources of memory detection of the embedded systems are very limited. Taking the Linux-based embedded arm as platform, this article puts forward two efficient memory detection technologies according to the characteristics of the embedded software. Especially for the programs which need specific libraries, the article puts forwards portable memory detection methods to help program designers to reduce human errors,improve programming quality and therefore make better use of the valuable embedded memory resource.

  10. Initial feasibility and validity of a prospective memory training program in a substance use treatment population.

    PubMed

    Sweeney, Mary M; Rass, Olga; Johnson, Patrick S; Strain, Eric C; Berry, Meredith S; Vo, Hoa T; Fishman, Marc J; Munro, Cynthia A; Rebok, George W; Mintzer, Miriam Z; Johnson, Matthew W

    2016-10-01

    Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 men, 9 women) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support the development of this intervention as an adjunctive therapy for substance use disorders. (PsycINFO Database Record

  11. Memory Metals

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under contract to NASA during preparations for the space station, Memry Technologies Inc. investigated shape memory effect (SME). SME is a characteristic of certain metal alloys that can change shape in response to temperature variations. In the late 1980s and early 1990s, Memry used its NASA-acquired expertise to produce a line of home and industrial safety products, and refined the technology in the mid-1990s. Among the new products they developed are three MemrySafe units which prevent scalding from faucets. Each system contains a small valve that reacts to temperature, not pressure. When the water reaches dangerous temperatures, the unit reduces the flow to a trickle; when the scalding temperature subsides, the unit restores normal flow. Other products are the FIRECHEK 2 and 4, heat-activated shutoff valves for industrial process lines, which sense excessive heat and cut off pneumatic pressure. The newest of these products is Memry's Demand Management Water Heater which shifts the electricity requirement from peak to off-peak demands, conserving energy and money.

  12. Protein kinase A inhibits a consolidated form of memory in Drosophila.

    PubMed

    Horiuchi, Junjiro; Yamazaki, Daisuke; Naganos, Shintaro; Aigaki, Toshiro; Saitoe, Minoru

    2008-12-30

    Increasing activity of the cAMP/protein kinase A (PKA) pathway has often been proposed as an approach to improve memory in various organisms. However, here we demonstrate that single-point mutations, which decrease PKA activity, dramatically improve aversive olfactory memory in Drosophila. These mutations do not affect formation of early memory phases or of protein synthesis-dependent long-term memory but do cause a significant increase in a specific consolidated form of memory, anesthesia-resistant memory. Significantly, heterozygotes of null mutations in PKA are sufficient to cause this memory increase. Expressing a PKA transgene in the mushroom bodies, brain structures critical for memory formation in Drosophila, reduces memory back to wild-type levels. These results indicate that although PKA is critical for formation of several memory phases, it also functions to inhibit at least one memory phase.

  13. Recurrent Neural Networks With Auxiliary Memory Units.

    PubMed

    Wang, Jianyong; Zhang, Lei; Guo, Quan; Yi, Zhang

    2017-03-21

    Memory is one of the most important mechanisms in recurrent neural networks (RNNs) learning. It plays a crucial role in practical applications, such as sequence learning. With a good memory mechanism, long term history can be fused with current information, and can thus improve RNNs learning. Developing a suitable memory mechanism is always desirable in the field of RNNs. This paper proposes a novel memory mechanism for RNNs. The main contributions of this paper are: 1) an auxiliary memory unit (AMU) is proposed, which results in a new special RNN model (AMU-RNN), separating the memory and output explicitly and 2) an efficient learning algorithm is developed by employing the technique of error flow truncation. The proposed AMU-RNN model, together with the developed learning algorithm, can learn and maintain stable memory over a long time range. This method overcomes both the learning conflict problem and gradient vanishing problem. Unlike the traditional method, which mixes the memory and output with a single neuron in a recurrent unit, the AMU provides an auxiliary memory neuron to maintain memory in particular. By separating the memory and output in a recurrent unit, the problem of learning conflicts can be eliminated easily. Moreover, by using the technique of error flow truncation, each auxiliary memory neuron ensures constant error flow during the learning process. The experiments demonstrate good performance of the proposed AMU-RNNs and the developed learning algorithm. The method exhibits quite efficient learning performance with stable convergence in the AMU-RNN learning and outperforms the state-of-the-art RNN models in sequence generation and sequence classification tasks.

  14. Training of working memory impacts structural connectivity.

    PubMed

    Takeuchi, Hikaru; Sekiguchi, Atsushi; Taki, Yasuyuki; Yokoyama, Satoru; Yomogida, Yukihito; Komuro, Nozomi; Yamanouchi, Tohru; Suzuki, Shozo; Kawashima, Ryuta

    2010-03-03

    Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods of time. Individual capacity of working memory is associated with the integrity of white matter in the frontoparietal regions. It is unknown to what extent the integrity of white matter underlying the working memory system is plastic. Using voxel-based analysis (VBA) of fractional anisotropy (FA) measures of fiber tracts, we investigated the effect of working memory training on structural connectivity in an interventional study. The amount of working memory training correlated with increased FA in the white matter regions adjacent to the intraparietal sulcus and the anterior part of the body of the corpus callosum after training. These results showed training-induced plasticity in regions that are thought to be critical in working memory. As changes in myelination lead to FA changes in diffusion tensor imaging, a possible mechanism for the observed FA change is increased myelination after training. Observed structural changes may underlie previously reported improvement of working memory capacity, improvement of other cognitive functions, and altered functional activity following working memory training.

  15. Cell memory-based therapy

    PubMed Central

    Anjamrooz, Seyed Hadi

    2015-01-01

    Current cell therapies, despite all of the progress in this field, still faces major ethical, technical and regulatory hurdles. Because these issues possibly stem from the current, restricted, stereotypical view of cell ultrastructure and function, we must think radically about the nature of the cell. In this regard, the author's theory of the cell memory disc offers ‘memory-based therapy’, which, with the help of immune system rejuvenation, nervous system control and microparticle-based biodrugs, may have substantial therapeutic potential. In addition to its potential value in the study and prevention of premature cell aging, age-related diseases and cell death, memory therapy may improve the treatment of diseases that are currently limited by genetic disorders, risk of tumour formation and the availability and immunocompatibility of tissue transplants. PMID:26256679

  16. Divided Attention Can Enhance Memory Encoding: The Attentional Boost Effect in Implicit Memory

    ERIC Educational Resources Information Center

    Spataro, Pietro; Mulligan, Neil W.; Rossi-Arnaud, Clelia

    2013-01-01

    Distraction during encoding has long been known to disrupt later memory performance. Contrary to this long-standing result, we show that detecting an infrequent target in a dual-task paradigm actually improves memory encoding for a concurrently presented word, above and beyond the performance reached in the full-attention condition. This absolute…

  17. Body Mass Index, Physical Activity, and Working Memory in a Sample of Children with Down Syndrome: Can Physical Activity Improve Learning in Children with Intellectual Disabilities?

    ERIC Educational Resources Information Center

    Ellis, Geertina Houthuijzen

    2013-01-01

    Research has suggested that in typical developing children a positive relationship exists between physical activity level and cognitive functioning. For some children, academic performance may increase when levels of physical activity are increased. Moreover, some studies have supported the idea that physical activity seems to improve attention.…

  18. Memory beyond expression.

    PubMed

    Delorenzi, A; Maza, F J; Suárez, L D; Barreiro, K; Molina, V A; Stehberg, J