Sample records for n-level systems techniques

  1. Comparison of two vertical condensation obturation techniques: Touch 'n Heat modified and System B.

    PubMed

    Silver, G K; Love, R M; Purton, D G

    1999-08-01

    The aims of this study were firstly to compare the area of canal occupied by gutta-percha, sealer or voids using the System B heating device with that obtained by a modified vertical condensation technique using the Touch 'n Heat: and secondly to compare the temperature changes at the root canal wall and external root surface during obturation with the above techniques. Forty-five resin blocks, each with a standardized, simulated, prepared main root canal and five lateral canals, were assigned to three equal experimental groups. The canals were obturated using either the System B technique at two different temperature settings, or vertical condensation with a Touch 'n Heat instrument as the heat source. A heat transfer model was used to simultaneously record internal and external root surface temperature elevations during obturation by the three techniques. Data were analysed using unpaired Student's t-test and Mann-Whitney U-test. Both obturation techniques produced root fillings consisting of over 90% gutta-percha at most levels, although the percentages of sealer and voids 2-3 mm from the working length following System B obturation were higher than those found following modified vertical condensation. Modified vertical condensation resulted in more gutta-percha in lateral canals. Obturation was accomplished more quickly using the System B, and temperature elevations produced during obturation with the System B were significantly less (P < 0.001) than with vertical condensation. An elevation of external root surface temperature by more than 10 degrees C occurred during vertical condensation. The results suggest that the System B may produce an acceptable obturation and that the use of a Touch 'n Heat source during vertical condensation may result in damage to the periodontium.

  2. An N+3 Technology Level Reference Propulsion System

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.; Haller, William J.; Tong, Michael To-Hing

    2017-01-01

    An N+3 technology level engine, suitable as a propulsion system for an advanced single-aisle transport, was developed as a reference cycle for use in technology assessment and decision-making efforts. This reference engine serves three main purposes: it provides thermodynamic quantities at each major engine station, it provides overall propulsion system performance data for vehicle designers to use in their analyses, and it can be used for comparison against other proposed N+3 technology-level propulsion systems on an equal basis. This reference cycle is meant to represent the expected capability of gas turbine engines in the N+3 timeframe given reasonable extrapolations of technology improvements and the ability to take full advantage of those improvements.

  3. Classical Information Storage in an n-Level Quantum System

    NASA Astrophysics Data System (ADS)

    Frenkel, Péter E.; Weiner, Mihály

    2015-12-01

    A game is played by a team of two—say Alice and Bob—in which the value of a random variable x is revealed to Alice only, who cannot freely communicate with Bob. Instead, she is given a quantum n-level system, respectively a classical n-state system, which she can put in possession of Bob in any state she wishes. We evaluate how successfully they managed to store and recover the value of x by requiring Bob to specify a value z and giving a reward of value f ( x, z) to the team. We show that whatever the probability distribution of x and the reward function f are, when using a quantum n-level system, the maximum expected reward obtainable with the best possible team strategy is equal to that obtainable with the use of a classical n-state system. The proof relies on mixed discriminants of positive matrices and—perhaps surprisingly—an application of the Supply-Demand Theorem for bipartite graphs. As a corollary, we get an infinite set of new, dimension dependent inequalities regarding positive operator valued measures and density operators on complex n-space. As a further corollary, we see that the greatest value, with respect to a given distribution of x, of the mutual information I ( x; z) that is obtainable using an n-level quantum system equals the analogous maximum for a classical n-state system.

  4. Efficient operating system level virtualization techniques for cloud resources

    NASA Astrophysics Data System (ADS)

    Ansu, R.; Samiksha; Anju, S.; Singh, K. John

    2017-11-01

    Cloud computing is an advancing technology which provides the servcies of Infrastructure, Platform and Software. Virtualization and Computer utility are the keys of Cloud computing. The numbers of cloud users are increasing day by day. So it is the need of the hour to make resources available on demand to satisfy user requirements. The technique in which resources namely storage, processing power, memory and network or I/O are abstracted is known as Virtualization. For executing the operating systems various virtualization techniques are available. They are: Full System Virtualization and Para Virtualization. In Full Virtualization, the whole architecture of hardware is duplicated virtually. No modifications are required in Guest OS as the OS deals with the VM hypervisor directly. In Para Virtualization, modifications of OS is required to run in parallel with other OS. For the Guest OS to access the hardware, the host OS must provide a Virtual Machine Interface. OS virtualization has many advantages such as migrating applications transparently, consolidation of server, online maintenance of OS and providing security. This paper briefs both the virtualization techniques and discusses the issues in OS level virtualization.

  5. Optimal coherent control of dissipative N -level systems

    NASA Astrophysics Data System (ADS)

    Jirari, H.; Pötz, W.

    2005-07-01

    General optimal coherent control of dissipative N -level systems in the Markovian time regime is formulated within Pointryagin’s principle and the Lindblad equation. In the present paper, we study feasibility and limitations of steering of dissipative two-, three-, and four-level systems from a given initial pure or mixed state into a desired final state under the influence of an external electric field. The time evolution of the system is computed within the Lindblad equation and a conjugate gradient method is used to identify optimal control fields. The influence of both field-independent population and polarization decay on achieving the objective is investigated in systematic fashion. It is shown that, for realistic dephasing times, optimum control fields can be identified which drive the system into the target state with very high success rate and in economical fashion, even when starting from a poor initial guess. Furthermore, the optimal fields obtained give insight into the system dynamics. However, if decay rates of the system cannot be subjected to electromagnetic control, the dissipative system cannot be maintained in a specific pure or mixed state, in general.

  6. Top-level modeling of an als system utilizing object-oriented techniques

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. F.; Kang, S.; Ting, K. C.

    The possible configuration of an Advanced Life Support (ALS) System capable of supporting human life for long-term space missions continues to evolve as researchers investigate potential technologies and configurations. To facilitate the decision process the development of acceptable, flexible, and dynamic mathematical computer modeling tools capable of system level analysis is desirable. Object-oriented techniques have been adopted to develop a dynamic top-level model of an ALS system.This approach has several advantages; among these, object-oriented abstractions of systems are inherently modular in architecture. Thus, models can initially be somewhat simplistic, while allowing for adjustments and improvements. In addition, by coding the model in Java, the model can be implemented via the World Wide Web, greatly encouraging the utilization of the model. Systems analysis is further enabled with the utilization of a readily available backend database containing information supporting the model. The subsystem models of the ALS system model include Crew, Biomass Production, Waste Processing and Resource Recovery, Food Processing and Nutrition, and the Interconnecting Space. Each subsystem model and an overall model have been developed. Presented here is the procedure utilized to develop the modeling tool, the vision of the modeling tool, and the current focus for each of the subsystem models.

  7. Movement variability and skill level of various throwing techniques.

    PubMed

    Wagner, Herbert; Pfusterschmied, Jürgen; Klous, Miriam; von Duvillard, Serge P; Müller, Erich

    2012-02-01

    In team-handball, skilled athletes are able to adapt to different game situations that may lead to differences in movement variability. Whether movement variability affects the performance of a team-handball throw and is affected by different skill levels or throwing techniques has not yet been demonstrated. Consequently, the aims of the study were to determine differences in performance and movement variability for several throwing techniques in different phases of the throwing movement, and of different skill levels. Twenty-four team-handball players of different skill levels (n=8) performed 30 throws using various throwing techniques. Upper body kinematics was measured via an 8 camera Vicon motion capture system and movement variability was calculated. Results indicated an increase in movement variability in the distal joint movements during the acceleration phase. In addition, there was a decrease in movement variability in highly skilled and skilled players in the standing throw with run-up, which indicated an increase in the ball release speed, which was highest when using this throwing technique. We assert that team-handball players had the ability to compensate an increase in movement variability in the acceleration phase to throw accurately, and skilled players were able to control the movement, although movement variability decreased in the standing throw with run-up. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Deep level transient spectroscopy signatures of majority traps in GaN p-n diodes grown by metal-organic vapor-phase epitaxy technique on GaN substrates

    NASA Astrophysics Data System (ADS)

    PŁaczek-Popko, E.; Trzmiel, J.; Zielony, E.; Grzanka, S.; Czernecki, R.; Suski, T.

    2009-12-01

    In this study, we present the results of investigation on p-n GaN diodes by means of deep level transient spectroscopy (DLTS) within the temperature range of 77-350 K. Si-doped GaN layers were grown by metal-organic vapor-phase epitaxy technique (MOVPE) on the free-standing GaN substrates. Subsequently Mg-doped GaN layers were grown. To perform DLTS measurements Ni/Au contacts to p-type material and Ti/Au contacts to n-type material were processed. DLTS signal spectra revealed the presence of two majority traps of activation energies obtained from Arrhenius plots equal to E1=0.22 eV and E2=0.65 eV. In present work we show that the trap E1 is linked with the extended defects whereas the trap E2 is the point defect related. Its capture cross section is thermally activated with energy barrier for capture equal to 0.2 eV.

  9. Estimation of minimum miscibility pressure (MMP) of CO2 and liquid n-alkane systems using an improved MRI technique.

    PubMed

    Liu, Yu; Jiang, Lanlan; Song, Yongchen; Zhao, Yuechao; Zhang, Yi; Wang, Dayong

    2016-02-01

    Minimum miscible pressure (MMP) of gas and oil system is a key parameter for the injection system design of CO2 miscible flooding. Some industrial standard approaches such as the experiment using a rising bubble apparatus (RBA), the slim tube tests (STT), the pressure-density diagram (PDD), etc. have been applied for decades to determine the MMP of gas and oil. Some theoretical or experiential calculations of the MMP were also applied to the gas-oil miscible system. In the present work, an improved technique based on our previous research for the estimation of the MMP by using magnetic resonance imaging (MRI) was proposed. This technique was then applied to the CO2 and n-alkane binary and ternary systems to observe the mixing procedure and to study the miscibility. MRI signal intensities, which represent the proton concentration of n-alkane in both the hydrocarbon rich phase and the CO2 rich phase, were plotted as a reference for determining the MMP. The accuracy of the MMP obtained by using this improved technique was enhanced comparing with the data obtained from our previous works. The results also show good agreement with other established techniques (such as the STT) in previous published works. It demonstrates increases of MMPs as the temperature rise from 20 °C to 37.8 °C. The MMPs of CO2 and n-alkane systems are also found to be proportional to the carbon number in the range of C10 to C14. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Diagrammatic technique for calculating matrix elements of collective operators in superradiance. [eigenstates for N two-level atom systems

    NASA Technical Reports Server (NTRS)

    Lee, C. T.

    1975-01-01

    Adopting the so-called genealogical construction, one can express the eigenstates of collective operators corresponding to a specified mode for an N-atom system in terms of those for an (N-1) atom system. Using these Dicke states as bases and using the Wigner-Eckart theorem, a matrix element of a collective operator of an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME is obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups is then introduced. This gives a simple and systematic way of calculating the RME. This method is especially useful when the cooperation number r is close to N/2, where almost exact asymptotic expressions can be obtained easily. The result shows explicity the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes.

  11. Modified n-level, n - 1-mode Tavis-Cummings model and algebraic Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2018-01-01

    Using the quantum group technique we construct a one-parametric family of integrable modifications of the n-level, n-1 mode Tavis-Cummings Hamiltonian possessing an additional Stark-type term. We show that in the ‘quasiclassical’ limit the constructed Hamiltonian transforms into the integrable Hamiltonian of the quantum n-level, n-1 mode Tavis-Cummings model with the equal interaction strengths considered in Skrypnyk (2008 J. Phys. A: Math. Theor. 41 475202, 2009 J. Math. Phys. 50 103523). We diagonalize the constructed ‘modified’ Tavis-Cummings Hamiltonian and its second order integrals of motion using the nested Bethe ansatz.

  12. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    NASA Astrophysics Data System (ADS)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  13. Level-set techniques for facies identification in reservoir modeling

    NASA Astrophysics Data System (ADS)

    Iglesias, Marco A.; McLaughlin, Dennis

    2011-03-01

    In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.

  14. Constraint Embedding Technique for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with

  15. Formal Verification at System Level

    NASA Astrophysics Data System (ADS)

    Mazzini, S.; Puri, S.; Mari, F.; Melatti, I.; Tronci, E.

    2009-05-01

    System Level Analysis calls for a language comprehensible to experts with different background and yet precise enough to support meaningful analyses. SysML is emerging as an effective balance between such conflicting goals. In this paper we outline some the results obtained as for SysML based system level functional formal verification by an ESA/ESTEC study, with a collaboration among INTECS and La Sapienza University of Roma. The study focuses on SysML based system level functional requirements techniques.

  16. Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Peaker, A. R.; Markevich, V. P.; Coutinho, J.

    2018-04-01

    The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.

  17. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  18. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  19. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    NASA Astrophysics Data System (ADS)

    Ünak, T.; Avcibasi, U.; Yildirim, Y.; Çetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1-3 μg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  20. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals.

    PubMed

    Susaki, Etsuo A; Ueda, Hiroki R

    2016-01-21

    Organism-level systems biology aims to identify, analyze, control and design cellular circuits in organisms. Many experimental and computational approaches have been developed over the years to allow us to conduct these studies. Some of the most powerful methods are based on using optical imaging in combination with fluorescent labeling, and for those one of the long-standing stumbling blocks has been tissue opacity. Recently, the solutions to this problem have started to emerge based on whole-body and whole-organ clearing techniques that employ innovative tissue-clearing chemistry. Here, we review these advancements and discuss how combining new clearing techniques with high-performing fluorescent proteins or small molecule tags, rapid volume imaging and efficient image informatics is resulting in comprehensive and quantitative organ-wide, single-cell resolution experimental data. These technologies are starting to yield information on connectivity and dynamics in cellular circuits at unprecedented resolution, and bring us closer to system-level understanding of physiology and diseases of complex mammalian systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mathematical Techniques for Nonlinear System Theory.

    DTIC Science & Technology

    1979-05-01

    7 7 AD—A078 715 FLORIDA UNIV GAINESVILLE CENTER FOR MATHEMATICAL SYS——ETC FIG 12/1 MATHEMATICAL TECHNIQUES FOR NONLINEAR SYSTEM THEORY . (U) MAY 79... System Theory / 61102F ~~~~~ ~ ~~~~~~~~ Gainesville , FL 32601 L ~~~ CONTROLLING OFFI C E NAME A N D ADDRES S . Air Force Office of Scientific... System Theory During the past year, the major effort under this grant was work by the Principal Investigator (R. E. Kalman) and by E. Emre

  2. Principles for system level electrochemistry

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1986-01-01

    The higher power and higher voltage levels anticipated for future space missions have required a careful review of the techniques currently in use to preclude battery problems that are related to the dispersion characteristics of the individual cells. Not only are the out-of-balance problems accentuated in these larger systems, but the thermal management considerations also require a greater degree of accurate design. Newer concepts which employ active cooling techniques are being developed which permit higher rates of discharge and tighter packing densities for the electrochemical components. This paper will put forward six semi-independent principles relating to battery systems. These principles will progressively address cell, battery and finally system related aspects of large electrochemical storage systems.

  3. Analysis technique for controlling system wavefront error with active/adaptive optics

    NASA Astrophysics Data System (ADS)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  4. Lower Education Level Is a Risk Factor for Peritonitis and Technique Failure but Not a Risk for Overall Mortality in Peritoneal Dialysis under Comprehensive Training System

    PubMed Central

    Kim, Hyo Jin; Lee, Joongyub; Park, Miseon; Kim, Yuri; Lee, Hajeong; Kim, Dong Ki; Joo, Kwon Wook; Kim, Yon Su; Cho, Eun Jin; Ahn, Curie

    2017-01-01

    Background Lower education level could be a risk factor for higher peritoneal dialysis (PD)-associated peritonitis, potentially resulting in technique failure. This study evaluated the influence of lower education level on the development of peritonitis, technique failure, and overall mortality. Methods Patients over 18 years of age who started PD at Seoul National University Hospital between 2000 and 2012 with information on the academic background were enrolled. Patients were divided into three groups: middle school or lower (academic year≤9, n = 102), high school (9n = 229), and higher than high school (academic year>12, n = 324). Outcomes were analyzed using Cox proportional hazards models and competing risk regression. Results A total of 655 incident PD patients (60.9% male, age 48.4±14.1 years) were analyzed. During follow-up for 41 (interquartile range, 20–65) months, 255 patients (38.9%) experienced more than one episode of peritonitis, 138 patients (21.1%) underwent technique failure, and 78 patients (11.9%) died. After adjustment, middle school or lower education group was an independent risk factor for peritonitis (adjusted hazard ratio [HR], 1.61; 95% confidence interval [CI], 1.10–2.36; P = 0.015) and technique failure (adjusted HR, 1.87; 95% CI, 1.10–3.18; P = 0.038), compared with higher than high school education group. However, lower education was not associated with increased mortality either by as-treated (adjusted HR, 1.11; 95% CI, 0.53–2.33; P = 0.788) or intent-to-treat analysis (P = 0.726). Conclusions Although lower education was a significant risk factor for peritonitis and technique failure, it was not associated with increased mortality in PD patients. Comprehensive training and multidisciplinary education may overcome the lower education level in PD. PMID:28056058

  5. Lower Education Level Is a Risk Factor for Peritonitis and Technique Failure but Not a Risk for Overall Mortality in Peritoneal Dialysis under Comprehensive Training System.

    PubMed

    Kim, Hyo Jin; Lee, Joongyub; Park, Miseon; Kim, Yuri; Lee, Hajeong; Kim, Dong Ki; Joo, Kwon Wook; Kim, Yon Su; Cho, Eun Jin; Ahn, Curie; Oh, Kook-Hwan

    2017-01-01

    Lower education level could be a risk factor for higher peritoneal dialysis (PD)-associated peritonitis, potentially resulting in technique failure. This study evaluated the influence of lower education level on the development of peritonitis, technique failure, and overall mortality. Patients over 18 years of age who started PD at Seoul National University Hospital between 2000 and 2012 with information on the academic background were enrolled. Patients were divided into three groups: middle school or lower (academic year≤9, n = 102), high school (9n = 229), and higher than high school (academic year>12, n = 324). Outcomes were analyzed using Cox proportional hazards models and competing risk regression. A total of 655 incident PD patients (60.9% male, age 48.4±14.1 years) were analyzed. During follow-up for 41 (interquartile range, 20-65) months, 255 patients (38.9%) experienced more than one episode of peritonitis, 138 patients (21.1%) underwent technique failure, and 78 patients (11.9%) died. After adjustment, middle school or lower education group was an independent risk factor for peritonitis (adjusted hazard ratio [HR], 1.61; 95% confidence interval [CI], 1.10-2.36; P = 0.015) and technique failure (adjusted HR, 1.87; 95% CI, 1.10-3.18; P = 0.038), compared with higher than high school education group. However, lower education was not associated with increased mortality either by as-treated (adjusted HR, 1.11; 95% CI, 0.53-2.33; P = 0.788) or intent-to-treat analysis (P = 0.726). Although lower education was a significant risk factor for peritonitis and technique failure, it was not associated with increased mortality in PD patients. Comprehensive training and multidisciplinary education may overcome the lower education level in PD.

  6. Lightning induced currents in aircraft wiring using low level injection techniques

    NASA Technical Reports Server (NTRS)

    Stevens, E. G.; Jordan, D. T.

    1991-01-01

    Various techniques were studied to predict the transient current induced into aircraft wiring bundles as a result of an aircraft lightning strike. A series of aircraft measurements were carried out together with a theoretical analysis using computer modeling. These tests were applied to various aircraft and also to specially constructed cylinders installed within coaxial return conductor systems. Low level swept frequency CW (carrier waves), low level transient and high level transient injection tests were applied to the aircraft and cylinders. Measurements were made to determine the transfer function between the aircraft drive current and the resulting skin currents and currents induced on the internal wiring. The full threat lightning induced transient currents were extrapolated from the low level data using Fourier transform techniques. The aircraft and cylinders used were constructed from both metallic and CFC (carbon fiber composite) materials. The results show the pulse stretching phenomenon which occurs for CFC materials due to the diffusion of the lightning current through carbon fiber materials. Transmission Line Matrix modeling techniques were used to compare theoretical and measured currents.

  7. Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level.

    PubMed

    Sahoo, P; Ananthanarayanan, R; Malathi, N; Rajiniganth, M P; Murali, N; Swaminathan, P

    2010-06-11

    A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 microg L(-1) levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L(-1) levels, with modification in methodology for accurate detection of end point even at 10.0 microg L(-1) levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 microg L(-1) O(2). Finally, several water samples containing dissolved oxygen from mg L(-1) to microg L(-1) levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 microg L(-1) O(2) level is 0.14 (n=5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 microg L(-1) levels. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Edge detection techniques for iris recognition system

    NASA Astrophysics Data System (ADS)

    Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.

    2013-12-01

    Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.

  9. Uptake of stormwater nitrogen in bioretention systems demonstrated from 15N tracer techniques

    NASA Astrophysics Data System (ADS)

    Houdeshel, D.; Hultine, K. R.; Pomeroy, C. A.

    2012-12-01

    Bioretention stormwater management systems are engineered ecosystems that capture urban stormwater in order to reduce the harmful effects of stormwater pollution on receiving waters. Bioretention systems have been shown to be effective at reducing the volume of runoff, and thereby reduce the nutrient loading to receiving waters from urban areas. However, little work has been done to evaluate the treatment processes that are responsible for reductions in effluent nitrogen (N). We hypothesize that the pulses of inorganic nitrogen associated with urban runoff events are captured in the plat tissues within these systems and not adsorbed to the soil media, thus creating a long-term, sustainable treatment approach to reducing the total nutrient loading to receiving waters. Nitrogen treatment performance was tested on two bioretention systems in Salt Lake City, UT: 1) an upland native community that does not require irrigation in semi-arid climates, and 2) a wetland community that requires 250 l of daily irrigation to offset the relatively high evaporative demand in the region. Each cell is sized to treat a 2.5 cm storm from a 140 m2 impervious surface: the area of the bioretention system is 10 m2. To test the N removal performance of each system, runoff events were simulated to represent an average precipitation regime using a synthetic stormwater blend starting in January, 2012. Effluent was collected from an underdrain and analyzed for total nitrogen (TN); mass removal was calculated for each month by subtracting the TN mass added to the garden minus the TN mass that flowed out of the garden. To test the hypothesis that plants assimilate stormwater N, 4 g of 100 atom% 15N NH4NO3 tracer was used as the N source in the synthetic stormwater during the first 2,000 l synthetic storm event in May. This isotopic label was calculated to enrich the total N pool of each garden to 100‰ 15N/14Nair. New growth was harvested from each plant in both cells and analyzed for 15N

  10. Mitigation and enhancement techniques for the Upper Mississippi River system and other large river systems

    USGS Publications Warehouse

    Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.

    1982-01-01

    Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management

  11. Canal and isthmus debridement efficacies of two irrigant agitation techniques in a closed system

    PubMed Central

    Susin, L.; Yoon, J. C.; Liu, Y.; Parente, J. M.; Loushine, R. J.; Ricucci, D.; Bryan, T.; Weller, R. N.; Pashley, D. H.; Tay, F. R.

    2010-01-01

    Aim To compare canal and isthmus debris debridement efficacies of the manual dynamic irrigation (MDI) and apical negative pressure (ANP) techniques in the mesial root of mandibular first molars with narrow isthmi, using a closed canal design. Methodology Micro-computed tomography was employed to select 20 teeth, each containing a narrow isthmus. Each root was sealed at the apex with hot glue and embedded in polyvinylsiloxane to simulate a closed canal system. The teeth were submitted to a standardised instrumentation protocol. Final irrigation was performed with either the MDI or the ANP technique using the EndoVac system (N=10). Masson trichrome-stained sections were prepared from completely demineralised roots at ten canal levels between 1–2.8 mm of the anatomical apices. Areas occupied by canals and isthmus of each root and debris in the corresponding regions were digitised by the NIH Image J software and statistically analysed using two-way repeated measures ANOVA. Results For the instrumented canals, there were no differences between the two groups (p=0.131) in the area occupied by debris at all canal levels (p=0.343). Conversely, for the isthmus, less debris was found in the ANP group (p<0.001) but no differences were seen in each group with respect to the ten canal levels (p=0.352). Conclusion Neither technique produce completely removed debris from the isthmus regions. However the EndoVac system, which encompasses the ANP concept, removed considerably more debris from narrow isthmi of the mandibular mesial roots. PMID:20726910

  12. Trigger and data acquisition system for the N- N experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldo-Ceolin, M.; Bobisut, F.; Bonaiti, V.

    1991-04-01

    In this paper the Trigger and Data Acquisition system of the N-{bar N} experiment at the Institute Laue-Langevin at Grenoble is presented, together with CAMAC modules especially designed for this experiment. The trigger system is organized on three logical levels; it works in the presence of a high level of beam induced noise, without beam pulse synchronization, looking for a very rare signal. The data acquisition is based on a MicroVax II computer, in a cluster with 4 VaxStations, the DAQP software developed at CERN. The system has been working for a year with high efficiency and reliability.

  13. A sequential adaptation technique and its application to the Mark 12 IFF system

    NASA Astrophysics Data System (ADS)

    Bailey, John S.; Mallett, John D.; Sheppard, Duane J.; Warner, F. Neal; Adams, Robert

    1986-07-01

    Sequential adaptation uses only two sets of receivers, correlators, and A/D converters which are time multiplexed to effect spatial adaptation in a system with (N) adaptive degrees of freedom. This technique can substantially reduce the hardware cost over what is realizable in a parallel architecture. A three channel L-band version of the sequential adapter was built and tested for use with the MARK XII IFF (identify friend or foe) system. In this system the sequentially determined adaptive weights were obtained digitally but implemented at RF. As a result, many of the post RF hardware induced sources of error that normally limit cancellation, such as receiver mismatch, are removed by the feedback property. The result is a system that can yield high levels of cancellation and be readily retrofitted to currently fielded equipment.

  14. System-Level Virtualization for High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallee, Geoffroy R; Naughton, III, Thomas J; Engelmann, Christian

    2008-01-01

    System-level virtualization has been a research topic since the 70's but regained popularity during the past few years because of the availability of efficient solution such as Xen and the implementation of hardware support in commodity processors (e.g. Intel-VT, AMD-V). However, a majority of system-level virtualization projects is guided by the server consolidation market. As a result, current virtualization solutions appear to not be suitable for high performance computing (HPC) which is typically based on large-scale systems. On another hand there is significant interest in exploiting virtual machines (VMs) within HPC for a number of other reasons. By virtualizing themore » machine, one is able to run a variety of operating systems and environments as needed by the applications. Virtualization allows users to isolate workloads, improving security and reliability. It is also possible to support non-native environments and/or legacy operating environments through virtualization. In addition, it is possible to balance work loads, use migration techniques to relocate applications from failing machines, and isolate fault systems for repair. This document presents the challenges for the implementation of a system-level virtualization solution for HPC. It also presents a brief survey of the different approaches and techniques to address these challenges.« less

  15. Axial-spin technique of endoscopic intracorporeal knot tying: comparison with the conventional technique and objective assessment of knot security, learning curves, and performance efficiency across training levels.

    PubMed

    Gopaldas, Raja R; Rohatgi, Chand

    2009-04-01

    A major limitation of conventional laparoscopic surgery is the placement of an intracorporeal (IC) knot, which requires a significant amount of training and practice. An easier technique of IC knot tying using 90-degree grasper is compared with the conventional technique (CLT). The new axial-spin technique (AST) uses the spin of the instrument shaft to tie IC knots. Fourteen participants stratified into 3 training levels were instructed to tie 50 reef IC knots using each technique on trainers in 3 sessions. The final 5 knots tied using each technique were deemed to be representative of maximal performance efficiency (PE) and randomly subject to tensile strength measurements using a tensiometer at 50 mm/s distraction. Mean knot execution time (mKET) measured in seconds (s), normalized KE time (nET=group mean/mKET), knot holding capacity, relative knot security (RKS), and PE (PE=RKS/nET) of the knots tied were computed and analyzed using paired t and analysis of variance. Variables included knot-tying session, technique and the training level. On completion of the study, junior residents (JR) averaged 51.72 seconds more, senior residents (SR) averaged 26.22 seconds more and attendings (ATT) averaged 19.17 seconds less to tie using CLT compared with the AST (F=40.52, P=0.0001). Across all levels, the CLT technique was taking 83.26 seconds on average to execute an IC knot compared with 59.08 seconds with AST method (t=2.784, P=0.015). Learning curves revealed that JR significantly improved mean KE times with the AST technique (first session vs. final session: 473.8 s vs. 55.9 s) compared with CLT (672.5 s vs. 107.6 s) across the sessions as compared with those in advanced levels of training. The RKS of knots executed by AST was significantly stronger (AST: 13.1 vs. 5.44 N, t=4.9, P=0.0001). The PE of knots executed using the CLT increased geometrically across training levels (JR: 1.35% SR: 5.58% ATT: 11.22%) whereas those of AST showed a linear trend (17.09%; 17

  16. Connection between optimal control theory and adiabatic-passage techniques in quantum systems

    NASA Astrophysics Data System (ADS)

    Assémat, E.; Sugny, D.

    2012-08-01

    This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.

  17. GLO-STIX: Graph-Level Operations for Specifying Techniques and Interactive eXploration

    PubMed Central

    Stolper, Charles D.; Kahng, Minsuk; Lin, Zhiyuan; Foerster, Florian; Goel, Aakash; Stasko, John; Chau, Duen Horng

    2015-01-01

    The field of graph visualization has produced a wealth of visualization techniques for accomplishing a variety of analysis tasks. Therefore analysts often rely on a suite of different techniques, and visual graph analysis application builders strive to provide this breadth of techniques. To provide a holistic model for specifying network visualization techniques (as opposed to considering each technique in isolation) we present the Graph-Level Operations (GLO) model. We describe a method for identifying GLOs and apply it to identify five classes of GLOs, which can be flexibly combined to re-create six canonical graph visualization techniques. We discuss advantages of the GLO model, including potentially discovering new, effective network visualization techniques and easing the engineering challenges of building multi-technique graph visualization applications. Finally, we implement the GLOs that we identified into the GLO-STIX prototype system that enables an analyst to interactively explore a graph by applying GLOs. PMID:26005315

  18. An Experimental Study for Effectiveness of Super-Learning Technique at Elementary Level in Pakistan

    ERIC Educational Resources Information Center

    Shafqat, Hussain; Muhammad, Sarwar; Imran, Yousaf; Naemullah; Inamullah

    2010-01-01

    The objective of the study was to experience the effectiveness of super-learning technique of teaching at elementary level. The study was conducted with 8th grade students at a public sector school. Pre-test and post-test control group designs were used. Experimental and control groups were formed randomly, the experimental group (N = 62),…

  19. A Circle of Courage Level System in Day Treatment

    ERIC Educational Resources Information Center

    Harper, Elaine

    2005-01-01

    Educators continue to seek effective behavior management strategies and therapeutic techniques to help students with emotional disturbance and behavior disorders to manage their own behavior and to achieve academically. One strategy employed to overcome the challenges is the use of a level system in the classroom. Level systems are often used with…

  20. N-isopropylacrylamide-based fine-dispersed thermosensitive ferrogels obtained via in-situ technique.

    PubMed

    Korotych, O; Samchenko, Yu; Boldeskul, I; Ulberg, Z; Zholobak, N; Sukhodub, L

    2013-03-01

    Thermosensitive hydrogels with magnetic properties (ferrogels) are very promising for medical application, first of all, for the design of targeted delivery systems with controlled release of drugs and for magnetic hyperthermia and chemotherapy treatment of cancer. These magnetic hydrogels could be obtained using diverse techniques: ex- and in-situ syntheses. The present work is devoted to the study of magnetite (Fe(3)O(4)) formation inside the nanoreactors of (co)polymeric hydrogels. Polymeric templates (hydrogel films and fine-dispersed hydrogels) used for obtaining ferrogels were based on acrylic monomers: thermosensitive N-isopropylacrylamide, and hydrophilic acrylamide. Covalent cross-linking was accomplished using bifunctional monomer N,N'-methylenebisacrylamide. Influence of hydrophilic-lipophilic balance of polymeric templates and concentration of iron cations on the magnetite formation were investigated along with the development of ferrogel preparation technique. Cytotoxicity, physical and chemical properties of obtained magnetic hydrogels have been studied in this work. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Superradiant phase transitions with three-level systems

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano

    2013-02-01

    We determine the phase diagram of N identical three-level systems interacting with a single photonic mode in the thermodynamical limit (N→∞) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in the presence of a diamagnetic term.

  2. Traps in AlGaN /GaN/SiC heterostructures studied by deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, Z.-Q.; Look, D. C.; Kim, D. H.; Adesida, I.

    2005-10-01

    AlGaN /GaN/SiC Schottky barrier diodes (SBDs), with and without Si3N4 passivation, have been characterized by temperature-dependent current-voltage and capacitance-voltage measurements, and deep level transient spectroscopy (DLTS). A dominant trap A1, with activation energy of 1.0 eV and apparent capture cross section of 2×10-12cm2, has been observed in both unpassivated and passivated SBDs. Based on the well-known logarithmic dependence of DLTS peak height with filling pulse width for a line-defect related trap, A1, which is commonly observed in thin GaN layers grown by various techniques, is believed to be associated with threading dislocations. At high temperatures, the DLTS signal sometimes becomes negative, likely due to an artificial surface-state effect.

  3. Local and System Level Considerations for Plasma-Based Techniques in Hypersonic Flight

    NASA Astrophysics Data System (ADS)

    Suchomel, Charles; Gaitonde, Datta

    2007-01-01

    The harsh environment encountered due to hypersonic flight, particularly when air-breathing propulsion devices are utilized, poses daunting challenges to successful maturation of suitable technologies. This has spurred the quest for revolutionary solutions, particularly those exploiting the fact that air under these conditions can become electrically conducting either naturally or through artificial enhancement. Optimized development of such concepts must emphasize not only the detailed physics by which the fluid interacts with the imposed electromagnetic fields, but must also simultaneously identify system level issues integration and efficiencies that provide the greatest leverage. This paper presents some recent advances at both levels. At the system level, an analysis is summarized that incorporates the interdependencies occurring between weight, power and flow field performance improvements. Cruise performance comparisons highlight how one drag reduction device interacts with the vehicle to improve range. Quantified parameter interactions allow specification of system requirements and energy consuming technologies that affect overall flight vehicle performance. Results based on on the fundamental physics are presented by distilling numerous computational studies into a few guiding principles. These highlight the complex non-intuitive relationships between the various fluid and electromagnetic fields, together with thermodynamic considerations. Generally, energy extraction is an efficient process, while the reverse is accompanied by significant dissipative heating and inefficiency. Velocity distortions can be detrimental to plasma operation, but can be exploited to tailor flows through innovative electromagnetic configurations.

  4. Techniques for Unifying Disparate Elements in an EOS Instrument's Product Generation System Development Environment

    NASA Technical Reports Server (NTRS)

    Murray, Alex; Eng, Bjorn; Leff, Craig; Schwarz, Arnold

    1997-01-01

    In the development environment for ASTER level II product generation system, techniques have been incorporated to allow automated information sharing among all system elements, and to enable the use of sound software engineering techniques in the scripting languages.

  5. AIRS pulse tube cooler system-level and in-space performance comparison

    NASA Technical Reports Server (NTRS)

    Ross, R. G.

    2002-01-01

    This paper presents the derivation of the test and analysis techniques as well as the measured system-level performance of the flight AIRS coolers during instrument-level, spacecraft-level, and in-space operation.

  6. Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs

    NASA Technical Reports Server (NTRS)

    Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.

    1979-01-01

    The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.

  7. Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2005-01-01

    Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).

  8. Does unilateral hip flexion increase the spinal anaesthetic level during combined spinal–epidural technique?

    PubMed Central

    Mohta, Medha; Agarwal, Deepti; Sethi, AK

    2011-01-01

    Needle-through-needle combined spinal–epidural (CSE) may cause significant delay in patient positioning resulting in settling down of spinal anaesthetic and unacceptably low block level. Bilateral hip flexion has been shown to extend the spinal block by flattening lumbar lordosis. However, patients with lower limb fractures cannot flex their injured limb. This study was conducted to find out if unilateral hip flexion could extend the level of spinal anaesthesia following a prolonged CSE technique. Fifty American Society of Anesthesiologists (ASA) I/II males with unilateral femur fracture were randomly allocated to Control or Flexion groups. Needle-through-needle CSE was performed in the sitting position at L2-3 interspace and 2.6 ml 0.5% hyperbaric bupivacaine injected intrathecally. Patients were made supine 4 min after the spinal injection or later if epidural placement took longer. The Control group patients (n=25) lay supine with legs straight, whereas the Flexion group patients (n=25) had their uninjured hip and knee flexed for 5 min. Levels of sensory and motor blocks and time to epidural drug requirement were recorded. There was no significant difference in sensory levels at different time-points; maximum sensory and motor blocks; times to achieve maximum blocks; and time to epidural drug requirement in two groups. However, four patients in the Control group in contrast to none in the Flexion group required epidural drug before start of surgery. Moreover, in the Control group four patients took longer than 30 min to achieve maximum sensory block. To conclude, unilateral hip flexion did not extend the spinal anaesthetic level; however, further studies are required to explore the potential benefits of this technique. PMID:21808396

  9. A Study of Synchronization Techniques for Optical Communication Systems

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1975-01-01

    The study of synchronization techniques and related topics in the design of high data rate, deep space, optical communication systems was reported. Data cover: (1) effects of timing errors in narrow pulsed digital optical systems, (2) accuracy of microwave timing systems operating in low powered optical systems, (3) development of improved tracking systems for the optical channel and determination of their tracking performance, (4) development of usable photodetector mathematical models for application to analysis and performance design in communication receivers, and (5) study application of multi-level block encoding to optical transmission of digital data.

  10. Maximum power point tracking techniques for wind energy systems using three levels boost converter

    NASA Astrophysics Data System (ADS)

    Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2018-05-01

    This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.

  11. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  12. Models and techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1977-01-01

    Models, measures and techniques were developed for evaluating the effectiveness of aircraft computing systems. The concept of effectiveness involves aspects of system performance, reliability and worth. Specifically done was a detailed development of model hierarchy at mission, functional task, and computational task levels. An appropriate class of stochastic models was investigated which served as bottom level models in the hierarchial scheme. A unified measure of effectiveness called 'performability' was defined and formulated.

  13. Weighted hybrid technique for recommender system

    NASA Astrophysics Data System (ADS)

    Suriati, S.; Dwiastuti, Meisyarah; Tulus, T.

    2017-12-01

    Recommender system becomes very popular and has important role in an information system or webpages nowadays. A recommender system tries to make a prediction of which item a user may like based on his activity on the system. There are some familiar techniques to build a recommender system, such as content-based filtering and collaborative filtering. Content-based filtering does not involve opinions from human to make the prediction, while collaborative filtering does, so collaborative filtering can predict more accurately. However, collaborative filtering cannot give prediction to items which have never been rated by any user. In order to cover the drawbacks of each approach with the advantages of other approach, both approaches can be combined with an approach known as hybrid technique. Hybrid technique used in this work is weighted technique in which the prediction score is combination linear of scores gained by techniques that are combined.The purpose of this work is to show how an approach of weighted hybrid technique combining content-based filtering and item-based collaborative filtering can work in a movie recommender system and to show the performance comparison when both approachare combined and when each approach works alone. There are three experiments done in this work, combining both techniques with different parameters. The result shows that the weighted hybrid technique that is done in this work does not really boost the performance up, but it helps to give prediction score for unrated movies that are impossible to be recommended by only using collaborative filtering.

  14. Perceptions of Teachers towards Assessment Techniques at Secondary Level Private School of Karachi

    ERIC Educational Resources Information Center

    Fatemah, Henna

    2015-01-01

    This paper sets out to explore the perceptions of teachers towards assessment techniques at a secondary level private school of Karachi. This was conjectured on the basis of the circumstances of parallel boards in the education system of Pakistan and its effectiveness within the context with respect to the curriculum. This was gauged in line with…

  15. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  16. Superluminal propagation in a poly-chromatically driven gain assisted four-level N-type atomic system

    NASA Astrophysics Data System (ADS)

    Amin Bacha, Bakht; Ahmad, Iftikhar; Ullah, Arif; Ali, Hazrat

    2013-10-01

    We investigate the behavior of light propagation in an N-type four-level gain assisted model (Agarwal and Dasgupta 2004 Phys. Rev. A 70 023802) under poly-chromatic pump fields. The system exhibits interesting results of multiple controllable pairs of the gain doublet profile with changes in the intensity of the control field. We observe multiple anomalous dispersive regions for superluminal propagation in the medium. A negative group velocity of -37.50 m s-1 with a negative time delay of -8 ms is observed between each gain doublet in anomalous dispersive regions. This generalized model and its predictions can be tested with existing experimental setups.

  17. N-scaling of timescales in long-range N-body quantum systems

    NASA Astrophysics Data System (ADS)

    Kastner, Michael

    2017-01-01

    Long-range interacting many-body systems exhibit a number of peculiar and intriguing properties. One of those is the scaling of relaxation times with the number N of particles in a system. In this paper I give a survey of results on long-range quantum spin models that illustrate this scaling behaviour, and provide indications for its common occurrence by making use of Lieb-Robinson bounds. I argue that these findings may help in understanding the extraordinarily short equilibration timescales predicted by typicality techniques.

  18. Co-Design Method and Wafer-Level Packaging Technique of Thin-Film Flexible Antenna and Silicon CMOS Rectifier Chips for Wireless-Powered Neural Interface Systems.

    PubMed

    Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei

    2015-12-16

    In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction.

  19. Co-Design Method and Wafer-Level Packaging Technique of Thin-Film Flexible Antenna and Silicon CMOS Rectifier Chips for Wireless-Powered Neural Interface Systems

    PubMed Central

    Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei

    2015-01-01

    In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction. PMID:26694407

  20. Issues regarding the usage of MPPT techniques in micro grid systems

    NASA Astrophysics Data System (ADS)

    Szeidert, I.; Filip, I.; Dragan, F.; Gal, A.

    2018-01-01

    The main objective of the control strategies applied at hybrid micro grid systems (wind/hydro/solar), that function based on maximum power point tracking (MPPT) techniques is to improve the conversion system’s efficiency and to preserve the quality of the generated electrical energy (voltage and power factor). One of the main goals of maximum power point tracking strategy is to achieve the harvesting of the maximal possible energy within a certain time period. In order to implement the control strategies for micro grid, there are typically required specific transducers (sensor for wind speed, optical rotational transducers, etc.). In the technical literature, several variants of the MPPT techniques are presented and particularized at some applications (wind energy conversion systems, solar systems, hydro plants, micro grid hybrid systems). The maximum power point tracking implementations are mainly based on two-level architecture. The lower level controls the main variable and the superior level represents the MPPT control structure. The paper presents micro grid structures developed at Politehnica University Timisoara (PUT) within the frame of a research grant. The paper is focused on the application of MPPT strategies on hybrid micro grid systems. There are presented several structures and control strategies and are highlighted their advantages and disadvantages, together with practical implementation guidelines.

  1. Encoding techniques for complex information structures in connectionist systems

    NASA Technical Reports Server (NTRS)

    Barnden, John; Srinivas, Kankanahalli

    1990-01-01

    Two general information encoding techniques called relative position encoding and pattern similarity association are presented. They are claimed to be a convenient basis for the connectionist implementation of complex, short term information processing of the sort needed in common sense reasoning, semantic/pragmatic interpretation of natural language utterances, and other types of high level cognitive processing. The relationships of the techniques to other connectionist information-structuring methods, and also to methods used in computers, are discussed in detail. The rich inter-relationships of these other connectionist and computer methods are also clarified. The particular, simple forms are discussed that the relative position encoding and pattern similarity association techniques take in the author's own connectionist system, called Conposit, in order to clarify some issues and to provide evidence that the techniques are indeed useful in practice.

  2. (Low-level radioactive waste management techniques)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Kennerly, J.M.; Williams, L.C.

    1988-08-08

    The US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River plant (SRP), Idaho National Engineering Laboratory (INEL), and the Department of Energy, Oak Ridge Operations participated in a training program on French low-level radioactive waste (LLW) management techniques. Training in the rigorous waste characterization, acceptance and certification procedures required in France was provided at Agence Nationale pour les Gestion des Dechets Radioactif (ANDRA) offices in Paris.

  3. A Wireless Fluid-Level Measurement Technique

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2006-01-01

    This paper presents the application of a recently developed wireless measurement acquisition system to fluid-level measurement. This type of fluid-level measurement system alleviates many shortcomings of fluid-level measurement methods currently being used, including limited applicability of any one fluid-level sensor design. Measurement acquisition shortcomings include the necessity for power to be supplied to each sensor and for the measurement to be extracted from each sensor via a physical connection to the sensor. Another shortcoming is existing measurement systems require that a data channel and signal conditioning electronics be dedicated to each sensor. Use of wires results in other shortcomings such as logistics needed to add or replace sensors, weight, potential for electrical arcing and wire degradations. The fluid level sensor design is a simple passive inductor-capacitor circuit that is not subject to mechanical failure that is possible when float and lever-arm systems are used. Methods are presented for using the sensor in caustic, acidic or cryogenic fluids. Oscillating magnetic fields are used to power the sensor. Once electrically excited, the sensor produces a magnetic field response. The response frequency corresponds to the amount to fluid within the capacitor s electric field. The sensor design can be modified for measuring the level of any fluid or fluent substance that can be stored in a non-conductive reservoir. The interrogation method for discerning changes in the sensor response frequency is also presented.

  4. Optimal space communications techniques. [using digital and phase locked systems for signal processing

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1974-01-01

    Digital multiplication of two waveforms using delta modulation (DM) is discussed. It is shown that while conventional multiplication of two N bit words requires N2 complexity, multiplication using DM requires complexity which increases linearly with N. Bounds on the signal-to-quantization noise ratio (SNR) resulting from this multiplication are determined and compared with the SNR obtained using standard multiplication techniques. The phase locked loop (PLL) system, consisting of a phase detector, voltage controlled oscillator, and a linear loop filter, is discussed in terms of its design and system advantages. Areas requiring further research are identified.

  5. Properties of {sup 112}Cd from the (n,n'{gamma}) reaction: Levels and level densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, P. E.; Lehmann, H.; Jolie, J.

    2001-08-01

    Levels in {sup 112}Cd have been studied through the (n,n'{gamma}) reaction with monoenergetic neutrons. An extended set of experiments that included excitation functions, {gamma}-ray angular distributions, and {gamma}{gamma} coincidence measurements was performed. A total of 375 {gamma} rays were placed in a level scheme comprising 200 levels (of which 238 {gamma}-ray assignments and 58 levels are newly established) up to 4 MeV in excitation. No evidence to support the existence of 47 levels as suggested in previous studies was found, and these have been removed from the level scheme. From the results, a comparison of the level density is mademore » with the constant temperature and back-shifted Fermi gas models. The back-shifted Fermi gas model with the Gilbert-Cameron spin cutoff parameter provided the best overall fit. Without using the neutron resonance information and only fitting the cumulative number of low-lying levels, the level density parameters extracted are a sensitive function of the maximum energy used in the fit.« less

  6. Techniques for optimal crop selection in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann; Finn, Cory; Dunsky, Betsy

    1993-01-01

    A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.

  7. Techniques for optimal crop selection in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann; Finn, Cory; Dunsky, Betsy

    1992-01-01

    A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.

  8. Photo-induced changes of the surface band bending in GaN: Influence of growth technique, doping and polarity

    NASA Astrophysics Data System (ADS)

    Winnerl, Andrea; Pereira, Rui N.; Stutzmann, Martin

    2017-05-01

    In this work, we use conductance and contact potential difference photo-transient data to study the influence of the growth technique, doping, and crystal polarity on the kinetics of photo-generated charges in GaN. We found that the processes, and corresponding time scales, involved in the decay of charge carriers generated at and close to the GaN surface via photo-excitation are notably independent of the growth technique, doping (n- and p-types), and also crystal polarity. Hence, the transfer of photo-generated charges from band states back to surface states proceeds always by hopping via shallow defect states in the space-charge region (SCR) close to the surface. Concerning the charge carrier photo-generation kinetics, we observe considerable differences between samples grown with different techniques. While for GaN grown by metal-organic chemical vapor deposition, the accumulation of photo-conduction electrons results mainly from a combined trapping-hopping process (slow), where photo-generated electrons hop via shallow defect states to the conduction band (CB), in hydride vapor phase epitaxy and molecular beam epitaxy materials, a faster direct process involving electron transfer via CB states is also present. The time scales of both processes are quite insensitive to the doping level and crystal polarity. However, these processes become irrelevant for very high doping levels (both n- and p-types), where the width of the SCR is much smaller than the photon penetration depth, and therefore, most charge carriers are generated outside the SCR.

  9. LOW LEVEL COUNTING TECHNIQUES WITH SPECIAL REFERENCE TO BIOMEDICAL TRACER PROBLEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosain, F.; Nag, B.D.

    1959-12-01

    Low-level counting techniques in tracer experiments are discussed with emphasis on the measurement of beta and gamma radiations with Geiger and scintillation counting methods. The basic principles of low-level counting are outlined. Screen-wall counters, internal gas counters, low-level beta counters, scintillation spectrometers, liquid scintillators, and big scintillation installations are described. Biomedical tracer investigations are discussed. Applications of low-level techniques in archaeological dating, biology, and other problems are listed. (M.C.G.)

  10. Novel microelectrode-based online system for monitoring N2O gas emissions during wastewater treatment.

    PubMed

    Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite

    2014-11-04

    Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.

  11. Particle decay of proton-unbound levels in N 12

    DOE PAGES

    Chipps, K. A.; Pain, S. D.; Greife, U.; ...

    2017-04-24

    Transfer reactions are a useful tool for studying nuclear structure, particularly in the regime of low level densities and strong single-particle strengths. Additionally, transfer reactions can populate levels above particle decay thresholds, allowing for the possibility of studying the subsequent decays and furthering our understanding of the nuclei being probed. In particular, the decay of loosely bound nuclei such as 12 N can help inform and improve structure models.The purpose of this paper is to learn about the decay of excited states in 12 N , to more generally inform nuclear structure models, particularly in the case of particle-unbound levelsmore » in low-mass systems which are within the reach of state-of-the-art ab initio calculations.« less

  12. Zero-internal fields in nonpolar InGaN/GaN multi-quantum wells grown by the multi-buffer layer technique.

    PubMed

    Song, Hooyoung; Kim, Jin Soak; Kim, Eun Kyu; Seo, Yong Gon; Hwang, Sung-Min

    2010-04-02

    The potential of nonpolar a-plane InGaN/GaN multi-quantum wells (MQWs), which are free from a strong piezoelectric field, was demonstrated. An a-GaN template grown on an r-plane sapphire substrate by the multi-buffer layer technique showed high structural quality with an omega full width at half maximum value along the c-axis of 418 arcsec obtained from high-resolution x-ray diffraction analysis. From barrier analysis by deep level transient spectroscopy, it appeared that a-plane InGaN/GaN MQWs can solve the efficiency droop problem as they have a lower electron capture barrier than the c-plane sample. The peak shift of the temperature-dependent photoluminescence signal for the nonpolar InGaN/GaN MQWs was well fitted by Varshni's empirical equation with zero-internal fields. A high photoluminescence efficiency of 0.27 from this sample also showed that nonpolar MQWs can be the key factor to solve the efficiency limitation in conventional c-plane GaN based light emitting diodes.

  13. Review of optimization techniques of polygeneration systems for building applications

    NASA Astrophysics Data System (ADS)

    Y, Rong A.; Y, Su; R, Lahdelma

    2016-08-01

    Polygeneration means simultaneous production of two or more energy products in a single integrated process. Polygeneration is an energy-efficient technology and plays an important role in transition into future low-carbon energy systems. It can find wide applications in utilities, different types of industrial sectors and building sectors. This paper mainly focus on polygeneration applications in building sectors. The scales of polygeneration systems in building sectors range from the micro-level for a single home building to the large- level for residential districts. Also the development of polygeneration microgrid is related to building applications. The paper aims at giving a comprehensive review for optimization techniques for designing, synthesizing and operating different types of polygeneration systems for building applications.

  14. Implementation of a level 1 trigger system using high speed serial (VXS) techniques for the 12GeV high luminosity experimental programs at Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Cuevas, B. Raydo, H. Dong, A. Gupta, F.J. Barbosa, J. Wilson, W.M. Taylor, E. Jastrzembski, D. Abbott

    We will demonstrate a hardware and firmware solution for a complete fully pipelined multi-crate trigger system that takes advantage of the elegant high speed VXS serial extensions for VME. This trigger system includes three sections starting with the front end crate trigger processor (CTP), a global Sub-System Processor (SSP) and a Trigger Supervisor that manages the timing, synchronization and front end event readout. Within a front end crate, trigger information is gathered from each 16 Channel, 12 bit Flash ADC module at 4 nS intervals via the VXS backplane, to a Crate Trigger Processor (CTP). Each Crate Trigger Processor receivesmore » these 500 MB/S VXS links from the 16 FADC-250 modules, aligns skewed data inherent of Aurora protocol, and performs real time crate level trigger algorithms. The algorithm results are encoded using a Reed-Solomon technique and transmission of this Level 1 trigger data is sent to the SSP using a multi-fiber link. The multi-fiber link achieves an aggregate trigger data transfer rate to the global trigger at 8 Gb/s. The SSP receives and decodes Reed-Solomon error correcting transmission from each crate, aligns the data, and performs the global level trigger algorithms. The entire trigger system is synchronous and operates at 250 MHz with the Trigger Supervisor managing not only the front end event readout, but also the distribution of the critical timing clocks, synchronization signals, and the global trigger signals to each front end readout crate. These signals are distributed to the front end crates on a separate fiber link and each crate is synchronized using a unique encoding scheme to guarantee that each front end crate is synchronous with a fixed latency, independent of the distance between each crate. The overall trigger signal latency is <3 uS, and the proposed 12GeV experiments at Jefferson Lab require up to 200KHz Level 1 trigger rate.« less

  15. Optimum projection pattern generation for grey-level coded structured light illumination systems

    NASA Astrophysics Data System (ADS)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben

    2017-04-01

    Structured light illumination (SLI) systems are well-established optical inspection techniques for noncontact 3D surface measurements. A common technique is multi-frequency sinusoidal SLI that obtains the phase map at various fringe periods in order to estimate the absolute phase, and hence, the 3D surface information. Nevertheless, multi-frequency SLI systems employ multiple measurement planes (e.g. four phase shifted frames) to obtain the phase at a given fringe period. It is therefore an age old challenge to obtain the absolute surface information using fewer measurement frames. Grey level (GL) coding techniques have been developed as an attempt to reduce the number of planes needed, because a spatio-temporal GL sequence employing p discrete grey-levels and m frames has the potential to unwrap up to pm fringes. Nevertheless, one major disadvantage of GL based SLI techniques is that there are often errors near the border of each stripe, because an ideal stepwise intensity change cannot be measured. If the step-change in intensity is a single discrete grey-level unit, this problem can usually be overcome by applying an appropriate threshold. However, severe errors occur if the intensity change at the border of the stripe exceeds several discrete grey-level units. In this work, an optimum GL based technique is presented that generates a series of projection patterns with a minimal gradient in the intensity. It is shown that when using this technique, the errors near the border of the stripes can be significantly reduced. This improvement is achieved with the choice generated patterns, and does not involve additional hardware or special post-processing techniques. The performance of that method is validated using both simulations and experiments. The reported technique is generic, works with an arbitrary number of frames, and can employ an arbitrary number of grey-levels.

  16. A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions

    NASA Astrophysics Data System (ADS)

    Cain, Kerrigan P.; Pandis, Spyros N.

    2017-12-01

    Hygroscopicity, oxidation level, and volatility are three crucial properties of organic pollutants. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties and establish their relationship. The proposed experimental setup utilizes a cloud condensation nuclei (CCN) counter to quantify hygroscopic activity, an aerosol mass spectrometer to measure the oxidation level, and a thermodenuder to evaluate the volatility. The setup was first tested with secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. The results of the first experiments indicated that, for this system, the less volatile SOA contained species that had on average lower O : C ratios and hygroscopicities. In this SOA system, both low- and high-volatility components can have comparable oxidation levels and hygroscopicities. The method developed here can be used to provide valuable insights about the relationships among organic aerosol hygroscopicity, oxidation level, and volatility.

  17. Ground Data System Risk Mitigation Techniques for Faster, Better, Cheaper Missions

    NASA Technical Reports Server (NTRS)

    Catena, John J.; Saylor, Rick; Casasanta, Ralph; Weikel, Craig; Powers, Edward I. (Technical Monitor)

    2000-01-01

    With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.

  18. [Manual airway clearance techniques in adults and adolescents: What level of evidence?

    PubMed

    Cabillic, Michel; Gouilly, Pascal; Reychler, Gregory

    2016-04-13

    The aim of this systematic literature review was to grade the levels of evidence of the most widely used manual airway clearance techniques. A literature search was conducted over the period 1995-2014 from the Medline, PEDro, ScienceDirect, Cochrane Library, REEDOC and kinedoc databases, with the following keywords: "postural drainage", "manual vibrations", "manual chest percussion", "directed cough", "increased expiratory flow", "ELTGOL", "autogenic drainage" and "active cycle of breathing technique". Two-hundred and fifty-six articles were identified. After removing duplicates and reading the titles and abstracts, 63 articles were selected, including 9 systematic reviews. This work highlights the lack of useful scientific data and the difficulty of determining levels of evidence for manual airway clearance techniques. Techniques were assessed principally with patients with sputum production (cystic fibrosis, DDB, COPD, etc.). It also shows the limited pertinence of outcome measures to quantify congestion and hence the efficacy of airway clearance techniques. The 1994 consensus conference summary table classifying airway clearance techniques according to physical mechanism provides an interesting tool for assessment, grouping together techniques having identical mechanisms of action. From the findings of the present systematic review, it appears that only ELTGOL, autogenic drainage and ACBT present levels of evidence "B". All other techniques have lower levels of evidence. II. Copyright © 2016. Published by Elsevier Masson SAS.

  19. Effective heart disease prediction system using data mining techniques.

    PubMed

    Singh, Poornima; Singh, Sanjay; Pandi-Jain, Gayatri S

    2018-01-01

    The health care industries collect huge amounts of data that contain some hidden information, which is useful for making effective decisions. For providing appropriate results and making effective decisions on data, some advanced data mining techniques are used. In this study, an effective heart disease prediction system (EHDPS) is developed using neural network for predicting the risk level of heart disease. The system uses 15 medical parameters such as age, sex, blood pressure, cholesterol, and obesity for prediction. The EHDPS predicts the likelihood of patients getting heart disease. It enables significant knowledge, eg, relationships between medical factors related to heart disease and patterns, to be established. We have employed the multilayer perceptron neural network with backpropagation as the training algorithm. The obtained results have illustrated that the designed diagnostic system can effectively predict the risk level of heart diseases.

  20. Slow neutron mapping technique for level interface measurement

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Ithnin, H.; Razali, A. M.; Yusof, N. H. M.; Mustapha, I.; Yahya, R.; Othman, N.; Rahman, M. F. A.

    2017-01-01

    Modern industrial plant operations often require accurate level measurement of process liquids in production and storage vessels. A variety of advanced level indicators are commercially available to meet the demand, but these may not suit specific need of situations. The neutron backscatter technique is exceptionally useful for occasional and routine determination, particularly in situations such as pressure vessel with wall thickness up to 10 cm, toxic and corrosive chemical in sealed containers, liquid petroleum gas storage vessels. In level measurement, high energy neutrons from 241Am-Be radioactive source are beamed onto a vessel. Fast neutrons are slowed down mostly by collision with hydrogen atoms of material inside the vessel. Parts of thermal neutron are bounced back towards the source. By placing a thermal detector next to the source, these backscatter neutrons can be measured. The number of backscattered neutrons is directly proportional to the concentration of the hydrogen atoms in front of the neutron detector. As the source and detector moved by the matrix around the side of the vessel, interfaces can be determined as long as it involves a change in hydrogen atom concentration. This paper presents the slow neutron mapping technique to indicate level interface of a test vessel.

  1. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage.

    PubMed

    Murador, Daniella Carisa; Mercadante, Adriana Zerlotti; de Rosso, Veridiana Vera

    2016-04-01

    The aim of this study is to investigate the effects of different home cooking techniques (boiling, steaming, and stir-frying) in kale and red cabbage, on the levels of bioactive compounds (carotenoids, anthocyanins and phenolic compounds) determined by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detectors (HPLC-DAD-MS(n)), and on the antioxidant activity evaluated by ABTS, ORAC and cellular antioxidant activity (CAA) assays. The steaming technique resulted in a significant increase in phenolic content in kale (86.1%; p<0.001) whereas in red cabbage it was significantly reduced (34.6%; p<0.001). In the kale, steaming resulted in significant increases in antioxidant activity levels in all of the evaluation methods. In the red cabbage, boiling resulted in a significant increase in antioxidant activity using the ABTS assay but resulted in a significant decrease using the ORAC assay. According to the CAA assay, the stir-fried sample displayed the highest levels of antioxidant activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Sensitivity of Fermi level position at Ga-polar, N-polar, and nonpolar m-plane GaN surfaces to vacuum and air ambient

    NASA Astrophysics Data System (ADS)

    Janicki, Łukasz; Ramírez-López, Manolo; Misiewicz, Jan; Cywiński, Grzegorz; Boćkowski, Michał; Muzioł, Grzegorz; Chèze, Caroline; Sawicka, Marta; Skierbiszewski, Czesław; Kudrawiec, Robert

    2016-05-01

    Ga-polar, N-polar, and nonpolar m-plane GaN UN+ structures have been examined in air and vacuum ambient by contactless electroreflectance (CER). This technique is very sensitive to the surface electric field that varies with the Fermi level position at the surface. For UN+ GaN structures [i.e., GaN (undoped)/GaN (n-type)/substrate], a homogeneous built-in electric field is expected in the undoped GaN layer that is manifested by Franz-Keldysh oscillation (FKO) in CER spectra. A clear change in FKO has been observed in CER spectra for N-polar and nonpolar m-plane structures when changing from air to vacuum ambient. This means that those surfaces are very sensitive to ambient atmosphere. In contrast to that, only a small change in FKO can be seen in the Ga-polar structure. This clearly shows that the ambient sensitivity of the Fermi level position at the GaN surface varies with the crystallographic orientation and is very high for N-polar and nonpolar m-plane surfaces. This feature of the N-polar and nonpolar m-plane surfaces can be very important for GaN-based devices grown on these crystallographic orientations and can be utilized in some of the devices, e.g., sensors.

  3. Prediction of monthly regional groundwater levels through hybrid soft-computing techniques

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Chang, Li-Chiu; Huang, Chien-Wei; Kao, I.-Feng

    2016-10-01

    Groundwater systems are intrinsically heterogeneous with dynamic temporal-spatial patterns, which cause great difficulty in quantifying their complex processes, while reliable predictions of regional groundwater levels are commonly needed for managing water resources to ensure proper service of water demands within a region. In this study, we proposed a novel and flexible soft-computing technique that could effectively extract the complex high-dimensional input-output patterns of basin-wide groundwater-aquifer systems in an adaptive manner. The soft-computing models combined the Self Organized Map (SOM) and the Nonlinear Autoregressive with Exogenous Inputs (NARX) network for predicting monthly regional groundwater levels based on hydrologic forcing data. The SOM could effectively classify the temporal-spatial patterns of regional groundwater levels, the NARX could accurately predict the mean of regional groundwater levels for adjusting the selected SOM, the Kriging was used to interpolate the predictions of the adjusted SOM into finer grids of locations, and consequently the prediction of a monthly regional groundwater level map could be obtained. The Zhuoshui River basin in Taiwan was the study case, and its monthly data sets collected from 203 groundwater stations, 32 rainfall stations and 6 flow stations during 2000 and 2013 were used for modelling purpose. The results demonstrated that the hybrid SOM-NARX model could reliably and suitably predict monthly basin-wide groundwater levels with high correlations (R2 > 0.9 in both training and testing cases). The proposed methodology presents a milestone in modelling regional environmental issues and offers an insightful and promising way to predict monthly basin-wide groundwater levels, which is beneficial to authorities for sustainable water resources management.

  4. Induced dual EIT and EIA resonances with optical trapping phenomenon in near/far fields in the N-type four-level system

    NASA Astrophysics Data System (ADS)

    Osman, Kariman I.; Joshi, Amitabh

    2017-01-01

    The optical trapping phenomenon is investigated in the probe absorptive susceptibility spectra, during the interaction of four-level N-type atomic system with three transverse Gaussian fields, in a Doppler broadened medium. The system was studied under different temperature settings of 87Rb atomic vapor as well as different non-radiative decay rate. The system exhibits a combination of dual electromagnetically induced transparency with electromagnetically induced absorption (EIA) or transparency (EIT) resonances simultaneously in near/far field. Also, the optical trapping phenomenon is considerably affected by the non-radiative decay rate.

  5. Comparison of commercial analytical techniques for measuring chlorine dioxide in urban desalinated drinking water.

    PubMed

    Ammar, T A; Abid, K Y; El-Bindary, A A; El-Sonbati, A Z

    2015-12-01

    Most drinking water industries are closely examining options to maintain a certain level of disinfectant residual through the entire distribution system. Chlorine dioxide is one of the promising disinfectants that is usually used as a secondary disinfectant, whereas the selection of the proper monitoring analytical technique to ensure disinfection and regulatory compliance has been debated within the industry. This research endeavored to objectively compare the performance of commercially available analytical techniques used for chlorine dioxide measurements (namely, chronoamperometry, DPD (N,N-diethyl-p-phenylenediamine), Lissamine Green B (LGB WET) and amperometric titration), to determine the superior technique. The commonly available commercial analytical techniques were evaluated over a wide range of chlorine dioxide concentrations. In reference to pre-defined criteria, the superior analytical technique was determined. To discern the effectiveness of such superior technique, various factors, such as sample temperature, high ionic strength, and other interferences that might influence the performance were examined. Among the four techniques, chronoamperometry technique indicates a significant level of accuracy and precision. Furthermore, the various influencing factors studied did not diminish the technique's performance where it was fairly adequate in all matrices. This study is a step towards proper disinfection monitoring and it confidently assists engineers with chlorine dioxide disinfection system planning and management.

  6. Engagement techniques and playing level impact the biomechanical demands on rugby forwards during machine-based scrummaging.

    PubMed

    Preatoni, Ezio; Stokes, Keith A; England, Michael E; Trewartha, Grant

    2015-04-01

    This cross-sectional study investigated the factors that may influence the physical loading on rugby forwards performing a scrum by studying the biomechanics of machine-based scrummaging under different engagement techniques and playing levels. 34 forward packs from six playing levels performed repetitions of five different types of engagement techniques against an instrumented scrum machine under realistic training conditions. Applied forces and body movements were recorded in three orthogonal directions. The modification of the engagement technique altered the load acting on players. These changes were in a similar direction and of similar magnitude irrespective of the playing level. Reducing the dynamics of the initial engagement through a fold-in procedure decreased the peak compression force, the peak downward force and the engagement speed in excess of 30%. For example, peak compression (horizontal) forces in the professional teams changed from 16.5 (baseline technique) to 8.6 kN (fold-in procedure). The fold-in technique also reduced the occurrence of combined high forces and head-trunk misalignment during the absorption of the impact, which was used as a measure of potential hazard, by more than 30%. Reducing the initial impact did not decrease the ability of the teams to produce sustained compression forces. De-emphasising the initial impact against the scrum machine decreased the mechanical stresses acting on forward players and may benefit players' welfare by reducing the hazard factors that may induce chronic degeneration of the spine. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Experimental technique for studying high-temperature phase equilibria in reactive molten metal based systems

    NASA Astrophysics Data System (ADS)

    Ermoline, Alexandre

    The general objective of this work is to develop an experimental technique for studying the high-temperature phase compositions and phase equilibria in molten metal-based binary and ternary systems, such as Zr-O-N, B-N-O, Al-O, and others. A specific material system of Zr-O-N was selected for studying and testing this technique. The information about the high-temperature phase equilibria in reactive metal-based systems is scarce and their studying is difficult because of chemical reactions occurring between samples and essentially any container materials, and causing contamination of the system. Containerless microgravity experiments for studying equilibria in molten metal-gas systems were designed to be conducted onboard of a NASA KC-135 aircraft flying parabolic trajectories. A uniaxial apparatus suitable for acoustic levitation, laser heating, and splat quenching of small samples was developed and equipped with computer-based controller and optical diagnostics. Normal-gravity tests were conducted to determine the most suitable operating parameters of the levitator by direct observations of the levitated samples, as opposed to more traditional pressure mapping of the acoustic field. The size range of samples that could be reliably heated and quenched in this setup was determined to be on the order of 1--3 mm. In microgravity experiments, small spherical specimens (1--2 mm diameter), prepared as pressed, premixed solid components, ZrO2, ZrN, and Zr powders, were acoustically levitated inside an argon-filled chamber at one atmosphere and heated by a CO2 laser. The levitating samples could be continuously laser heated for about 1 sec, resulting in local sample melting. The sample stability in the vertical direction was undisturbed by simultaneous laser heating. Oscillations of the levitating sample in the horizontal direction increased while it was heated, which eventually resulted in the movement of the sample away from its stable levitation position and the laser

  8. LevelScheme: A level scheme drawing and scientific figure preparation system for Mathematica

    NASA Astrophysics Data System (ADS)

    Caprio, M. A.

    2005-09-01

    LevelScheme is a scientific figure preparation system for Mathematica. The main emphasis is upon the construction of level schemes, or level energy diagrams, as used in nuclear, atomic, molecular, and hadronic physics. LevelScheme also provides a general infrastructure for the preparation of publication-quality figures, including support for multipanel and inset plotting, customizable tick mark generation, and various drawing and labeling tasks. Coupled with Mathematica's plotting functions and powerful programming language, LevelScheme provides a flexible system for the creation of figures combining diagrams, mathematical plots, and data plots. Program summaryTitle of program:LevelScheme Catalogue identifier:ADVZ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVZ Operating systems:Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux Programming language used:Mathematica 4 Number of bytes in distributed program, including test and documentation:3 051 807 Distribution format:tar.gz Nature of problem:Creation of level scheme diagrams. Creation of publication-quality multipart figures incorporating diagrams and plots. Method of solution:A set of Mathematica packages has been developed, providing a library of level scheme drawing objects, tools for figure construction and labeling, and control code for producing the graphics.

  9. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques.

    PubMed

    Kim, Joonhoon; Reed, Jennifer L; Maravelias, Christos T

    2011-01-01

    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution

  10. (t, n) Threshold d-Level Quantum Secret Sharing.

    PubMed

    Song, Xiu-Li; Liu, Yan-Bing; Deng, Hong-Yao; Xiao, Yong-Gang

    2017-07-25

    Most of Quantum Secret Sharing(QSS) are (n, n) threshold 2-level schemes, in which the 2-level secret cannot be reconstructed until all n shares are collected. In this paper, we propose a (t, n) threshold d-level QSS scheme, in which the d-level secret can be reconstructed only if at least t shares are collected. Compared with (n, n) threshold 2-level QSS, the proposed QSS provides better universality, flexibility, and practicability. Moreover, in this scheme, any one of the participants does not know the other participants' shares, even the trusted reconstructor Bob 1 is no exception. The transformation of the particles includes some simple operations such as d-level CNOT, Quantum Fourier Transform(QFT), Inverse Quantum Fourier Transform(IQFT), and generalized Pauli operator. The transformed particles need not to be transmitted from one participant to another in the quantum channel. Security analysis shows that the proposed scheme can resist intercept-resend attack, entangle-measure attack, collusion attack, and forgery attack. Performance comparison shows that it has lower computation and communication costs than other similar schemes when 2 < t < n - 1.

  11. A technique for evaluating the application of the pin-level stuck-at fault model to VLSI circuits

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Finelli, George B.

    1987-01-01

    Accurate fault models are required to conduct the experiments defined in validation methodologies for highly reliable fault-tolerant computers (e.g., computers with a probability of failure of 10 to the -9 for a 10-hour mission). Described is a technique by which a researcher can evaluate the capability of the pin-level stuck-at fault model to simulate true error behavior symptoms in very large scale integrated (VLSI) digital circuits. The technique is based on a statistical comparison of the error behavior resulting from faults applied at the pin-level of and internal to a VLSI circuit. As an example of an application of the technique, the error behavior of a microprocessor simulation subjected to internal stuck-at faults is compared with the error behavior which results from pin-level stuck-at faults. The error behavior is characterized by the time between errors and the duration of errors. Based on this example data, the pin-level stuck-at fault model is found to deliver less than ideal performance. However, with respect to the class of faults which cause a system crash, the pin-level, stuck-at fault model is found to provide a good modeling capability.

  12. Predicting groundwater level fluctuations with meteorological effect implications—A comparative study among soft computing techniques

    NASA Astrophysics Data System (ADS)

    Shiri, Jalal; Kisi, Ozgur; Yoon, Heesung; Lee, Kang-Kun; Hossein Nazemi, Amir

    2013-07-01

    The knowledge of groundwater table fluctuations is important in agricultural lands as well as in the studies related to groundwater utilization and management levels. This paper investigates the abilities of Gene Expression Programming (GEP), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Networks (ANN) and Support Vector Machine (SVM) techniques for groundwater level forecasting in following day up to 7-day prediction intervals. Several input combinations comprising water table level, rainfall and evapotranspiration values from Hongcheon Well station (South Korea), covering a period of eight years (2001-2008) were used to develop and test the applied models. The data from the first six years were used for developing (training) the applied models and the last two years data were reserved for testing. A comparison was also made between the forecasts provided by these models and the Auto-Regressive Moving Average (ARMA) technique. Based on the comparisons, it was found that the GEP models could be employed successfully in forecasting water table level fluctuations up to 7 days beyond data records.

  13. Application of VPN technique in the construction of public health information system.

    PubMed

    Hu, Xianming; Deng, Yongzhi; Lu, Zhuxun; Li, Shukai; Wang, Guoping; Lu, Suqin

    2005-01-01

    Data communication and sharing of five level network of Public Health Information System, i.e. nation, province, district (city), county, and town, as far as to the countryside level were described, and how to apply the three solutions, i.e. Access VPN, Intranet VPN, and Extranet VPN of VPN technique to achieve the appropriation of the public network was also presented.

  14. Evaluation of architectures for an ASP MPEG-4 decoder using a system-level design methodology

    NASA Astrophysics Data System (ADS)

    Garcia, Luz; Reyes, Victor; Barreto, Dacil; Marrero, Gustavo; Bautista, Tomas; Nunez, Antonio

    2005-06-01

    Trends in multimedia consumer electronics, digital video and audio, aim to reach users through low-cost mobile devices connected to data broadcasting networks with limited bandwidth. An emergent broadcasting network is the digital audio broadcasting network (DAB) which provides CD quality audio transmission together with robustness and efficiency techniques to allow good quality reception in motion conditions. This paper focuses on the system-level evaluation of different architectural options to allow low bandwidth digital video reception over DAB, based on video compression techniques. Profiling and design space exploration techniques are applied over the ASP MPEG-4 decoder in order to find out the best HW/SW partition given the application and platform constraints. An innovative SystemC-based system-level design tool, called CASSE, is being used for modelling, exploration and evaluation of different ASP MPEG-4 decoder HW/SW partitions. System-level trade offs and quantitative data derived from this analysis are also presented in this work.

  15. Systems-Level Synthetic Biology for Advanced Biofuel Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less

  16. Multielectron spectroscopy: energy levels of K n+ and Rb n+ ions (n = 2, 3, 4)

    NASA Astrophysics Data System (ADS)

    Khalal, M. A.; Soronen, J.; Jänkälä, K.; Huttula, S.-M.; Huttula, M.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Ito, K.; Andric, L.; Feng, J.; Lablanquie, P.; Palaudoux, J.; Penent, F.

    2017-11-01

    A magnetic bottle time-of-flight spectrometer has been used to perform spectroscopy of K n+ and Rb n+ states with ionization degrees n of 2, 3 and 4. Energy levels are directly measured by detecting in coincidence the n electrons that are emitted as a result of single photon absorption. Experimental results are compared with the energies from the NIST atomic database and ab initio multiconfiguration Dirac-Fock calculations. Previously unidentified 3p 4(3P)3d 1 4D energy levels of K2+ are assigned.

  17. Simultaneous monitoring technique for ASE and MPI noises in distributed Raman Amplified Systems.

    PubMed

    Choi, H Y; Jun, S B; Shin, S K; Chung, Y C

    2007-07-09

    We develop a new technique for simultaneously monitoring the amplified spontaneous emission (ASE) and multi-path interference (MPI) noises in distributed Raman amplified (DRA) systems. This technique utilizes the facts that the degree-of polarization (DOP) of the MPI noise is 1/9, while the ASE noise is unpolarized. The results show that the proposed technique can accurately monitor both of these noises regardless of the bit rates, modulation formats, and optical signal-to-noise ratio (OSNR) levels of the signals.

  18. [Effect of reduced N application on soil N residue and N loss in maize-soybean relay strip intercropping system].

    PubMed

    Liu, Xiao-Ming; Yong, Tai-Wen; Liu, Wen-Yu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-08-01

    A field experiment was conducted in 2012, including three planting pattern (maize-soybean relay strip intercropping, mono-cultured maize and soybean) and three nitrogen application level [0 kg N x hm(-2), 180 kg N x hm(-2) (reduced N) and 240 kg N x hm(-2) (normal N)]. Fields were assigned to different treatments in a randomized block design with three replicates. The objective of this work was to analyze the effects of planting patterns and nitrogen application rates on plant N uptake, soil N residue and N loss. After fertilization applications, NH4(+)-N and NO3(-)-N levels increased in the soil of intercropped maize but decreased in the soil of intercropped soybean. Compared with mono-crops, the soil N residue and loss of intercropped soybean were reduced, while those of intercropped maize were increased and decreased, respectively. With the reduced rate of N application, N residue rate, N loss rate and ammonia volatilization loss rate of the maize-soybean intercropping relay strip system were decreased by 17.7%, 21.5% and 0.4% compared to mono-cultured maize, but increased by 2.0%, 19.8% and 0.1% compared to mono-cultured soybean, respectively. Likewise, the reduced N application resulted in reductions in N residue, N loss, and the N loss via ammonia volatilization in the maize-soybean relay strip intercropping system compared with the conventional rate of N application adopted by local farmers, and the N residue rate, N loss rate and ammonia volatilization loss rate reduced by 12.0%, 15.4% and 1.2%, respectively.

  19. Temperature dependent growth of GaN nanowires using CVD technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mukesh, E-mail: mukeshjihrnp@gmail.com; Singh, R.; Kumar, Vikram

    2016-05-23

    Growth of GaN nanowires have been carried out on sapphire substrates with Au as a catalyst using chemical vapour deposition technique. GaN nanowires growth have been studied with the experimental parameter as growth temperature. Diameter of grown GaN nanowires are in the range of 50 nm to 100 nm while the nanowire length depends on growth temperature. Morphology of the GaN nanowires have been studied by scanning electron microscopy. Crystalline nature has been observed by XRD patterns. Optical properties of grown GaN nanowires have been investigated by photoluminescence spectra.

  20. Variation of levels and distribution of N-nitrosamines in different seasons in drinking waters of East China.

    PubMed

    Li, Ting; Yu, Dian; Xian, Qiming; Li, Aimin; Sun, Cheng

    2015-08-01

    We surveyed the occurrence of nine N-nitrosamine species in ten bottled drinking waters from supermarket and other water samples including raw waters, finished waters, and distribution system waters from nine municipal drinking water treatment plants in eight cities of Jiangsu Province, East China. N-nitrosodimethylamine (NDMA) was detected in one of ten bottled drinking water samples at concentration of 4.8 ng/L and N-nitrosomorpholine (NMor) was detected in four of the ten bottles with an average concentration and a standard deviation of 16 ± 15 ng/L. The levels of nitrosamines in the distribution system water samples collected during summer season ranged from below detection limit (BDL) to 5.4 ng/L for NDMA, BDL to 9.5 ng/L for N-nitrosomethylethylamine (NMEA), BDL to 2.7 ng/L for N-nitrosodiethylamine (NDEA) and BDL to 8.5 ng/L for N-nitrosopyrrolidine (NPyr). Samples of distribution system waters collected in winter season had levels of nitrosamines ranged from BDL to 45 ng/L for NDMA, BDL to 5.2 ng/L for NPyr, and BDL to 309 ng/L for N-nitrosopiperidine (NPip). A positive correlation of the concentration of NDMA as well as the total nine N-nitrosamines between finished waters and distribution system waters was observed. Both dissolved organic carbon and nitrite were found to correlate linearly with N-nitrosamine levels in raw waters.

  1. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis.

    PubMed

    de la Fuente, R; de Celis, B; del Canto, V; Lumbreras, J M; de Celis Alonso, B; Martín-Martín, A; Gutierrez-Villanueva, J L

    2008-10-01

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for alpha/beta/gamma-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of alpha/beta particles and X-rays/gamma particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by alpha/gamma coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg(-1) for 0.1 kg of soil and 1000 min counting.

  2. Technique for Solving Electrically Small to Large Structures for Broadband Applications

    NASA Technical Reports Server (NTRS)

    Jandhyala, Vikram; Chowdhury, Indranil

    2011-01-01

    Fast iterative algorithms are often used for solving Method of Moments (MoM) systems, having a large number of unknowns, to determine current distribution and other parameters. The most commonly used fast methods include the fast multipole method (FMM), the precorrected fast Fourier transform (PFFT), and low-rank QR compression methods. These methods reduce the O(N) memory and time requirements to O(N log N) by compressing the dense MoM system so as to exploit the physics of Green s Function interactions. FFT-based techniques for solving such problems are efficient for spacefilling and uniform structures, but their performance substantially degrades for non-uniformly distributed structures due to the inherent need to employ a uniform global grid. FMM or QR techniques are better suited than FFT techniques; however, neither the FMM nor the QR technique can be used at all frequencies. This method has been developed to efficiently solve for a desired parameter of a system or device that can include both electrically large FMM elements, and electrically small QR elements. The system or device is set up as an oct-tree structure that can include regions of both the FMM type and the QR type. The system is enclosed with a cube at a 0- th level, splitting the cube at the 0-th level into eight child cubes. This forms cubes at a 1st level, recursively repeating the splitting process for cubes at successive levels until a desired number of levels is created. For each cube that is thus formed, neighbor lists and interaction lists are maintained. An iterative solver is then used to determine a first matrix vector product for any electrically large elements as well as a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large and small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is

  3. Itinerant ferromagnetism in fermionic systems with SP (2 N) symmetry

    NASA Astrophysics Data System (ADS)

    Yang, Wang; Wu, Congjun

    The Ginzburg-Landau free energy of systems with SP (2 N) symmetry describes a second order phase transition on the mean field level, since the Casimir invariants of the SP (2 N) group can be only of even order combinations of the generators of the SP (2 N) group. This is in contrast with systems having the SU (N) symmetry, where the allowance of cubic term generally makes the phase transition into first order. In this work, we consider the Hertz-Millis type itinerant ferromagnetism in an interacting fermionic system with SP (2 N) symmetry, where the ferromagnetic orders are enriched by the multi-component nature of the system. The quantum criticality is discussed near the second order phase transition point.

  4. System-level musings about system-level science (Invited)

    NASA Astrophysics Data System (ADS)

    Liu, W.

    2009-12-01

    In teleology, a system has a purpose. In physics, a system has a tendency. For example, a mechanical system has a tendency to lower its potential energy. A thermodynamic system has a tendency to increase its entropy. Therefore, if geospace is seen as a system, what is its tendency? Surprisingly or not, there is no simple answer to this question. Or, to flip the statement, the answer is complex, or complexity. We can understand generally why complexity arises, as the geospace boundary is open to influences from the solar wind and Earth’s atmosphere and components of the system couple to each other in a myriad of ways to make the systemic behavior highly nonlinear. But this still begs the question: What is the system-level approach to geospace science? A reductionist view might assert that as our understanding of a component or subsystem progresses to a certain point, we can couple some together to understand the system on a higher level. However, in practice, a subsystem can almost never been observed in isolation with others. Even if such is possible, there is no guarantee that the subsystem behavior will not change when coupled to others. Hence, there is no guarantee that a subsystem, such as the ring current, has an innate and intrinsic behavior like a hydrogen atom. An absolutist conclusion from this logic can be sobering, as one would have to trace a flash of aurora to the nucleosynthesis in the solar core. The practical answer, however, is more promising; it is a mix of the common sense we call reductionism and awareness that, especially when strongly coupled, subsystems can experience behavioral changes, breakdowns, and catastrophes. If the stock answer to the systemic tendency of geospace is complexity, the objective of the system-level approach to geospace science is to define, measure, and understand this complexity. I will use the example of magnetotail dynamics to illuminate some key points in this talk.

  5. Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques

    PubMed Central

    Kim, Joonhoon; Reed, Jennifer L.; Maravelias, Christos T.

    2011-01-01

    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution

  6. Enhancing Security by System-Level Virtualization in Cloud Computing Environments

    NASA Astrophysics Data System (ADS)

    Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei

    Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.

  7. N+6Li system with flexible cluster wave function

    NASA Astrophysics Data System (ADS)

    Stubeda, D. J.; Fujiwara, Y.; Tang, Y. C.

    1982-12-01

    The n+6Li and p+6Li systems are studied with the single-channel resonating-group method. The 6Li internal wave function used is either a single translationally-invariant harmonic-oscillator shell-model function or a superposition of two such functions. The result shows that the main features of this system do not depend sensitively on which of these functions is employed, although significant differences in cross-section values do appear at backward angles. The fit to experimental data is only fair, indicating that the present calculation should be refined by including the N+6Li*(3+) inelastic channel, by taking into better account d+α clustering in 6Li, by carefully considering the effect of specific distortion, and by, perhaps, also adopting a noncentral nucleon-nucleon potential in the formulation. NUCLEAR REACTIONS 6Li(p, p), 6Li(n, n) calculated phase shifts and σ(θ). Resonating-group method with complex-generator-coordinate technique.

  8. Fallback level concepts for conventional and by-wire automotive brake systems

    NASA Astrophysics Data System (ADS)

    Retzer, H.; Mishra, R.; Ball, A.; Schmidt, K.

    2012-05-01

    Brake-by-wire represents the replacement of traditional brake components such as pumps, hoses, fluids, brake boosters, and master cylinders by electronic sensors and actuators. The different design of these brake concepts poses new challenges for the automotive industry with regard to availability and fallback levels in comparison to standard conventional brake systems. This contribution focuses on the development of appropriate fallback level concepts. Hardware-in-the-loop (HIL) techniques and field trials will be used to investigate the performance and the usability of such systems.

  9. Multi-level and hybrid modelling approaches for systems biology.

    PubMed

    Bardini, R; Politano, G; Benso, A; Di Carlo, S

    2017-01-01

    During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.

  10. Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant.

    PubMed

    Bao, Qinye; Liu, Xianjie; Braun, Slawomir; Li, Yanqing; Tang, Jianxin; Duan, Chungang; Fahlman, Mats

    2017-10-11

    Doping has been proved to be one of the powerful technologies to achieve significant improvement in the performance of organic electronic devices. Herein, we systematically map out the interface properties of solution-processed air-stable n-type (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) doping fullerenes and fullerene derivatives and establish a universal energy level alignment scheme for this class of n-doped system. At low doping levels at which the charge-transfer doping induces mainly bound charges, the energy level alignment of the n-doping organic semiconductor can be described by combining integer charger transfer-induced shifts with a so-called double-dipole step. At high doping levels, significant densities of free charges are generated and the charge flows between the organic film and the conducting electrodes equilibrating the Fermi level in a classic "depletion layer" scheme. Moreover, we demonstrate that the model holds for both n- and p-doping of π-backbone molecules and polymers. With the results, we provide wide guidance for identifying the application of the current organic n-type doping technology in organic electronics.

  11. Lessons Learned from Application of System and Software Level RAMS Analysis to a Space Control System

    NASA Astrophysics Data System (ADS)

    Silva, N.; Esper, A.

    2012-01-01

    The work presented in this article represents the results of applying RAMS analysis to a critical space control system, both at system and software levels. The system level RAMS analysis allowed the assignment of criticalities to the high level components, which was further refined by a tailored software level RAMS analysis. The importance of the software level RAMS analysis in the identification of new failure modes and its impact on the system level RAMS analysis is discussed. Recommendations of changes in the software architecture have also been proposed in order to reduce the criticality of the SW components to an acceptable minimum. The dependability analysis was performed in accordance to ECSS-Q-ST-80, which had to be tailored and complemented in some aspects. This tailoring will also be detailed in the article and lessons learned from the application of this tailoring will be shared, stating the importance to space systems safety evaluations. The paper presents the applied techniques, the relevant results obtained, the effort required for performing the tasks and the planned strategy for ROI estimation, as well as the soft skills required and acquired during these activities.

  12. Fermi level dependence of hydrogen diffusivity in GaN

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Pearton, S. J.; Ren, F.; Theys, B.; Jomard, F.; Teukam, Z.; Dmitriev, V. A.; Nikolaev, A. E.; Usikov, A. S.; Nikitina, I. P.

    2001-09-01

    Hydrogen diffusion studies were performed in GaN samples with different Fermi level positions. It is shown that, at 350 °C, hydrogen diffusion is quite fast in heavily Mg doped p-type material with the Fermi level close to Ev+0.15 eV, considerably slower in high-resistivity p-GaN(Zn) with the Fermi level Ev+0.9 eV, while for conducting and semi-insulating n-GaN samples with the Fermi level in the upper half of the band gap no measurable hydrogen diffusion could be detected. For these latter samples it is shown that higher diffusion temperature of 500 °C and longer times (50 h) are necessary to incorporate hydrogen to appreciable depth. These findings are in line with previously published theoretical predictions of the dependence of hydrogen interstitials formation in GaN on the Fermi level position.

  13. Computational techniques in tribology and material science at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Bozzolo, G. H.

    1992-01-01

    Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented.

  14. A Simplified Technique for Implant-Abutment Level Impression after Soft Tissue Adaptation around Provisional Restoration

    PubMed Central

    Kutkut, Ahmad; Abu-Hammad, Osama; Frazer, Robert

    2016-01-01

    Impression techniques for implant restorations can be implant level or abutment level impressions with open tray or closed tray techniques. Conventional implant-abutment level impression techniques are predictable for maximizing esthetic outcomes. Restoration of the implant traditionally requires the use of the metal or plastic impression copings, analogs, and laboratory components. Simplifying the dental implant restoration by reducing armamentarium through incorporating conventional techniques used daily for crowns and bridges will allow more general dentists to restore implants in their practices. The demonstrated technique is useful when modifications to implant abutments are required to correct the angulation of malpositioned implants. This technique utilizes conventional crown and bridge impression techniques. As an added benefit, it reduces costs by utilizing techniques used daily for crowns and bridges. The aim of this report is to describe a simplified conventional impression technique for custom abutments and modified prefabricated solid abutments for definitive restorations. PMID:29563457

  15. An expert system shell for inferring vegetation characteristics: Atmospheric techniques (Task G)

    NASA Technical Reports Server (NTRS)

    Harrison, P. Ann; Harrison, Patrick R.

    1993-01-01

    The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. The VEG Subgoals have been reorganized into categories. A new subgoal category 'Atmospheric Techniques' containing two new subgoals has been implemented. The subgoal Atmospheric Passes allows the scientist to take reflectance data measured at ground level and predict what the reflectance values would be if the data were measured at a different atmospheric height. The subgoal Atmospheric Corrections allows atmospheric corrections to be made to data collected from an aircraft or by a satellite to determine what the equivalent reflectance values would be if the data were measured at ground level. The report describes the implementation and testing of the basic framework and interface for the Atmospheric Techniques Subgoals.

  16. Computer systems performance measurement techniques.

    DOT National Transportation Integrated Search

    1971-06-01

    Computer system performance measurement techniques, tools, and approaches are presented as a foundation for future recommendations regarding the instrumentation of the ARTS ATC data processing subsystem for purposes of measurement and evaluation.

  17. iLift: A health behavior change support system for lifting and transfer techniques to prevent lower-back injuries in healthcare.

    PubMed

    Kuipers, Derek A; Wartena, Bard O; Dijkstra, Boudewijn H; Terlouw, Gijs; van T Veer, Job T B; van Dijk, Hylke W; Prins, Jelle T; Pierie, Jean Pierre E N

    2016-12-01

    Lower back problems are a common cause of sick leave of employees in Dutch care homes and hospitals. In the Netherlands over 40% of reported sick leave is due to back problems, mainly caused by carrying out heavy work. The goal of the iLift project was to develop a game for nursing personnel to train them in lifting and transfer techniques. The main focus was not on testing for the effectiveness of the game itself, but rather on the design of the game as an autogenous trigger and its place in a behavioral change support system. In this article, the design and development of such a health behavior change support system is addressed, describing cycles of design and evaluation. (a) To define the problem space, use context and user context, focus group interviews were conducted with Occupational Therapists (n=4), Nurses (n=10) and Caregivers (n=12) and a thematic analysis was performed. We interviewed experts (n=5) on the subject of lifting and transferring techniques. (b) A design science research approach resulted in a playable prototype. An expert panel conducted analysis of video-recorded playing activities. (c) Field experiment: We performed a dynamic analysis in order to investigate the feasibility of the prototype through biometric data from player sessions (n=620) by healthcare professionals (n=37). (a) Occupational Therapists, Nurses and Caregivers did not recognise a lack of knowledge with training in lifting and transferring techniques. All groups considered their workload, time pressure and a culturally determined habit to place the patient's well being above their own as the main reason not to apply appropriate lifting and transferring techniques. This led to a shift in focus from a serious game teaching lifting and transferring techniques to a health behavior change support system containing a game with the intention to influence behavior. (b) Building and testing (subcomponents of) the prototype resulted in design choices regarding players perspective

  18. Optimal maintenance policy incorporating system level and unit level for mechanical systems

    NASA Astrophysics Data System (ADS)

    Duan, Chaoqun; Deng, Chao; Wang, Bingran

    2018-04-01

    The study works on a multi-level maintenance policy combining system level and unit level under soft and hard failure modes. The system experiences system-level preventive maintenance (SLPM) when the conditional reliability of entire system exceeds SLPM threshold, and also undergoes a two-level maintenance for each single unit, which is initiated when a single unit exceeds its preventive maintenance (PM) threshold, and the other is performed simultaneously the moment when any unit is going for maintenance. The units experience both periodic inspections and aperiodic inspections provided by failures of hard-type units. To model the practical situations, two types of economic dependence have been taken into account, which are set-up cost dependence and maintenance expertise dependence due to the same technology and tool/equipment can be utilised. The optimisation problem is formulated and solved in a semi-Markov decision process framework. The objective is to find the optimal system-level threshold and unit-level thresholds by minimising the long-run expected average cost per unit time. A formula for the mean residual life is derived for the proposed multi-level maintenance policy. The method is illustrated by a real case study of feed subsystem from a boring machine, and a comparison with other policies demonstrates the effectiveness of our approach.

  19. N2O fluxes over a corn field from an open-path, laser-based eddy covariance system and static chambers

    NASA Astrophysics Data System (ADS)

    Tao, L.; Pan, D.; Gelfand, I.; Abraha, M.; Moyer, R.; Poe, A.; Sun, K.; Robertson, P.; Zondlo, M. A.

    2015-12-01

    Nitrous oxide (N2O) is important greenhouse and ozone-depleting gase. Although many efforts have been paid to N2O emissions, the spatial and temporal variability of N2O emissions still subject to large uncertainty. Application of the eddy covariance method for N2O emissions research would allow continuous ecosystem level flux measurements. The caveat, however, is need for high precision and high frequency measurements in field. In this study, an open-path, quantum cascade-laser-based eddy covariance N2O sensor has been deployed nearly continuously since May 2015 over a corn field at the W.K. Kellogg Biological Station site in SW Michigan. The field precision of the N2O sensor was assessed to be 0.1 ppbv at 10 Hz, and the total consumption was ~ 40 W, allowing the system to be powered solely by solar panels. The stability of the sensor under different temperature and humidity was tested within an environmental chamber. Spectroscopic experiments and cospectra analyses were carried out to study specific corrections associated with the sensor for eddy covariance techniques, including the line broadening effect due to water vapor and high frequency flux attenuation owning to sample path averaging. Ogive analyses indicated that the high-frequency N2O flux loss due to various damping effects was comparable to those of the CO2 flux. The detection limit of flux was estimated to be 0.3 ng N s-1 m-2 with a flux averaging interval of 30 minutes. The results from the EC system were also compared with ground measurements by standard static chambers (SC). Overall, more than 150 individual chamber measurements were taken within the footprint of the EC system. We found good correlation between the EC and SC methods given the spatiotemporal differences between the two techniques (R2 = 0.75). Both methods detected increased emissions during afternoon as compared to morning and night hours. Differences between EC and SC were also studied by investigating spatial variability with a

  20. A real time sorbent based air monitoring system for determining low level airborne exposure levels to Lewisite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lattin, F.G.; Paul, D.G.; Jakubowski, E.M.

    1994-12-31

    The Real Time Analytical Platform (RTAP) is designed to provide mobile, real-time monitoring support to ensure protection of worker safety in areas where military unique compounds are used and stored, and at disposal sites. Quantitative analysis of low-level vapor concentrations in air is accomplished through sorbent-based collection with subsequent thermal desorption into a gas chromatograph (GC) equipped with a variety of detectors. The monitoring system is characterized by its sensitivity (ability to measure at low concentrations), selectivity (ability to filter out interferences), dynamic range and linearity, real time mode (versus methods requiring extensive sample preparation procedures), and ability to interfacemore » with complimentary GC detectors. This presentation describes an RTAP analytical method for analyzing lewisite, an arsenical compound, that consists of a GC screening technique with an Electron Capture Detector (ECD), and a confirmation technique using an Atomic Emission Detector (AED). Included in the presentation is a description of quality assurance objectives in the monitoring system, and an assessment of method accuracy, precision and detection levels.« less

  1. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  2. Determination techniques of Archie’s parameters: a, m and n in heterogeneous reservoirs

    NASA Astrophysics Data System (ADS)

    Mohamad, A. M.; Hamada, G. M.

    2017-12-01

    The determination of water saturation in a heterogeneous reservoir is becoming more challenging, as Archie’s equation is only suitable for clean homogeneous formation and Archie’s parameters are highly dependent on the properties of the rock. This study focuses on the measurement of Archie’s parameters in carbonate and sandstone core samples around Malaysian heterogeneous carbonate and sandstone reservoirs. Three techniques for the determination of Archie’s parameters a, m and n will be implemented: the conventional technique, core Archie parameter estimation (CAPE) and the three-dimensional regression technique (3D). By using the results obtained by the three different techniques, water saturation graphs were produced to observe the symbolic difference of Archie’s parameter and its relevant impact on water saturation values. The difference in water saturation values can be primarily attributed to showing the uncertainty level of Archie’s parameters, mainly in carbonate and sandstone rock samples. It is obvious that the accuracy of Archie’s parameters has a profound impact on the calculated water saturation values in carbonate sandstone reservoirs due to regions of high stress reducing electrical conduction resulting from the raised electrical heterogeneity of the heterogeneous carbonate core samples. Due to the unrealistic assumptions involved in the conventional method, it is better to use either the CAPE or 3D method to accurately determine Archie’s parameters in heterogeneous as well as homogeneous reservoirs.

  3. User-Perceived Reliability of M-for-N (M: N) Shared Protection Systems

    NASA Astrophysics Data System (ADS)

    Ozaki, Hirokazu; Kara, Atsushi; Cheng, Zixue

    In this paper we investigate the reliability of general type shared protection systems i.e. M for N (M: N) that can typically be applied to various telecommunication network devices. We focus on the reliability that is perceived by an end user of one of N units. We assume that any failed unit is instantly replaced by one of the M units (if available). We describe the effectiveness of such a protection system in a quantitative manner. The mathematical analysis gives the closed-form solution of the availability, the recursive computing algorithm of the MTTFF (Mean Time to First Failure) and the MTTF (Mean Time to Failure) perceived by an arbitrary end user. We also show that, under a certain condition, the probability distribution of TTFF (Time to First Failure) can be approximated by a simple exponential distribution. The analysis provides useful information for the analysis and the design of not only the telecommunication network devices but also other general shared protection systems that are subject to service level agreements (SLA) involving user-perceived reliability measures.

  4. N-butyl cyanoacrylate embolotherapy: techniques, complications, and management

    PubMed Central

    Hill, Hannah; Chick, Jeffrey Forris Beecham; Hage, Anthony; Srinivasa, Ravi N.

    2018-01-01

    The purpose of this article is to describe acute complications associated with adhesive cyanoacrylate deposition in the peripheral circulation and their management. Despite best efforts, n-butyl cyanoacrylate glue embolization is inherently unpredictable and complications do occur. An understanding of preparation techniques that minimize adverse event rates and the technical skillset required to manage complications are necessary for the safe and efficient use of liquid embolic agents. PMID:29467116

  5. Nonlinear dynamic macromodeling techniques for audio systems

    NASA Astrophysics Data System (ADS)

    Ogrodzki, Jan; Bieńkowski, Piotr

    2015-09-01

    This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.

  6. Education mitigates age-related decline in N-Acetylaspartate levels.

    PubMed

    Erickson, Kirk I; Leckie, Regina L; Weinstein, Andrea M; Radchenkova, Polina; Sutton, Bradley P; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock-Heyman, Laura; McAuley, Edward; Kramer, Arthur F

    2015-03-01

    Greater educational attainment is associated with better neurocognitive health in older adults and is thought to reflect a measure of cognitive reserve. In vivo neuroimaging tools have begun to identify the brain systems and networks potentially responsible for reserve. We examined the relationship between education, a commonly used proxy for cognitive reserve, and N-acetylaspartate (NAA) in neurologically healthy older adults (N=135; mean age=66 years). Using single voxel MR spectroscopy, we predicted that higher levels of education would moderate an age-related decline in NAA in the frontal cortex. After controlling for the variance associated with cardiorespiratory fitness, sex, annual income, and creatine levels, there were no significant main effects of education (B=0.016, P=0.787) or age (B=-0.058, P=0.204) on NAA levels. However, consistent with our predictions, there was a significant education X age interaction such that more years of education offset an age-related decline in NAA (B=0.025, P=0.031). When examining working memory via the backwards digit span task, longer span length was associated with greater education (P<0.01) and showed a trend with greater NAA concentrations (P<0.06); however, there was no age X education interaction on digit span performance nor a significant moderated mediation effect between age, education, and NAA on digit span performance. Taken together, these results suggest that higher levels of education may attenuate an age-related reduction in neuronal viability in the frontal cortex.

  7. Nonlinear system identification technique validation

    NASA Astrophysics Data System (ADS)

    Rudko, M.; Bussgang, J. J.

    1982-01-01

    This final technical report describes the results obtained by SIGNATRON, Inc. of Lexington MA on Air Force Contract F30602-80-C-0104 for Rome Air Development Center. The objective of this effort is to develop a technique for identifying system response of nonlinear circuits by measurements of output response to known inputs. The report describes results of a study into the system identification technique based on the pencil-of-function method previously explored by Jain (1974) and Ewen (1979). The procedure identified roles of the linear response and is intended as a first step in nonlinear response and is intended as a first step in nonlinear circuit identification. There are serious implementation problems associated with the original approach such as loss of accuracy due to repeated integrations, lack of good measures of accuracy and computational iteration to identify the number of poles.

  8. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia

    NASA Astrophysics Data System (ADS)

    Karimi, Sepideh; Kisi, Ozgur; Shiri, Jalal; Makarynskyy, Oleg

    2013-03-01

    Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1 h, 24 h, 48 h and 72 h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.

  9. The determination of N-nitrosodiethanolamine (NDELA) at trace levels in shampoos and skin creams by a simple, rapid colorimetric method.

    PubMed

    Telling, G M; Dunnett, P C

    1981-10-01

    Synopsis A technique is described for the rapid determination of N-nitrosodiethanolamine (NDELA) in shampoos, skin creams and similar products based on aqueous extraction, partition into ethyl acetate and colorimetric determination using the Eisenbrand-Preussman cleavage reaction. Recoveries of NDELA added at levels of 5-100 mug kg(-1) to a range of shampoo and cream types ranged from 90-101%. The limit of determination for the method is 2.5 mug kg(-1). Observations on the application of a thermal energy analyser linked to a gas chromatograph are also reported. Application of the technique to a survey of a wide range of shampoo and skin cream types showed that levels of total N-nitroso compounds were less than 30 mug kg(-1) in < 90% of samples and, in many cases, less than 2.5 mug kg-1.

  10. Keratinocytes negatively regulate the N-cadherin levels of melanoma cells via contact-mediated calcium regulation.

    PubMed

    Chung, Heesung; Jung, Hyejung; Jho, Eek-Hoon; Multhaupt, Hinke A B; Couchman, John R; Oh, Eok-Soo

    2018-06-14

    In human skin, melanocytes and their neighboring keratinocytes have a close functional interrelationship. Keratinocytes, which represent the prevalent cell type of human skin, regulate melanocytes through various mechanisms. Here, we use a keratinocyte and melanoma co-culture system to show for the first time that keratinocytes regulate the cell surface expression of N-cadherin through cell-cell contact. Compared to mono-cultured human melanoma A375 cells, which expressed high levels of N-cadherin, those co-cultured with the HaCaT human keratinocyte cell line showed reduced levels of N-cadherin. This reduction was most evident in areas of A375 cells that underwent cell-cell contact with the HaCaT cells, whereas HaCaT cell-derived extracellular matrix and conditioned medium both failed to reduce N-cadherin levels. The intracellular level of calcium in co-cultured A375 cells was lower than that in mono-cultured A375 cells, and treatment with a cell-permeant calcium chelator (BAPTA) reduced the N-cadherin level of mono-cultured A375 cells. Furthermore, co-culture with HaCaT cells reduced the expression levels of transient receptor potential cation channel (TRPC) 1, -3 and -6 in A375 cells, and siRNA-mediated multi-depletion of TRPC1, -3 and -6 reduced the N-cadherin level in these cells. Taken together, these data suggest that keratinocytes negatively regulate the N-cadherin levels of melanoma cells via cell-to-cell contact-mediated calcium regulation. Copyright © 2018. Published by Elsevier Inc.

  11. System level mechanical testing of the Clementine spacecraft

    NASA Technical Reports Server (NTRS)

    Haughton, James; Hauser, Joseph; Raynor, William; Lynn, Peter

    1994-01-01

    This paper discusses the system level structural testing that was performed to qualify the Clementine Spacecraft for flight. These tests included spin balance, combined acoustic and axial random vibration, lateral random vibration, quasi-static loads, pyrotechnic shock, modal survey and on-orbit jitter simulation. Some innovative aspects of this effort were: the simultaneously combined acoustic and random vibration test; the mass loaded interface modal survey test; and the techniques used to assess how operating on board mechanisms and thrusters affect sensor vision.

  12. High-dimensional Controlled-phase Gate Between a 2 N -dimensional Photon and N Three-level Artificial Atoms

    NASA Astrophysics Data System (ADS)

    Ma, Yun-Ming; Wang, Tie-Jun

    2017-10-01

    Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.

  13. N-SCAN: new vibromodulation system for detection and monitoring of cracks and other contact-type defects

    NASA Astrophysics Data System (ADS)

    Donskoy, Dmitri; Ekimov, Alexander; Luzzato, Emile; Lottiaux, Jean-Louis; Stoupin, Stanislav; Zagrai, Andrei

    2003-08-01

    In recent years, innovative vibro-modulation technique has been introduced for detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies on the contact area of the interface modulating passing through ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for detection and differentiation of the contact-type defects from other structural and material inhomogeneities. Vibro-modulation technique has been implemented in N-SCAN damage detection system. The system consists of a digital synthesizer, high and low frequency amplifiers, a magnetostrictive shaker, ultrasonic transducers and a PC-based data acquisition/processing station with N-SCAN software. The ability of the system to detect contact-type defects was experimentally verified using specimens of simple and complex geometries made of steel, aluminum, composites and other structural materials. N-SCAN proved to be very effective for nondestructive testing of full-scale structures ranging from 24 foot-long gun barrels to stainless steel pipes used in nuclear power plants. Among advantages of the system are applicability for the wide range of structural materials and for structures with complex geometries, real time data processing, convenient interface for system operation, simplicity of interpretation of results, no need for sensor scanning along structure, onsite inspection of large structures at a fraction of time as compared with conventional techniques. This paper describes the basic principles of nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction and justification of signal processing algorithm. It is also presents examples of practical implementation and

  14. Using stable isotopes to follow excreta N dynamics and N2O emissions in animal production systems.

    PubMed

    Clough, T J; Müller, C; Laughlin, R J

    2013-06-01

    Nitrous oxide (N2O) is a potent greenhouse gas and the dominant anthropogenic stratospheric ozone-depleting emission. The tropospheric concentration of N2O continues to increase, with animal production systems constituting the largest anthropogenic source. Stable isotopes of nitrogen (N) provide tools for constraining emission sources and, following the temporal dynamics of N2O, providing additional insight and unequivocal proof of N2O source, production pathways and consumption. The potential for using stable isotopes of N is underutilised. The intent of this article is to provide an overview of what these tools are and demonstrate where and how these tools could be applied to advance the mitigation of N2O emissions from animal production systems. Nitrogen inputs and outputs are dominated by fertiliser and excreta, respectively, both of which are substrates for N2O production. These substrates can be labelled with 15N to enable the substrate-N to be traced and linked to N2O emissions. Thus, the effects of changes to animal production systems to reduce feed-N wastage by animals and fertiliser wastage, aimed at N2O mitigation and/or improved animal or economic performance, can be traced. Further 15N-tracer studies are required to fully understand the dynamics and N2O fluxes associated with excreta, and the biological contribution to these fluxes. These data are also essential for the new generation of 15N models. Recent technique developments in isotopomer science along with stable isotope probing using multiple isotopes also offer exciting capability for addressing the N2O mitigation quest.

  15. A closed system irrigation & drainage technique for surgical evacuation of chronic subdural haematomas

    PubMed Central

    Kareem, Haider; Adams, Hadie

    2018-01-01

    Background: Chronic subdural haematoma (CSDH), is a common neurosurgical disorder that is associated with morbidity and mortality affecting the ageing population. The aim is to present the treatment experience of CSDH patients treated with a technique that combines the classical single burr-hole irrigation and the continuous closed system drainage: The closed system irrigation & drainage (CSID) technique. Methods: The cases undergoing CSDH evacuation with the CSID method were captured over a 4-year period at a tertiary neurosurgical centre. The authors describe the performance of this methods with respect to post-operative clinical and radiological features, including recurrence rates, complications, and length of stay. Results: A total of 36 cases undergoing 42 CSID procedures (30 unilateral and 6 bilateral CSDHs) were performed, in cases ranging between 55-95 years old (median age 79 years). The rate of recurrence or significant ruminant blood in the subdural space on post-operative imaging was 11% (n=4). No cases of pneumocephalus were observed in this series (n=0). The mean (SD) skin-to-skin time for this procedure was 13.4 (4.4) minutes, with a mean (SD) length of stay of 4 (1.9) days. Conclusion: We conclude that the one burr-hole closed system irrigation and drainage technique with a sub-periosteal drain seems to be a simple, effective and safe procedure for treatment of CSDH. It’s well tolerated under local anaesthesia for patients with high co-morbidities and these preliminary results indicated it may potentially be a better option for treatment of CSDH with a lower rate of post-operative complications. PMID:29904602

  16. Precision and costs of techniques for self-monitoring of serum glucose levels.

    PubMed Central

    Chiasson, J. L.; Morrisset, R.; Hamet, P.

    1984-01-01

    The poor correlation between serum and urine glucose measurements has led to the development of new techniques for monitoring the blood glucose level in diabetic patients. Either a nurse or the patient can perform these tests, which involve spreading a single drop of blood onto a reagent strip. A colour change that is proportional to the serum glucose level can be read visually or with a reflectance meter. Evaluated against simultaneous serum glucose levels determined by the hospital biochemistry laboratory, those of the new techniques employing reflectance meters all showed excellent correlation (r2 = 0.85 to 0.96). Reagent strips used without meters showed poorer correlation (r2 = 0.69 to 0.90). The instruction given to the patients and one nurse enabled them to obtain more accurate results with one of the meters than nurses not specially trained (r2 = 0.94 and 0.92 v. 0.85 respectively). The mean cost per glucose determination with the new techniques was 75, compared with +1.45 for the laboratory determinations done with automated equipment. It was concluded that the new techniques compared well with the reference method, particularly when reflectance meters were used, and that they were easily applied by the patient, as well as the medical staff, at a reasonable cost. PMID:6689988

  17. The dependency of different stress-level SiN capping films and the optimization of D-SMT process for the device performance booster in Ge n-FinFETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, M.-H., E-mail: mhliaoa@ntu.edu.tw; Chen, P.-G.

    The capping stressed SiN film is one of the most important process steps for the dislocation stress memorization technique (D-SMT), which has been used widely in the current industry, for the electron mobility booster in the n-type transistor beyond the 32/28 nm technology node. In this work, we found that the different stress-level SiN capping films influence the crystal re-growth velocities along different directions including [100] and [110] directions in Ge a lot. It can be further used to optimize the dislocation angle in the transistor during the D-SMT process and then results in the largest channel stress distribution to boostmore » the device performance in the Ge n-FinFETs. Based on the theoretical calculation and experimental demonstration, it shows that the Ge three dimensional (3D) n-FinFETs device performance is improved ∼55% with the usage of +3 GPa tensile stressed SiN capping film. The channel stress and dislocation angle is ∼2.5 GPa and 30°, measured by the atomic force microscope-Raman technique and transmission electron microscopy, respectively.« less

  18. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  19. Sound level-dependent growth of N1m amplitude with low and high-frequency tones.

    PubMed

    Soeta, Yoshiharu; Nakagawa, Seiji

    2009-04-22

    The aim of this study was to determine whether the amplitude and/or latency of the N1m deflection of auditory-evoked magnetic fields are influenced by the level and frequency of sound. The results indicated that the amplitude of the N1m increased with sound level. The growth in amplitude with increasing sound level was almost constant with low frequencies (250-1000 Hz); however, this growth decreased with high frequencies (>2000 Hz). The behavior of the amplitude may reflect a difference in the increase in the activation of the peripheral and/or central auditory systems.

  20. Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.

    PubMed

    MacLeod, Miles; Nersessian, Nancy J

    2015-02-01

    In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding." Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Noncontaminating technique for making holes in existing process systems

    NASA Technical Reports Server (NTRS)

    Hecker, T. P.; Czapor, H. P.; Giordano, S. M.

    1972-01-01

    Technique is developed for making cleanly-contoured holes in assembled process systems without introducing chips or other contaminants into system. Technique uses portable equipment and does not require dismantling of system. Method was tested on Inconel, stainless steel, ASTMA-53, and Hastelloy X in all positions.

  2. Mathematical Techniques for Nonlinear System Theory.

    DTIC Science & Technology

    1978-01-01

    4. TITLE (and Subtitle) 5. TYPE OF REPORT 6 PERIOD COVERED MATHEMATICAL TECHNIQUES FOR NONLINEAR SYSTEM THEORY Interim 6...ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASK AREA & WORK UNIT NUMBERS Unlvers].ty of Flori.da Center for Mathematical System Theory ~~~~ Gainesville , FL...rings”, Mathematical System Theory , 9: 327—344. E. D. SONTAG (1976b1 “Linear systems over commutative rings: a survey”, Richerche di Automatica, 7: 1-34

  3. General integrable n-level, many-mode Janes-Cummings-Dicke models and classical r-matrices with spectral parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrypnyk, T., E-mail: taras.skrypnyk@unimib.it, E-mail: tskrypnyk@imath.kiev.ua

    Using the technique of classical r-matrices and quantum Lax operators, we construct the most general form of the quantum integrable “n-level, many-mode” spin-boson Jaynes-Cummings-Dicke-type hamiltonians describing an interaction of a molecule of N n-level atoms with many modes of electromagnetic field and containing, in general, additional non-linear interaction terms. We explicitly obtain the corresponding quantum Lax operators and spin-boson analogs of the generalized Gaudin hamiltonians and prove their quantum commutativity. We investigate symmetries of the obtained models that are associated with the geometric symmetries of the classical r-matrices and construct the corresponding algebra of quantum integrals. We consider in detailmore » three classes of non-skew-symmetric classical r-matrices with spectral parameters and explicitly obtain the corresponding quantum Lax operators and Jaynes-Cummings-Dicke-type hamiltonians depending on the considered r-matrix.« less

  4. An intermediate level of abstraction for computational systems chemistry.

    PubMed

    Andersen, Jakob L; Flamm, Christoph; Merkle, Daniel; Stadler, Peter F

    2017-12-28

    Computational techniques are required for narrowing down the vast space of possibilities to plausible prebiotic scenarios, because precise information on the molecular composition, the dominant reaction chemistry and the conditions for that era are scarce. The exploration of large chemical reaction networks is a central aspect in this endeavour. While quantum chemical methods can accurately predict the structures and reactivities of small molecules, they are not efficient enough to cope with large-scale reaction systems. The formalization of chemical reactions as graph grammars provides a generative system, well grounded in category theory, at the right level of abstraction for the analysis of large and complex reaction networks. An extension of the basic formalism into the realm of integer hyperflows allows for the identification of complex reaction patterns, such as autocatalysis, in large reaction networks using optimization techniques.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).

  5. Origins of Fermi-level pinning on GaN and InN polar and nonpolar surfaces

    NASA Astrophysics Data System (ADS)

    Segev, D.; Van de Walle, C. G.

    2006-10-01

    Using band structure and total energy methods, we study the atomic and electronic structures of the polar (+c and - c plane) and nonpolar (a and m plane) surfaces of GaN and InN. We identify two distinct microscopic origins for Fermi-level pinning on GaN and InN, depending on surface stoichiometry and surface polarity. At moderate Ga/N ratios unoccupied gallium dangling bonds pin the Fermi level on n-type GaN at 0.5 0.7 eV below the conduction-band minimum. Under highly Ga-rich conditions metallic Ga adlayers lead to Fermi-level pinning at 1.8 eV above the valence-band maximum. We also explain the source of the intrinsic electron accumulation that has been universally observed on polar InN surfaces. It is caused by In-In bonds leading to occupied surface states above the conduction-band minimum. We predict that such a charge accumulation will be absent on the nonpolar surfaces of InN, when prepared under specific conditions.

  6. Load Modeling and Calibration Techniques for Power System Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, Forrest S.; Mayhorn, Ebony T.; Elizondo, Marcelo A.

    2011-09-23

    Load modeling is the most uncertain area in power system simulations. Having an accurate load model is important for power system planning and operation. Here, a review of load modeling and calibration techniques is given. This paper is not comprehensive, but covers some of the techniques most commonly found in the literature. The advantages and disadvantages of each technique are outlined.

  7. Education mitigates age-related decline in N-Acetylaspartate levels

    PubMed Central

    Erickson, Kirk I; Leckie, Regina L; Weinstein, Andrea M; Radchenkova, Polina; Sutton, Bradley P; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock-Heyman, Laura; McAuley, Edward; Kramer, Arthur F

    2015-01-01

    Background Greater educational attainment is associated with better neurocognitive health in older adults and is thought to reflect a measure of cognitive reserve. In vivo neuroimaging tools have begun to identify the brain systems and networks potentially responsible for reserve. Methods We examined the relationship between education, a commonly used proxy for cognitive reserve, and N-acetylaspartate (NAA) in neurologically healthy older adults (N = 135; mean age = 66 years). Using single voxel MR spectroscopy, we predicted that higher levels of education would moderate an age-related decline in NAA in the frontal cortex. Results After controlling for the variance associated with cardiorespiratory fitness, sex, annual income, and creatine levels, there were no significant main effects of education (B = 0.016, P = 0.787) or age (B = −0.058, P = 0.204) on NAA levels. However, consistent with our predictions, there was a significant education X age interaction such that more years of education offset an age-related decline in NAA (B = 0.025, P = 0.031). When examining working memory via the backwards digit span task, longer span length was associated with greater education (P < 0.01) and showed a trend with greater NAA concentrations (P < 0.06); however, there was no age X education interaction on digit span performance nor a significant moderated mediation effect between age, education, and NAA on digit span performance. Conclusions Taken together, these results suggest that higher levels of education may attenuate an age-related reduction in neuronal viability in the frontal cortex. PMID:25798329

  8. Calculated defect levels in GaN and AlN and their pressure coefficients

    NASA Astrophysics Data System (ADS)

    Gorczyca, I.; Svane, A.; Christensen, N. E.

    1997-03-01

    Using the Green's function technique based on the linear muffin-tin orbital method in the atomic-spheres approximation we perform self-consistent calculations of the electronic structure of native defects and other impurities in cubic GaN and AlN. Vacancies, antisites and interstitials and some of the most common dopants such as Zn, Mg, Cd, C and Ge are investigated in different charge states. To examine the lattice relaxation effects the super-cell approach in connection with the full-potential linear muffin-tin-orbital method is applied to the aluminum vacancy and the nitrogen antisite in AlN. The influence of hydrostatic pressure on the energy positions of some defect states is also studied.

  9. Detection technique of targets for missile defense system

    NASA Astrophysics Data System (ADS)

    Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong

    2009-11-01

    Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.

  10. Determining production level under uncertainty using fuzzy simulation and bootstrap technique, a case study

    NASA Astrophysics Data System (ADS)

    Hamidi, Mohammadreza; Shahanaghi, Kamran; Jabbarzadeh, Armin; Jahani, Ehsan; Pousti, Zahra

    2017-12-01

    In every production plant, it is necessary to have an estimation of production level. Sometimes there are many parameters affective in this estimation. In this paper, it tried to find an appropriate estimation of production level for an industrial factory called Barez in an uncertain environment. We have considered a part of production line, which has different production time for different kind of products, which means both environmental and system uncertainty. To solve the problem we have simulated the line and because of the uncertainty in the times, fuzzy simulation is considered. Required fuzzy numbers are estimated by the use of bootstrap technique. The results are used in production planning process by factory experts and have had satisfying consequences. Opinions of these experts about the efficiency of using this methodology, has been attached.

  11. Reliability analysis of a robotic system using hybridized technique

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Komal; Lather, J. S.

    2017-09-01

    In this manuscript, the reliability of a robotic system has been analyzed using the available data (containing vagueness, uncertainty, etc). Quantification of involved uncertainties is done through data fuzzification using triangular fuzzy numbers with known spreads as suggested by system experts. With fuzzified data, if the existing fuzzy lambda-tau (FLT) technique is employed, then the computed reliability parameters have wide range of predictions. Therefore, decision-maker cannot suggest any specific and influential managerial strategy to prevent unexpected failures and consequently to improve complex system performance. To overcome this problem, the present study utilizes a hybridized technique. With this technique, fuzzy set theory is utilized to quantify uncertainties, fault tree is utilized for the system modeling, lambda-tau method is utilized to formulate mathematical expressions for failure/repair rates of the system, and genetic algorithm is utilized to solve established nonlinear programming problem. Different reliability parameters of a robotic system are computed and the results are compared with the existing technique. The components of the robotic system follow exponential distribution, i.e., constant. Sensitivity analysis is also performed and impact on system mean time between failures (MTBF) is addressed by varying other reliability parameters. Based on analysis some influential suggestions are given to improve the system performance.

  12. Rocket engine system reliability analyses using probabilistic and fuzzy logic techniques

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1994-01-01

    The reliability of rocket engine systems was analyzed by using probabilistic and fuzzy logic techniques. Fault trees were developed for integrated modular engine (IME) and discrete engine systems, and then were used with the two techniques to quantify reliability. The IRRAS (Integrated Reliability and Risk Analysis System) computer code, developed for the U.S. Nuclear Regulatory Commission, was used for the probabilistic analyses, and FUZZYFTA (Fuzzy Fault Tree Analysis), a code developed at NASA Lewis Research Center, was used for the fuzzy logic analyses. Although both techniques provided estimates of the reliability of the IME and discrete systems, probabilistic techniques emphasized uncertainty resulting from randomness in the system whereas fuzzy logic techniques emphasized uncertainty resulting from vagueness in the system. Because uncertainty can have both random and vague components, both techniques were found to be useful tools in the analysis of rocket engine system reliability.

  13. Role of Increased n-acetylaspartate Levels in Cancer

    PubMed Central

    Zand, Behrouz; Previs, Rebecca A.; Zacharias, Niki M.; Rupaimoole, Rajesha; Mitamura, Takashi; Nagaraja, Archana Sidalaghatta; Guindani, Michele; Dalton, Heather J.; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Hu, Wei; Pecot, Chad V.; Ivan, Cristina; Wu, Sherry Y.; McCullough, Christopher R.; Gharpure, Kshipra M.; Shoshan, Einav; Pradeep, Sunila; Mangala, Lingegowda S.; Rodriguez-Aguayo, Cristian; Wang, Ying; Nick, Alpa M.; Davies, Michael A.; Armaiz-Pena, Guillermo; Liu, Jinsong; Lutgendorf, Susan K.; Baggerly, Keith A.; Eli, Menashe Bar; Lopez-Berestein, Gabriel; Nagrath, Deepak; Bhattacharya, Pratip K.

    2016-01-01

    Background: The clinical and biological effects of metabolic alterations in cancer are not fully understood. Methods: In high-grade serous ovarian cancer (HGSOC) samples (n = 101), over 170 metabolites were profiled and compared with normal ovarian tissues (n = 15). To determine NAT8L gene expression across different cancer types, we analyzed the RNA expression of cancer types using RNASeqV2 data available from the open access The Cancer Genome Atlas (TCGA) website (http://www.cbioportal.org/public-portal/). Using NAT8L siRNA, molecular techniques and histological analysis, we determined cancer cell viability, proliferation, apoptosis, and tumor growth in in vitro and in vivo (n = 6–10 mice/group) settings. Data were analyzed with the Student’s t test and Kaplan-Meier analysis. Statistical tests were two-sided. Results: Patients with high levels of tumoral NAA and its biosynthetic enzyme, aspartate N-acetyltransferase (NAT8L), had worse overall survival than patients with low levels of NAA and NAT8L. The overall survival duration of patients with higher-than-median NAA levels (3.6 years) was lower than that of patients with lower-than-median NAA levels (5.1 years, P = .03). High NAT8L gene expression in other cancers (melanoma, renal cell, breast, colon, and uterine cancers) was associated with worse overall survival. NAT8L silencing reduced cancer cell viability (HEYA8: control siRNA 90.61%±2.53, NAT8L siRNA 39.43%±3.00, P < .001; A2780: control siRNA 90.59%±2.53, NAT8L siRNA 7.44%±1.71, P < .001) and proliferation (HEYA8: control siRNA 74.83%±0.92, NAT8L siRNA 55.70%±1.54, P < .001; A2780: control siRNA 50.17%±4.13, NAT8L siRNA 26.52%±3.70, P < .001), which was rescued by addition of NAA. In orthotopic mouse models (ovarian cancer and melanoma), NAT8L silencing reduced tumor growth statistically significantly (A2780: control siRNA 0.52 g±0.15, NAT8L siRNA 0.08 g±0.17, P < .001; HEYA8: control siRNA 0.79 g±0.42, NAT8L siRNA 0.24 g±0.18, P = .008, A

  14. Mechanical system diagnostics using vibration testing techniques

    NASA Technical Reports Server (NTRS)

    Mcleod, Catherine D.; Raju, P. K.; Crocker, M. J.

    1990-01-01

    The 'Cepstrum' technique of vibration-path identification allows the recovery of the transfer function of a system with little knowledge as to its excitation force, by means of a mathematical manipulation of the system output in conjunction with subtraction of part of the output and suitable signal processing. An experimental program has been conducted to evaluate the usefulness of this technique in the cases of simple, cantilever-beam and free-free plate structures as well as in that of a complex mechanical system. On the basis of the transfer functions thus recovered, it was possible to evaluate the shifts in the resonance frequencies of a structure due to the presence of defects.

  15. An Integrated Calibration Technique for Stereo Vision Systems (PREPRINT)

    DTIC Science & Technology

    2010-03-01

    technique for stereo vision systems has been developed. To demonstrate and evaluate this calibration technique, multiple Wii Remotes (Wiimotes) from Nintendo ...from Nintendo were used to form stereo vision systems to perform 3D motion capture in real time. This integrated technique is a two-step process...Wiimotes) used in Nintendo Wii games. Many researchers have successfully dealt with the problem of camera calibration by taking images from a 2D

  16. System-level power optimization for real-time distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Luo, Jiong

    Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as

  17. Extending the Multi-level Method for the Simulation of Stochastic Biological Systems.

    PubMed

    Lester, Christopher; Baker, Ruth E; Giles, Michael B; Yates, Christian A

    2016-08-01

    The multi-level method for discrete-state systems, first introduced by Anderson and Higham (SIAM Multiscale Model Simul 10(1):146-179, 2012), is a highly efficient simulation technique that can be used to elucidate statistical characteristics of biochemical reaction networks. A single point estimator is produced in a cost-effective manner by combining a number of estimators of differing accuracy in a telescoping sum, and, as such, the method has the potential to revolutionise the field of stochastic simulation. In this paper, we present several refinements of the multi-level method which render it easier to understand and implement, and also more efficient. Given the substantial and complex nature of the multi-level method, the first part of this work reviews existing literature, with the aim of providing a practical guide to the use of the multi-level method. The second part provides the means for a deft implementation of the technique and concludes with a discussion of a number of open problems.

  18. Application of drive circuit based on L298N in direct current motor speed control system

    NASA Astrophysics Data System (ADS)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  19. A study of trends and techniques for space base electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.; Mahmood, Q.

    1978-01-01

    A sputtering system was developed to deposit aluminum and aluminum alloys by the dc sputtering technique. This system is designed for a high level of cleanliness and for monitoring the deposition parameters during film preparation. This system is now ready for studying the deposition and annealing parameters upon double-level metal preparation. A technique recently applied for semiconductor analysis, the finite element method, was studied for use in the computer modeling of two dimensional MOS transistor structures. It was concluded that the method has not been sufficiently well developed for confident use at this time. An algorithm was developed for confident use at this time. An algorithm was developed for implementing a computer study which is based upon the finite difference method. The program which was developed was modified and used to calculate redistribution data for boron and phosphorous which had been predeposited by ion implantation with range and straggle conditions. Data were generated for 111 oriented SOS films with redistribution in N2, dry O2 and steam ambients.

  20. Defect quasi Fermi level control-based CN reduction in GaN: Evidence for the role of minority carriers

    NASA Astrophysics Data System (ADS)

    Reddy, Pramod; Kaess, Felix; Tweedie, James; Kirste, Ronny; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko

    2017-10-01

    Compensating point defect reduction in wide bandgap semiconductors is possible by above bandgap illumination based defect quasi Fermi level (dQFL) control. The point defect control technique employs excess minority carriers that influence the dQFL of the compensator, increase the corresponding defect formation energy, and consequently are responsible for point defect reduction. Previous studies on various defects in GaN and AlGaN have shown good agreement with the theoretical model, but no direct evidence for the role of minority carriers was provided. In this work, we provide direct evidence for the role of minority carriers in reducing point defects by studying the predicted increase in work done against defect (CN-1) formation with the decrease in the Fermi level (free carrier concentration) in Si doped GaN at a constant illumination intensity. Comparative defect photoluminescence measurements on illuminated and dark regions of GaN show an excellent quantitative agreement with the theory by exhibiting a greater reduction in yellow luminescence attributed to CN-1 at lower doping, thereby providing conclusive evidence for the role of the minority carriers in Fermi level control-based point defect reduction.

  1. Allan deviation computations of a linear frequency synthesizer system using frequency domain techniques

    NASA Technical Reports Server (NTRS)

    Wu, Andy

    1995-01-01

    Allan Deviation computations of linear frequency synthesizer systems have been reported previously using real-time simulations. Even though it takes less time compared with the actual measurement, it is still very time consuming to compute the Allan Deviation for long sample times with the desired confidence level. Also noises, such as flicker phase noise and flicker frequency noise, can not be simulated precisely. The use of frequency domain techniques can overcome these drawbacks. In this paper the system error model of a fictitious linear frequency synthesizer is developed and its performance using a Cesium (Cs) atomic frequency standard (AFS) as a reference is evaluated using frequency domain techniques. For a linear timing system, the power spectral density at the system output can be computed with known system transfer functions and known power spectral densities from the input noise sources. The resulting power spectral density can then be used to compute the Allan Variance at the system output. Sensitivities of the Allan Variance at the system output to each of its independent input noises are obtained, and they are valuable for design trade-off and trouble-shooting.

  2. Monitoring by Control Technique - Capture Systems

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about capture system control techniques used to reduce pollutant emissions.

  3. Limitations of STIRAP-like population transfer in extended systems: the three-level system embedded in a web of background states.

    PubMed

    Jakubetz, Werner

    2012-12-14

    This paper presents a systematic numerical investigation of background state participation in STIRAP (stimulated Raman-adiabatic passage) population transfer among vibrational states, focusing on the consequences for the robustness of the method. The simulations, which are performed over extended grids in the parameter space of the Stokes- and pump pulses (frequencies, field strengths, and pulse lengths), involve hierarchies of (3 + N)-level systems of increasing complexity, ranging from the standard three-level STIRAP setup, (N = 0) in Λ-configuration, up to N = 446. A strongly coupled three-level core system is selected from the full Hamiltonian of the double-well HCN∕HNC system, and the couplings connecting this core system to the remaining states are (re-) parameterized in different ways, from very weak to very strong. The systems so obtained represent a three-level system embedded in various ways in webs of cross-linked vibrational background states and incorporate typical molecular properties. We first summarize essential properties of population transfer in the standard three-level system and quantify the robustness of the method and its dependence on the pulse parameters. Against these reference results, we present results obtained for four (3 + 446)-level systems and several subsystems. For pulse lengths of at most few picoseconds the intrinsic robustness of STIRAP with respect to variations in the field strength disappears as soon as the largest core-background couplings exceed about one tenth of the STIRAP couplings. In such cases robustness with respect to variations in the field strength is entirely lost, since at higher field strengths, except for irregularly spaced narrow frequency ranges, transfer probabilities are strongly reduced. STIRAP-like population transfer is maintained, with some restrictions, at low field strengths near the onset of adiabatic transfer. The suppression of STIRAP is traced back to different mechanisms based on a

  4. Knowledge based systems: A preliminary survey of selected issues and techniques

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kavi, Srinu

    1984-01-01

    It is only recently that research in Artificial Intelligence (AI) is accomplishing practical results. Most of these results can be attributed to the design and use of expert systems (or Knowledge-Based Systems, KBS) - problem-solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. But many computer systems designed to see images, hear sounds, and recognize speech are still in a fairly early stage of development. In this report, a preliminary survey of recent work in the KBS is reported, explaining KBS concepts and issues and techniques used to construct them. Application considerations to construct the KBS and potential KBS research areas are identified. A case study (MYCIN) of a KBS is also provided.

  5. Data Compression Techniques for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Bradley, William G.

    1998-01-01

    Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.

  6. African Ancestry Gradient Is Associated with Lower Systemic F2-Isoprostane Levels.

    PubMed

    Annor, Francis; Goodman, Michael; Thyagarajan, Bharat; Okosun, Ike; Doumatey, Ayo; Gower, Barbara A; Il'yasova, Dora

    2017-01-01

    Context . Low levels of systemic F 2 -isoprostanes (F 2 -IsoP) increase the risk of diabetes and weight gain and were found in African Americans. Low F 2 -IsoPs could reflect an unfavorable metabolic characteristic, namely, slow mitochondrial metabolism in individuals with African ancestry. Objective . To examine differences in plasma F 2 -IsoPs in three groups with a priori different proportion of African ancestry: non-Hispanic Whites (NHWs), US-born African Americans (AAs), and West African immigrants (WAI). Design . Cross-sectional study. Setting . Georgia residents recruited from church communities. Participants . 218 males and females 25-74 years of age, who are self-identified as NHW ( n = 83), AA ( n = 56), or WAI ( n = 79). Main Outcome Measure(s) . Plasma F 2 -IsoPs quantified by gas chromatography-mass spectrometry. Results . After adjustment for age, gender, obesity, and other comorbidities, WAI had lower levels of plasma F 2 -IsoP than AA (beta-coefficient = -9.8, p < 0.001) and AA had lower levels than NHW (beta-coefficient = -30.3, p < 0.001). Similarly, among healthy nonobese participants, F 2 -IsoP levels were lowest among WAI, followed by AA, and the highest levels were among NHW. Conclusion . Plasma F 2 -IsoPs are inversely associated with African ancestry gradient. Additional studies are required to test whether optimization of systemic F 2 -IsoP levels can serve as means to improve race-specific lifestyle and pharmacological intervention targeted to obesity prevention and treatment.

  7. On diagrammatic technique for nonlinear dynamical systems

    NASA Astrophysics Data System (ADS)

    Semenyakin, Mykola

    2014-11-01

    In this paper, we investigate phase flows over ℂn and ℝn generated by vector fields V = ∑ Pi∂i where Pi are finite degree polynomials. With the convenient diagrammatic technique, we get expressions for evolution operators ev{V|t} : x(0) ↦ x(t) through the series in powers of x(0) and t, represented as sum over all trees of a particular type. Estimates are made for the radius of convergence in some particular cases. The phase flows behavior in the neighborhood of vector field fixed points are examined. Resonance cases are considered separately.

  8. Novel First-Level Interconnect Techniques for Flip Chip on MEMS Devices

    PubMed Central

    Sutanto, Jemmy; Anand, Sindhu; Patel, Chetan; Muthuswamy, Jit

    2013-01-01

    Flip-chip packaging is desirable for microelectro-mechanical systems (MEMS) devices because it reduces the overall package size and allows scaling up the number of MEMS chips through 3-D stacks. In this report, we demonstrate three novel techniques to create first-level interconnect (FLI) on MEMS: 1) Dip and attach technology for Ag epoxy; 2) Dispense technology for solder paste; 3) Dispense, pull, and attach technology (DPAT) for solder paste. The above techniques required no additional microfabrication steps, produced no visible surface contamination on the MEMS active structures, and generated high-aspect-ratio interconnects. The developed FLIs were successfully tested on MEMS moveable microelectrodes microfabricated by SUMMiTVTM process producing no apparent detrimental effect due to outgassing. The bumping processes were successfully applied on Al-deposited bond pads of 100 μm × 100 μm with an average bump height of 101.3 μm for Ag and 184.8 μm for solder (63Sn, 37Pb). DPAT for solder paste produced bumps with the aspect ratio of 1.8 or more. The average shear strengths of Ag and solder bumps were 78 MPa and 689 kPa, respectively. The electrical test on Ag bumps at 794 A/cm2 demonstrated reliable electrical interconnects with negligible resistance. These scalable FLI technologies are potentially useful for MEMS flip-chip packaging and 3-D stacking. PMID:24504168

  9. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment

    NASA Astrophysics Data System (ADS)

    Sahoo, Sasmita; Jha, Madan K.

    2013-12-01

    The potential of multiple linear regression (MLR) and artificial neural network (ANN) techniques in predicting transient water levels over a groundwater basin were compared. MLR and ANN modeling was carried out at 17 sites in Japan, considering all significant inputs: rainfall, ambient temperature, river stage, 11 seasonal dummy variables, and influential lags of rainfall, ambient temperature, river stage and groundwater level. Seventeen site-specific ANN models were developed, using multi-layer feed-forward neural networks trained with Levenberg-Marquardt backpropagation algorithms. The performance of the models was evaluated using statistical and graphical indicators. Comparison of the goodness-of-fit statistics of the MLR models with those of the ANN models indicated that there is better agreement between the ANN-predicted groundwater levels and the observed groundwater levels at all the sites, compared to the MLR. This finding was supported by the graphical indicators and the residual analysis. Thus, it is concluded that the ANN technique is superior to the MLR technique in predicting spatio-temporal distribution of groundwater levels in a basin. However, considering the practical advantages of the MLR technique, it is recommended as an alternative and cost-effective groundwater modeling tool.

  10. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment technique...

  11. Phase Diagrams of the n-Decane- n-Hexadecane-Cyclododecane, n-Decane-Cyclododecane, and n-Hexadecane-Cyclododecane Systems

    NASA Astrophysics Data System (ADS)

    Shamitov, A. A.; Garkushin, I. K.; Kolyado, A. V.; Petrov, E. P.

    2018-02-01

    The n-decane- n-hexadecane-cyclododecane, n-decane-cyclododecane, and n-hexadecane-cyclododecane systems are studied by means of low-temperature differential thermal analysis using a differential scanning heat flow calorimeter. It is noted that all studied systems belong to the eutectic type. It is concluded that in the n-decane- n-hexadecane-cyclododecane system, the eutectic composition contains 85.0 wt % n-C10H22, 4.0 wt % n-C16H34, and 11.0 wt % C12H24. It has a melting point of -35.0°C.

  12. N-acetyltransferase 2 activity and folate levels

    PubMed Central

    Cao, Wen; Strnatka, Diana; McQueen, Charlene A.; Hunter, Robert J.; Erickson, Robert P.

    2010-01-01

    Aims To determine whether increased N-acetyltransferase (NAT) activity might have a toxic effect during development and an influence on folate levels since previous work has shown that only low levels of exogenous NAT can be achieved in constitutionally transgenic mice (Cao, et al, 2005) Main Methods A human NAT1 tet-inducible construct was used that would not be expressed until the inducer was delivered. Human NAT1 cDNA was cloned into pTRE2 and injected into mouse oocytes. Two transgenic lines were crossed to mouse line TgN(rtTahCMV)4Uh containing the CMV promoted “teton.”Measurements of red blood cell folate levels in inbred strains of mice were performed. Key findings Only low levels of human NAT1 could be achieved in kidney (highly responsive in other studies) whether the inducer, doxycycline, was given by gavage or in drinking water.An inverse correlation of folate levels with Nat2 enzyme activity was found. Significance Since increasing NAT1 activity decrease folate in at least one tissue, the detrimental effect of expression of human NAT1 in combination with endogenous mouse Nat2 may be a consequence of increased catabolism of folate. PMID:19932120

  13. Optimal state transfer of a single dissipative two-level system

    NASA Astrophysics Data System (ADS)

    Jirari, Hamza; Wu, Ning

    2016-04-01

    Optimal state transfer of a single two-level system (TLS) coupled to an Ohmic boson bath via off-diagonal TLS-bath coupling is studied by using optimal control theory. In the weak system-bath coupling regime where the time-dependent Bloch-Redfield formalism is applicable, we obtain the Bloch equation to probe the evolution of the dissipative TLS in the presence of a time-dependent external control field. By using the automatic differentiation technique to compute the gradient for the cost functional, we calculate the optimal transfer integral profile that can achieve an ideal transfer within a dimer system in the Fenna-Matthews-Olson (FMO) model. The robustness of the control profile against temperature variation is also analyzed.

  14. Applications of Shell-Model Techniques to N = 50 Nuclei.

    NASA Astrophysics Data System (ADS)

    Ji, Xiangdong

    Traditional shell-model techniques, which involve setting up and diagonalizing model Hamiltonians in a finite Hilbert space, have been used to treat the N = 50 isotones. A model space with active f_{5over 2}, p_{3over 2}, p_{1over 2} and g_{9over 2} proton orbits is used to simulate the low-lying excitations of these isotones. An effective Hamiltonian which consists of one-body and two-body interactions is obtained by varying a total of 69 parameters to fit over 140 experimental energy levels in nuclei ranging from ^{82 }Ge to ^{96}Pd. The structures of the model wavefunctions calculated with the empirical model Hamiltonian are analyzed and compared with experimental measurements. It is found that the overall level systematics of N = 50 nuclei are well described by the model treatment. In particular, for the nuclei heavier than ^{88}Sr, the present results are not essentially different from those obtained in the p_{1over 2}-g_ {9over 2} model space, and for those lighter than ^{88}Sr, the wavefunctions are dominated by f_{5 over 2}-p_{3over 2}-p _{1over2} configurations. The model predictions for very proton-deficient, very unstable nuclei are presented for further experimental verification. Spectroscopic factors for single-proton-transfer reactions and M1 and E2 transition rates and moments are calculated using these model wavefunctions. Effective strengths of electromagnetic operators are adjusted in order to achieve the best agreement between the model predictions and experimental data. The effective proton charge is determined to be 1.9 e. The spin g-factor is found to be quenched by 16 percent for the fp shell orbits and by 29 percent for the g_{9over 2 } orbit. A new shell-model code which is capable of performing shell-model calculations in a general LS -coupling basis has been constructed. The code can be implemented with shell-model truncation schemes for both the LS -coupling limit and the seniority limit. Examples from the Ni isotopes are used to

  15. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems

    NASA Astrophysics Data System (ADS)

    Yang, Le; Wang, Shuo; Feng, Jianghua

    2017-11-01

    Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.

  16. Performance evaluation of a hybrid-passive landfill leachate treatment system using multivariate statistical techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Jack, E-mail: jack.wallace@ce.queensu.ca; Champagne, Pascale, E-mail: champagne@civil.queensu.ca; Monnier, Anne-Charlotte, E-mail: anne-charlotte.monnier@insa-lyon.fr

    modeling the five criteria parameters (set as dependent variables), on a statistically significant level: conductivity, dissolved oxygen (DO), nitrite (NO{sub 2}{sup −}), organic nitrogen (N), oxidation reduction potential (ORP), pH, sulfate and total volatile solids (TVS). The criteria parameters and the significant explanatory parameters were most important in modeling the dynamics of the passive treatment system during the study period. Such techniques and procedures were found to be highly valuable and could be applied to other sites to determine parameters of interest in similar naturalized engineered systems.« less

  17. System-Level Performance of Antenna Arrays in CDMA-Based Cellular Mobile Radio Systems

    NASA Astrophysics Data System (ADS)

    Czylwik, Andreas; Dekorsy, Armin

    2004-12-01

    Smart antennas exploit the inherent spatial diversity of the mobile radio channel, provide an antenna gain, and also enable spatial interference suppression leading to reduced intracell as well as intercell interference. Especially, for the downlink of future CDMA-based mobile communications systems, transmit beamforming is seen as a well-promising smart antenna technique. The main objective of this paper is to study the performance of diverse antenna array topologies when applied for transmit beamforming in the downlink of CDMA-based networks. In this paper, we focus on uniform linear array (ULA) and uniform circular array (UCA) topologies. For the ULA, we consider three-sector base stations with one linear array per sector. While recent research on downlink beamforming is often restricted to one single cell, this study takes into account the important impact of intercell interference on the performance by evaluating complete networks. Especially, from the operator perspective, system capacity and system coverage are very essential parameters of a cellular system so that there is a clear necessity of intensive system level investigations. Apart from delivering assessments on the performance of the diverse antenna array topologies, in the paper also different antenna array parameters, such as element spacing and beamwidth of the sector antennas, are optimized. Although we focus on the network level, fast channel fluctuations are taken into account by including them analytically into the signal-to-interference calculation.

  18. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  19. Seismic Hazard Analysis as a Controlling Technique of Induced Seismicity in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Convertito, V.; Sharma, N.; Maercklin, N.; Emolo, A.; Zollo, A.

    2011-12-01

    The effect of induced seismicity of geothermal systems during stimulation and fluid circulation can cover a wide range of values from light and unfelt to severe and damaging. If the design of a modern geothermal system requires the largest efficiency to be obtained from the social point of view it is required that the system could be managed in order to reduce possible impact in advance. In this framework, automatic control of the seismic response of the stimulated reservoir is nowadays mandatory, particularly in proximity of densely populated areas. Recently, techniques have been proposed for this purpose mainly based on the concept of the traffic light. This system provides a tool to decide the level of stimulation rate based on the real-time analysis of the induced seismicity and the ongoing ground motion values. However, in some cases the induced effect can be delayed with respect to the time when the reservoir is stimulated. Thus, a controlling system technique able to estimate the ground motion levels for different time scales can help to better control the geothermal system. Here we present an adaptation of the classical probabilistic seismic hazard analysis to the case where the seismicity rate as well as the propagation medium properties are not constant with time. We use a non-homogeneous seismicity model for modeling purposes, in which the seismicity rate and b-value of the recurrence relationship change with time. Additionally, as a further controlling procedure, we propose a moving time window analysis of the recorded peak ground-motion values aimed at monitoring the changes in the propagation medium. In fact, for the same set of magnitude values recorded at the same stations, we expect that on average peak ground motion values attenuate in same way. As a consequence, the residual differences can be reasonably ascribed to changes in medium properties. These changes can be modeled and directly introduced in the hazard integral. We applied the proposed

  20. African Ancestry Gradient Is Associated with Lower Systemic F2-Isoprostane Levels

    PubMed Central

    Annor, Francis; Okosun, Ike; Gower, Barbara A.

    2017-01-01

    Context. Low levels of systemic F2-isoprostanes (F2-IsoP) increase the risk of diabetes and weight gain and were found in African Americans. Low F2-IsoPs could reflect an unfavorable metabolic characteristic, namely, slow mitochondrial metabolism in individuals with African ancestry. Objective. To examine differences in plasma F2-IsoPs in three groups with a priori different proportion of African ancestry: non-Hispanic Whites (NHWs), US-born African Americans (AAs), and West African immigrants (WAI). Design. Cross-sectional study. Setting. Georgia residents recruited from church communities. Participants. 218 males and females 25–74 years of age, who are self-identified as NHW (n = 83), AA (n = 56), or WAI (n = 79). Main Outcome Measure(s). Plasma F2-IsoPs quantified by gas chromatography-mass spectrometry. Results. After adjustment for age, gender, obesity, and other comorbidities, WAI had lower levels of plasma F2-IsoP than AA (beta-coefficient = −9.8, p < 0.001) and AA had lower levels than NHW (beta-coefficient = −30.3, p < 0.001). Similarly, among healthy nonobese participants, F2-IsoP levels were lowest among WAI, followed by AA, and the highest levels were among NHW. Conclusion. Plasma F2-IsoPs are inversely associated with African ancestry gradient. Additional studies are required to test whether optimization of systemic F2-IsoP levels can serve as means to improve race-specific lifestyle and pharmacological intervention targeted to obesity prevention and treatment. PMID:28250893

  1. A Next Generation Digital Counting System For Low-Level Tritium Studies (Project Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, P.

    2016-10-03

    Since the early seventies, SRNL has pioneered low-level tritium analysis using various nuclear counting technologies and techniques. Since 1999, SRNL has successfully performed routine low-level tritium analyses with counting systems based on digital signal processor (DSP) modules developed in the late 1990s. Each of these counting systems are complex, unique to SRNL, and fully dedicated to performing routine tritium analyses of low-level environmental samples. It is time to modernize these systems due to a variety of issues including (1) age, (2) lack of direct replacement electronics modules and (3) advances in digital signal processing and computer technology. There has beenmore » considerable development in many areas associated with the enterprise of performing low-level tritium analyses. The objective of this LDRD project was to design, build, and demonstrate a Next Generation Tritium Counting System (NGTCS), while not disrupting the routine low-level tritium analyses underway in the facility on the legacy counting systems. The work involved (1) developing a test bed for building and testing new counting system hardware that does not interfere with our routine analyses, (2) testing a new counting system based on a modern state of the art DSP module, and (3) evolving the low-level tritium counter design to reflect the state of the science.« less

  2. Dissociation and Internal Excitation of Molecular Nitrogen Due to N + N2 Collisions Using Direct Molecular Simulation

    NASA Technical Reports Server (NTRS)

    Grover, Maninder S.; Schwartzentruber, Thomas E.; Jaffe, Richard L.

    2017-01-01

    In this work we present a molecular level study of N2+N collisions, focusing on excitation of internal energy modes and non-equilibrium dissociation. The computation technique used here is the direct molecular simulation (DMS) method and the molecular interactions have been modeled using an ab-initio potential energy surface (PES) developed at NASA's Ames Research Center. We carried out vibrational excitation calculations between 5000K and 30000K and found that the characteristic vibrational excitation time for the N + N2 process was an order of magnitude lower than that predicted by the Millikan and White correlation. It is observed that during vibrational excitation the high energy tail of the vibrational energy distribution gets over populated first and the lower energy levels get populated as the system evolves. It is found that the non-equilibrium dissociation rate coefficients for the N + N2 process are larger than those for the N2 + N2 process. This is attributed to the non-equilibrium vibrational energy distributions for the N + N2 process being less depleted than that for the N2 +N2 process. For an isothermal simulation we find that the probability of dissociation goes as 1/T(sub tr) for molecules with internal energy (epsilon(sub int)) less than approximately 9.9eV, while for molecules with epsilon (sub int) greater than 9.9eV the dissociation probability was weakly dependent on translational temperature of the system. We compared non-equilibrium dissociation rate coefficients and characteristic vibrational excitation times obtained by using the ab-initio PES developed at NASA's Ames Research Center to those obtained by using an ab-initio PES developed at the University of Minnesota. Good agreement was found between the macroscopic properties and molecular level description of the system obtained by using the two PESs.

  3. Application of a system modification technique to dynamic tuning of a spinning rotor blade

    NASA Technical Reports Server (NTRS)

    Spain, C. V.

    1987-01-01

    An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.

  4. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions.

    PubMed

    Gómez-Muñoz, B; Case, S D C; Jensen, L S

    2016-03-01

    The combined effects of pig slurry acidification, subsequent separation techniques and biochar production from the solid fraction on N mineralisation and N2O and CO2 emissions in soil were investigated in an incubation experiment. Acidification of pig slurry increased N availability from the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Ant colony optimisation-direct cover: a hybrid ant colony direct cover technique for multi-level synthesis of multiple-valued logic functions

    NASA Astrophysics Data System (ADS)

    Abd-El-Barr, Mostafa

    2010-12-01

    The use of non-binary (multiple-valued) logic in the synthesis of digital systems can lead to savings in chip area. Advances in very large scale integration (VLSI) technology have enabled the successful implementation of multiple-valued logic (MVL) circuits. A number of heuristic algorithms for the synthesis of (near) minimal sum-of products (two-level) realisation of MVL functions have been reported in the literature. The direct cover (DC) technique is one such algorithm. The ant colony optimisation (ACO) algorithm is a meta-heuristic that uses constructive greediness to explore a large solution space in finding (near) optimal solutions. The ACO algorithm mimics the ant's behaviour in the real world in using the shortest path to reach food sources. We have previously introduced an ACO-based heuristic for the synthesis of two-level MVL functions. In this article, we introduce the ACO-DC hybrid technique for the synthesis of multi-level MVL functions. The basic idea is to use an ant to decompose a given MVL function into a number of levels and then synthesise each sub-function using a DC-based technique. The results obtained using the proposed approach are compared to those obtained using existing techniques reported in the literature. A benchmark set consisting of 50,000 randomly generated 2-variable 4-valued functions is used in the comparison. The results obtained using the proposed ACO-DC technique are shown to produce efficient realisation in terms of the average number of gates (as a measure of chip area) needed for the synthesis of a given MVL function.

  6. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  7. Capillary electrophoresis in two-dimensional separation systems: Techniques and applications.

    PubMed

    Kohl, Felix J; Sánchez-Hernández, Laura; Neusüß, Christian

    2015-01-01

    The analysis of complex samples requires powerful separation techniques. Here, 2D chromatographic separation techniques (e.g. LC-LC, GC-GC) are increasingly applied in many fields. Electrophoretic separation techniques show a different selectivity in comparison to LC and GC and very high separation efficiency. Thus, 2D separation systems containing at least one CE-based separation technique are an interesting alternative featuring potentially a high degree of orthogonality. However, the generally small volumes and strong electrical fields in CE require special coupling techniques. These technical developments are reviewed in this work, discussing benefits and drawbacks of offline and online systems. Emphasis is placed on the design of the systems, their coupling, and the detector used. Moreover, the employment of strategies to improve peak capacity, resolution, or sensitivity is highlighted. Various applications of 2D separations with CE are summarized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Simplified Techniques for Evaluation and Interpretation of Pavement Deflections for Network-level Analysis : Guide for Assessment of Pavement Structure Performance for PMS Applications

    DOT National Transportation Integrated Search

    2012-06-01

    The objective of this study was to develop an approach for incorporating techniques to interpret and evaluate deflection : data for network-level pavement management system (PMS) applications. The first part of this research focused on : identifying ...

  9. Fault detection in rotor bearing systems using time frequency techniques

    NASA Astrophysics Data System (ADS)

    Chandra, N. Harish; Sekhar, A. S.

    2016-05-01

    Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.

  10. Image acquisition system using on sensor compressed sampling technique

    NASA Astrophysics Data System (ADS)

    Gupta, Pravir Singh; Choi, Gwan Seong

    2018-01-01

    Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.

  11. A comparative evaluation of pain and anxiety levels in 2 different anesthesia techniques: locoregional anesthesia using conventional syringe versus intraosseous anesthesia using a computer-controlled system (Quicksleeper).

    PubMed

    Özer, Senem; Yaltirik, Mehmet; Kirli, Irem; Yargic, Ilhan

    2012-11-01

    The aim of this study was to compare anxiety and pain levels during anesthesia and efficacy of Quicksleeper intraosseous (IO) injection system, which delivers computer-controlled IO anesthesia and conventional inferior alveolar nerve block (IANB) in impacted mandibular third molars. Forty subjects with bilateral impacted mandibular third molars randomly received IO injection or conventional IANB at 2 successive appointments. The subjects received 1.8 mL 2% articaine. IO injection has many advantages, such as enabling painless anesthesia with less soft tissue numbness and quick onset of anesthesia as well as lingual and palatal anesthesia with single needle penetration. Although IO injection is a useful technique commonly used during various treatments in dentistry, the duration of injection takes longer than conventional techniques, there is a possibility of obstruction at the needle tip, and, the duration of the anesthetic effect is inadequate for prolonged surgical procedures. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Computer System Performance Measurement Techniques for ARTS III Computer Systems

    DOT National Transportation Integrated Search

    1973-12-01

    The potential contribution of direct system measurement in the evolving ARTS 3 Program is discussed and software performance measurement techniques are comparatively assessed in terms of credibility of results, ease of implementation, volume of data,...

  13. Vision-based system identification technique for building structures using a motion capture system

    NASA Astrophysics Data System (ADS)

    Oh, Byung Kwan; Hwang, Jin Woo; Kim, Yousok; Cho, Tongjun; Park, Hyo Seon

    2015-11-01

    This paper presents a new vision-based system identification (SI) technique for building structures by using a motion capture system (MCS). The MCS with outstanding capabilities for dynamic response measurements can provide gage-free measurements of vibrations through the convenient installation of multiple markers. In this technique, from the dynamic displacement responses measured by MCS, the dynamic characteristics (natural frequency, mode shape, and damping ratio) of building structures are extracted after the processes of converting the displacement from MCS to acceleration and conducting SI by frequency domain decomposition. A free vibration experiment on a three-story shear frame was conducted to validate the proposed technique. The SI results from the conventional accelerometer-based method were compared with those from the proposed technique and showed good agreement, which confirms the validity and applicability of the proposed vision-based SI technique for building structures. Furthermore, SI directly employing MCS measured displacements to FDD was performed and showed identical results to those of conventional SI method.

  14. System using leo satellites for centimeter-level navigation

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor); Parkinson, Bradford W. (Inventor); Cohen, Clark E. (Inventor); Lawrence, David G. (Inventor)

    2002-01-01

    Disclosed herein is a system for rapidly resolving position with centimeter-level accuracy for a mobile or stationary receiver [4]. This is achieved by estimating a set of parameters that are related to the integer cycle ambiguities which arise in tracking the carrier phase of satellite downlinks [5,6]. In the preferred embodiment, the technique involves a navigation receiver [4] simultaneously tracking transmissions [6] from Low Earth Orbit Satellites (LEOS) [2] together with transmissions [5] from GPS navigation satellites [1]. The rapid change in the line-of-sight vectors from the receiver [4] to the LEO signal sources [2], due to the orbital motion of the LEOS, enables the resolution with integrity of the integer cycle ambiguities of the GPS signals [5] as well as parameters related to the integer cycle ambiguity on the LEOS signals [6]. These parameters, once identified, enable real-time centimeter-level positioning of the receiver [4]. In order to achieve high-precision position estimates without the use of specialized electronics such as atomic clocks, the technique accounts for instabilities in the crystal oscillators driving the satellite transmitters, as well as those in the reference [3] and user [4] receivers. In addition, the algorithm accommodates as well as to LEOS that receive signals from ground-based transmitters, then re-transmit frequency-converted signals to the ground.

  15. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Treatment technique violations for ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....404 Treatment technique violations for ground water systems. (a) A ground water system with a...

  16. The Noise Level Optimization for Induction Magnetometer of SEP System

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Fang, G.

    2011-12-01

    The Surface Electromagnetic Penetration (SEP) System, subsidized by the SinoProbe Plan in China, is designed for 3D conductivity imaging in geophysical mineral exploration, underground water distribution exploration, oil and gas reservoir exploration. Both the Controlled Source Audio Magnetotellurics (CSAMT) method and Magnetotellurics (MT) method can be surveyed by SEP system. In this article, an optimization design is introduced, which can minimize the noise level of the induction magnetometer for SEP system magnetic field's acquisition. The induction magnetometer transfers the rate of the magnetic field's change to voltage signal by induction coil, and amplified it by Low Noise Amplifier The noise parts contributed to the magnetometer are: the coil's thermal noise, the equivalent input voltage and current noise of the pre-amplifier. The coil's thermal noise is decided by coil's DC resistance. The equivalent input voltage and current noise of the pre-amplifier depend on the amplifier's type and DC operation condition. The design here optimized the DC operation point of pre-amplifier, adjusted the DC current source, and realized the minimum of total noise level of magnetometer. The calculation and test results show that: the total noise is about 1pT/√Hz, the thermal noise of coils is 1.7nV/√Hz, the preamplifier equivalent input voltage and current noise is 3nV/ √Hz and 0.1pA/√Hz, the weight of the magnetometer is 4.5kg and meet the requirement of SEP system.

  17. Computer-Aided Diagnosis System for Alzheimer's Disease Using Different Discrete Transform Techniques.

    PubMed

    Dessouky, Mohamed M; Elrashidy, Mohamed A; Taha, Taha E; Abdelkader, Hatem M

    2016-05-01

    The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques. © The Author(s) 2015.

  18. A novel pulse height analysis technique for nuclear spectroscopic and imaging systems

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Wang, C. Y.; Chou, H. P.

    2005-08-01

    The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.

  19. Flood alert system based on bayesian techniques

    NASA Astrophysics Data System (ADS)

    Gulliver, Z.; Herrero, J.; Viesca, C.; Polo, M. J.

    2012-04-01

    The problem of floods in the Mediterranean regions is closely linked to the occurrence of torrential storms in dry regions, where even the water supply relies on adequate water management. Like other Mediterranean basins in Southern Spain, the Guadalhorce River Basin is a medium sized watershed (3856 km2) where recurrent yearly floods occur , mainly in autumn and spring periods, driven by cold front phenomena. The torrential character of the precipitation in such small basins, with a concentration time of less than 12 hours, produces flash flood events with catastrophic effects over the city of Malaga (600000 inhabitants). From this fact arises the need for specific alert tools which can forecast these kinds of phenomena. Bayesian networks (BN) have been emerging in the last decade as a very useful and reliable computational tool for water resources and for the decision making process. The joint use of Artificial Neural Networks (ANN) and BN have served us to recognize and simulate the two different types of hydrological behaviour in the basin: natural and regulated. This led to the establishment of causal relationships between precipitation, discharge from upstream reservoirs, and water levels at a gauging station. It was seen that a recurrent ANN model working at an hourly scale, considering daily precipitation and the two previous hourly values of reservoir discharge and water level, could provide R2 values of 0.86. BN's results slightly improve this fit, but contribute with uncertainty to the prediction. In our current work to Design a Weather Warning Service based on Bayesian techniques the first steps were carried out through an analysis of the correlations between the water level and rainfall at certain representative points in the basin, along with the upstream reservoir discharge. The lower correlation found between precipitation and water level emphasizes the highly regulated condition of the stream. The autocorrelations of the variables were also

  20. Enhancement of surface mechanical properties by using TiN[BCN/BN] n/c-BN multilayer system

    NASA Astrophysics Data System (ADS)

    Moreno, H.; Caicedo, J. C.; Amaya, C.; Muñoz-Saldaña, J.; Yate, L.; Esteve, J.; Prieto, P.

    2010-11-01

    The aim of this work is to improve the mechanical properties of AISI 4140 steel substrates by using a TiN[BCN/BN] n/c-BN multilayer system as a protective coating. TiN[BCN/BN] n/c-BN multilayered coatings via reactive r.f. magnetron sputtering technique were grown, systematically varying the length period ( Λ) and the number of bilayers ( n) because one bilayer ( n = 1) represents two different layers ( tBCN + tBN), thus the total thickness of the coating and all other growth parameters were maintained constant. The coatings were characterized by Fourier transform infrared spectroscopy showing bands associated with h-BN bonds and c-BN stretching vibrations centered at 1400 cm -1 and 1100 cm -1, respectively. Coating composition and multilayer modulation were studied via secondary ion mass spectroscopy. Atomic force microscopy analysis revealed a reduction in grain size and roughness when the bilayer number ( n) increased and the bilayer period decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period ( Λ) was 80 nm ( n = 25), yielding the relative highest hardness (˜30 GPa) and elastic modulus (230 GPa). The values for the hardness and elastic modulus are 1.5 and 1.7 times greater than the coating with n = 1, respectively. The enhancement effects in multilayered coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain increased hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayered coatings taking into account the thickness reduction at individual single layers that make up the multilayered system. The Hall-Petch model based on dislocation motion within layered and across layer interfaces has been successfully applied to multilayered coatings to explain this

  1. Analysis of randomly time varying systems by gaussian closure technique

    NASA Astrophysics Data System (ADS)

    Dash, P. K.; Iyengar, R. N.

    1982-07-01

    The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.

  2. A quantum retrograde canon: complete population inversion in n 2-state systems

    NASA Astrophysics Data System (ADS)

    Padan, Alon; Suchowski, Haim

    2018-04-01

    We present a novel approach for analytically reducing a family of time-dependent multi-state quantum control problems to two-state systems. The presented method translates between {SU}(2)× {SU}(2) related n 2-state systems and two-state systems, such that the former undergo complete population inversion (CPI) if and only if the latter reach specific states. For even n, the method translates any two-state CPI scheme to a family of CPI schemes in n 2-state systems. In particular, facilitating CPI in a four-state system via real time-dependent nearest-neighbors couplings is reduced to facilitating CPI in a two-level system. Furthermore, we show that the method can be used for operator control, and provide conditions for producing several universal gates for quantum computation as an example. In addition, we indicate a basis for utilizing the method in optimal control problems.

  3. Deep level transient spectroscopic analysis of p/n junction implanted with boron in n-type silicon substrate

    NASA Astrophysics Data System (ADS)

    Wakimoto, Hiroki; Nakazawa, Haruo; Matsumoto, Takashi; Nabetani, Yoichi

    2018-04-01

    For P-i-N diodes implanted and activated with boron ions into a highly-resistive n-type Si substrate, it is found that there is a large difference in the leakage current between relatively low temperature furnace annealing (FA) and high temperature laser annealing (LA) for activation of the p-layer. Since electron trap levels in the n-type Si substrate is supposed to be affected, we report on Deep Level Transient Spectroscopy (DLTS) measurement results investigating what kinds of trap levels are formed. As a result, three kinds of electron trap levels are confirmed in the region of 1-4 μm from the p-n junction. Each DLTS peak intensity of the LA sample is smaller than that of the FA sample. In particular, with respect to the trap level which is the closest to the silicon band gap center most affecting the reverse leakage current, it was not detected in LA. It is considered that the electron trap levels are decreased due to the thermal energy of LA. On the other hand, four kinds of trap levels are confirmed in the region of 38-44 μm from the p-n junction and the DLTS peak intensities of FA and LA are almost the same, considering that the thermal energy of LA has not reached this area. The large difference between the reverse leakage current of FA and LA is considered to be affected by the deep trap level estimated to be the interstitial boron.

  4. Acute effects of mobile phone radiations on subtle energy levels of teenagers using electrophotonic imaging technique: A randomized controlled study

    PubMed Central

    Bhargav, Hemant; Srinivasan, TM; Bista, Suman; Mooventhan, A; Suresh, Vandana; Hankey, Alex; Nagendra, HR

    2017-01-01

    Background: Mobile phones induce radio frequency electromagnetic field (RF-EMF) which has been found to affect subtle energy levels of adults through Electrophotonic Imaging (EPI) technique in a previous pilot study. Materials and Methods: We enrolled 61 healthy right-handed healthy teenagers (22 males and 39 females) in the age range of 17.40 ± 0.24 years from educational institutes in Bengaluru. Subjects were randomly divided into two groups: (1) (mobile phone in ON mode [MPON] at right ear) and (2) mobile phone in OFF mode (MPOF). Subtle energy levels of various organs of the subjects were measured using gas discharge visualization Camera Pro device, in double-blind conditions, at two points of time: (1) baseline and (2) after 15 min of MPON/MPOF exposure. As the data were found normally distributed, paired and independent samples t-test were applied to perform within and between group comparisons, respectively. Results: The subtle energy levels were significantly reduced after RF-EMF exposure in MPON group as compared to MPOF group for following areas: (a) Pancreas (P = 0.001), (b) thyroid gland (P = 0.002), (c) cerebral cortex (P < 0.01), (d) cerebral vessels (P < 0.05), (e) hypophysis (P = 0.013), (f) left ear and left eye (P < 0.01), (g) liver (P < 0.05), (h) right kidney (P < 0.05), (i) spleen (P < 0.04), and (j) immune system (P < 0.02). Conclusion: Fifteen minutes of RF-EMF exposure exerted quantifiable effects on subtle energy levels of endocrine glands, nervous system, liver, kidney, spleen, and immune system of healthy teenagers. Future studies should try to correlate these findings with respective biochemical markers and standard radio-imaging techniques. PMID:28149063

  5. DERMAL DRUG LEVELS OF ANTIBIOTIC (CEPHALEXIN) DETERMINED BY ELECTROPORATION AND TRANSCUTANEOUS SAMPLING (ETS) TECHNIQUE

    PubMed Central

    Sammeta, SM; Vaka, SRK; Murthy, S. Narasimha

    2009-01-01

    The purpose of this project was to assess the validity of a novel “Electroporation and transcutaneous sampling (ETS)” technique for sampling cephalexin from the dermal extracellular fluid (ECF). This work also investigated the plausibility of using cephalexin levels in the dermal ECF as a surrogate for the drug level in the synovial fluid. In vitro and in vivo studies were carried out using hair less rats to assess the workability of ETS. Cephalexin (20mg/kg) was administered i.v. through tail vein and the time course of drug concentration in the plasma was determined. In the same rats, cephalexin concentration in the dermal ECF was determined by ETS and microdialysis techniques. In a separate set of rats, only intraarticular microdialysis was carried out determine the time course of cephalexin concentration in synovial fluid. The drug concentration in the dermal ECF determined by ETS and microdialysis did not differ significantly from each other and so as were the pharmacokinetic parameters. The results provide validity to the ETS technique. Further, there was a good correlation (~0.9) between synovial fluid and dermal ECF levels of cephalexin indicating that dermal ECF levels could be used as a potential surrogate for cephalexin concentration in the synovial fluid. PMID:19067398

  6. Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique

    NASA Astrophysics Data System (ADS)

    Shrivastava, Akash; Mohanty, A. R.

    2018-03-01

    This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.

  7. Spatial transcriptomics: paving the way for tissue-level systems biology.

    PubMed

    Moor, Andreas E; Itzkovitz, Shalev

    2017-08-01

    The tissues in our bodies are complex systems composed of diverse cell types that often interact in highly structured repeating anatomical units. External gradients of morphogens, directional blood flow, as well as the secretion and absorption of materials by cells generate distinct microenvironments at different tissue coordinates. Such spatial heterogeneity enables optimized function through division of labor among cells. Unraveling the design principles that govern this spatial division of labor requires techniques to quantify the entire transcriptomes of cells while accounting for their spatial coordinates. In this review we describe how recent advances in spatial transcriptomics open the way for tissue-level systems biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. N-halamine biocidal coatings via a layer-by-layer assembly technique.

    PubMed

    Cerkez, Idris; Kocer, Hasan B; Worley, S D; Broughton, R M; Huang, T S

    2011-04-05

    Two N-halamine copolymer precursors, poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-acrylic acid potassium salt) and poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-trimethyl-2-methacryloxyethylammonium chloride) have been synthesized and successfully coated onto cotton fabric via a layer-by-layer (LbL) assembly technique. A multilayer thin film was deposited onto the fiber surfaces by alternative exposure to polyelectrolyte solutions. The coating was rendered biocidal by a dilute household bleach treatment. The biocidal efficacies of tested swatches composed of treated fibers were evaluated against Staphylococcus aureus and Escherichia coli. It was determined that chlorinated samples inactivated both S. aureus and E. coli O157:H7 within 15 min of contact time, whereas the unchlorinated control samples did not exhibit significant biocidal activities. Stabilities of the coatings toward washing and ultraviolet light exposure have also been studied. It was found that the stability toward washing was superior, whereas the UVA light stability was moderate compared to previously studied N-halamine moieties. The layer-by-layer assembly technique can be used to attach N-halamine precursor polymers onto cellulose surfaces without using covalently bonding tethering groups which limit the structure designs. In addition, ionic precursors are very soluble in water, thus promising for biocidal coatings without the use of organic solvents.

  9. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    PubMed

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A front-end wafer-level microsystem packaging technique with micro-cap array

    NASA Astrophysics Data System (ADS)

    Chiang, Yuh-Min

    2002-09-01

    The back-end packaging process is the remaining challenge for the micromachining industry to commercialize microsystem technology (MST) devices at low cost. This dissertation presents a novel wafer level protection technique as a final step of the front-end fabrication process for MSTs. It facilitates improved manufacturing throughput and automation in package assembly, wafer level testing of devices, and enhanced device performance. The method involves the use of a wafer-sized micro-cap array, which consists of an assortment of small caps micro-molded onto a material with adjustable shapes and sizes to serve as protective structures against the hostile environments during packaging. The micro-cap array is first constructed by a micromachining process with micro-molding technique, then sealed to the device wafer at wafer level. Epoxy-based wafer-level micro cap array has been successfully fabricated and showed good compatibility with conventional back-end packaging processes. An adhesive transfer technique was demonstrated to seal the micro cap array with a MEMS device wafer. No damage or gross leak was observed while wafer dicing or later during a gross leak test. Applications of the micro cap array are demonstrated on MEMS, microactuators fabricated using CRONOS MUMPS process. Depending on the application needs, the micro-molded cap can be designed and modified to facilitate additional component functions, such as optical, electrical, mechanical, and chemical functions, which are not easily achieved in the device by traditional means. Successful fabrication of a micro cap array comprised with microlenses can provide active functions as well as passive protection. An optical tweezer array could be one possibility for applications of a micro cap with microlenses. The micro cap itself could serve as micro well for DNA or bacteria amplification as well.

  11. Fracture resistance of inter-joined zirconia abutment of dental implant system with injection molding technique.

    PubMed

    Yang, Jianjun; Wang, Ke; Liu, Guangyuan; Wang, Dashan

    2013-11-01

    Zirconia powder in nanometers can be fabricated into inter-joined abutment of dental implant system with the injection shaping technique. This study was to detect the resistance of inter-joined zirconia abutment with different angle loading for clinical applications. The inter-joined abutments were shaped with the technique of injection of zirconia powder in nanometers. Sixty Osstem GSII 5 × 10 mm implants were used with 30 zirconia abutments and 30 Osstem GSII titanium abutments for fixation using 40 N torque force. The loading applications included 90°, 30°, and 0° formed by the long axis of abutments and pressure head of universal test machine. The fracture resistances of zirconia and titanium abutments were documented and analyzed. The inter-joined zirconia abutments were assembled to the Osstem GSII implants successfully. In the 90° loading mode, the fracture resistance of zirconia abutment group and titanium abutment group were 301.5 ± 15.4 N and 736.4 ± 120.1 N, respectively. And those in the 30° groups were 434.7 ± 36.1 N and 1073.1 ± 74 N, correspondingly. Significant difference in the two groups was found using t-test and Wilcoxon test. No damage on the abutments of the two groups but S-shaped bending on the implants was found when the 0° loading was 1300-2000 N. Through the assembly of Zirconia abutments and implants, all the components presented sufficient resistance acquired for the clinical application under loadings with different angle. © 2012 John Wiley & Sons A/S.

  12. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

    PubMed

    Dyall, Simon C

    2017-11-01

    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.

  13. C-MOS array design techniques: SUMC multiprocessor system study

    NASA Technical Reports Server (NTRS)

    Clapp, W. A.; Helbig, W. A.; Merriam, A. S.

    1972-01-01

    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units.

  14. Differences in pedalling technique between road cyclists of different competitive levels.

    PubMed

    García-López, Juan; Díez-Leal, Sergio; Ogueta-Alday, Ana; Larrazabal, Josu; Rodríguez-Marroyo, José A

    2016-09-01

    The purpose of this study was to compare the pedalling technique in road cyclists of different competitive levels. Eleven professional, thirteen elite and fourteen club cyclists were assessed at the beginning of their competition season. Cyclists' anthropometric characteristics and bike measurements were recorded. Three sets of pedalling (200, 250 and 300 W) on a cycle ergometer that simulated their habitual cycling posture were performed at a constant cadence (~90 rpm), while kinetic and kinematic variables were registered. The results showed no differences on the main anthropometric variables and bike measurements. Professional cyclists obtained higher positive impulse proportion (1.5-3.3% and P < 0.05), mainly due to a lower resistive torque during the upstroke (15.4-28.7% and P < 0.05). They also showed a higher ankle range of movement (ROM, 1.1-4.0° and P < 0.05). Significant correlations (P < 0.05) were found between the cyclists' body mass and the kinetic variables of pedalling: positive impulse proportion (r = -0.59 to -0.61), minimum (r = -0.59 to -0.63) and maximum torques (r = 0.35-0.47). In conclusion, professional cyclists had better pedalling technique than elite and club cyclists, because they opted for enhancing pulling force at the recovery phase to sustain the same power output. This technique depended on cycling experience and level of expertise.

  15. InGaN directional coupler made with a one-step etching technique

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Zhang, Shuai; Shi, Zheng; Li, Xin; Wang, Yongjin

    2017-06-01

    We propose, fabricate and characterize an on-chip integration of light source, InGaN waveguide, directional coupler and photodiode, in which AlGaN layers are used as top and bottom optical claddings to form an InGaN waveguide for guiding the in-plane emitted light from the InGaN/GaN multiple-quantum-well light-emitting diode (MQW-LED). The difference in etch rate caused by different exposure windows leads to an etching depth discrepancy using the one-step etching technique, which forms the InGaN directional coupler with the overlapped underlying slab. Light propagation results directly confirm effective light coupling in the InGaN directional coupler, which is achieved through high-order guided modes. The InGaN waveguide couples the modulated light from the InGaN/GaN MQW-LED and transfers part of light to the coupled waveguide via the InGaN directional coupler. The in-plane InGaN/GaN MQW-photodiode absorbs the guided light by the coupled InGaN waveguide and induces the photocurrent. The on-chip InGaN photonic integration experimentally demonstrates an in-plane light communication with a data transmission of 50 Mbps.

  16. Cache Energy Optimization Techniques For Modern Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh

    2013-01-01

    Modern multicore processors are employing large last-level caches, for example Intel's E7-8800 processor uses 24MB L3 cache. Further, with each CMOS technology generation, leakage energy has been dramatically increasing and hence, leakage energy is expected to become a major source of energy dissipation, especially in last-level caches (LLCs). The conventional schemes of cache energy saving either aim at saving dynamic energy or are based on properties specific to first-level caches, and thus these schemes have limited utility for last-level caches. Further, several other techniques require offline profiling or per-application tuning and hence are not suitable for product systems. In thismore » book, we present novel cache leakage energy saving schemes for single-core and multicore systems; desktop, QoS, real-time and server systems. Also, we present cache energy saving techniques for caches designed with both conventional SRAM devices and emerging non-volatile devices such as STT-RAM (spin-torque transfer RAM). We present software-controlled, hardware-assisted techniques which use dynamic cache reconfiguration to configure the cache to the most energy efficient configuration while keeping the performance loss bounded. To profile and test a large number of potential configurations, we utilize low-overhead, micro-architecture components, which can be easily integrated into modern processor chips. We adopt a system-wide approach to save energy to ensure that cache reconfiguration does not increase energy consumption of other components of the processor. We have compared our techniques with state-of-the-art techniques and have found that our techniques outperform them in terms of energy efficiency and other relevant metrics. The techniques presented in this book have important applications in improving energy-efficiency of higher-end embedded, desktop, QoS, real-time, server processors and multitasking systems. This book is intended to be a valuable guide for both

  17. Multicycle rapid thermal annealing technique and its application for the electrical activation of Mg implanted in GaN

    NASA Astrophysics Data System (ADS)

    Feigelson, B. N.; Anderson, T. J.; Abraham, M.; Freitas, J. A.; Hite, J. K.; Eddy, C. R.; Kub, F. J.

    2012-07-01

    No reliable results were reported up-to-date on electrical activation of Mg implanted GaN without co-doping with other ions. The main reason of the poor ion-implanted activation in GaN is lack of the adequate GaN annealing technique. We have developed a new approach, Multicycle Rapid Thermal Annealing to overcome this limitation and enable longer annealing times at high temperature. We have applied this new technique to Mg-implanted GaN, and demonstrated p-type conductivity.

  18. A Review of Statistical Disclosure Control Techniques Employed by Web-Based Data Query Systems.

    PubMed

    Matthews, Gregory J; Harel, Ofer; Aseltine, Robert H

    We systematically reviewed the statistical disclosure control techniques employed for releasing aggregate data in Web-based data query systems listed in the National Association for Public Health Statistics and Information Systems (NAPHSIS). Each Web-based data query system was examined to see whether (1) it employed any type of cell suppression, (2) it used secondary cell suppression, and (3) suppressed cell counts could be calculated. No more than 30 minutes was spent on each system. Of the 35 systems reviewed, no suppression was observed in more than half (n = 18); observed counts below the threshold were observed in 2 sites; and suppressed values were recoverable in 9 sites. Six sites effectively suppressed small counts. This inquiry has revealed substantial weaknesses in the protective measures used in data query systems containing sensitive public health data. Many systems utilized no disclosure control whatsoever, and the vast majority of those that did deployed it inconsistently or inadequately.

  19. A new system for sodium flux growth of bulk GaN. Part I: System development

    NASA Astrophysics Data System (ADS)

    Von Dollen, Paul; Pimputkar, Siddha; Alreesh, Mohammed Abo; Albrithen, Hamad; Suihkonen, Sami; Nakamura, Shuji; Speck, James S.

    2016-12-01

    Though several methods exist to produce bulk crystals of gallium nitride (GaN), none have been commercialized on a large scale. The sodium flux method, which involves precipitation of GaN from a sodium-gallium melt supersaturated with nitrogen, offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. We successfully developed a novel apparatus for conducting crystal growth of bulk GaN using the sodium flux method which has advantages with respect to prior reports. A key task was to prevent sodium loss or migration from the growth environment while permitting N2 to access the growing crystal. We accomplished this by implementing a reflux condensing stem along with a reusable capsule containing a hermetic seal. The reflux condensing stem also enabled direct monitoring of the melt temperature, which has not been previously reported for the sodium flux method. Furthermore, we identified and utilized molybdenum and the molybdenum alloy TZM as a material capable of directly containing the corrosive sodium-gallium melt. This allowed implementation of a crucible-free system, which may improve process control and potentially lower crystal impurity levels. Nucleation and growth of parasitic GaN ("PolyGaN") on non-seed surfaces occurred in early designs. However, the addition of carbon in later designs suppressed PolyGaN formation and allowed growth of single crystal GaN. Growth rates for the (0001) Ga face (+c-plane) were up to 14 μm/h while X-ray omega rocking (ω-XRC) curve full width half-max values were 731″ for crystals grown using a later system design. Oxygen levels were high, >1019 atoms/cm3, possibly due to reactor cleaning and handling procedures.

  20. AlGaInN laser diode technology and systems for defence and security applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2015-05-01

    The latest developments in AlGaInN laser diode technology are reviewed for defence and security applications such as underwater communications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries.

  1. Multi-Level Adaptive Techniques (MLAT) for singular-perturbation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1978-01-01

    The multilevel (multigrid) adaptive technique, a general strategy of solving continuous problems by cycling between coarser and finer levels of discretization is described. It provides very fast general solvers, together with adaptive, nearly optimal discretization schemes. In the process, boundary layers are automatically either resolved or skipped, depending on a control function which expresses the computational goal. The global error decreases exponentially as a function of the overall computational work, in a uniform rate independent of the magnitude of the singular-perturbation terms. The key is high-order uniformly stable difference equations, and uniformly smoothing relaxation schemes.

  2. Multimodal system planning technique : an analytical approach to peak period operation

    DOT National Transportation Integrated Search

    1995-11-01

    The multimodal system planning technique described in this report is an improvement of the methodology used in the Dallas System Planning Study. The technique includes a spreadsheet-based process to identify the costs of congestion, construction, and...

  3. N-Tosylhydrazone directed annulation via C-H/N-N bond activation in Ru(ii)/PEG-400 as homogeneous recyclable catalytic system: a green synthesis of isoquinolines.

    PubMed

    Deshmukh, Dewal S; Bhanage, Bhalchandra M

    2018-06-21

    A green and sustainable methodology for the synthesis of isoquinolines using Ru(ii)/PEG-400 as a homogeneous recyclable catalytic system has been demonstrated. N-Tosylhydrazone, a rarely explored directing group, has been successfully employed for an annulation type of reaction with alkynes via C-H/N-N activation. A short reaction time with a simple extraction procedure, a wide substrate scope with high yields of products, easily prepared substrates, biodegradable solvent, and scalability up to the gram level enhance the efficiency and sustainability of the proposed protocol. Further, the expensive ruthenium-based homogeneous catalytic system could be reused up to a fourth consecutive cycle without any loss in its activity.

  4. Using object-oriented analysis techniques to support system testing

    NASA Astrophysics Data System (ADS)

    Zucconi, Lin

    1990-03-01

    Testing of real-time control systems can be greatly facilitated by use of object-oriented and structured analysis modeling techniques. This report describes a project where behavior, process and information models built for a real-time control system were used to augment and aid traditional system testing. The modeling techniques used were an adaptation of the Ward/Mellor method for real-time systems analysis and design (Ward85) for object-oriented development. The models were used to simulate system behavior by means of hand execution of the behavior or state model and the associated process (data and control flow) and information (data) models. The information model, which uses an extended entity-relationship modeling technique, is used to identify application domain objects and their attributes (instance variables). The behavioral model uses state-transition diagrams to describe the state-dependent behavior of the object. The process model uses a transformation schema to describe the operations performed on or by the object. Together, these models provide a means of analyzing and specifying a system in terms of the static and dynamic properties of the objects which it manipulates. The various models were used to simultaneously capture knowledge about both the objects in the application domain and the system implementation. Models were constructed, verified against the software as-built and validated through informal reviews with the developer. These models were then hand-executed.

  5. A Survey of Techniques for Modeling and Improving Reliability of Computing Systems

    DOE PAGES

    Mittal, Sparsh; Vetter, Jeffrey S.

    2015-04-24

    Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made `reliability' a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. In this study, we provide a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory, GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based onmore » their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. Finally, we believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems.« less

  6. A Survey of Techniques for Modeling and Improving Reliability of Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh; Vetter, Jeffrey S.

    Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made `reliability' a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. In this study, we provide a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory, GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based onmore » their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. Finally, we believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems.« less

  7. Application of identification techniques to remote manipulator system flight data

    NASA Technical Reports Server (NTRS)

    Shepard, G. D.; Lepanto, J. A.; Metzinger, R. W.; Fogel, E.

    1983-01-01

    This paper addresses the application of identification techniques to flight data from the Space Shuttle Remote Manipulator System (RMS). A description of the remote manipulator, including structural and control system characteristics, sensors, and actuators is given. A brief overview of system identification procedures is presented, and the practical aspects of implementing system identification algorithms are discussed. In particular, the problems posed by desampling rate, numerical error, and system nonlinearities are considered. Simulation predictions of damping, frequency, and system order are compared with values identified from flight data to support an evaluation of RMS structural and control system models. Finally, conclusions are drawn regarding the application of identification techniques to flight data obtained from a flexible space structure.

  8. A CHARTING TECHNIQUE FOR THE ANALYSIS OF BUSINESS SYSTEMS,

    DTIC Science & Technology

    This paper describes a charting technique useful in the analysis of business systems and in studies of the information economics of the firm. The...planning advanced systems. It is not restricted to any particular kind of business or information system. (Author)

  9. Robust terahertz self-heterodyne system using a phase noise compensation technique.

    PubMed

    Song, Hajun; Song, Jong-In

    2015-08-10

    We propose and demonstrate a robust terahertz self-heterodyne system using a phase noise compensation technique. Conventional terahertz self-heterodyne systems suffer from degraded phase noise performance due to phase noise of the laser sources. The proposed phase noise compensation technique uses an additional photodiode and a simple electric circuit to produce phase noise identical to that observed in the terahertz signal produced by the self-heterodyne system. The phase noise is subsequently subtracted from the terahertz signal produced by the self-heterodyne system using a lock-in amplifier. While the terahertz self-heterodyne system using a phase noise compensation technique offers improved phase noise performance, it also provides a reduced phase drift against ambient temperature variations. The terahertz self-heterodyne system using a phase noise compensation technique shows a phase noise of 0.67 degree in terms of a standard deviation value even without using overall delay balance control. It also shows a phase drift of as small as approximately 10 degrees in an open-to-air measurement condition without any strict temperature control.

  10. Decoherence in quantum lossy systems: superoperator and matrix techniques

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, Navid; Tavassoly, Mohammad Kazem; Moya-Cessa, Hector Manuel

    2017-06-01

    Due to the unavoidably dissipative interaction between quantum systems with their environments, the decoherence flows inevitably into the systems. Therefore, to achieve a better understanding on how decoherence affects on the damped systems, a fundamental investigation of master equation seems to be required. In this regard, finding out the missed information which has been lost due to irreversibly of the dissipative systems, is also of practical importance in quantum information science. Motivating by these facts, in this work we want to use superoperator and matrix techniques, by which we are able to illustrate two methods to obtain the explicit form of density operators corresponding to damped systems at arbitrary temperature T ≥ 0. To establish the potential abilities of the suggested methods, we apply them to deduce the density operator of some practical well-known quantum systems. Using the superoperator techniques, at first we obtain the density operator of a damped system which includes a qubit interacting with a single-mode quantized field within an optical cavity. As the second system, we study the decoherence of a quantized field within an optical damped cavity. We also use our proposed matrix method to study the decoherence of a system which includes two qubits in the interaction with each other via dipole-dipole interaction and at the same time with a quantized field in a lossy cavity. The influences of dissipation on the decoherence of dynamical properties of these systems are also numerically investigated. At last, the advantages of the proposed superoperator techniques in comparison with matrix method are explained.

  11. Effects of Daily Physical Activity Level on Manual Wheelchair Propulsion Technique in Full-Time Manual Wheelchair Users During Steady-State Treadmill Propulsion.

    PubMed

    Dysterheft, Jennifer; Rice, Ian; Learmonth, Yvonne; Kinnett-Hopkins, Dominque; Motl, Robert

    2017-07-01

    To examine whether differences in propulsion technique as a function of intraindividual variability occur as a result of shoulder pain and physical activity (PA) level in full-time manual wheelchair users (MWUs). Observational study. Research laboratory. Adults (N=14) with spinal cord injury (mean age: 30.64±11.08) who used a wheelchair for >80% of daily ambulation and were free of any condition that could be worsened by PA. Not applicable. PA level was measured using the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD), and shoulder pain was measured using the Wheelchair User's Shoulder Pain Index (WUSPI) survey. Mean and intraindividual variability propulsion metrics were measured for propulsion analysis. WUSPI scores indicated participants experienced low levels of shoulder pain. The results of the Spearman rank-order correlation revealed that PASIPD scores were significantly related to mean contact angle (r s =-.57) and stroke frequency (r s =.60) as well as to coefficient of variation of peak force (r s =.63), peak torque (r s =.59), contact angle (r s =.73), and stroke frequency (r s =.60). WUSPI scores were significantly correlated with only mean peak force (P=.02). No significant correlations were observed between PASIPD, WUSPI, and body mass index scores. Differences in propulsion technique were observed on the basis of PA levels. Participants with higher PASIPD scores used a more injurious stroke technique when propelling at higher speeds. This may indicate that active individuals who use injurious stroke mechanics may be at higher risk of injury. A strong relation was found between peak propulsion forces and shoulder pain. Rehabilitation professionals should emphasize the use of a protective stroke technique in both inactive and active MWUs during exercise and faster propulsion. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Simple statistical bias correction techniques greatly improve moderate resolution air quality forecast at station level

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele; Falasca, Serena

    2017-04-01

    Deterministic air quality forecast is routinely carried out at many local Environmental Agencies in Europe and throughout the world by means of eulerian chemistry-transport models. The skill of these models in predicting the ground-level concentrations of relevant pollutants (ozone, nitrogen dioxide, particulate matter) a few days ahead has greatly improved in recent years, but it is not yet always compliant with the required quality level for decision making (e.g. the European Commission has set a maximum uncertainty of 50% on daily values of relevant pollutants). Post-processing of deterministic model output is thus still regarded as a useful tool to make the forecast more reliable. In this work, we test several bias correction techniques applied to a long-term dataset of air quality forecasts over Europe and Italy. We used the WRF-CHIMERE modelling system, which provides operational experimental chemical weather forecast at CETEMPS (http://pumpkin.aquila.infn.it/forechem/), to simulate the years 2008-2012 at low resolution over Europe (0.5° x 0.5°) and moderate resolution over Italy (0.15° x 0.15°). We compared the simulated dataset with available observation from the European Environmental Agency database (AirBase) and characterized model skill and compliance with EU legislation using the Delta tool from FAIRMODE project (http://fairmode.jrc.ec.europa.eu/). The bias correction techniques adopted are, in order of complexity: (1) application of multiplicative factors calculated as the ratio of model-to-observed concentrations averaged over the previous days; (2) correction of the statistical distribution of model forecasts, in order to make it similar to that of the observations; (3) development and application of Model Output Statistics (MOS) regression equations. We illustrate differences and advantages/disadvantages of the three approaches. All the methods are relatively easy to implement for other modelling systems.

  13. System-Level Virtualization Research at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Stephen L; Vallee, Geoffroy R; Naughton, III, Thomas J

    2010-01-01

    System-level virtualization is today enjoying a rebirth as a technique to effectively share what were then considered large computing resources to subsequently fade from the spotlight as individual workstations gained in popularity with a one machine - one user approach. One reason for this resurgence is that the simple workstation has grown in capability to rival that of anything available in the past. Thus, computing centers are again looking at the price/performance benefit of sharing that single computing box via server consolidation. However, industry is only concentrating on the benefits of using virtualization for server consolidation (enterprise computing) whereas ourmore » interest is in leveraging virtualization to advance high-performance computing (HPC). While these two interests may appear to be orthogonal, one consolidating multiple applications and users on a single machine while the other requires all the power from many machines to be dedicated solely to its purpose, we propose that virtualization does provide attractive capabilities that may be exploited to the benefit of HPC interests. This does raise the two fundamental questions of: is the concept of virtualization (a machine sharing technology) really suitable for HPC and if so, how does one go about leveraging these virtualization capabilities for the benefit of HPC. To address these questions, this document presents ongoing studies on the usage of system-level virtualization in a HPC context. These studies include an analysis of the benefits of system-level virtualization for HPC, a presentation of research efforts based on virtualization for system availability, and a presentation of research efforts for the management of virtual systems. The basis for this document was material presented by Stephen L. Scott at the Collaborative and Grid Computing Technologies meeting held in Cancun, Mexico on April 12-14, 2007.« less

  14. The role of artificial intelligence techniques in scheduling systems

    NASA Technical Reports Server (NTRS)

    Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.

    1990-01-01

    Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.

  15. Digital I and C system upgrade integration technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H. W.; Shih, C.; Wang, J. R.

    2012-07-01

    This work developed an integration technique for digital I and C system upgrade, the utility can replace the I and C systems step by step systematically by this method. Inst. of Nuclear Energy Research (INER) developed a digital Instrumentation and Control (I and C) replacement integration technique on the basis of requirement of the three existing nuclear power plants (NPPs), which are Chin-Shan (CS) NPP, Kuo-Sheng (KS) NPP, and Maanshan (MS) NPP, in Taiwan, and also developed the related Critical Digital Review (CDR) Procedure. The digital I and C replacement integration technique includes: (I) Establishment of Nuclear Power Plant Digitalmore » Replacement Integration Guideline, (2) Preliminary Investigation on I and C System Digitalization, (3) Evaluation on I and C System Digitalization, and (4) Establishment of I and C System Digitalization Architectures. These works can be a reference for performing I and C system digital replacement integration of the three existing NPPs of Taiwan Power Company (TPC). A CDR is the review for a critical system digital I and C replacement. The major reference of this procedure is EPRI TR- 1011710 (2005) 'Handbook for Evaluating Critical Digital Equipment and Systems' which was published by the Electric Power Research Inst. (EPRI). With this document, INER developed a TPC-specific CDR procedure. Currently, CDR becomes one of the policies for digital I and C replacement in TPC. The contents of this CDR procedure include: Scope, Responsibility, Operation Procedure, Operation Flow Chart, CDR review items. The CDR review items include the comparison of the design change, Software Verification and Validation (SVandV), Failure Mode and Effects Analysis (FMEA), Evaluation of Diversity and Defense-in-depth (D3), Evaluation of Watchdog Timer, Evaluation of Electromagnetic Compatibility (EMC), Evaluation of Grounding for System/Component, Seismic Evaluation, Witness and Inspection, Lessons Learnt from the Digital I and C Failure Events

  16. Analyzing the effectiveness of a frame-level redundancy scrubbing technique for SRAM-based FPGAs

    DOE PAGES

    Tonfat, Jorge; Lima Kastensmidt, Fernanda; Rech, Paolo; ...

    2015-12-17

    Radiation effects such as soft errors are the major threat to the reliability of SRAM-based FPGAs. This work analyzes the effectiveness in correcting soft errors of a novel scrubbing technique using internal frame redundancy called Frame-level Redundancy Scrubbing (FLR-scrubbing). This correction technique can be implemented in a coarse grain TMR design. The FLR-scrubbing technique was implemented on a mid-size Xilinx Virtex-5 FPGA device used as a case study. The FLR-scrubbing technique was tested under neutron radiation and fault injection. Implementation results demonstrated minimum area and energy consumption overhead when compared to other techniques. The time to repair the fault ismore » also improved by using the Internal Configuration Access Port (ICAP). Lastly, neutron radiation test results demonstrated that the proposed technique is suitable for correcting accumulated SEUs and MBUs.« less

  17. Analyzing the effectiveness of a frame-level redundancy scrubbing technique for SRAM-based FPGAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonfat, Jorge; Lima Kastensmidt, Fernanda; Rech, Paolo

    Radiation effects such as soft errors are the major threat to the reliability of SRAM-based FPGAs. This work analyzes the effectiveness in correcting soft errors of a novel scrubbing technique using internal frame redundancy called Frame-level Redundancy Scrubbing (FLR-scrubbing). This correction technique can be implemented in a coarse grain TMR design. The FLR-scrubbing technique was implemented on a mid-size Xilinx Virtex-5 FPGA device used as a case study. The FLR-scrubbing technique was tested under neutron radiation and fault injection. Implementation results demonstrated minimum area and energy consumption overhead when compared to other techniques. The time to repair the fault ismore » also improved by using the Internal Configuration Access Port (ICAP). Lastly, neutron radiation test results demonstrated that the proposed technique is suitable for correcting accumulated SEUs and MBUs.« less

  18. An adaptive technique for a redundant-sensor navigation system.

    NASA Technical Reports Server (NTRS)

    Chien, T.-T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. This adaptive system is structured as a multistage stochastic process of detection, identification, and compensation. It is shown that the detection system can be effectively constructed on the basis of a design value, specified by mission requirements, of the unknown parameter in the actual system, and of a degradation mode in the form of a constant bias jump. A suboptimal detection system on the basis of Wald's sequential analysis is developed using the concept of information value and information feedback. The developed system is easily implemented, and demonstrates a performance remarkably close to that of the optimal nonlinear detection system. An invariant transformation is derived to eliminate the effect of nuisance parameters such that the ambiguous identification system can be reduced to a set of disjoint simple hypotheses tests. By application of a technique of decoupled bias estimation in the compensation system the adaptive system can be operated without any complicated reorganization.

  19. Occupational exposure to nitrous oxide - the role of scavenging and ventilation systems in reducing the exposure level in operating rooms.

    PubMed

    Krajewski, Wojciech; Kucharska, Malgorzata; Wesolowski, Wiktor; Stetkiewicz, Jan; Wronska-Nofer, Teresa

    2007-03-01

    The aim of this study was to assess the level of occupational exposure to nitrous oxide (N(2)O) in operating rooms (ORs), as related to different ventilation and scavenging systems used to remove waste anaesthetic gases from the work environment. The monitoring of N(2)O in the air covered 35 ORs in 10 hospitals equipped with different systems for ventilation and anaesthetic scavenging. The examined systems included: natural ventilation with supplementary fresh air provided by a pressure ventilation system (up to 6 air changes/h); pressure and exhaust ventilation systems equipped with ventilation units supplying fresh air to and discharging contaminated air outside the working area (more than 10 air changes/h); complete air-conditioning system with laminar air flow (more than 15 air changes/h). The measurements were carried out during surgical procedures (general anaesthesia induced intravenously and maintained with inhaled N(2)O and sevofluran delivered through cuffed endotracheal tubes) with connected or disconnected air scavenging. Air was collected from the breathing zone of operating personnel continuously through the whole time of anaesthesia to Tedlar((R)) bags, and N(2)O concentrations in air samples were analyzed by adsorption gas chromatography/mass spectrometry. N(2)O levels in excess of the occupational exposure limit (OEL) value of 180mg/m(3) were registered in all ORs equipped with ventilation systems alone. The OEL value was exceeded several times in rooms with natural ventilation plus supplementary pressure ventilations and twice or less in those with pressure/exhaust ventilation systems or air conditioning. N(2)O levels below or within the OEL value were observed in rooms where the system of air conditioning or pressure/exhaust ventilation was combined with scavenging systems. Systems combining natural/pressure ventilation with scavenging were inadequate to maintain N(2)O concentration below the OEL value. Air conditioning and an efficient pressure

  20. Development of a sensitivity analysis technique for multiloop flight control systems

    NASA Technical Reports Server (NTRS)

    Vaillard, A. H.; Paduano, J.; Downing, D. R.

    1985-01-01

    This report presents the development and application of a sensitivity analysis technique for multiloop flight control systems. This analysis yields very useful information on the sensitivity of the relative-stability criteria of the control system, with variations or uncertainties in the system and controller elements. The sensitivity analysis technique developed is based on the computation of the singular values and singular-value gradients of a feedback-control system. The method is applicable to single-input/single-output as well as multiloop continuous-control systems. Application to sampled-data systems is also explored. The sensitivity analysis technique was applied to a continuous yaw/roll damper stability augmentation system of a typical business jet, and the results show that the analysis is very useful in determining the system elements which have the largest effect on the relative stability of the closed-loop system. As a secondary product of the research reported here, the relative stability criteria based on the concept of singular values were explored.

  1. Thermal stability of deep level defects induced by high energy proton irradiation in n-type GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Farzana, E.; Sun, W. Y.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Kyle, E. C. H.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.

    2015-10-01

    The impact of annealing of proton irradiation-induced defects in n-type GaN devices has been systematically investigated using deep level transient and optical spectroscopies. Moderate temperature annealing (>200-250 °C) causes significant reduction in the concentration of nearly all irradiation-induced traps. While the decreased concentration of previously identified N and Ga vacancy related levels at EC - 0.13 eV, 0.16 eV, and 2.50 eV generally followed a first-order reaction model with activation energies matching theoretical values for NI and VGa diffusion, irradiation-induced traps at EC - 0.72 eV, 1.25 eV, and 3.28 eV all decrease in concentration in a gradual manner, suggesting a more complex reduction mechanism. Slight increases in concentration are observed for the N-vacancy related levels at EC - 0.20 eV and 0.25 eV, which may be due to the reconfiguration of other N-vacancy related defects. Finally, the observed reduction in concentrations of the states at EC - 1.25 and EC - 3.28 eV as a function of annealing temperature closely tracks the detailed recovery behavior of the background carrier concentration as a function of annealing temperature. As a result, it is suggested that these two levels are likely to be responsible for the underlying carrier compensation effect that causes the observation of carrier removal in proton-irradiated n-GaN.

  2. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system

  3. Neutron resonance parameters of 6830Zn+n and statistical distributions of level spacings and widths

    NASA Astrophysics Data System (ADS)

    Garg, J. B.; Tikku, V. K.; Harvey, J. A.; Halperin, J.; Macklin, R. L.

    1982-04-01

    Discrete values of the parameters (E0, gΓn, Jπ, Γγ, etc.) of the resonances in the reaction 6830Zn + n have been determined from total cross section measurements from a few keV to 380 keV with a nominal resolution of 0.07 ns/m for the highest energy and from capture cross section measurements up to 130 keV using the pulsed neutron time-of-flight technique with a neutron burst width of 5 ns. The cross section data were analyzed to determine the parameters of the resonances using R-matrix multilevel codes. These results have provided values of average quantities as follows: S0=(2.01+/-0.34), S1=(0.56+/-0.05), S2=(0.2+/-0.1) in units of 10-4, D0=(5.56+/-0.43) keV and D1=(1.63+/-0.14) keV. From these measurements we have also determined the following average radiation widths: (Γ¯γ)l=0=(302+/-60) meV and (Γ¯γ)l=1=(157 +/-7) meV. The investigation of the statistical properties of neutron reduced widths and level spacings showed excellent agreement of the data with the Porter-Thomas distribution for s- and p-wave neutron widths and with the Dyson-Mehta Δ3 statistic and the Wigner distribution for the s-wave level spacing distribution. In addition, a correlation coefficient of ρ=0.50+/-0.10 between Γ0n and Γγ has been observed for s-wave resonances. The value of <σnγ> at (30+/-10) keV is 19.2 mb. NUCLEAR REACTIONS 3068Zn(n,n), 3068Zn(n,γ), E=few keV to 380, 130 keV, respectively. Measured total and capture cross sections versus neutron energy, deduced resonance parameters, E0, Jπ, gΓn, Γγ, S0, S1, S2, D0, D1.

  4. Special feature on imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  5. Cost effectiveness as applied to the Viking Lander systems-level thermal development test program

    NASA Technical Reports Server (NTRS)

    Buna, T.; Shupert, T. C.

    1974-01-01

    The economic aspects of thermal testing at the systems-level as applied to the Viking Lander Capsule thermal development program are reviewed. The unique mission profile and pioneering scientific goals of Viking imposed novel requirements on testing, including the development of a simulation technique for the Martian thermal environment. The selected approach included modifications of an existing conventional thermal vacuum facility, and improved test-operational techniques that are applicable to the simulation of the other mission phases as well, thereby contributing significantly to the cost effectiveness of the overall thermal test program.

  6. A bottom-up approach to assess verbal therapeutic techniques. Development of the Psychodynamic Interventions List (PIL)

    PubMed Central

    Gumz, Antje; Neubauer, Karolin; Horstkotte, Julia Katharina; Geyer, Michael; Löwe, Bernd; Murray, Alexandra M.; Kästner, Denise

    2017-01-01

    Objective Knowing which specific verbal techniques “good” therapists use in their daily work is important for training and evaluation purposes. In order to systematize what is being practiced in the field, our aim was to empirically identify verbal techniques applied in psychodynamic sessions and to differentiate them according to their basic semantic features using a bottom-up, qualitative approach. Method Mixed-Method-Design: In a comprehensive qualitative study, types of techniques were identified at the level of utterances based on transcribed psychodynamic therapy sessions using Qualitative Content Analysis (4211 utterances). The definitions of the identified categories were successively refined and modified until saturation was achieved. In a subsequent quantitative study, inter-rater reliability was assessed both at the level of utterances (n = 8717) and at the session level (n = 38). The convergent validity of the categories was investigated by analyzing associations with the Interpretive and Supportive Technique Scale (ISTS). Results The inductive approach resulted in a classification system with 37 categories (Psychodynamic Interventions List, PIL). According to their semantic content, the categories can be allocated to three dimensions: form (24 categories), thematic content (9) and temporal focus (4). Most categories showed good or excellent inter-rater reliability and expected associations with the ISTS were predominantly confirmed. The rare use of the residual category “Other” suggests that the identified categories might comprehensively describe the breadth of applied techniques. Conclusions The atheoretical orientation and the clear focus on overt linguistic features should enable the PIL to be used without intensive training or prior theoretical knowledge. The PIL can be used to investigate the links between verbal techniques derived from practice and micro-outcomes (at the session level) as well as the overall therapeutic outcomes. This

  7. Design and Analysis Techniques for Concurrent Blackboard Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mcmanus, John William

    1992-01-01

    Blackboard systems are a natural progression of knowledge-based systems into a more powerful problem solving technique. They provide a way for several highly specialized knowledge sources to cooperate to solve large, complex problems. Blackboard systems incorporate the concepts developed by rule-based and expert systems programmers and include the ability to add conventionally coded knowledge sources. The small and specialized knowledge sources are easier to develop and test, and can be hosted on hardware specifically suited to the task that they are solving. The Formal Model for Blackboard Systems was developed to provide a consistent method for describing a blackboard system. A set of blackboard system design tools has been developed and validated for implementing systems that are expressed using the Formal Model. The tools are used to test and refine a proposed blackboard system design before the design is implemented. My research has shown that the level of independence and specialization of the knowledge sources directly affects the performance of blackboard systems. Using the design, simulation, and analysis tools, I developed a concurrent object-oriented blackboard system that is faster, more efficient, and more powerful than existing systems. The use of the design and analysis tools provided the highly specialized and independent knowledge sources required for my concurrent blackboard system to achieve its design goals.

  8. Minimum deltaV Burn Planning for the International Space Station Using a Hybrid Optimization Technique, Level 1

    NASA Technical Reports Server (NTRS)

    Brown, Aaron J.

    2015-01-01

    The International Space Station's (ISS) trajectory is coordinated and executed by the Trajectory Operations and Planning (TOPO) group at NASA's Johnson Space Center. TOPO group personnel routinely generate look-ahead trajectories for the ISS that incorporate translation burns needed to maintain its orbit over the next three to twelve months. The burns are modeled as in-plane, horizontal burns, and must meet operational trajectory constraints imposed by both NASA and the Russian Space Agency. In generating these trajectories, TOPO personnel must determine the number of burns to model, each burn's Time of Ignition (TIG), and magnitude (i.e. deltaV) that meet these constraints. The current process for targeting these burns is manually intensive, and does not take advantage of more modern techniques that can reduce the workload needed to find feasible burn solutions, i.e. solutions that simply meet the constraints, or provide optimal burn solutions that minimize the total DeltaV while simultaneously meeting the constraints. A two-level, hybrid optimization technique is proposed to find both feasible and globally optimal burn solutions for ISS trajectory planning. For optimal solutions, the technique breaks the optimization problem into two distinct sub-problems, one for choosing the optimal number of burns and each burn's optimal TIG, and the other for computing the minimum total deltaV burn solution that satisfies the trajectory constraints. Each of the two aforementioned levels uses a different optimization algorithm to solve one of the sub-problems, giving rise to a hybrid technique. Level 2, or the outer level, uses a genetic algorithm to select the number of burns and each burn's TIG. Level 1, or the inner level, uses the burn TIGs from Level 2 in a sequential quadratic programming (SQP) algorithm to compute a minimum total deltaV burn solution subject to the trajectory constraints. The total deltaV from Level 1 is then used as a fitness function by the genetic

  9. Triaxial testing system for pressure core analysis using image processing technique

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Masui, A.; Tenma, N.; Nagao, J.

    2013-11-01

    In this study, a newly developed innovative triaxial testing system to investigate strength, deformation behavior, and/or permeability of gas hydrate bearing-sediments in deep sea is described. Transport of the pressure core from the storage chamber to the interior of the sealing sleeve of a triaxial cell without depressurization was achieved. An image processing technique was used to capture the motion and local deformation of a specimen in a transparent acrylic triaxial pressure cell and digital photographs were obtained at each strain level during the compression test. The material strength was successfully measured and the failure mode was evaluated under high confining and pore water pressures.

  10. Evaluating data-driven causal inference techniques in noisy physical and ecological systems

    NASA Astrophysics Data System (ADS)

    Tennant, C.; Larsen, L.

    2016-12-01

    Causal inference from observational time series challenges traditional approaches for understanding processes and offers exciting opportunities to gain new understanding of complex systems where nonlinearity, delayed forcing, and emergent behavior are common. We present a formal evaluation of the performance of convergent cross-mapping (CCM) and transfer entropy (TE) for data-driven causal inference under real-world conditions. CCM is based on nonlinear state-space reconstruction, and causality is determined by the convergence of prediction skill with an increasing number of observations of the system. TE is the uncertainty reduction based on transition probabilities of a pair of time-lagged variables. With TE, causal inference is based on asymmetry in information flow between the variables. Observational data and numerical simulations from a number of classical physical and ecological systems: atmospheric convection (the Lorenz system), species competition (patch-tournaments), and long-term climate change (Vostok ice core) were used to evaluate the ability of CCM and TE to infer causal-relationships as data series become increasingly corrupted by observational (instrument-driven) or process (model-or -stochastic-driven) noise. While both techniques show promise for causal inference, TE appears to be applicable to a wider range of systems, especially when the data series are of sufficient length to reliably estimate transition probabilities of system components. Both techniques also show a clear effect of observational noise on causal inference. For example, CCM exhibits a negative logarithmic decline in prediction skill as the noise level of the system increases. Changes in TE strongly depend on noise type and which variable the noise was added to. The ability of CCM and TE to detect driving influences suggest that their application to physical and ecological systems could be transformative for understanding driving mechanisms as Earth systems undergo change.

  11. Modeling of phonon scattering in n-type nanowire transistors using one-shot analytic continuation technique

    NASA Astrophysics Data System (ADS)

    Bescond, Marc; Li, Changsheng; Mera, Hector; Cavassilas, Nicolas; Lannoo, Michel

    2013-10-01

    We present a one-shot current-conserving approach to model the influence of electron-phonon scattering in nano-transistors using the non-equilibrium Green's function formalism. The approach is based on the lowest order approximation (LOA) to the current and its simplest analytic continuation (LOA+AC). By means of a scaling argument, we show how both LOA and LOA+AC can be easily obtained from the first iteration of the usual self-consistent Born approximation (SCBA) algorithm. Both LOA and LOA+AC are then applied to model n-type silicon nanowire field-effect-transistors and are compared to SCBA current characteristics. In this system, the LOA fails to describe electron-phonon scattering, mainly because of the interactions with acoustic phonons at the band edges. In contrast, the LOA+AC still well approximates the SCBA current characteristics, thus demonstrating the power of analytic continuation techniques. The limits of validity of LOA+AC are also discussed, and more sophisticated and general analytic continuation techniques are suggested for more demanding cases.

  12. Magnetic-field-induced mixed-level Kondo effect in two-level systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Arturo; Ngo, Anh T.; Ulloa, Sergio E.

    2016-10-17

    We consider a two-orbital impurity system with intra-and interlevel Coulomb repulsion that is coupled to a single conduction channel. This situation can generically occur in multilevel quantum dots or in systems of coupled quantum dots. For finite energy spacing between spin-degenerate orbitals, an in-plane magnetic field drives the system from a local-singlet ground state to a "mixed-level" Kondo regime, where the Zeeman-split levels are degenerate for opposite-spin states. We use the numerical renormalization group approach to fully characterize this mixed-level Kondo state and discuss its properties in terms of the applied Zeeman field, temperature, and system parameters. Under suitable conditions,more » the total spectral function is shown to develop a Fermi-level resonance, so that the linear conductance of the system peaks at a finite Zeeman field while it decreases as a function of temperature. These features, as well as the local moment and entropy contribution of the impurity system, are commensurate with Kondo physics, which can be studied in suitably tuned quantum dot systems.« less

  13. N-acetyl Aspartate Levels in Adolescents With Bipolar and/or Cannabis Use Disorders

    PubMed Central

    Bitter, Samantha M.; Weber, Wade A.; Chu, Wen-Jang; Adler, Caleb M.; Eliassen, James C.; Strakowski, Stephen M.; DelBello, Melissa P.

    2014-01-01

    Objective Bipolar and cannabis use disorders commonly co-occur during adolescence, and neurochemical studies may help clarify the pathophysiology underlying this co-occurrence. This study compared metabolite concentrations in the left ventral lateral prefrontal cortex among: adolescents with bipolar disorder (bipolar group; n=14), adolescents with a cannabis use disorder (cannabis use group, n=13), adolescents with cannabis use and bipolar disorders (bipolar and cannabis group, n=25), and healthy adolescents (healthy controls, n=15). We hypothesized that adolescents with bipolar disorder (with or without cannabis use disorder) would have decreased N-acetyl aspartate levels in the ventral lateral prefrontal cortex compared to the other groups, and that the bipolar and cannabis group would have the lowest N-acetyl aspartate levels of all groups. Methods N-acetyl aspartate concentrations in the left ventral lateral prefrontal cortex were obtained using Proton Magnetic Resonance Spectroscopy. Results Adolescents with bipolar disorder showed significantly lower left ventral lateral prefrontal cortex N-acetyl aspartate levels, but post-hoc analyses indicated that this was primarily due to increased N-acetyl aspartate levels in the cannabis group. The cannabis use disorder group had significantly higher N-acetyl aspartate levels compared to the bipolar disorder and the bipolar and cannabis groups (p=0.0002 and p=0.0002, respectively). Pearson correlations revealed a significant positive correlation between amount of cannabis used and N-acetyl aspartate concentrations. Conclusions Adolescents with cannabis use disorder showed higher levels of N-acetyl aspartate concentrations that were significantly positively associated with the amount of cannabis used; however, this finding was not present in adolescents with comorbid bipolar disorder. PMID:24729763

  14. LagLoc - a new surgical technique for locking plate systems.

    PubMed

    Triana, Miguel; Gueorguiev, Boyko; Sommer, Christoph; Stoffel, Karl; Agarwal, Yash; Zderic, Ivan; Helfen, Tobias; Krieg, James C; Krause, Fabian; Knobe, Matthias; Richards, R Geoff; Lenz, Mark

    2018-06-19

    Treatment of oblique and spiral fractures remains challenging. The aim of this study was to introduce and investigate the new LagLoc technique for locked plating with generation of interfragmentary compression, combining the advantages of lag-screw and locking-head-screw techniques. Oblique fracture was simulated in artificial diaphyseal bones, assigned to three groups for plating with a 7-hole locking compression plate. Group I was plated with three locking screws in holes 1, 4 and 7. The central screw crossed the fracture line. In group II the central hole was occupied with a lag screw perpendicular to fracture line. Group III was instrumented applying the LagLoc technique as follows. Hole 4 was predrilled perpendicularly to the plate, followed by overdrilling of the near cortex and insertion of a locking screw whose head was covered by a holding sleeve to prevent temporarily the locking in the plate hole and generate interfragmentary compression. Subsequently, the screw head was released and locked in the plate hole. Holes 1 and 7 were occupied with locking screws. Interfragmentary compression in the fracture gap was measured using pressure sensors. All screws in the three groups were tightened with 4Nm torque. Interfragmentary compression in group I (167 ± 25N) was significantly lower in comparison to groups II (431 ± 21N) and III (379 ± 59N), p≤0.005. The difference in compression between groups II and III remained not significant (p = 0.999). The new LagLoc technique offers an alternative tool to generate interfragmentary compression with the application of locking plates by combining the biomechanical advantages of lag screw and locking screw fixations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Improved importance sampling technique for efficient simulation of digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, Dingqing; Yao, Kung

    1988-01-01

    A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.

  16. The Application of a Chemical Determination of N-Homocysteinylation Levels in Developing Mouse Embryos: Implication for Folate Responsive Birth Defects

    PubMed Central

    Fathe, Kristin; Person, Maria D.; Finnell, Richard H.

    2014-01-01

    Elevated homocysteine levels have long been associated with various disease states, including cardiovascular disease and birth defects, including neural tube defects (NTDs). One hypothesis regarding the strong correlation between these various disorders and high levels of homocysteine is that a reactive form of this small molecule can attach to mammalian proteins in a phenomenon known as homocysteinylation. These posttranslational modifications may become antigenic, or may even directly disrupt certain protein function. It remains to be determined whether dietary influences that can cause globally increased levels of circulating homocysteine confer negative effects maternally, or may otherwise negatively and materially impact the metabolic balance in developing embryos. Herein we present the application of a chemical method of determination of N-homocysteinylation to a set of neural tube closure stage mouse embryos and their mothers. We explore the uses of this newly-described technique to investigate levels of maternal and embryonic N-homocysteinylation using dietary manipulations of onecarbon metabolism with two known folate responsive neural tube defect mouse models. The data presented reveals that although diet appeared to have significant effects on the maternal metabolic status, those effects did not directly correlate to the embryonic folate or N-homocysteinylation status. Our studies indicate that maternal diet and embryonic genotype most significantly affected the embryonic developmental outcome. PMID:25620692

  17. Alternative Techniques for Testing A Highway Information Systems

    NASA Technical Reports Server (NTRS)

    Mast, Truman; Mast, Truman

    1974-01-01

    The highway transport system as contrasted with other modes of transportation is quite unique in that the users of the system are responsible for the guidance and control functions of the vehicle. Research has shown that improved forms of motorist information, such as highway signs and markings, can enhance the predictability and reliability of the driving task. Test and evaluation of promising new concepts in motorist information must preceed widespread endorsement and implementation on our highway system. This paper reviews the merits and limitations of presently available human factor research techniques--laboratory, instrumented vehicle and traffic performance studies on operational facilities--for evaluating the efficacy of motorist information concepts. Specific examples are given to demonstrate the utility and the interrelationships of the alternative research techniques and there is a discussion of the most pressing immediate and future needs for improved highway signing and road marking research methodology.

  18. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-14

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  19. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  20. Comparison of four MPPT techniques for PV systems

    NASA Astrophysics Data System (ADS)

    Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Aillerie, M.

    2016-07-01

    The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, for all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.

  1. Three-Level Systems as Amplifiers and Attenuators: A Thermodynamic Analysis

    NASA Astrophysics Data System (ADS)

    Boukobza, E.; Tannor, D. J.

    2007-06-01

    Thermodynamics of a three-level maser was studied in the pioneering work of Scovil Schulz-DuBois [Phys. Rev. Lett. 2, 262 (1959)PRLTAO0031-900710.1103/PhysRevLett.2.262]. In this Letter we consider the same three-level model, but we give a full thermodynamic analysis based on Hamiltonian and dissipative Lindblad superoperators. The first law of thermodynamics is obtained using a recently developed alternative [Phys. Rev. A 74, 063823 (2006)PLRAAN1050-294710.1103/PhysRevA.74.063823] to Alicki’s definitions for heat flux and power [J. Phys. AJPHAC50305-4470 12, L103 (1979)10.1088/0305-4470/12/5/007]. Using a novel variation on Spohn’s entropy production function [J. Math. Phys. (N.Y.)JMAPAQ0022-2488 19, 1227 (1978)10.1063/1.523789], we obtain Carnot’s efficiency inequality and the Scovil Schulz-DuBois maser efficiency formula when the three-level system is operated as a heat engine (amplifier). Finally, we show that the three-level system has two other modes of operation—a refrigerator mode and a squanderer mode —both of which attenuate the electric field.

  2. Equivalent reduced model technique development for nonlinear system dynamic response

    NASA Astrophysics Data System (ADS)

    Thibault, Louis; Avitabile, Peter; Foley, Jason; Wolfson, Janet

    2013-04-01

    The dynamic response of structural systems commonly involves nonlinear effects. Often times, structural systems are made up of several components, whose individual behavior is essentially linear compared to the total assembled system. However, the assembly of linear components using highly nonlinear connection elements or contact regions causes the entire system to become nonlinear. Conventional transient nonlinear integration of the equations of motion can be extremely computationally intensive, especially when the finite element models describing the components are very large and detailed. In this work, the equivalent reduced model technique (ERMT) is developed to address complicated nonlinear contact problems. ERMT utilizes a highly accurate model reduction scheme, the System equivalent reduction expansion process (SEREP). Extremely reduced order models that provide dynamic characteristics of linear components, which are interconnected with highly nonlinear connection elements, are formulated with SEREP for the dynamic response evaluation using direct integration techniques. The full-space solution will be compared to the response obtained using drastically reduced models to make evident the usefulness of the technique for a variety of analytical cases.

  3. Application of a sensitivity analysis technique to high-order digital flight control systems

    NASA Technical Reports Server (NTRS)

    Paduano, James D.; Downing, David R.

    1987-01-01

    A sensitivity analysis technique for multiloop flight control systems is studied. This technique uses the scaled singular values of the return difference matrix as a measure of the relative stability of a control system. It then uses the gradients of these singular values with respect to system and controller parameters to judge sensitivity. The sensitivity analysis technique is first reviewed; then it is extended to include digital systems, through the derivation of singular-value gradient equations. Gradients with respect to parameters which do not appear explicitly as control-system matrix elements are also derived, so that high-order systems can be studied. A complete review of the integrated technique is given by way of a simple example: the inverted pendulum problem. The technique is then demonstrated on the X-29 control laws. Results show linear models of real systems can be analyzed by this sensitivity technique, if it is applied with care. A computer program called SVA was written to accomplish the singular-value sensitivity analysis techniques. Thus computational methods and considerations form an integral part of many of the discussions. A user's guide to the program is included. The SVA is a fully public domain program, running on the NASA/Dryden Elxsi computer.

  4. Reassessment of the NH4 NO3 thermal decomposition technique for calibration of the N2 O isotopic composition.

    PubMed

    Mohn, Joachim; Gutjahr, Wilhelm; Toyoda, Sakae; Harris, Eliza; Ibraim, Erkan; Geilmann, Heike; Schleppi, Patrick; Kuhn, Thomas; Lehmann, Moritz F; Decock, Charlotte; Werner, Roland A; Yoshida, Naohiro; Brand, Willi A

    2016-09-08

    In the last few years, the study of N 2 O site-specific nitrogen isotope composition has been established as a powerful technique to disentangle N 2 O emission pathways. This trend has been accelerated by significant analytical progress in the field of isotope-ratio mass-spectrometry (IRMS) and more recently quantum cascade laser absorption spectroscopy (QCLAS). Methods The ammonium nitrate (NH 4 NO 3 ) decomposition technique provides a strategy to scale the 15 N site-specific (SP ≡ δ 15 N α - δ 15 N β ) and bulk (δ 15 N bulk  = (δ 15 N α  + δ 15 N β )/2) isotopic composition of N 2 O against the international standard for the 15 N/ 14 N isotope ratio (AIR-N 2 ). Within the current project 15 N fractionation effects during thermal decomposition of NH 4 NO 3 on the N 2 O site preference were studied using static and dynamic decomposition techniques. The validity of the NH 4 NO 3 decomposition technique to link NH 4 + and NO 3 - moiety-specific δ 15 N analysis by IRMS to the site-specific nitrogen isotopic composition of N 2 O was confirmed. However, the accuracy of this approach for the calibration of δ 15 N α and δ 15 N β values was found to be limited by non-quantitative NH 4 NO 3 decomposition in combination with substantially different isotope enrichment factors for the conversion of the NO 3 - or NH 4 + nitrogen atom into the α or β position of the N 2 O molecule. The study reveals that the completeness and reproducibility of the NH 4 NO 3 decomposition reaction currently confine the anchoring of N 2 O site-specific isotopic composition to the international isotope ratio scale AIR-N 2 . The authors suggest establishing a set of N 2 O isotope reference materials with appropriate site-specific isotopic composition, as community standards, to improve inter-laboratory compatibility. This article is protected by copyright. All rights reserved.

  5. High-Level Data-Abstraction System

    NASA Technical Reports Server (NTRS)

    Fishwick, P. A.

    1986-01-01

    Communication with data-base processor flexible and efficient. High Level Data Abstraction (HILDA) system is three-layer system supporting data-abstraction features of Intel data-base processor (DBP). Purpose of HILDA establishment of flexible method of efficiently communicating with DBP. Power of HILDA lies in its extensibility with regard to syntax and semantic changes. HILDA's high-level query language readily modified. Offers powerful potential to computer sites where DBP attached to DEC VAX-series computer. HILDA system written in Pascal and FORTRAN 77 for interactive execution.

  6. A Novel Technique to Detect Code for SAC-OCDMA System

    NASA Astrophysics Data System (ADS)

    Bharti, Manisha; Kumar, Manoj; Sharma, Ajay K.

    2018-04-01

    The main task of optical code division multiple access (OCDMA) system is the detection of code used by a user in presence of multiple access interference (MAI). In this paper, new method of detection known as XOR subtraction detection for spectral amplitude coding OCDMA (SAC-OCDMA) based on double weight codes has been proposed and presented. As MAI is the main source of performance deterioration in OCDMA system, therefore, SAC technique is used in this paper to eliminate the effect of MAI up to a large extent. A comparative analysis is then made between the proposed scheme and other conventional detection schemes used like complimentary subtraction detection, AND subtraction detection and NAND subtraction detection. The system performance is characterized by Q-factor, BER and received optical power (ROP) with respect to input laser power and fiber length. The theoretical and simulation investigations reveal that the proposed detection technique provides better quality factor, security and received power in comparison to other conventional techniques. The wide opening of eye in case of proposed technique also proves its robustness.

  7. Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and a modified 15N isotope pairing technique

    NASA Astrophysics Data System (ADS)

    Hsu, T.-C.; Kao, S.-J.

    2013-12-01

    Dinitrogen (N2) and/or nitrous oxide (N2O) are produced through denitrification, anaerobic ammonium oxidation (anammox) or nitrification in sediments, of which entangled processes complicate the absolute rate estimations of gaseous nitrogen production from individual pathways. The classical isotope pairing technique (IPT), the most common 15N nitrate enrichment method to quantify denitrification, has recently been modified by different researchers to (1) discriminate between the N2 produced by denitrification and anammox or to (2) provide a more accurate denitrification rate under considering production of both N2O and N2. In case 1, the revised IPT focused on N2 production being suitable for the environments of a low N2O-to-N2 production ratio, while in case 2, anammox was neglected. This paper develops a modified method to refine previous versions of IPT. Cryogenic traps were installed to separately preconcentrate N2 and N2O, thus allowing for subsequent measurement of the two gases generated in one sample vial. The precision is better than 2% for N2 (m/z 28, m/z 29 and m/z 30), and 1.5% for N2O (m/z 44, m/z 45 and m/z 46). Based on the six m/z peaks of the two gases, the 15N nitrate traceable processes including N2 and N2O from denitrification and N2 from anammox were estimated. Meanwhile, N2O produced by nitrification was estimated via the production rate of unlabeled 44N2O. To validate the applicability of our modified method, incubation experiments were conducted using sediment cores taken from the Danshuei Estuary in Taiwan. Rates of the aforementioned nitrogen removal processes were successfully determined. Moreover, N2O yield was as high as 66%, which would significantly bias previous IPT approaches if N2O was not considered. Our modified method not only complements previous versions of IPT but also provides more comprehensive information to advance our understanding of nitrogen dynamics of the water-sediment interface.

  8. Should Level V Be Routinely Dissected in N1b Papillary Thyroid Carcinoma?

    PubMed

    Kim, Seo Ki; Park, Inhye; Hur, Nayoon; Lee, Jun Ho; Choe, Jun-Ho; Kim, Jung-Han; Kim, Jee Soo

    2017-02-01

    For N1b papillary thyroid carcinoma (PTC) patients, modified radical neck dissection (MRND) encompassing levels II-V is generally recommended. However, routine level V dissection is controversial because of the low incidence of metastasis/recurrence in level V and the increased morbidities associated with level V dissection. This study retrospectively reviewed 646 N1b PTC patients who underwent unilateral MRND between January 1997 and June 2015. Specifically, to assess surgery-related outcomes of level V dissection, outcomes from N1b PTC patients who underwent unilateral MRND (levels II-V) were compared with those who underwent unilateral selective neck dissection (SND; levels II-IV) using propensity score matching. Overall and occult level V metastases were observed in 13.9% and 8.6% of patients, respectively. Level V recurrences were observed in only 2.26 (7.7%) recurred N1b PTC patients who underwent unilateral MRND. In multivariate analysis, three-level (II, III, and IV) simultaneous metastasis (adjusted odds ratio = 3.079, p = 0.003) was an independent predictor for level V metastasis. Under a matched condition, "shoulder syndrome" encompassing shoulder dysfunction and pain (9.1% vs. 2.7%, p = 0.002) was significantly more frequent in the MRND group than it was in the SND group. Because of the low incidence of metastasis/recurrence in level V and the clear evidence of increased morbidities, level V dissection in N1b PTC patients may be reserved for those with three-level simultaneous metastasis or clinically/radiologically evident level V metastasis.

  9. System-level perturbations of cell metabolism using CRISPR/Cas9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakočiūnas, Tadas; Jensen, Michael K.; Keasling, Jay D.

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies much more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied to single and multiplex pathway modifications and transcriptional regulations. The effectiveness of these tools allows researchers to implement genome-wide perturbations, test model-guided genome editing strategies, and perform transcriptional reprogramming perturbations in a more advanced manner than previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering.

  10. Automatic Exposure Control Systems Designed to Maintain Constant Image Noise: Effects on Computed Tomography Dose and Noise Relative to Clinically Accepted Technique Charts

    PubMed Central

    Favazza, Christopher P.; Yu, Lifeng; Leng, Shuai; Kofler, James M.; McCollough, Cynthia H.

    2015-01-01

    Objective To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. Materials and Methods A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. Results For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise–based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Conclusions Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects. PMID:25938214

  11. Automatic exposure control systems designed to maintain constant image noise: effects on computed tomography dose and noise relative to clinically accepted technique charts.

    PubMed

    Favazza, Christopher P; Yu, Lifeng; Leng, Shuai; Kofler, James M; McCollough, Cynthia H

    2015-01-01

    To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise-based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects.

  12. Enhanced fault-tolerant quantum computing in d-level systems.

    PubMed

    Campbell, Earl T

    2014-12-05

    Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.

  13. Comparison of four MPPT techniques for PV systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atik, L., E-mail: lotfi.atik@univ-usto.dz; Ternifi, Z. T.; Université de Lorraine, LMOPS, EA 4423, 57070 Metz

    2016-07-25

    The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, formore » all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.« less

  14. Effects of interactive instructional techniques in a web-based peripheral nervous system component for human anatomy.

    PubMed

    Allen, Edwin B; Walls, Richard T; Reilly, Frank D

    2008-02-01

    This study investigated the effects of interactive instructional techniques in a web-based peripheral nervous system (PNS) component of a first year medical school human anatomy course. Existing data from 9 years of instruction involving 856 students were used to determine (1) the effect of web-based interactive instructional techniques on written exam item performance and (2) differences between student opinions of the benefit level of five different types of interactive learning objects used. The interactive learning objects included Patient Case studies, review Games, Simulated Interactive Patients (SIP), Flashcards, and unit Quizzes. Exam item analysis scores were found to be significantly higher (p < 0.05) for students receiving the instructional treatment incorporating the web-based interactive learning objects than for students not receiving this treatment. Questionnaires using a five-point Likert scale were analysed to determine student opinion ratings of the interactive learning objects. Students reported favorably on the benefit level of all learning objects. Students rated the benefit level of the Simulated Interactive Patients (SIP) highest, and this rating was significantly higher (p < 0.05) than all other learning objects. This study suggests that web-based interactive instructional techniques improve student exam performance. Students indicated a strong acceptance of Simulated Interactive Patient learning objects.

  15. Multi-level analysis in information systems research: the case of enterprise resource planning system usage in China

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Bhattacherjee, Anol

    2011-11-01

    Information technology (IT) usage within organisations is a multi-level phenomenon that is influenced by individual-level and organisational-level variables. Yet, current theories, such as the unified theory of acceptance and use of technology, describe IT usage as solely an individual-level phenomenon. This article postulates a model of organisational IT usage that integrates salient organisational-level variables such as user training, top management support and technical support within an individual-level model to postulate a multi-level model of IT usage. The multi-level model was then empirically validated using multi-level data collected from 128 end users and 26 managers in 26 firms in China regarding their use of enterprise resource planning systems and analysed using the multi-level structural equation modelling (MSEM) technique. We demonstrate the utility of MSEM analysis of multi-level data relative to the more common structural equation modelling analysis of single-level data and show how single-level data can be aggregated to approximate multi-level analysis when multi-level data collection is not possible. We hope that this article will motivate future scholars to employ multi-level data and multi-level analysis for understanding organisational phenomena that are truly multi-level in nature.

  16. System-Level Planning, Coordination, and Communication

    PubMed Central

    Kanter, Robert K.; Dries, David; Luyckx, Valerie; Lim, Matthew L.; Wilgis, John; Anderson, Michael R.; Sarani, Babak; Hupert, Nathaniel; Mutter, Ryan; Devereaux, Asha V.; Christian, Michael D.; Kissoon, Niranjan; Christian, Michael D.; Devereaux, Asha V.; Dichter, Jeffrey R.; Kissoon, Niranjan; Rubinson, Lewis; Amundson, Dennis; Anderson, Michael R.; Balk, Robert; Barfield, Wanda D.; Bartz, Martha; Benditt, Josh; Beninati, William; Berkowitz, Kenneth A.; Daugherty Biddison, Lee; Braner, Dana; Branson, Richard D; Burkle, Frederick M.; Cairns, Bruce A.; Carr, Brendan G.; Courtney, Brooke; DeDecker, Lisa D.; De Jong, Marla J.; Dominguez-Cherit, Guillermo; Dries, David; Einav, Sharon; Erstad, Brian L.; Etienne, Mill; Fagbuyi, Daniel B.; Fang, Ray; Feldman, Henry; Garzon, Hernando; Geiling, James; Gomersall, Charles D.; Grissom, Colin K.; Hanfling, Dan; Hick, John L.; Hodge, James G.; Hupert, Nathaniel; Ingbar, David; Kanter, Robert K.; King, Mary A.; Kuhnley, Robert N.; Lawler, James; Leung, Sharon; Levy, Deborah A.; Lim, Matthew L.; Livinski, Alicia; Luyckx, Valerie; Marcozzi, David; Medina, Justine; Miramontes, David A.; Mutter, Ryan; Niven, Alexander S.; Penn, Matthew S.; Pepe, Paul E.; Powell, Tia; Prezant, David; Reed, Mary Jane; Rich, Preston; Rodriquez, Dario; Roxland, Beth E.; Sarani, Babak; Shah, Umair A.; Skippen, Peter; Sprung, Charles L.; Subbarao, Italo; Talmor, Daniel; Toner, Eric S.; Tosh, Pritish K.; Upperman, Jeffrey S.; Uyeki, Timothy M.; Weireter, Leonard J.; West, T. Eoin; Wilgis, John; Ornelas, Joe; McBride, Deborah; Reid, David; Baez, Amado; Baldisseri, Marie; Blumenstock, James S.; Cooper, Art; Ellender, Tim; Helminiak, Clare; Jimenez, Edgar; Krug, Steve; Lamana, Joe; Masur, Henry; Mathivha, L. Rudo; Osterholm, Michael T.; Reynolds, H. Neal; Sandrock, Christian; Sprecher, Armand; Tillyard, Andrew; White, Douglas; Wise, Robert; Yeskey, Kevin

    2014-01-01

    BACKGROUND: System-level planning involves uniting hospitals and health systems, local/regional government agencies, emergency medical services, and other health-care entities involved in coordinating and enabling care in a major disaster. We reviewed the literature and sought expert opinions concerning system-level planning and engagement for mass critical care due to disasters or pandemics and offer suggestions for system-planning, coordination, communication, and response. The suggestions in this chapter are important for all of those involved in a pandemic or disaster with multiple critically ill or injured patients, including front-line clinicians, hospital administrators, and public health or government officials. METHODS: The American College of Chest Physicians (CHEST) consensus statement development process was followed in developing suggestions. Task Force members met in person to develop nine key questions believed to be most relevant for system-planning, coordination, and communication. A systematic literature review was then performed for relevant articles and documents, reports, and other publications reported since 1993. No studies of sufficient quality were identified upon which to make evidence-based recommendations. Therefore, the panel developed expert opinion-based suggestions using a modified Delphi process. RESULTS: Suggestions were developed and grouped according to the following thematic elements: (1) national government support of health-care coalitions/regional health authorities (HC/RHAs), (2) teamwork within HC/RHAs, (3) system-level communication, (4) system-level surge capacity and capability, (5) pediatric patients and special populations, (6) HC/RHAs and networks, (7) models of advanced regional care systems, and (8) the use of simulation for preparedness and planning. CONCLUSIONS: System-level planning is essential to provide care for large numbers of critically ill patients because of disaster or pandemic. It also entails a

  17. N-Scan®: New Vibro-Modulation System for Crack Detection, Monitoring and Characterization

    NASA Astrophysics Data System (ADS)

    Zagrai, Andrei; Donskoy, Dimitri; Lottiaux, Jean-Louis

    2004-02-01

    In recent years, an innovative vibro-modulation technique has been introduced for the detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies the contact area of the interface, modulating a passing ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for the detection and differentiation of the contact-type defects from other structural and material inhomogeneities. The vibro-modulation technique has been implemented in the N-SCAN® damage detection system providing a cost effective solution for the complex NDT problems. N-SCAN® proved to be very effective for damage detection and characterization in structures and structural components of simple and complex geometries made of steel, aluminum, composites, and other materials. Examples include 24 foot-long gun barrels, stainless steel pipes used in nuclear power plants, aluminum automotive parts, steel train couplers, etc. This paper describes the basic principles of the nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction, and justification of signal processing algorithms. The laboratory experiment is presented for a set of specimens with the calibrated cracks and the quantitative characterization of fatigue damage is given in terms of a modulation index. The paper also discusses examples of practical implementation and application of the technique.

  18. Suitability of Spatial Interpolation Techniques in Varying Aquifer Systems of a Basaltic Terrain for Monitoring Groundwater Availability

    NASA Astrophysics Data System (ADS)

    Katpatal, Y. B.; Paranjpe, S. V.; Kadu, M. S.

    2017-12-01

    Geological formations act as aquifer systems and variability in the hydrological properties of aquifers have control over groundwater occurrence and dynamics. To understand the groundwater availability in any terrain, spatial interpolation techniques are widely used. It has been observed that, with varying hydrogeological conditions, even in a geologically homogenous set up, there are large variations in observed groundwater levels. Hence, the accuracy of groundwater estimation depends on the use of appropriate interpretation techniques. The study area of the present study is Venna Basin of Maharashtra State, India which is a basaltic terrain with four different types of basaltic layers laid down horizontally; weathered vesicular basalt, weathered and fractured basalt, highly weathered unclassified basalt and hard massive basalt. The groundwater levels vary with topography as different types of basalts are present at varying depths. The local stratigraphic profiles were generated at different types of basaltic terrains. The present study aims to interpolate the groundwater levels within the basin and to check the co-relation between the estimated and the observed values. The groundwater levels for 125 observation wells situated in these different basaltic terrains for 20 years (1995 - 2015) have been used in the study. The interpolation was carried out in Geographical Information System (GIS) using ordinary kriging and Inverse Distance Weight (IDW) method. A comparative analysis of the interpolated values of groundwater levels is carried out for validating the recorded groundwater level dataset. The results were co-related to various types of basaltic terrains present in basin forming the aquifer systems. Mean Error (ME) and Mean Square Errors (MSE) have been computed and compared. It was observed that within the interpolated values, a good correlation does not exist between the two interpolation methods used. The study concludes that in crystalline basaltic

  19. Automatic control of the NMB level in general anaesthesia with a switching total system mass control strategy.

    PubMed

    Teixeira, Miguel; Mendonça, Teresa; Rocha, Paula; Rabiço, Rui

    2014-12-01

    This paper presents a model based switching control strategy to drive the neuromuscular blockade (NMB) level of patients undergoing general anesthesia to a predefined reference. A single-input single-output Wiener system with only two parameters is used to model the effect of two different muscle relaxants, atracurium and rocuronium, and a switching controller is designed based on a bank of total system mass control laws. Each of such laws is tuned for an individual model from a bank chosen to represent the behavior of the whole population. The control law to be applied at each instant corresponds to the model whose NMB response is closer to the patient's response. Moreover a scheme to improve the reference tracking quality based on the analysis of the patient's response, as well as, a comparison between the switching strategy and the Extended Kalman Kilter (EKF) technique are presented. The results are illustrated by means of several simulations, where switching shows to provide good results, both in theory and in practice, with a desirable reference tracking. The reference tracking improvement technique is able to produce a better reference tracking. Also, this technique showed a better performance than the (EKF). Based on these results, the switching control strategy with a bank of total system mass control laws proved to be robust enough to be used as an automatic control system for the NMB level.

  20. A Toolkit of Systems Gaming Techniques

    NASA Astrophysics Data System (ADS)

    Finnigan, David; McCaughey, Jamie W.

    2017-04-01

    Decision-makers facing natural hazard crises need a broad set of cognitive tools to help them grapply with complexity. Systems gaming can act as a kind of 'flight simulator for decision making' enabling us to step through real life complex scenarios of the kind that beset us in natural disaster situations. Australian science-theatre ensemble Boho Interactive is collaborating with the Earth Observatory Singapore to develop an in-person systems game modelling an unfolding natural hazard crisis (volcanic unrest or an approaching typhoon) impacting an Asian city. Through a combination of interactive mechanisms drawn from boardgaming and participatory theatre, players will make decisions and assign resources in response to the unfolding crisis. In this performance, David Finnigan from Boho will illustrate some of the participatory techniques that Boho use to illustrate key concepts from complex systems science. These activities are part of a toolkit which can be adapted to fit a range of different contexts and scenarios. In this session, David will present short activities that demonstrate a range of systems principles including common-pool resource challenges (the Tragedy of the Commons), interconnectivity, unintended consequences, tipping points and phase transitions, and resilience. The interactive mechanisms for these games are all deliberately lo-fi rather than digital, for three reasons. First, the experience of a tactile, hands-on game is more immediate and engaging. It brings the focus of the participants into the room and facilitates engagement with the concepts and with each other, rather than with individual devices. Second, the mechanics of the game are laid bare. This is a valuable way to illustrate that complex systems are all around us, and are not merely the domain of hi-tech systems. Finally, these games can be used in a wide variety of contexts by removing computer hardware requirements and instead using materials and resources that are easily found in

  1. A probabilistic technique for the assessment of complex dynamic system resilience

    NASA Astrophysics Data System (ADS)

    Balchanos, Michael Gregory

    techniques for total system resilience evaluation, based on scenario-based, dynamic system simulations. Physics-based Modeling and Simulation (M&S) is applied for dynamical system behavior analysis, which includes system performance, health monitoring, damage propagation and overall mission capability. For the development of the assessment framework and testing of a resilience assessment technique, a small-scale canonical problem has been formulated, involving a computational model of a degradable and reconfigurable spring-mass-damper SDOF system, in a multiple main and redundant spring configuration. A rule-based feedback controller is responsible for system performance recovery, through the application of different reconfiguration strategies and strategic activation of the necessary main or redundant springs. Uncertainty effects on system operation are introduced through disturbance factors, such as external forces with varying magnitude, input frequency, event duration and occurrence time. Such factors are the basis for scenario formulation, in support of a Monte Carlo simulation analysis. Case studies with varying levels of damping and different reconfiguration strategies, involve the investigation of operational uncertainty effects on system performance, mission capability, and system survivability. These studies furthermore explore uncertainty effects on resilience functions that describe the system's capacities on "restoring" mission capability, on "absorbing" the effects of changing conditions, and on "adapting" to the occurring change. The proposed resilience assessment technique or the Topological Investigation for Resilient and Effective Systems, through Increased Architecture Survivability (TIRESIAS) is then applied and demonstrated for a naval system application, in the form of a reduced scale, reconfigurable cooling network of a naval combatant. Uncertainty effects are modeled through combinations of different number of network fluid leaks. The TIRESIAS

  2. A singular finite element technique for calculating continuum damping of Alfvén eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowden, G. W.; Hole, M. J.

    2015-02-15

    Damping due to continuum resonances can be calculated using dissipation-less ideal magnetohydrodynamics provided that the poles due to these resonances are properly treated. We describe a singular finite element technique for calculating the continuum damping of Alfvén waves. A Frobenius expansion is used to determine appropriate finite element basis functions on an inner region surrounding a pole due to the continuum resonance. The location of the pole due to the continuum resonance and mode frequency is calculated iteratively using a Galerkin method. This method is used to find the complex frequency and mode structure of a toroidicity-induced Alfvén eigenmode inmore » a large aspect ratio circular tokamak and is shown to agree closely with a complex contour technique.« less

  3. A first order theory of the p/+/-n-n/+/ edge-illuminated silicon solar cell at very high injection levels

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Sater, B. L.

    1977-01-01

    A first order theory of the edge-illuminated p(+)-n-n(+) silicon solar cell under very high injection levels has been derived. The very high injection level illuminated J-V characteristic is derived for any general base width to diffusion length (W/L) ratio and it includes the minority carrier reflection by the n-n(+) high-low junction. The beneficial effects of the high-low junction are shown to be significant until extremely high injection levels are reached. The theoretical dependencies of Jsc and Voc on temperature, incident intensity, and base resistivity are derived and discussed in detail. Some experimental results are given and these are discussed in relation to the theory.

  4. Continuous Time Level Crossing Sampling ADC for Bio-Potential Recording Systems

    PubMed Central

    Tang, Wei; Osman, Ahmad; Kim, Dongsoo; Goldstein, Brian; Huang, Chenxi; Martini, Berin; Pieribone, Vincent A.

    2013-01-01

    In this paper we present a fixed window level crossing sampling analog to digital convertor for bio-potential recording sensors. This is the first proposed and fully implemented fixed window level crossing ADC without local DACs and clocks. The circuit is designed to reduce data size, power, and silicon area in future wireless neurophysiological sensor systems. We built a testing system to measure bio-potential signals and used it to evaluate the performance of the circuit. The bio-potential amplifier offers a gain of 53 dB within a bandwidth of 200 Hz-20 kHz. The input-referred rms noise is 2.8 µV. In the asynchronous level crossing ADC, the minimum delta resolution is 4 mV. The input signal frequency of the ADC is up to 5 kHz. The system was fabricated using the AMI 0.5 µm CMOS process. The chip size is 1.5 mm by 1.5 mm. The power consumption of the 4-channel system from a 3.3 V supply is 118.8 µW in the static state and 501.6 µW with a 240 kS/s sampling rate. The conversion efficiency is 1.6 nJ/conversion. PMID:24163640

  5. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 high alpha research vehicle (HARV) automated test systems are discussed. It is noted that operational experiences in developing and using these automated testing techniques have highlighted the need for incorporating target system features to improve testability. Improved target system testability can be accomplished with the addition of nonreal-time and real-time features. Online access to target system implementation details, unobtrusive real-time access to internal user-selectable variables, and proper software instrumentation are all desirable features of the target system. Also, test system and target system design issues must be addressed during the early stages of the target system development. Processing speeds of up to 20 million instructions/s and the development of high-bandwidth reflective memory systems have improved the ability to integrate the target system and test system for the application of automated testing techniques. It is concluded that new methods of designing testability into the target systems are required.

  6. Mass spectrometry techniques for studying the ubiquitin system.

    PubMed

    Heap, Rachel E; Gant, Megan S; Lamoliatte, Frederic; Peltier, Julien; Trost, Matthias

    2017-10-15

    Post-translational control of proteins through covalent attachment of ubiquitin plays important roles in all eukaryotic cell functions. The ubiquitin system in humans consists of 2 E1, 35 E2 and >600 E3 ubiquitin ligases as well as hundreds of deubiquitylases, which reverse ubiquitin attachment. Moreover, there are hundreds of proteins with ubiquitin-binding domains that bind one of the eight possible polyubiquitin chains. Dysfunction of the ubiquitin system is associated with many diseases such as cancer, autoimmunity and neurodegeneration, demonstrating the importance of ubiquitylation. Therefore, enzymes of the ubiquitin system are considered highly attractive drug targets. In recent years, mass spectrometry (MS)-based techniques have become increasingly important in the deciphering of the ubiquitin system. This short review addresses the state-of-the-art MS techniques for the identification of ubiquitylated proteins and their ubiquitylation sites. We also discuss the identification and quantitation of ubiquitin chain topologies and highlight how the activity of enzymes in the ubiquitin pathway can be measured. Finally, we present current MS tools that can be used for drug discovery in the ubiquitin space. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Simulation of hydrostatic water level measuring system for pressure vessels with the ATHLET-code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampel, R.; Vandreier, B.; Kaestner, W.

    1996-11-01

    The static and dynamic behavior of measuring systems determine the value indicated by the measuring systems in relation to the true operating conditions. This paper demonstrates the necessity to involve the behavior of measuring systems in accident analysis with the thermohydraulic code ATHLET (developed by GRS Germany) by the example of hydrostatic water level measurement for horizontal steam generators on NPP (VVER). The modelling of a comparison vessel for the level measuring system with high sensitivity and a limited range of measurement (narrow-range level measuring system) by using ATHLET components and the checking of the function of the module weremore » realized. A good correspondence (maximal deviation 3%) between the measured and calculated narrow-range water level by the module was obtained for a realized post calculation of a measured operational transient in a NPP (VVER). The research carried out was sponsored by the Federal Ministry for Research and Technology within the projects {open_quotes}Basic research of process and system behaviour of NPP, control technique for accident management{close_quotes} (Project number 150 0855/7) and the project RS 978. The research work appertains to the theoretic and experimental work of institute {open_quotes}Institut fuer ProzeBtechnik, ProzeBautomatisierung und MeBtechnik (IPM){close_quotes} for accident analysis and accident management.« less

  8. Apical Transportation, Centering Ability, and Cleaning Effectiveness of Reciprocating Single-file System Associated with Different Glide Path Techniques.

    PubMed

    de Carvalho, Guilherme Moreira; Sponchiado Junior, Emílio Carlos; Garrido, Angela Delfina Bittencourt; Lia, Raphael Carlos Comelli; Garcia, Lucas da Fonseca Roberti; Marques, André Augusto Franco

    2015-12-01

    The aim of this study was to evaluate the apical transportation, the centering ability, and the cleaning effectiveness of a reciprocating single-file system associated to different glide path techniques. The mesial root canals of 52 mandibular molars were randomly distributed into 4 groups (n = 13) according to the different glide path techniques used before biomechanical preparation with Reciproc System (RS): KF/RS (sizes 10 and 15 K-files), NGP/RS (no glide path, only reciprocating system), PF/RS (sizes 13, 16, and 19 PathFile instruments), and NP (no preparation). Cone-beam computed tomography analysis was performed before and after instrumentation for apical third images acquisition. Apical transportation and its direction were evaluated by using the formula D = (X1 - X2) - (Y1 - Y2), and the centering ability was analyzed by the formula CC = (X1 - X2/Y1 - Y2 or Y1 - Y2/X1 - X2). The samples were submitted to histologic processing and analyzed under a digital microscope for debris quantification. The values were statistically analyzed (Kruskal-Wallis, the Dunn multiple comparisons test, P < .05). All groups had similar apical transportation values, with no significant difference among them (P > .05). Groups had a tendency toward transportation in the mesial direction. No technique had perfect centering ability (=1.0), with no significant difference among them. KF/RS had larger amount of debris, with statistically significant difference in comparison with NGP/RS (P > .05). The different glide path techniques promoted minimal apical transportation, and the reciprocating single-file system tested remained relatively centralized within the root canal. Also, the different techniques interfered in the cleaning effectiveness of the reciprocating system. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less

  10. Electrical characterization of a Mapham inverter using pulse testing techniques

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.; Myers, I. T.; Hammond, A. N.

    1990-01-01

    Electric power requirements for aerospace missions have reached megawatt power levels. Within the next few decades, it is anticipated that a manned lunar base, interplanetary travel, and surface exploration of the Martian surface will become reality. Several research and development projects aimed at demonstrating megawatt power level converters for space applications are currently underway at the NASA Lewis Research Center. Innovative testing techniques will be required to evaluate the components and converters, when developed, at their rated power in the absence of costly power sources, loads, and cooling systems. Facilities capable of testing these components and systems at full power are available, but their use may be cost prohibitive. The use of a multiple pulse testing technique is proposed to determine the electrical characteristics of large megawatt level power systems. Characterization of a Mapham inverter is made using the proposed technique and conclusions are drawn concerning its suitability as an experimental tool to evaluate megawatt level power systems.

  11. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    NASA Astrophysics Data System (ADS)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  12. Systems Engineering Techniques for ALS Decision Making

    NASA Technical Reports Server (NTRS)

    Rodriquez, Luis F.; Drysdale, Alan E.; Jones, Harry; Levri, Julie A.

    2004-01-01

    The Advanced Life Support (ALS) Metric is the predominant tool for predicting the cost of ALS systems. Metric goals for the ALS Program are daunting, requiring a threefold increase in the ALS Metric by 2010. Confounding the problem, the rate new ALS technologies reach the maturity required for consideration in the ALS Metric and the rate at which new configurations are developed is slow, limiting the search space and potentially giving the perspective of a ALS technology, the ALS Metric may remain elusive. This paper is a sequel to a paper published in the proceedings of the 2003 ICES conference entitled, "Managing to the metric: an approach to optimizing life support costs." The conclusions of that paper state that the largest contributors to the ALS Metric should be targeted by ALS researchers and management for maximum metric reductions. Certainly, these areas potentially offer large potential benefits to future ALS missions; however, the ALS Metric is not the only decision-making tool available to the community. To facilitate decision-making within the ALS community a combination of metrics should be utilized, such as the Equivalent System Mass (ESM)-based ALS metric, but also those available through techniques such as life cycle costing and faithful consideration of the sensitivity of the assumed models and data. Often a lack of data is cited as the reason why these techniques are not considered for utilization. An existing database development effort within the ALS community, known as OPIS, may provide the opportunity to collect the necessary information to enable the proposed systems analyses. A review of these additional analysis techniques is provided, focusing on the data necessary to enable these. The discussion is concluded by proposing how the data may be utilized by analysts in the future.

  13. Study of synthesis techniques for insensitive aircraft control systems

    NASA Technical Reports Server (NTRS)

    Harvey, C. A.; Pope, R. E.

    1977-01-01

    Insensitive flight control system design criteria was defined in terms of maximizing performance (handling qualities, RMS gust response, transient response, stability margins) over a defined parameter range. Wing load alleviation for the C-5A was chosen as a design problem. The C-5A model was a 79-state, two-control structure with uncertainties assumed to exist in dynamic pressure, structural damping and frequency, and the stability derivative, M sub w. Five new techniques (mismatch estimation, uncertainty weighting, finite dimensional inverse, maximum difficulty, dual Lyapunov) were developed. Six existing techniques (additive noise, minimax, multiplant, sensitivity vector augmentation, state dependent noise, residualization) and the mismatch estimation and uncertainty weighting techniques were synthesized and evaluated on the design example. Evaluation and comparison of these six techniques indicated that the minimax and the uncertainty weighting techniques were superior to the other six, and of these two, uncertainty weighting has lower computational requirements. Techniques based on the three remaining new concepts appear promising and are recommended for further research.

  14. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  15. A new VOX technique for reducing noise in voice communication systems. [voice operated keying

    NASA Technical Reports Server (NTRS)

    Morris, C. F.; Morgan, W. C.; Shack, P. E.

    1974-01-01

    A VOX technique for reducing noise in voice communication systems is described which is based on the separation of voice signals into contiguous frequency-band components with the aid of an adaptive VOX in each band. It is shown that this processing scheme can effectively reduce both wideband and narrowband quasi-periodic noise since the threshold levels readjust themselves to suppress noise that exceeds speech components in each band. Results are reported for tests of the adaptive VOX, and it is noted that improvements can still be made in such areas as the elimination of noise pulses, phoneme reproduction at high-noise levels, and the elimination of distortion introduced by phase delay.

  16. An assessment of ground-based techniques for detecting other planetary systems. Volume 1: An overview. [workshop conclusions

    NASA Technical Reports Server (NTRS)

    Black, D. C. (Editor); Brunk, W. E. (Editor)

    1980-01-01

    The feasibility and limitations of ground-based techniques for detecting other planetary systems are discussed as well as the level of accuracy at which these limitations would occur and the extent to which they can be overcome by new technology and instrumenation. Workshop conclusions and recommendations are summarized and a proposed high priority program is considered.

  17. Modulation and synchronization technique for MF-TDMA system

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Sayegh, Soheil

    1994-01-01

    This report addresses modulation and synchronization techniques for a multi-frequency time division multiple access (MF-TDMA) system with onboard baseband processing. The types of synchronization techniques analyzed are asynchronous (conventional) TDMA, preambleless asynchronous TDMA, bit synchronous timing with a preamble, and preambleless bit synchronous timing. Among these alternatives, preambleless bit synchronous timing simplifies onboard multicarrier demultiplexer/demodulator designs (about 2:1 reduction in mass and power), requires smaller onboard buffers (10:1 to approximately 3:1 reduction in size), and provides better frame efficiency as well as lower onboard processing delay. Analysis and computer simulation illustrate that this technique can support a bit rate of up to 10 Mbit/s (or higher) with proper selection of design parameters. High bit rate transmission may require Doppler compensation and multiple phase error measurements. The recommended modulation technique for bit synchronous timing is coherent QPSK with differential encoding for the uplink and coherent QPSK for the downlink.

  18. 33 CFR 207.60 - Federal Dam, Hudson River, Troy, N.Y.; pool level.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Federal Dam, Hudson River, Troy, N.Y.; pool level. 207.60 Section 207.60 Navigation and Navigable Waters CORPS OF ENGINEERS..., N.Y.; pool level. (a) Whenever the elevation of the pool created by the Federal dam at Troy, N.Y...

  19. Improvement in QEPAS system utilizing a second harmonic based wavelength calibration technique

    NASA Astrophysics Data System (ADS)

    Zhang, Qinduan; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Xie, Yulei; Gong, Weihua

    2018-05-01

    A simple laser wavelength calibration technique, based on second harmonic signal, is demonstrated in this paper to improve the performance of quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensing system, e.g. improving the signal to noise ratio (SNR), detection limit and long-term stability. Constant current, corresponding to the gas absorption line, combining f/2 frequency sinusoidal signal are used to drive the laser (constant driving mode), a software based real-time wavelength calibration technique is developed to eliminate the wavelength drift due to ambient fluctuations. Compared to conventional wavelength modulation spectroscopy (WMS), this method allows lower filtering bandwidth and averaging algorithm applied to QEPAS system, improving SNR and detection limit. In addition, the real-time wavelength calibration technique guarantees the laser output is modulated steadily at gas absorption line. Water vapor is chosen as an objective gas to evaluate its performance compared to constant driving mode and conventional WMS system. The water vapor sensor was designed insensitive to the incoherent external acoustic noise by the numerical averaging technique. As a result, the SNR increases 12.87 times in wavelength calibration technique based system compared to conventional WMS system. The new system achieved a better linear response (R2 = 0 . 9995) in concentration range from 300 to 2000 ppmv, and achieved a minimum detection limit (MDL) of 630 ppbv.

  20. Adaptive control with an expert system based supervisory level. Thesis

    NASA Technical Reports Server (NTRS)

    Sullivan, Gerald A.

    1991-01-01

    Adaptive control is presently one of the methods available which may be used to control plants with poorly modelled dynamics or time varying dynamics. Although many variations of adaptive controllers exist, a common characteristic of all adaptive control schemes, is that input/output measurements from the plant are used to adjust a control law in an on-line fashion. Ideally the adjustment mechanism of the adaptive controller is able to learn enough about the dynamics of the plant from input/output measurements to effectively control the plant. In practice, problems such as measurement noise, controller saturation, and incorrect model order, to name a few, may prevent proper adjustment of the controller and poor performance or instability result. In this work we set out to avoid the inadequacies of procedurally implemented safety nets, by introducing a two level control scheme in which an expert system based 'supervisor' at the upper level provides all the safety net functions for an adaptive controller at the lower level. The expert system is based on a shell called IPEX, (Interactive Process EXpert), that we developed specifically for the diagnosis and treatment of dynamic systems. Some of the more important functions that the IPEX system provides are: (1) temporal reasoning; (2) planning of diagnostic activities; and (3) interactive diagnosis. Also, because knowledge and control logic are separate, the incorporation of new diagnostic and treatment knowledge is relatively simple. We note that the flexibility available in the system to express diagnostic and treatment knowledge, allows much greater functionality than could ever be reasonably expected from procedural implementations of safety nets. The remainder of this chapter is divided into three sections. In section 1.1 we give a detailed review of the literature in the area of supervisory systems for adaptive controllers. In particular, we describe the evolution of safety nets from simple ad hoc techniques, up

  1. (n, N) type maintenance policy for multi-component systems with failure interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuoqi; Wu, Su; Li, Binfeng; Lee, Seungchul

    2015-04-01

    This paper studies maintenance policies for multi-component systems in which failure interactions and opportunistic maintenance (OM) involve. This maintenance problem can be formulated as a Markov decision process (MDP). However, since an action set and state space in MDP exponentially expand as the number of components increase, traditional approaches are computationally intractable. To deal with curse of dimensionality, we decompose such a multi-component system into mutually influential single-component systems. Each single-component system is formulated as an MDP with the objective of minimising its long-run average maintenance cost. Under some reasonable assumptions, we prove the existence of the optimal (n, N) type policy for a single-component system. An algorithm to obtain the optimal (n, N) type policy is also proposed. Based on the proposed algorithm, we develop an iterative approximation algorithm to obtain an acceptable maintenance policy for a multi-component system. Numerical examples find that failure interactions and OM pose significant effects on a maintenance policy.

  2. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  3. Occupational exposure to nitrous oxide during procedural pain control in children: a comparison of different inhalation techniques and scavenging systems.

    PubMed

    Messeri, Andrea; Amore, Elena; Dugheri, Stefano; Bonari, Alessandro; Pompilio, Ilenia; Arcangeli, Giulio; Rizzo, Giuliana

    2016-09-01

    Nitrous oxide (N2 O 50% in oxygen) is commonly used for painful procedures in children. Potential negative health effects associated with chronic workplace exposure limit its use. Safe occupational N2 O exposure concentrations are below 25 ppm environmental concentration as a time-weighted average (TWA) and below 200 ppm as a short-time exposure level (STEL) of 15 min. The aim was to assess occupational exposure of staff during nitrous oxide administration to children using different inhalation delivery devices and scavenging systems. Staff nitrous oxide exposure during use of a double face mask (DFM) with or without a demand valve (DV) was compared with a conventional single face mask (FM). We also compared exposure using the hospital central scavenging system with a portable evacuation system. N2 O concentrations, representing exposure values, were monitored within proximity to staff. Urine N2 O concentration was measured in staff administering the N2 O at the end of the procedural session. The mean and median values of TWA and STEL within the working area were lower than recommended values in the DFM (10.8, 11.6 ppm for TWA; 13.9, 11.0 ppm for STEL) and DFM-DV groups (2.3, 2.8 ppm for TWA; 4.4, 3.5 ppm for STEL) using the portable evacuation system. The N2 O urine exposure in DFM-DV group was lower than DFM group: a mean difference of 9.56 ppm (95% CI 2.65-16.46). Staff N2 O urinary concentrations were within safe biological limits in both the DFM and DFM-DV groups. High exposure concentrations to N2 O were recorded in all FM and FM-DV environmental and biological samples. The DFM system, with or without a DV, connected to a portable evacuation system during N2 O administration to children for painful procedures kept N2 O levels within the local environment below recommended limits. © 2016 John Wiley & Sons Ltd.

  4. Relevant Anatomy, Morphology, and Implantation Techniques of the Dorsal Root Ganglia at the Lumbar Levels.

    PubMed

    Vancamp, Tim; Levy, Robert M; Peña, Isaac; Pajuelo, Antonio

    2017-10-01

    While dorsal root ganglion (DRG) stimulation has been available in Europe and Australia for the past five years and in the United States for the past year, there are no published details concerning the optimal procedures for DRG lead implantation. We describe several techniques that can be applied to implant cylindrical leads over the DRG, highlighting some tips and tricks according to our experiences. Focus is mainly shifted toward implantations in the lumbar area. We furthermore give some insights in the results we experienced in Spain as well as some worldwide numbers. A 14-gauge needle is placed using a "2-Level Technique (2-LT)" or exceptionally a "1-Level Technique (1-LT)" or a "Primary- or Secondary Technique" at the level of L5. The delivery sheath, loaded with the lead, is advanced toward the targeted neural foramen. The lead is placed over the dorsal aspect of the DRG. A strain relief loop is created in the epidural space. Sheath and needle are retracted and the lead is secured using an anchor or anchorless technique. In Spain, 87.2% (N = 78) of the selected patients have been successfully implanted. Seven (8.9%) had a negative trial and three (4.2%) were explanted. Average VAS score decreased from 8.8 to 3.3 and on average 94.5% of the pain area was covered. In our center's subjects (N = 47 patients, 60.3% of all implanted patients in Spain), VAS scores decreased from an average of 8.8-1.7 and pain coverage averaged 96.4%. We used an average of 1.8 electrodes. Worldwide more than 4000 permanent cases have been successfully performed. We present implantation techniques whereby a percutaneous lead is placed over the DRG through the use of a special designed delivery sheath. Further investigation of the safety, efficacy, and sustainability of clinical outcomes using these devices is warranted. © 2017 International Neuromodulation Society.

  5. A technique for estimating ground-water levels at sites in Rhode Island from observation-well data

    USGS Publications Warehouse

    Socolow, Roy S.; Frimpter, Michael H.; Turtora, Michael; Bell, Richard W.

    1994-01-01

    Estimates of future high, median, and low ground- water levels are needed for engineering and architectural design decisions and for appropriate selection of land uses. For example, the failure of individual underground sewage-disposal systems due to high ground-water levels can be prevented if accurate water-level estimates are available. Estimates of extreme or average conditions are needed because short duration preconstruction obser- vations are unlikely to be adequately represen- tative. Water-level records for 40 U.S. Geological Survey observation wells in Rhode Island were used to describe and interpret water-level fluctuations. The maximum annual range of water levels average about 6 feet in sand and gravel and 11 feet in till. These data were used to develop equations for estimating future high, median, and low water levels on the basis of any one measurement at a site and records of water levels at observation wells used as indexes. The estimating technique relies on several assumptions about temporal and spatial variations: (1) Water levels will vary in the future as they have in the past, (2) Water levels fluctuate seasonally (3) Ground-water fluctuations are dependent on site geology, and (4) Water levels throughout Rhode Island are subject to similar precipitation and climate. Comparison of 6,697 estimates of high, median, and low water levels (depth to water level exceeded 95, 50, and 5 percent of the time, respectively) with the actual measured levels exceeded 95, 50, and 5 percent of the time at 14 sites unaffected by pumping and unknown reasons, yielded mean squared errors ranging from 0.34 to 1.53 square feet, 0.30 to 1.22 square feet, and 0.32 to 2.55 square feet, respectively. (USGS)

  6. A Distributed Approach to System-Level Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, Indranil

    2012-01-01

    Prognostics, which deals with predicting remaining useful life of components, subsystems, and systems, is a key technology for systems health management that leads to improved safety and reliability with reduced costs. The prognostics problem is often approached from a component-centric view. However, in most cases, it is not specifically component lifetimes that are important, but, rather, the lifetimes of the systems in which these components reside. The system-level prognostics problem can be quite difficult due to the increased scale and scope of the prognostics problem and the relative Jack of scalability and efficiency of typical prognostics approaches. In order to address these is ues, we develop a distributed solution to the system-level prognostics problem, based on the concept of structural model decomposition. The system model is decomposed into independent submodels. Independent local prognostics subproblems are then formed based on these local submodels, resul ting in a scalable, efficient, and flexible distributed approach to the system-level prognostics problem. We provide a formulation of the system-level prognostics problem and demonstrate the approach on a four-wheeled rover simulation testbed. The results show that the system-level prognostics problem can be accurately and efficiently solved in a distributed fashion.

  7. Ionization Spectroscopic Measurement of nP Rydberg Levels of 87Rb Cold Atoms

    NASA Astrophysics Data System (ADS)

    Li, Yufan; Zaheeruddin, Syed; Zhao, Dongmei; Ma, Xinwen; Yang, Jie

    2018-05-01

    We created an ultracold plasma via the spontaneous ionization of cold dense Rydberg atoms of 87Rb in a magneto-optical trap (MOT), and measured the nS1/2 (n = 50-80), nP1/2 (n = 16-23), nP3/2 (n = 16-98), and nD5/2 (n = 49-96) Rydberg levels by detecting the electrons in the ultracold plasma. By fitting the energy levels of Rydberg states, the first ionization potential of 33690.950(11) cm-1 and the quantum defects of S, P, and D orbitals were obtained. The absolute transition energies of nS1/2 (n = 66-80), nP1/2 (n = 16-23), nP3/2 (n = 16-98), and nD5/2 (n = 58-96) states of 87Rb, as well as the quantum defects for p1/2 and p3/2 series, are given for the first time.

  8. Spatial and temporal occurrence of N-nitrosamines in seven drinking water supply systems.

    PubMed

    Brisson, Isabelle J; Levallois, Patrick; Tremblay, Hélène; Sérodes, Jean; Deblois, Christian; Charrois, Jeffrey; Taguchi, Vincent; Boyd, Jessica; Li, Xingfang; Rodriguez, Manuel J

    2013-09-01

    The spatiotemporal presence of eight N-nitrosamines in the water of seven supply systems in Quebec considered to be susceptible to these emerging disinfection by-products was evaluated. This is the first study on the presence of N-nitrosamines in drinking water utilities in Quebec. Seven sampling campaigns were carried out at several sampling points in each of the systems over a period of 1 year. The results show that N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), were not commonly detected in the water of the facilities under study (10 % of samples). The concentrations measured were lower than those reported in recent North American studies. None of the 195 samples taken exceeded the Ontario standard of 9 ng/L for NDMA (maximum value observed of 3.3 ng/L). N-nitrosomethylethylamine and N-nitrosopiperidine were detected once, with concentrations of 3.7 and 6.0 ng/L, respectively. Chloramination was identified as being the main risk factor regarding the presence of N-nitrosamines, but water quality and some operating parameters, in particular disinfectant residual, also seem to be related to their presence. NDMA concentrations at the end of the distribution systems were generally higher than water leaving the plant. No seasonal trends were observed for the formation of N-nitrosamines in the investigated supply systems. Finally, an association between the presence of N-nitrosamines and the levels of trihalomethanes and haloacetic acids was observed in some facilities.

  9. The level structure of 124Sb and residual p-n interactions

    NASA Astrophysics Data System (ADS)

    Alexeev, V. L.; Kondurov, I. A.; Loglnov, Yu. E.; Martynov, V. V.; Sakharov, S. L.; Sushkov, P. A.; Börner, H. G.; Davidson, W. F.; Pinston, J. A.; Schreckenbach, K.

    1980-08-01

    Gamma and conversion electron spectra following the 123Sb(n, γ) 124Sb reaction in the energy range 35-1030 keV and 16-600 keV, respectively, have been studied with bent crystal and magnetic spectrometers. Gamma-gamma coincidences in the energy range 40-500 keV have been investigated with a Ge(Li)-Ge(Li) arrangement. Gamma-gamma delayed coincidences have been taken with two Ge(Li) detectors in the range 0-10 μs and with a Ge(Li) detector and plastic scintillator in the range 0-300 ns. The 124Sb level scheme involving 40 excited states up to 1060 keV has been constructed. Parity is determined for all the levels. Unique spin values are assigned to 30 levels. The half-lives of the 40.804, 80.764, 125.231 and 248.369 keV levels have been measured to be 3.2 ± 0.3 μs, 4 ± 1 ns, 86 ± 2 ns and 380 ± 70 ps respectively. It is shown that the present level scheme energies differ from those previously found in the 123Sb(d, p) 124Sb reaction by a systematic shift of 40 keV. The (n, γ) levels are found to match up well with those from the (d, p), (n res, γ) and (n, γ primary) reactions. A comparison of the 124Sb level scheme from the (n, γ) reaction with that from the (d, p) reaction and with the 122Sb level scheme enabled the identification of the p g{7}/{2}ns {1}/{2}, p g{7}/{2}n d{3}/{2} π g{7}/{2}ν h{11}/{2}and π d{5}/{2}ν h{11}/{2} two-quasiparticle multiplets. Energy splittings of these p-n configurations by residual interactions taken as a combination of short-range Wigner, singlet and tensor forces have been calculated. It is shown that in order to reproduce experimental branching ratios, configuration mixing should be taken into account, though the amplitudes needed for the admixed configurations are rather small and are, on the average, equal to 0.25. It is also shown that the parameters of residual interactions are about constant in the mass range A = 48 → 210, namely, the parameter of Wigner forces V0 = -32 ± 6 MeV, the singlet force parameter V1

  10. A Read-Aloud Storybook Selection System for Prereaders at the Preschool Language Level: A Pilot Study

    PubMed Central

    van Kleeck, Anne; Beaton, Derek; Horne, Erin; MacKenzie, Heather; Abdi, Hervé

    2015-01-01

    Purpose Many well-accepted systems for determining difficulty level exist for books children read independently, but few are available for determining the wide range of difficulty levels of storybooks read aloud to preschoolers. Also, the available tools list book characteristics only on the basis of parents' or authors' opinions. We created an empirically derived difficulty-level system on the basis of 22 speech-language pathologists' (SLPs) judgments of specific storybooks used in preschooler read-alouds. Method SLPs sorted 11 storybooks into ranked stacks on the basis of how difficult they thought the storybooks would be for preschoolers to understand when read aloud. SLPs described each stack globally as well as why they assigned each storybook to a particular stack. From transcriptions of the explanations, we derived a glossary of book characteristics using content analysis. We created a difficulty-level scale using a multivariate analysis technique that simultaneously analyzed book sorts and glossary terms. Results The book selection system includes a glossary of book characteristics, a 4-level difficulty scale, and exemplar books for each level. Conclusion This empirically derived difficulty-level system created for storybooks read aloud to preschoolers represents a step toward filling a gap in the read-aloud literature. PMID:26089030

  11. Global ice-sheet system interlocked by sea level

    NASA Astrophysics Data System (ADS)

    Denton, George H.; Hughes, Terence J.; Karlén, Wibjörn

    1986-07-01

    Denton and Hughes (1983, Quaternary Research20, 125-144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results ( Manabe and Broccoli, 1985, Journal of Geophysical Research90, 2167-2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate ( Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In "The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present" (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303-318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This

  12. Models and techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1982-01-01

    Models, measures, and techniques for evaluating the effectiveness of aircraft computing systems were developed. By "effectiveness" in this context we mean the extent to which the user, i.e., a commercial air carrier, may expect to benefit from the computational tasks accomplished by a computing system in the environment of an advanced commercial aircraft. Thus, the concept of effectiveness involves aspects of system performance, reliability, and worth (value, benefit) which are appropriately integrated in the process of evaluating system effectiveness. Specifically, the primary objectives are: the development of system models that provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer.

  13. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1982-01-01

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  14. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Astrophysics Data System (ADS)

    Cull, R. C.; Eltimsahy, A. H.

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  15. Ureteric Embolization for Lower Urinary Tract Fistulae: Use of Two Amplatzer Vascular Plugs and N-Butyl Cyanoacrylate Employing the 'Sandwich' Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, Wael E. A., E-mail: ws6r@virginia.edu; Kalagher, S.; Turba, U. C.

    2013-08-01

    PurposeThis study describes and evaluated the effectiveness of occluding distal ureters in the clinical setting of urinary vaginal (vesicovaginal or enterovesicovaginal) fistulae utilizing a new technique which combines Amplatzer vascular plugs and N-butyl cyanoacrylate.MaterialsThis is a retrospective study (January 2007-December 2010) of patients with urinary-vaginal fistulae undergoing distal ureter embolization utilizing an Amplatzer- N-butyl cyanoacrylate-Amplatzer sandwich technique. An 8-12-mm type-I or type-II Amplatzer vascular plug was delivered using the sheath and deployed in the ureter distal to the pelvic brim. Instillation of 0.8-1.5 cc of N-butyl cyanoacrylate into ureter proximal to the Amplatzer plug was performed. This was followed bymore » another set of 8-12-mm type-I or type-II Amplatzer vascular plugs in a technique referred to as the 'sandwich technique.'ResultsFive ureters in three patients were occluded utilizing the above-described technique during the 4-year study period. Mean maximum size Amplatzer used per ureter was 10.8 mm (range, 8-12). One ureter required three Amplatzer plugs and the rest required two. Two patients (3 ureters) were clinically successful with complete resolution of symptoms in 36-48 h. The third patient (2 ureters) was partly successful and required a second Amplatzer- N-butyl cyanoacrylate sandwich technique embolization. The mean clinical follow-up was 11.3 months (range, 1.7-29.2).ConclusionsThe Amplatzer- N-butyl cyanoacrylate-Amplatzer sandwich technique for occluding the distal ureter is safe and effective with a quick (probably due to the N-butyl cyanoacrylate) and durable (probably due to the Amplatzer plugs) clinical response.« less

  16. A system identification technique based on the random decrement signatures. Part 2: Experimental results

    NASA Technical Reports Server (NTRS)

    Bedewi, Nabih E.; Yang, Jackson C. S.

    1987-01-01

    Identification of the system parameters of a randomly excited structure may be treated using a variety of statistical techniques. Of all these techniques, the Random Decrement is unique in that it provides the homogeneous component of the system response. Using this quality, a system identification technique was developed based on a least-squares fit of the signatures to estimate the mass, damping, and stiffness matrices of a linear randomly excited system. The results of an experiment conducted on an offshore platform scale model to verify the validity of the technique and to demonstrate its application in damage detection are presented.

  17. System health monitoring using multiple-model adaptive estimation techniques

    NASA Astrophysics Data System (ADS)

    Sifford, Stanley Ryan

    Monitoring system health for fault detection and diagnosis by tracking system parameters concurrently with state estimates is approached using a new multiple-model adaptive estimation (MMAE) method. This novel method is called GRid-based Adaptive Parameter Estimation (GRAPE). GRAPE expands existing MMAE methods by using new techniques to sample the parameter space. GRAPE expands on MMAE with the hypothesis that sample models can be applied and resampled without relying on a predefined set of models. GRAPE is initially implemented in a linear framework using Kalman filter models. A more generalized GRAPE formulation is presented using extended Kalman filter (EKF) models to represent nonlinear systems. GRAPE can handle both time invariant and time varying systems as it is designed to track parameter changes. Two techniques are presented to generate parameter samples for the parallel filter models. The first approach is called selected grid-based stratification (SGBS). SGBS divides the parameter space into equally spaced strata. The second approach uses Latin Hypercube Sampling (LHS) to determine the parameter locations and minimize the total number of required models. LHS is particularly useful when the parameter dimensions grow. Adding more parameters does not require the model count to increase for LHS. Each resample is independent of the prior sample set other than the location of the parameter estimate. SGBS and LHS can be used for both the initial sample and subsequent resamples. Furthermore, resamples are not required to use the same technique. Both techniques are demonstrated for both linear and nonlinear frameworks. The GRAPE framework further formalizes the parameter tracking process through a general approach for nonlinear systems. These additional methods allow GRAPE to either narrow the focus to converged values within a parameter range or expand the range in the appropriate direction to track the parameters outside the current parameter range boundary

  18. Identification of nitrogen- and host-related deep-level traps in n-type GaNAs and their evolution upon annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelczuk, Ł., E-mail: lukasz.gelczuk@pwr.edu.pl; Kudrawiec, R., E-mail: robert.kudrawiec@pwr.edu.pl; Henini, M.

    2014-07-07

    Deep level traps in as-grown and annealed n-GaNAs layers (doped with Si) of various nitrogen concentrations (N=0.2%, 0.4%, 0.8%, and 1.2%) were investigated by deep level transient spectroscopy. In addition, optical properties of GaNAs layers were studied by photoluminescence and contactless electroreflectance. The identification of N- and host-related traps has been performed on the basis of band gap diagram [Kudrawiec, Appl. Phys. Lett. 101, 082109 (2012)], which assumes that the activation energy of electron traps of the same microscopic nature decreases with the rise of nitrogen concentration in accordance with the N-related shift of the conduction band towards trap levels.more » The application of this diagram has allowed to investigate the evolution of donor traps in GaNAs upon annealing. In general, it was observed that the concentration of N- and host-related traps decreases after annealing and PL improves very significantly. However, it was also observed that some traps are generated due to annealing. It explains why the annealing conditions have to be carefully optimized for this material system.« less

  19. Minimally Invasive Removal of an Intradural Cervical Tumor : Assessment of a Combined Split-Spinous Laminectomy and Quadrant Tube Retractor System Technique

    PubMed Central

    Kwak, Young-Seok; Cho, Dae-Chul; Kim, Young-Baeg

    2012-01-01

    Conventional laminectomy is the most popular technique for the complete removal of intradural spinal tumors. In particular, the central portion intramedullary tumor and large intradural extramedullary tumor often require a total laminectomy for the midline myelotomy, sufficient decompression, and adequate visualization. However, this technique has the disadvantages of a wide incision, extensive periosteal muscle dissection, and bony structural injury. Recently, split-spinous laminectomy and tubular retractor systems were found to decrease postoperative muscle injuries, skin incision size and discomfort. The combined technique of split-spinous laminectomy, using a quadrant tube retractor system allows for an excellent exposure of the tumor with minimal trauma of the surrounding tissue. We propose that this technique offers possible advantages over the traditional open tumor removal of the intradural spinal cord tumors, which covers one or two cervical levels and requires a total laminectomy. PMID:23133739

  20. A distributed monitoring system for photovoltaic arrays based on a two-level wireless sensor network

    NASA Astrophysics Data System (ADS)

    Su, F. P.; Chen, Z. C.; Zhou, H. F.; Wu, L. J.; Lin, P. J.; Cheng, S. Y.; Li, Y. F.

    2017-11-01

    In this paper, a distributed on-line monitoring system based on a two-level wireless sensor network (WSN) is proposed for real time status monitoring of photovoltaic (PV) arrays to support the fine management and maintenance of PV power plants. The system includes the sensing nodes installed on PV modules (PVM), sensing and routing nodes installed on combiner boxes of PV sub-arrays (PVA), a sink node and a data management centre (DMC) running on a host computer. The first level WSN is implemented by the low-cost wireless transceiver nRF24L01, and it is used to achieve single hop communication between the PVM nodes and their corresponding PVA nodes. The second level WSN is realized by the CC2530 based ZigBee network for multi-hop communication among PVA nodes and the sink node. The PVM nodes are used to monitor the PVM working voltage and backplane temperature, and they send the acquired data to their PVA node via the nRF24L01 based first level WSN. The PVA nodes are used to monitor the array voltage, PV string current and environment irradiance, and they send the acquired and received data to the DMC via the ZigBee based second level WSN. The DMC is designed using the MATLAB GUIDE and MySQL database. Laboratory experiment results show that the system can effectively acquire, display, store and manage the operating and environment parameters of PVA in real time.

  1. Advances in single mode and high power AlGaInN laser diode technology for systems applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Michal; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Smalc-Koziorowska, Julita; Stanczyk, Szymon; Watson, Scott; Kelly, Antony E.

    2015-03-01

    The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries.

  2. Exact e-e (exchange) correlations of 2-D quantum dots in magnetic field: Size extensive N = 3 , 4 , … , ‧ n ‧ -electron systems via multi-pole expansion

    NASA Astrophysics Data System (ADS)

    Aggarwal, Priyanka; Sharma, Shivalika; Singh, Sunny; Kaur, Harsimran; Hazra, Ram Kuntal

    2017-04-01

    Inclusion of coulomb interaction emerges with the complexity of either convergence of integrals or separation of variables of Schrödinger equations. For an N-electron system, interaction terms grow by N(N-1)/2 factors. Therefore, 2-e system stands as fundamental basic unit for generalized N-e systems. For the first time, we have evaluated e-e correlations in very simple and absolutely terminating finite summed hypergeometric series for 2-D double carrier parabolic quantum dot in both zero and arbitrary non-zero magnetic field (symmetric gauge) and have appraised these integrals in variational methods. The competitive role among confinement strength, magnetic field, mass of the carrier and dielectric constant of the medium on energy level diagram, level-spacing statistics, heat capacities (Cv at 1 K) and magnetization (T ∼ (0-1)K) is studied on systems spanning over wide range of materials (GaAs,Ge,CdS,SiO2 and He, etc). We have also constructed an exact theory for generalized correlated N-e 2-D quantum dots via multi-pole expansion but for the sake of compactness of the article we refrain from data.

  3. Construct stability of an instrumented 2-level cervical corpectomy model following fatigue testing: biomechanical comparison of circumferential antero-posterior instrumentation versus a novel anterior-only transpedicular screw-plate fixation technique.

    PubMed

    Koller, Heiko; Schmoelz, Werner; Zenner, Juliane; Auffarth, Alexander; Resch, Herbert; Hitzl, Wolfgang; Malekzadeh, Davud; Ernstbrunner, Lukas; Blocher, Martina; Mayer, Michael

    2015-12-01

    A high rate of complications in multilevel cervical surgery with corpectomies and anterior-only screw-and-plate stabilization is reported. A 360°-instrumentation improves construct stiffness and fusion rates, but adds the morbidity of a second approach. A novel ATS-technique (technique that used anterior transpedicular screw placement) was recently described, yet no study to date has analyzed its performance after fatigue loading. Accordingly, the authors performed an analysis of construct stiffness after fatigue testing of a cervical 2-level corpectomy model reconstructed using a novel anterior transpedicular screw-and-plate technique (ATS-group) in comparison to standard antero-posterior instrumentation (360°-group). Twelve fresh-frozen human cervical spines were mounted on a spine motion tester to analyze restriction of ROM under loading (1.5 Nm) in flexion-extension (FE), axial rotation (AR), and lateral bending (LB). Testing was performed in the intact state, and after instrumentation of a 2-level corpectomy C4 + C5 using a cage and the constructs of ATS- and 360°-group, after 1,000 cycles, and after 2,000 cycles of fatigue testing. In the ATS-group (n = 6), instrumentation was achieved using a customized C3-C6 ATS-plate system. In the 360°-group (n = 6), instrumentation consisted of a standard anterior screw-and-plate system with a posterior instrumentation using C3-C6 lateral mass screws. Motion data were assessed as degrees and further processed as normalized values after standardization to the intact ROM state. Specimen age and BMD were not significantly different between the ATS- and 360°-groups. After instrumentation and 2,000 cycles of testing, no specimen exhibited a ROM greater than in the intact state. No specimen exhibited catastrophic construct failure after 2,000 cycles. Construct stiffness in the 360°-group was significantly increased compared to the ATS-group for all loading conditions, except for FE-testing after instrumentation. After 2

  4. PyMCT: A Very High Level Language Coupling Tool For Climate System Models

    NASA Astrophysics Data System (ADS)

    Tobis, M.; Pierrehumbert, R. T.; Steder, M.; Jacob, R. L.

    2006-12-01

    At the Climate Systems Center of the University of Chicago, we have been examining strategies for applying agile programming techniques to complex high-performance modeling experiments. While the "agile" development methodology differs from a conventional requirements process and its associated milestones, the process remain a formal one. It is distinguished by continuous improvement in functionality, large numbers of small releases, extensive and ongoing testing strategies, and a strong reliance on very high level languages (VHLL). Here we report on PyMCT, which we intend as a core element in a model ensemble control superstructure. PyMCT is a set of Python bindings for MCT, the Fortran-90 based Model Coupling Toolkit, which forms the infrastructure for the inter-component communication in the Community Climate System Model (CCSM). MCT provides a scalable model communication infrastructure. In order to take maximum advantage of agile software development methodologies, we exposed MCT functionality to Python, a prominent VHLL. We describe how the scalable architecture of MCT allows us to overcome the relatively weak runtime performance of Python, so that the performance of the combined system is not severely impacted. To demonstrate these advantages, we reimplemented the CCSM coupler in Python. While this alone offers no new functionality, it does provide a rigorous test of PyMCT functionality and performance. We reimplemented the CPL6 library, presenting an interesting case study of the comparison between conventional Fortran-90 programming and the higher abstraction level provided by a VHLL. The powerful abstractions provided by Python will allow much more complex experimental paradigms. In particular, we hope to build on the scriptability of our coupling strategy to enable systematic sensitivity tests. Our most ambitious objective is to combine our efforts with Bayesian inverse modeling techniques toward objective tuning at the highest level, across model

  5. A first-principles study of carbon-related energy levels in GaN. I. Complexes formed by substitutional/interstitial carbons and gallium/nitrogen vacancies

    NASA Astrophysics Data System (ADS)

    Matsubara, Masahiko; Bellotti, Enrico

    2017-05-01

    Various forms of carbon based complexes in GaN are studied with first-principles calculations employing Heyd-Scuseria-Ernzerhof hybrid functionals within the framework of the density functional theory. We consider carbon complexes made of the combinations of single impurities, i.e., CN-CGa, CI-CN , and CI-CGa , where CN, CGa , and CI denote C substituting nitrogen, C substituting gallium, and interstitial C, respectively, and of neighboring gallium/nitrogen vacancies ( VGa / VN ), i.e., CN-VGa and CGa-VN . Formation energies are computed for all these configurations with different charge states after full geometry optimizations. From our calculated formation energies, thermodynamic transition levels are evaluated, which are related to the thermal activation energies observed in experimental techniques such as deep level transient spectroscopy. Furthermore, the lattice relaxation energies (Franck-Condon shift) are computed to obtain optical activation energies, which are observed in experimental techniques such as deep level optical spectroscopy. We compare our calculated values of activation energies with the energies of experimentally observed C-related trap levels and identify the physical origins of these traps, which were unknown before.

  6. An Excel sheet for inferring children's number-knower levels from give-N data.

    PubMed

    Negen, James; Sarnecka, Barbara W; Lee, Michael D

    2012-03-01

    Number-knower levels are a series of stages of number concept development in early childhood. A child's number-knower level is typically assessed using the give-N task. Although the task procedure has been highly refined, the standard ways of analyzing give-N data remain somewhat crude. Lee and Sarnecka (Cogn Sci 34:51-67, 2010, in press) have developed a Bayesian model of children's performance on the give-N task that allows knower level to be inferred in a more principled way. However, this model requires considerable expertise and computational effort to implement and apply to data. Here, we present an approximation to the model's inference that can be computed with Microsoft Excel. We demonstrate the accuracy of the approximation and provide instructions for its use. This makes the powerful inferential capabilities of the Bayesian model accessible to developmental researchers interested in estimating knower levels from give-N data.

  7. Therapist and client predictors of use of therapy techniques within the context of implementation efforts in a large public mental health system

    PubMed Central

    Wolk, Courtney Benjamin; Marcus, Steven C.; Weersing, V. Robin; Hawley, Kristin M.; Evans, Arthur; Hurford, Matthew; Beidas, Rinad

    2016-01-01

    Objective Many youth receiving community mental health treatment do not receive evidence-based interventions. Research suggests that community mental health therapists use a broad range of therapeutic techniques at low intensities. The present study examined the relationship between therapist- and client-level predictors on community-based therapists’ report of cognitive, behavioral, psychodynamic, and family techniques within the context of implementation efforts. Methods One hundred thirty therapists from 23 organizations in an urban publicly funded behavioral health system implementing evidence-based practices participated. Therapist-level predictors included age, gender, clinical experience, licensure status, and participation in evidence-based practice initiatives. Child-level predictors included therapist-reported child primary disorder (i.e., externalizing, internalizing, or other) and child age. Therapists completed the Therapist Procedures Checklist- Family Revised, a self-report measure of therapeutic techniques used. Results Unlicensed therapists were more likely to report use of both psychodynamic and behavioral techniques. Therapists who did not participate in an evidence-based practice initiative were less likely to report use of cognitive techniques. Those with externalizing clients were more likely to report use of behavioral and family techniques. Therapists with the youngest clients (aged 3-7) were most likely to report use of behavioral techniques and less likely to report use of cognitive and psychodynamic techniques. Conclusions Results suggest that both therapist and client factors predict self-reported use of therapy techniques. Participating in an evidence-based practice initiative increased report of cognitive techniques. Therapists reported using more behavioral and family techniques for youth with externalizing disorders and fewer cognitive and psychodynamic techniques with young clients. PMID:26876658

  8. Bi-Level Integrated System Synthesis (BLISS)

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Agte, Jeremy S.; Sandusky, Robert R., Jr.

    1998-01-01

    BLISS is a method for optimization of engineering systems by decomposition. It separates the system level optimization, having a relatively small number of design variables, from the potentially numerous subsystem optimizations that may each have a large number of local design variables. The subsystem optimizations are autonomous and may be conducted concurrently. Subsystem and system optimizations alternate, linked by sensitivity data, producing a design improvement in each iteration. Starting from a best guess initial design, the method improves that design in iterative cycles, each cycle comprised of two steps. In step one, the system level variables are frozen and the improvement is achieved by separate, concurrent, and autonomous optimizations in the local variable subdomains. In step two, further improvement is sought in the space of the system level variables. Optimum sensitivity data link the second step to the first. The method prototype was implemented using MATLAB and iSIGHT programming software and tested on a simplified, conceptual level supersonic business jet design, and a detailed design of an electronic device. Satisfactory convergence and favorable agreement with the benchmark results were observed. Modularity of the method is intended to fit the human organization and map well on the computing technology of concurrent processing.

  9. A Comparison of Apical Bacterial Extrusion in Manual, ProTaper Rotary, and One Shape Rotary Instrumentation Techniques.

    PubMed

    Mittal, Rakesh; Singla, Meenu G; Garg, Ashima; Dhawan, Anu

    2015-12-01

    Apical extrusion of irrigants and debris is an inherent limitation associated with cleaning and shaping of root canals and has been studied extensively because of its clinical relevance as a cause of flare-ups. Many factors affect the amount of extruded intracanal materials. The purpose of this study was to assess the bacterial extrusion by using manual, multiple-file continuous rotary system (ProTaper) and single-file continuous rotary system (One Shape). Forty-two human mandibular premolars were inoculated with Enterococcus faecalis by using a bacterial extrusion model. The teeth were divided into 3 experimental groups (n = 12) and 1 control group (n = 6). The root canals of experimental groups were instrumented according to the manufacturers' instructions by using manual technique, ProTaper rotary system, or One Shape rotary system. Sterilized saline was used as an irrigant, and bacterial extrusion was quantified as colony-forming units/milliliter. The results obtained were statistically analyzed by using one-way analysis of variance for intergroup comparison and post hoc Tukey test for pair-wise comparison. The level for accepting statistical significance was set at P < .05. All the instrumentation techniques resulted in bacterial extrusion, with manual step-back technique exhibiting significantly more bacterial extrusion than the engine-driven systems. Of the 2 engine-driven systems, ProTaper rotary extruded significantly more bacteria than One Shape rotary system (P < .05). The engine-driven nickel-titanium systems were associated with less apical extrusion. The instrument design may play a role in amount of extrusion. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. A case study of the sensitivity of forecast skill to data and data analysis techniques

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Atlas, R.; Halem, M.; Susskind, J.

    1983-01-01

    A series of experiments have been conducted to examine the sensitivity of forecast skill to various data and data analysis techniques for the 0000 GMT case of January 21, 1979. These include the individual components of the FGGE observing system, the temperatures obtained with different satellite retrieval methods, and the method of vertical interpolation between the mandatory pressure analysis levels and the model sigma levels. It is found that NESS TIROS-N infrared retrievals seriously degrade a rawinsonde-only analysis over land, resulting in a poorer forecast over North America. Less degradation in the 72-hr forecast skill at sea level and some improvement at 500 mb is noted, relative to the control with TIROS-N retrievals produced with a physical inversion method which utilizes a 6-hr forecast first guess. NESS VTPR oceanic retrievals lead to an improved forecast over North America when added to the control.

  11. Guidance and Control Systems Simulation and Validation Techniques

    DTIC Science & Technology

    1988-07-01

    AGARDograph No.273 GUIDANCE AND CONTROL SYSTEMS SIMULATION AND VALIDATION TECHNIQUES Edited by Dr William P.Albritton, Jr AMTEC Corporation 213 Ridgelawn...AND DEVELOPMENT PROCESS FOR TACTICAL GUIDED WEAPONS by Dr W.PAlbritton, Jr AMTEC Corporation 213 Ridgelawn Drive Athens, AL 35611, USA Summary A brief

  12. Patient dose, gray level and exposure index with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Silva, T. R.; Yoshimura, E. M.

    2014-02-01

    Computed radiography (CR) is gradually replacing conventional screen-film system in Brazil. To assess image quality, manufactures provide the calculation of an exposure index through the acquisition software of the CR system. The objective of this study is to verify if the CR image can be used as an evaluator of patient absorbed dose too, through a relationship between the entrance skin dose and the exposure index or the gray level values obtained in the image. The CR system used for this study (Agfa model 30-X with NX acquisition software) calculates an exposure index called Log of the Median (lgM), related to the absorbed dose to the IP. The lgM value depends on the average gray level (called Scan Average Level (SAL)) of the segmented pixel value histogram of the whole image. A Rando male phantom was used to simulate a human body (chest and head), and was irradiated with an X-ray equipment, using usual radiologic techniques for chest exams. Thermoluminescent dosimeters (LiF, TLD100) were used to evaluate entrance skin dose and exit dose. The results showed a logarithm relation between entrance dose and SAL in the image center, regardless of the beam filtration. The exposure index varies linearly with the entrance dose, but the angular coefficient is beam quality dependent. We conclude that, with an adequate calibration, the CR system can be used to evaluate the patient absorbed dose.

  13. Accelerator-feasible N -body nonlinear integrable system

    DOE PAGES

    Danilov, V.; Nagaitsev, S.

    2014-12-23

    Nonlinear N-body integrable Hamiltonian systems, where N is an arbitrary number, attract the attention of mathematical physicists for the last several decades, following the discovery of some number of these systems. This research presents a new integrable system, which can be realized in facilities such as particle accelerators. This feature makes it more attractive than many of the previous such systems with singular or unphysical forces.

  14. Proceedings of the Mobile Satellite System Architectures and Multiple Access Techniques Workshop

    NASA Technical Reports Server (NTRS)

    Dessouky, Khaled

    1989-01-01

    The Mobile Satellite System Architectures and Multiple Access Techniques Workshop served as a forum for the debate of system and network architecture issues. Particular emphasis was on those issues relating to the choice of multiple access technique(s) for the Mobile Satellite Service (MSS). These proceedings contain articles that expand upon the 12 presentations given in the workshop. Contrasting views on Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA)-based architectures are presented, and system issues relating to signaling, spacecraft design, and network management constraints are addressed. An overview article that summarizes the issues raised in the numerous discussion periods of the workshop is also included.

  15. Evaluation of acoustic testing techniques for spacecraft systems

    NASA Technical Reports Server (NTRS)

    Cockburn, J. A.

    1971-01-01

    External acoustic environments, structural responses, noise reductions, and the internal acoustic environments have been predicted for a typical shroud/spacecraft system during lift-off and various critical stages of flight. Spacecraft responses caused by energy transmission from the shroud via mechanical and acoustic paths have been compared and the importance of the mechanical path has been evaluated. Theoretical predictions have been compared extensively with available laboratory and in-flight measurements. Equivalent laboratory acoustic fields for simulation of shroud response during the various phases of flight have been derived and compared in detail. Techniques for varying the time-space correlations of laboratory acoustic fields have been examined, together with methods for varying the time and spatial distribution of acoustic amplitudes. Possible acoustic testing configurations for shroud/spacecraft systems have been suggested and trade-off considerations have been reviewed. The problem of simulating the acoustic environments versus simulating the structural responses has been considered and techniques for testing without the shroud installed have been discussed.

  16. Systems level test and simulation for photonic processing systems

    NASA Astrophysics Data System (ADS)

    Erteza, I. A.; Stalker, K. T.

    1995-08-01

    Photonic technology is growing in importance throughout DOD. Programs have been underway in each of the Services to demonstrate the ability of photonics to enhance current electronic performance in several prototype systems, such as the Navy's SLQ-32 radar warning receiver, the Army's multi-role survivable radar and the phased array radar controller for the Airborne Warning and Control System (AWACS) upgrade. Little, though, is known about radiation effects; the component studies do not furnish the information needed to predict overall system performance in a radiation environment. To date, no comprehensive test and analysis program has been conducted to evaluate sensitivity of overall system performance to the radiation environment. The goal of this program is to relate component level effects to system level performance through modeling and testing of a selected optical processing system, and to help direct component testing to items which can directly and adversely affect overall system performance. This report gives a broad overview of the project, highlighting key results.

  17. Intelligent transportation systems data compression using wavelet decomposition technique.

    DOT National Transportation Integrated Search

    2009-12-01

    Intelligent Transportation Systems (ITS) generates massive amounts of traffic data, which posts : challenges for data storage, transmission and retrieval. Data compression and reconstruction technique plays an : important role in ITS data procession....

  18. A system identification technique based on the random decrement signatures. Part 1: Theory and simulation

    NASA Technical Reports Server (NTRS)

    Bedewi, Nabih E.; Yang, Jackson C. S.

    1987-01-01

    Identification of the system parameters of a randomly excited structure may be treated using a variety of statistical techniques. Of all these techniques, the Random Decrement is unique in that it provides the homogeneous component of the system response. Using this quality, a system identification technique was developed based on a least-squares fit of the signatures to estimate the mass, damping, and stiffness matrices of a linear randomly excited system. The mathematics of the technique is presented in addition to the results of computer simulations conducted to demonstrate the prediction of the response of the system and the random forcing function initially introduced to excite the system.

  19. Particle-mesh techniques

    NASA Technical Reports Server (NTRS)

    Macneice, Peter

    1995-01-01

    This is an introduction to numerical Particle-Mesh techniques, which are commonly used to model plasmas, gravitational N-body systems, and both compressible and incompressible fluids. The theory behind this approach is presented, and its practical implementation, both for serial and parallel machines, is discussed. This document is based on a four-hour lecture course presented by the author at the NASA Summer School for High Performance Computational Physics, held at Goddard Space Flight Center.

  20. A new FPGA-driven P-HIFU system with harmonic cancellation technique

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Shen, Guofeng; Su, Zhiqiang; Chen, Yazhu

    2017-03-01

    This paper introduces a high intensity focused ultrasound system for ablation using switch-mode power amplifiers with harmonic cancellation technique eliminating the 3rdharmonic and all even harmonics. The efficiency of the amplifier is optimized by choosing different parameters of the harmonic cancellation technique. This technique requires double driving signals, and specific signal waveform because of the full-bridge topology. The new FPGA-driven P-HIFU system has 200 channels of phase signals that can form 100 output channels. An FPGA chip is used to generate these signals, and each channel has a phase resolution of 2 ns, less than one degree. The output waveform of the amplifier, voltage waveform across the transducer, shows fewer harmonic components.

  1. A convenient technique for polarimetric calibration of single-antenna radar systems

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Ulaby, Fawwaz T.

    1990-01-01

    A practical technique for calibrating single-antenna polarimetric radar systems is introduced. This technique requires only a single calibration target such as a conducting sphere or a trihedral corner reflector to calibrate the radar system, both in amplitude and phase, for all linear polarization configurations. By using a metal sphere, which is orientation independent, error in calibration measurement is minimized while simultaneously calibrating the crosspolarization channels. The antenna system and two orthogonal channels (in free space) are modeled as a four-port passive network. Upon using the reciprocity relations for the passive network and assuming the crosscoupling terms of the antenna to be equal, the crosstalk factors of the antenna system and the transmit and receive channel imbalances can be obtained from measurement of the backscatter from a metal sphere. For an X-band radar system with crosspolarization isolation of 25 dB, comparison of values measured for a sphere and a cylinder with theoretical values shows agreement within 0.4 dB in magnitude and 5 deg in phase. An effective polarization isolation of 50 dB is achieved using this calibration technique.

  2. Assume-Guarantee Verification of Source Code with Design-Level Assumptions

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Pasareanu, Corina S.; Cobleigh, Jamieson M.

    2004-01-01

    Model checking is an automated technique that can be used to determine whether a system satisfies certain required properties. To address the 'state explosion' problem associated with this technique, we propose to integrate assume-guarantee verification at different phases of system development. During design, developers build abstract behavioral models of the system components and use them to establish key properties of the system. To increase the scalability of model checking at this level, we have developed techniques that automatically decompose the verification task by generating component assumptions for the properties to hold. The design-level artifacts are subsequently used to guide the implementation of the system, but also to enable more efficient reasoning at the source code-level. In particular we propose to use design-level assumptions to similarly decompose the verification of the actual system implementation. We demonstrate our approach on a significant NASA application, where design-level models were used to identify; and correct a safety property violation, and design-level assumptions allowed us to check successfully that the property was presented by the implementation.

  3. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    PubMed

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The application of emulation techniques in the analysis of highly reliable, guidance and control computer systems

    NASA Technical Reports Server (NTRS)

    Migneault, Gerard E.

    1987-01-01

    Emulation techniques can be a solution to a difficulty that arises in the analysis of the reliability of guidance and control computer systems for future commercial aircraft. Described here is the difficulty, the lack of credibility of reliability estimates obtained by analytical modeling techniques. The difficulty is an unavoidable consequence of the following: (1) a reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Use of emulation techniques for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques is then discussed. Finally several examples of the application of emulation techniques are described.

  5. Efficiency of health care system at the sub-state level in Madhya Pradesh, India.

    PubMed

    Purohit, Brijesh C

    2010-01-01

    This paper attempts a sub-state-level analysis of health system for a low-income Indian state, namely, Madhya Pradesh. The objective of our study is to establish efficiency parameters that may help health policy makers to improve district-level and thus state-level health system performance. It provides an idealized yardstick to evaluate the performance of the health sector by using stochastic frontier technique. The study was carried out in two stages of estimation, and our results suggest that life expectancy in the Indian state could be enhanced considerably by correcting the factors that are adversely influencing sub-state-level health system efficiency. Our results indicate that main factors within the health system for discrepancy in interdistrict performance are inequitable distribution of supplies, availability of skilled attention at birth, and inadequate staffing relative to patient load of rural population at primary health centers. Overcoming these factors through additional resources in the deficient districts, mobilized partly from grants in aid and partly from patient welfare societies, may help the state to improve life expectancy speedily and more equitably. Besides the direct inputs from the health sector, a more conducive environment for gender development, reducing inequality in opportunities for women in health, education and other rights may provide the necessary impetus towards reducing maternal morbidity and mortality and add to overall life expectancy in the state.

  6. Simulation verification techniques study: Simulation performance validation techniques document. [for the space shuttle system

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.

    1975-01-01

    Techniques and support software for the efficient performance of simulation validation are discussed. Overall validation software structure, the performance of validation at various levels of simulation integration, guidelines for check case formulation, methods for real time acquisition and formatting of data from an all up operational simulator, and methods and criteria for comparison and evaluation of simulation data are included. Vehicle subsystems modules, module integration, special test requirements, and reference data formats are also described.

  7. Laser techniques in conservation in Europe

    NASA Astrophysics Data System (ADS)

    Salimbeni, Renzo

    2005-06-01

    The state of the art of laser techniques employed in conservation of cultural heritage is continuously growing in Europe. Many research projects organised at the European level have contributed to this achievement, being complementary to the development carried out at national level. The COST Action G7 is playing its unique role since the year 2000 in promoting the experimentation, comparing the experiences and disseminating best practices. This role has been particularly effective for monitoring of the results of many short-term research projects completed along the G7 Action lifetime. After that several laser cleaning techniques have been followed and evaluated it appears now clear an evolution of the systems, a specialization of the cleaning task, the achievement of side-effect free procedures. The validation of these advanced cleaning techniques has been extensive and diffused in many European countries, especially for stone and metals. Laser-based diagnostics have also specialised their tasks toward material analysis, defects detection and multidimensional documentation. Laser and optical methods successfully monitor deterioration effects. In many European countries interdisciplinary networks are managing the experimentation of these techniques giving them a sound scientific approach, but also a technology transfer to end-users. So doing the appreciation for these techniques is growing in all the conservation institutions involved at national level, disseminating a positive evaluation about the benefits provided by laser techniques in conservation. Several laser systems became products for the activity of professional restorers and their increasing sales demonstrate a growing utilisation throughout all Europe.

  8. Eutectic-based wafer-level-packaging technique for piezoresistive MEMS accelerometers and bond characterization using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Aono, T.; Kazama, A.; Okada, R.; Iwasaki, T.; Isono, Y.

    2018-03-01

    We developed a eutectic-based wafer-level-packaging (WLP) technique for piezoresistive micro-electromechanical systems (MEMS) accelerometers on the basis of molecular dynamics analyses and shear tests of WLP accelerometers. The bonding conditions were experimentally and analytically determined to realize a high shear strength without solder material atoms diffusing to adhesion layers. Molecular dynamics (MD) simulations and energy dispersive x-ray (EDX) spectrometry done after the shear tests clarified the eutectic reaction of the solder materials used in this research. Energy relaxation calculations in MD showed that the diffusion of solder material atoms into the adhesive layer was promoted at a higher temperature. Tensile creep MD simulations also suggested that the local potential energy in a solder material model determined the fracture points of the model. These numerical results were supported by the shear tests and EDX analyses for WLP accelerometers. Consequently, a bonding load of 9.8 kN and temperature of 300 °C were found to be rational conditions because the shear strength was sufficient to endure the polishing process after the WLP process and there was little diffusion of solder material atoms to the adhesion layer. Also, eutectic-bonding-based WLP was effective for controlling the attenuation of the accelerometers by determining the thickness of electroplated solder materials that played the role of a cavity between the accelerometers and lids. If the gap distance between the two was less than 6.2 µm, the signal gains for x- and z-axis acceleration were less than 20 dB even at the resonance frequency due to air-damping.

  9. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  10. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  11. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  12. Laser excitation of the n =3 level of positronium for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Forslund, O. K.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jernelv, I. L.; Jordan, E.; Kellerbauer, A.; Kimura, M.; Koettig, T.; Krasnicky, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Lehner, S.; Liberadzka, J.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Smestad, L.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Vamosi, S.; Widmann, E.; Yzombard, P.; Zmeskal, J.; Zurlo, N.; AEgIS Collaboration

    2016-07-01

    We demonstrate the laser excitation of the n =3 state of positronium (Ps) in vacuum. A combination of a specially designed pulsed slow positron beam and a high-efficiency converter target was used to produce Ps. Its annihilation was recorded by single-shot positronium annihilation lifetime spectroscopy. Pulsed laser excitation of the n =3 level at a wavelength λ ≈205 nm was monitored via Ps photoionization induced by a second intense laser pulse at λ =1064 nm. About 15% of the overall positronium emitted into vacuum was excited to n =3 and photoionized. Saturation of both the n =3 excitation and the following photoionization was observed and explained by a simple rate equation model. The positronium's transverse temperature was extracted by measuring the width of the Doppler-broadened absorption line. Moreover, excitation to Rydberg states n =15 and 16 using n =3 as the intermediate level was observed, giving an independent confirmation of excitation to the 3 3P state.

  13. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  14. Survey of Software Assurance Techniques for Highly Reliable Systems

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2004-01-01

    This document provides a survey of software assurance techniques for highly reliable systems including a discussion of relevant safety standards for various industries in the United States and Europe, as well as examples of methods used during software development projects. It contains one section for each industry surveyed: Aerospace, Defense, Nuclear Power, Medical Devices and Transportation. Each section provides an overview of applicable standards and examples of a mission or software development project, software assurance techniques used and reliability achieved.

  15. The Comprehensive AOCMF Classification System: Mandible Fractures-Level 3 Tutorial

    PubMed Central

    Cornelius, Carl-Peter; Audigé, Laurent; Kunz, Christoph; Rudderman, Randal; Buitrago-Téllez, Carlos H.; Frodel, John; Prein, Joachim

    2014-01-01

    This tutorial outlines the details of the AOCMF image-based classification system for fractures of the mandibular arch (i.e. the non-condylar mandible) at the precision level 3. It is the logical expansion of the fracture allocation to topographic mandibular sites outlined in level 2, and is based on three-dimensional (3D) imaging techniques/computed tomography (CT)/cone beam CT). Level 3 allows an anatomical description of the individual conditions of the mandibular arch such as the preinjury dental state and the degree of alveolar atrophy. Trauma sequelae are then addressed: (1) tooth injuries and periodontal trauma, (2) fracture involvement of the alveolar process, (3) the degree of fracture fragmentation in three categories (none, minor, and major), and (4) the presence of bone loss. The grading of fragmentation needs a 3D evaluation of the fracture area, allowing visualization of the outer and inner mandibular cortices. To document these fracture features beyond topography the alphanumeric codes are supplied with distinctive appendices. This level 3 tutorial is accompanied by a brief survey of the peculiarities of the edentulous atrophic mandible. Illustrations and a few case examples serve as instruction and reference to improve the understanding and application of the presented features. PMID:25489389

  16. System-Level Reuse of Space Systems Simulations

    NASA Technical Reports Server (NTRS)

    Hazen, Michael R.; Williams, Joseph C.

    2004-01-01

    One of the best ways to enhance space systems simulation fidelity is to leverage off of (reuse) existing high-fidelity simulations. But what happens when the model you would like to reuse is in a different coding language or other barriers arise that make one want to just start over with a clean sheet of paper? Three diverse system-level simulation reuse case studies are described based on experience to date in the development of NASA's Space Station Training Facility (SSTF) at the Johnson Space Center in Houston, Texas. Case studies include (a) the Boeing/Rocketdyne-provided Electrical Power Simulation (EPSIM), (b) the NASA Automation and Robotics Division-provided TRICK robotics systems model, and (c) the Russian Space Agency- provided Russian Segment Trainer. In each case, there was an initial tendency to dismiss simulation reuse candidates based on an apparent lack of suitability. A more careful examination based on a more structured assessment of architectural and requirements-oriented representations of the reuse candidates revealed significant reuse potential. Specific steps used to conduct the detailed assessments are discussed. The steps include the following: 1) Identifying reuse candidates; 2) Requirements compatibility assessment; 3) Maturity assessment; 4) Life-cycle cost determination; and 5) Risk assessment. Observations and conclusions are presented related to the real cost of system-level simulation component reuse. Finally, lessons learned that relate to maximizing the benefits of space systems simulation reuse are shared. These concepts should be directly applicable for use in the development of space systems simulations in the future.

  17. An evaluation of sources of nitrogen in shallow groundwater using (15)N abundance technique.

    PubMed

    Alva, A K; Dou, H; Paramasivam, S; Wang, F L; Graetz, D A; Sajwan, K S

    2006-01-01

    A (15)N abundance technique was employed to identify the source of NO(3)-N in groundwater under three commercial citrus production sites in central Florida. Water samples were collected from 0 to 300 and 300 to 600 cm depths in the surficial aquifer and analyzed for NO(3)-N and delta N-15 (delta (15)N). Groundwater samples were also collected in a residential area adjacent to one of the citrus groves and analyzed for NO(3)-N and delta (15)N. The delta (15)N values were in the range of (+)1 to (+)10% in both depths underneath the citrus groves. The range of delta (15)N measured in this study represents the range expected for groundwater that was impacted by NO(3)-N originated from mineralization of organic N from the soil as well as from the crop residue. There are occasional high delta (15)N values which are indicative of the effects of NH(3) volatilization losses of applied fertilizer N. The range of delta (15)N values for groundwater samples collected from the residential area adjacent to the citrus groves was very similar to that from the groundwater underneath the citrus groves. Thus, the source of NO(3)-N that impacted the groundwater under the citrus groves also impacted the groundwater in the adjacent residential area.

  18. System and Method for Measuring Skin Movement and Strain and Related Techniques

    NASA Technical Reports Server (NTRS)

    Newman, Dava J. (Inventor); Wessendorf, Ashley M. (Inventor)

    2015-01-01

    Described herein are systems and techniques for a motion capture system and a three-dimensional (3D) tracking system used to record body position and/or movements/motions and using the data to measure skin strain (a strain field) all along the body while a joint is in motion (dynamic) as well as in a fixed position (static). The data and technique can be used to quantify strains, calculate 3D contours, and derive patterns believed to reveal skin's properties during natural motions.

  19. Application of Mathematical Signal Processing Techniques to Mission Systems. (l’Application des techniques mathematiques du traitement du signal aux systemes de conduite des missions)

    DTIC Science & Technology

    1999-11-01

    represents the linear time invariant (LTI) response of the combined analysis /synthesis system while the second repre- sents the aliasing introduced into...effectively to implement voice scrambling systems based on time - frequency permutation . The most general form of such a system is shown in Fig. 22 where...92201 NEUILLY-SUR-SEINE CEDEX, FRANCE RTO LECTURE SERIES 216 Application of Mathematical Signal Processing Techniques to Mission Systems (1

  20. A New Femtosecond Laser-Based Three-Dimensional Tomography Technique

    NASA Astrophysics Data System (ADS)

    Echlin, McLean P.

    2011-12-01

    Tomographic imaging has dramatically changed science, most notably in the fields of medicine and biology, by producing 3D views of structures which are too complex to understand in any other way. Current tomographic techniques require extensive time both for post-processing and data collection. Femtosecond laser based tomographic techniques have been developed in both standard atmosphere (femtosecond laser-based serial sectioning technique - FSLSS) and in vacuum (Tri-Beam System) for the fast collection (10 5mum3/s) of mm3 sized 3D datasets. Both techniques use femtosecond laser pulses to selectively remove layer-by-layer areas of material with low collateral damage and a negligible heat affected zone. To the authors knowledge, femtosecond lasers have never been used to serial section and these techniques have been entirely and uniquely developed by the author and his collaborators at the University of Michigan and University of California Santa Barbara. The FSLSS was applied to measure the 3D distribution of TiN particles in a 4330 steel. Single pulse ablation morphologies and rates were measured and collected from literature. Simultaneous two-phase ablation of TiN and steel matrix was shown to occur at fluences of 0.9-2 J/cm2. Laser scanning protocols were developed minimizing surface roughness to 0.1-0.4 mum for laser-based sectioning. The FSLSS technique was used to section and 3D reconstruct titanium nitride (TiN) containing 4330 steel. Statistical analysis of 3D TiN particle sizes, distribution parameters, and particle density were measured. A methodology was developed to use the 3D datasets to produce statistical volume elements (SVEs) for toughness modeling. Six FSLSS TiN datasets were sub-sampled into 48 SVEs for statistical analysis and toughness modeling using the Rice-Tracey and Garrison-Moody models. A two-parameter Weibull analysis was performed and variability in the toughness data agreed well with Ruggieri et al. bulk toughness measurements. The Tri

  1. Optical Mass Gauging System for Measuring Liquid Levels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Sullenberger, Ryan M.; Munoz, Wesley M.; Lyon, Matt P.; Vogel, Kenny; Yalin, Azer P.; Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    A compact and rugged fiber-coupled liquid volume sensor designed for flight on a sounding rocket platform is presented. The sensor consists of a Mach-Zehnder interferometer capable of measuring the amount of liquid contained in a tank under any gravitational conditions, including a microgravity environment, by detecting small changes in the index of refraction of the gas contained within a sensing region. By monitoring changes in the interference fringe pattern as the system undergoes a small compression provided by a piston, the ullage volume of a tank can be directly measured allowing for a determination of the liquid volume. To demonstrate the technique, data are acquired using two tanks containing different volumes of liquid, which are representative of the levels of liquid in a tank at different time periods during a mission. The two tanks are independently exposed to the measurement apparatus, allowing for a determination of the liquid level in each. In a controlled, laboratory test of the unit, the system demonstrated a capability of measuring a liquid level in an individual tank of 10.53 mL with a 2% error. The overall random uncertainty for the flight system is higher than that one test, at +/- 1.5 mL.

  2. SNR Improvement of QEPAS System by Preamplifier Circuit Optimization and Frequency Locked Technique

    NASA Astrophysics Data System (ADS)

    Zhang, Qinduan; Chang, Jun; Wang, Zongliang; Wang, Fupeng; Jiang, Fengting; Wang, Mengyao

    2018-06-01

    Preamplifier circuit noise is of great importance in quartz enhanced photoacoustic spectroscopy (QEPAS) system. In this paper, several noise sources are evaluated and discussed in detail. Based on the noise characteristics, the corresponding noise reduction method is proposed. In addition, a frequency locked technique is introduced to further optimize the QEPAS system noise and improve signal, which achieves a better performance than the conventional frequency scan method. As a result, the signal-to-noise ratio (SNR) could be increased 14 times by utilizing frequency locked technique and numerical averaging technique in the QEPAS system for water vapor detection.

  3. Part II: Biomechanical assessment for a footprint-restoring transosseous-equivalent rotator cuff repair technique compared with a double-row repair technique.

    PubMed

    Park, Maxwell C; Tibone, James E; ElAttrache, Neal S; Ahmad, Christopher S; Jun, Bong-Jae; Lee, Thay Q

    2007-01-01

    We hypothesized that a transosseous-equivalent repair would demonstrate improved tensile strength and gap formation between the tendon and tuberosity when compared with a double-row technique. In 6 fresh-frozen human shoulders, a transosseous-equivalent rotator cuff repair was performed: a suture limb from each of two medial anchors was bridged over the tendon and fixed laterally with an interference screw. In 6 contralateral matched-pair specimens, a double-row repair was performed. For all repairs, a materials testing machine was used to load each repair cyclically from 10 N to 180 N for 30 cycles; each repair underwent tensile testing to measure failure loads at a deformation rate of 1 mm/sec. Gap formation between the tendon edge and insertion was measured with a video digitizing system. The mean ultimate load to failure was significantly greater for the transosseous-equivalent technique (443.0 +/- 87.8 N) compared with the double-row technique (299.2 +/- 52.5 N) (P = .043). Gap formation during cyclic loading was not significantly different between the transosseous-equivalent and double-row techniques, with mean values of 3.74 +/- 1.51 mm and 3.79 +/- 0.68 mm, respectively (P = .95). Stiffness for all cycles was not statistically different between the two constructs (P > .40). The transosseous-equivalent rotator cuff repair technique improves ultimate failure loads when compared with a double-row technique. Gap formation is similar for both techniques. A transosseous-equivalent repair helps restore footprint dimensions and provides a stronger repair than the double-row technique, which may help optimize healing biology.

  4. Estimating yield gaps at the cropping system level.

    PubMed

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  5. Application of positron annihilation lifetime technique to the study of deep level transients in semiconductors

    NASA Astrophysics Data System (ADS)

    Deng, A. H.; Shan, Y. Y.; Fung, S.; Beling, C. D.

    2002-03-01

    Unlike its conventional applications in lattice defect characterization, positron annihilation lifetime technique was applied to study temperature-dependent deep level transients in semiconductors. Defect levels in the band gap can be determined as they are determined by conventional deep level transient spectroscopy (DLTS) studies. The promising advantage of this application of positron annihilation over the conventional DLTS is that it could further extract extra microstructure information of deep-level defects, such as whether a deep level defect is vacancy related or not. A demonstration of EL2 defect level transient study in GaAs was shown and the EL2 level of 0.82±0.02 eV was obtained by a standard Arrhenius analysis, similar to that in conventional DLTS studies.

  6. Three-dimensional radar imaging techniques and systems for near-field applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  7. Relationship of the Van Herick Grading System with Peripheral Iris Configuration and Level of Iris Insertion.

    PubMed

    Khan, Faisal Aziz; Niazi, Shafaq Pervez Khan; Khan, Assad Zaman

    2017-09-01

    To determine the relationship of the van Herick angle grading system with the level of iris insertion and peripheral iris configuration. Observational study. Eye department, Combined Military Hospital, Malir Cantt., Karachi, from May to October 2015. Sixty-five eyes of 65 patients were recruited. Anterior chamber depth at the temporal limbus was measured as a fraction of corneal section thickness using van Herick technique and graded on the standard 4-point scale of the van Herick grading system. Gonioscopy of the temporal quadrant was performed with a Posner 4 mirror goniolens and both the true level of iris insertion and peripheral iris configuration were recorded on a 4-point scale so as to equate with the van Herick 4-point grading system. Spearman's rho test was applied to determine the relationship of the van Herick grading system with level of iris root insertion and peripheral iris configuration. Amoderate positive correlation between van Herick grade and peripheral iris configuration was found which was statistically significant (rs=0.42, p < 0.001). Astatistically significant and moderate positive correlation was also detected between van Herick grade and the level of iris insertion (rs=0.45, p < 0.001). The van Herick grade has a moderately positive relationship with the peripheral iris configuration and true level of iris insertion.

  8. Slush hydrogen liquid level system

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F.; Adams, R. G.

    1972-01-01

    A discrete capacitance liquid level system developed is specifically for slush hydrogen, but applicable to LOX, LN2, LH2, and RP1 without modification is described. The signal processing portion of the system is compatible with conventional liquid level sensors. Compatibility with slush hydrogen was achieved by designing the sensor with adequate spacing, while retaining the electrical characteristics of conventional sensors. Tests indicate excellent stability of the system over a temperature range of -20 C to 70 C for the circuit and to cryogenic temperatures of the sensor. The sensor was tested up to 40 g's rms random vibration with no damage to the sensor. Operation with 305 m of cable between the sensor and signal processor was demonstrated. It is concluded that this design is more than adequate for most flight and ground applications.

  9. Application of Guided Inquiry System Technique (GIST) to Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Aroeste, H.

    1982-01-01

    Guided Inquiry System Technique, a global approach to problem solving, was applied to the subject of Controlled Ecological Life Support Systems (CELSS). Nutrition, food processing, and the use of higher plants in a CELSS were considered by a panel of experts. Specific ideas and recommendations gleaned from discussions with panel members are presented.

  10. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    PubMed Central

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-01-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100

  11. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-10-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses.

  12. Energy Spectrum for the System, of N Ising Spins with Identical, Spin-Spin Coupling K/N - Anatomy of Phase Transition

    NASA Astrophysics Data System (ADS)

    Czachor, A.

    2008-04-01

    For the Kittel-Shore-Kac interspin coupling K/N between N Ising spins the ferromagnetic phase transition in specific heat vs. T plot has appeared in literature as a purely mathematical phenomenon, via the exact calculation of the sum of states Z(T) and subsequent differentiations with respect to temperature T. Physical nature of the transition remains in such derivation invisible. As it is expected to be related to the interaction/temperature competition in populating energy levels of the system, in this paper we construct the density of energy states D(E) (or energy spectrum) of such systems, both for the ferromagnetic (K > 0) and antiferromagnetic (K < 0) coupling between spins. This allows one to see the essence of the difference between these systems as related to the discrete vs. quasi-continuous shape of the spectra at low energy states.

  13. Chemical potential of carbon in the system UPuCON: Measurements and calculation

    NASA Astrophysics Data System (ADS)

    Anthonysamy, S.; Ananthasivan, K.; Kahappan, I.; Chandramouli, V.; Vasudeva Rao, P. R.; Mathews, C. K.; Jacob, K. T.

    1995-05-01

    The carbon potential of (U,Pu) mixed carbides with Pu/(U + Pu) ratios of 0.55 and 0.70 was measured in the temperature range 973 to 1173 K by employing a methane-hydrogen gas equilibration technique. The technique was validated by measuring the Gibbs energy of formation of WC. The compatibility of the mixed carbides with the stainless steel clad was analysed by using the measured carbon potentials. The carbon potentials of mixed carbides of other compositions were calculated theoretically in order to assess their compatibility. The calculations assume ideal solution behavior for all the solid solutions present in the UPuCON system.

  14. Deep-level traps in lightly Si-doped n-GaN on free-standing m-oriented GaN substrates

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Chonan, H.; Takahashi, T.; Yamada, T.; Shimizu, M.

    2018-04-01

    In this study, we investigated the deep-level traps in Si-doped GaN epitaxial layers by metal-organic chemical vapor deposition on c-oriented and m-oriented free-standing GaN substrates. The c-oriented and m-oriented epitaxial layers, grown at a temperature of 1000 °C and V/III ratio of 1000, contained carbon atomic concentrations of 1.7×1016 and 4.0×1015 cm-3, respectively. A hole trap was observed at about 0.89 eV above the valence band maximum by minority carrier transient spectroscopy. The trap concentrations in the c-oriented and m-oriented GaN epitaxial layers were consistent with the carbon atomic concentrations from secondary ion mass spectroscopy and the yellow luminescence intensity at 2.21 eV from photoluminescence. The trap concentrations in the m-oriented GaN epitaxial layers were lower than those in the c-oriented GaN. Two electron traps, 0.24 and 0.61 eV below the conduction band (EC) minimum, were observed in the c-oriented GaN epitaxial layer. In contrast, the m-oriented GaN epitaxial layer was free from the electron trap at EC - 0.24 eV, and the trap concentration at EC - 0.61 eV in the m-oriented GaN epitaxial layer was lower than that in the c-oriented GaN epitaxial layer. The m-oriented GaN epitaxial layer exhibited fewer hole and electron traps compared to the c-oriented GaN epitaxial layers.

  15. Comparative study on Ga1-xZnxN1-yOy oxynitride synthesized by different techniques for application in photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Baskar, K.; Singh, Shubra

    2017-06-01

    Hydrogen evolution by overall water splitting has emerged as a potential method for green energy generation due to the introduction of highly efficient photocatalysts active under visible region of spectra. In the present work, we focus on a comparative study of the properties of Ga1-xZnxN1-yOy oxynitride samples synthesized by two techniques and their effect on the sample properties. The samples were prepared by both traditional nitridation technique and solution combustion method. Room temperature photoluminescence studies revealed the introduction of additional energy levels above the valence band which in turns broadens the valence band and subsequently reduces the band gap. The band gap narrowing was further confirmed using diffuse reflectance spectroscopy and Valence band X-ray photoelectron spectroscopy (VB-XPS). It was also realized from VB XPS that the reduction of band gap in both the samples was due to upshift of valence band without affecting the conduction band. The presence of disorder activated modes in the samples was examined using temperature dependent Raman spectroscopy. In this work we corroborate the theoretical prediction reported by Al-Jassim et. al that the bandgap narrowing mechanism in ZnO rich solid solution and GaN rich solid solution is asymmetric and a significant bandgap reduction could be observed for ZnO rich solid solution than GaN rich.

  16. The information protection level assessment system implementation

    NASA Astrophysics Data System (ADS)

    Trapeznikov, E. V.

    2018-04-01

    Currently, the threat of various attacks increases significantly as automated systems become more widespread. On the basis of the conducted analysis the information protection level assessment system establishing objective was identified. The paper presents the information protection level assessment software implementation in the information system by applying the programming language C #. In conclusions the software features are identified and experimental results are represented.

  17. A review on prognostic techniques for non-stationary and non-linear rotating systems

    NASA Astrophysics Data System (ADS)

    Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph

    2015-10-01

    The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

  18. A scoping review of appropriateness of care research activity in Canada from a health system-level perspective.

    PubMed

    Brien, Susan; Gheihman, Galina; Tse, Yi Ki Yvonne; Byrnes, Mary; Harrison, Sophia; Dobrow, Mark J

    2014-05-01

    Jurisdictions are increasingly focusing on appropriate use of healthcare services and interventions as a means to improve health system performance. Our objectives were to conduct a scoping review to (a) map Canadian research and related activity on system-level appropriateness of care and (b) create a resource database that could be used to inform evidence-based decision-making and future research priorities in this area. We searched Medline, EMBASE and CINAHL databases between 2003-2013 using terms including "appropriate," "inappropriate," "health technology assessment" and "cost-effectiveness." Articles were included if they were Canadian-based and relevant to our definition. The database search was complemented by a website search of relevant Canadian organizations. 4,979 articles were identified through the literature search, and 103 articles relevant to system-level appropriateness of care across Canada were charted. Of these, 64 contained an evaluation of appropriateness, 30 used a method of cost-effectiveness or total cost impact analysis and 9 involved another methodology. The most common health service categories included drug therapy (n=40) and health service utilization (n=33). Fifty-eight websites were summarized containing material relevant to system-level appropriateness of care. Our review identifies Canadian research and related activity pertaining to appropriateness of healthcare from a system-level perspective and provides a useful resource both to support evidence-based decision-making and to guide future appropriateness research. Copyright © 2014 Longwoods Publishing.

  19. Robustness of Flexible Systems With Component-Level Uncertainties

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.

    2000-01-01

    Robustness of flexible systems in the presence of model uncertainties at the component level is considered. Specifically, an approach for formulating robustness of flexible systems in the presence of frequency and damping uncertainties at the component level is presented. The synthesis of the components is based on a modifications of a controls-based algorithm for component mode synthesis. The formulation deals first with robustness of synthesized flexible systems. It is then extended to deal with global (non-synthesized ) dynamic models with component-level uncertainties by projecting uncertainties from component levels to system level. A numerical example involving a two-dimensional simulated docking problem is worked out to demonstrate the feasibility of the proposed approach.

  20. A methodological approach for using high-level Petri Nets to model the immune system response.

    PubMed

    Pennisi, Marzio; Cavalieri, Salvatore; Motta, Santo; Pappalardo, Francesco

    2016-12-22

    Mathematical and computational models showed to be a very important support tool for the comprehension of the immune system response against pathogens. Models and simulations allowed to study the immune system behavior, to test biological hypotheses about diseases and infection dynamics, and to improve and optimize novel and existing drugs and vaccines. Continuous models, mainly based on differential equations, usually allow to qualitatively study the system but lack in description; conversely discrete models, such as agent based models and cellular automata, permit to describe in detail entities properties at the cost of losing most qualitative analyses. Petri Nets (PN) are a graphical modeling tool developed to model concurrency and synchronization in distributed systems. Their use has become increasingly marked also thanks to the introduction in the years of many features and extensions which lead to the born of "high level" PN. We propose a novel methodological approach that is based on high level PN, and in particular on Colored Petri Nets (CPN), that can be used to model the immune system response at the cellular scale. To demonstrate the potentiality of the approach we provide a simple model of the humoral immune system response that is able of reproducing some of the most complex well-known features of the adaptive response like memory and specificity features. The methodology we present has advantages of both the two classical approaches based on continuous and discrete models, since it allows to gain good level of granularity in the description of cells behavior without losing the possibility of having a qualitative analysis. Furthermore, the presented methodology based on CPN allows the adoption of the same graphical modeling technique well known to life scientists that use PN for the modeling of signaling pathways. Finally, such an approach may open the floodgates to the realization of multi scale models that integrate both signaling pathways (intra

  1. 66. TURBINE BUILDING (LOCATION N), FIRST LEVEL, B AND D ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. TURBINE BUILDING (LOCATION N), FIRST LEVEL, B AND D LOOP STEAM HEATERS FROM NORTH - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  2. 67. TURBINE BUILDING (LOCATION N), FIRST LEVEL, B AND D ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. TURBINE BUILDING (LOCATION N), FIRST LEVEL, B AND D LOOP STEAM HEATERS FROM NORTHWEST - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  3. Exploring the Components of Dynamic Modeling Techniques

    ERIC Educational Resources Information Center

    Turnitsa, Charles Daniel

    2012-01-01

    Upon defining the terms modeling and simulation, it becomes apparent that there is a wide variety of different models, using different techniques, appropriate for different levels of representation for any one system to be modeled. Selecting an appropriate conceptual modeling technique from those available is an open question for the practitioner.…

  4. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Treatment technique violations for ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.404 Treatment technique violations for...

  5. Conceptual PHES-system models of the Aysén watershed and fjord (Southern Chile): testing a brainstorming strategy.

    PubMed

    Marín, Víctor H; Delgado, Luisa E; Bachmann, Pamela

    2008-09-01

    The use of brainstorming techniques for the generation of conceptual models, as the basis for the integrated management of physical-ecological-social systems (PHES-systems) is tested and discussed. The methodology is applied in the analysis of the Aysén fjord and watershed (Southern Chilean Coast). Results show that the proposed methods can be adequately used in management scenarios characterized by highly hierarchical, experts/non-experts membership.

  6. Characterization of 316L(N)-IG SS joint produced by hot isostatic pressing technique

    NASA Astrophysics Data System (ADS)

    Nakano, J.; Miwa, Y.; Tsukada, T.; Kikuchi, M.; Kita, S.; Nemoto, Y.; Tsuji, H.; Jitsukawa, S.

    2002-12-01

    Type 316L(N) stainless steel of the international thermonuclear experimental reactor grade (316L(N)-IG SS) is being considered for the first wall/blanket module. Hot isostatic pressing (HIP) technique is expected for the fabrication of the module. To evaluate the integrity and susceptibility to stress corrosion cracking (SCC) of HIPed 316L(N)-IG SS, tensile tests in vacuum and slow strain rate tests in high temperature water were performed. Specimen with the HIPed joint had similar tensile properties to specimens of 316L(N)-IG SS, and did not show susceptibility to SCC in oxygenated water at 423 K. Thermally sensitized specimen was low susceptible to SCC even in the creviced condition. It is concluded that the tensile properties of HIPed SS are as high as those of the base alloy and the HIP process caused no deleterious effects.

  7. An Earth system view on boundaries for human perturbation of the N and P cycles

    NASA Astrophysics Data System (ADS)

    Cornell, Sarah; de Vries, Wim

    2015-04-01

    The appropriation and transformation of land, water, and living resources can alter Earth system functioning, and potentially undermine the basis for the sustainability of our societies. Human activities have greatly increased the flows of reactive forms of nitrogen (N) and phosphorus (P) in the Earth system. These non-substitutable nutrient elements play a fundamental role in the human food system. Furthermore, the current mode of social and economic globalization, and its effect on the present-day energy system, also has large effects including large NOx-N emissions through combustion. Until now, this perturbation of N and P cycles has been treated largely as a local/regional issue, and managed in terms of direct impacts (water, land or air pollution). However, anthropogenic N and P cycle changes affect physical Earth system feedbacks (through greenhouse gas and aerosol changes) and biogeochemical feedbacks (via ecosystem changes, links to the carbon cycle, and altered nutrient limitation) with impacts that can be far removed from the direct sources. While some form of N and P management at the global level seems likely to be needed for continued societal development, the current local-level and sectorial management is often problematically simplistic, as seen in the tensions between divergent N management needs for climate change mitigation, air pollution control, food production, and ecosystem conservation. We require a step change in understanding complex biogeochemical, physical and socio-economic interactions in order to analyse these effects together, and inform policy trade-offs to minimize emergent systemic risks. Planetary boundaries for N and P cycle perturbation have recently been proposed. We discuss the current status of these precautionary boundaries and how we may improve on these preliminary assessments. We present an overview of the human perturbation of the global biogeochemical cycles of N and P and its interaction with the functioning of the

  8. Evaluation testing of a portable vapor detector for Part-Per-Billion (PPB) level UDMH and N2H4

    NASA Technical Reports Server (NTRS)

    Curran, Dan; Lueck, Dale E.

    1995-01-01

    Trace level detection of hydrazine (N2H4), monomethyl hydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH) has been receiving increased attention over the past several years. In May 1995 the American Conference of Government Industrial Hygienists (ACGIH) lowered their acceptable threshold limit value (TLV) from 100 parts-per-billion (ppb) to 10 ppb. Several types of ppb-level detectors are being developed by the United States Air Force (USAF) Space and Missile Systems Center (SMSC). A breadboard version of a portable, lightweight hydrazine detection sensor was developed and produced by Giner Corp. for the USAF. This sensor was designed for ppb level UDMH and N2H4 vapor detection in near real-time. This instrument employs electrochemical sensing, utilizing a three electrode cell with an anion-exchange polymer electrolyte membrane as the only electrolyte in the system. The sensing, counter and reference electrodes are bonded to the membrane forming a single component. The only liquid required to maintain the sensor is deionized water which hydrates the membrane. At the request of the USAF SMSC, independent testing and evaluation of the breadboard instrument was performed at NASA's Toxic Vapor Detection Laboratory (TVDL) for response to ppb-level N2H4 and UDMH and MMH. The TVDL, located at Kennedy Space Center (KSC) has the unique ability to generate calibrated sample vapor streams of N2H4, UDMH, and MMH over a range from less than 10 ppb to thousands of parts per million (ppm) with full environmental control of relative humidity (0-90%) and temperature (0-50 C). The TVDL routinely performs these types of tests. Referenced sensors were subjected to extensive testing, including precision, linearity, response/recovery times, zero and span drift, humidity and temperature effects as well as ammonia interference. Results of these tests and general operation characteristics are reported.

  9. System level modeling and component level control of fuel cells

    NASA Astrophysics Data System (ADS)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  10. Assessing water pollution level and gray water footprint of anthropogenic nitrogen in agricultural system

    NASA Astrophysics Data System (ADS)

    Huang, Guorui; Chen, Han; Yu, Chaoqing

    2017-04-01

    Water pollution has become a global problem which is one of the most critical issues of today's water treatment. At a spatial resolution of 10km, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for major cropping systems from 1955 to 2014, estimate the anthropogenic nitrogen loads to fresh, and calculate the resultant grey water footprints and N-related water pollution level in China. The accumulated annual Nitrogen loads to fresh from agricultural system is 0.38Tg in 1955 and 4.42Tg in 2014, while the grey water footprints vary from 1.53 billion m3 to 17.67 billion m3, respectively. N loads in north of China contributes much more on the N leaching because of the high fertilizer but in south of China, it is mainly focused on the N runoff because of the heavy rain. There are more than 25% of grids with WPL>1 (exceed the water capacity of assimilation), which is mainly located on the North China Plain.

  11. [Digestive system manifestations in children infected with novel influenza A (H1N1) virus].

    PubMed

    Wei, Ju-Rong; Lu, Zhi-Wei; Tang, Zheng-Zhen; Wang, He-Ping; Zheng, Yue-Jie

    2010-10-01

    To study the digestive system manifestations in children infected with novel influenza A (H1N1) virus. A prospective study of 153 children infected with novel influenza A (H1N1) virus in Shenzhen Children's Hospital from November 2009 to January 2010 was conducted. The clinical features and outcomes of 69 children with digestive system manifestations were analyzed. The children presenting with digestive system manifestations accounted for 45% (69 cases) in the 153 hospitalized children with novel influenza A (H1N1) infection. Gastrointestinal manifestations were observed in 50 cases (33%) and liver function abnormality in 19 cases (12%). The incidence rate of coma, neurological complications, increase in creative kinase level, ICU admission, and death in the patients with digestive system manifestations were significantly higher than those without digestive system manifestations (P<0.05). In the 69 patients with digestive system manifestations, 5 died from severe complications and 64 recovered fully. Gastrointestinal manifestations disappeared through 1 to 3 days and abnormal liver function recovered through 4 to 7 days. Digestive system manifestations are common in children infected with novel influenza A (H1N1) virus. Neurological system involvements are more common in the patients with digestive system manifestations than those without.

  12. Development of a non-contextual model for determining the autonomy level of intelligent unmanned systems

    NASA Astrophysics Data System (ADS)

    Durst, Phillip J.; Gray, Wendell; Trentini, Michael

    2013-05-01

    A simple, quantitative measure for encapsulating the autonomous capabilities of unmanned systems (UMS) has yet to be established. Current models for measuring a UMS's autonomy level require extensive, operational level testing, and provide a means for assessing the autonomy level for a specific mission/task and operational environment. A more elegant technique for quantifying autonomy using component level testing of the robot platform alone, outside of mission and environment contexts, is desirable. Using a high level framework for UMS architectures, such a model for determining a level of autonomy has been developed. The model uses a combination of developmental and component level testing for each aspect of the UMS architecture to define a non-contextual autonomous potential (NCAP). The NCAP provides an autonomy level, ranging from fully non- autonomous to fully autonomous, in the form of a single numeric parameter describing the UMS's performance capabilities when operating at that level of autonomy.

  13. Test techniques for determining laser ranging system performance

    NASA Technical Reports Server (NTRS)

    Zagwodzki, T. W.

    1981-01-01

    Procedures and results of an on going test program intended to evaluate laser ranging system performance levels in the field as well as in the laboratory are summarized. Tests show that laser ranging system design requires consideration of time biases and RMS jitters of individual system components. All simple Q switched lasers tested were found to be inadequate for 10 centimeter ranging systems. Timing discriminators operating over a typical 100:1 dynamic signal range may introduce as much as 7 to 9 centimeters of range bias. Time interval units commercially available today are capable of half centimeter performance and are adequate for all field systems currently deployed. Photomultipliers tested show typical tube time biases of one centimeter with single photoelectron transit time jitter of approximately 10 centimeters. Test results demonstrate that NASA's Mobile Laser Ranging System (MOBLAS) receiver configuration is limiting system performance below the 100 photoelectron level.

  14. Electrical characterization of a Mapham inverter using pulse testing techniques

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.; Myers, I. T.; Hammoud, A. N.

    1990-01-01

    The use of a multiple pulse testing technique to determine the electrical characteristics of large megawatt-level power systems for aerospace missions is proposed. An innovative test method based on the multiple pulse technique is demonstrated on a 2-kW Mapham inverter. The concept of this technique shows that characterization of large power systems under electrical equilibrium at rated power can be accomplished without large costly power supplies. The heat generation that occurs in systems when tested in a continuous mode is eliminated. The results indicate that there is a good agreement between this testing technique and that of steady state testing.

  15. GESA--a two-dimensional processing system using knowledge base techniques.

    PubMed

    Rowlands, D G; Flook, A; Payne, P I; van Hoff, A; Niblett, T; McKee, S

    1988-12-01

    The successful analysis of two-dimensional (2-D) polyacrylamide electrophoresis gels demands considerable experience and understanding of the protein system under investigation as well as knowledge of the separation technique itself. The present work concerns the development of a computer system for analysing 2-D electrophoretic separations which incorporates concepts derived from artificial intelligence research such that non-experts can use the technique as a diagnostic or identification tool. Automatic analysis of 2-D gel separations has proved to be extremely difficult using statistical methods. Non-reproducibility of gel separations is also difficult to overcome using automatic systems. However, the human eye is extremely good at recognising patterns in images, and human intervention in semi-automatic computer systems can reduce the computational complexities of fully automatic systems. Moreover, the expertise and understanding of an "expert" is invaluable in reducing system complexity if it can be encapsulated satisfactorily in an expert system. The combination of user-intervention in the computer system together with the encapsulation of expert knowledge characterises the present system. The domain within which the system has been developed is that of wheat grain storage proteins (gliadins) which exhibit polymorphism to such an extent that cultivars can be uniquely identified by their gliadin patterns. The system can be adapted to other domains where a range of polymorpic protein sub-units exist. In its generalised form, the system can also be used for comparing more complex 2-D gel electrophoretic separations.

  16. Combining geographic information system, multicriteria evaluation techniques and fuzzy logic in siting MSW landfills

    NASA Astrophysics Data System (ADS)

    Gemitzi, Alexandra; Tsihrintzis, Vassilios A.; Voudrias, Evangelos; Petalas, Christos; Stravodimos, George

    2007-01-01

    This study presents a methodology for siting municipal solid waste landfills, coupling geographic information systems (GIS), fuzzy logic, and multicriteria evaluation techniques. Both exclusionary and non-exclusionary criteria are used. Factors, i.e., non-exclusionary criteria, are divided in two distinct groups which do not have the same level of trade off. The first group comprises factors related to the physical environment, which cannot be expressed in terms of monetary cost and, therefore, they do not easily trade off. The second group includes those factors related to human activities, i.e., socioeconomic factors, which can be expressed as financial cost, thus showing a high level of trade off. GIS are used for geographic data acquisition and processing. The analytical hierarchy process (AHP) is the multicriteria evaluation technique used, enhanced with fuzzy factor standardization. Besides assigning weights to factors through the AHP, control over the level of risk and trade off in the siting process is achieved through a second set of weights, i.e., order weights, applied to factors in each factor group, on a pixel-by-pixel basis, thus taking into account the local site characteristics. The method has been applied to Evros prefecture (NE Greece), an area of approximately 4,000 km2. The siting methodology results in two intermediate suitability maps, one related to environmental and the other to socioeconomic criteria. Combination of the two intermediate maps results in the final composite suitability map for landfill siting.

  17. Metal stack optimization for low-power and high-density for N7-N5

    NASA Astrophysics Data System (ADS)

    Raghavan, P.; Firouzi, F.; Matti, L.; Debacker, P.; Baert, R.; Sherazi, S. M. Y.; Trivkovic, D.; Gerousis, V.; Dusa, M.; Ryckaert, J.; Tokei, Z.; Verkest, D.; McIntyre, G.; Ronse, K.

    2016-03-01

    One of the key challenges while scaling logic down to N7 and N5 is the requirement of self-aligned multiple patterning for the metal stack. This comes with a large cost of the backend cost and therefore a careful stack optimization is required. Various layers in the stack have different purposes and therefore their choice of pitch and number of layers is critical. Furthermore, when in ultra scaled dimensions of N7 or N5, the number of patterning options are also much larger ranging from multiple LE, EUV to SADP/SAQP. The right choice of these are also needed patterning techniques that use a full grating of wires like SADP/SAQP techniques introduce high level of metal dummies into the design. This implies a large capacitance penalty to the design therefore having large performance and power penalties. This is often mitigated with extra masking strategies. This paper discusses a holistic view of metal stack optimization from standard cell level all the way to routing and the corresponding trade-off that exist for this space.

  18. Novel techniques for optical performance monitoring in optical systems

    NASA Astrophysics Data System (ADS)

    Ku, Yuen Ching

    range. Polarization mode dispersion (PMD) splits an optical pulse into two orthogonally polarized pulses traveling along the fiber at different speeds, causing crosstalk and ISI. The third part of the thesis demonstrates two different PMD monitoring schemes. The first one is based on the analysis of frequency-resolved state-of-polarization (SOP) rotation, with signal spectrum broadened by self-phase modulation (SPM) effect. Experimental results show that the use of broadened signal spectrum induced by SPM not only relaxes the filter requirement and reduces the computational complexity, but also improves the estimation accuracy, and extends the monitoring range of the pulsewidth. The second one is based on the delay-tap asynchronous waveform sampling technique. By examining the statistical distribution of the measured scatter plot, unambiguous PMD measurement range up to 50% of signal bit-period is demonstrated. The final part of the thesis focuses on the monitoring of alignment status between the pulse carver and data modulator in an optical system. We again employ the two-tap asynchronous sampling technique to perform such kind of monitoring in RZ-OOK transmission system. Experimental results show that both the misalignment direction and magnitude can be successfully determined. Besides, we propose and experimentally demonstrate the use of off-center optical filtering technique to capture the amount of spectrum broadening induced by the misalignment between the pulse-carver and the data modulator in RZ-DPSK transmission system. The same technique was also applied to monitor the synchronization between the old and the new data in synchronized phase re-modulation (SPRM) system.

  19. Parameters of the Immune System and Vitamin D Levels in Old Individuals.

    PubMed

    Alves, Amanda Soares; Ishimura, Mayari Eika; Duarte, Yeda Aparecida de Oliveira; Bueno, Valquiria

    2018-01-01

    The increased number of individuals older than 80 years, centenarians, and supercentenarians is not a synonym for healthy aging, since severe infections, hospitalization, and disability are frequently observed. In this context, a possible strategy is to preserve the main characteristics/functions of the immune system with the aim to cause less damage to the organism during the aging process. Vitamin D acts on bone marrow, brain, breast, malignant cells, and immune system and has been recommended as a supplement. We aimed to evaluate whether immune parameters and vitamin D serum levels are correlated. We evaluated some features of the immune system using the peripheral blood of individuals older than 80 years ( n  = 12) compared to young subjects ( n  = 10). In addition, we correlated these findings with vitamin D serum levels. Old individuals presented metabolic parameters of healthy aging and maintained preserved some features of immunity such as CD4/CD8 ratio, and low production of pro-inflammatory cytokines after stimulus. On the other hand, we observed increase in the frequency of myeloid-derived suppressor cells, reduction in circulating leukocytes, in the percentage of total CD8+, and in CD8+ Naïve T cells, in addition to increase in the percentage of CD8+ effector memory re-expressing CD45RA (EMRA) T cells. We found seropositivity for CMV in 97.7%, which was correlated with the decrease of CD8+ Naïve T cells and increase in CD8+ EMRA T cells. Vitamin D levels were insufficient in 50% of old individuals and correlated positively with total CD8+ T cells and negatively with CD8+ EMRA T cells. In the studied population, longevity was correlated to maintenance of some immune parameters. Considering the limitations of the study as size of the sample and lack of functional assays, it was found that vitamin D in old individuals was correlated to some features of the immune system, mainly in the CD8 compartment.

  20. Soil organic carbon assessments in cropping systems using isotopic techniques

    NASA Astrophysics Data System (ADS)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  1. Design of automatic leveling and centering system of theodolite

    NASA Astrophysics Data System (ADS)

    Liu, Chun-tong; He, Zhen-Xin; Huang, Xian-xiang; Zhan, Ying

    2012-09-01

    To realize the theodolite automation and improve the azimuth Angle measurement instrument, the theodolite automatic leveling and centering system with the function of leveling error compensation is designed, which includes the system solution, key components selection, the mechanical structure of leveling and centering, and system software solution. The redesigned leveling feet are driven by the DC servo motor; and the electronic control center device is installed. Using high precision of tilt sensors as horizontal skew detection sensors ensures the effectiveness of the leveling error compensation. Aiming round mark center is located using digital image processing through surface array CCD; and leveling measurement precision can reach the pixel level, which makes the theodolite accurate centering possible. Finally, experiments are conducted using the automatic leveling and centering system of the theodolite. The results show the leveling and centering system can realize automatic operation with high centering accuracy of 0.04mm.The measurement precision of the orientation angle after leveling error compensation is improved, compared with that of in the traditional method. Automatic leveling and centering system of theodolite can satisfy the requirements of the measuring precision and its automation.

  2. 69. TURBINE BUILDING (LOCATION N), THIRD LEVEL LOOKING NORTHWEST SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. TURBINE BUILDING (LOCATION N), THIRD LEVEL LOOKING NORTHWEST SHOWING BASE OF CONDENSOR AND RIVER WATER OUTLET PIPE - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  3. Synthesis, structural, optical and thermal properties of N-methyl-N-aryl benzamide organic single crystals grown by a slow evaporation technique

    NASA Astrophysics Data System (ADS)

    Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana

    2018-03-01

    The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.

  4. System level electrochemical principles

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1985-01-01

    The traditional electrochemical storage concepts are difficult to translate into high power, high voltage multikilowatt storage systems. The increased use of electronics, and the use of electrochemical couples that minimize the difficulties associated with the corrective measures to reduce the cell to cell capacity dispersion were adopted by battery technology. Actively cooled bipolar concepts are described which represent some attractive alternative system concepts. They are projected to have higher energy densities lower volumes than current concepts. They should be easier to scale from one capacity to another and have a closer cell to cell capacity balance. These newer storage system concepts are easier to manage since they are designed to be a fully integrated battery. These ideas are referred to as system level electrochemistry. The hydrogen-oxygen regenerative fuel cells (RFC) is probably the best example of the integrated use of these principles.

  5. Emergy evaluation of contrasting dairy systems at multiple levels.

    PubMed

    Vigne, Mathieu; Peyraud, Jean-Louis; Lecomte, Philippe; Corson, Michael S; Wilfart, Aurélie

    2013-11-15

    Emergy accounting (EmA) was applied to a range of dairy systems, from low-input smallholder systems in South Mali (SM), to intermediate-input systems in two regions of France, Poitou-Charentes (PC) and Bretagne (BR), to high-input systems on Reunion Island (RI). These systems were studied at three different levels: whole-farm (dairy system and cropping system), dairy-system (dairy herd and forage land), and herd (animals only). Dairy farms in SM used the lowest total emergy at all levels and was the highest user of renewable resources. Despite the low quality of resources consumed (crop residues and natural pasture), efficiency of their use was similar to that of industrialised inputs by intensive systems in RI, PC and BR. In addition, among the systems studied, SM dairy farms lay closest to environmental sustainability, contradicting the usual image of high environmental impact of cattle production in developing countries. EmA also revealed characteristics of the three intensive systems. Systems from RI and PC had lower resource transformation efficiency and higher environmental impacts than those from BR, due mainly to feeding strategies that differed due to differing socio-climatic constraints. Application of EmA at multiple levels revealed the importance of a multi-level analysis. While the whole-farm level assesses the overall contribution of the system to its environment, the dairy-system level is suitable for comparison of multi-product systems. In contrast, the herd level focuses on herd management and bypasses debates about definition of system boundaries by excluding land management. Combining all levels highlights the contribution of livestock to the global agricultural system and identifies inefficiencies and influences of system components on the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Security Techniques for Sensor Systems and the Internet of Things

    ERIC Educational Resources Information Center

    Midi, Daniele

    2016-01-01

    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We…

  7. The Effect of Relaxation Interventions on Cortisol Levels in HIV-Sero-Positive Women

    PubMed Central

    Jones, Deborah; Owens, Mary; Kumar, Mahendra; Cook, Ryan; Weiss, Stephen M.

    2016-01-01

    Purpose Activation of the hypothalamic–pituitary–adrenal axis, assessed in terms of cortisol levels, may enhance the ability of HIV to infect lymphocytes and downregulate the immune system, accelerating disease progression. This study sought to determine the effects of relaxation techniques on cortisol levels in HIV-sero-positive women. Methods Women (n = 150) were randomized to a group cognitive–behavioral stress management (CBSM) condition or an individual information condition and underwent 3 types of relaxation training (progressive muscle relaxation, imagery, and autogenic training). Cortisol levels were obtained pre- and postrelaxation. Results Guided imagery was effective in reducing cortisol in the group condition (t = 3.90, P < .001), and muscle relaxation reduced cortisol in the individual condition (t = 3.11, P = .012). Among participants in the group condition attending all sessions, the magnitude of pre- to postsession reduction became greater over time. Conclusions Results suggest that specific relaxation techniques may be partially responsible for cortisol decreases associated with relaxation and CBSM. PMID:23715264

  8. A system level model for preliminary design of a space propulsion solid rocket motor

    NASA Astrophysics Data System (ADS)

    Schumacher, Daniel M.

    Preliminary design of space propulsion solid rocket motors entails a combination of components and subsystems. Expert design tools exist to find near optimal performance of subsystems and components. Conversely, there is no system level preliminary design process for space propulsion solid rocket motors that is capable of synthesizing customer requirements into a high utility design for the customer. The preliminary design process for space propulsion solid rocket motors typically builds on existing designs and pursues feasible rather than the most favorable design. Classical optimization is an extremely challenging method when dealing with the complex behavior of an integrated system. The complexity and combinations of system configurations make the number of the design parameters that are traded off unreasonable when manual techniques are used. Existing multi-disciplinary optimization approaches generally address estimating ratios and correlations rather than utilizing mathematical models. The developed system level model utilizes the Genetic Algorithm to perform the necessary population searches to efficiently replace the human iterations required during a typical solid rocket motor preliminary design. This research augments, automates, and increases the fidelity of the existing preliminary design process for space propulsion solid rocket motors. The system level aspect of this preliminary design process, and the ability to synthesize space propulsion solid rocket motor requirements into a near optimal design, is achievable. The process of developing the motor performance estimate and the system level model of a space propulsion solid rocket motor is described in detail. The results of this research indicate that the model is valid for use and able to manage a very large number of variable inputs and constraints towards the pursuit of the best possible design.

  9. Application of isotopic techniques to investigate the impact of insect herbivory on C and N cycling in a grassland system - a mesocosm study

    NASA Astrophysics Data System (ADS)

    Potthast, Karin; Meyer, Stefanie; Gleixner, Gerd; Crecelius, Anna; Schubert, Ulrich; Michalzik, Beate

    2017-04-01

    Ecosystem disturbances like insect pests induce time and space limited process heterogeneity that allow to quantify changes in biogeochemical reaction rates. Insect pests are known to impact element and organic matter (OM) cycling in ecosystems by defoliation and deposition of fecal material. To study the effects of such trophic interactions on OM and nutrient cycling in a grassland system under herbivore attack, a laboratory mesocosm experiment with grass (Dactylis glomerata) and grasshoppers (Chorthippus dorsatus) was conducted. In 12 mesocosms (50 cm in diameter, 100 cm in height) D. glomerata was sown in pasture topsoil (0-12 cm of a Calcaric Cambisol (Siltic), Hainich region, Germany) and left to grow for one year under constant climatic conditions (15°C) to establish a well-developed root system. In 2015, the mesocosm was labeled over 5 days using 13CO2-gas and 15N labeled feces (δ15N: 58‰) in order to trace the fate of C and N in above- and belowground plant organs (root, leave), insects, feces, soil, and soil solution. In three replicates, the following treatments were conducted: control, 13CO2-labelling, 13CO2-labelling+20 grasshoppers, and 13CO2-labelling+20 grasshoppers +15N-labeled feces (+9.2 µg N*cm-2). During incubation, the mesocosms were irrigated (13 mm) and throughfall and soil solutions were sampled. After incubation, solutions, cold water extracts as well as microbial biomass (chloroform-fumigation) of two soil depths (0-4, 4-12 cm) were analyzed for DOC, δ13DOC, and dissolved N. Furthermore, TOC, δ13C, TN and δ15N values of all collected compartments were determined. In general, 13CO2-pulse labelling showed that after 5 days of incubation not only grasshopper feces but also leachates of feces were significantly enriched in 13C. Based on δ13C-values, herbivory induced a stronger 13C-enrichment in roots while shoots were less enriched. The input of 13DOC indicates a fast cycling of leaf-C via grasshopper and feces to the soil solution

  10. Software techniques for a distributed real-time processing system. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Lesh, F.; Lecoq, P.

    1976-01-01

    The paper describes software techniques developed for the Unified Data System (UDS), a distributed processor network for control and data handling onboard a planetary spacecraft. These techniques include a structured language for specifying the programs contained in each module, and a small executive program in each module which performs scheduling and implements the module task.

  11. Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data

    NASA Astrophysics Data System (ADS)

    Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted

    2013-01-01

    Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.

  12. Parallel O(log n) algorithms for open- and closed-chain rigid multibody systems based on a new mass matrix factorization technique

    NASA Technical Reports Server (NTRS)

    Fijany, Amir

    1993-01-01

    In this paper, parallel O(log n) algorithms for computation of rigid multibody dynamics are developed. These parallel algorithms are derived by parallelization of new O(n) algorithms for the problem. The underlying feature of these O(n) algorithms is a drastically different strategy for decomposition of interbody force which leads to a new factorization of the mass matrix (M). Specifically, it is shown that a factorization of the inverse of the mass matrix in the form of the Schur Complement is derived as M(exp -1) = C - B(exp *)A(exp -1)B, wherein matrices C, A, and B are block tridiagonal matrices. The new O(n) algorithm is then derived as a recursive implementation of this factorization of M(exp -1). For the closed-chain systems, similar factorizations and O(n) algorithms for computation of Operational Space Mass Matrix lambda and its inverse lambda(exp -1) are also derived. It is shown that these O(n) algorithms are strictly parallel, that is, they are less efficient than other algorithms for serial computation of the problem. But, to our knowledge, they are the only known algorithms that can be parallelized and that lead to both time- and processor-optimal parallel algorithms for the problem, i.e., parallel O(log n) algorithms with O(n) processors. The developed parallel algorithms, in addition to their theoretical significance, are also practical from an implementation point of view due to their simple architectural requirements.

  13. A Full Dynamic Compound Inverse Method for output-only element-level system identification and input estimation from earthquake response signals

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Rizzi, Egidio

    2016-08-01

    This paper proposes a new output-only element-level system identification and input estimation technique, towards the simultaneous identification of modal parameters, input excitation time history and structural features at the element-level by adopting earthquake-induced structural response signals. The method, named Full Dynamic Compound Inverse Method (FDCIM), releases strong assumptions of earlier element-level techniques, by working with a two-stage iterative algorithm. Jointly, a Statistical Average technique, a modification process and a parameter projection strategy are adopted at each stage to achieve stronger convergence for the identified estimates. The proposed method works in a deterministic way and is completely developed in State-Space form. Further, it does not require continuous- to discrete-time transformations and does not depend on initialization conditions. Synthetic earthquake-induced response signals from different shear-type buildings are generated to validate the implemented procedure, also with noise-corrupted cases. The achieved results provide a necessary condition to demonstrate the effectiveness of the proposed identification method.

  14. Generalized simulation technique for turbojet engine system analysis

    NASA Technical Reports Server (NTRS)

    Seldner, K.; Mihaloew, J. R.; Blaha, R. J.

    1972-01-01

    A nonlinear analog simulation of a turbojet engine was developed. The purpose of the study was to establish simulation techniques applicable to propulsion system dynamics and controls research. A schematic model was derived from a physical description of a J85-13 turbojet engine. Basic conservation equations were applied to each component along with their individual performance characteristics to derive a mathematical representation. The simulation was mechanized on an analog computer. The simulation was verified in both steady-state and dynamic modes by comparing analytical results with experimental data obtained from tests performed at the Lewis Research Center with a J85-13 engine. In addition, comparison was also made with performance data obtained from the engine manufacturer. The comparisons established the validity of the simulation technique.

  15. The constrained discrete-time state-dependent Riccati equation technique for uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Chang, Insu

    The objective of the thesis is to introduce a relatively general nonlinear controller/estimator synthesis framework using a special type of the state-dependent Riccati equation technique. The continuous time state-dependent Riccati equation (SDRE) technique is extended to discrete-time under input and state constraints, yielding constrained (C) discrete-time (D) SDRE, referred to as CD-SDRE. For the latter, stability analysis and calculation of a region of attraction are carried out. The derivation of the D-SDRE under state-dependent weights is provided. Stability of the D-SDRE feedback system is established using Lyapunov stability approach. Receding horizon strategy is used to take into account the constraints on D-SDRE controller. Stability condition of the CD-SDRE controller is analyzed by using a switched system. The use of CD-SDRE scheme in the presence of constraints is then systematically demonstrated by applying this scheme to problems of spacecraft formation orbit reconfiguration under limited performance on thrusters. Simulation results demonstrate the efficacy and reliability of the proposed CD-SDRE. The CD-SDRE technique is further investigated in a case where there are uncertainties in nonlinear systems to be controlled. First, the system stability under each of the controllers in the robust CD-SDRE technique is separately established. The stability of the closed-loop system under the robust CD-SDRE controller is then proven based on the stability of each control system comprising switching configuration. A high fidelity dynamical model of spacecraft attitude motion in 3-dimensional space is derived with a partially filled fuel tank, assumed to have the first fuel slosh mode. The proposed robust CD-SDRE controller is then applied to the spacecraft attitude control system to stabilize its motion in the presence of uncertainties characterized by the first fuel slosh mode. The performance of the robust CD-SDRE technique is discussed. Subsequently

  16. Levels in N 12 via the N 14 ( p ,   t ) reaction using the JENSA gas-jet target

    DOE PAGES

    Chipps, K. A.; Pain, S. D.; Greife, U.; ...

    2015-09-25

    As one of a series of physics cases to demonstrate the unique benefit of the new Jet Experiments in Nuclear Structure and Astrophysics gas-jet target for enabling next-generation transfer reaction studies, the ¹⁴N (p, t)¹²N reaction was studied for the first time, using a pure jet of nitrogen, in an attempt to resolve conflicting information on the structure of ¹²N. A new level at 4.561-MeV excitation energy in ¹²N was found.

  17. On Positive Solutions for the Rational Difference Equation Systems x n+1 = A/x n y n (2), and y n+1 = By n /x n-1 y n-1.

    PubMed

    Ma, Hui-Li; Feng, Hui

    2014-01-01

    Our aim in this paper is to investigate the behavior of positive solutions for the following systems of rational difference equations: x n+1 = A/x n y n (2), and y n+1 = By n /x n-1 y n-1, n = 0,1,…, where x -1, x 0, y -1, and y 0 are positive real numbers and A and B are positive constants.

  18. [Three-dimensional finite element analysis of maxillary anterior teeth retraction force system in light wire technique].

    PubMed

    Zhang, Xiangfeng; Wang, Chao; Xia, Xi; Deng, Feng; Zhang, Yi

    2015-06-01

    This study aims to construct a three-dimensional finite element model of a maxillary anterior teeth retraction force system in light wire technique and to investigate the difference of hydrostatic pressure and initial displacement of upper anterior teeth under different torque values of tip back bend. A geometric three-dimensional model of the maxillary bone, including all the upper teeth, was achieved via CT scan. To construct the force model system, lingual brackets and wire were constructed by using the Solidworks. Brackets software, and wire were assembled to the teeth. ANASYS was used to calculate the hydrostatic pressure and the initial displacement of maxillary anterior teeth under different tip-back bend moments of 15, 30, 45, 60, and 75 Nmm when the class II elastic force was 0.556 N. Hydrostatic pressure was concentrated in the root apices and cervical margin of upper anterior teeth. Distal tipping and relative intrusive displacement were observed. The hydrostatic pressure and initial displacement of upper canine were greater than in the central and lateral incisors. This hydrostatic pressure and initial intrusive displacement increased with an increase in tip-back bend moment. Lingual retraction force system of maxillary anterior teeth in light wire technique can be applied safely and controllably. The type and quantity of teeth movement can be controlled by the alteration of tip-back bend moment.

  19. Design for testability and diagnosis at the system-level

    NASA Technical Reports Server (NTRS)

    Simpson, William R.; Sheppard, John W.

    1993-01-01

    The growing complexity of full-scale systems has surpassed the capabilities of most simulation software to provide detailed models or gate-level failure analyses. The process of system-level diagnosis approaches the fault-isolation problem in a manner that differs significantly from the traditional and exhaustive failure mode search. System-level diagnosis is based on a functional representation of the system. For example, one can exercise one portion of a radar algorithm (the Fast Fourier Transform (FFT) function) by injecting several standard input patterns and comparing the results to standardized output results. An anomalous output would point to one of several items (including the FFT circuit) without specifying the gate or failure mode. For system-level repair, identifying an anomalous chip is sufficient. We describe here an information theoretic and dependency modeling approach that discards much of the detailed physical knowledge about the system and analyzes its information flow and functional interrelationships. The approach relies on group and flow associations and, as such, is hierarchical. Its hierarchical nature allows the approach to be applicable to any level of complexity and to any repair level. This approach has been incorporated in a product called STAMP (System Testability and Maintenance Program) which was developed and refined through more than 10 years of field-level applications to complex system diagnosis. The results have been outstanding, even spectacular in some cases. In this paper we describe system-level testability, system-level diagnoses, and the STAMP analysis approach, as well as a few STAMP applications.

  20. Realization of time keeping alarming system based on CTI technique

    NASA Astrophysics Data System (ADS)

    Cai, Cheng-Lin; Dong, Shao-Wu

    2003-12-01

    An application of CTI (Computer Telephone Integration) technique to fault alarming in time keeping system is presented in this paper. Two key parts of this alarming system, telephone phonic card and TTS (Text To Speech) are briefly introduced. A series of events and methods for programming interface based on ActiveX control (phonic.OCX) is discussed, and an alarming program module is developed. The alarming program module can be used in reporting accidents for time keeping system, and can also be applied to power supply system and environmental monitoring system.

  1. XPS investigations of tribolayers formed on TiN and (Ti,Re)N coatings

    NASA Astrophysics Data System (ADS)

    Oktay, Serkan; Kahraman, Zafer; Urgen, Mustafa; Kazmanli, Kursat

    2015-02-01

    TiN and (Ti,Re)N coatings were deposited on high-speed-steel substrates by a hybrid coating system composed of cathodic arc PVD and magnetron sputtering techniques. In order to keep rhenium content low (8 ± 1.9 at.%) in the coating, magnetron sputtering technique was utilized to evaporate rhenium. The (Ti,Re)N coating consisted of TiN and ReNx (x > 1.33) phases. The hardness of TiN and (Ti,Re)N were 31 GPa and 29 GPa (± 2 GPa), respectively. Tribological behaviors of the samples were tested against Al2O3 balls at 21 °C (RT) and 150 °C (HT) by reciprocating wear technique. The tribolayers were analyzed by XPS technique. Friction coefficients of TiN were 0.56, 0.35 for 21 °C and 150 °C tests, respectively. Rhenium addition to TiN drastically dropped the friction coefficients to 0.22 and 0.17 for RT and HT samples. Rhenium addition also improved the wear resistance of the coating at both test temperatures. For TiN, main oxide component of the tribolayers was Ti2O3 for RT tests and TiO2 for HT tests. The oxide layer formed on (Ti,Re)N were the mixture of TiO2, Tisbnd Osbnd N, ReO2 and Re2O7 for both test temperatures. Re2O7 provided very low friction coefficient to (Ti,Re)N. The findings are consistent with the crystal chemistry approach.

  2. Squeezed light from multi-level closed-cycling atomic systems

    NASA Technical Reports Server (NTRS)

    Xiao, Min; Zhu, Yi-Fu

    1994-01-01

    Amplitude squeezing is calculated for multi-level closed-cycling atomic systems. These systems can last without atomic population inversion in any atomic bases. Maximum squeezing is obtained for the parameters in the region of lasing without inversion. A practical four-level system and an ideal three-level system are presented. The latter system is analyzed in some detail and the mechanism of generating amplitude squeezing is discussed.

  3. Fuzzy Controller Design Using Evolutionary Techniques for Twin Rotor MIMO System: A Comparative Study.

    PubMed

    Hashim, H A; Abido, M A

    2015-01-01

    This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed.

  4. Fuzzy Controller Design Using Evolutionary Techniques for Twin Rotor MIMO System: A Comparative Study

    PubMed Central

    Hashim, H. A.; Abido, M. A.

    2015-01-01

    This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed. PMID:25960738

  5. Language Classification using N-grams Accelerated by FPGA-based Bloom Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, A; Gokhale, M

    N-Gram (n-character sequences in text documents) counting is a well-established technique used in classifying the language of text in a document. In this paper, n-gram processing is accelerated through the use of reconfigurable hardware on the XtremeData XD1000 system. Our design employs parallelism at multiple levels, with parallel Bloom Filters accessing on-chip RAM, parallel language classifiers, and parallel document processing. In contrast to another hardware implementation (HAIL algorithm) that uses off-chip SRAM for lookup, our highly scalable implementation uses only on-chip memory blocks. Our implementation of end-to-end language classification runs at 85x comparable software and 1.45x the competing hardware design.

  6. Studies of the micromorphology of sputtered TiN thin films by autocorrelation techniques

    NASA Astrophysics Data System (ADS)

    Smagoń, Kamil; Stach, Sebastian; Ţălu, Ştefan; Arman, Ali; Achour, Amine; Luna, Carlos; Ghobadi, Nader; Mardani, Mohsen; Hafezi, Fatemeh; Ahmadpourian, Azin; Ganji, Mohsen; Grayeli Korpi, Alireza

    2017-12-01

    Autocorrelation techniques are crucial tools for the study of the micromorphology of surfaces: They provide the description of anisotropic properties and the identification of repeated patterns on the surface, facilitating the comparison of samples. In the present investigation, some fundamental concepts of these techniques including the autocorrelation function and autocorrelation length have been reviewed and applied in the study of titanium nitride thin films by atomic force microscopy (AFM). The studied samples were grown on glass substrates by reactive magnetron sputtering at different substrate temperatures (from 25 {}°C to 400 {}°C , and their micromorphology was studied by AFM. The obtained AFM data were analyzed using MountainsMap Premium software obtaining the correlation function, the structure of isotropy and the spatial parameters according to ISO 25178 and EUR 15178N. These studies indicated that the substrate temperature during the deposition process is an important parameter to modify the micromorphology of sputtered TiN thin films and to find optimized surface properties. For instance, the autocorrelation length exhibited a maximum value for the sample prepared at a substrate temperature of 300 {}°C , and the sample obtained at 400 {}°C presented a maximum angle of the direction of the surface structure.

  7. ISWHM: Tools and Techniques for Software and System Health Management

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mengshoel, Ole J.; Darwiche, Adnan

    2010-01-01

    This presentation presents status and results of research on Software Health Management done within the NRA "ISWHM: Tools and Techniques for Software and System Health Management." Topics include: Ingredients of a Guidance, Navigation, and Control System (GN and C); Selected GN and C Testbed example; Health Management of major ingredients; ISWHM testbed architecture; and Conclusions and next Steps.

  8. Elevated systemic galectin-1 levels characterize HELLP syndrome.

    PubMed

    Schnabel, Annegret; Blois, Sandra M; Meint, Peter; Freitag, Nancy; Ernst, Wolfgang; Barrientos, Gabriela; Conrad, Melanie L; Rose, Matthias; Seelbach-Göbel, Birgit

    2016-04-01

    Galectin-1 (gal-1), a member of a family of conserved β-galactoside-binding proteins, has been shown to exert a key role during gestation. Though gal-1 is expressed at higher levels in the placenta from HELLP patients, it is still poorly understood whether systemic gal-1 levels also differ in HELLP patients. In the present study, we evaluated the systemic expression of gal-1, together with the angiogenic factors, placental growth factor (PlGF) and soluble fms-like tyrosine kinase 1 (sFlt-1) in conjunction with HELLP syndrome severity. Systemic levels of gal-1 and sFlt-1 were elevated in patients with both early- and late-onset HELLP syndrome as compared to healthy controls. In contrast, peripheral PlGF levels were decreased in early- and late-onset HELLP. A positive correlation between systemic gal-1 levels and sFlt-1/PlGF ratios was found in early onset HELLP patients. Our results show that HELLP syndrome is associated with increased circulating levels of gal-1; integrating systemic gal-1 measurements into the diagnostic analyses of pregnant women may provide more effective prediction of HELLP syndrome development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Load leveling on industrial refrigeration systems

    NASA Astrophysics Data System (ADS)

    Bierenbaum, H. S.; Kraus, A. D.

    1982-01-01

    A computer model was constructed of a brewery with a 2000 horsepower compressor/refrigeration system. The various conservation and load management options were simulated using the validated model. The savings available for implementing the most promising options were verified by trials in the brewery. Result show that an optimized methodology for implementing load leveling and energy conservation consisted of: (1) adjusting (or tuning) refrigeration systems controller variables to minimize unnecessary compressor starts, (2) The primary refrigeration system operating parameters, compressor suction pressure, and discharge pressure are carefully controlled (modulated) to satisfy product quality constraints (as well as in-process material cooling rates and temperature levels) and energy evaluating the energy cost savings associated with reject heat recovery, and (4) a decision is made to implement the reject heat recovery system based on a cost/benefits analysis.

  10. A gargantuan acetaminophen level in an acidemic patient treated solely with intravenous N-acetylcysteine.

    PubMed

    Zell-Kanter, Michele; Coleman, Patrick; Whiteley, Patrick M; Leikin, Jerrold B

    2013-01-01

    The objective of this report is to describe an acidemic patient with one of the largest recorded acetaminophen ingestions in a patient with acidemia who was treated with supportive care and intravenous (IV) N-acetylcysteine. A 59-year-old female with a history of depression was found comatose. In the Emergency Department, she was obtunded with agonal respirations and immediately intubated. Activated charcoal was given through a nasogastric tube. An initial acetaminophen serum level was 1141 mg/L. The patient was started on IV N-acetylcysteine. The acetaminophen level peaked 2 hours later at 1193 mg/L. She was continued on the IV N-acetylcysteine protocol. The next day her aspartate aminotransferase was 3150 U/L, alanine aminotransferase was 2780 U/L, and creatinine phosphokinase was 16,197 U/L. There was no elevation in bilirubin or international normalized ratio (INR). Transaminase levels decreased on day 3 and normalized by day 4 when she was transferred to a psychiatric unit. Few cases have been reported of strikingly elevated acetaminophen levels in poisoned patients who did not receive hemodialysis. These patients did have increased lactate levels, and some had normal liver function tests. All of these patients received N-acetylcysteine and survived the poisoning without sequelae. This patient in this report was unique in that she had the highest reported serum acetaminophen level with acidosis and was treated successfully with only IV N-acetylcysteine and supportive care.

  11. The thickness design of unintentionally doped GaN interlayer matched with background doping level for InGaN-based laser diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2016-03-15

    In order to reduce the internal optical loss of InGaN laser diodes, an unintentionally doped GaN (u-GaN) interlayer is inserted between InGaN/GaN multiple quantum well active region and Al{sub 0.2}Ga{sub 0.8}N electron blocking layer. The thickness design of u-GaN interlayer matching up with background doping level for improving laser performance is studied. It is found that a suitably chosen u-GaN interlayer can well modulate the optical absorption loss and optical confinement factor. However, if the value of background doping concentration of u-GaN interlayer is too large, the output light power may decrease. The analysis of energy band diagram of amore » LD structure with 100 nm u-GaN interlayer shows that the width of n-side depletion region decreases when the background concentration increases, and may become even too small to cover whole MQW, resulting in a serious decrease of the output light power. It means that a suitable interlayer thickness design matching with the background doping level of u-GaN interlayer is significant for InGaN-based laser diodes.« less

  12. Polarization effects on quantum levels in InN/GaN quantum wells.

    PubMed

    Lin, Wei; Li, Shuping; Kang, Junyong

    2009-12-02

    Polarization effects on quantum states in InN/GaN quantum wells have been investigated by means of ab initio calculation and spectroscopic ellipsometry. Through the position-dependent partial densities of states, our results show that the polarization modified by the strain with different well thickness leads to an asymmetry band bending of the quantum well. The quantum levels are identified via the band structures and their square wave function distributions are analyzed by the partial charge densities. Further theoretical and experimental comparison of the imaginary part of the dielectric function show that the overall transition probability increases under larger polarization fields, which can be attributable to the fact that the excited quantum states of 2h have a greater overlap with 1e states and enhance other hole quantum states in the well by a hybridization. These results would provide a new approach to improve the transition probability and light emission by enhancing the polarization fields in a proper way.

  13. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques.

    PubMed

    Renslow, R S; Babauta, J T; Majors, P D; Mehta, H S; Ewing, R J; Ewing, T W; Mueller, K T; Beyenal, H

    2014-01-01

    Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for noninvasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live biofilms respiring on electrodes. Here, we describe a biofilm microreactor system, including a reusable and a disposable reactor, that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radio frequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system we grew Geobacter sulfurreducens biofilms on electrodes. EC-NMR was used to investigate growth medium flow velocities and depth-resolved acetate concentration inside the biofilm. As a novel contribution we used Monte Carlo error analysis to estimate the standard deviations of the acetate concentration measurements. Overall, we found that the disposable EC-NMR microreactor provided a 9.7 times better signal-to-noise ratio over the reusable reactor. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  14. Uplift of the Western Transverse Ranges and Ventura Area of Southern California: A Four-Technique Geodetic Study Combining GPS, InSAR, Leveling, and Tide Gauges

    NASA Astrophysics Data System (ADS)

    Hammond, William C.; Burgette, Reed J.; Johnson, Kaj M.; Blewitt, Geoffrey

    2018-01-01

    We estimate the rate of vertical land motion (VLM) in the region around the Western Transverse Ranges (WTR), Ventura, and Big Bend of the San Andreas Fault (SAF) of southern California using data from four geodetic techniques: GPS, interferometric synthetic aperture radar (InSAR), leveling, and tide gauges. We use a new analysis technique called GPS Imaging to combine the techniques and leverage the synergy between (1) high geographic resolution of InSAR, (2) precision, stability, and geocentric reference frame of GPS, (3) decades long observation of VLM with respect to the sea surface from tide gauges, and (4) relative VLM along dense leveling lines. The uncertainty in the overall rate field is 1 mm/yr, though some individual techniques have uncertainties as small as 0.2 mm/yr. The most rapid signals are attributable to subsidence in aquifers and groundwater changes. Uplift of the WTR is geographically continuous, adjacent to the SAF and appears related to active crustal contraction across Pacific/North America plate boundary fault system. Uplift of the WTR and San Gabriel Mountains is 2 mm/yr and is asymmetrically focused west of the SAF, consistent with interseismic strain accumulation across thrust faults in the Ventura area and Santa Barbara channel that accommodate contraction against the near vertical SAF.

  15. Real-time emergency forecasting technique for situation management systems

    NASA Astrophysics Data System (ADS)

    Kopytov, V. V.; Kharechkin, P. V.; Naumenko, V. V.; Tretyak, R. S.; Tebueva, F. B.

    2018-05-01

    The article describes the real-time emergency forecasting technique that allows increasing accuracy and reliability of forecasting results of any emergency computational model applied for decision making in situation management systems. Computational models are improved by the Improved Brown’s method applying fractal dimension to forecast short time series data being received from sensors and control systems. Reliability of emergency forecasting results is ensured by the invalid sensed data filtering according to the methods of correlation analysis.

  16. An inductorless active mixer using stacked nMOS/pMOS configuration and LO shaping technique

    NASA Astrophysics Data System (ADS)

    Guo, Benqing; Chen, Jun; Wang, Xuebing; Chen, Hongpeng

    2018-04-01

    In this paper, a CMOS active down-conversion mixer is presented for wideband applications. Specifically, a LO generation chain is suggested to convert AC LO signal to shaped trapezoid burst, which reduces the sinusoidal LO power level requirement by the mixer. The current-reuse technique by stacked nMOS/pMOS architecture is used to save the power consumption of the circuit. Moreover, this complementary configuration is also employed to compensate second-order nonlinearity of the circuit. Implemented in a 0.18-μm CMOS process, post-simulations show that, driven by only ‑10 dBm sinusoidal LO signal, the proposed inductorless mixer provides a maximal conversion gain of 15.7 dB and a noise figure (NF) of 9.1-12 dB across RF input frequency range 0.5-1.6 GHz. The IIP3 and IP1dB of 3.5 dBm and ‑4.8 dBm are obtained, respectively. The mixer core only consumes 3.6 mW from a 1.8-V supply.

  17. Novel cemented cup-holding technique while performing total hip arthroplasty with navigation system.

    PubMed

    Takai, Hirokazu; Takahashi, Tomoki

    2017-09-01

    Recently, navigation systems have been more widely utilized in total hip arthroplasty. However, almost all of these systems have been developed for cementless cups. In the case of cemented total hip arthroplasty using a navigation system, a special-ordered cemented holder is needed. We propose a novel cemented cup-holding technique for navigation systems using readily available articles. We combine a cementless cup holder with an inverted cementless trial cup. The resulting apparatus is used as a cemented cup holder. The upside-down cup-holding technique is useful and permits cemented cup users to utilize a navigation system for placement of the acetabular component.

  18. Some photometric techniques for atmosphereless solar system bodies.

    PubMed

    Lumme, K; Peltoniemi, J; Irvine, W M

    1990-01-01

    We discuss various photometric techniques and their absolute scales in relation to the information that can be derived from the relevant data. We also outline a new scattering model for atmosphereless bodies in the solar system and show how it fits Mariner 10 surface photometry of the planet Mercury. It is shown how important the correct scattering law is while deriving the topography by photoclinometry.

  19. Study on a novel laser target detection system based on software radio technique

    NASA Astrophysics Data System (ADS)

    Song, Song; Deng, Jia-hao; Wang, Xue-tian; Gao, Zhen; Sun, Ji; Sun, Zhi-hui

    2008-12-01

    This paper presents that software radio technique is applied to laser target detection system with the pseudo-random code modulation. Based on the theory of software radio, the basic framework of the system, hardware platform, and the implementation of the software system are detailed. Also, the block diagram of the system, DSP circuit, block diagram of the pseudo-random code generator, and soft flow diagram of signal processing are designed. Experimental results have shown that the application of software radio technique provides a novel method to realize the modularization, miniaturization and intelligence of the laser target detection system, and the upgrade and improvement of the system will become simpler, more convenient, and cheaper.

  20. Low level waste management: a compilation of models and monitoring techniques. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosier, J.E.; Fowler, J.R.; Barton, C.J.

    1980-04-01

    In support of the National Low-Level Waste (LLW) Management Research and Development Program being carried out at Oak Ridge National Laboratory, Science Applications, Inc., conducted a survey of models and monitoring techniques associated with the transport of radionuclides and other chemical species from LLW burial sites. As a result of this survey, approximately 350 models were identified. For each model the purpose and a brief description are presented. To the extent possible, a point of contact and reference material are identified. The models are organized into six technical categories: atmospheric transport, dosimetry, food chain, groundwater transport, soil transport, and surfacemore » water transport. About 4% of the models identified covered other aspects of LLW management and are placed in a miscellaneous category. A preliminary assessment of all these models was performed to determine their ability to analyze the transport of other chemical species. The models that appeared to be applicable are identified. A brief survey of the state-of-the-art techniques employed to monitor LLW burial sites is also presented, along with a very brief discussion of up-to-date burial techniques.« less

  1. Tuberculosis-diabetes co-morbidity is characterized by heightened systemic levels of circulating angiogenic factors

    PubMed Central

    Kumar, Nathella Pavan; Moideen, Kadar; Sivakumar, Shanmugam; Menon, Pradeep A; Viswanathan, Vijay; Kornfeld, Hardy; Babu, Subash

    2016-01-01

    Background Tuberculosis-diabetes co-morbidity (TB-DM) is characterized by increased inflammation with elevated circulating levels of inflammatory cytokines and other factors. Circulating angiogenic factors are intricately involved in the angiogenesis-inflammation nexus. Methods To study the association of angiogenic factors with TB-DM, we examined the systemic levels of VEGF-A, VEGF-C, VEGF-D, VEGF-R1, VEGF-R2, VEGF-R3 in individuals with either TB-DM (n=44) or TB alone (n=44). Results Circulating levels of VEGF-A, C, D, R1, R2 and R3 were significantly higher in TB-DM compared to TB individuals. Moreover, the levels of VEGF-A, C, R2 and/or R3 were significantly higher in TB-DM with bilateral or cavitary disease or with hemoptysis, suggesing an association with both disease severity and adverse clinical presentation. The levels of these factors also exhibited a significant positive relationship with bacterial burdens and HbA1c levels. In addition, VEGF-A, C and R2 levels were signifantly higher (at 2 months of treatment) in culture positive compared to culture negative TB-DM individuals. Finally, the circulating levels of VEGF-A, C, D, R1, R2 and R3 were significantly reduced following successful chemotherapy at 6 months. Conclusion Our data demonstrate that TB-DM is associated with heightened levels of circulating angiogenic factors, possibly reflecting both dysregulated angiogenesis and exaggerated inflammation. PMID:27717783

  2. Controller design for a class of nonlinear MIMO coupled system using multiple models and second level adaptation.

    PubMed

    Pandey, Vinay Kumar; Kar, Indrani; Mahanta, Chitralekha

    2017-07-01

    In this paper, an adaptive control method using multiple models with second level adaptation is proposed for a class of nonlinear multi-input multi-output (MIMO) coupled systems. Multiple estimation models are used to tune the unknown parameters at the first level. The second level adaptation provides a single parameter vector for the controller. A feedback linearization technique is used to design a state feedback control. The efficacy of the designed controller is validated by conducting real time experiment on a laboratory setup of twin rotor MIMO system (TRMS). The TRMS setup is discussed in detail and the experiments were performed for regulation and tracking problem for pitch and yaw control using different reference signals. An Extended Kalman Filter (EKF) has been used to observe the unavailable states of the TRMS. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Restoring coastal wetlands that were ditched for mosquito control: a preliminary assessment of hydro-leveling as a restoration technique

    USGS Publications Warehouse

    Smith, Thomas J.; Tiling, Ginger; Leasure, Pamela S.

    2007-01-01

    The wetlands surrounding Tampa Bay, Florida were extensively ditched for mosquito control in the 1950s. Spoil from ditch construction was placed adjacent to the wetlands ditches creating mound-like features (spoil-mounds). These mounds represent a loss of 14% of the wetland area in Tampa Bay. Spoil mounds interfere with tidal flow and are locations for non-native plants to colonize (e.g., Schinus terebinthifolius). Removal of the spoil mounds to eliminate exotic plants, restore native vegetation, and re-establish natural hydrology is a restoration priority for environmental managers. Hydro-leveling, a new technique, was tested in a mangrove forest restoration project in 2004. Hydro-leveling uses a high pressure stream of water to wash sediment from the spoil mound into the adjacent wetland and ditch. To assess the effectiveness of this technique, we conducted vegetation surveys in areas that were hydro-leveled and in non-hydro-leveled areas 3 years post-project. Adult Schinus were reduced but not eliminated from hydro-leveled mounds. Schinus seedlings however were absent from hydro-leveled sites. Colonization by native species was sparse. Mangrove seedlings were essentially absent (≈2 m−2) from the centers of hydro-leveled mounds and were in low density on their edges (17 m−2) in comparison to surrounding mangrove forests (105 m−2). Hydro-leveling resulted in mortality of mangroves adjacent to the mounds being leveled. This was probably caused by burial of pneumatophores during the hydro-leveling process. For hydro-leveling to be a useful and successful restoration technique several requirements must be met. Spoil mounds must be lowered to the level of the surrounding wetlands. Spoil must be distributed further into the adjacent wetland to prevent burial of nearby native vegetation. Finally, native species may need to be planted on hydro-leveled areas to speed up the re-vegetation process.

  4. Computational Intelligence Techniques for Tactile Sensing Systems

    PubMed Central

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-01-01

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach. PMID:24949646

  5. Computational intelligence techniques for tactile sensing systems.

    PubMed

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-06-19

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.

  6. Development of supported liquid membrane techniques for the monitoring of trace levels of organic pollutants in wastewaters and water purification systems

    NASA Astrophysics Data System (ADS)

    Msagati, Titus A. M.; Mamba, Bhekie B.

    The supported liquid membrane (SLM) extraction technique has been developed and successfully used for the monitoring of trace quantities of ionisable organic contaminants, including 17β-estradiol and its metabolites, testosterones and their methyl ester derivatives, benzimidazole anthelmintic antibiotics and sulphonamides in aquatic systems. A number of parameters which control the mass transfer in the supported liquid membrane extraction process such as donor and acceptor pH, extraction time and the type of organic liquid membrane were optimised to enhance the efficiency of the liquid membrane in the removal of these compounds. The method developed gave very low detection limits (0.3 ng/l to 2.4 ng/l for 17β-estradiol and its metabolites; between 1 μg/l and 20 μg/l for sulphonamides; and between 0.1 ng/l and 10 ng/l for benzimidazole anthelmintic compounds). The SLM method showed good linearity, reproducibility and repeatability values and is therefore suitable for routine monitoring of such compounds in water and wastewater systems.

  7. Low thrust chemical orbit to orbit propulsion system propellant management study

    NASA Technical Reports Server (NTRS)

    Dergance, R. H.; Hamlyn, K. M.; Tegart, J. R.

    1981-01-01

    Low thrust chemical propulsion systems were sized for transfer of large space systems from LEO to GEO. The influence of propellant combination, tankage and insulation requirements, and propellant management techniques on the LTPS mass and volume were studied. Liquid oxygen combined with hydrogen, methane or kerosene were the propellant combinations. Thrust levels of 445, 2230, and 4450 N were combined with 1, 4 and 8 perigee burn strategies. This matrix of systems was evaluated using multilayer insulation and spray-on-foam insulation systems. Various combinations of toroidal, cylindrical with ellipsoidal domes, and ellipsoidal tank shapes were investigated. Results indicate that low thrust (445 N) and single perigee burn approaches are considerably less efficient than the higher thrust level and multiple burn strategies. A modified propellant settling approach minimized propellant residuals and decreased system complexity, in addition, the toroid/ellipsoidal tank combination was predicted to be shortest.

  8. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  9. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.

    PubMed

    Bisi, Maria Cristina; Stagni, Rita; Caroselli, Alessio; Cappello, Angelo

    2015-08-01

    Inertial sensors are becoming widely used for the assessment of human movement in both clinical and research applications, thanks to their usability out of the laboratory. This work aims to propose a method for calibrating anatomical landmark position in the wearable sensor reference frame with an ease to use, portable and low cost device. An off-the-shelf camera, a stick and a pattern, attached to the inertial sensor, compose the device. The proposed technique is referred to as video Calibrated Anatomical System Technique (vCAST). The absolute orientation of a synthetic femur was tracked both using the vCAST together with an inertial sensor and using stereo-photogrammetry as reference. Anatomical landmark calibration showed mean absolute error of 0.6±0.5 mm: these errors are smaller than those affecting the in-vivo identification of anatomical landmarks. The roll, pitch and yaw anatomical frame orientations showed root mean square errors close to the accuracy limit of the wearable sensor used (1°), highlighting the reliability of the proposed technique. In conclusion, the present paper proposes and preliminarily verifies the performance of a method (vCAST) for calibrating anatomical landmark position in the wearable sensor reference frame: the technique is low time consuming, highly portable, easy to implement and usable outside laboratory. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Paper simulation techniques in user requirements analysis for interactive computer systems

    NASA Technical Reports Server (NTRS)

    Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.

    1979-01-01

    This paper describes the use of a technique called 'paper simulation' in the analysis of user requirements for interactive computer systems. In a paper simulation, the user solves problems with the aid of a 'computer', as in normal man-in-the-loop simulation. In this procedure, though, the computer does not exist, but is simulated by the experimenters. This allows simulated problem solving early in the design effort, and allows the properties and degree of structure of the system and its dialogue to be varied. The technique, and a method of analyzing the results, are illustrated with examples from a recent paper simulation exercise involving a Space Shuttle flight design task

  11. AlGaInN laser diode technology and systems for defence and security applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2015-10-01

    AlGaInN laser diodes is an emerging technology for defence and security applications such as underwater communications and sensing, atomic clocks and quantum information. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries. Ridge waveguide laser diodes are fabricated to achieve single mode operation with optical powers up to 100mW with the 400-440nm wavelength range with high reliability. Visible free-space and underwater communication at frequencies up to 2.5GHz is reported using a directly modulated 422nm GaN laser diode. Low defectivity and highly uniform GaN substrates allow arrays and bars to be fabricated. High power operation operation of AlGaInN laser bars with up to 20 emitters have been demonstrated at optical powers up to 4W in a CS package with common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space or optical fibre system integration with a very small form-factor.

  12. Changes in sample collection and analytical techniques and effects on retrospective comparability of low-level concentrations of trace elements in ground water

    USGS Publications Warehouse

    Ivahnenko, T.; Szabo, Z.; Gibs, J.

    2001-01-01

    Ground-water sampling techniques were modified to reduce random low-level contamination during collection of filtered water samples for determination of trace-element concentrations. The modified sampling techniques were first used in New Jersey by the US Geological Survey in 1994 along with inductively coupled plasma-mass spectrometry (ICP-MS) analysis to determine the concentrations of 18 trace elements at the one microgram-per-liter (μg/L) level in the oxic water of the unconfined sand and gravel Kirkwood-Cohansey aquifer system. The revised technique tested included a combination of the following: collection of samples (1) with flow rates of about 2L per minute, (2) through acid-washed single-use disposable tubing and (3) a single-use disposable 0.45-μm pore size capsule filter, (4) contained within portable glove boxes, (5) in a dedicated clean sampling van, (6) only after turbidity stabilized at values less than 2 nephelometric turbidity units (NTU), when possible. Quality-assurance data, obtained from equipment blanks and split samples, indicated that trace element concentrations, with the exception of iron, chromium, aluminum, and zinc, measured in the samples collected in 1994 were not subject to random contamination at 1μg/L.Results from samples collected in 1994 were compared to those from samples collected in 1991 from the same 12 PVC-cased observation wells using the available sampling and analytical techniques at that time. Concentrations of copper, lead, manganese and zinc were statistically significantly lower in samples collected in 1994 than in 1991. Sampling techniques used in 1994 likely provided trace-element data that represented concentrations in the aquifer with less bias than data from 1991 when samples were collected without the same degree of attention to sample handling.

  13. A system-level mathematical model for evaluation of power train performance of load-leveled electric-vehicles

    NASA Technical Reports Server (NTRS)

    Purohit, G. P.; Leising, C. J.

    1984-01-01

    The power train performance of load leveled electric vehicles can be compared with that of nonload leveled systems by use of a simple mathematical model. This method of measurement involves a number of parameters including the degree of load leveling and regeneration, the flywheel mechanical to electrical energy fraction, and efficiencies of the motor, generator, flywheel, and transmission. Basic efficiency terms are defined and representative comparisons of a variety of systems are presented. Results of the study indicate that mechanical transfer of energy into and out of the flywheel is more advantageous than electrical transfer. An optimum degree of load leveling may be achieved in terms of the driving cycle, battery characteristics, mode of mechanization, and the efficiency of the components. For state of the art mechanically coupled flyheel systems, load leveling losses can be held to a reasonable 10%; electrically coupled systems can have losses that are up to six times larger. Propulsion system efficiencies for mechanically coupled flywheel systems are predicted to be approximately the 60% achieved on conventional nonload leveled systems.

  14. Simultaneous sampling technique for two spectral sources

    NASA Technical Reports Server (NTRS)

    Jarrett, Olin, Jr.

    1987-01-01

    A technique is described that uses a bundle of fiber optics to simultaneously sample a dye laser and a spectral lamp. By the use of a real-time display with this technique, the two signals can be superimposed, and the effect of any spectral adjustments can be immediately accessed. In the NASA's CARS system used for combustion diagnostics, the dye laser mixes with a simultaneously pulsed Nd:YAG laser at 532 nm to probe the vibrational levels of nitrogen. An illustration of the oscilloscopic display of the system is presented.

  15. Deep level study of Mg-doped GaN using deep level transient spectroscopy and minority carrier transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Duc, Tran Thien; Pozina, Galia; Amano, Hiroshi; Monemar, Bo; Janzén, Erik; Hemmingsson, Carl

    2016-07-01

    Deep levels in Mg-doped GaN grown by metal organic chemical vapor deposition (MOCVD), undoped GaN grown by MOCVD, and halide vapor phase epitaxy (HVPE)-grown GaN have been studied using deep level transient spectroscopy and minority charge carrier transient spectroscopy on Schottky diodes. One hole trap, labeled HT1, was detected in the Mg-doped sample. It is observed that the hole emission rate of the trap is enhanced by increasing electric field. By fitting four different theoretical models for field-assisted carrier emission processes, the three-dimensional Coulombic Poole-Frenkel (PF) effect, three-dimensional square well PF effect, phonon-assisted tunneling, and one-dimensional Coulombic PF effect including phonon-assisted tunneling, it is found that the one-dimensional Coulombic PF model, including phonon-assisted tunneling, is consistent with the experimental data. Since the trap exhibits the PF effect, we suggest it is acceptorlike. From the theoretical model, the zero field ionization energy of the trap and an estimate of the hole capture cross section have been determined. Depending on whether the charge state is -1 or -2 after hole emission, the zero field activation energy Ei 0 is 0.57 eV or 0.60 eV, respectively, and the hole capture cross section σp is 1.3 ×10-15c m2 or 1.6 ×10-16c m2 , respectively. Since the level was not observed in undoped GaN, it is suggested that the trap is associated with an Mg related defect.

  16. Arctic communications techniques: Remote unattended power systems

    NASA Astrophysics Data System (ADS)

    Walker, G.

    1986-02-01

    The purpose of this report is to describe the accomplishments during the reporting period, 16 December 1985 through 1 February 1986, on the project entitled Arctic Communications Techniques: Remote Unattended Power Systems. All of the fabricated component parts for the first Ross-Stirling engine were completed. During the assembly process several interferences between some of the parts in the rotating mechanism were discovered causing drawing changes and subsequent rework to a few of the components. Assembly of the first engine was then completed. On the first attempt the engine ran successfully at approximately 3500 rpm.

  17. Method of calibrating a fluid-level measurement system

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2010-01-01

    A method of calibrating a fluid-level measurement system is provided. A first response of the system is recorded when the system's sensor(s) is (are) not in contact with a fluid of interest. A second response of the system is recorded when the system's sensor(s) is (are) fully immersed in the fluid of interest. Using the first and second responses, a plurality of expected responses of the system's sensor(s) is (are) generated for a corresponding plurality of levels of immersion of the sensor(s) in the fluid of interest.

  18. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  19. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  20. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  1. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  2. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  3. Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1988-01-01

    The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.

  4. Systems-oriented survey of noncontact temperature measurement techniques for rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Peyton, David; Kinoshita, Hiroyuki; Lo, G. Q.; Kwong, Dim-Lee

    1991-04-01

    Rapid Thermal Processing (RTP) is becoming a popular approach for future ULSI manufacturing due to its unique low thermal budget and process flexibility. Furthermore when RTP is combined with Chemical Vapor Deposition (CVD) the so-called RTP-CVD technology it can be used to deposit ultrathin films with extremely sharp interfaces and excellent material qualities. One major consequence of this type of processing however is the need for extremely tight control of wafer temperature both to obtain reproducible results for process control and to minimize slip and warpage arising from nonuniformities in temperature. Specifically temperature measurement systems suitable for RiP must have both high precision--within 1-2 degrees--and a short response time--to output an accurate reading on the order of milliseconds for closedloop control. Any such in-situ measurement technique must be non-contact since thermocouples cannot meet the response time requirements and have problems with conductive heat flow in the wafer. To date optical pyrometry has been the most widely used technique for RiP systems although a number of other techniques are being considered and researched. This article examines several such techniques from a systems perspective: optical pyrometry both conventional and a new approach using ellipsometric techniques for concurrent emissivity measurement Raman scattering infrared laser thermometry optical diffraction thermometry and photoacoustic thermometry. Each approach is evaluated in terms of its actual or estimated manufacturing cost remote sensing capability precision repeatability dependence on processing history range

  5. Fully porous GaN p-n junction diodes fabricated by chemical vapor deposition.

    PubMed

    Bilousov, Oleksandr V; Carvajal, Joan J; Geaney, Hugh; Zubialevich, Vitaly Z; Parbrook, Peter J; Martínez, Oscar; Jiménez, Juan; Díaz, Francesc; Aguiló, Magdalena; O'Dwyer, Colm

    2014-10-22

    Porous GaN based LEDs produced by corrosion etching techniques demonstrated enhanced light extraction efficiency in the past. However, these fabrication techniques require further postgrown processing steps, which increases the price of the final system. Also, the penetration depth of these etching techniques is limited, and affects not only the semiconductor but also the other elements constituting the LED when applied to the final device. In this paper, we present the fabrication of fully porous GaN p-n junctions directly during growth, using a sequential chemical vapor deposition (CVD) process to produce the different layers that form the p-n junction. We characterized their diode behavior from room temperature to 673 K and demonstrated their ability as current rectifiers, thus proving the potential of these fully porous p-n junctions for diode and LEDs applications. The electrical and luminescence characterization confirm that high electronic quality porous structures can be obtained by this method, and we believe this investigation can be extended to other III-N materials for the development of white light LEDs, or to reduce reflection losses and narrowing the output light cone for improved LED external quantum efficiencies.

  6. Techniques for a Wind Energy System Integration with an Islanded Microgrid

    NASA Astrophysics Data System (ADS)

    Goyal, Megha; Fan, Yuanyuan; Ghosh, Arindam; Shahnia, Farhad

    2016-04-01

    This paper presents two different techniques of a wind energy conversion system (WECS) integration with an islanded microgrid (MG). The islanded microgrid operates in a frequency droop control where its frequency can vary around 50 Hz. The permanent magnet synchronous generator (PMSG) based variable speed WECS is considered, which converts wind energy to a low frequency ac power. Therefore it needs to be connected to the microgrid through a back to back (B2B) converter system. One way of interconnection is to synchronize the MG side converter with the MG bus at which it is connected. In this case, this converter runs at the MG frequency. The other approach is to bring back the MG frequency to 50 Hz using the isochronization concept. In this case, the MG side converter operates at 50 Hz. Both these techniques are developed in this paper. The proposed techniques are validated through extensive PSCAD/EMTDC simulation studies.

  7. Torsional ultrasonic wave based level measurement system

    DOEpatents

    Holcomb, David E [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN

    2012-07-10

    A level measurement system suitable for use in a high temperature and pressure environment to measure the level of coolant fluid within the environment, the system including a volume of coolant fluid located in a coolant region of the high temperature and pressure environment and having a level therein; an ultrasonic waveguide blade that is positioned within the desired coolant region of the high temperature and pressure environment; a magnetostrictive electrical assembly located within the high temperature and pressure environment and configured to operate in the environment and cooperate with the waveguide blade to launch and receive ultrasonic waves; and an external signal processing system located outside of the high temperature and pressure environment and configured for communicating with the electrical assembly located within the high temperature and pressure environment.

  8. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  9. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  10. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  11. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  12. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  13. Liquidus temperature and optical properties measurement by containerless techniques

    NASA Technical Reports Server (NTRS)

    Anderson, Collin D.

    1993-01-01

    Reactive alloy liquidus temperatures measured by conventional, contained techniques are often in error due to reactions with containers and gaseous impurities. This paper describes a new liquidus temperature measurement technique that avoids these problems by employing containerless processing. This technique relies on precise and accurate noncontact temperature measurements (NCTM), which are made possible by spectral emissivity values. The spectral emissivities, epsilon(sub lambda), are measured along with the optical properties (real, n, and imaginary, k, components of the index of refraction) using polarimetric techniques on electromagnetically levitated specimens. Results from work done at Vanderbilt University and Intersonics on the Ti-Al system are presented to demonstrate the above techniques.

  14. Percutaneous Direct Needle Puncture and Transcatheter N-butyl Cyanoacrylate Injection Techniques for the Embolization of Pseudoaneurysms and Aneurysms of Arteries Supplying the Hepato-pancreato-biliary System and Gastrointestinal Tract

    PubMed Central

    Yadav, Rajanikant R; Boruah, Deb K; Bhattacharyya, Vishwaroop; Prasad, Raghunandan; Kumar, Sheo; Saraswat, V A; Kapoor, V K; Saxena, Rajan

    2016-01-01

    Aims: The aim of this study was to evaluate the safety and clinical efficacy of percutaneous direct needle puncture and transcatheter N-butyl cyanoacrylate (NBCA) injection techniques for the embolization of pseudoaneurysms and aneurysms of arteries supplying the hepato-pancreato-biliary (HPB) system and gastrointestinal (GI) tract. Subjects and Methods: A hospital-based cross-sectional retrospective study was conducted, where the study group comprised 11 patients with pseudoaneurysms/aneurysms of arteries supplying the HPB system and GI tract presenting to a tertiary care center from January 2015 to June 2016. Four patients (36.4%) underwent percutaneous direct needle puncture of pseudoaneurysms with NBCA injection, 3 patients (27.3%) underwent transcatheter embolization with NBCA as sole embolic agent, and in 4 patients (36.4%), transcatheter NBCA injection was done along with coil embolization. Results: This retrospective study comprised 11 patients (8 males and 3 females) with mean age of 35.8 years ± 1.6 (standard deviation [SD]). The mean volume of NBCA: ethiodized oil (lipiodol) mixture injected by percutaneous direct needle puncture was 0.62 ml ± 0.25 (SD) (range = 0.5–1 ml), and by transcatheter injection, it was 0.62 ml ± 0.37 (SD) (range = 0.3–1.4 ml). Embolization with NBCA was technically and clinically successful in all patients (100%). No recurrence of bleeding or recurrence of pseudoaneurysm/aneurysm was noted in our study. Conclusions: Percutaneous direct needle puncture of visceral artery pseudoaneurysms and NBCA glue injection and transcatheter NBCA injection for embolization of visceral artery pseudoaneurysms and aneurysms are cost-effective techniques that can be used when coil embolization is not feasible or has failed. PMID:28123838

  15. Application of Structured Light System Technique for Authentication of Wooden Panel Paintings.

    PubMed

    Buchón-Moragues, Fernando; Bravo, José María; Ferri, Marcelino; Redondo, Javier; Sánchez-Pérez, Juan Vicente

    2016-06-14

    This paper presents a new application of photogrammetric techniques for protecting cultural heritage. The accuracy of the method and the fact that it can be used to carry out different tests without contact between the sample and the instruments can make this technique very useful for authenticating and cataloging artworks. The application focuses on the field of pictorial artworks, and wooden panel paintings in particular. In these works, the orography formed by the brushstrokes can be easily digitalized using a photogrammetric technique, called Structured Light System, with submillimeter accuracy. Thus, some of the physical characteristics of the brushstrokes, like minimum and maximum heights or slopes become a fingerprint of the painting. We explain in detail the general principles of the Structured Light System Technique and the specific characteristics of the commercial set-up used in this work. Some experiments are carried out on a sample painted by us to check the accuracy limits of the technique and to propose some tests that can help to stablish a methodology for authentication purposes. Finally, some preliminary results obtained on a real pictorial artwork are presented, providing geometrical information of its metric features as an example of the possibilities of this application.

  16. Process for Selecting System Level Assessments for Human System Technologies

    NASA Technical Reports Server (NTRS)

    Watts, James; Park, John

    2006-01-01

    The integration of many life support systems necessary to construct a stable habitat is difficult. The correct identification of the appropriate technologies and corresponding interfaces is an exhaustive process. Once technologies are selected secondary issues such as mechanical and electrical interfaces must be addressed. The required analytical and testing work must be approached in a piecewise fashion to achieve timely results. A repeatable process has been developed to identify and prioritize system level assessments and testing needs. This Assessment Selection Process has been defined to assess cross cutting integration issues on topics at the system or component levels. Assessments are used to identify risks, encourage future actions to mitigate risks, or spur further studies.

  17. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactorsmore » were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.« less

  18. Improved Ohmic-contact to AlGaN/GaN using Ohmic region recesses by self-terminating thermal oxidation assisted wet etching technique

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, J.; Wang, H.; Zhu, L.; Wu, W.

    2017-06-01

    Lower Ti/Al/Ni/Au Ohmic contact resistance on AlGaN/GaN with wider rapid thermal annealing (RTA) temperature window was achieved using recessed Ohmic contact structure based on self-terminating thermal oxidation assisted wet etching technique (STOAWET), in comparison with conventional Ohmic contacts. Even at lower temperature such as 650°C, recessed structure by STOAWET could still obtain Ohmic contact with contact resistance of 1.97Ω·mm, while conventional Ohmic structure mainly featured as Schottky contact. Actually, both Ohmic contact recess and mesa isolation processes could be accomplished by STOAWET in one process step and the process window of STOAWET is wide, simplifying AlGaN/GaN HEMT device process. Our experiment shows that the isolation leakage current by STOAWET is about one order of magnitude lower than that by inductivity coupled plasma (ICP) performed on the same wafer.

  19. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +}more » rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.« less

  20. System-Level Integration of Mass Memory

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Mellstrom, Jeffrey; Wysocky, Terry

    2008-01-01

    A report discusses integrating multiple memory modules on the high-speed serial interconnect (IEEE 1393) that is used by a spacecraft?s inter-module communications in order to ease data congestion and provide for a scalable, strong, flexible system that can meet new system-level mass memory requirements.

  1. Development of a nuclear technique for monitoring water levels in pressurized vehicles

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Mall, G. H.

    1983-01-01

    A new technique for monitoring water levels in pressurized stainless steel cylinders was developed. It is based on differences in attenuation coefficients of water and air for Cs137 (662 keV) gamma rays. Experimentally observed gamma ray counting rates with and without water in model reservoir cylinder were compared with corresponding calculated values for two different gamma ray detection theshold energies. Calculated values include the effects of multiple scattering and attendant gamma ray energy reductions. The agreement between the measured and calculated values is reasonably good. Computer programs for calculating angular and spectral distributions of scattered radition in various media are included.

  2. Models and techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1978-01-01

    The development of system models that can provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer are described. Specific topics covered include: system models; performability evaluation; capability and functional dependence; computation of trajectory set probabilities; and hierarchical modeling of an air transport mission.

  3. Trends and techniques for space base electronics. [mathematical models, ion implantation, and semiconductors

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.; Mahmood, Q.; Trotter, J. D.

    1978-01-01

    A system was developed for depositing aluminum and aluminum alloys by the D.C. sputtering technique. This system which was designed for a high level of cleanliness and ion monitoring the deposition parameters during film preparation is ready for studying the deposition and annealing parameters upon double level metal preparation. The finite element method was studied for use in the computer modeling of two dimensional MOS transistor structures. An algorithm was developed for implementing a computer study which is based upon the finite difference method. The program was modified and used to calculate redistribution data for boron and phosphorous which had been predeposited by ion implantation with range and straggle conditions typical of those used at MSFC. Data were generated for 111 oriented SOS films with redistribution in N2, dry O2 and steam ambients. Data are given showing both two dimensional effects and the evolution of the junction depth, sheet resistance and integrated dose with redistribution time.

  4. Use of Novel Whole Core Incubations to Measure the Fate of Fertilizer N in a Flooded Agricultural System

    NASA Astrophysics Data System (ADS)

    Penton, C. R.; Bruland, G. L.; Popp, B. N.; Engstrom, P.; Tiedje, J.; Brown, G. A.; Deenik, J. L.

    2010-12-01

    among the treatments, indicating limitation by 15NH4+ diffusion. These results indicate that N2 is preferentially transported through the aerenchyma in taro and probably other plants grown in flooded agricultural fields. However, increased wind stress reduced transport through the aerenchyma and resulted in greater N2 accumulation in the subsurface, which indicates the importance of mass flow transport of air and its effect on oxygenation at the root tips. The results indicate that the complexity of N cycling in flooded agricultural systems may confound attempts to estimate in-situ N losses through porewater modeling, ‘classic’ isotope pairing techniques, or N flux chambers. The whole-core technique presented here allows for the measurement of multiple N pools and fates while minimizing system disturbance and more accurately representing field conditions.

  5. Light propagation in the Solar System for astrometry on sub-micro-arcsecond level

    NASA Astrophysics Data System (ADS)

    Zschocke, Sven

    2018-04-01

    We report on recent advancement in the theory of light propagation in the Solar System aiming at sub-micro-arcsecond level of accuracy: (1) A solution for the light ray in 1.5PN approximation has been obtained in the field of N arbitrarily moving bodies of arbitrary shape, inner structure, oscillations, and rotational motion. (2) A solution for the light ray in 2PN approximation has been obtained in the field of one arbitrarily moving pointlike body.

  6. Estimation of sea level variations with GPS/GLONASS-reflectometry technique

    NASA Astrophysics Data System (ADS)

    Padokhin, A. M.; Kurbatov, G. A.; Andreeva, E. S.; Nesterov, I. A.; Nazarenko, M. O.; Berbeneva, N. A.; Karlysheva, A. V.

    2017-11-01

    In the present paper we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSSreceiver, which are based on the multipath propagation effects caused by the reflection of navigational signals from the sea surface. Such multipath propagation results in the appearance of the interference pattern in the Signal-to-Noise Ratio (SNR) of GNSS signals at small satellite elevation angles, which parameters are determined by the wavelength of the navigational signal and height of the antenna phase center above the reflecting sea surface. In current work we used GPS and GLONASS signals and measurements at two working frequencies of both systems to study sea level variations which almost doubles the amount of observations compared to GPS-only tide gauge. For UNAVCO sc02 station and collocated Friday Harbor NOAA tide gauge we show good agreement between GNSS-reflectometry and traditional mareograph sea level data.

  7. Development of the implant surgical technique and assessment rating system

    PubMed Central

    Park, Jung-Chul; Hwang, Ji-Wan; Lee, Jung-Seok; Jung, Ui-Won; Choi, Seong-Ho; Cho, Kyoo-Sung; Chai, Jung-Kiu

    2012-01-01

    Purpose There has been no attempt to establish an objective implant surgical evaluation protocol to assess residents' surgical competence and improve their surgical outcomes. The present study presents a newly developed assessment and rating system and simulation model that can assist the teaching staffs to evaluate the surgical events and surgical skills of residents objectively. Methods Articles published in peer-reviewed English journals were selected using several scientific databases and subsequently reviewed regarding surgical competence and assessment tools. Particularly, medical journals reporting rating and evaluation protocols for various types of medical surgeries were thoroughly analyzed. Based on these studies, an implant surgical technique assessment and rating system (iSTAR) has been developed. Also, a specialized dental typodont was developed for the valid and reliable assessment of surgery. Results The iSTAR consists of two parts including surgical information and task-specific checklists. Specialized simulation model was subsequently produced and can be used in combination with iSTAR. Conclusions The assessment and rating system provided may serve as a reference guide for teaching staffs to evaluate the residents' implant surgical techniques. PMID:22413071

  8. Reducing surgical levels by paraspinal mapping and diffusion tensor imaging techniques in lumbar spinal stenosis.

    PubMed

    Chen, Hua-Biao; Wan, Qi; Xu, Qi-Feng; Chen, Yi; Bai, Bo

    2016-04-25

    Correlating symptoms and physical examination findings with surgical levels based on common imaging results is not reliable. In patients who have no concordance between radiological and clinical symptoms, the surgical levels determined by conventional magnetic resonance imaging (MRI) and neurogenic examination (NE) may lead to a more extensive surgery and significant complications. We aimed to confirm that whether the use of diffusion tensor imaging (DTI) and paraspinal mapping (PM) techniques can further prevent the occurrence of false positives with conventional MRI, distinguish which are clinically relevant from levels of cauda equina and/or nerve root lesions based on MRI, and determine and reduce the decompression levels of lumbar spinal stenosis than MRI + NE, while ensuring or improving surgical outcomes. We compared the data between patients who underwent MRI + (PM or DTI) and patients who underwent conventional MRI + NE to determine levels of decompression for the treatment of lumbar spinal stenosis. Outcome measures were assessed at 2 weeks, 3 months, 6 months, and 12 months postoperatively. One hundred fourteen patients (59 in the control group, 54 in the experimental group) underwent decompression. The levels of decompression determined by MRI + (PM or DTI) in the experimental group were significantly less than that determined by MRI + NE in the control group (p = 0.000). The surgical time, blood loss, and surgical transfusion were significantly less in the experimental group (p = 0.001, p = 0.011, p = 0.001, respectively). There were no differences in improvement of the visual analog scale back and leg pain (VAS-BP, VAS-LP) scores and Oswestry Disability Index (ODI) scores at 2 weeks, 3 months, 6 months, and 12 months after operation between the experimental and control groups. MRI + (PM or DTI) showed clear benefits in determining decompression levels of lumbar spinal stenosis than MRI + NE. In patients with lumbar spinal

  9. Effect of varying Ga content in ZnO:GaN solid solution synthesized by solution combustion technique for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Janani, R.; Baskar, K.; Gupta, Bhavana; Singh, Shubra

    2017-05-01

    ZnO:GaN (oxy)nitride solid solution has been established as the most efficient non-oxide photocatalyst for water splitting under visible irradiation with one step photoexcitation and also boasts a band gap tunability from 2.8 eV to 2.5 eV[1]. The solid solution of GaN in ZnO is formed by the intersubstitution of few of Zn/O ions by Ga/N ions, and this results in the introduction of new defect levels above the valence band which narrows the effective band gap enabling activity under visible region of spectra. In this work, we report the synthesis of ZnO:GaN solid solution by a solution combustion technique where metal nitrates and urea are used as precursors. The Zn/Ga ratio was varied from 16 to 1 in the precursors. The as synthesized samples were characterized as phase pure by X-ray diffraction, where the wurtzite structure was retained up to Zn/Ga ratio of 5. The Diffuse reflectance spectroscopy studies revealed that as the Ga content in the solid solution increases there is a reduction in band gap, from 2.9 eV to 2.4 eV. The reduced band gap of the samples facilitates its photocatalytic activity under visible region of the spectra as evaluated by photoelectrochemical measurements.

  10. Using crosscorrelation techniques to determine the impulse response of linear systems

    NASA Technical Reports Server (NTRS)

    Dallabetta, Michael J.; Li, Harry W.; Demuth, Howard B.

    1993-01-01

    A crosscorrelation method of measuring the impulse response of linear systems is presented. The technique, implementation, and limitations of this method are discussed. A simple system is designed and built using discrete components and the impulse response of a linear circuit is measured. Theoretical and software simulation results are presented.

  11. Comparison among the levels of patients' satisfaction according to the surgical technique used in breast reconstruction after mastectomy.

    PubMed

    Gómez-Escolar Larrañaga, Lucía; Delgado Martínez, Julio; Miguelena Bobadilla, José María

    2017-12-01

    It has been proved that a breast reconstruction after a mastectomy has a great psycho-social impact on patients. For this reason, it is increasingly done in a greater percentage of cases. There are two major groups of reconstructive techniques: a reconstruction with implants and a reconstruction with autologous tissue of the patient. In order to make a more objective assessment of the results, it is important to know how satisfied these patients are with the results. Therefore, we performed a study using Q-BREAST, the aim of which is to analyze the satisfaction of mastectomized patients according to the different surgical reconstruction techniques. A retrospective, descriptive and observational study of patients reconstructed in our service from 2008 to 2011 was carried out. Patient satisfaction levels were compared according to the surgical technique used in breast reconstruction using the Q-BREAST test, which was mailed to them. There are no statistical differences in the levels of satisfaction in terms of age, type of mastectomy done, coadjutant treatment or existence of complications. Higher levels of satisfaction are observed in patients reconstructed with autologous tissue versus implants (P=.028). Patients reconstructed with autologous tissue have higher levels of satisfaction than those reconstructed with implants. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. A VCSEL based system for on-site monitoring of low level methane emission

    NASA Astrophysics Data System (ADS)

    Kannath, A.; Hodgkinson, J.; Gillard, R. G.; Riley, R. J.; Tatam, R. P.

    2011-03-01

    Continuous monitoring of methane emissions has assumed greater significance in the recent past due to increasing focus on global warming issues. Many industries have also identified the need for ppm level methane measurement as a means of gaining carbon credits. Conventional instruments based on NDIR spectroscopy are unable to offer the high selectivity and sensitivity required for such measurements. Here we discuss the development of a robust VCSEL based system for accurate low level measurements of methane. A possible area of application is the measurement of residual methane whilst monitoring the output of flare stacks and exhaust gases from methane combustion engines. The system employs a Wavelength Modulation Spectroscopy (WMS) scheme with second harmonic detection at 1651 nm. Optimum modulation frequency and ramp rates were chosen to maintain high resolution and fast response times which are vital for the intended application. Advanced data processing techniques were used to achieve long term sensitivity of the order of 10-5 in absorbance. The system is immune to cross interference from other gases and its inherent design features makes it ideal for large scale commercial production. The instrument maintains its calibration and offers a completely automated continuous monitoring solution for remote on site deployment.

  13. Network of vertically c-oriented prismatic InN nanowalls grown on c-GaN/sapphire template by chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Barick, B. K.; Saroj, Rajendra Kumar; Prasad, Nivedita; Sutar, D. S.; Dhar, S.

    2018-05-01

    Networks of vertically c-oriented prism shaped InN nanowalls, are grown on c-GaN/sapphire templates using a CVD technique, where pure indium and ammonia are used as metal and nitrogen precursors. A systematic study of the growth, structural and electronic properties of these samples shows a preferential growth of the islands along [ 1 1 2 bar 0 ] and [0 0 0 1] directions leading to the formation of such a network structure, where the vertically [0 0 0 1] oriented tapered walls are laterally align along one of the three [ 1 1 2 bar 0 ] directions. Inclined facets of these walls are identified as semipolar (1 1 2 bar 2) -planes of wurtzite InN. Onset of absorption for these samples is observed to be higher than the band gap of InN suggesting a high background carrier concentration in this material. Study of the valence band edge through XPS indicates the formation of positive depletion regions below the surface of the side facets [(1 1 2 bar 2) -planes] of the walls. This is in contrast with the observation for c-plane InN epilayers, where electron accumulation is often reported below the top surface.

  14. Liquid Level Sensing System

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  15. A review of HIV/AIDS system-level interventions

    PubMed Central

    Bauermeister, José A.; Tross, Susan; Ehrhardt, Anke A.

    2010-01-01

    The escalating HIV/AIDS epidemic worldwide demands that on-going prevention efforts be strengthened, disseminated, and scaled-up. System-level interventions refer to programs aiming to improve the functioning of an agency as well as the delivery of its services to the community. System-level interventions are a promising approach to HIV/AIDS prevention because they focus on (a) improving the agency’s ability to adopt evidence-based HIV prevention and care programs; (b) develop and establish policies and procedures that maximize the sustainability of on-going prevention and care efforts; and (c) improve decision-making processes such as incorporating the needs of communities into their tailored services. We reviewed studies focusing on system-level interventions by searching multiple electronic abstracting indices, including PsycInfo, PubMed, and ProQuest. Twenty-three studies out of 624 peer-reviewed studies (published from January 1985 to February 2007) met study criteria. Most of the studies focused on strengthening agency infrastructure, while other studies included collaborative partnerships and technical assistance programs. Our findings suggest that system-level interventions are promising in strengthening HIV/AIDS prevention and treatment efforts. Based on our findings, we propose recommendations for future work in developing and evaluating system-level interventions. PMID:18369722

  16. Changes in Blood Lead Levels Associated with Use of Chloramines in Water Treatment Systems

    PubMed Central

    Miranda, Marie Lynn; Kim, Dohyeong; Hull, Andrew P.; Paul, Christopher J.; Galeano, M. Alicia Overstreet

    2007-01-01

    Background More municipal water treatment plants are using chloramines as a disinfectant in order to reduce carcinogenic by-products. In some instances, this has coincided with an increase in lead levels in drinking water in those systems. Lead in drinking water can be a significant health risk. Objectives We sought to test the potential effect of switching to chloramines for disinfection in water treatment systems on childhood blood lead levels using data from Wayne County, located in the central Coastal Plain of North Carolina. Methods We constructed a unified geographic information system (GIS) that links blood lead screening data with age of housing, drinking water source, and census data for 7,270 records. The data were analyzed using both exploratory methods and more formal multivariate techniques. Results The analysis indicates that the change to chloramine disinfection may lead to an increase in blood lead levels, the impact of which is progressively mitigated in newer housing. Conclusions Introducing chloramines to reduce carcinogenic by-products may increase exposure to lead in drinking water. Our research provides guidance on adjustments in the local childhood lead poisoning prevention program that should accompany changes in water treatment. As similar research is conducted in other areas, and the underlying environmental chemistry is clarified, water treatment strategies can be optimized across the multiple objectives that municipalities face in providing high quality drinking water to local residents. PMID:17384768

  17. Models and techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1978-01-01

    Progress in the development of system models and techniques for the formulation and evaluation of aircraft computer system effectiveness is reported. Topics covered include: analysis of functional dependence: a prototype software package, METAPHOR, developed to aid the evaluation of performability; and a comprehensive performability modeling and evaluation exercise involving the SIFT computer.

  18. Air Force Recoverable Central Leveling System (D)28): Retail Handbook

    DTIC Science & Technology

    1988-09-01

    historical stuff.. .Just how its done and how is it affecting me today* (4). *It’s not an "asset push* system, its a * levels push’ system.’ *The system...consists primarily of a ’pull* system. For this same reason they lack under- standing why Tertain recoverables are under a ’ levels push’ type of system . 2...levels in the order the D028 system calculates as the highest marginal gain. Each recorded user will receive a * levels push’ of at least one, and all D028

  19. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly

    PubMed Central

    Maier, Andrea B.; Aarts, Ronald G. K. M.; van Gerven, Joop M. A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G. M.; van der Kooij, Herman

    2016-01-01

    Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at

  20. E-Learning System Using Segmentation-Based MR Technique for Learning Circuit Construction

    ERIC Educational Resources Information Center

    Takemura, Atsushi

    2016-01-01

    This paper proposes a novel e-Learning system using the mixed reality (MR) technique for technical experiments involving the construction of electronic circuits. The proposed system comprises experimenters' mobile computers and a remote analysis system. When constructing circuits, each learner uses a mobile computer to transmit image data from the…