Sample records for n-methyl-d-aspartate receptor inhibition

  1. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  2. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  3. Propofol effectively inhibits lithium-pilocarpine- induced status epilepticus in rats via downregulation of N-methyl-D-aspartate receptor 2B subunit expression

    PubMed Central

    Wang, Henglin; Wang, Zhuoqiang; Mi, Weidong; Zhao, Cong; Liu, Yanqin; Wang, Yongan; Sun, Haipeng

    2012-01-01

    Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine. The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior, electroencephalography and 24-hour survival rate. Propofol (12.5–100 mg/kg) improved status epilepticus in a dose-dependent manner, and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection. Western blot results showed that, 24 hours after induction of status epilepticus, the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus. Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels, but not the increase in N-methyl-D-aspartate receptor 2A subunit levels. The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine. This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures. PMID:25737709

  4. Ethanol Inhibition of Constitutively Open N-Methyl-d-Aspartate Receptors

    PubMed Central

    Xu, Minfu; Smothers, C. Thetford; Trudell, James

    2012-01-01

    N-Methyl-d-aspartate (NMDA) receptors gate a slow and calcium-rich component of the postsynaptic glutamate response. Like all ionotropic glutamate receptors, NMDA subunits contain a highly conserved motif (SYTANLAAF) in the transmembrane (TM) 3 domain that is critically involved in channel gating. Mutation of an alanine in this domain (A7; underlined above) results in constitutively open receptors that show reduced sensitivity to several allosteric modulators. In this study, we examined the effects of ethanol, a substance that inhibits NMDA currents via an unknown mechanism, on tonically active NMDA receptors expressed in human embryonic kidney 293 cells. Ethanol (100 mM) inhibited currents from GluN1(A7R)/GluN2A and GluN1(A7R)/GluN2B receptors by approximately 50%, whereas those from GluN1/GluN2B(A7R) receptors were reduced by less than 10%. In cysteine-substituted GluN1 and GluN2 A7 mutants, estimated ethanol IC50 values for agonist-gated currents were 101, 117, 103, and 69 mM for GluN1(A7C)/GluN2A, GluN1(A7C)/GluN2B, GluN1/GluN2A(A7C), and GluN1/GluN2B(A7C) receptors, respectively. After exposure to the thiol-modifying reagent 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET), A7C mutants showed robust agonist-independent currents and reduced sensitivity to ethanol (IC50 values of 371, 256, 715, and 958 mM, respectively, as above). In contrast, cysteine modification of the ligand-binding domain resulted in constitutively open receptors that showed robust ethanol inhibition. Ethanol inhibition of MTSET-treated GluN1(A7C) receptors was further reduced by TM3/TM4 mutations previously shown to reduce ethanol sensitivity of agonist-gated receptors. Overall, these results show that ethanol affects NMDA receptor function at a site distal from agonist binding and appears to exert greater effects via perturbation of GluN2 subunits. PMID:22005043

  5. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.

    PubMed

    Harris, Katie; Armstrong, Scott P; Campos-Pires, Rita; Kiru, Louise; Franks, Nicholas P; Dickinson, Robert

    2013-11-01

    Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection. Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels. Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.

  6. Cutoff in Potency Implicates Alcohol Inhibition of N-Methyl-D-Aspartate Receptors in Alcohol Intoxication

    NASA Astrophysics Data System (ADS)

    Peoples, Robert W.; Weight, Forrest F.

    1995-03-01

    As the number of carbon atoms in an aliphatic n-alcohol is increased from one to five, intoxicating potency, lipid solubility, and membrane lipid disordering potency all increase in a similar exponential manner. However, the potency of aliphatic n-alcohols for producing intoxication reaches a maximum at six to eight carbon atoms and then decreases. The molecular basis of this "cutoff" effect is not understood, as it is not correlated with either the lipid solubility or the membrane disordering potency of the alcohols, which continue to increase exponentially. Since it has been suggested that inhibition of N-methyl-D-aspartate (NMDA) receptors by alcohols may play a role in alcohol intoxication, we investigated whether a series of aliphatic n-alcohols would exhibit a cutoff in potency for inhibition of NMDA receptors. We found that although potency for inhibition of NMDA receptors increased exponentially for alcohols with one to five carbon atoms, potency for inhibition of NMDA receptors reached a maximum at six to eight carbon atoms and then abruptly disappeared. This cutoff for alcohol inhibition of NMDA receptors is consistent with an interaction of the alcohols with a hydrophobic pocket on the receptor protein. In addition, the similarity of the cutoffs for alcohol inhibition of NMDA receptors and alcohol intoxication suggests that the cutoff for NMDA receptor inhibition may contribute to the cutoff for alcohol intoxication, which is consistent with an important role of NMDA receptors in alcohol intoxication.

  7. Inhibition of N-methyl-D-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Xuan; Tian Feng; Okagaki, Peter

    2005-10-01

    Organophosphorus (OP) compounds, used as insecticides and chemical warfare agents, are potent neurotoxins. We examined the neurotoxic effect of paraoxon (O,O-diethyl O-p-nitrophenyl phosphate), an organophosphate compound, and the role of NMDA receptors as a mechanism of action in cultured cerebellar granule cells. Paraoxon is neurotoxic to cultured rat cerebellar granule cells in a time- and concentration-dependent manner. Cerebellar granule cells are less sensitive to the neurotoxic effects of paraoxon on day in vitro (DIV) 4 than neurons treated on DIV 8. Surprisingly, the N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, enhances paraoxon-mediated neurotoxicity suggesting that NMDA receptors may play a protective role.more » Pretreatment with a subtoxic concentration of N-methyl-D-aspartate (NMDA) [100 {mu}M] protects about 40% of the vulnerable neurons that would otherwise die from paraoxon-induced neurotoxicity. Moreover, addition of a neuroprotective concentration of NMDA 3 h after treatment with paraoxon provides the same level of protection. Because paraoxon-mediated neuronal cell death is time-dependent, we hypothesized that apoptosis may be involved. Paraoxon increases apoptosis about 10-fold compared to basal levels. The broad-spectrum caspase inhibitor (Boc-D-FMK) and the caspase-9-specific inhibitor (Z-LEHD-FMK) protect against paraoxon-mediated apoptosis, paraoxon-stimulated caspase-3 activity and neuronal cell death. MK-801 increases, whereas NMDA blocks paraoxon-induced apoptosis and paraoxon-stimulated caspase-3 activity. These results suggest that activation of NMDA receptors protect neurons against paraoxon-induced neurotoxicity by blocking apoptosis initiated by paraoxon.« less

  8. N-Methyl-D-Aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity

    EPA Science Inventory

    N-Methyl-D-aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity Glufosinate (GLF) at high levels in mammals causes convulsions through a mechanism that is not completely understood. The structural similarity of GLF to glutamate (GLU) implicates the glutamate...

  9. Nonparaneoplastic anti-N-methyl-D-aspartate receptor encephalitis: a case series of four children.

    PubMed

    Raha, Sarbani; Gadgil, Pradnya; Sankhla, Charulata; Udani, Vrajesh

    2012-04-01

    A rare, severe form of immune-mediated encephalitis recently has been described, associated with antibodies against N-methyl-D-aspartate receptors. It is reported mostly in women with ovarian tumors. Nonparaneoplastic presentations are less common. We describe four children with a neuropsychiatric and extrapyramidal syndrome associated with the presence of anti-N-methyl-D-aspartate receptor antibodies in cerebrospinal fluid and serum, without evidence of neoplasia. Three children recovered completely after immunomodulatory therapy, i.e., intravenous immunoglobulin and/or steroids, methylprednisolone, and/or adrenocorticotrophic hormone. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. H-Ras Modulates N-Methyl-d-aspartate Receptor Function via Inhibition of Src Tyrosine Kinase Activity*

    PubMed Central

    Thornton, Claire; Yaka, Rami; Dinh, Son; Ron, Dorit

    2005-01-01

    Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hip-pocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction. PMID:12695509

  11. Differential Effects of TM4 Tryptophan Mutations on Inhibition of N-Methyl-D-Aspartate Receptors by Ethanol and Toluene

    PubMed Central

    Smothers, C. Thetford; Woodward, John J.

    2017-01-01

    The voluntary use and abuse of alcohol and inhalants is a recognized health problem throughout the world. Previous studies have shown that these agents affect brain function in a variety of ways including direct inhibition of key ion channels that regulate neuronal excitability. Among these, the N-methyl-D-aspartate (NMDA) receptor is particularly important given its key role in glutamatergic synaptic transmission, neuronal plasticity and learning and memory. Previous studies from this laboratory and others have identified key residues within transmembrane (TM) domains of the NMDA receptor that appear to regulate its sensitivity to alcohol and anesthetics. In this study, we extend these findings and examine the role of a TM4 residue in modulating sensitivity of recombinant NMDA receptors to ethanol and toluene. HEK293 cells were transfected with GluN1-1a and either wild-type or tryptophan-substituted GluN2(A–D) subunits and whole-cell currents were recorded using patch-clamp electrophysiology in the absence or presence of ethanol or toluene. Both ethanol (100 mM) and toluene (1 or 3 mM) reversibly inhibited glutamate-activated currents from wild-type NMDARs with GluN2B containing receptors showing heightened sensitivity to either agent. Substitution of tryptophan (W) at positions 825, 826, 823 or 850 in the TM4 domain of GluN2A, GluN2B, GluN2C or GluN2D subunits; respectively, significantly reduced the degree of inhibition by ethanol. In contrast, toluene inhibition of glutamate-activated currents in cells expressing the TM4-W mutants was not different from that of the wild-type controls. These data suggest that despite similarities in their action on NMDARs, ethanol and toluene may act at different sites to reduce ion flux through NMDA receptors. PMID:27814790

  12. Differential effects of TM4 tryptophan mutations on inhibition of N-methyl-d-aspartate receptors by ethanol and toluene.

    PubMed

    Smothers, C Thetford; Woodward, John J

    2016-11-01

    The voluntary use and abuse of alcohol and inhalants is a recognized health problem throughout the world. Previous studies have shown that these agents affect brain function in a variety of ways including direct inhibition of key ion channels that regulate neuronal excitability. Among these, the N-methyl-d-aspartate (NMDA) receptor is particularly important given its key role in glutamatergic synaptic transmission, neuronal plasticity and learning and memory. Previous studies from this laboratory and others have identified key residues within transmembrane (TM) domains of the NMDA receptor that appear to regulate its sensitivity to alcohol and anesthetics. In this study, we extend these findings and examine the role of a TM4 residue in modulating sensitivity of recombinant NMDA receptors to ethanol and toluene. HEK293 cells were transfected with GluN1-1a and either wild-type or tryptophan-substituted GluN2(A-D) subunits and whole-cell currents were recorded using patch-clamp electrophysiology in the absence or presence of ethanol or toluene. Both ethanol (100 mM) and toluene (1 or 3 mM) reversibly inhibited glutamate-activated currents from wild-type NMDARs with GluN2B containing receptors showing heightened sensitivity to either agent. Substitution of tryptophan (W) at positions 825, 826, 823 or 850 in the TM4 domain of GluN2A, GluN2B, GluN2C or GluN2D subunits; respectively, significantly reduced the degree of inhibition by ethanol. In contrast, toluene inhibition of glutamate-activated currents in cells expressing the TM4-W mutants was not different from that of the wild-type controls. These data suggest that despite similarities in their action on NMDARs, ethanol and toluene may act at different sites to reduce ion flux through NMDA receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Synthesis of water-soluble polyamine derivatives effective as N-methyl-D-aspartate receptor antagonists.

    PubMed

    Masuko, Takashi; Yoshida, Shuhei; Metori, Koichi; Kizawa, Yasuo; Kusama, Tadashi; Miyake, Muneharu

    2010-06-01

    The novel water-soluble N-methyl-D-aspartate (NMDA) receptor antagonists, N-{4-[4-(4-Guanidinobutylamino)butylamino]butyl}-p-toluenesulfonamide trihydrochloride (1a, TsHSPMG), N-{4-[4-(4-Guanidinobutylamino)butylamino]butyl}butane-1-sulfonamide trihydrochloride (1b, BsHSPMG), N-{3-[4-(3-Guanidinopropylamino)butylamino]propyl}-p-toluenesulfonamide trihydrochroride (2a, TsSPMG) and N-{3-[4-(3-Guanidinopropylamino)butylamino]propyl}butane-1-sulfonamide trihydrochroride (2b, BsSPMG), were synthesized, and the effects of these polyamine derivatives on NMDA receptors were studied using voltage-clamp recordings of recombinant NMDA receptors expressed in Xenopus oocytes. Although spermine potentiates 153% and 310% of NMDA (NR1A/NR2B) receptors in the presence of saturated and unsaturated glycine, respectively, all the novel polyamine derivatives, TsHSPMG (1a), BsHSPMG (1b), TsSPMG (2a) and BsSPMG (2b), significantly inhibited NR1A/NR2B receptors in both conditions. The degree of NMDA receptor inhibition by TsHSPMG (1a) and BsHSPMG (1b) was stronger than that by TsSPMG (2a) and BsSPMG (2b).

  14. Novel pyrrolinones as N-methyl-D-aspartate receptor antagonists.

    PubMed

    Poschenrieder, Hermann; Stachel, Hans-Dietrich; Höfner, Georg; Mayer, Peter

    2005-04-01

    A series of oximes, deriving from 2-arylidene-pyrroline-3,4-diones (7, 8, 22, 23) has been prepared. The presence of tautomers in their solutions has been established by spectroscopic means. The compounds reacted with diazomethane chiefly by N-methylation forming nitrones (10, 11). The analogously prepared 2-arylidene-4-nitropyrrolin-3-ones (12, 13, 24, 25), formally derived from nitrotetramic acids, yielded nitronic acid esters (14, 15, 26) upon reaction with diazomethane. The structures were elucidated by spectral evidence and-in the case of compounds 10 and 20b-by X-ray diffraction analysis. The binding affinity of some of the new compounds toward the N-methyl-d-aspartate (NMDA) (glycine site) receptor has been measured thus providing the basis for further structure-activity relationship studies. Oxime 8b showed the highest binding potency (Ki= 9.2 microM).

  15. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miglio, Gianluca; Varsaldi, Federica; Lombardi, Grazia

    2005-12-30

    The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 {mu}g/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10more » U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.« less

  16. [N-methyl-D-aspartate receptor antibody encephalitis: value of immunomodulatory therapy].

    PubMed

    Le Moigno, L; Ternant, D; Paintaud, G; Thibault, G; Cloarec, S; Tardieu, M; Lagrue, E; Castelnau, P

    2014-06-01

    Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is little known to pediatricians and likely underdiagnosed. The child's vital and cognitive prognosis is at stake. The use of immunomodulatory drugs, such as rituximab has led to spectacular results, but many questions remain about its mode of action in this type of pathology. We report the case of a 6-year-old girl with no medical history, admitted for status epilepticus preceded by behavior symptoms and sleep disorders. Gradually, the child became bedridden, mute, and animated by predominantly orofacial dyskinesia. Examinations were normal (cerebrospinal fluid [CSF] analysis, brain MRI). The diagnosis was established by the presence of NMDA-R antibodies in the CSF. After exclusion of a tumor-associated syndrome, treatment was started initially by intravenous immunoglobulins, then by plasma exchange, and finally rituximab. The patient was cured with rituximab despite an unusually early recovery of the B-cell pool. Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a severe but potentially reversible neurologic disorder only recently described, even in childhood. It may be reversible without sequelae if diagnosed and treated early. The use of immunomodulatory therapy, such as rituximab seemingly improves the outcome. Immunological monitoring is needed to better understand its mechanism of action in autoimmune diseases of the nervous system in childhood. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Opiate physical dependence and N-methyl-D-aspartate receptors.

    PubMed

    Noda, Yukihiro; Nabeshima, Toshitaka

    2004-10-01

    The present review focused the involvement of N-methyl-D-aspartate (NMDA) receptors in morphine physical dependence. The increased levels of extracellular glutamate, NMDA receptor zeta subunit (NR1) mRNA, NMDA receptor epsilon 1 subunit (NR2A) protein, phosphorylated Ca(2+)/calmodulin kinase II (p-CaMKII) protein, c-fos mRNA, c-Fos protein, are observed in the specific brain areas of mice and/or rats showing signs of naloxone-precipitated withdrawal. In preclinical and clinical studies, a variety of NMDA receptor antagonists and pretreatment with an antisense oligonucleotide of the NR1 have been reported to inhibit the development, expression and/or maintenance of opiate physical dependence. In contrast to data obtained in adult animals, NMDA receptor antagonists are neither effective in blocking the development of opiate dependence nor the expression of opiate withdrawal in neonatal rats. In the NMDA receptor-deficient mice, the NR2A knockout mice show the marked loss of typical withdrawal abstinence behaviors precipitated by naloxone. The rescue of NR2A protein by electroporation into the nucleus accumbens of NR2A knockout mice reverses the loss of abstinence behaviors. The activation of CaMKII and increased expression of c-Fos protein in the brain of animals with naloxone-precipitated withdrawal syndrome are prevented by NMDA receptor antagonists, whereas the increased levels of extracellular glutamate are not prevented by them. These findings indicate that glutamatergic neurotransmission at the NMDA receptor site contributes to the development, expression and maintenance of opiate dependence, and suggest that NMDA receptor antagonists may be a useful adjunct in the treatment of opiate dependence.

  18. Developmental regulation of N-methyl-D-aspartate- and kainate-type glutamate receptor expression in the rat spinal cord

    NASA Technical Reports Server (NTRS)

    Stegenga, S. L.; Kalb, R. G.

    2001-01-01

    Spinal motor neurons undergo experience-dependent development during a critical period in early postnatal life. It has been suggested that the repertoire of glutamate receptor subunits differs between young and mature motor neurons and contributes to this activity-dependent development. In the present study we examined the expression patterns of N-methyl-D-aspartate- and kainate-type glutamate receptor subunits during the postnatal maturation of the spinal cord. Young motor neurons express much higher levels of the N-methyl-D-aspartate receptor subunit NR1 than do adult motor neurons. Although there are eight potential splice variants of NR1, only a subgroup is expressed by motor neurons. With respect to NR2 receptor subunits, young motor neurons express NR2A and C, while adult motor neurons express only NR2A. Young motor neurons express kainate receptor subunits GluR5, 6 and KA2 but we are unable to detect these or any other kainate receptor subunits in the adult spinal cord. Other spinal cord regions display a distinct pattern of developmental regulation of N-methyl-D-aspartate and kainate receptor subunit expression in comparison to motor neurons. Our findings indicate a precise spatio-temporal regulation of individual subunit expression in the developing spinal cord. Specific combinations of subunits in developing neurons influence their excitable properties and could participate in the emergence of adult neuronal form and function.

  19. Clinically significant response to zolpidem in disorders of consciousness secondary to anti-N-methyl-D-aspartate receptor encephalitis in a teenager: a case report.

    PubMed

    Appu, Merveen; Noetzel, Michael

    2014-03-01

    Anti-N-methyl-d-aspartate receptor encephalitis has been associated with a prolonged neuropsychiatric phase that may last for months to years. We report the case of a 16-year-old girl who was diagnosed with anti-N-methyl-d-aspartate receptor encephalitis resulting from left ovarian mature teratoma 2 weeks after presentation with psychosis. Following tumor removal and immunotherapy, recovery from a minimally conscious state was accelerated significantly by zolpidem that was used for her sleep disturbance. Our patient was discharged home 8 weeks after admission with marked improvement in her neurological function. Zolpidem has been reported to improve arousal in disorders of consciousness but there are no previous reports of its benefit among patients with anti-N-methyl-d-aspartate receptor encephalitis. Zolpidem would be a reasonable consideration as an adjunctive treatment in anti-N-methyl-d-aspartate receptor encephalitis after tumor removal and immunotherapy to accelerate recovery and rehabilitation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Cysteine Substitution of Transmembrane Domain Amino Acids Alters the Ethanol Inhibition of GluN1/GluN2A N-Methyl-d-Aspartate Receptors

    PubMed Central

    Xu, Minfu; Smothers, C. Thetford

    2015-01-01

    N-Methyl-d-aspartate receptors (NMDARs) are inhibited by behaviorally relevant concentrations of ethanol, and residues within transmembrane (TM) domains of NMDARs, including TM3 GluN1 phenylalanine 639 (F639), regulate this sensitivity. In the present study, we used cysteine (C) mutagenesis to determine whether there are additional residues within nearby TM domains that regulate ethanol inhibition on NMDARs. GluN1(F639C)/GluN2A receptors were less inhibited by ethanol than wild-type receptors, and inhibition was restored to wild-type levels following treatment with ethanol-like methanethiosulfonate reagents. Molecular modeling identified six residues in the GluN1 TM1 domain (valine V566; serine S569) and the GluN2A TM4 domain (methionine, M817; V820, F821, and leucine, L824) that were in close vicinity to the TM3 F639 residue, and these were individually mutated to cysteine and tested for ethanol inhibition and receptor function. The F639C-induced decrease in ethanol inhibition was blunted by coexpression of GluN1 TM1 mutants V566C and S569C, and statistically significant interactions were observed for ethanol inhibition among V566C, F639C, and GluN2A TM4 mutants V820C and F821C and S569C, F639C, and GluN2A TM4 mutants F821C and L824C. Ethanol inhibition was also reduced when either GluN1 TM1 mutant V566C or S569C was combined with GluN2A V820C, suggesting a novel TM1:TM4 intrasubunit site of action for ethanol. Cysteines substituted at TM3 and TM4 sites previously suggested to interact with ethanol had less dramatic effects on ethanol inhibition. Overall, the results from these studies suggest that interactions among TM1, TM3, and TM4 amino acids in NMDARs are important determinants of ethanol action at these receptors. PMID:25635140

  1. Altered Levels of Zinc and N-methyl-D-aspartic Acid Receptor Underlying Multiple Organ Dysfunctions After Severe Trauma

    PubMed Central

    Wang, Guanghuan; Yu, Xiaojun; Wang, Dian; Xu, Xiaohu; Chen, Guang; Jiang, Xuewu

    2015-01-01

    Background Severe trauma can cause secondary multiple organ dysfunction syndrome (MODS) and death. Oxidative stress and/or excitatory neurotoxicity are considered as the final common pathway in nerve cell injuries. Zinc is the cofactor of the redox enzyme, and the effect of the excitatory neurotoxicity is related to N-methyl-D-aspartic acid receptor (NMDAR). Material/Methods We investigated the levels of zinc and brainstem NMDAR in a rabbit model of severe trauma. Zinc and serum biochemical profiles were determined. Immunohistochemistry was used to detect brainstem N-methyl-D-aspartic acid receptor 1 (NR1), N-methyl-D-aspartic acid receptor 2A (NR2A), and N-methyl-D-aspartic acid receptor 2B (NR2B) expression. Results Brain and brainstem Zn levels increased at 12 h, but serum Zn decreased dramatically after the trauma. NR1 in the brainstem dorsal regions increased at 6 h after injury and then decreased. NR2A in the dorsal regions decreased to a plateau at 12 h after trauma. The levels of NR2B were lowest in the death group in the brainstem. Serum zinc was positively correlated with NR2A and 2B and negatively correlated with zinc in the brain. Correlations were also found between the brainstem NR2A and that of the dorsal brainstem, as well as between brainstem NR2A and changes in NR2B. There was a negative correlation between zinc and NR2A. Conclusions Severe trauma led to an acute reduction of zinc enhancing oxidative stress and the changes of NMDAR causing the neurotoxicity of the nerve cells. This may be a mechanism for the occurrence of MODS or death after trauma. PMID:26335029

  2. Positive Modulators of the N-Methyl-d-aspartate Receptor: Structure-Activity Relationship Study of Steroidal 3-Hemiesters.

    PubMed

    Krausova, Barbora; Slavikova, Barbora; Nekardova, Michaela; Hubalkova, Pavla; Vyklicky, Vojtech; Chodounska, Hana; Vyklicky, Ladislav; Kudova, Eva

    2018-05-24

    Here, we report the synthesis of pregn-5-ene and androst-5-ene dicarboxylic acid esters and explore the structure-activity relationship (SAR) for their modulation of N-methyl-d-aspartate receptors (NMDARs). All compounds were positive modulators of recombinant GluN1/GluN2B receptors (EC 50 varying from 1.8 to 151.4 μM and E max varying from 48% to 452%). Moreover, 10 compounds were found to be more potent GluN1/GluN2B receptor modulators than endogenous pregnenolone sulfate (EC 50 = 21.7 μM). The SAR study revealed a relationship between the length of the residues at carbon C-3 of the steroid molecule and the positive modulatory effect at GluN1/GluN2B receptors for various D-ring modifications. A selected compound, 20-oxo-pregnenolone hemiadipate, potentiated native NMDARs to a similar extent as GluN1/GluN2A-D receptors and inhibited AMPARs and GABA A R responses. These results provide a unique opportunity for the development of new steroid based drugs with potential use in the treatment of neuropsychiatric disorders involving hypofunction of NMDARs.

  3. Effects of volatile solvents on recombinant N-methyl-D-aspartate receptors expressed in Xenopus oocytes

    PubMed Central

    Cruz, Silvia L; Balster, Robert L; Woodward, John J

    2000-01-01

    We have previously shown that toluene dose-dependently inhibits recombinant N-methyl-D-aspartate (NMDA) receptors at micromolar concentrations. This inhibition was rapid, almost complete and reversible. The NR1/2B combination was the most sensitive receptor subtype tested with an IC50 value for toluene of 0.17 mM. We now report on the effects of other commonly abused solvents (benzene, m-xylene, ethylbenzene, propylbenzene, 1,1,1-trichlorethane (TCE) and those of a convulsive solvent, 2,2,2-trifluoroethyl ether (flurothyl), on NMDA-induced currents measured in Xenopus oocytes expressing NR1/2A or NR1/2B receptor subtypes. All of the alkylbenzenes and TCE produced a reversible inhibition of NMDA-induced currents that was dose- and subunit-dependent. The NR1/2B receptor subtype was several times more sensitive to these compounds than the NR1/2A subtype. The convulsant solvent flurothyl had no effect on NMDA responses in oocytes but potently inhibited ion flux through recombinant GABA receptors expressed in oocytes. Overall, these results suggest that abused solvents display pharmacological selectivity and that NR1/2B NMDA receptors may be an important target for the actions of these compounds on the brain. PMID:11090101

  4. Age Dependency of Inhibition of α7 Nicotinic Receptors and Tonically Active N-Methyl-d-aspartate Receptors by Endogenously Produced Kynurenic Acid in the Brain

    PubMed Central

    Alkondon, Manickavasagom; Pereira, Edna F. R.; Eisenberg, Howard M.; Kajii, Yasushi; Schwarcz, Robert

    2011-01-01

    In the mouse hippocampus normal levels of kynurenic acid (KYNA), a neuroactive metabolite synthesized in astrocytes primarily by kynurenine aminotransferase II (KAT II)-catalyzed transamination of l-kynurenine, maintain a degree of tonic inhibition of α7 nicotinic acetylcholine receptors (nAChRs). The present in vitro study was designed to test the hypothesis that α7 nAChR activity decreases when endogenous production of KYNA increases. Incubation (2–7 h) of rat hippocampal slices with kynurenine (200 μM) resulted in continuous de novo synthesis of KYNA. Kynurenine conversion to KYNA was significantly decreased by the KAT II inhibitor (S)-(−)-9-(4-aminopiperazine-1-yl)-8-fluoro-3-methyl-6-oxo-2,3,5,6-tetrahydro-4H-1-oxa-3a-azaphenalene-5carboxylic acid (BFF122) (100 μM) and was more effective in slices from postweaned than preweaned rats. Incubation of slices from postweaned rats with kynurenine inhibited α7 nAChRs and extrasynaptic N-methyl-d-aspartate receptors (NMDARs) on CA1 stratum radiatum interneurons. These effects were attenuated by BFF122 and mimicked by exogenously applied KYNA (200 μM). Exposure of human cerebral cortical slices to kynurenine also inhibited α7 nAChRs. The α7 nAChR sensitivity to KYNA is age-dependent, because neither endogenously produced nor exogenously applied KYNA inhibited α7 nAChRs in slices from preweaned rats. In these slices, kynurenine-derived KYNA also failed to inhibit extrasynaptic NMDARs, which could, however, be inhibited by exogenously applied KYNA. In slices from preweaned and postweaned rats, glutamatergic synaptic currents were not affected by endogenously produced KYNA, but were inhibited by exogenously applied KYNA. These results suggest that in the mature brain α7 nAChRs and extrasynaptic NMDARs are in close apposition to KYNA release sites and, thereby, readily accessible to inhibition by endogenously produced KYNA. PMID:21270133

  5. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography

    PubMed Central

    2014-01-01

    Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993

  6. Inflammatory pain-induced signaling events following a conditional deletion of the N-methyl-D-aspartate receptor in spinal cord dorsal horn.

    PubMed

    Cheng, H T; Suzuki, M; Hegarty, D M; Xu, Q; Weyerbacher, A R; South, S M; Ohata, M; Inturrisi, C E

    2008-08-26

    The N-methyl-d-aspartate (NMDA) receptor in the spinal cord dorsal horn (SCDH) is one of the mechanisms involved in central sensitization during chronic pain. Previously, this laboratory created a spatio-temporal knockout (KO) of the N-methyl-d-aspartate receptor I (NR1) subunit in the mouse SCDH. The NR1 KO completely blocks NR1 gene and subsequent NMDA receptor expression and function in SCDH neurons. In the NR1 KO mice, the mechanical and cold allodynia induced at 24 h after complete Freund's adjuvant (CFA) was reduced. However, the protective effects of KO were transient and were not seen at 48 h after CFA. These observations suggest the presence of NMDA-independent pathways that contribute to CFA-induced pain. CFA induces the activation of several signaling cascades in the SCDH, including protein kinase C (PKC)gamma and extracellular signal-regulated kinases (ERK1/2). The phosphorylation of PKCgamma and ERK1/2 was inhibited in the SCDH of NR1 KO mice up to 48 h after CFA treatment, suggesting that these pathways are NMDA receptor-dependent. Interestingly, neuronal cyclooxygenase (COX) -2 expression and microglial p38 phosphorylation were induced in the SCDH of the NR1 KO at 48 h after CFA. Our findings provide evidence that inflammatory reactions are responsible for the recurrence of pain after NR1 KO in the SCDH.

  7. Does anesthetic additivity imply a similar molecular mechanism of anesthetic action at N-methyl-D-aspartate receptors?

    PubMed

    Brosnan, Robert J; Pham, Trung L

    2011-03-01

    Isoflurane and carbon dioxide (CO(2)) negatively modulate N-methyl-d-aspartate (NMDA) receptors, but via different mechanisms. Isoflurane is a competitive antagonist at the NMDA receptor glycine binding site, whereas CO(2) inhibits NMDA receptor current through extracellular acidification. Isoflurane and CO(2) exhibit additive minimum alveolar concentration effects in rats, but we hypothesized that they would not additively inhibit NMDA receptor currents in vitro because they act at different molecular sites. NMDA receptors were expressed in frog oocytes and studied using 2-electrode voltage clamp techniques. A glycine concentration response for NMDA was measured in the presence and absence of CO(2). Concentration-response curves for isoflurane, H(+), CO(2), and ketamine as a function of NMDA inhibition were measured, and a Hill equation was used to calculate the EC(50) for each compound. Binary drug combinations containing ½ EC(50) were additive if NMDA current inhibition was not statistically different from 50%. The ½ EC(50) binary drug combinations decreased the percentage baseline NMDA receptor current as follows (mean ± SD, n = 5 to 6 oocytes each): CO(2)+ H(+) (51% ± 5%), CO(2 )+ isoflurane (54% ± 5%), H(+) + isoflurane (51% ± 3%), CO(2)+ ketamine (67% ± 8%), and H(+) + ketamine (64% ± 2%). In contrast to our hypothesis, NMDA receptor inhibition by CO(2) and isoflurane is additive. Possibly, CO(2) acidification modulates a pH-sensitive loop on the NMDA receptor that in turn alters glycine binding affinity on the GluN1 subunit. However, ketamine plus either CO(2) or H(+) synergistically inhibits NMDA receptor currents. Drugs acting via different mechanisms can thus exhibit additive or synergistic receptor effects. Additivity may not robustly indicate commonality between molecular anesthetic mechanisms.

  8. Effect of thiopental sodium on N-methyl-D-aspartate-gated currents.

    PubMed

    Liu, Hongliang; Dai, Tijun; Yao, Shanglong

    2006-05-01

    N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex (PFC) are closely related with the excitability of pyramidal neurons and PFC function. As the effect of thiopental sodium on the central nervous system may partly result from the inhibition of PFC NMDA receptors, we investigated the effect of thiopental sodium with different concentrations on NMDA-gated currents in acutely dissociated rat PFC pyramidal neurons. We sought to determine whether thiopental sodium inhibits NMDA receptor function. Three to four week old male Sprague-Dawley rats were sacrificed and the PFC was dissected. Pyramidal neurons from the PFC were prepared and standard whole-cell patch clamp recordings were performed. Escalating concentrations from 3-1000 microM NMDA were applied 100 microm from the pyramidal cells, and the concentration in the effect compartment related to 50% effect (EC50) of NMDA was determined for the ensuing experiments. One hundred microM NMDA alone (control) or NMDA with different concentrations (10-1000 microM) of thiopental sodium were applied. After the inhibitory concentration, in 50% of NMDA effect (IC50) of thiopental sodium was established this IC50 and NMDA 3-1000 microM were applied 100 microm from the pyramidal cells. The EC50 value of NMDA under the effect of IC50 thiopental sodium was determined. N-methyl-D-aspartate induced inward currents in a concentration-dependent manner, which were completely antagonized by 50 microM AP5. The maximal amplitude of NMDA-induced current was 1.15 +/- 0.27 nA. The EC50 of NMDA was 53.6 +/- 12.4 microM. The NMDA (100 microM)-gated current was inhibited by thiopental sodium in a concentration-dependent manner, and the IC50 of thiopental sodium was 33.6 +/- 6.1 microM. Under the effect of 33.6 microM thiopental sodium, the maximal amplitude of NMDA-induced current was 0.87 +/- 0.17 nA. The concentration-response curve of NMDA was shifted rightwards. The EC50 of NMDA was 128 +/- 15 microM, which was greater than that

  9. The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release.

    PubMed

    Halmos, G; Horváth, T; Polony, G; Fekete, A; Kittel, A; Vizi, E S; van der Laan, B F A M; Zelles, T; Lendvai, B

    2008-06-23

    Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [3H]DA from isolated mouse cochlea in response to the application of NMDA. NMDA at 100 muM significantly increased the electrical-field stimulation-evoked and resting release of DA from the cochlea. The NO donor sodium nitroprusside enhanced the basal outflow of DA but failed to influence the evoked release. The administration of the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) alone was ineffective, but it significantly inhibited the initial phase of the NMDA-induced elevation of DA outflow, which suggested the role of NO in the NMDA-induced DA release. The DA uptake inhibitor nomifensine increased the electrically evoked release of DA. Nomifensine failed to change the effect of NMDA on the resting or electrically-evoked DA release, which suggested that the uptake mechanism does not play a role in NMDA-evoked and NO-mediated DA release. In summary, we provide evidence that NO can modulate the release of DA from the cochlea following NMDA receptor activation, but does not affect the uptake of DA.

  10. Brain MRI Characteristics of Patients with Anti-N-Methyl-D-Aspartate Receptor Encephalitis and Their Associations with 2-Year Clinical Outcome.

    PubMed

    Zhang, T; Duan, Y; Ye, J; Xu, W; Shu, N; Wang, C; Li, K; Liu, Y

    2018-05-01

    Anti- N -methyl-D-aspertate receptor encephalitis is an autoimmune-mediated disease without specific brain MRI features. Our aim was to investigate the brain MR imaging characteristics of anti- N -methyl-D-aspartate receptor encephalitis and their associations with clinical outcome at a 2-year follow-up. We enrolled 53 patients with anti- N -methyl-D-aspartate receptor encephalitis and performed 2-year follow-up. Brain MRIs were acquired for all patients at the onset phase. The brain MR imaging manifestations were classified into 4 types: type 1: normal MR imaging findings; type 2: only hippocampal lesions; type 3: lesions not involving the hippocampus; and type 4: lesions in both the hippocampus and other brain areas. The modified Rankin Scale score at 2-year follow-up was assessed, and the association between the mRS and onset brain MR imaging characteristics was evaluated. Twenty-eight (28/53, 53%) patients had normal MR imaging findings (type 1), and the others (25/53, 47%) had abnormal MRI findings: type 2: 7 patients (13%); type 3: seven patients (13%); and type 4: eleven patients (21%). Normal brain MRI findings were more common in female patients ( P = .02). Psychiatric and behavioral abnormalities were more common in adults ( P = .015), and autonomic symptoms ( P = .025) were more common in pediatric patients. The presence of hippocampal lesions ( P = .008, OR = 9.584; 95% CI, 1.803-50.931) and relapse ( P = .043, OR = 0.111; 95% CI, 0.013-0.930) was associated with poor outcome. Normal brain MRI findings were observed in half of the patients. Lesions in the hippocampus were the most common MR imaging abnormal finding. The presence of hippocampal lesions is the main MR imaging predictor for poor prognosis in patients with anti- N -methyl-D-aspartate receptor encephalitis. © 2018 by American Journal of Neuroradiology.

  11. Iron Mediates N-Methyl-d-aspartate Receptor-dependent Stimulation of Calcium-induced Pathways and Hippocampal Synaptic Plasticity*

    PubMed Central

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.

    2011-01-01

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883

  12. Ibogaine attenuation of morphine withdrawal in mice: role of glutamate N-methyl-D-aspartate receptors.

    PubMed

    Leal, Mirna Bainy; Michelin, Kátia; Souza, Diogo Onofre; Elisabetsky, Elaine

    2003-08-01

    Ibogaine (IBO) is an alkaloid with putative antiaddictive properties, alleviating opiates dependence and withdrawal. The glutamate N-methyl-D-aspartate (NMDA) receptors have been implicated in the physiological basis of drug addiction; accordingly, IBO acts as a noncompetitive NMDA antagonist. The purpose of this study was to evaluate the effects of IBO on naloxone-induced withdrawal syndrome in morphine-dependent mice, focusing on the role of NMDA receptors. Jumping, a major behavioral expression of such withdrawal, was significantly (P<.01) inhibited by IBO (40 and 80 mg/kg, 64.2% and 96.9% inhibition, respectively) and MK-801 (0.15 and 0.30 mg/kg, 67.3% and 97.7%, respectively) given prior to naloxone. Coadministration of the lower doses of IBO (40 mg/kg) and MK-801 (0.15 mg/kg) results in 94.7% inhibition of jumping, comparable to the effects of higher doses of either IBO or MK-801. IBO and MK-801 also significantly inhibited NMDA-induced (99.0% and 71.0%, respectively) jumping when given 30 min (but not 24 h) prior to NMDA in nonaddictive mice. There were no significant differences in [3H]MK-801 binding to cortical membranes from naive animals, morphine-dependent animals, or morphine-dependent animals treated with IBO or MK-801. This study provides further evidence that IBO does have an inhibitory effect on opiate withdrawal symptoms and suggests that the complex process resulting in morphine withdrawal includes an IBO-sensitive functional and transitory alteration of NMDA receptor.

  13. Development of N-Methyl-D-Aspartate Receptor Subunits in Avian Auditory Brainstem

    PubMed Central

    TANG, YE-ZHONG; CARR, CATHERINE E.

    2012-01-01

    N-methyl-D-aspartate (NMDA) receptor subunit-specific probes were used to characterize developmental changes in the distribution of excitatory amino acid receptors in the chicken’s auditory brainstem nuclei. Although NR1 subunit expression does not change greatly during the development of the cochlear nuclei in the chicken (Tang and Carr [2004] Hear. Res 191:79 – 89), there are significant developmental changes in NR2 subunit expression. We used in situ hybridization against NR1, NR2A, NR2B, NR2C, and NR2D to compare NR1 and NR2 expression during development. All five NMDA subunits were expressed in the auditory brainstem before embryonic day (E) 10, when electrical activity and synaptic responses appear in the nucleus magnocellularis (NM) and the nucleus laminaris (NL). At this time, the dominant form of the receptor appeared to contain NR1 and NR2B. NR2A appeared to replace NR2B by E14, a time that coincides with synaptic refinement and evoked auditory responses. NR2C did not change greatly during auditory development, whereas NR2D increased from E10 and remained at fairly high levels into adulthood. Thus changes in NMDA NR2 receptor subunits may contribute to the development of auditory brainstem responses in the chick. PMID:17366608

  14. Decreased free d-aspartate levels are linked to enhanced d-aspartate oxidase activity in the dorsolateral prefrontal cortex of schizophrenia patients.

    PubMed

    Nuzzo, Tommaso; Sacchi, Silvia; Errico, Francesco; Keller, Simona; Palumbo, Orazio; Florio, Ermanno; Punzo, Daniela; Napolitano, Francesco; Copetti, Massimiliano; Carella, Massimo; Chiariotti, Lorenzo; Bertolino, Alessandro; Pollegioni, Loredano; Usiello, Alessandro

    2017-01-01

    It is long acknowledged that the N -methyl d-aspartate receptor co-agonist, d-serine, plays a crucial role in several N -methyl d-aspartate receptor-mediated physiological and pathological processes, including schizophrenia. Besides d-serine, another free d-amino acid, d-aspartate, is involved in the activation of N -methyl d-aspartate receptors acting as an agonist of this receptor subclass, and is abundantly detected in the developing human brain. Based on the hypothesis of N -methyl d-aspartate receptor hypofunction in the pathophysiology of schizophrenia and considering the ability of d-aspartate and d-serine to stimulate N -methyl d-aspartate receptor-dependent transmission, in the present work we assessed the concentration of these two d-amino acids in the post-mortem dorsolateral prefrontal cortex and hippocampus of patients with schizophrenia and healthy subjects. Moreover, in this cohort of post-mortem brain samples we investigated the spatiotemporal variations of d-aspartate and d-serine. Consistent with previous work, we found that d-aspartate content was selectively decreased by around 30% in the dorsolateral prefrontal cortex, but not in the hippocampus, of schizophrenia-affected patients, compared to healthy subjects. Interestingly, such selective reduction was associated to greater (around 25%) cortical activity of the enzyme responsible for d-aspartate catabolism, d-aspartate oxidase. Conversely, no significant changes were found in the methylation state and transcription of DDO gene in patients with schizophrenia, compared to control individuals, as well as in the expression levels of serine racemase, the major enzyme responsible for d-serine biosynthesis, which also catalyzes aspartate racemization. These results reveal the potential involvement of altered d-aspartate metabolism in the dorsolateral prefrontal cortex as a factor contributing to dysfunctional N -methyl d-aspartate receptor-mediated transmission in schizophrenia.

  15. N-methyl-d-aspartate (NMDA) receptor antibodies encephalitis mimicking an autistic regression.

    PubMed

    Hacohen, Yael; Wright, Sukhvir; Gadian, Jonathan; Vincent, Angela; Lim, Ming; Wassmer, Evangeline; Lin, Jean-Pierre

    2016-10-01

    Expressive dysphasia and mutism are common clinical features in children and adults with N-methyl-d-aspartate receptor antibodies (NMDAR-Ab) encephalitis, and are likely to result from NMDAR hypofunction. A prodromal loss of social and communication skills can typify that of an autistic regression, particularly when presenting under the age of 3 years. Here we describe two toddlers who presented with developmental regression, particularly of their social communication skills, mimicking an autistic regression, who were found to have NMDAR-Ab in the serum and cerebrospinal fluid. Although both patients had some other neurological features, they were subtle, which resulted in delayed diagnosis of NMDAR-Ab encephalitis. Importantly, immunotherapy was beneficial in both patients, with significant improvement of their language skills and behaviour. © 2016 Mac Keith Press.

  16. [Autoimmune encephalitis associated to antibodies against the N-methyl-D-aspartate receptor: Report of two cases].

    PubMed

    Bustos, José; Sánchez, Yasmin; Medina, Jhon; Olivieri, Rommy; Mojica, Julián; Ortiz, Johan

    2017-04-01

    Anti-N-methyl-D-aspartate receptor encephalitis is a neurological syndrome that is more common in young women and is often associated with ovarian teratoma. It is characterized by acute general unspecific symptoms that evolve to neurological deterioration, psychosis and seizures. In its more advanced stage it is associated with abnormal movements and dysautonomia.We report two cases in women of 23 and 12 years of age. Given its low incidence, we present the clinical exercise that led to their diagnoses and the treatment options employed.

  17. Anti-N-Methyl-D-aspartate Receptor Encephalitis: A Severe, Potentially Reversible Autoimmune Encephalitis.

    PubMed

    Liu, Cai-Yun; Zhu, Jie; Zheng, Xiang-Yu; Ma, Chi; Wang, Xu

    2017-01-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is potentially lethal, but it is also a treatable autoimmune disorder characterized by prominent psychiatric and neurologic symptoms. It is often accompanied with teratoma or other neoplasm, especially in female patients. Anti-NMDAR antibodies in cerebrospinal fluid (CSF) and serum are characteristic features of the disease, thereby suggesting a pathogenic role in the disease. Here, we summarize recent studies that have clearly documented that both clinical manifestations and the antibodies may contribute to early diagnosis and multidisciplinary care. The clinical course of the disorder is reversible and the relapse could occur in some patients. Anti-NMDAR encephalitis coexisting with demyelinating disorders makes the diagnosis more complex; thus, clinicians should be aware of the overlapping diseases.

  18. Anti-N-Methyl-D-aspartate Receptor Encephalitis: A Severe, Potentially Reversible Autoimmune Encephalitis

    PubMed Central

    Liu, Cai-yun; Zheng, Xiang-Yu; Ma, Chi

    2017-01-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is potentially lethal, but it is also a treatable autoimmune disorder characterized by prominent psychiatric and neurologic symptoms. It is often accompanied with teratoma or other neoplasm, especially in female patients. Anti-NMDAR antibodies in cerebrospinal fluid (CSF) and serum are characteristic features of the disease, thereby suggesting a pathogenic role in the disease. Here, we summarize recent studies that have clearly documented that both clinical manifestations and the antibodies may contribute to early diagnosis and multidisciplinary care. The clinical course of the disorder is reversible and the relapse could occur in some patients. Anti-NMDAR encephalitis coexisting with demyelinating disorders makes the diagnosis more complex; thus, clinicians should be aware of the overlapping diseases. PMID:28698711

  19. Probing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine accessibility method.

    PubMed

    Thomas, Christopher G; Krupp, Johannes J; Bagley, Elena E; Bauzon, Reginald; Heinemann, Stephen F; Vissel, Bryce; Westbrook, Gary L

    2006-04-01

    Several forms of macroscopic N-methyl-D-aspartate (NMDA) receptor desensitization affect the amplitude and duration of postsynaptic responses. In addition to its functional significance, desensitization provides one means to examine the conformational coupling of ligand binding to channel gating. Segments flanking the ligand binding domain in the extracellular N terminus of the NMDA receptor NR2 subunit influence the glycine-independent form of desensitization. The NR2A pre-M1 region, the linker between the glutamate binding domain and the channel pore, plays a critical role in desensitization. Thus, we used the substituted-cysteine accessibility method to scan the accessibility of residues in the pre-M1 region and the first transmembrane domain (M1) of NR2A. Cysteine mutants were expressed with NR1 in human embryonic kidney 293 cells and were assayed by whole-cell recording. With activation of the receptor by glutamate and glycine, only a single mutant, V557C, which is located at the beginning of M1, led to irreversible inhibition by the methanethiosulfonate derivative methanethiosulfonate ethyltrimethylammonium (MTSET). The NR2 ligand glutamate was insufficient on its own to induce modification of V557C by MTSET, suggesting that the change in accessibility required channel gating. The rate of MTSET modification of the homologous residue on NR1 (NR1-1a(L562C)/NR2A) was much slower than V557C. We also substituted cysteine in the V557 site of mutant subunits that exhibit either enhanced or reduced desensitization. Modification by MTSET correlated with the degree of desensitization for these subunits, suggesting that V557C is a sensitive detector of desensitization gating.

  20. Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N-Methyl-D-Aspartate Receptor Subunit.

    PubMed

    Tozzi, Alessandro; de Iure, Antonio; Bagetta, Vincenza; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Costa, Cinzia; Di Filippo, Massimiliano; Ghiglieri, Veronica; Latagliata, Emanuele Claudio; Wegrzynowicz, Michal; Decressac, Mickael; Giampà, Carmela; Dalley, Jeffrey W; Xia, Jing; Gardoni, Fabrizio; Mellone, Manuela; El-Agnaf, Omar Mukhtar; Ardah, Mustafa Taleb; Puglisi-Allegra, Stefano; Björklund, Anders; Spillantini, Maria Grazia; Picconi, Barbara; Calabresi, Paolo

    2016-03-01

    Advanced Parkinson's disease (PD) is characterized by massive degeneration of nigral dopaminergic neurons, dramatic motor and cognitive alterations, and presence of nigral Lewy bodies, whose main constituent is α-synuclein (α-syn). However, the synaptic mechanisms underlying behavioral and motor effects induced by early selective overexpression of nigral α-syn are still a matter of debate. We performed behavioral, molecular, and immunohistochemical analyses in two transgenic models of PD, mice transgenic for truncated human α-synuclein 1-120 and rats injected with the adeno-associated viral vector carrying wild-type human α-synuclein. We also investigated striatal synaptic plasticity by electrophysiological recordings from spiny projection neurons and cholinergic interneurons. We found that overexpression of truncated or wild-type human α-syn causes partial reduction of striatal dopamine levels and selectively blocks the induction of long-term potentiation in striatal cholinergic interneurons, producing early memory and motor alterations. These effects were dependent on α-syn modulation of the GluN2D-expressing N-methyl-D-aspartate receptors in cholinergic interneurons. Acute in vitro application of human α-syn oligomers mimicked the synaptic effects observed ex vivo in PD models. We suggest that striatal cholinergic dysfunction, induced by a direct interaction between α-syn and GluN2D-expressing N-methyl-D-aspartate receptors, represents a precocious biological marker of the disease. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. A novel photoaffinity ligand for the phencyclidine site of the N-methyl-D-aspartate receptor labels a Mr 120,000 polypeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonders, M.S.; Barmettler, P.; Lee, J.A.

    1990-04-25

    A radiolabeled photoaffinity ligand has been developed for the N-methyl-D-aspartate (NMDA)-preferring excitatory amino acid receptor complex. (3H)3-Azido-(5S, 10R)(+)-5-methyl-10,11-dihydro-5H- dibenzo(a,d)cyclohepten-5,10-imine (3H)3-azido-MK-801 demonstrated nearly identical affinity, density of binding sites, selectivity, pH sensitivity, and pharmacological profile in reversible binding assays with guinea pig brain homogenates to those displayed by its parent compound, MK-801. When employed in a photo-labeling protocol designed to optimize specific incorporation, (3H)3-azido-MK-801 labeled a single protein band which migrated in sodium dodecyl sulfate-polyacrylamide gels with Mr = 120,000. Incorporation of tritium into this band was completely inhibited when homogenates and (3H)3-azido-MK-801 were coincubated with 10 microM phencyclidine. These datamore » suggest that the phencyclidine site of the NMDA receptor complex is at least in part comprised of a Mr = 120,000 polypeptide.« less

  2. Psychiatric Autoimmunity: N-Methyl-D-Aspartate Receptor IgG and Beyond.

    PubMed

    Kruse, Jennifer L; Lapid, Maria I; Lennon, Vanda A; Klein, Christopher J; Toole, Orna O'; Pittock, Sean J; Strand, Edythe A; Frye, Mark A; McKeon, Andrew

    2015-01-01

    Descriptions of psychiatric autoimmunity beyond N-methyl-D-aspartate (NMDA) receptor encephalitis are sparse. To report the autoimmune psychiatric spectrum currently recognized in Mayo Clinic practice. Medical record review, testing of stored serum and cerebrospinal fluid for IgGs reactive with synaptic receptors and ion channels, neuronal nuclear and cytoplasmic antigens (including glutamic acid decarboxylase 65-kDa isoform) and case-control comparison were conducted. Patients were categorized into group 1, all adult psychiatric inpatients tested for neural autoantibodies (2002-2011; n = 213), and group 2, all Mayo NMDA receptor IgG-positive patients (2009-2013; n = 13); healthy control subjects were also included (n = 173). In group 1, at least 1 serum autoantibody (but not NMDA receptor IgG) was detected in 36 of 213 psychiatric inpatients. In total, 12 patients were determined retrospectively to have high-likelihood autoimmune encephalitic diagnoses. The most commonly detected autoantibody specificities were voltage-gated potassium channel ([Kv1] VGKC) complex (6) and calcium channel (P/Q type or N type; 5). Symptoms seen were as follows: depressive (8), anxious (7), psychotic (7), disorganized (5), suicidal (3), manic (1) and catatonic (1). In group 2, among 13 NMDA receptor IgG-positive patients, 12 had encephalitis; their psychiatric symptoms were as follows: depressive (9), catatonic (9), disorganized (8), anxious (8), psychotic (7), manic (6), and suicidal (3). Catatonic symptoms were more common in the 12 NMDA receptor IgG-positive patients than in the 12 group 1 patients with high likelihood of encephalitis (p = 0.002). Antibody positivities were usually low positive in value among healthy controls (12 of 16 vs 3 of 12 group 1 encephalitis cases, p = 0.025). NMDA receptor IgG was not detected in any healthy control subject. A spectrum of psychiatric autoimmunity beyond NMDA-R IgG may be under-recognized. Diagnosis is facilitated by combining results of

  3. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    PubMed

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy.

  4. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat.

    PubMed

    Haley, Jane E; Dickenson, Anthony H

    2016-08-15

    We used in vivo electrophysiology and a model of more persistent nociceptive inputs to monitor spinal cord neuronal activity in anaesthetised rats to reveal the pharmacology of enhanced pain signalling. The study showed that all responses were blocked by non-selective antagonism of glutamate receptors but a selective and preferential role of the N-methyl-d-aspartate (NMDA) receptor in the prolonged plastic responses was clearly seen. The work lead to many publications, initially preclinical but increasingly from patient studies, showing the importance of the NMDA receptor in central sensitisation within the spinal cord and how this could relate to persistent pain states. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Implication of Genes for the N-Methyl-D-Aspartate (NMDA) Receptor in Substance Addictions.

    PubMed

    Chen, Jiali; Ma, Yunlong; Fan, Rongli; Yang, Zhongli; Li, Ming D

    2018-02-10

    Drug dependence is a chronic brain disease with harmful consequences for both individual users and society. Glutamate is a primary excitatory neurotransmitter in the brain, and both in vivo and in vitro experiments have implicated N-methyl-D-aspartate (NMDA) receptor, a glutamate receptor, as an element in various types of addiction. Recent findings from genetics-based approaches such as genome-wide linkage, candidate gene association, genome-wide association (GWA), and next-generation sequencing have demonstrated the significant association of NMDA receptor subunit genes such as GluN3A, GluN2B, and GluN2A with various addiction-related phenotypes. Of these genes, GluN3A has been the most studied, and it has been revealed to play crucial roles in the etiology of addictions. In this communication, we provide an updated view of the genetic effects of NMDA receptor subunit genes and their functions in the etiology of addictions based on the findings from investigation of both common and rare variants as well as SNP-SNP interactions. To better understand the molecular mechanisms underlying addiction-related behaviors and to promote the development of specific medicines for the prevention and treatment of addictions, current efforts aim not only to identify more causal variants in NMDA receptor subunits by using large independent samples but also to reveal the molecular functions of these variants in addictions.

  6. (+)-3-( sup 123 I)Iodo-MK-801: Synthesis and characterization of binding to the N-methyl-D-aspartate receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ransom, R.W.; Wai-si Eng; Burns, H.D.

    1990-01-01

    Synthetic methods have been established for preparing high specific activity (+)-3-({sup 123}I)Iodo-MK-801 in high radiochemical yield. The binding of the radiotracer to rat cortical membranes has been examine to assess its potential use as an in vivo imaging agent for the N-methyl-D-aspartate (NMDA) receptor-ion channel complex. Under the conditions of the assay, specific (+)-3-({sup 123}I)Iodo-MK-801 binding to membrane homogenates represented greater than 95% of the total binding. Several structurally distinct, noncompetitive NMDA receptor antagonists inhibited binding with potencies in accordance with their reported inhibitory activity at the receptor complex. The concentration of ({plus minus})-3-Iodo-MK-801 required to inhibit 50% of (+)-3-({supmore » 123}I)Iodo-MK-801 binding (IC{sub 50}) was 3.4 nM when using a low ionic strength assay buffer and 5.5 nM in a physiological buffer. In a thoroughly washed membrane preparation, (+)-3-({sup 123}I)Iodo-MK-801 binding was enhanced by L-glutamate and glycine at concentrations known to activate the NMDA receptor. The results indicate that (+)-3-({sup 123}I)Iodo-MK-801 specifically labels the NMDA receptor complex in rat brain membranes and the retention of high affinity under near physiological assay conditions suggests that it may be useful as a SPECT imaging agent for the receptor in vivo.« less

  7. Learning and memory: regional changes in N-methyl-D-aspartate receptors in the chick brain after imprinting.

    PubMed Central

    McCabe, B J; Horn, G

    1988-01-01

    An extensive series of experiments has implicated a restricted region of the chick forebrain in the learning process of imprinting. The region is the intermediate and medial part of the hyperstriatum ventrale (IMHV). Previous studies have shown that training is associated with an increase in the area of the postsynaptic density of axospinous synapses in the left but not the right IMHV. The postsynaptic density is a site of high receptor density, and at least some axospinous synapses are excitatory. We found that imprinting is associated with a 59% increase in N-methyl-D-aspartate-sensitive binding of the excitatory amino acid L-[3H]glutamic acid in the left IMHV. The increase is probably due to an increased number of binding sites. The profile of sensitivity of the sites to a series of amino-, phosphono-substituted carboxylic acids (2-amino-3-phosphonopropionate to 2-amino-8-phosphonooctanoate) is characteristic of N-methyl-D-aspartate-type receptors. There were no significant effects of training on binding in the right IMHV. The effect of training on left IMHV binding could not be attributed to light exposure, arousal, or motor activity per se but was a function of how much the chicks learned. The changes in the left IMHV could increase the effectiveness of synaptic transmission in a region crucial for information storage and so form a neural basis for recognition memory. PMID:2833757

  8. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition

    PubMed Central

    HAN, NING; YU, LI; SONG, ZHIDU; LUO, LIFU; WU, YAZHEN

    2015-01-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy. PMID:25816073

  9. N-linked glycosylation of cortical N-methyl-D-aspartate and kainate receptor subunits in schizophrenia.

    PubMed

    Tucholski, Janusz; Simmons, Micah S; Pinner, Anita L; McMillan, Laurence D; Haroutunian, Vahram; Meador-Woodruff, James H

    2013-08-21

    Dysfunctional glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. Abnormal expressions in schizophrenia of ionotropic glutamate receptors (iGluRs) and the proteins that regulate their trafficking have been found to be region and subunit specific in brain, suggesting that abnormal trafficking of iGluRs may contribute toward altered glutamatergic neurotransmission. The post-translational modification N-glycosylation of iGluR subunits can be used as a proxy for their intracellular localization. Receptor complexes assemble in the lumen of the endoplasmic reticulum, where N-glycosylation begins with the addition of N-linked oligomannose glycans, and is subsequently trimmed and replaced by more elaborate glycans while trafficking through the Golgi apparatus. Previously, we found abnormalities in N-glycosylation of the GluR2 AMPA receptor subunit in schizophrenia. Here, we investigated N-glycosylation of N-methyl-D-aspartate and kainate (KA) receptor subunits in the dorsolateral prefrontal cortex from patients with schizophrenia and a comparison group. We used enzymatic deglycosylation with two glycosidases: endoglycosidase H (Endo H), which removes immature high mannose-containing sugars, and peptide-N-glycosidase F (PNGase F), which removes all N-linked sugars. The NR1, NR2A, NR2B, GluR6, and KA2 subunits were all sensitive to treatment with Endo H and PNGase F. The GluR6 KA receptor subunit was significantly more sensitive to Endo H-mediated deglycosylation in schizophrenia, suggesting a larger molecular mass of N-linked high mannose and/or hybrid sugars on GluR6. This finding, taken with our previous work, suggests that a cellular mechanism underlying abnormal glutamate neurotransmission in schizophrenia may involve abnormal trafficking of both AMPA and KA receptors.

  10. Anti-N-Methyl-D-Aspartate Receptor Encephalitis and Rasmussen-like Syndrome: An Association?

    PubMed

    Gurcharran, Kevin; Karkare, Shefali

    2017-01-01

    N-methyl-D-aspartate (NMDA) receptor encephalitis is an immune-mediated condition that has a broad spectrum of manifestations, including seizures, coma, psychosis, and focal neurological deficits. Although usually a diffuse process, unihemispheric involvement mimicking early stages of Rasmussen encephalitis can occur. Rasmussen's encephalitis is a unique syndrome characterized by progressive hemiplegia, drug-resistant focal epilepsy, cognitive decline, and hemispheric brain atrophy contralateral to the hemiplegia. We describe a two-year-old girl with progressive right weakness and epilepsia partialis continua, concerning for early Rasmussen's encephalitis, who tested positive for anti-NMDA receptor antibodies. She experienced complete clinical recovery after immunotherapy. Anti-NMDA receptor antibodies were absent at three weeks and again at one year after the first treatment of intravenous immunoglobulin. There are few reports of Rasmussen-like encephalitis in individuals with anti-NMDA receptor antibody positivity. Thus the clinical significance of this association is yet to be determined. In addition, several other antibodies have been documented in individuals with Rasmussen encephalitis. The lack of a consistently reported antibody in Rasmussen encephalitis patients and the temporary nature of the anti-NMDA receptor antibody in our patient raise the following question: Is the presence of anti-NMDA receptor antibodies the cause of the symptoms or secondary to the pathogenic process? Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Neurosteroid-like Inhibitors of N-Methyl-d-aspartate Receptor: Substituted 2-Sulfates and 2-Hemisuccinates of Perhydrophenanthrene.

    PubMed

    Slavikova, Barbora; Chodounska, Hana; Nekardova, Michaela; Vyklicky, Vojtech; Ladislav, Marek; Hubalkova, Pavla; Krausova, Barbora; Vyklicky, Ladislav; Kudova, Eva

    2016-05-26

    N-Methyl-d-aspartate receptors (NMDARs) display a critical role in various diseases of the central nervous system. The activity of NMDARs can be modulated by neurosteroids. Herein, we report a structure-activity relationship study for perhydrophenanthrene analogues possessing a framework that mimics the steroidal ring system. This study comprises the design, synthesis, and assessment of the biological activity of a library of perhydrophenanthrene 2-sulfates and 2-hemisuccinates (1-10). Their ability to modulate NMDAR-induced currents was tested on recombinant GluN1/GluN2B receptors. Our results demonstrate that such structural optimization leads to compounds that are inhibitors of NMDARs. Notably, compound 9 (IC50 = 15.6 μM) was assessed as a more potent inhibitor of NMDAR-induced currents than the known endogenous neurosteroid, pregnanolone sulfate (IC50 = 24.6 μM).

  12. Extrasynaptic N-Methyl-d-aspartate (NMDA) Receptor Stimulation Induces Cytoplasmic Translocation of the CDKL5 Kinase and Its Proteasomal Degradation*

    PubMed Central

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-01-01

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-d-aspartate receptors and suggest regulation of CDKL5 by cell death pathways. PMID:21832092

  13. Extrasynaptic N-methyl-D-aspartate (NMDA) receptor stimulation induces cytoplasmic translocation of the CDKL5 kinase and its proteasomal degradation.

    PubMed

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-10-21

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-D-aspartate receptors and suggest regulation of CDKL5 by cell death pathways.

  14. N-(3-azidophenyl)-N-methyl-N'-([4-1H]- and [4-3H]-1-naphthyl)guanidine. A potent and selective ligand designed as a photoaffinity label for the phencyclidine site of the N-methyl-D-aspartate receptor.

    PubMed

    Gee, K R; Durant, G J; Holmes, D L; Magar, S S; Weber, E; Wong, S T; Keana, J F

    1993-01-01

    A novel radiolabeled photoaffinity ligand has been synthesized for the phencyclidine (PCP) site of the N-methyl-D-aspartate (NMDA) receptor. N-(3-Azidophenyl)-N-methyl-N'-([4-3H]-1-naphthyl)guanidine (13) was prepared with a specific activity of 25 Ci/mmol by diazotization of N-(3-aminophenyl)-N-methyl-N'-([4-3H]-1-naphthyl)guanidine (12) followed by treatment with sodium azide. Guanidine 12 was obtained by catalytic tritiation of N-(4-bromo-1-naphthyl)-N'-methyl-N'-(3-nitrophenyl)guanidine (11). The nontritiated analog 5 of 13 was prepared beginning with N-methyl-N'-1-naphthyl-N-(3-nitrophenyl)guanidine (9). The guanidines 9 and 11 were prepared in moderate yield by the aluminum chloride-catalyzed reaction of N-methyl-3-nitroaniline hydrochloride with 1-naphthylcyanamide and 4-bromo-1-naphthylcyanamide, respectively. Azide 5 showed high selectivity and affinity (IC50 = 100 nM vs [3H]MK801; 3000 nM vs [3H]ditolylguanidine) for the PCP site of the NMDA receptor in guinea pig brain homogenate. Photolabeling experiments with 13, however, failed to radiolabel a significant amount of receptor polypeptide.

  15. Study of the n-methyl-d-aspartate antagonistic properties of anticholinergic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonough, J.H.; Shih, T.M.

    1995-12-31

    A study of the N-methyl-D-aspartate antagonistic properties of anticholinergic drugs. PHARMACOL BIOCHEM BEHAV. 51(2/3) 249-253, 1995. Drugs that act at the N-methyl-D-aspartate (NMDA) receptor complex have the ability to terminate nerve agent-induced seizures and modulate the neuropathologic consequences of agent exposure. Drugs with mixed anticholinergic and anti-NMDA properties potentially provide an ideal class of compounds for development as anticonvulsant treatments for nerve agent casualties. The present experiment evaluated the potential NMDA antagonist activity of 11 anticholinergic drugs by determining whether pretreatment with the compound was capable of protecting mice from the lethal effects of NMDA. The following anticholinergic drugs antagonizedmore » NMDA lethality and are ranked according to their potency: mecamylamine > procyclidine = benactyzine > biperiden > tribexyphenidyl. The anticholinergics atropine, aprophen, azaprophen, benztropine, 3-quinudidinyl benzilate (QNB), and scopolamine failed to show NMDA antagonist properties. In addition, and unexpectedly, diazepam, ethanol, and pentobarbital were also shown to be capable of antagonizing NMDA lethality over a certain range of doses. The advantages and limitations of using antagonism of NMDA lethality in mice as a bioassay for determining the NMDA antagonist properties of drugs are also discussed.« less

  16. The N-Methyl-D-Aspartate Receptor in Heart Development: A Gene Knockdown Model Using siRNA

    PubMed Central

    Lie, Octavian V.; Bennett, Gregory D.; Rosenquist, Thomas H

    2009-01-01

    Antagonists of the N-methyl-D-aspartate receptor (NMDAR) may disrupt the development of the cardiac neural crest (CNC) and contribute to conotruncal heart defects. To test this interaction, a loss-of-function model was generated using small interfering RNAs (siRNA) directed against the critical NR1-subunit of this receptor in avian embryos. The coding sequence of the chicken NR1-gene and predicted protein sequences were characterized and found to be homologous with other vertebrate species. Analysis of its spatiotemporal expression demonstrated its expression within the neural tube at pre-migratory CNC sites. siRNA targeted to the NR1-mRNA in pre-migratory CNC lead to a significant decrease in NR1 protein expression. However, embryo survival and heart development were not adversely affected. These results indicate that the CNC may function normally in the absence of functional NMDAR, and that NMDAR antagonists may have a complex impact upon the CNC that transcends impairment of a single receptor type. PMID:19737608

  17. Acute Mechanisms Underlying Antibody Effects in Anti–N-Methyl-D-Aspartate Receptor Encephalitis

    PubMed Central

    Moscato, Emilia H; Peng, Xiaoyu; Jain, Ankit; Parsons, Thomas D; Dalmau, Josep; Balice-Gordon, Rita J

    2014-01-01

    Objective A severe but treatable form of immune-mediated encephalitis is associated with antibodies in serum and cerebrospinal fluid (CSF) against the GluN1 subunit of the N-methyl-D-aspartate receptor (NMDAR). Prolonged exposure of hippocampal neurons to antibodies from patients with anti-NMDAR encephalitis caused a reversible decrease in the synaptic localization and function of NMDARs. However, acute effects of the antibodies, fate of the internalized receptors, type of neurons affected, and whether neurons develop compensatory homeostatic mechanisms were unknown and are the focus of this study. Methods Dissociated hippocampal neuron cultures and rodent brain sections were used for immunocytochemical, physiological, and molecular studies. Results Patient antibodies bind to NMDARs throughout the rodent brain, and decrease NMDAR cluster density in both excitatory and inhibitory hippocampal neurons. They rapidly increase the internalization rate of surface NMDAR clusters, independent of receptor activity. This internalization likely accounts for the observed decrease in NMDAR-mediated currents, as no evidence of direct blockade was detected. Once internalized, antibody-bound NMDARs traffic through both recycling endosomes and lysosomes, similar to pharmacologically induced NMDAR endocytosis. The antibodies are responsible for receptor internalization, as their depletion from CSF abrogates these effects in hippocampal neurons. We find that although anti-NMDAR antibodies do not induce compensatory changes in glutamate receptor gene expression, they cause a decrease in inhibitory synapse density onto excitatory hippocampal neurons. Interpretation Our data support an antibody-mediated mechanism of disease pathogenesis driven by immunoglobulin-induced receptor internalization. Antibody-mediated downregulation of surface NMDARs engages homeostatic synaptic plasticity mechanisms, which may inadvertently contribute to disease progression. Ann Neurol 2014;76:108–119 PMID

  18. Protective effect of methanol extract of Uncaria rhynchophylla against excitotoxicity induced by N-methyl-D-aspartate in rat hippocampus.

    PubMed

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Dae-Keun; Shin, Min-Chul; Jang, Mi-Hyeon; Kim, Chang-Ju; Kim, Yong-Sik; Kim, Sun-Yeou; Kim, Hocheol

    2003-05-01

    Uncaria rhynchophylla is a medicinal herb used for convulsive disorders in Oriental medicine. In this study, the effect of the methanol extract of Uncaria rhynchophylla against N-methyl-D-aspartate (NMDA)-induced excitotoxicity was investigated. Pretreatment with the extract of Uncaria rhynchopylla reduced the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices. In the patch clamp study, Uncaria rhynchophylla significantly inhibited NMDA receptor-activated ion current in acutely dissociated hippocampal CA1 neurons. These results indicate that Uncaria rhynchophylla offers protection against NMDA-induced neuronal injury and inhibitory action on NMDA receptor-mediated ion current may be a mechanism behind the neuroprotective effect of Uncaria rhynchophylla.

  19. Selective Impairment of Spatial Cognition Caused by Autoantibodies to the N-Methyl-d-Aspartate Receptor

    PubMed Central

    Chang, Eric H.; Volpe, Bruce T.; Mackay, Meggan; Aranow, Cynthia; Watson, Philip; Kowal, Czeslawa; Storbeck, Justin; Mattis, Paul; Berlin, RoseAnn; Chen, Huiyi; Mader, Simone; Huerta, Tomás S.; Huerta, Patricio T.; Diamond, Betty

    2015-01-01

    Patients with systemic lupus erythematosus (SLE) experience cognitive abnormalities in multiple domains including processing speed, executive function, and memory. Here we show that SLE patients carrying antibodies that bind DNA and the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), termed DNRAbs, displayed a selective impairment in spatial recall. Neural recordings in a mouse model of SLE, in which circulating DNRAbs penetrate the hippocampus, revealed that CA1 place cells exhibited a significant expansion in place field size. Structural analysis showed that hippocampal pyramidal cells had substantial reductions in their dendritic processes and spines. Strikingly, these abnormalities became evident at a time when DNRAbs were no longer detectable in the hippocampus. These results suggest that antibody-mediated neurocognitive impairments may be highly specific, and that spatial cognition may be particularly vulnerable to DNRAb-mediated structural and functional injury to hippocampal cells that evolves after the triggering insult is no longer present. PMID:26286205

  20. High sensitivity and specificity in proposed clinical diagnostic criteria for anti-N-methyl-D-aspartate receptor encephalitis.

    PubMed

    Ho, Alvin C C; Mohammad, Shekeeb S; Pillai, Sekhar C; Tantsis, Esther; Jones, Hannah; Ho, Reena; Lim, Ming; Hacohen, Yael; Vincent, Angela; Dale, Russell C

    2017-12-01

    To determine the validity of the proposed clinical diagnostic criteria for anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis in paediatric patients. The diagnostic criteria for anti-NMDAR encephalitis proposed by Graus et al. (2016) use clinical features and conventional investigations to facilitate early immunotherapy before antibody status is available. The criteria are satisfied if patients develop four out of six symptom groups within 3 months, together with at least one abnormal investigation (electroencephalography/cerebrospinal fluid) and reasonable exclusion of other disorders. We evaluated the validity of the criteria using a retrospective cohort of paediatric patients with encephalitis. Twenty-nine patients with anti-NMDAR encephalitis and 74 comparison children with encephalitis were included. As expected, the percentage of patients with anti-NMDAR encephalitis who fulfilled the clinical criteria increased over time. During the hospital inpatient admission, most patients (26/29, 90%) with anti-NMDAR encephalitis fulfilled the criteria, significantly more than the comparison group (3/74, 4%) (p<0.001). The median time of fulfilling the criteria in patients with anti-NMDAR encephalitis was 2 weeks from first symptom onset (range 1-6). The sensitivity of the criteria was 90% (95% confidence interval 73-98) and the specificity was 96% (95% confidence interval 89-99). The proposed diagnostic criteria for anti-NMDAR encephalitis have good sensitivity and specificity. Incomplete criteria do not exclude the diagnosis. The proposed clinical diagnostic criteria for anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis by Graus et al. (2016) have high sensitivity and specificity in paediatric patients. The median time of fulfilling the criteria in patients with anti-NMDAR was 2 weeks from first symptom onset. © 2017 Mac Keith Press.

  1. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis: an unusual cause of autistic regression in a toddler.

    PubMed

    Scott, Ori; Richer, Lawrence; Forbes, Karen; Sonnenberg, Lyn; Currie, Angela; Eliyashevska, Myroslava; Goez, Helly R

    2014-05-01

    Anti N-methyl-d-aspartate (NMDA) receptor encephalitis in children is associated with psychiatric changes, seizures, and dyskinesias. We present the first report of autistic regression in a toddler caused by this entity. A 33-month-old boy presented with decreased appetite, irritability, and insomnia following an upper respiratory tract infection. Over the next few weeks he lost language and social skills, and abnormal movements of his hand developed. Within a month, this patient came to fit the diagnostic criteria for autistic spectrum disorder. Upon investigation, anti-NMDA receptor antibodies were found in the boy's cerebrospinal fluid. He was treated with intravenous immunoglobulins and steroids, resulting in reacquisition of language and social skills and resolution of movements. Our case emphasizes the significance of suspecting anti-NMDA receptor encephalitis as the cause of autistic regression, even in an age group where the diagnosis of autistic spectrum disorder is typically made, and especially when presentation follows a febrile illness.

  2. Direct binding of Toll-like receptor 4 to ionotropic glutamate receptor N-methyl-D-aspartate subunit 1 induced by lipopolysaccharide in microglial cells N9 and EOC 20.

    PubMed

    Cui, Jie; Yu, Siyuan; Li, Yihui; Li, Pan; Liu, Feng

    2018-03-01

    Microglia, the primary immune cells in the brain, are the predominant cells regulating inflammation-mediated neuronal damage. In response to immunological challenges, such as lipopolysaccharide (LPS), microglia are activated and the inflammatory process is subsequently initiated. The aim of the present study was to determine whether LPS induces interactions between the Toll-like receptor 4 (TLR4) and the ionotropic glutamate receptor N-methyl-D‑aspartate subunit 1 (GluN1) in N9 and EOC 20 microglial cells. Immunocytochemistry demonstrated co-localization of TLR4 and GluN1 in response to LPS, and the direct binding of TLR4 and GluN1 was further validated by antibody-based Fluorescence Resonance Energy Transfer technology. Inhibition of the group I metabotropic glutamate receptor 5 with its selective antagonist, MTEP, abolished LPS-induced direct binding of TLR4 to GluN1. Therefore, these data demonstrated that GluN1 and TLR4 act reciprocally in response to LPS in N9 and EOC 20 microglial cells.

  3. Citrate Modulates the Regulation by Zn2+ of N-Methyl-D-Aspartate Receptor-Mediated Channel Current and Neurotransmitter Release

    NASA Astrophysics Data System (ADS)

    Westergaard, Niels; Banke, Tue; Wahl, Philip; Sonnewald, Ursula; Schousboe, Arne

    1995-04-01

    The effect of the two metal-ion chelators EDTA and citrate on the action of N-methyl-D-aspartate (NMDA) receptors was investigated by use of cultured mouse cerebellar granule neurons and Xenopus oocytes, respectively, to monitor either NMDA-evoked transmitter release or membrane currents. Transmitter release from the glutamatergic neurons was determined by superfusion of the cells after preloading with the glutamate analogue D-[^3H]aspartate. The oocytes were injected with mRNA isolated from mouse cerebellum and, after incubation to allow translation to occur, currents mediated by NMDA were recorded electrophysiologically by voltage clamp at a holding potential of -80 mV. It was found that citrate as well as EDTA could attenuate the inhibitory action of Zn2+ on NMDA receptor-mediated transmitter release from the neurons and membrane currents in the oocytes. These effects were specifically related to the NMDA receptor, since the NMDA receptor antagonist MK-801 abolished the action and no effects of Zn2+ and its chelators were observed when kainate was used to selectively activate non-NMDA receptors. Since it was additionally demonstrated that citrate (and EDTA) preferentially chelated Zn2+ rather than Ca2+, the present findings strongly suggest that endogenous citrate released specifically from astrocytes into the extracellular space in the brain may function as a modulator of NMDA receptor activity. This is yet another example of astrocytic influence on neuronal activity.

  4. Role of hydrogen bonding in ligand interaction with the N-methyl-D-aspartate receptor ion channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeson, P.D.; Carling, R.W.; James, K.

    1990-05-01

    Displacement of (3H)MK-801 (dizocilpine, 1) binding to rat brain membranes has been used to evaluate the affinities of novel dibenzocycloalkenimines related to 1 for the ion channel binding site (also known as the phencyclidine or PCP receptor) on the N-methyl-D-aspartate (NMDA) subtype of excitory amino acid receptor. In common with many other agents having actions in the central nervous system, these compounds contain a hydrophobic aromatic moiety and a basic nitrogen atom. The conformational rigidity of these ligands provides a unique opportunity to evaluate the importance of specific geometrical properties that influence active-site recognition, in particular the role of themore » nitrogen atom in hydrogen-bonding interactions. The relative affinities (IC50s) of hydrocarbon-substituted analogues of 1 and ring homologated cyclooctenimines illustrate the importance of size-limited hydrophobic binding of both aryl rings and of the quaternary C-5 methyl group. Analysis of the binding of a series of the 10 available structurally rigid dibenzoazabicyclo(x.y.z)alkanes, by using molecular modeling techniques, uncovered a highly significant correlation between affinity and a proposed ligand-active site hydrogen bonding vector (r = 0.950, p less than 0.001). These results are used to generate a pharmacophore of the MK-801 recognition site/PCP receptor, which accounts for the binding of all of the known ligands.« less

  5. Interaction of ( sup 3 H)MK-801 with multiple states of the N-methyl-D-aspartate receptor complex of rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javitt, D.C.; Zukin, S.R.

    1989-01-01

    N-Methyl-D-aspartate (N-Me-D-Asp) and phencyclidine receptors interactively mediate central nervous system processes including psychotomimetic effects of drugs as well as neurodegenerative, cognitive, and developmental events. To elucidate the mechanism of this interaction, effects of N-Me-D-Asp agonists and antagonists and of glycine-like agents upon binding of the radiolabeled phencyclidine receptor ligand ({sup 3}H)MK-801 were determined in rat brain. Scatchard analysis revealed two discrete components of ({sup 3}H)MK-801 binding after 4 hr of incubation. Incubation in the presence of L-glutamate led to an increase in apparent densities but not in affinities of both components of ({sup 3}H)MK-801 binding as well as conversion ofmore » sites from apparent low to high affinity. Incubation in the presence of combined D-serine and L-glutamate led to an increase in the apparent density of high-affinity ({sup 3}H)MK-801 binding compared with incubation in the presence of either L-glutamate or D-serine alone. These data support a model in which phencyclidine receptor ligands bind differentially to closed as well as open conformations of the N-Me-D-Asp receptor complex and in which glycine-like agents permit or facilitate agonist-induced conversion of N-Me-D-Asp receptors from closed to open conformations.« less

  6. Blockade of N-methyl-d-aspartate receptor activation suppresses learning-induced synaptic elimination

    PubMed Central

    Bock, Jörg; Braun, Katharina

    1999-01-01

    Auditory filial imprinting in the domestic chicken is accompanied by a dramatic loss of spine synapses in two higher associative forebrain areas, the mediorostral neostriatum/hyperstriatum ventrale (MNH) and the dorsocaudal neostriatum (Ndc). The cellular mechanisms that underlie this learning-induced synaptic reorganization are unclear. We found that local pharmacological blockade of N-methyl-d-aspartate (NMDA) receptors in the MNH, a manipulation that has been shown previously to impair auditory imprinting, suppresses the learning-induced spine reduction in this region. Chicks treated with the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV) during the behavioral training for imprinting (postnatal day 0–2) displayed similar spine frequencies at postnatal day 7 as naive control animals, which, in both groups, were significantly higher than in imprinted animals. Because the average dendritic length did not differ between the experimental groups, the reduced spine frequency can be interpreted as a reduction of the total number of spine synapses per neuron. In the Ndc, which is reciprocally connected with the MNH and not directly influenced by the injected drug, learning-induced spine elimination was partly suppressed. Spine frequencies of the APV-treated, behaviorally trained but nonimprinted animals were higher than in the imprinted animals but lower than in the naive animals. These results provide evidence that NMDA receptor activation is required for the learning-induced selective reduction of spine synapses, which may serve as a mechanism of information storage specific for juvenile emotional learning events. PMID:10051669

  7. Characterization of l-Theanine Excitatory Actions on Hippocampal Neurons: Toward the Generation of Novel N-Methyl-d-aspartate Receptor Modulators Based on Its Backbone.

    PubMed

    Sebih, Fatiha; Rousset, Matthieu; Bellahouel, Salima; Rolland, Marc; de Jesus Ferreira, Marie Celeste; Guiramand, Janique; Cohen-Solal, Catherine; Barbanel, Gérard; Cens, Thierry; Abouazza, Mohammed; Tassou, Adrien; Gratuze, Maud; Meusnier, Céline; Charnet, Pierre; Vignes, Michel; Rolland, Valérie

    2017-08-16

    l-Theanine (or l-γ-N-ethyl-glutamine) is the major amino acid found in Camellia sinensis. It has received much attention because of its pleiotropic physiological and pharmacological activities leading to health benefits in humans, especially. We describe here a new, easy, efficient, and environmentally friendly chemical synthesis of l-theanine and l-γ-N-propyl-Gln and their corresponding d-isomers. l-Theanine, and its derivatives obtained so far, exhibited partial coagonistic action at N-methyl-d-aspartate (NMDA) receptors, with no detectable agonist effect at other glutamate receptors, on cultured hippocampal neurons. This activity was retained on NMDA receptors expressed in Xenopus oocytes. In addition, both GluN2A and GluN2B containing NMDA receptors were equally modulated by l-theanine. The stereochemical change from l-theanine to d-theanine along with the substitution of the ethyl for a propyl moiety in the γ-N position of l- and d-theanine significantly enhanced the biological efficacy, as measured on cultured hippocampal neurons. l-Theanine structure thus represents an interesting backbone to develop novel NMDA receptor modulators.

  8. d-Aspartate oxidase influences glutamatergic system homeostasis in mammalian brain.

    PubMed

    Cristino, Luigia; Luongo, Livio; Squillace, Marta; Paolone, Giovanna; Mango, Dalila; Piccinin, Sonia; Zianni, Elisa; Imperatore, Roberta; Iannotta, Monica; Longo, Francesco; Errico, Francesco; Vescovi, Angelo Luigi; Morari, Michele; Maione, Sabatino; Gardoni, Fabrizio; Nisticò, Robert; Usiello, Alessandro

    2015-05-01

    We have investigated the relevance of d-aspartate oxidase, the only enzyme known to selectively degrade d-aspartate (d-Asp), in modulating glutamatergic system homeostasis. Interestingly, the lack of the Ddo gene, by raising d-Asp content, induces a substantial increase in extracellular glutamate (Glu) levels in Ddo-mutant brains. Consistent with an exaggerated and persistent N-methyl-d-aspartate receptor (NMDAR) stimulation, we documented in Ddo knockouts severe age-dependent structural and functional alterations mirrored by expression of active caspases 3 and 7 along with appearance of dystrophic microglia and reactive astrocytes. In addition, prolonged elevation of d-Asp triggered in mutants alterations of NMDAR-dependent synaptic plasticity associated to reduction of hippocampal GluN1 and GluN2B subunits selectively located at synaptic sites and to increase in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-to-N-methyl-d-aspartate ratio. These effects, all of which converged on a progressive hyporesponsiveness at NMDAR sites, functionally resulted in a greater vulnerability to phencyclidine-induced prepulse inhibition deficits in mutants. In conclusion, our results indicate that d-aspartate oxidase, by strictly regulating d-Asp levels, impacts on the homeostasis of glutamatergic system, thus preventing accelerated neurodegenerative processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro.

    PubMed

    Yavas, Ersin; Young, Andrew M J

    2017-02-15

    The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.

  10. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    PubMed

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high

  11. Indistinguishable Synaptic Pharmacodynamics of the N-Methyl-d-Aspartate Receptor Channel Blockers Memantine and Ketamine

    PubMed Central

    Emnett, Christine M.; Eisenman, Lawrence N.; Taylor, Amanda M.; Izumi, Yukitoshi; Zorumski, Charles F.

    2013-01-01

    Memantine and ketamine, voltage- and activation-dependent channel blockers of N-methyl-d-aspartate (NMDA) receptors (NMDARs), have enjoyed a recent resurgence in clinical interest. Steady-state pharmacodynamic differences between these blockers have been reported, but it is unclear whether the compounds differentially affect dynamic physiologic signaling. In this study, we explored nonequilibrium conditions relevant to synaptic transmission in hippocampal networks in dissociated culture and hippocampal slices. Equimolar memantine and ketamine had indistinguishable effects on the following measures: steady-state NMDA currents, NMDAR excitatory postsynaptic current (EPSC) decay kinetics, progressive EPSC inhibition during repetitive stimulation, and extrasynaptic NMDAR inhibition. Therapeutic drug efficacy and tolerability of memantine have been attributed to fast kinetics and strong voltage dependence. However, pulse depolarization in drug presence revealed a surprisingly slow and similar time course of equilibration for the two compounds, although memantine produced a more prominent fast component (62% versus 48%) of re-equilibration. Simulations predicted that low gating efficacy underlies the slow voltage–dependent relief from block. This prediction was empirically supported by faster voltage-dependent blocker re-equilibration with several experimental manipulations of gating efficacy. Excitatory postsynaptic potential–like voltage commands produced drug differences only with large, prolonged depolarizations unlikely to be attained physiologically. In fact, we found no difference between drugs on measures of spontaneous network activity or acute effects on plasticity in hippocampal slices. Despite indistinguishable synaptic pharmacodynamics, ketamine provided significantly greater neuroprotection from damage induced by oxygen glucose deprivation, consistent with the idea that under extreme depolarizing conditions, the biophysical difference between drugs

  12. Functional Adaptation of the N-Methyl-d-aspartate Receptor to Inhibition by Ethanol Is Modulated by Striatal-Enriched Protein Tyrosine Phosphatase and p38 Mitogen-Activated Protein Kinase

    PubMed Central

    Coultrap, Steven J.; Browning, Michael D.; Proctor, William R.

    2011-01-01

    The hippocampal N-methyl-d-aspartate receptor (NMDAR) activity plays important roles in cognition and is a major substrate for ethanol-induced memory dysfunction. This receptor is a glutamate-gated ion channel, which is composed of NR1 and NR2 subunits in various brain areas. Although homomeric NR1 subunits form an active ion channel that conducts Na+ and Ca2+ currents, the incorporation of NR2 subunits allows this channel to be modulated by the Src family of kinases, phosphatases, and by simple molecules such as ethanol. We have found that short-term ethanol application inhibits the NMDAR activity via striatal enriched protein tyrosine phosphatase (STEP)-regulated mechanisms. The genetic deletion of the active form of STEP, STEP61, leads to marked attenuation of ethanol inhibition of NMDAR currents. In addition, STEP61 negatively regulates Fyn and p38 mitogen-activated protein kinase (MAPK), and these proteins are members of the NMDAR super molecular complex. Here we demonstrate, using whole-cell electrophysiological recording, Western blot analysis, and pharmacological manipulations, that neurons exposed to a 3-h, 45 mM ethanol treatment develop an adaptive attenuation of short-term ethanol inhibition of NMDAR currents in brain slices. Our results suggest that this adaptation of NMDAR responses is associated with a partial inactivation of STEP61, an activation of p38 MAPK, and a requirement for NR2B activity. Together, these data indicate that altered STEP61 and p38 MAPK signaling contribute to the modulation of ethanol inhibition of NMDARs in brain neurons. PMID:21680777

  13. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection.

    PubMed

    Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M

    2017-04-25

    Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.

  14. Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    PubMed Central

    Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans

    2010-01-01

    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375

  15. Electroconvulsive Therapy in Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Case Report and Review of the Literature.

    PubMed

    Coffey, M Justin; Cooper, Joseph J

    2016-12-01

    There is a growing scientific literature describing the neuropsychiatric symptoms of anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, including the use of electroconvulsive therapy (ECT) to treat those symptoms. We sought to consolidate this literature into a review that highlights its relevance to ECT practitioners. We performed a PubMed search using the terms electroconvulsive therapy and encephalitis, autoimmune encephalitis, or anti-NMDA receptor encephalitis. We reviewed all relevant studies in detail, cross-referenced all bibliographies, and collected key clinical information related to the practice of ECT. We identified 6 studies offering patient-level descriptions of the use of ECT in patients with anti-NMDA receptor encephalitis. In all cases ECT was used to target symptoms of catatonia. Electroconvulsive therapy was delivered safely and effectively irrespective of the timing of diagnosis, tumor removal, or immunotherapy. There are no controlled data on the use of ECT in anti-NMDA receptor encephalitis. Further investigation is needed to determine whether ECT has a disease-modifying effect on this form of autoimmune encephalitis.

  16. Influence of Genetic Variants of the N-Methyl-D-Aspartate Receptor on Emotion and Social Behavior in Adolescents.

    PubMed

    Lee, Li-Ching; Cho, Ying-Chun; Lin, Pei-Jung; Yeh, Ting-Chi; Chang, Chun-Yen; Yeh, Ting-Kuang

    2016-01-01

    Considerable evidence has suggested that the epigenetic regulation of N-methyl-D-aspartate (NMDA) glutamate receptors plays a crucial role in neuropsychiatric disorders. Previous exploratory studies have been primarily based on evidence from patients and have rarely sampled the general population. This exploratory study examined the relationship of single-nucleotide polymorphism (SNP) variations in the genes encoding the NMDA receptor (i.e., GRIN1, GRIN2A, GRIN2B, GRIN2C, and GRIN2D) with emotion and social behavior in adolescents. For this study, 832 tenth-grade Taiwanese volunteers were recruited, and their scores from the Beck Youth Inventories were used to evaluate their emotional and social impairments. Based on these scores, GRIN1 (rs4880213) was significantly associated with depression and disruptive behavior. In addition, GRIN2B (rs7301328) was significantly associated with disruptive behavior. Because emotional and social impairment greatly influence learning ability, the findings of this study provide important information for clinical treatment and the development of promising prevention and treatment strategies, especially in the area of psychological adjustment.

  17. Approach to the Management of Pediatric-Onset Anti-N-Methyl-d-Aspartate (Anti-NMDA) Receptor Encephalitis: A Case Series.

    PubMed

    Brenton, J Nicholas; Kim, Joshua; Schwartz, Richard H

    2016-08-01

    Anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis is a treatable cause of autoimmune encephalitis. It remains unclear if the natural history of this disease is altered by choice of acute therapy or the employment of chronic immunotherapy. Chart review was undertaken for pediatric patients diagnosed with anti-NMDA receptor encephalitis. Data obtained included patient demographics, disease manifestations, treatment course, and clinical outcomes. Ten patients with anti-NMDA receptor encephalitis were identified. All patients were treated with immunotherapy in the acute period, and all patients experienced good recovery. Neurologic relapse did not occur in any patient. All patients received varied forms of chronic immunosuppression to prevent relapses. Complications of chronic immunotherapy occurred in 50% of patients. The benefits of chronic immunotherapy and the duration of use should be carefully weighed against the risks. Complications from immunotherapy are not uncommon and can be serious. Clinical trials assessing the benefit of long-term immunotherapy in this population are needed. © The Author(s) 2016.

  18. Spinal N-methyl-D-aspartate receptors and nociception-evoked release of primary afferent substance P.

    PubMed

    Nazarian, A; Gu, G; Gracias, N G; Wilkinson, K; Hua, X Y; Vasko, M R; Yaksh, T L

    2008-03-03

    Dorsal horn N-methyl-D-aspartate (NMDA) receptors contribute significantly to spinal nociceptive processing through an effect postsynaptic to non-primary glutamatergic axons, and perhaps presynaptic to the primary afferent terminals. The present study sought to examine the regulatory effects of NMDA receptors on primary afferent release of substance P (SP), as measured by neurokinin 1 receptor (NK1r) internalization in the spinal dorsal horn of rats. The effects of intrathecal NMDA alone or in combination with D-serine (a glycine site agonist) were initially examined on basal levels of NK1r internalization. NMDA alone or when co-administered with D-serine failed to induce NK1r internalization, whereas activation of spinal TRPV1 receptors by capsaicin resulted in a notable NK1r internalization. To determine whether NMDA receptor activation could potentiate NK1r internalization or pain behavior induced by a peripheral noxious stimulus, intrathecal NMDA was given prior to an intraplantar injection of formalin. NMDA did not alter the formalin-induced NK1r internalization nor did it enhance the formalin paw flinching behavior. To further characterize the effects of presynaptic NMDA receptors, the NMDA antagonists DL-2-amino-5-phosphonopentanoic acid (AP-5) and MK-801 were intrathecally administered to assess their regulatory effects on formalin-induced NK1r internalization and pain behavior. AP-5 had no effect on formalin-induced NK1r internalization, whereas MK-801 produced only a modest reduction. Both antagonists, however, reduced the formalin paw flinching behavior. In subsequent in vitro experiments, perfusion of NMDA in spinal cord slice preparations did not evoke basal release of SP or calcitonin gene-related peptide (CGRP). Likewise, perfusion of NMDA did not enhance capsaicin-evoked release of the two peptides. These results suggest that presynaptic NMDA receptors in the spinal cord play little if any role on the primary afferent release of SP.

  19. Identification of N-methyl-D-aspartic acid (NMDA) receptor subtype-specific binding sites that mediate direct interactions with scaffold protein PSD-95.

    PubMed

    Cousins, Sarah L; Stephenson, F Anne

    2012-04-13

    N-methyl-D-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149-1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins.

  20. Rehabilitation for a child with recalcitrant anti-N-methyl-d-aspartate receptor encephalitis: case report and literature review

    PubMed Central

    Guo, Yao-Hong; Kuan, Ta-Shen; Hsieh, Pei-Chun; Lien, Wei-Chih; Chang, Chun-Kai; Lin, Yu-Ching

    2014-01-01

    Anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis is a newly recognized, potentially fatal, but treatable autoimmune disease. Good outcome predictors include milder severity of symptoms, no need for intensive care unit admission, early aggressive immunotherapy, and prompt tumor removal. We report a case of a young girl aged 3 years 2 months and diagnosed as recalcitrant anti-NMDA receptor encephalitis without any underlying neoplasm. The patient had initial symptoms of behavioral changes that progressed to generalized choreoathetosis and orofacial dyskinesia, which resulted in 6 months of hospitalization in the pediatric intensive care unit. One year after initial onset of the disease, she had only achieved the developmental age of an infant aged 6–8 months in terms of gross and fine motor skills, but she resumed total independence in activities of daily living after receiving extensive immunotherapy and 28 months of rehabilitation. Our brief review will help clinical practitioners become more familiar with this disease and the unique rehabilitation programs. PMID:25473290

  1. Synthesis and characterization of a series of diarylguanidines that are noncompetitive N-methyl-D-aspartate receptor antagonists with neuroprotective properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keana, J.F.W.; McBurney, R.N.; Scherz, M.W.

    1989-07-01

    Four diarylguanidine derivatives were synthesized. These compounds were found to displace, at submicromolar concentrations, {sup 3}H-labeled 1-(1-(2-thienyl)cyclohexyl)piperidine and (+)-({sup 3}H)MK-801 from phencyclidine receptors in brain membrane preparations. In electrophysiological experiments the diarylguanidines blocked N-methyl-D-aspartate (NMDA)-activated ion channels. These dairylguanidines also protected rat hippocampal neurons in vitro from glutamate-induced cell death. The results show that some diarylguanidines are noncompetitive antagonists of NMDA receptor-mediated responses and have the neuroprotective property that is commonly associated with blockers of the NMDA receptor-gated cation channel. Diarylguanidines are structurally unrelated to known blockers of NMDA channels and, therefore, represent a new compound series for the developmentmore » of neuroprotective agents with therapeutic value in patients suffering from stroke, from brain or spinal cord trauma, from hypoglycemia, and possibly from brain ischemia due to heart attack.« less

  2. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection

    PubMed Central

    Costa, Vivian V.; Del Sarto, Juliana L.; Rocha, Rebeca F.; Silva, Flavia R.; Doria, Juliana G.; Olmo, Isabella G.; Marques, Rafael E.; Queiroz-Junior, Celso M.; Foureaux, Giselle; Araújo, Julia Maria S.; Cramer, Allysson; Real, Ana Luíza C. V.; Ribeiro, Lucas S.; Sardi, Silvia I.; Ferreira, Anderson J.; Machado, Fabiana S.; de Oliveira, Antônio C.; Teixeira, Antônio L.; Nakaya, Helder I.; Souza, Danielle G.

    2017-01-01

    ABSTRACT Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. PMID:28442607

  3. Role of N-Methyl-D-Aspartate Receptors in Action-Based Predictive Coding Deficits in Schizophrenia.

    PubMed

    Kort, Naomi S; Ford, Judith M; Roach, Brian J; Gunduz-Bruce, Handan; Krystal, John H; Jaeger, Judith; Reinhart, Robert M G; Mathalon, Daniel H

    2017-03-15

    Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses to self-generated speech sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. To test the hypothesized contribution of NMDAR hypofunction to this disruption, we examined the effects of the NMDAR antagonist, ketamine, on predictive coding during vocalization in healthy volunteers and compared them with the effects of schizophrenia. In two separate studies, the N1 component of the event-related potential elicited by speech sounds during vocalization (talk) and passive playback (listen) were compared to assess the degree of N1 suppression during vocalization, a putative measure of auditory predictive coding. In the crossover study, 31 healthy volunteers completed two randomly ordered test days, a saline day and a ketamine day. Event-related potentials during the talk/listen task were obtained before infusion and during infusion on both days, and N1 amplitudes were compared across days. In the case-control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy control volunteers were compared. N1 suppression to self-produced vocalizations was significantly and similarly diminished by ketamine (Cohen's d = 1.14) and schizophrenia (Cohen's d = .85). Disruption of NMDARs causes dysfunction in predictive coding during vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent with the theorized contribution of NMDAR hypofunction to predictive coding deficits in schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Acute Ethanol Exposure Prevents PMA-mediated Augmentation of N-methyl-d-aspartate Receptor Function in Primary Cultured Cerebellar Granule Cells

    PubMed Central

    Reneau, Jason; Reyland, Mary E.; Popp, R. Lisa

    2011-01-01

    Many intracellular proteins and signaling cascades contribute to the ethanol sensitivity of native N-methyl-d-aspartate receptors (NMDARs). One putative protein is the serine / threonine kinase, Protein kinase C (PKC). The purpose of this study was to assess if PKC modulates the ethanol sensitivity of native NMDARs expressed in primary cultured cerebellar granule cells (CGCs). With the whole-cell patch-clamp technique, we assessed if ethanol inhibition of NMDA-induced currents (INMDA) (100 μM NMDA plus 10 μM glycine) were altered in CGCs in which the novel and classical PKC isoforms were activated by phorbol-12-myristate-13-acetate (PMA). Percent inhibition by 10, 50 or 100 mM ethanol of NMDA-induced steady-state (ISS) or peak current amplitudes (IPk) of NMDARs expressed in CGCs in which PKC was activated by a 12.5 min, 100 nM PMA exposure at 37° C did not differ from currents obtained from receptors contained in control cells. However, PMA-mediated augmentation of IPk in the absence of ethanol was abolished after brief applications of 10 or 1 mM ethanol co-applied with agonists, and this suppression of enhanced receptor function was observed for up to eight minutes post-ethanol exposure. Because we had previously shown that PMA-mediated augmentation of INMDA of NMDARs expressed in these cells is by activation of PKCα, we assessed the effect of ethanol (1, 10, 50 and 100 mM) on PKCα activity. Ethanol decreased PKCα activity by 18% for 1 mM ethanol and activity decreased with increasing ethanol concentrations with a 50% inhibition observed with 100 mM ethanol. The data suggest that ethanol disruption of PMA-mediated augmentation of INMDA may be due to a decrease in PKCα activity by ethanol. However, given the incomplete blockade of PKCα activity and the low concentration of ethanol at which this phenomenon is observed, other ethanol-sensitive signaling cascades must also be involved. PMID:21624785

  5. Identification of N-Methyl-d-aspartic Acid (NMDA) Receptor Subtype-specific Binding Sites That Mediate Direct Interactions with Scaffold Protein PSD-95*

    PubMed Central

    Cousins, Sarah L.; Stephenson, F. Anne

    2012-01-01

    N-methyl-d-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149–1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins. PMID:22375001

  6. Control of βAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons

    PubMed Central

    Chay, Andrew; Zamparo, Ilaria; Koschinski, Andreas; Zaccolo, Manuela; Blackwell, Kim T.

    2016-01-01

    Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory. PMID:26901880

  7. Extended fear conditioning reveals a role for both N-methyl-D-aspartic acid and non-N-methyl-D-aspartic acid receptors in the amygdala in the acquisition of conditioned fear.

    PubMed

    Pistell, P J; Falls, W A

    2008-09-09

    Pavlovian conditioning is a useful tool for elucidating the neural mechanisms involved with learning and memory, especially in regard to the stimuli associated with aversive events. The amygdala has been repeatedly implicated as playing a significant role in the acquisition and expression of fear. If the amygdala is critical for the acquisition of fear, then it should contribute to this processes regardless of the parameters used to induce or evaluate conditioned fear. A series of experiments using reversible inactivation techniques evaluated the role of the amygdala in the acquisition of conditioned fear when training was conducted over several days in rats. Fear-potentiated startle was used to evaluate the acquisition of conditioned fear. Pretraining infusions of N-methyl-d-aspartic acid (NMDA) or non-NMDA receptor antagonists alone into the amygdala interfered with the acquisition of fear early in training, but not later. Pretraining infusions of a cocktail consisting of both an NMDA and non-NMDA antagonist interfered with the acquisition of conditioned fear across all days of training. Taken together these results suggest the amygdala may potentially be critical for the acquisition of conditioned fear regardless of the parameters utilized.

  8. Integration of contextual cues into memory depends on "prefrontal" N-methyl-D-aspartate receptors.

    PubMed

    Starosta, Sarah; Bartetzko, Isabelle; Stüttgen, Maik C; Güntürkün, Onur

    2017-10-01

    Every learning event is embedded in a context, but not always does the context become an integral part of the memory; however, for extinction learning it usually does, resulting in context-specific conditioned responding. The neuronal mechanisms underlying contextual control have been mainly investigated for Pavlovian fear extinction with a focus on hippocampal structures. However, the initial acquisition of novel responses can be subject to contextual control as well, although the neuronal mechanisms are mostly unknown. Here, we tested the hypothesis that contextual control of acquisition depends on glutamatergic transmission underlying executive functions in forebrain areas, e.g. by shifting attention to critical cues. Thus, we antagonized N-methyl-D-aspartate (NMDA) receptors with 2-amino-5-phosphonovaleric acid (AP5) in the pigeon nidopallium caudolaterale, the functional analogue of mammalian prefrontal cortex, during the concomitant acquisition and extinction of conditioned responding to two different stimuli. This paradigm has previously been shown to lead to contextual control over extinguished as well as non-extinguished responding. NMDA receptor blockade resulted in an impairment of extinction learning, but left the acquisition of responses to a novel stimulus unaffected. Critically, when responses were tested in a different context in the retrieval phase, we observed that NMDA receptor blockade led to the abolishment of contextual control over acquisition performance. This result is predicted by a model describing response inclination as the product of associative strength and contextual gain. In this model, learning under AP5 leads to a change in the contextual gain on the learned association, possibly via the modulation of attentional mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Roles of N-methyl-d-aspartate receptors during the sensory stimulation-evoked field potential responses in mouse cerebellar cortical molecular layer.

    PubMed

    Xu, Yin-Hua; Zhang, Guang-Jian; Zhao, Jing-Tong; Chu, Chun-Ping; Li, Yu-Zi; Qiu, De-Lai

    2017-11-01

    The functions of N-methyl-d-aspartate receptors (NMDARs) in cerebellar cortex have been widely studied under in vitro condition, but their roles during the sensory stimulation-evoked responses in the cerebellar cortical molecular layer in living animals are currently unclear. We here investigated the roles of NMDARs during the air-puff stimulation on ipsilateral whisker pad-evoked field potential responses in cerebellar cortical molecular layer in urethane-anesthetized mice by electrophysiological recording and pharmacological methods. Our results showed that cerebellar surface administration of NMDA induced a dose-dependent decrease in amplitude of the facial stimulation-evoked inhibitory responses (P1) in the molecular layer, accompanied with decreases in decay time, half-width and area under curve (AUC) of P1. The IC 50 of NMDA induced inhibition in amplitude of P1 was 46.5μM. In addition, application of NMDA induced significant increases in the decay time, half-width and AUC values of the facial stimulation-evoked excitatory responses (N1) in the molecular layer. Application of an NMDAR blocker, D-APV (250μM) abolished the facial stimulation-evoked P1 in the molecular layer. These results suggested that NMDARs play a critical role during the sensory information processing in cerebellar cortical molecular layer in vivo in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synthesis and characterization of a radiolabeled derivative of the phencyclidine/N-methyl-D-aspartate receptor ligand (+)MK-801 with high specific radioactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keana, J.F.W.; Scherz, M.W.; Quarum, M.

    1988-01-01

    A (/sup 3/H)-labelled derivative of the drug (+)MK-801 with a high specific radioactivity was synthesized by first preparing a tribromo derivative of (+)MK-801 followed by catalytic reduction in the presence of (/sup 3/H)-gas and subsequent purification of the radioactive product by reversed-phase high performance liquid chromatography (RP-HPLC). This resulted in pure (+) (/sup 3/H)MK-801 with a specific radioactivity of 97 Ci/mmol. The (+) (/sup 3/H)MK-801 was shown to interact with high affinity and selectivity with the phencyclidine (PCP) receptor in guinea pig brain membrane suspensions. The PCP receptor is associated with a cation channel that is chemically gated by glutamatemore » and N-methyl-D-aspartate (NMDA). Drugs that interact with the PCP receptor block this channel. The (+) (/sup 3/H)MK-801 described here will be useful to investigate the biochemistry of PCP/NMDA receptors in experiments where a high specific radioactivity is essential.« less

  11. Mercury-induced toxicity of rat cortical neurons is mediated through N-Methyl-D-Aspartate receptors.

    PubMed

    Xu, Fenglian; Farkas, Svetlana; Kortbeek, Simone; Zhang, Fang-Xiong; Chen, Lina; Zamponi, Gerald W; Syed, Naweed I

    2012-09-14

    Mercury is a well-known neurotoxin implicated in a wide range of neurological or psychiatric disorders including autism spectrum disorders, Alzheimer's disease, Parkinson's disease, epilepsy, depression, mood disorders and tremor. Mercury-induced neuronal degeneration is thought to invoke glutamate-mediated excitotoxicity, however, the underlying mechanisms remain poorly understood. Here, we examine the effects of various mercury concentrations (including pathological levels present in human plasma or cerebrospinal fluid) on cultured, rat cortical neurons. We found that inorganic mercuric chloride (HgCl₂--at 0.025 to 25 μM) not only caused neuronal degeneration but also perturbed neuronal excitability. Whole-cell patch-clamp recordings of pyramidal neurons revealed that HgCl₂ not only enhanced the amplitude and frequency of synaptic, inward currents, but also increased spontaneous synaptic potentials followed by sustained membrane depolarization. HgCl₂ also triggered sustained, 2-5 fold rises in intracellular calcium concentration ([Ca²⁺]i). The observed increases in neuronal activity and [Ca²⁺]i were substantially reduced by the application of MK 801, a non-competitive antagonist of N-Methyl-D-Aspartate (NMDA) receptors. Importantly, our study further shows that a pre incubation or co-application of MK 801 prevents HgCl₂-induced reduction of cell viability and a disruption of β-tubulin. Collectively, our data show that HgCl₂-induced toxic effects on central neurons are triggered by an over-activation of NMDA receptors, leading to cytoskeleton instability.

  12. Glycine aggravates ischemia reperfusion-induced acute kidney injury through N-Methyl-D-Aspartate receptor activation in rats.

    PubMed

    Arora, Shiyana; Kaur, Tajpreet; Kaur, Anudeep; Singh, Amrit Pal

    2014-08-01

    The present study was designed to investigate the role of glycine in ischemia reperfusion-induced acute kidney injury (AKI) in rats. The AKI was induced in rats by occluding renal pedicles for 40 min followed by reperfusion for 24 h. The AKI was assessed by measuring creatinine clearance, blood urea nitrogen, plasma uric acid, potassium, fractional excretion of sodium, and microproteinuria. The oxidative stress in renal tissues was assessed by quantification of myeloperoxidase activity, thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. Glycine (100, 200, and 400 mg/kg, i.p.) was administered to rats 30 min before subjecting to AKI. The glycinergic receptor blocker, strychnine (0.75 mg/kg i.p.), and glycine-binding site blocker at N-methyl-D-aspartate (NMDA) receptor, kynurenic acid (300 and 600 mg/kg i.p.), were used in the present study. The ischemia reperfusion induced AKI as witnessed by significant change in plasma, urinary, and tissue parameters employed in the present study. Glycine treatment increased ischemia reperfusion-induced AKI. The treatment with strychnine did not show any protection, whereas kynurenic acid ameliorated renal ischemia reperfusion-induced AKI. The results obtained in present study suggest that glycine increases ischemia reperfusion-induced renal damage through NMDA receptor agonism rather than strychnine-sensitive glycinergic receptors. Hence, it is concluded that glycine aggravates ischemia reperfusion-induced AKI. In addition, the activation of strychnine-insensitive glycine-binding site of NMDA receptors is responsible for its renal-damaging effect rather than strychnine-sensitive glycinergic receptors.

  13. N-Methyl-D aspartate receptor-mediated effect on glucose transporter-3 levels of high glucose exposed-SH-SY5Y dopaminergic neurons.

    PubMed

    Engin, Ayse Basak; Engin, Evren Doruk; Karakus, Resul; Aral, Arzu; Gulbahar, Ozlem; Engin, Atilla

    2017-11-01

    High glucose and insulin lead to neuronal insulin resistance. Glucose transport into the neurons is achieved by regulatory induction of surface glucose transporter-3 (GLUT3) instead of the insulin. N-methyl-D aspartate (NMDA) receptor activity increases GLUT3 expression. This study explored whether an endogenous NMDA receptor antagonist, kynurenic acid (KynA) affects the neuronal cell viability at high glucose concentrations. SH-SY5Y neuroblastoma cells were exposed to 150-250 mg/dL glucose and 40 μU/mL insulin. In KynA and N-nitro-l-arginine methyl ester (L-NAME) supplemented cultures, oxidative stress, mitochondrial metabolic activity (MTT), nitric oxide as nitrite+nitrate (NOx) and GLUT3 were determined at the end of 24 and 48-h incubation periods. Viable cells were counted by trypan blue dye. High glucose-exposed SH-SY5Y cells showed two-times more GLUT3 expression at second 24-h period. While GLUT3-stimulated glucose transport and oxidative stress was increased, total mitochondrial metabolic activity was significantly reduced. Insulin supplementation to high glucose decreased NOx synthesis and GLUT3 levels, in contrast oxidative stress increased three-fold. KynA significantly reduced oxidative stress, and increased MTT by regulating NOx production and GLUT3 expression. KynA is a noteworthy compound, as an endogenous, specific NMDA receptor antagonist; it significantly reduces oxidative stress, while increasing cell viability at high glucose and insulin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Increased serum anti-N-methyl-D-aspartate receptor antibody immunofluorescence in psychiatric patients with past catatonia

    PubMed Central

    Lin, Chin-Chuen; Hung, Yi-Yung; Tsai, Meng-Chang

    2017-01-01

    Objective Anti-N-methyl-D-aspartate receptor (NMDAR) antibody was thought to be the cause of anti-NMDAR encephalitis, with manifestations similar to catatonia and schizophrenia. Anti-NMDAR antibody in neuropsychiatric patients who had catatonia before were investigated in a follow-up evaluation. The intensity of antibody immunofluorescence was quantified and compared with healthy controls. Method Nineteen patients (eight males and eleven females) agreed to be followed-up. Thirteen had the diagnosis of schizophrenia, two had the diagnosis of major depressive disorder, two had bipolar disorder, one had postpartum depression, and one had herpes simplex encephalitis. No patient had catatonia during the follow-up. Nineteen sex-matched healthy controls were recruited. Results Using Mann-Whitney U test, patients had greater intensity of anti-NMDAR antibody immunofluorescence than the healthy controls (121,979 ± 86,526 vs. 47,692 ± 26,102, p = 0.003). No correlation was found between immunofluorescence intensity and catatonia scales or symptom severity scores. Neuropsychiatric patients with past catatonia showed greater anti-NMDAR antibody response than the healthy controls. Conclusion NMDAR dysfunction might play a role in the mechanism underlying catatonia. Further studies are needed to confirm this finding. PMID:29073246

  15. Increased serum anti-N-methyl-D-aspartate receptor antibody immunofluorescence in psychiatric patients with past catatonia.

    PubMed

    Lin, Chin-Chuen; Hung, Yi-Yung; Tsai, Meng-Chang; Huang, Tiao-Lai

    2017-01-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) antibody was thought to be the cause of anti-NMDAR encephalitis, with manifestations similar to catatonia and schizophrenia. Anti-NMDAR antibody in neuropsychiatric patients who had catatonia before were investigated in a follow-up evaluation. The intensity of antibody immunofluorescence was quantified and compared with healthy controls. Nineteen patients (eight males and eleven females) agreed to be followed-up. Thirteen had the diagnosis of schizophrenia, two had the diagnosis of major depressive disorder, two had bipolar disorder, one had postpartum depression, and one had herpes simplex encephalitis. No patient had catatonia during the follow-up. Nineteen sex-matched healthy controls were recruited. Using Mann-Whitney U test, patients had greater intensity of anti-NMDAR antibody immunofluorescence than the healthy controls (121,979 ± 86,526 vs. 47,692 ± 26,102, p = 0.003). No correlation was found between immunofluorescence intensity and catatonia scales or symptom severity scores. Neuropsychiatric patients with past catatonia showed greater anti-NMDAR antibody response than the healthy controls. NMDAR dysfunction might play a role in the mechanism underlying catatonia. Further studies are needed to confirm this finding.

  16. Periventricular anteroventral third ventricle lesions diminish the pressor response produced by systemic injection of the N-methyl-D-aspartate receptor antagonist MK-801

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Beltz, T. G.; Lewis, S. J.; Johnson, A. K.

    1999-01-01

    This study examined whether electrolytic ablation of the periventricular anteroventral third ventricle (AV3V) would affect the increases in mean arterial blood pressure (MAP) and heart rate (HR) in conscious rats produced by systemic injection of the centrally acting N-methyl-D-aspartate (NMDA) receptor ion-channel blocker, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine (MK-801; 250 microgram/kg, i.v.). MK-801 produced a smaller increase in MAP in rats with AV3V lesions than in sham-lesion rats (+36+/-2% vs. +52+/-5%, respectively, P<0.05). In contrast, MK-801 produced similar increases in HR in the AV3V- and sham-lesion rats (+28+/-3% vs. +22+/-4%, respectively, P>0.05). These findings demonstrate that the MK-801-induced pressor response is dependent upon the integrity of the AV3V region, whereas the MK-801-induced tachycardia is not. Copyright 1999 Elsevier Science B.V.

  17. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    PubMed

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  18. An N-methyl-D-aspartate receptor-independent excitatory action of partial reduction of extracellular [Mg2+] in CA1-region of rat hippocampal slices.

    PubMed

    Hamon, B; Stanton, P K; Heinemann, U

    1987-03-31

    Partial reduction of [Mg2+]o from 2 to 1 mM markedly enhanced neuronal responses evoked by Schaffer collateral-commissural fiber stimulation in the CA1-region of rat hippocampal slices. The amplitude of extracellular population potentials recorded in the CA1-pyramidal cell layer and maximum dV/dt of extracellular population EPSP's recorded in the CA1-pyramidal apical dendritic layer were both increased. However, unlike findings from slices where Mg2+ was completely removed from the bathing medium, there was no spontaneous or evoked epileptiform activity, and the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (2-APV) did not antagonize the enhancement of evoked responses. These results indicate that, in addition to the participation of NMDA receptors in the epileptiform activity observed when Mg2+ is completely removed from the bathing medium, there is also an NMDA receptor-independent excitatory action of partial reduction of [Mg2+]o in hippocampal slices.

  19. Characterization of N-methyl-D-aspartate-evoked taurine release in the developing and adult mouse hippocampus.

    PubMed

    Saransaari, P; Oja, S S

    2003-01-01

    Taurine is an inhibitory amino acid acting as an osmoregulator and neuroromodulator in the brain, with neuroprotective properties. The ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) greatly potentiates taurine release from brain preparations in both normal and ischemic conditions, the effect being particularly marked in the developing hippocampus. We now characterized the regulation of NMDA-stimulated taurine release from hippocampal slices from adult (3-month-old) and developing (7-day-old) mouse using a superfusion system. The NMDA-stimulated taurine release was receptor-mediated in both adult and developing mouse hippocampus. In adults, only NO-generating compounds, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and hydroxylamine reduced the release, as did also NO synthase inhibitors, 7-nitroindazole and nitroarginine, indicating that the release is mediated by the NO/cGMP pathway. On the other hand, the regulation of the NMDA-evoked taurine release proved to be somewhat complex in the immature hippocampus. It was not affected by the NOergic compounds, but enhanced by the protein kinase C activator 4 beta-phorbol 12-myristate 13-acetate and adenosine receptor A(1) agonists, N(6)-cyclohexyladenosine and R(-)N(6)-(2-phenylisopropyl)adenosine in a receptor-mediated manner. The activation of both ionotropic 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors and metabotropic glutamate group I receptors also enhanced the evoked release. The NMDA-receptor-stimulated taurine release could be a part of the neuroprotective properties of taurine, being important particularly under cell-damaging conditions in the developing hippocampus and hence preventing excitotoxicity.

  20. N-methyl-D-aspartate receptor antagonist effects on prefrontal cortical connectivity better model early than chronic schizophrenia.

    PubMed

    Anticevic, Alan; Corlett, Philip R; Cole, Michael W; Savic, Aleksandar; Gancsos, Mark; Tang, Yanqing; Repovs, Grega; Murray, John D; Driesen, Naomi R; Morgan, Peter T; Xu, Ke; Wang, Fei; Krystal, John H

    2015-03-15

    Prefrontal cortex (PFC) function contributes to schizophrenia onset and progression. However, little is known about neural mechanisms behind PFC functional alterations along illness stages. Recent pharmacologic studies indicate that glutamate dysfunction may produce increased functional connectivity. However, pharmacologic models of schizophrenia overlook effects of illness progression on PFC function. This study compared N-methyl-D-aspartate glutamate receptor (NMDAR) antagonist effects in healthy volunteers with stages of schizophrenia with respect to PFC functional connectivity. First, we tested ketamine effects on PFC functional connectivity in healthy volunteers in a data-driven way (n = 19). Next, we compared healthy subjects (n = 96) with three clinical groups: individuals at high risk for schizophrenia (n = 21), people early in their course of schizophrenia (EC-SCZ) (n = 28), and patients with chronic illness (n = 20). Across independent analyses, we used data-driven global brain connectivity techniques restricted to PFC to identify functional dysconnectivity. Results revealed robust PFC hyperconnectivity in healthy volunteers administered ketamine (Cohen's d = 1.46), resembling individuals at high risk for schizophrenia and EC-SCZ. Hyperconnectivity was not found in patients with chronic illness relative to EC-SCZ patients. Results provide the first evidence that ketamine effects on PFC functional connectivity resemble early course but not chronic schizophrenia. Results suggest an illness phase-specific relevance of NMDAR antagonist administration for prefrontal dysconnectivity associated with schizophrenia. This finding has implications for the neurobiology of illness progression and for the widespread use of NMDAR antagonists in the development of therapeutics for schizophrenia. Copyright © 2015. Published by Elsevier Inc.

  1. Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood.

    PubMed

    Novick, Andrew M; Mears, Mackenzie; Forster, Gina L; Lei, Yanlin; Tejani-Butt, Shanaz M; Watt, Michael J

    2016-05-01

    Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evidence for a causative role of N-methyl-D-aspartate receptors in an in vitro model of alcohol withdrawal hyperexcitability.

    PubMed

    Thomas, M P; Monaghan, D T; Morrisett, R A

    1998-10-01

    Synaptic mechanisms underlying hyperexcitability due to withdrawal from chronic ethanol exposure were investigated in a hippocampal explant model system using electrophysiological techniques. Whole-cell voltage clamp recordings from CA1 pyramidal cells demonstrated that acute ethanol exposure inhibited N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents by over 40%. Chronic ethanol exposure for 6 to 11 days at 35 or 75 mM induced no differences from control explants in the fast component of the population synaptic response (non-NMDAR-mediated). Prolonged field potential recordings (to 10 hr) were used to monitor the withdrawal process in vitro. Ethanol-exposed explants from both 35 and 75 mM groups displayed an increase (60% and 89%, respectively) in the NMDAR-mediated component of synaptic transmission on withdrawal from chronic exposure. Prolonged tonic-clonic electrographic seizure activity was consistently observed after ethanol withdrawal only after the increase in NMDAR function. This hyperexcitability was inhibited by the NMDAR antagonist D-2-amino-5-phosphonovaleric acid and returned once the NMDAR component was reestablished after antagonist washout. In situ hybridization studies suggest that expression of NR2B subunit mRNA may be enhanced in explants after chronic ethanol exposure. No lasting differences were observed in the NMDAR component after acute in vitro ethanol exposure and withdrawal. These data suggest that the occurance of ethanol withdrawal hyperexcitability in this system may be directly dependent on alterations in NMDAR function after chronic exposure. Since this region and others that contain ethanol sensitive NMDARs may serve as epileptic foci, long term alterations in NMDAR function may be expected to generate paroxysmal depolarizing shifts underlying ictal events after withdrawal from ethanol exposure.

  3. Anti–N-Methyl-D-Aspartate Receptor (NMDAR) Encephalitis in Children and Adolescents

    PubMed Central

    Florance, Nicole R.; Davis, Rebecca L.; Lam, Christopher; Szperka, Christina; Zhou, Lei; Ahmad, Saba; Campen, Cynthia J.; Moss, Heather; Peter, Nadja; Gleichman, Amy J.; Glaser, Carol A.; Lynch, David R.; Rosenfeld, Myrna R.; Dalmau, Josep

    2010-01-01

    Objective To report the clinical features of anti–N-methyl-D-aspartate receptor (NMDAR) encephalitis in patients ≤ 18 years old. Methods Information was obtained by the authors or referring physicians. Antibodies were determined by immunocytochemistry and enzyme-linked immunosorbent assay (ELISA) using HEK293 cells ectopically expressing NR1. Results Over an 8-month period, 81 patients (12 male) with anti-NMDAR encephalitis were identified. Thirty-two (40%) were ≤18 years old (youngest 23 months, median 14 years); 6 were male. The frequency of ovarian teratomas was 56% in women >18 years old, 31% in girls ≤18 years old (p = 0.05), and 9% in girls ≤14 years old ( p = 0.008). None of the male patients had tumors. Of 32 patients ≤18 years old, 87.5% presented with behavioral or personality change, sometimes associated with seizures and frequent sleep dysfunction; 9.5% with dyskinesias or dystonia; and 3% with speech reduction. On admission, 53% had severe speech deficits. Eventually, 77% developed seizures, 84% stereotyped movements, 86% autonomic instability, and 23% hypoventilation. Responses to immunotherapy were slow and variable. Overall, 74% had full or substantial recovery after immunotherapy or tumor removal. Neurological relapses occurred in 25%. At the last follow-up, full recovery occurred more frequently in patients who had a teratoma that was removed (5/8) than in those without a teratoma (4/23; p = 0.03). Interpretation Anti-NMDAR encephalitis is increasingly recognized in children, comprising 40% of all cases. Younger patients are less likely to have tumors. Behavioral and speech problems, seizures, and abnormal movements are common early symptoms. The phenotype resembles that of the adults, although dysautonomia and hypoventilation are less frequent or severe in children. PMID:19670433

  4. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents.

    PubMed

    Florance, Nicole R; Davis, Rebecca L; Lam, Christopher; Szperka, Christina; Zhou, Lei; Ahmad, Saba; Campen, Cynthia J; Moss, Heather; Peter, Nadja; Gleichman, Amy J; Glaser, Carol A; Lynch, David R; Rosenfeld, Myrna R; Dalmau, Josep

    2009-07-01

    To report the clinical features of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in patients < or = 18 years old. Information was obtained by the authors or referring physicians. Antibodies were determined by immunocytochemistry and enzyme-linked immunosorbent assay (ELISA) using HEK293 cells ectopically expressing NR1. Over an 8-month period, 81 patients (12 male) with anti-NMDAR encephalitis were identified. Thirty-two (40%) were < or =18 years old (youngest 23 months, median 14 years); 6 were male. The frequency of ovarian teratomas was 56% in women >18 years old, 31% in girls < or =18 years old (p = 0.05), and 9% in girls < or =14 years old (p = 0.008). None of the male patients had tumors. Of 32 patients < or =18 years old, 87.5% presented with behavioral or personality change, sometimes associated with seizures and frequent sleep dysfunction; 9.5% with dyskinesias or dystonia; and 3% with speech reduction. On admission, 53% had severe speech deficits. Eventually, 77% developed seizures, 84% stereotyped movements, 86% autonomic instability, and 23% hypoventilation. Responses to immunotherapy were slow and variable. Overall, 74% had full or substantial recovery after immunotherapy or tumor removal. Neurological relapses occurred in 25%. At the last follow-up, full recovery occurred more frequently in patients who had a teratoma that was removed (5/8) than in those without a teratoma (4/23; p = 0.03). Anti-NMDAR encephalitis is increasingly recognized in children, comprising 40% of all cases. Younger patients are less likely to have tumors. Behavioral and speech problems, seizures, and abnormal movements are common early symptoms. The phenotype resembles that of the adults, although dysautonomia and hypoventilation are less frequent or severe in children. Ann Neurol 2009;66:11-18.

  5. Anti-N-methyl-D-aspartate receptor encephalitis after Herpes simplex virus-associated encephalitis: an emerging disease with diagnosis and therapeutic challenges.

    PubMed

    Schein, Flora; Gagneux-Brunon, Amandine; Antoine, Jean-Christophe; Lavernhe, Sylvie; Pillet, Sylvie; Paul, Stéphane; Frésard, Anne; Boutet, Claire; Grange, Rémi; Cazorla, Céline; Lucht, Frédéric; Botelho-Nevers, Elisabeth

    2017-08-01

    Morbidity and mortality of Herpes simplex virus encephalitis (HSE) remain high. Relapses of neurological signs may occur after initial clinical improvement under acyclovir treatment. We report here a case of post-HSE anti-N-methyl-d-aspartate receptor-mediated encephalitis in an adult and perform a systematic search on PubMed to identify other cases in adults. We identified 11 previously published cases, to discuss diagnostic and therapeutic management. Symptoms in adults are often inappropriate behaviors, confusion and agitation. Diagnosis of anti-NMDA-R encephalitis after HSE is often delayed. Treatment consists in steroids, plasma exchange, and rituximab. Prognosis is often favorable. Anti-NMDA-R antibodies should be searched in cerebrospinal fluid of patients with unexpected evolution of HSE. This emerging entity reopens the hot debate about steroids in HSE.

  6. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors.

    PubMed

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Ostadhadi, Sattar; Amiri, Shayan; Haj-Mirzaian, Arvin; Dehpour, AhmadReza

    2016-06-01

    Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.

  7. Activation of N-methyl-d-aspartate receptors reduces heart rate variability and facilitates atrial fibrillation in rats.

    PubMed

    Shi, Shaobo; Liu, Tao; Wang, Dandan; Zhang, Yan; Liang, Jinjun; Yang, Bo; Hu, Dan

    2017-07-01

    The goal of this study was to assess the effects of N-methyl-d-aspartate (NMDA) receptors activation on heart rate variability (HRV) and susceptibility to atrial fibrillation (AF). Rats were randomized for treatment with saline, NMDA (agonist of NMDA receptors), or NMDA plus MK-801 (antagonist of NMDA receptors) for 2 weeks. Heart rate variability was evaluated by using implantable electrocardiogram telemeters. Atrial fibrillation susceptibility was assessed with programmed stimulation in isolated hearts. Compared with the controls, the NMDA-treated rats displayed a decrease in the standard deviation of normal RR intervals, the standard deviation of the average RR intervals, the mean of the 5-min standard deviations of RR intervals, the root mean square of successive differences, and high frequency (HF); and an increase in low frequency (LF) and LF/HF (all P< 0.01). Additionally, the NMDA-treated rats showed prolonged activation latency and reduced effective refractory period (all P< 0.01). Importantly, AF was induced in all NMDA-treated rats. While atrial fibrosis developed, connexin40 downgraded and metalloproteinase 9 upgraded in the NMDA-treated rats (all P< 0.01). Most of the above alterations were mitigated by co-administering with MK-801. These results indicate that NMDA receptors activation reduces HRV and enhances AF inducibility, with cardiac autonomic imbalance, atrial fibrosis, and degradation of gap junction protein identified as potential mechanistic contributors. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  8. Pharmacological specificity of N-methyl-D-aspartate discrimination in rats.

    PubMed

    Grech, D M; Willetts, J; Balster, R L

    1993-04-01

    The purpose of this study was to provide further information on the usefulness of N-methyl-D-aspartate (NMDA) discrimination in rats as a behavioral model for NMDA receptor activation. The pharmacological specificity of the NMDA discriminative stimulus was examined in rats trained to discriminate 30 mg/kg, i.p. NMDA from saline using a 2-lever fixed-ratio (FR) 32 food reinforcement schedule. Pharmacologically diverse centrally-acting agents were examined for their ability to substitute for NMDA. Morphine did not substitute for NMDA; neither did the central stimulants, caffeine and (+)-amphetamine, which produced a maximum mean of only 16 and 35% NMDA-lever responding, respectively. Pentylenetetrazol and picrotoxin also did not substitute for NMDA. Compounds interacting with cholinergic neurotransmission including nicotine, physostigmine, arecoline and mecamylamine, produced at best, only intermediate levels of NMDA-lever responding (32-61%), with the highest levels of NMDA-lever responding generally occurring at doses that also reduced rates of responding. These results suggest that the discriminative stimulus properties of NMDA are dissimilar from those of a number of centrally-acting drugs. Combined with the results of studies indicating that the NMDA discriminative stimulus can be antagonized by competitive NMDA antagonists, these results provide further evidence that NMDA receptor activation is the basis of NMDA discrimination and that this model may be useful for studying site-selective NMDA agonists and antagonists.

  9. Role of Autoantibodies to N-Methyl-d-Aspartate (NMDA) Receptor in Relapsing Herpes Simplex Encephalitis: A Retrospective, One-Center Experience.

    PubMed

    Sutcu, Murat; Akturk, Hacer; Somer, Ayper; Tatli, Burak; Torun, Selda Hancerli; Yıldız, Edibe Pembegul; Şık, Guntulu; Citak, Agop; Agacfidan, Ali; Salman, Nuran

    2016-03-01

    Post-herpes simplex virus encephalitis relapses have been recently associated with autoimmunity driven by autoantibodies against N-methyl-d-aspartate (NMDA) receptors. Because it offers different treatment options, determination of this condition is important. Between 2011 and 2014, 7 children with proven diagnosis of herpes simplex virus encephalitis were identified in a university hospital of Istanbul. Two patients had neurologic relapse characterized mainly by movement disorders 2 to 3 weeks after initial encephalitis. The first patient received a second 14 days of acyclovir treatment together with antiepileptic drugs and left with severe neurologic sequelae. The second patient was found to be NMDA receptors antibody positive in the cerebrospinal fluid. She was treated with intravenous immunoglobulin and prednisolone. She showed substantial improvement, gradually regaining lost neurologic abilities. Post-herpes simplex virus encephalitis relapses may frequently be immune-mediated rather than a viral reactivation, particularly in children displaying movement disorders like choreoathetosis. Immunotherapy may provide benefit for this potentially devastating condition, like the case described in this report. © The Author(s) 2015.

  10. Initial clinical presentation of young children with N-methyl-d-aspartate receptor encephalitis.

    PubMed

    Favier, Marion; Joubert, Bastien; Picard, Géraldine; Rogemond, Véronique; Thomas, Laure; Rheims, Sylvain; Bailhache, Marion; Villega, Frédéric; Pédespan, Jean-Michel; Berzero, Giulia; Psimaras, Dimitri; Antoine, Jean-Christophe; Desestret, Virginie; Honnorat, Jérôme

    2018-05-01

    Autoimmune encephalitis with anti-N-methyl-d-aspartate receptor autoantibodies (NMDA-R-Abs) is a recently described disease affecting adult and pediatric patients. Symptoms of the disease are now perfectly described in the adult population but the clinical presentation is less known in young children. The aim of the present study was to describe the clinical presentation and the specificities of symptoms presented by young children with NMDA-R-Abs encephalitis to improve diagnosis of this disease, and to compare these to a series of previously published female adult patients. Fifty cases of children younger than twelve years of age diagnosed with NMDA-R-Abs encephalitis between January 1, 2007 and December 31, 2016 (27 females and 23 males) were retrospectively studied. The first neurological symptoms observed in young children with NMDA-R-Abs encephalitis were characterized by seizure (72%), especially focal seizure (42%), within a median of 15 days before other encephalitis symptoms; other patients mostly had behavioral disorders (26%). The seizures were frequently difficult to diagnose because of the transient unilateral dystonic or tonic posturing presentation or sudden unilateral pain in the absence of clonic movements. A post-ictal motor deficit was also frequently observed. This clinical presentation is different from that observed in adult females with NMDA-R-Abs encephalitis who initially present mainly psychiatric disorders (67%) or cognitive impairment (19%), and less frequently seizures (14%). The diagnosis of NMDA-R-Abs encephalitis should be systematically considered in young children of both sexes who present neurological symptoms suggesting recent seizures (focal or generalized) without obvious other etiology. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  11. Septohippocampal GABAergic neurons mediate the altered behaviors induced by n-methyl-D-aspartate receptor antagonists.

    PubMed

    Ma, Jingyi; Tai, Siew Kian; Leung, L Stan

    2012-12-01

    We hypothesize that selective lesion of the septohippocampal GABAergic neurons suppresses the altered behaviors induced by an N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine or MK-801. In addition, we hypothesize that septohippocampal GABAergic neurons generate an atropine-resistant theta rhythm that coexists with an atropine-sensitive theta rhythm in the hippocampus. Infusion of orexin-saporin (ore-SAP) into the medial septal area decreased parvalbumin-immunoreactive (GABAergic) neurons by ~80%, without significantly affecting choline-acetyltransferase-immunoreactive (cholinergic) neurons. The theta rhythm during walking, or the immobility-associated theta induced by pilocarpine, was not different between ore-SAP and sham-lesion rats. Walking theta was, however, more disrupted by atropine sulfate in ore-SAP than in sham-lesion rats. MK-801 (0.5 mg/kg i.p.) induced hyperlocomotion associated with an increase in frequency, but not power, of the hippocampal theta in both ore-SAP and sham-lesion rats. However, MK-801 induced an increase in 71-100 Hz gamma waves in sham-lesion but not ore-SAP lesion rats. In sham-lesion rats, MK-801 induced an increase in locomotion and an impairment of prepulse inhibition (PPI), and ketamine (3 mg/kg s.c.) induced a loss of gating of hippocampal auditory evoked potentials. MK-801-induced behavioral hyperlocomotion and PPI impairment, and ketamine-induced auditory gating deficit were reduced in ore-SAP rats as compared to sham-lesion rats. During baseline without drugs, locomotion and auditory gating were not different between ore-SAP and sham-lesion rats, and PPI was slightly but significantly increased in ore-SAP as compared with sham lesion rats. It is concluded that septohippocampal GABAergic neurons are important for the expression of hyperactive and psychotic symptoms an enhanced hippocampal gamma activity induced by ketamine and MK-801, and for generating an atropine-resistant theta. Selective suppression of

  12. Repeated ketamine administration alters N-methyl-d-aspartic acid receptor subunit gene expression: Implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans

    PubMed Central

    Lipsky, Robert H

    2015-01-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-d-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. PMID:25245072

  13. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    PubMed

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  14. Contribution of N-methyl-D-aspartate receptors to attention and episodic spatial memory during senescence

    PubMed Central

    Guidi, Michael; Rani, Asha; Karic, Semir; Severance, Barrett; Kumar, Ashok; Foster, Thomas C.

    2015-01-01

    A decrease in N-methyl-D-aspartate receptor (NMDAR) function is associated with age-related cognitive impairments. However, NMDAR antagonists are prescribed for cognitive decline associated with age-related neurodegenerative disease, raising questions as to the role of NMDAR activity in cognitive function during aging. The current studies examined effects of NMDAR blockade on cognitive task that are sensitive to aging. Young and middle-age rats were trained on the five-choice serial reaction time task (5-CSRTT) and challenged with MK-801 (0.025, 0.05, and 0.1 mg/kg or vehicle). Attention deficits were apparent in middle-age and performance of young and middle-age rats was enhanced for low doses of MK-801 (0.025 and 0.05). The beneficial effects on attention were reversed by the highest dose of MK-801. Older animals exhibited a delay-dependent impairment of episodic spatial memory examined on a delayed-matching to place water maze task. Similarly, a low dose of MK-801 (0.05 mg/kg) impaired performance with increasing delay and aged animals were more susceptible to disruption by NMDAR blockade. Despite MK-801 impairment of episodic spatial memory, MK-801 had minimal effects on spatial reference memory. Our results confirm that NMDARs contribute to rapidly acquired and flexible spatial memory and support the idea that a decline in NMDAR function contributes to the age-related impairments in cognition. PMID:26234588

  15. Contribution of N-methyl-D-aspartate receptors to attention and episodic spatial memory during senescence.

    PubMed

    Guidi, Michael; Rani, Asha; Karic, Semir; Severance, Barrett; Kumar, Ashok; Foster, Thomas C

    2015-11-01

    A decrease in N-methyl-D-aspartate receptor (NMDAR) function is associated with age-related cognitive impairments. However, NMDAR antagonists are prescribed for cognitive decline associated with age-related neurodegenerative disease, raising questions as to the role of NMDAR activity in cognitive function during aging. The current studies examined effects of NMDAR blockade on cognitive task that are sensitive to aging. Young and middle-age rats were trained on the five-choice serial reaction time task (5-CSRTT) and challenged with MK-801 (0.025, 0.05, and 0.1mg/kg or vehicle). Attention deficits were apparent in middle-age and performance of young and middle-age rats was enhanced for low doses of MK-801 (0.025 and 0.05). The beneficial effects on attention were reversed by the highest dose of MK-801. Older animals exhibited a delay-dependent impairment of episodic spatial memory examined on a delayed-matching to place water maze task. Similarly, a low dose of MK-801 (0.05mg/kg) impaired performance with increasing delay and aged animals were more susceptible to disruption by NMDAR blockade. Despite MK-801 impairment of episodic spatial memory, MK-801 had minimal effects on spatial reference memory. Our results confirm that NMDARs contribute to rapidly acquired and flexible spatial memory and support the idea that a decline in NMDAR function contributes to the age-related impairments in cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Myosin IIb-dependent Regulation of Actin Dynamics Is Required for N-Methyl-D-aspartate Receptor Trafficking during Synaptic Plasticity.

    PubMed

    Bu, Yunfei; Wang, Ning; Wang, Shaoli; Sheng, Tao; Tian, Tian; Chen, Linlin; Pan, Weiwei; Zhu, Minsheng; Luo, Jianhong; Lu, Wei

    2015-10-16

    N-Methyl-d-aspartate receptor (NMDAR) synaptic incorporation changes the number of NMDARs at synapses and is thus critical to various NMDAR-dependent brain functions. To date, the molecules involved in NMDAR trafficking and the underlying mechanisms are poorly understood. Here, we report that myosin IIb is an essential molecule in NMDAR synaptic incorporation during PKC- or θ burst stimulation-induced synaptic plasticity. Moreover, we demonstrate that myosin light chain kinase (MLCK)-dependent actin reorganization contributes to NMDAR trafficking. The findings from additional mutual occlusion experiments demonstrate that PKC and MLCK share a common signaling pathway in NMDAR-mediated synaptic regulation. Because myosin IIb is the primary substrate of MLCK and can regulate actin dynamics during synaptic plasticity, we propose that the MLCK- and myosin IIb-dependent regulation of actin dynamics is required for NMDAR trafficking during synaptic plasticity. This study provides important insights into a mechanical framework for understanding NMDAR trafficking associated with synaptic plasticity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity.

    PubMed

    Planagumà, Jesús; Haselmann, Holger; Mannara, Francesco; Petit-Pedrol, Mar; Grünewald, Benedikt; Aguilar, Esther; Röpke, Luise; Martín-García, Elena; Titulaer, Maarten J; Jercog, Pablo; Graus, Francesc; Maldonado, Rafael; Geis, Christian; Dalmau, Josep

    2016-09-01

    To demonstrate that ephrin-B2 (the ligand of EphB2 receptor) antagonizes the pathogenic effects of patients' N-methyl-D-aspartate receptor (NMDAR) antibodies on memory and synaptic plasticity. One hundred twenty-two C57BL/6J mice infused with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, with or without ephrin-B2, were investigated. CSF was infused through ventricular catheters connected to subcutaneous osmotic pumps over 14 days. Memory, behavioral tasks, locomotor activity, presence of human antibodies specifically bound to hippocampal NMDAR, and antibody effects on the density of cell-surface and synaptic NMDAR and EphB2 were examined at different time points using reported techniques. Short- and long-term synaptic plasticity were determined in acute brain sections; the Schaffer collateral pathway was stimulated and the field excitatory postsynaptic potentials were recorded in the CA1 region of the hippocampus. Mice infused with patients' CSF, but not control CSF, developed progressive memory deficit and depressive-like behavior along with deposits of NMDAR antibodies in the hippocampus. These findings were associated with a decrease of the density of cell-surface and synaptic NMDAR and EphB2, and marked impairment of long-term synaptic plasticity without altering short-term plasticity. Administration of ephrin-B2 prevented the pathogenic effects of the antibodies in all the investigated paradigms assessing memory, depressive-like behavior, density of cell-surface and synaptic NMDAR and EphB2, and long-term synaptic plasticity. Administration of ephrin-B2 prevents the pathogenic effects of anti-NMDAR encephalitis antibodies on memory and behavior, levels of cell-surface NMDAR, and synaptic plasticity. These findings reveal a strategy beyond immunotherapy to antagonize patients' antibody effects. Ann Neurol 2016;80:388-400. © 2016 American Neurological Association.

  18. N-methyl-d-aspartate receptors, learning and memory: chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning.

    PubMed

    Morris, R G M; Steele, R J; Bell, J E; Martin, S J

    2013-03-01

    Three experiments were conducted to contrast the hypothesis that hippocampal N-methyl-d-aspartate (NMDA) receptors participate directly in the mechanisms of hippocampus-dependent learning with an alternative view that apparent impairments of learning induced by NMDA receptor antagonists arise because of drug-induced neuropathological and/or sensorimotor disturbances. In experiment 1, rats given a chronic i.c.v. infusion of d-AP5 (30 mm) at 0.5 μL/h were selectively impaired, relative to aCSF-infused animals, in place but not cued navigation learning when they were trained during the 14-day drug infusion period, but were unimpaired on both tasks if trained 11 days after the minipumps were exhausted. d-AP5 caused sensorimotor disturbances in the spatial task, but these gradually worsened as the animals failed to learn. Histological assessment of potential neuropathological changes revealed no abnormalities in d-AP5-treated rats whether killed during or after chronic drug infusion. In experiment 2, a deficit in spatial learning was also apparent in d-AP5-treated rats trained on a spatial reference memory task involving two identical but visible platforms, a task chosen and shown to minimise sensorimotor disturbances. HPLC was used to identify the presence of d-AP5 in selected brain areas. In Experiment 3, rats treated with d-AP5 showed a delay-dependent deficit in spatial memory in the delayed matching-to-place protocol for the water maze. These data are discussed with respect to the learning mechanism and sensorimotor accounts of the impact of NMDA receptor antagonists on brain function. We argue that NMDA receptor mechanisms participate directly in spatial learning. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Modafinil restores methamphetamine induced object-in-place memory deficits in rats independent of glutamate N-methyl d-aspartate receptor expression

    PubMed Central

    Reichel, Carmela M.; Gilstrap, Meghin G.; Ramsey, Lauren A.; See, Ronald E.

    2013-01-01

    Background Chronic methamphetamine (meth) abuse in humans can lead to various cognitive deficits, including memory loss. We previously showed that chronic meth self-administration impairs memory for objects relative to their location and surrounding objects. Here, we demonstrate that the cognitive enhancer, modafinil, reversed this cognitive impairment independent of glutamate N-methyl d-aspartate (GluN) receptor expression. Methods Male, Long-Evans rats underwent a noncontingent (Experiment 1) or contingent (Experiment 2) meth regimen. After one week of abstinence, rats were tested for object-in-place recognition memory. Half the rats received either vehicle or modafinil (100 mg/kg) immediately after object familiarization. Rats (Experiment 2) were sacrificed immediately after the test and brain areas that comprise the key circuitry for object in place performance were manually dissected. Subsequently, glutamate receptor expression was measured from a crude membrane fraction using western blot procedures. Results Saline-treated rats spent more time interacting with the objects in changed locations, while meth-treated rats distributed their time equally among all objects. Meth-treated rats that received modafinil showed a reversal in the deficit, whereby they spent more time exploring the objects in the new locations. GluN2B receptor subtype was decreased in the perirhinal cortex, yet remained unaffected in the prefrontal cortex and hippocampus of meth rats. This meth-induced down regulation occurred whether or not meth experienced rats received vehicle or modafinil. Conclusions These data support the use of modafinil for memory impairment in meth addiction. Further studies are needed to elucidate the neural mechanisms of modafinil reversal of cognitive impairments. PMID:24120858

  20. Blockade of N-methyl-D-aspartate Receptors May Protect against Ischemic Damage in the Brain

    NASA Astrophysics Data System (ADS)

    Simon, R. P.; Swan, J. H.; Griffiths, T.; Meldrum, B. S.

    1984-11-01

    In rats ischemia of the forebrain induced by a 30-minute occlusion of the carotid artery, followed by 120 minutes of arterial reperfusion, produced ischemic lesions of selectively vulnerable pyramidal cells in both hippocampi. Focal microinfusion into the dorsal hippocampus of 2-amino-7-phosphonoheptanoic acid, an antagonist of excitation at the N-methyl-d-asparate-preferring receptor, before ischemia was induced protected against the development of ischemic damage. It is proposed that excitatory neurotransmission plays an important role in selective neuronal loss due to cerebral ischemia.

  1. Effects of N-methyl-D-aspartate receptor ligands on sensitivity to reinforcer magnitude and delayed reinforcement in a delay-discounting procedure

    PubMed Central

    Yates, Justin R; Gunkel, Benjamin T; Rogers, Katherine K; Hughes, Mallory N; Prior, Nicholas A

    2016-01-01

    Rationale The N-methyl-D-aspartate (NMDA) receptor has been recently identified as an important mediator of impulsive choice, as assessed in delay discounting. Although discounting is independently influenced by sensitivity to reinforcer magnitude and delayed reinforcement, few studies have examined how NMDA receptor ligands differentially affect these parameters. Objectives The current study examined the effects of various NMDA receptor ligands on sensitivity to reinforcer magnitude and delayed reinforcement in a delay-discounting procedure. Methods Following behavioral training, rats received treatments of the following NMDA receptor ligands: the uncompetitive antagonists ketamine (0, 1.0, 5.0, or 10.0 mg/kg; i.p.), MK-801 (0, 0.003, 0.01, or 0.03 mg/kg; s.c.), and memantine (0, 2.5, 5.0, or 10.0 mg/kg; i.p.), the competitive antagonist CGS 19755 (0, 5.0, 10.0, or 20.0 mg/kg; s.c.), the non-competitive NR2B subunit-selective antagonist ifenprodil (0, 1.0, 3.0, or 10.0 mg/kg; i.p), and the partial agonist D-cycloserine (0, 3.25, 15.0, or 30.0 mg/kg; s.c.). Results When an exponential model was used to describe discounting, CGS 19755 (5.0 mg/kg) increased impulsive choice without altering sensitivity to reinforcer magnitude. Conversely, ketamine (10.0 mg/kg), memantine (5.0 mg/kg), and ifenprodil (10.0 mg/kg) decreased sensitivity to reinforcer magnitude without altering impulsive choice. MK-801 and D-cycloserine did not alter delay-discounting performance, although two-way ANOVA analyses indicated D-cycloserine (15.0 mg/kg) decreased impulsive choice. Conclusions The behavioral changes observed in delay discounting following administration of NMDA receptor antagonists do not always reflect an alteration in impulsive choice. These results emphasize the utility in employing quantitative methods to assess drug effects in delay discounting. PMID:27837332

  2. Chronic neonatal N-methyl-D-aspartate receptor blockade induces learning deficits and transient hypoactivity in young rats.

    PubMed

    Latysheva, Nadejda V; Rayevsky, Kirill S

    2003-08-01

    A blockade of N-methyl-D-aspartate (NMDA)-type of glutamate receptor in rodents is believed to provide a pharmacological model of schizophrenia-related psychosis. Since neurodevelopmental abnormality, at least partly, could contribute to the pathogenesis of schizophrenia, the aim of this study was to recapitulate cognitive impairments accompanying this disorder in rats by a chronic neonatal treatment with a noncompetitive NMDA antagonist MK-801. Rat pups were treated with a low dose of MK-801 (0.05 mg/kg s.c.) chronically from early postnatal period (PD 7-49) known to be critical for glutamatergic system maturation. Locomotor activity in the "open-field" test, anxiety level in the elevated plus-maze test, and learning capacity in food rewarded spatial task were examined in young animals. Chronic MK-801 treatment produced a decrease of spontaneous motor and exploratory activity in 16- to 28-day-old rats. At the same time, a hyperlocomotion in response to acute administration of MK-801 was observed as well. Spatial learning of MK-801-treated rats was found to be negatively affected. Treated rats were able to respond to stress stimuli in the adequate manner but their anxiety level was found to be lower than in controls. Behavioral disturbances appeared to be temporary, and no such abnormalities could be detected at the age of 16 weeks. Thus, even mild chronic neonatal blockade of NMDA receptors may lead to a specific pattern of cognitive abnormalities presumably resulting from impairments of sensory information processing at the cortical-basal ganglia level.

  3. N-methyl-D-aspartate neurotoxicity in hippocampal slices: protection by aniracetam.

    PubMed

    Pizzi, M; Consolandi, O; Memo, M; Spano, P

    1995-03-14

    Aniracetam, a drug known to elicit cognition enhancing properties in both animals and humans, was found to counteract the neurotoxicity induced by excitatory amino acids in primary cultures of cerebellar neurons. We report here that aniracetam prevents the neurotoxic effect induced by N-methyl-D-aspartate (NMDA) in rat hippocampal slices. Time-course experiments showed that the aniracetam-induced neuroprotection does not require preincubation of the slices with the drug. Maximal effective concentration of aniracetam was 10 microM. Since the NMDA-mediated cell death in hippocampal slices is considered a valuable experimental model of ischemia, these results suggest a possible novel therapeutic application for aniracetam.

  4. Competitive and noncompetitive antagonists at N-methyl-D-aspartate receptors protect against methamphetamine-induced dopaminergic damage in mice.

    PubMed

    Sonsalla, P K; Riordan, D E; Heikkila, R E

    1991-02-01

    The administration of methamphetamine (METH) to experimental animals results in damage to nigrostriatal dopaminergic neurons. We have demonstrated previously that the excitatory amino acids may be involved in this neurotoxicity. For example, several compounds which bind to the phenyclidine site within the ion channel linked to the N-methyl-D-aspartate (NMDA) receptor protected mice from the METH-induced loss of neostriatal tyrosine hydroxylase activity and dopamine content. The present study was conducted to characterize further the role of the excitatory amino acids in mediating the neurotoxic effects of METH. The administration of three or four injections of METH (10 mg/kg) every 2 hr to mice produced large decrements in neostriatal dopamine content (80-84%) and in tyrosine hydroxylase activity (65-74%). A dose-dependent protection against these METH-induced decreases was seen with two noncompetitive NMDA antagonists, ifenprodil and SL 82.0715 (25-50 mg/kg/injection), both of which are thought to bind to a polyamine or sigma site associated with the NMDA receptor complex, and with two competitive NMDA antagonists, CGS 19755 (25-50 mg/kg/injection) and NPC 12626 (150-300 mg/kg/injection). Moreover, an intrastriatal infusion of NMDA (0.1 mumol) produced a slight but significant loss of neostriatal dopamine which was potentiated in mice that also received a systemic injection of METH. The results of these studies strengthen the hypothesis that the excitatory amino acids play a critical role in the nigrostriatal dopaminergic damage induced by METH.

  5. Testing synaptic plasticity in dynamic mate choice decisions: N-methyl d-aspartate receptor blockade disrupts female preference

    PubMed Central

    Ramsey, Mary E.; Vu, Wendy; Cummings, Molly E.

    2014-01-01

    Social behaviours such as mate choice require context-specific responses, often with evolutionary consequences. Increasing evidence indicates that the behavioural plasticity associated with mate choice involves learning. For example, poeciliids show age-dependent changes in female preference functions and express synaptic-plasticity-associated molecular markers during mate choice. Here, we test whether social cognition is necessary for female preference behaviour by blocking the central player in synaptic plasticity, NMDAR (N-methyl d-aspartate receptor), in a poeciliid fish, Xiphophorus nigrensis. After subchronic exposure to NMDAR antagonist MK-801, female preference behaviours towards males were dramatically reduced. Overall activity levels were unaffected, but there was a directional shift from ‘social’ behaviours towards neutral activity. Multivariate gene expression patterns significantly discriminated between females with normal versus disrupted plasticity processes and correlated with preference behaviours—not general activity. Furthermore, molecular patterns support a distinction between ‘preference’ (e.g. neuroserpin, neuroligin-3, NMDAR) and ‘sociality’ (isotocin and vasotocin) gene clusters, highlighting a possible conservation between NMDAR disruption and nonapeptides in modulating behaviour. Our results suggest that mate preference may involve greater social memory processing than overall sociality, and that poeciliid preference functions integrate synaptic-plasticity-oriented ‘preference’ pathways with overall sociality to invoke dynamic, context-specific responses towards favoured males and away from unfavoured males. PMID:24807251

  6. Involvement of N-methyl-D-aspartate receptor subunits in zinc-mediated modification of CA1 long-term potentiation in the developing hippocampus.

    PubMed

    Takeda, Atsushi; Itagaki, Kosuke; Ando, Masaki; Oku, Naoto

    2012-03-01

    Zinc is an endogenous N-methyl-D-aspartate (NMDA) receptor blocker. It is possible that zinc-mediated modification of hippocampal CA1 long-term potentiation (LTP) is linked to the expression of NMDA receptor subunits, which varies with postnatal development. In the present study, the effect of ZnCl(2) and CaEDTA, a membrane-impermeable zinc chelator, on CA1 LTP induction was examined in hippocampal slices from immature (3-week-old) and young (6-week-old) rats. Tetanus (10-100 Hz, 1 sec)-induced CA1 LTP was more greatly enhanced in 3-week-old rats. CA1 LTP was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, and CaEDTA in 3-week-old rats, as in the case of 6-week-old rats reported previously. In 3-week-old rats, on the other hand, 5 μM ZnCl(2) attenuated NMDA receptor-mediated EPSPs more than in 6-week-old rats and significantly attenuated CA1 LTP. Moreover, 5 μM ZnCl(2) significantly attenuated CA1 LTP in the presence of (2R,4S)-4-(3-phosphonopropyl)-2-piperidinecarboxylic acid (PPPA), an NR2A antagonist, in 3-week-old rats, but not that in the presence of ifenprodil, an NR2B antagonist, suggesting that zinc-mediated attenuation of CA1 LTP is associated with the preferential expression of NR2B subunit in 3-week-old rats. In 6-week-old rats, however, 5 μM ZnCl(2) significantly potentiated CA1 LTP and also CA1 LTP in the presence of PPPA. The present study demonstrates that endogenous zinc may participate in the induction of CA1 LTP. It is likely that the changes in expression of NMDA receptor subunits are involved in the zinc-mediated modification of CA1 LTP in the developing hippocampus. Copyright © 2011 Wiley Periodicals, Inc.

  7. Alpha7 Nicotinic Acetylcholine Receptors Play a Predominant Role in the Cholinergic Potentiation of N-Methyl-D-Aspartate Evoked Firing Responses of Hippocampal CA1 Pyramidal Cells

    PubMed Central

    Bali, Zsolt K.; Nagy, Lili V.; Hernádi, István

    2017-01-01

    The aim of the present study was to identify in vivo electrophysiological correlates of the interaction between cholinergic and glutamatergic neurotransmission underlying memory. Extracellular spike recordings were performed in the hippocampal CA1 region of anesthetized rats in combination with local microiontophoretic administration of N-methyl-D-aspartate (NMDA) and acetylcholine (ACh). Both NMDA and ACh increased the firing rate of the neurons. Furthermore, the simultaneous delivery of NMDA and ACh resulted in a more pronounced excitatory effect that was superadditive over the sum of the two mono-treatment effects and that was explained by cholinergic potentiation of glutamatergic neurotransmission. Next, animals were systemically treated with scopolamine or methyllycaconitine (MLA) to assess the contribution of muscarinic ACh receptor (mAChR) or α7 nicotinic ACh receptor (nAChR) receptor-mediated mechanisms to the observed effects. Scopolamine totally inhibited ACh-evoked firing, and attenuated the firing rate increase evoked by simultaneous application of NMDA and ACh. However, the superadditive nature of the combined effect was preserved. The α7 nAChR antagonist MLA robustly decreased the firing response to simultaneous application of NMDA and ACh, suspending their superadditive effect, without modifying the tonic firing rate increasing effect of ACh. These results provide the first in vivo electrophysiological evidence that, in the hippocampal CA1 region, α7 nAChRs contribute to pyramidal cell activity mainly through potentiation of glutamatergic signaling, while the direct cholinergic modulation of tonic firing is notably mediated by mAChRs. Furthermore, the present findings also reveal cellular physiological correlates of the interplay between cholinergic and glutamatergic agents in behavioral pharmacological models of cognitive decline. PMID:28928637

  8. Coantagonism of Glutamate Receptors and Nicotinic Acetylcholinergic Receptors Disrupts Fear Conditioning and Latent Inhibition of Fear Conditioning

    ERIC Educational Resources Information Center

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors ([alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the…

  9. The effects of an intraperitoneal single low dose of ketamine in attenuating the postoperative skin/muscle incision and retraction-induced pain related to the inhibition of N-methyl-D-aspartate receptors in the spinal cord.

    PubMed

    Shen, Yu; Xu, Li; Liu, Ming; Lei, Yishan; Gu, Xiaoping; Ma, Zhengliang

    2016-03-11

    Chronic postoperative pain (CPOP) is a common clinical problem which might be related to central sensitization. It has been widely accepted that NMDA (N-methyl-D-aspartate) receptors are among the triggers of central sensitization. Ketamine is a non-competitive NMDA receptor antagonist that is widely used in alleviating postoperative pain, but its effect on CPOP has been rarely reported. In the present study, the skin/muscle incision and retraction (SMIR) model was used to investigate the role of NMDARs in chronic postoperative pain and the effect of an intraperitoneal single low dose ketamine (10mg/kg) of attenuating SMIR-induced CPOP. We assessed pain behaviours after a SMIR operation by paw withdrawal threshold (PWMT) and paw withdrawal latency (PWMTL). Western blotting were performed to examine the role of NMDARs in SMIR-induced CPOP and the effect of ketamine on the expression and phosphorylation of NMDARs. The SMIR operation induced long-lasting mechanical hyperalgesia, and the up-regulation of phosphorylated NMDARs and total NMDARs at the spinal level. A single intraperitoneal administration of low dose ketamine (10mg/kg) during surgery alleviated pain behaviors and inhibited the up-regulation of phosphorylated NMDARs and total NMDARs. Our datas suggested that NMDARs play important roles in SMIR-induced CPOP. A single intraperitoneal low dose of ketamine could attenuate SMIR-induced CPOP, which might be associated with the inhibition of NMDARs. Our finding might provide a new, simple method of addressing CPOP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Involvement of glutamatergic N-methyl-d-aspartate receptors in the expression of increased head-dipping behaviors in the hole-board tests of olfactory bulbectomized mice.

    PubMed

    Hirose, Noritaka; Saitoh, Akiyoshi; Kamei, Junzo

    2016-10-01

    Olfactory bulbectomized (OB) mice produce agitated anxiety-like behaviors in the hole-board test, which was expressed by an increase in head-dipping counts and a decrease in head-dipping latencies. However, the associated mechanisms remain unclear. In the present study, MK-801 (10, 100μg/kg), a selective N-methyl-d-aspartate (NMDA) receptor antagonist, significantly and dose-dependently suppressed the increased head-dipping behaviors in OB mice, without affecting sham mice. Similar results were obtained with another selective NMDA receptor antagonist D-AP5 treatment in OB mice. On the other hand, muscimol, a selective aminobutyric acid type A (GABAA) receptor agonist produced no effects on these hyperemotional behaviors in OB mice at a dose (100μg/kg) that produced anxiolytic-like effects in sham mice. Interestingly, glutamine contents and glutamine/glutamate ratios were significantly increased in the amygdala and frontal cortex of OB mice compared to sham mice. Based on these results, we concluded that the glutamatergic NMDA receptors are involved in the expression of increased head-dipping behaviors in the hole-board tests of OB mice. Accordingly, the changes in glutamatergic transmission in frontal cortex and amygdala may play important roles in the expression of these abnormal behaviors in OB mice. Copyright © 2016. Published by Elsevier B.V.

  11. Alkaloid fraction of Uncaria rhynchophylla protects against N-methyl-D-aspartate-induced apoptosis in rat hippocampal slices.

    PubMed

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Sun-Yeou; Kim, Hocheol; Kim, Chang-Ju; Lim, Eunhee

    2003-09-04

    Uncaria rhynchophylla is a medicinal herb which has sedative and anticonvulsive effects and has been applied in the treatment of epilepsy in Oriental medicine. In this study, the effect of alkaloid fraction of U. rhynchophylla against N-methyl-D-aspartate (NMDA)-induced neuronal cell death was investigated. Pretreatment with an alkaloid fraction of U. rhynchophylla for 1 h decreased the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices and also inhibited NMDA-induced enhanced expressions of apoptosis-related genes such as c-jun, p53, and bax. In the present study, the alkaloid fraction of U. rhynchophylla was shown to have a protective property against NMDA-induced cytotoxicity by suppressing the NMDA-induced apoptosis in rat hippocampal slices.

  12. Ovarian Teratoma Associated with Coexisting Anti-N-Methyl-D-Aspartate Receptor and Glial Fibrillary Acidic Protein Autoimmune Meningoencephalitis in an Adolescent Girl: A Case Report.

    PubMed

    Martin, Alexandra L; Jolliffe, Evan; Hertweck, S Paige

    2018-06-01

    Ovarian teratomas are rarely associated with paraneoplastic autoimmune meningoencephalitis. In addition to the well known N-methyl-D-aspartate receptor (NMDA-R) antibody, the glial fibrillary acidic protein (GFAP) antibody is a novel biomarker of autoimmune meningoencephalitis that might be seen in patients with ovarian teratoma. A 13-year-old girl with acute-onset meningoencephalitis and incidental finding of ovarian teratoma was found to have coexisting anti-NMDA-R and GFAP antibodies present in her cerebrospinal fluid. NMDA-R and GFAP autoimmune encephalitis should be considered in adolescent patients with neurologic or psychiatric symptoms and an ovarian teratoma. Prompt diagnosis and surgical resection increase the likelihood of full neurologic recovery. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  13. Choline exposure reduces potentiation of N-methyl-D-aspartate toxicity by corticosterone in the developing hippocampus.

    PubMed

    Mulholland, Patrick J; Self, Rachel L; Harris, Barton R; Littleton, John M; Prendergast, Mark A

    2004-11-25

    Exposure to high levels of glucocorticoids (GCs) may adversely affect neuronal viability, particularly in the developing hippocampus, via increased function or sensitivity of N-methyl-D-aspartate (NMDA)-type glutamate receptors. Conversely, choline supplementation in the developing brain may reduce the severity of subsequent insult. The present studies aimed to examine the extent to which short-term exposure to high concentrations of corticosterone would produce neuronal injury mediated by NMDA receptor activity. These studies also assessed the ability of choline to prevent this form of injury via interactions with nicotinic acetylcholine receptors (nAChRs) expressing the alpha7 subunit. Organotypic hippocampal slice cultures derived from neonatal rat were pre-treated for 72 h with corticosterone (100 nM) alone or with choline (0.1-10 mM), prior to a brief (1 h) NMDA exposure (5 microM). NMDA exposure produced significant cellular damage, reflected as increased fluorescence of the non-vital marker propidium iodide, in the CA1 region. While exposure to corticosterone alone did not produce damage, pre-treatment of cultures with corticosterone markedly exacerbated NMDA-induced toxicity. Pre-treatment with choline (> or =1 mM) alone or in combination with corticosterone markedly reduced subsequent NMDA toxicity, effects blocked by co-exposure to methyllycaconitine (100 nM), an antagonist active at nAChRs expressing the alpha7 subunit. These data suggest that even short-term exposure to high concentrations of GCs may adversely affect neuronal viability and that choline supplementation protects the brain from NMDA receptor-mediated damage, including that associated with hypercortisolemia.

  14. Vitamin B6 prevents isocarbophos-induced vascular dementia in rats through N-methyl-D-aspartate receptor signaling.

    PubMed

    Li, Peng; Zhu, Mo-Li; Pan, Guo-Pin; Lu, Jun-Xiu; Zhao, Fan-Rong; Jian, Xu; Liu, Li-Ying; Wan, Guang-Rui; Chen, Yuan; Ping, Song; Wang, Shuang-Xi; Hu, Chang-Ping

    2018-01-01

    We have previously reported that the long-term exposure of organophosphorus induces vascular dementia (VD) in rats. As a coenzyme, vitamin B6 is mainly involved in the regulation of metabolisms. Whether vitamin B6 improves VD remains unknown. The model of VD was induced by feeding rats with isocarbophos (0.5 mg/kg per two day, 12 weeks). The blood flow of the posterior cerebral artery (PCA) in rat was assessed by transcranial Doppler (TCD). The learning and memory were evaluated by the Morris Water Maze (MWM) test. Administration of vitamin B6 increased the blood flow in the right and left posterior cerebral arteries and improved the functions of learning and memory in isocarbophos-treated rats. Vitamin B6 increased the protein levels of N-methyl-D-aspartate receptor (NMDAR) 2B, postsynaptic densities (PSDs) protein 95, and calmodulin-dependent protein kinase II (CaMK-II) in the hippocampus, which were decreased by isocarbophos in rats. Morphological analysis by light microscope and electronic microscope indicated disruptions of the hippocampus caused by isocarbophos were normalized by vitamin B6. Importantly, the antagonist of NMDAR signaling by eliprodil abolished these beneficial effects produced by vitamin B6 on PCA blood flow, learning, memory, and hippocampus structure in rats, as well as the protein expression of NMDAR 2B, PSDs protein 95, and CaMK-II in the hippocampus. Vitamin B6 activates NMDAR signaling to prevent isocarbophos-induced VD in rats.

  15. Anti-N-methyl-D-aspartate receptor and anti-ribosomal-P autoantibodies contribute to cognitive dysfunction in systemic lupus erythematosus.

    PubMed

    Massardo, L; Bravo-Zehnder, M; Calderón, J; Flores, P; Padilla, O; Aguirre, J M; Scoriels, L; González, A

    2015-05-01

    Autoantibodies against N-methyl-D-aspartate receptor (anti-NMDAR) and ribosomal-P (anti-P) antigens are potential pathogenic factors in the frequently observed diffuse brain dysfunctions in patients with systemic lupus erythematosus (SLE). Although studies have been conducted in this area, the role of anti-NMDAR antibodies in SLE cognitive dysfunction remains elusive. Moreover, the specific contribution of anti-P antibodies has not been reported yet. The present study attempts to clarify the contribution of anti-NMDAR and anti-P antibodies to cognitive dysfunction in SLE. The Cambridge Neuropsychological Test Automated Battery (CANTAB) was used to assess a wide range of cognitive function areas in 133 Chilean women with SLE. ANCOVA models included autoantibodies, patient and disease features. Cognitive deficit was found in 20%. Higher SLEDAI-2K scores were associated with impairment in spatial memory and learning abilities, whereas both anti-NMDAR and anti-P antibodies contributed to deficits in attention and spatial planning abilities, which reflect fronto-parietal cortex dysfunctions. These results reveal an association of active disease together with specific circulating autoantibodies, such as anti-NMDAR and anti-P, with cognitive dysfunction in SLE patients. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Anti-N-Methyl-d-Aspartate receptor (NMDAR) encephalitis during pregnancy: Clinical analysis of reported cases.

    PubMed

    Shi, Yan-Chao; Chen, Xiu-Ju; Zhang, Hong-Mei; Wang, Zhen; Du, Da-Yong

    2017-06-01

    To analyze the clinical features of 13 pregnant patients with anti-N-Methyl-d-Aspartate receptor (NMDAR) encephalitis. Retrospective review of thirteen reported cases was conducted for anti-NMDAR encephalitis patients during pregnancy. The clinical data were collected from papers published in PubMed prior to 16 February 2016. Statistical analysis of the data was performed, which encompasses the patients' age, past medical history, onset of symptoms, concomitant with ovarian teratomas, immunotherapy, outcomes of mothers and newborns. Thirteen cases were reported in 11 articles with a median age of 23 (interquartile range, 19-27) years old. There were eight cases in which the onset periods of gestation happened in the first trimester and five cases in the second trimester. Among 13 cases, five patients had a past medical history, one concomitant with autoimmune Graves' hyperthyroidism, one with bilateral ovarian teratomas removed history, one with anti-NMDAR encephalitis five years before pregnancy and two with psychiatric symptoms. Five patients were found with ovarian teratomas. Seven patients responded to first-line immunotherapy whereas all of two patients responded to second-line immunotherapy when the first-line immunotherapy failed. Following up all the 13 patients, most experienced a substantial recovery, except one had spasticity and dystonia in one hand, and one died of a superimposed infection. Three fetuses were miscarried or aborted in total. Most newborns were healthy, except two cases (2/10) with abnormal neurologic signs. Clinical analysis of the data indicates that most patients respond to first-line immunotherapy. A second-line immunotherapy is effective when first-line immunotherapy fails. It has also been found that most mothers and newborns can have good outcomes. Copyright © 2017. Published by Elsevier B.V.

  17. Postoperative pain impairs subsequent performance on a spatial memory task via effects on N-methyl-D-aspartate receptor in aged rats.

    PubMed

    Chi, Haidong; Kawano, Takashi; Tamura, Takahiko; Iwata, Hideki; Takahashi, Yasuhiro; Eguchi, Satoru; Yamazaki, Fumimoto; Kumagai, Naoko; Yokoyama, Masataka

    2013-12-18

    Pain may be associated with postoperative cognitive dysfunction (POCD); however, this relationship remains under investigated. Therefore, we examined the impact of postoperative pain on cognitive functions in aged animals. Rats were allocated to the following groups: control (C), 1.2 % isoflurane for 2 hours alone (I), I with laparotomy (IL), IL with analgesia using local ropivacaine (IL+R), and IL with analgesia using systemic morphine (IL+M). Pain was assessed by rat grimace scale (RGS). Spatial memory was evaluated using a radial maze from postoperative days (POD) 3 to 14. NMDA receptor (NR) 2 subunits in hippocampus were measured by ELISA. Finally, effects of memantine, a low-affinity uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, on postoperative cognitive performance were tested. Postoperative RGS was increased in Group IL, but not in other groups. The number of memory errors in Group I were comparable to that in Group C, whereas errors in Group IL were increased. Importantly, in Group IL+R and IL+M, cognitive impairment was not found. The memory errors were positively correlated with the levels of NMDA receptor 2 subunits in hippocampus. Prophylactic treatment with memantine could prevent the development of memory deficits observed in Group IL without an analgesic effect. Postoperative pain contributes to the development of memory deficits after anesthesia and surgery via up-regulation of hippocampal NMDA receptors. Our findings suggest that postoperative pain management may be important for the prevention of POCD in elderly patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Non-conventional apoptotic response to ionising radiation mediated by N-methyl D-aspartate receptors in immature neuronal cells

    PubMed Central

    SAMARI, NADA; DE SAINT-GEORGES, LOUIS; PANI, GIUSEPPE; BAATOUT, SARAH; LEYNS, LUC; BENOTMANE, MOHAMMED ABDERRAFI

    2013-01-01

    During cortical development, N-methyl D-aspartate (NMDA) receptors are highly involved in neuronal maturation and synapse establishment. Their implication in the phenomenon of excitotoxicity has been extensively described in several neurodegenerative diseases due to the permissive entry of Ca2+ ions and massive accumulation in the intracellular compartment, which is highly toxic to cells. Ionising radiation is also a source of stress to the cells, particularly immature neurons. Their capacity to induce cell death has been described for various cell types either by directly damaging the DNA or indirectly through the generation of reactive oxygen species responsible for the activation of a battery of stress response effectors leading in certain cases, to cell death. In this study, in order to determine whether a link exists between NMDA receptors-mediated excitotoxicity and radiation-induced cell death, we evaluated radiation-induced cell death in vitro and in vivo in maturing neurons during the fetal period. Cell death induction was assessed by TUNEL, caspase-3 activity and DNA ladder assays, with or without the administration of dizocilpine (MK-801), a non-competitive NMDA receptor antagonist which blocks neuronal Ca2+ influx. To further investigate the possible involvement of Ca2+-dependent enzyme activation, known to occur at high Ca2+ concentrations, we examined the protective effect of a calpain inhibitor on cell death induced by radiation. Doses ranging from 0.2 to 0.6 Gy of X-rays elicited a clear apoptotic response that was prevented by the injection of dizocilpine (MK-801) or calpain inhibitor. These data demonstrate the involvement of NMDA receptors in radiation-induced neuronal death by the activation of downstream effectors, including calpain-related pathways. An increased apoptotic process elicited by radiation, occurring independently of the normal developmental scheme, may eliminate post-mitotic but immature neuronal cells and deeply impair the

  19. Molecular basis for subtype-specificity and high-affinity zinc inhibition in the GluN1-GluN2A NMDA receptor amino terminal domain

    PubMed Central

    Romero-Hernandez, Annabel; Simorowski, Noriko; Karakas, Erkan

    2016-01-01

    Summary Zinc is vastly present in the mammalian brain and controls functions of various cell surface receptors to regulate neurotransmission. A distinctive characteristic of N-methyl-D-aspartate (NMDA) receptors containing a GluN2A subunit is that their ion channel activity is allosterically inhibited by a nano-molar concentration of zinc that binds to an extracellular domain called an amino terminal domain (ATD). Despite physiological importance, the molecular mechanism underlying the high-affinity zinc inhibition has been incomplete due to lack of a GluN2A ATD structure. Here we show the first crystal structures of the heterodimeric GluN1-GluN2A ATD, which provide the complete map of the high-affinity zinc binding site and reveals distinctive features from the ATD of the GluN1-GluN2B subtype. Perturbation of hydrogen bond networks at the hinge of the GluN2A bi-lobe structure affects both zinc inhibition and open probability supporting the general model where the bi-lobe motion in ATD regulates the channel activity in NMDA receptors. PMID:27916457

  20. A role for N-methyl-D-aspartate receptors in norepinephrine-induced long-lasting potentiation in the dentate gyrus.

    PubMed

    Stanton, P K; Mody, I; Heinemann, U

    1989-01-01

    Mechanisms of action of norepinephrine (NE) on dentate gyrus granule cells were studied in rat hippocampal slices using extra- and intracellular recordings and measurements of stimulus and amino acid-induced changes in extracellular Ca2+ and K+ concentration. Bath application of NE (10-50 microM) induced long-lasting potentiation of perforant path evoked potentials, and markedly enhanced high-frequency stimulus-induced Ca2+ influx and K+ efflux, actions blocked by beta-receptor antagonists and mimicked by beta agonists. Enhanced Ca2+ influx was primarily postsynaptic, since presynaptic delta [Ca2+]o in the stratum moleculare synaptic field was not altered by NE. Interestingly, the potentiation of both ionic fluxes and evoked population potentials were antagonized by the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (APV). Furthermore, NE selectively enhanced the delta [Ca2+]o delta [K+]o and extracellular slow negative field potentials elicited by iontophoretically applied NMDA, but not those induced by the excitatory amino acid quisqualate. These results suggest that granule cell influx of Ca2+ through NMDA ionophores is enhanced by NE via beta-receptor activation. In intracellular recordings, NE depolarized granule cells (4.8 +/- 1.1 mV), and increased input resistance (RN) by 34 +/- 6.5%. These actions were also blocked by either the beta-antagonist propranolol or specific beta 1-blocker metoprolol. Moreover, the depolarization and RN increase persisted for long periods (93 +/- 12 min) after NE washout. In contrast, while NE, in the presence of APV, still depolarized granule cells and increased RN, APV made these actions quickly reversible upon NE washout (16 +/- 9 min). This suggested that NE induction of long-term, but not short-term, plasticity in the dentate gyrus requires NMDA receptor activation. NE may be enhancing granule cell firing by some combination of blockade on the late Ca2+-activated K+ conductance and depolarization

  1. The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors.

    PubMed

    Paul, Steven M; Doherty, James J; Robichaud, Albert J; Belfort, Gabriel M; Chow, Brian Y; Hammond, Rebecca S; Crawford, Devon C; Linsenbardt, Andrew J; Shu, Hong-Jin; Izumi, Yukitoshi; Mennerick, Steven J; Zorumski, Charles F

    2013-10-30

    N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are critical to the regulation of excitatory synaptic function in the CNS. NMDARs govern experience-dependent synaptic plasticity and have been implicated in the pathophysiology of various neuropsychiatric disorders including the cognitive deficits of schizophrenia and certain forms of autism. Certain neurosteroids modulate NMDARs experimentally but their low potency, poor selectivity, and very low brain concentrations make them poor candidates as endogenous ligands or therapeutic agents. Here we show that the major brain-derived cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlap that of other allosteric modulators. At submicromolar concentrations 24(S)-HC potentiates NMDAR-mediated EPSCs in rat hippocampal neurons but fails to affect AMPAR or GABAA receptors (GABA(A)Rs)-mediated responses. Cholesterol itself and other naturally occurring oxysterols present in brain do not modulate NMDARs at concentrations ≤10 μM. In hippocampal slices, 24(S)-HC enhances the ability of subthreshold stimuli to induce long-term potentiation (LTP). 24(S)-HC also reverses hippocampal LTP deficits induced by the NMDAR channel blocker ketamine. Finally, we show that synthetic drug-like derivatives of 24(S)-HC, which potently enhance NMDAR-mediated EPSCs and LTP, restore behavioral and cognitive deficits in rodents treated with NMDAR channel blockers. Thus, 24(S)-HC may function as an endogenous modulator of NMDARs acting at a novel oxysterol modulatory site that also represents a target for therapeutic drug development.

  2. N-Methyl-D-aspartate receptor antagonist MK-801 and radical scavengers protect cholinergic nucleus basalis neurons against beta-amyloid neurotoxicity.

    PubMed

    Harkany, T; Mulder, J; Sasvári, M; Abrahám, I; Kónya, C; Zarándi, M; Penke, B; Luiten, P G; Nyakas, C

    1999-04-01

    Previous experimental data indicate the involvement of Ca(2+)-related excitotoxic processes, possibly mediated by N-Methyl-D-Aspartate (NMDA) receptors, in beta-amyloid (beta A) neurotoxicity. On the other hand, other lines of evidence support the view that free radical generation is a critical step in the beta A-induced neurodegenerative cascade. In the present study, therefore, a neuroprotective strategy was applied to explore the contributions of each of these pathways in beta A toxicity. beta A(1-42) was injected into the magnocellular nucleus basalis of rats, while neuroprotection was achieved by either single or combined administration of the NMDA receptor antagonist MK-801 (2.5 mg/kg) and/or a vitamin E and C complex (150 mg/kg). The degree of neurodegeneration was determined by testing the animals in consecutive series of behavioral tasks, including elevated plus maze, passive avoidance learning, small open-field and open-field paradigms, followed by acetylcholinesterase (AChE), choline-acetyltransferase (ChAT), and superoxide dismutase (SOD) biochemistry. beta A injected in the nucleus basalis elicited significant anxiety in the elevated plus maze, derangement of passive avoidance learning, and altered spontaneous behaviors in both open-field tasks. A significant decrease in both AChE and ChAT accompanied by a similar decrement of MnSOD, but not of Cu/ZnSOD provided neurochemical substrates for the behavioral changes. Each of the single drug administrations protected against the neurotoxic events, whereas the combined treatment failed to ameliorate beta A toxicity.

  3. A role for D-aspartate oxidase in schizophrenia and in schizophrenia-related symptoms induced by phencyclidine in mice

    PubMed Central

    Errico, F; D'Argenio, V; Sforazzini, F; Iasevoli, F; Squillace, M; Guerri, G; Napolitano, F; Angrisano, T; Di Maio, A; Keller, S; Vitucci, D; Galbusera, A; Chiariotti, L; Bertolino, A; de Bartolomeis, A; Salvatore, F; Gozzi, A; Usiello, A

    2015-01-01

    Increasing evidence points to a role for dysfunctional glutamate N-methyl-D-aspartate receptor (NMDAR) neurotransmission in schizophrenia. D-aspartate is an atypical amino acid that activates NMDARs through binding to the glutamate site on GluN2 subunits. D-aspartate is present in high amounts in the embryonic brain of mammals and rapidly decreases after birth, due to the activity of the enzyme D-aspartate oxidase (DDO). The agonistic activity exerted by D-aspartate on NMDARs and its neurodevelopmental occurrence make this D-amino acid a potential mediator for some of the NMDAR-related alterations observed in schizophrenia. Consistently, substantial reductions of D-aspartate and NMDA were recently observed in the postmortem prefrontal cortex of schizophrenic patients. Here we show that DDO mRNA expression is increased in prefrontal samples of schizophrenic patients, thus suggesting a plausible molecular event responsible for the D-aspartate imbalance previously described. To investigate whether altered D-aspartate levels can modulate schizophrenia-relevant circuits and behaviors, we also measured the psychotomimetic effects produced by the NMDAR antagonist, phencyclidine, in Ddo knockout mice (Ddo−/−), an animal model characterized by tonically increased D-aspartate levels since perinatal life. We show that Ddo−/− mice display a significant reduction in motor hyperactivity and prepulse inhibition deficit induced by phencyclidine, compared with controls. Furthermore, we reveal that increased levels of D-aspartate in Ddo−/− animals can significantly inhibit functional circuits activated by phencyclidine, and affect the development of cortico–hippocampal connectivity networks potentially involved in schizophrenia. Collectively, the present results suggest that altered D-aspartate levels can influence neurodevelopmental brain processes relevant to schizophrenia. PMID:25689573

  4. Excitotoxicity in the Lung: N-Methyl-D-Aspartate-Induced, Nitric Oxide-Dependent, Pulmonary Edema is Attenuated by Vasoactive Intestinal Peptide and by Inhibitors of Poly(ADP-Ribose) Polymerase

    NASA Astrophysics Data System (ADS)

    Said, Sami I.; Berisha, Hasan I.; Pakbaz, Hedayatollah

    1996-05-01

    Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the ``adult respiratory distress syndrome,'' and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

  5. The effects of N-Methyl-D-Aspartate receptor blockade during the early neurodevelopmental period on emotional behaviors and cognitive functions of adolescent Wistar rats.

    PubMed

    Kocahan, Sayad; Akillioglu, Kubra; Binokay, Secil; Sencar, Leman; Polat, Sait

    2013-05-01

    The N-Methyl-D-Aspartate (NMDA) receptor is expressed abundantly in the brain and plays an important role in neuronal development, learning and memory, neurodegenerative diseases, and neurogenesis. In this study, we evaluated the effects of NMDA receptor blockade during the early neurodevelopmental period on exploratory locomotion, anxiety-like behaviors and cognitive functions of adolescent Wistar rats. NMDA receptor hypofunction was induced 7-10 days after birth using MK-801 in rats (0.25 mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF), elevated plus maze (EPM) and passive avoidance (PA) tests were used to evaluate exploratory locomotion, anxiety-like behaviors and cognitive functions. In the OF test, MK-801 caused an increase in locomotion behavior (p < 0.01) and in the frequency of rearing (p < 0.05). In the EPM test, MK-801 treatment increased the time spent in the open arms, the number of open arm entries and the amount of head dipping (p < 0.01). MK-801 treatment caused no statistical difference compared to the control group in the PA test (p > 0.05). Chronic NMDA receptor blockade during the critical period of maturation for the glutamatergic brain system (postnatal days 7-10) produces locomotor hyperactivity and decreased anxiety levels, but has no significant main effect on cognitive function during adolescence.

  6. N-Methyl D-Aspartate (NMDA) Receptor Antagonists and Memantine Treatment for Alzheimer’s Disease, Vascular Dementia and Parkinson’s Disease

    PubMed Central

    Olivares, David; Deshpande, Varun K.; Shi, Ying; Lahiri, Debomoy K.; Greig, Nigel H.; Rogers, Jack T.; Huang, Xudong

    2016-01-01

    Memantine, a partial antagonist of N-methyl-D-aspartate receptor (NMDAR), approved for moderate to severe Alzheimer’s disease (AD) treatment within the US and Europe under brand name Namenda (Forest), Axura and Akatinol (Merz), and Ebixa and Abixa (Lundbeck), may have potential in alleviating additional neurological conditions, such as vascular dementia (VD) and Parkinson’s disease (PD). In various animal models, memantine has been reported to be a neuroprotective agent that positively impacts both neurodegenerative and vascular processes. While excessive levels of glutamate result in neurotoxicity, in part through the over-activation of NMDARs, memantine—as a partial NMDAR antagonist, blocks the NMDA glutamate receptors to normalize the glutamatergic system and ameliorate cognitive and memory deficits. The key to memantine’s therapeutic action lies in its uncompetitive binding to the NMDAR through which low affinity and rapid off-rate kinetics of memantine at the level of the NMDAR-channel preserves the physiological function of the receptor, underpinning memantine’s tolerability and low adverse event profile. As the biochemical pathways evoked by NMDAR antagonism also play a role in PD and since no other drug is sufficiently effective to substitute for the first-line treatment of L-dopa despite its side effects, memantine may be useful in PD treatment with possibly fewer side effects. In spite of the relative modest nature of its adverse effects, memantine has been shown to provide only a moderate decrease in clinical deterioration in AD and VD, and hence efforts are being undertaken in the design of new and more potent memantine-based drugs to hopefully provide greater efficacy. PMID:21875407

  7. GluN2B N-methyl-D-aspartate receptor and excitatory amino acid transporter 3 are upregulated in primary sensory neurons after 7 days of morphine administration in rats: implication for opiate-induced hyperalgesia.

    PubMed

    Gong, Kerui; Bhargava, Aditi; Jasmin, Luc

    2016-01-01

    The contribution of the peripheral nervous system to opiate-induced hyperalgesia (OIH) is not well understood. In this study, we determined the changes in excitability of primary sensory neurons after sustained morphine administration for 7 days. Changes in the expression of glutamate receptors and glutamate transporters after morphine administration were ascertained in dorsal root ganglions. Patch clamp recordings from intact dorsal root ganglions (ex vivo preparation) of morphine-treated rats showed increased excitability of small diameter (≤30 μm) neurons with respect to rheobase and membrane threshold, whereas the excitability of large diameter (>30 μm) neurons remained unchanged. Small diameter neurons also displayed increased responses to glutamate, which were mediated mainly by GluN2B containing N-methyl-D-aspartate (NMDA) receptors, and to a lesser degree by the neuronal excitatory amino acid transporter 3/excitatory amino acid carrier 1. Coadministration in vivo of the GluN2B selective antagonist Ro 25-6981 with morphine for 7 days prevented the appearance of OIH and increased morphine-induced analgesia. Administration of morphine for 7 days led to an increased expression of GluN2B and excitatory amino acid transporter 3/excitatory amino acid carrier 1, but not of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate, kainate, or group I metabotropic glutamate receptors, or of the vesicular glutamate transporter 2. These results suggest that peripheral glutamatergic neurotransmission contributes to OIH and that GluN2B subunit of NMDA receptors in the periphery may be a target for therapy.

  8. Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-D-aspartate receptor from rat brain.

    PubMed

    Foster, A C; Kemp, J A; Leeson, P D; Grimwood, S; Donald, A E; Marshall, G R; Priestley, T; Smith, J D; Carling, R W

    1992-05-01

    The glycine site on the N-methyl-D-aspartate (NMDA) subtype of receptors for the excitatory neurotransmitter glutamate is a potential target for the development of neuroprotective drugs. We report here two chemical series of glycine site antagonists derived from kynurenic acid (KYNA), with greatly improved potency and selectivity. Disubstitution with chlorine or bromine in the 5- and 7-positions of KYNA increased affinity for [3H]glycine binding sites in rat cortex/hippocampus P2 membranes, with a parallel increase of potency for antagonism of NMDA-evoked responses in the rat cortical wedge preparation. The optimal compound was 5-I,7-Cl-KYNA, with an IC50 for [3H]glycine binding of 29 nM and an apparent Kb in the cortical wedge preparation of 0.41 microM. Reduction of the right-hand ring of 5,7-diCl-KYNA reduced affinity by 10-fold, but this was restored by substitution in the 4-position with the trans-phenylamide and further improved in the trans-benzylamide. The optimal compound was the transphenylurea (L-689,560), with an IC50 of 7.4 nM and an apparent Kb of 0.13 microM. Both series of compounds displayed a high degree of selectivity for the glycine site, having IC50 values of greater than 10 microM versus radioligand binding to the glutamate recognition sites of NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and kainate receptors and the strychnine-sensitive glycine receptor. Selectivity versus AMPA receptor-mediated responses was also apparent in the rat cortical wedge and in patch-clamp recordings of cortical neurons in culture. Experiments using [3H]dizocilpine (MK-801) binding indicated that 5,7-diBr-KYNA, 5,7-diCl-KYNA, 5-I,7-Cl-KYNA, and L-689,560 all behaved as full antagonists and were competitive with glycine. Patch-clamp recordings of cortical neurons in culture also indicated that NMDA-induced currents were antagonized by competition for the glycine site, and gave no evidence for partial agonist activity. pKi values for 5,7-di

  9. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus.

    PubMed

    Nyíri, G; Stephenson, F A; Freund, T F; Somogyi, P

    2003-01-01

    Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA

  10. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study.

    PubMed

    Kumar, Gaurav; Patnaik, Ranjana

    2016-07-01

    N-methyl-d-aspartate receptors (NMDARs) mediated excitotoxicity has been implicated in multi-neurodegenerative diseases. Due to lack of efficacy and adverse effects of NMDA receptor antagonists, search for herbal remedies that may act as therapeutic agents is an active area of research to combat these diseases. Withania somnifera (WS) is being used for centuries as a nerve tonic and Nootropic agents. The present study targets the in silico evaluation of the neuroprotective efficacy of W. somnifera phytochemicals by inhibition of NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B containing NMDARs. We predict Blood Brain Barrier (BBB) penetration, mutagenicity, drug-likeness and Human Intestinal Absorption properties of 25 WS phytochemicals. Further, molecular docking was performed to know whether these phytochemicals inhibit the GluN2B containing NMDARs or not. The results suggest that Anaferine, Beta-Sitosterol, Withaferin A, Withanolide A, Withanolide B and Withanolide D inhibit GluN2B containing NMDARs through allosteric mode similar to the well-known selective antagonist Ifenprodil. These phytochemicals have potential as an essentially useful oral drug to counter NMDARs mediated excitotoxicity and to treat multi-neurodegenerative diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors.

    PubMed

    Lu, J; Goula, D; Sousa, N; Almeida, O F X

    2003-01-01

    Glutamate receptors have been proposed to mediate the apoptotic actions of glucocorticoids in hippocampal cells. To further analyze the role of glutamate receptors in this process, we pretreated primary hippocampal cells from neonatal (postnatal day 4) rats with antagonists of ionotropic glutamate receptor (iGluR) and metabotropic glutamate receptor (mGluR) antagonists before exposure to the specific glucocorticoid receptor agonist dexamethasone (DEX) at a dose of 1 microM. Dizocilpine (MK801; a general N-methyl-D-aspartic acid [NMDA] receptor antagonist, NMDAR antagonist) and ifenprodil (a specific ligand of the NMDAR 2B subunit, NR2B), were used to block iGluR; (RS)-alpha-ethyl-4-carboxyphenylglycine (E4CPG) and (RS)-alpha-cyclopropyl-4-phosphonophenyl-glycine (CPPG) were employed as I/II (E4CPG) and II/III (CPPG) mGluR antagonists. Blockade of iGluR resulted in a significant attenuation of DEX-induced cell death; the finding that ifenprodil exerted a similar potency to MK801 demonstrates the involvement of NR2B receptors in glucocorticoid-induced cell death. Apoptosis accounted for a significant amount of the cell loss observed, as detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling histochemistry for the in situ labeling of DNA breaks; apoptotic cells were distinguished from necrosis on the basis of morphological criteria, including chromatin condensation, membrane blebbing and presence of apoptotic bodies. Treatment with E4CPG and CPPG completely abolished the apoptotic response to DEX, thus showing the additional contribution of mGluR to the phenomenon. Further, dose-response studies with NMDA revealed that whereas high (10 microM) doses of NMDA themselves elicit cytotoxic responses, low (1-5 microM) concentrations of NMDA can effectively oppose DEX-induced cell death. Interestingly, the neuroprotective actions of low dose NMDA stimulation were abolished when either synaptic or extrasynaptic NMDA receptors were blocked with MK801

  12. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme.

    PubMed

    Leong, Max K; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-06

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r 2  = 0.928-0.988,  = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pK i values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r 2  = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q 2  = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.

  13. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme

    NASA Astrophysics Data System (ADS)

    Leong, Max K.; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-01

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r2 = 0.928-0.988,  = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r2 = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.

  14. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine.

    PubMed

    De Felice, Fernanda G; Velasco, Pauline T; Lambert, Mary P; Viola, Kirsten; Fernandez, Sara J; Ferreira, Sergio T; Klein, William L

    2007-04-13

    Oxidative stress is a major aspect of Alzheimer disease (AD) pathology. We have investigated the relationship between oxidative stress and neuronal binding of Abeta oligomers (also known as ADDLs). ADDLs are known to accumulate in brain tissue of AD patients and are considered centrally related to pathogenesis. Using hippocampal neuronal cultures, we found that ADDLs stimulated excessive formation of reactive oxygen species (ROS) through a mechanism requiring N-methyl-d-aspartate receptor (NMDA-R) activation. ADDL binding to neurons was reduced and ROS formation was completely blocked by an antibody to the extracellular domain of the NR1 subunit of NMDA-Rs. In harmony with a steric inhibition of ADDL binding by NR1 antibodies, ADDLs that were bound to detergent-extracted synaptosomal membranes co-immunoprecipitated with NMDA-R subunits. The NR1 antibody did not affect ROS formation induced by NMDA, showing that NMDA-Rs themselves remained functional. Memantine, an open channel NMDA-R antagonist prescribed as a memory-preserving drug for AD patients, completely protected against ADDL-induced ROS formation, as did other NMDA-R antagonists. Memantine and the anti-NR1 antibody also attenuated a rapid ADDL-induced increase in intraneuronal calcium, which was essential for stimulated ROS formation. These results show that ADDLs bind to or in close proximity to NMDA-Rs, triggering neuronal damage through NMDA-R-dependent calcium flux. This response provides a pathologically specific mechanism for the therapeutic action of memantine, indicates a role for ROS dysregulation in ADDL-induced cognitive impairment, and supports the unifying hypothesis that ADDLs play a central role in AD pathogenesis.

  15. Effects of the noncompetitive N-methyl-d-aspartate receptor antagonists ketamine and MK-801 on pain-stimulated and pain-depressed behaviour in rats.

    PubMed

    Hillhouse, T M; Negus, S S

    2016-09-01

    Pain is a significant public health concern, and current pharmacological treatments have problematic side effects and limited effectiveness. N-methyl-d-aspartate (NMDA) glutamate receptor antagonists have emerged as one class of candidate treatments for pain because of the significant contribution of glutamate signalling in nociceptive processing. This study compared effects of the NMDA receptor antagonists ketamine and MK-801 in assays of pain-stimulated and pain-depressed behaviour in rats. The nonsteroidal anti-inflammatory drug ketoprofen was examined for comparison as a positive control. Intraperitoneal injection of dilute acid served as an acute visceral noxious stimulus to stimulate a stretching response or depress intracranial self-stimulation (ICSS) in male Sprague-Dawley rats. Ketamine (1.0-10.0 mg/kg) blocked acid-stimulated stretching but failed to block acid-induced depression of ICSS, whereas MK-801 (0.01-0.1 mg/kg) blocked both acid-stimulated stretching and acid-induced depression of ICSS. These doses of ketamine and MK-801 did not alter control ICSS in the absence of the noxious stimulus; however, higher doses of ketamine (10 mg/kg) and MK-801 (0.32 mg/kg) depressed all behaviour. Ketoprofen (1.0 mg/kg) blocked both acid-induced stimulation of stretching and depression of ICSS without altering control ICSS. These results support further consideration of NMDA receptor antagonists as analgesics; however, some NMDA receptor antagonists are more efficacious at attenuating pain-depressed behaviours. NMDA receptor antagonists produce dissociable effects on pain-depressed behaviour. Provides evidence that pain-depressed behaviours should be considered and evaluated when determining the antinociceptive effects of NMDA receptor antagonists. © 2016 European Pain Federation - EFIC®

  16. Effects of the noncompetitive N-methyl-D-aspartate receptor antagonists ketamine and MK-801 on pain-stimulated and pain-depressed behaviour in rats

    PubMed Central

    Hillhouse, T.M.; Negus, S.S.

    2017-01-01

    Background Pain is a significant public health concern, and current pharmacological treatments have problematic side effects and limited effectiveness. N-methyl-D-aspartate (NMDA) glutamate receptor antagonists have emerged as one class of candidate treatments for pain because of the significant contribution of glutamate signalling in nociceptive processing. Methods This study compared effects of the NMDA receptor antagonists ketamine and MK-801 in assays of pain-stimulated and pain-depressed behaviour in rats. The nonsteroidal anti-inflammatory drug ketoprofen was examined for comparison as a positive control. Intraperitoneal injection of dilute acid served as an acute visceral noxious stimulus to stimulate a stretching response or depress intracranial self-stimulation (ICSS) in male Sprague–Dawley rats. Results Ketamine (1.0–10.0 mg/kg) blocked acid-stimulated stretching but failed to block acid-induced depression of ICSS, whereas MK-801 (0.01–0.1 mg/kg) blocked both acid-stimulated stretching and acid-induced depression of ICSS. These doses of ketamine and MK-801 did not alter control ICSS in the absence of the noxious stimulus; however, higher doses of ketamine (10 mg/kg) and MK-801 (0.32 mg/kg) depressed all behaviour. Ketoprofen (1.0 mg/kg) blocked both acid-induced stimulation of stretching and depression of ICSS without altering control ICSS. Conclusion These results support further consideration of NMDA receptor antagonists as analgesics; however, some NMDA receptor antagonists are more efficacious at attenuating pain-depressed behaviours. What does this study add? NMDA receptor antagonists produce dissociable effects on pain-depressed behaviour. Provides evidence that pain-depressed behaviours should be considered and evaluated when determining the antinociceptive effects of NMDA receptor antagonists. PMID:26914635

  17. Oral acetate supplementation attenuates N-methyl D-aspartate receptor hypofunction-induced behavioral phenotypes accompanied by restoration of acetyl-histone homeostasis.

    PubMed

    Singh, Seema; Choudhury, Arnab; Gusain, Priya; Parvez, Suhel; Palit, Gautam; Shukla, Shubha; Ganguly, Surajit

    2016-04-01

    Aberrations in cellular acetate-utilization processes leading to global histone hypoacetylation have been implicated in the etiology of neuropsychiatric disorders like schizophrenia. Here, we investigated the role of acetate supplementation in the form of glyceryl triacetate (GTA) for the ability to restore the N-methyl D-aspartate (NMDA) receptor-induced histone hypoacetylation and to ameliorate associated behavioral phenotypes in mice. Taking cues from the studies in SH-SY5Y cells, we monitored acetylation status of specific lysine residues of histones H3 and H4 (H3K9 and H4K8) to determine the impact of oral GTA supplementation in vivo. Mice treated chronically with MK-801 (10 days; 0.15 mg/kg daily) induced hypoacetylation of H3K9 and H4K8 in the hippocampus. Daily oral supplementation of GTA (2.9 g/kg) was able to prevent this MK801-induced hypoacetylation significantly. Though MK-801-stimulated decreases in acetyl-H3K9 and acetyl-H4K8 were found to be associated with ERK1/2 activation, GTA seemed to act independent of this pathway. Simultaneously, GTA administration was able to attenuate the chronic MK-801-induced cognitive behavior phenotypes in elevated plus maze and novel object recognition tests. Not only MK-801, GTA also demonstrated protective effects against behavioral phenotypes generated by another NMDA receptor antagonist, ketamine. Acute (single injection) ketamine-mediated hyperactivity phenotype and chronic (10 days treatment) ketamine-induced phenotype of exaggerated immobility in forced swim test were ameliorated by GTA. The signature behavioral phenotypes induced by acute and chronic regimen of NMDA receptor antagonists seemed to be attenuated by GTA. This study thus provides a therapeutic paradigm of using dietary acetate supplement in psychiatric disorders.

  18. Early Growth Response 1 (Egr-1) Regulates N-Methyl-d-aspartate Receptor (NMDAR)-dependent Transcription of PSD-95 and α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor (AMPAR) Trafficking in Hippocampal Primary Neurons*

    PubMed Central

    Qin, Xike; Jiang, Yongjun; Tse, Yiu Chung; Wang, Yunling; Wong, Tak Pan; Paudel, Hemant K.

    2015-01-01

    The N-methyl-d-aspartate receptor (NMDAR) controls synaptic plasticity and memory function and is one of the major inducers of transcription factor Egr-1 in the hippocampus. However, how Egr-1 mediates the NMDAR signal in neurons has remained unclear. Here, we show that the hippocampus of mice lacking Egr-1 displays electrophysiology properties and ultrastructure that are similar to mice overexpressing PSD-95, a major scaffolding protein of postsynaptic density involved in synapse formation, synaptic plasticity, and synaptic targeting of AMPA receptors (AMPARs), which mediate the vast majority of excitatory transmission in the CNS. We demonstrate that Egr-1 is a transcription repressor of the PSD-95 gene and is recruited to the PSD-95 promoter in response to NMDAR activation. Knockdown of Egr-1 in rat hippocampal primary neurons blocks NMDAR-induced PSD-95 down-regulation and AMPAR endocytosis. Likewise, overexpression of Egr-1 in rat hippocampal primary neurons causes reduction in PSD-95 protein level and promotes AMPAR endocytosis. Our data indicate that Egr-1 is involved in NMDAR-mediated PSD-95 down-regulation and AMPAR endocytosis, a process important in the expression of long term depression. PMID:26475861

  19. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme

    PubMed Central

    Leong, Max K.; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-01

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r2 = 0.928–0.988,  = 0.894–0.954, RMSE = 0.002–0.412, s = 0.001–0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r2 = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery. PMID:28059133

  20. Separate intramolecular targets for protein kinase A control N-methyl-D-aspartate receptor gating and Ca2+ permeability.

    PubMed

    Aman, Teresa K; Maki, Bruce A; Ruffino, Thomas J; Kasperek, Eileen M; Popescu, Gabriela K

    2014-07-04

    Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca(2+) flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca(2+) permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca(2+) conductance, because neither Na(+) conductance nor Ca(2+)-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca(2+) permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca(2+) permeability. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Separate Intramolecular Targets for Protein Kinase A Control N-Methyl-d-aspartate Receptor Gating and Ca2+ Permeability*

    PubMed Central

    Aman, Teresa K.; Maki, Bruce A.; Ruffino, Thomas J.; Kasperek, Eileen M.; Popescu, Gabriela K.

    2014-01-01

    Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability. PMID:24847051

  2. The NR1-4 C-terminus interferes with N-methyl-D-aspartate receptor-mediated excitotoxicity: evidence against a typical T/SXV-PDZ interaction.

    PubMed

    Mattar, P A; Holmes, K D; Dekaban, G A

    2005-01-01

    The N-methyl-D-aspartate receptor (NMDAR) plays a key role in the neural plasticity that underlies learning and memory in vivo. The plasticity exhibited by NMDARs may also contribute to disease pathogenesis, as a number of disorders are caused or exacerbated by exaggerated NMDAR activity. The NMDAR is composed of two obligatory types of subunits, NR1 and NR2. These transmembrane proteins include large intracellular C-termini that have yet to be fully characterized. We have developed a three-color fluorescence system in order to visualize NMDAR expression in living cells. Using excitotoxicity as a proxy for exaggerated NMDAR activity, we analyzed the effect of over-expressing NR1-4 and NR2A C-terminal domains on exaggerated NMDAR function. We demonstrate that a determinant within the C-terminal domain of NR1-4 (C02') is important for NMDAR excitotoxicity, whereas no novel determinants were identified in the NR2A C-terminus. Through the use of heterologous cells, and by examining the interaction between the prototypical NMDAR-binding partner postsynaptic density-95 (PSD-95), we show that this effect is unlikely to be mediated through a classical interaction with PSD-95.

  3. Prevalence of elevated serum anti-N-methyl-D-aspartate receptor antibody titers in patients presenting exclusively with psychiatric symptoms: a comparative follow-up study.

    PubMed

    Ando, Yoshihito; Shimazaki, Haruo; Shiota, Katsutoshi; Tetsuka, Syuichi; Nakao, Koichi; Shimada, Tatsuhiro; Kurata, Kazumi; Kuroda, Jinichi; Yamashita, Akihiro; Sato, Hayato; Sato, Mamoru; Eto, Shinkichi; Onishi, Yasunori; Tanaka, Keiko; Kato, Satoshi

    2016-07-08

    Increasing numbers of patients with elevated anti-N-methyl-D-aspartate (NMDA) receptor antibody titers presenting exclusively with psychiatric symptoms have been reported. The aim of the present study was to clarify the prevalence of elevated serum anti-NMDA receptor antibody titers in patients with new-onset or acute exacerbations of psychiatric symptoms. In addition, the present study aimed to investigate the association between elevated anti-NMDA receptor titers and psychiatric symptoms. The present collaborative study included 59 inpatients (23 male, 36 female) presenting with new-onset or exacerbations of schizophrenia-like symptoms at involved institutions from June 2012 to March 2014. Patient information was collected using questionnaires. Anti-NMDA receptor antibody titers were measured using NMDAR NR1 and NR2B co-transfected human embryonic kidney (HEK) 293 cells as an antigen (cell-based assay). Statistical analyses were performed for each questionnaire item. The mean age of participants was 42.0 ± 13.7 years. Six cases had elevated serum anti-NMDA antibody titers (10.2 %), four cases were first onset, and two cases with disease duration >10 years presented with third and fifth recurrences. No statistically significant difference in vital signs or major symptoms was observed between antibody-positive and antibody-negative groups. However, a trend toward an increased frequency of schizophrenia-like symptoms was observed in the antibody-positive group. Serum anti-NMDA receptor antibody titers may be associated with psychiatric conditions. However, an association with specific psychiatric symptoms was not observed in the present study. Further studies are required to validate the utility of serum anti-NMDA receptor antibody titer measurements at the time of symptom onset.

  4. A comparison of N-methyl-D-aspartate-evoked release of adenosine and ( sup 3 H)norepinephrine from rat cortical slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoehn, K.; Craig, C.G.; White, T.D.

    1990-10-01

    Tetrodotoxin reduced N-methyl-D-aspartate (NMDA)-evoked release of adenosine by 35% but virtually abolished (3H)norepinephrine release. Although (3H)norepinephrine release from rat cortical slices evoked by 500 microM NMDA was abolished by 1.2 mM Mg++, which produces a voltage-sensitive, uncompetitive block of NMDA-channels, adenosine release was increased in the presence of Mg++. Partial depolarization with 12 mM K+ relieved the Mg++ block of 500 microM NMDA-evoked (3H)norepinephrine release but did not affect adenosine release, indicating that a Mg++ requirement for the adenosine release process per se cannot account for this discrepancy. NMDA was 33 times more potent in releasing adenosine than (3H)norepinephrine. Atmore » submaximal concentrations of NMDA (10 and 20 microM), adenosine release was augmented in Mg+(+)-free medium. Although a high concentration of the uncompetitive NMDA antagonist MK-801 ((+)-5-methyl-10,11,dihydro-5H-dibenzo(a,d)cyclohepten-5-10-imine maleate) (3 microM) blocked NMDA-evoked release of (3H)norepinephrine and adenosine, a lower concentration (300 nM) decreased NMDA-evoked (3H)norepinephrine release by 66% without affecting adenosine release. These findings suggest that maximal adenosine release occurs when relatively few NMDA receptors are activated, raising the possibility that spare receptors exist for NMDA-evoked adenosine release. Rather than acting as a protectant against excessive NMDA excitation, released adenosine might provide an inhibitory threshold which must be overcome for NMDA-mediated neurotransmission to proceed.« less

  5. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection.

    PubMed

    Zhang, Qiang; Shao, Yang; Zhao, Changsong; Cai, Juan; Sun, Sheng

    2014-12-01

    Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection.

  6. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection

    PubMed Central

    ZHANG, QIANG; SHAO, YANG; ZHAO, CHANGSONG; CAI, JUAN; SUN, SHENG

    2014-01-01

    Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection. PMID:25371724

  7. Opiate and N-methyl-D-aspartate receptors in form-deprivation myopia.

    PubMed

    Fischer, A J; Seltner, R L; Stell, W K

    1998-01-01

    Pharmacological studies have implicated retinal opiate pathways in the visual regulation of ocular growth. However, the effects of opiate receptor subtype-specific compounds on form-deprivation myopia (FDM) are inconsistent (Seltner et al., 1997), and may be mediated by non-opiate receptors. The purpose of this study was to test whether opiate receptor-inactive (D-) enantiomers elicit the same FDM-suppressing effect as their opiate receptor-active (L-) counterparts. Since some opiates are thought to act at NMDA receptors, we also tested whether NMDA receptor agonists and antagonists influence ocular growth or FDM. We found that both L- and D- enantiomers of morphine-like compounds (dextrorphanol and levorphanol, and D- and L-naloxone) were equally effective in blocking FDM. The NMDA receptor antagonists dextromethorphan, MK801, and AP5 also suppressed FDM. A single toxic dose of NMDA, that destroys many subtypes of amacrine cells (including those that synthesize the opioid peptide enkephalin), induced myopia and ocular enlargement in ungoggled eyes, and eliminated the ability of form-deprivation to enhance ocular growth. The NR-1 subunit of the NMDA receptor was localized to a narrowly stratified, intense stratum at approximately 50% depth in the inner plexiform layer, diffusely throughout the proximal inner plexiform layer, and to many somata in the amacrine and ganglion cell layers. These observations suggest that most effects of opiate receptor ligands on FDM in the chick are mediated by non-opiate receptors, which are likely to include NMDA receptors. NMDA as an excitotoxin transiently enhances ocular growth, but thereafter disables retinal mechanisms that promote emmetropization and FDM. These observations are consistent with a prominent role for pathways utilizing NMDA receptors in FDM and ocular growth-control.

  8. N-Methyl-D-aspartate receptor antibody could be a cause of catatonic symptoms in psychiatric patients: case reports and methods for detection.

    PubMed

    Tsutsui, Ko; Kanbayashi, Takashi; Takaki, Manabu; Omori, Yuki; Imai, Yumiko; Nishino, Seiji; Tanaka, Keiko; Shimizu, Tetsuo

    2017-01-01

    The symptoms of catatonia have been reported to be similar to the initial symptoms of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Subsequently, this autoimmune limbic encephalitis has been noticed by many psychiatrists. For a differential diagnosis of catatonic state, it is important to detect anti-NMDAR encephalitis. This encephalitis is expected to be in remission by early detection and treatment. We should be more cautious about catatonic symptoms of schizophrenia. When a patient is suspected of having encephalitis, we should screen for anti-NMDAR antibodies in cerebrospinal fluid samples using a cell-based assay. We describe the methods of NMDAR antibody detection and the etiology of this encephalitis with case reports. Two representative cases with catatonia and non-catatonia (brief psychotic disorder) were reported. Schizophrenia is a general, heterogeneous, and complicated disorder, and its pathophysiology is unknown. There is an established evidence of NMDAR hypofunction, which is the functional disconnection of the central component; this is one of the most recognized models for schizophrenia. Furthermore, it is said that autoimmune mechanisms have been involved, at least in subgroups of schizophrenia patients. Further study of anti-NMDAR antibody and its related encephalitis would give essential clues for the research of schizophrenia, catatonia, and atypical psychosis.

  9. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist-Induced Rat Models of Schizophrenia.

    PubMed

    Nakashima, Masato; Imada, Haruka; Shiraishi, Eri; Ito, Yuki; Suzuki, Noriko; Miyamoto, Maki; Taniguchi, Takahiko; Iwashita, Hiroki

    2018-04-01

    The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N -methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, ( N -{(1 S )-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3- b ]pyrazine-4(1 H )-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α -amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Olanzapine, but not clozapine, increases glutamate release in the prefrontal cortex of freely moving mice by inhibiting D-aspartate oxidase activity

    PubMed Central

    Sacchi, Silvia; Novellis, Vito De; Paolone, Giovanna; Nuzzo, Tommaso; Iannotta, Monica; Belardo, Carmela; Squillace, Marta; Bolognesi, Paolo; Rosini, Elena; Motta, Zoraide; Frassineti, Martina; Bertolino, Alessandro; Pollegioni, Loredano; Morari, Michele; Maione, Sabatino; Errico, Francesco; Usiello, Alessandro

    2017-01-01

    D-aspartate levels in the brain are regulated by the catabolic enzyme D-aspartate oxidase (DDO). D-aspartate activates NMDA receptors, and influences brain connectivity and behaviors relevant to schizophrenia in animal models. In addition, recent evidence reported a significant reduction of D-aspartate levels in the post-mortem brain of schizophrenia-affected patients, associated to higher DDO activity. In the present work, microdialysis experiments in freely moving mice revealed that exogenously administered D-aspartate efficiently cross the blood brain barrier and stimulates L-glutamate efflux in the prefrontal cortex (PFC). Consistently, D-aspartate was able to evoke L-glutamate release in a preparation of cortical synaptosomes through presynaptic stimulation of NMDA, mGlu5 and AMPA/kainate receptors. In support of a potential therapeutic relevance of D-aspartate metabolism in schizophrenia, in vitro enzymatic assays revealed that the second-generation antipsychotic olanzapine, differently to clozapine, chlorpromazine, haloperidol, bupropion, fluoxetine and amitriptyline, inhibits the human DDO activity. In line with in vitro evidence, chronic systemic administration of olanzapine induces a significant extracellular release of D-aspartate and L-glutamate in the PFC of freely moving mice, which is suppressed in Ddo knockout animals. These results suggest that the second-generation antipsychotic olanzapine, through the inhibition of DDO activity, increases L-glutamate release in the PFC of treated mice. PMID:28393897

  11. Ligand-specific Deactivation Time Course of GluN1/GluN2D NMDA Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K Vance; N Simorowski; S Traynelis

    2011-12-31

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors that mediate a majority of excitatory synaptic transmission. One unique property of GluN1/GluN2D NMDA receptors is an unusually prolonged deactivation time course following the removal of L-glutamate. Here we show, using x-ray crystallography and electrophysiology, that the deactivation time course of GluN1/GluN2D receptors is influenced by the conformational variability of the ligand-binding domain (LBD) as well as the structure of the activating ligand. L-glutamate and L-CCG-IV induce significantly slower deactivation time courses compared with other agonists. Crystal structures of the isolated GluN2D LBD in complex with various ligands revealmore » that the binding of L-glutamate induces a unique conformation at the backside of the ligand-binding site in proximity to the region at which the transmembrane domain would be located in the intact receptors. These data suggest that the activity of the GluN1/GluN2D NMDA receptor is controlled distinctively by the endogenous neurotransmitter L-glutamate.« less

  12. Early Growth Response 1 (Egr-1) Regulates N-Methyl-d-aspartate Receptor (NMDAR)-dependent Transcription of PSD-95 and α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor (AMPAR) Trafficking in Hippocampal Primary Neurons.

    PubMed

    Qin, Xike; Jiang, Yongjun; Tse, Yiu Chung; Wang, Yunling; Wong, Tak Pan; Paudel, Hemant K

    2015-12-04

    The N-methyl-d-aspartate receptor (NMDAR) controls synaptic plasticity and memory function and is one of the major inducers of transcription factor Egr-1 in the hippocampus. However, how Egr-1 mediates the NMDAR signal in neurons has remained unclear. Here, we show that the hippocampus of mice lacking Egr-1 displays electrophysiology properties and ultrastructure that are similar to mice overexpressing PSD-95, a major scaffolding protein of postsynaptic density involved in synapse formation, synaptic plasticity, and synaptic targeting of AMPA receptors (AMPARs), which mediate the vast majority of excitatory transmission in the CNS. We demonstrate that Egr-1 is a transcription repressor of the PSD-95 gene and is recruited to the PSD-95 promoter in response to NMDAR activation. Knockdown of Egr-1 in rat hippocampal primary neurons blocks NMDAR-induced PSD-95 down-regulation and AMPAR endocytosis. Likewise, overexpression of Egr-1 in rat hippocampal primary neurons causes reduction in PSD-95 protein level and promotes AMPAR endocytosis. Our data indicate that Egr-1 is involved in NMDAR-mediated PSD-95 down-regulation and AMPAR endocytosis, a process important in the expression of long term depression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Investigation of antidepressant-like and anxiolytic-like actions and cognitive and motor side effects of four N-methyl-D-aspartate receptor antagonists in mice.

    PubMed

    Refsgaard, Louise K; Pickering, Darryl S; Andreasen, Jesper T

    2017-02-01

    Evidence suggests that N-methyl-D-aspartate receptor (NMDAR) antagonists could be efficacious in treating depression and anxiety, but side effects constitute a challenge. This study evaluated the antidepressant-like and anxiolytic-like actions, and cognitive and motor side effects of four NMDAR antagonists. MK-801, ketamine, S-ketamine, RO 25-6981 and the positive control, citalopram, were tested for antidepressant-like and anxiolytic-like effects in mice using the forced-swim test, the elevated zero maze and the novelty-induced hypophagia test. Side effects were assessed using a locomotor activity test, the modified Y-maze and the rotarod test. All compounds increased swim distance in the forced-swim test. In the elevated zero maze, the GluN2B subtype-selective RO 25-6981 affected none of the measured parameters, whereas all other compounds showed anxiolytic-like effects. In the novelty-induced hypophagia test, citalopram and MK-801 showed anxiogenic-like action. All NMDAR antagonists induced hyperactivity. The high doses of ketamine and MK-801 impaired performance in the modified Y-maze test, whereas S-ketamine and RO 25-6891 showed no effects in this test. Only MK-801 impaired rotarod performance. The study supports that NMDARs could be a possible therapeutic target for treating depression and anxiety. However, selective antagonism of GluN2B subunit-containing NMDARs showed no effect on anxiety-like behaviours in this study.

  14. Increased cerebral oxygen consumption in Eker rats and effects of N-methyl-D-aspartate blockade: Implications for autism.

    PubMed

    Weiss, Harvey R; Liu, Xia; Zhang, Qihang; Chi, Oak Z

    2007-08-15

    Because there is a strong correlation between tuberous sclerosis and autism, we used a tuberous sclerosis model (Eker rat) to test the hypothesis that these animals would have an altered regional cerebral O2 consumption that might be associated with autism. We also examined whether the altered cerebral O2 consumption was related to changes in the importance of N-methyl-D-aspartate (NMDA) receptors. Young (4 weeks) male control Long Evans (N = 14) and Eker (N = 14) rats (70-100 g) were divided into control and CGS-19755 (10 mg/kg, competitive NMDA antagonist)-treated animals. Cerebral regional blood flow (14C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. NMDA receptor protein levels were determined by Western immunoblotting. We found significantly increased basal O2 consumption in the cortex (6.2 +/- 0.6 ml O2/min/100 g Eker vs. 4.7 +/- 0.4 Long Evans), hippocampus, cerebellum, and pons. Regional cerebral blood flow was also elevated in Eker rats at baseline, but cerebral O2 extraction was similar. CGS-19755 significantly lowered O2 consumption in the cortex (2.8 +/- 0.3), hippocampus, and pons of the Long Evans rats but had no effect on cortex (5.8 +/- 0.8) or other regions of the Eker rats. Cerebral blood flow followed a similar pattern. NMDA receptor protein levels (NR1 subunit) were similar between groups. In conclusion, Eker rats had significantly elevated cerebral O2 consumption and blood flow, but this was not related to NMDA receptor activation. In fact, the importance of NMDA receptors in the control of basal cerebral O2 consumption was reduced. This might have important implications in the treatment of autism. Copyright 2007 Wiley-Liss, Inc.

  15. N-methyl-D-aspartate receptor antibody-mediated neurological disease: results of a UK-based surveillance study in children.

    PubMed

    Wright, Sukhvir; Hacohen, Yael; Jacobson, Leslie; Agrawal, Shakti; Gupta, Rajat; Philip, Sunny; Smith, Martin; Lim, Ming; Wassmer, Evangeline; Vincent, Angela

    2015-06-01

    N-methyl-D-aspartate receptor antibody (NMDAR-Ab) encephalitis is a well-recognised clinico-immunological syndrome that presents with neuropsychiatric symptoms cognitive decline, movement disorder and seizures. This study reports the clinical features, management and neurological outcomes of paediatric NMDAR-Ab-mediated neurological disease in the UK. A prospective surveillance study. Children with NMDAR-Ab-mediated neurological diseases were voluntarily reported to the British Neurological Surveillance Unit (BPNSU) from November 2010 to December 2011. Initial and follow-up questionnaires were sent out to physicians. Thirty-one children fulfilled the criteria for the study. Eight presented during the study period giving an incidence of 0.85 per million children per year (95% CI 0.64 to 1.06); 23 cases were historical. Behavioural change and neuropsychiatric features were present in 90% of patients, and seizures and movement disorders both in 67%. Typical NMDAR-Ab encephalitis was reported in 24 children and partial phenotype without encephalopathy in seven, including predominantly psychiatric (four) and movement disorder (three). All patients received steroids, 22 (71%) received intravenous immunoglobulin, 9 (29%) received plasma exchange,and 10 (32%) received second-line immunotherapy. Of the 23 patients who were diagnosed early, 18 (78%) made a full recovery compared with only 1 of 8 (13%) of the late diagnosed patients (p=0.002, Fisher's exact test). Seven patients relapsed, with four needing additional second-line immunotherapy. Paediatric NMDAR-Ab-mediated neurological disease appears to be similar to adult NMDAR-Ab encephalitis, but some presented with a partial phenotype. Early treatment was associated with a quick and often full recovery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Epileptiform activity induced by lowering extracellular [Mg2+] in combined hippocampal-entorhinal cortex slices: modulation by receptors for norepinephrine and N-methyl-D-aspartate.

    PubMed

    Stanton, P K; Jones, R S; Mody, I; Heinemann, U

    1987-01-01

    Reduction of extracellular Mg2+ concentration induced spontaneous and evoked epileptiform activity in the entorhinal cortex (EC) and dentate gyrus (DG) of combined hippocampus (HC)-EC slices. Extracellular field potentials, as well as changes in extracellular Ca2+ and K+ concentrations, were measured in EC and DG with ion-selective/reference electrodes during both repetitive and single stimuli. In the EC, lowering extracellular [Mg2+] induces both spontaneous and single stimulus evoked ictal events consisting of extracellular negative potential shifts (up to 5 mV, 30 sec), decreases in [Ca2+]0 and increases in [K+]0. In the DG, spontaneous events were much shorter, but similar changes in [Ca2+]0, [K+]0 and field potentials (FPs) could be evoked by brief high-frequency stimulation. In both areas, the N-methyl-D-aspartate (NMDA) receptor antagonist 2-aminophosphonovalerate (2-APV) completely blocked spontaneous as well as stimulus evoked epileptiform events. The neurotransmitter norepinephrine (NE), which has previously been shown to modulate long-term potentiation in the DG, was found to exhibit differential modulation of epileptiform activity in the EC and DG. In the EC, NE, acting via alpha 1-receptors, completely blocked low Mg2+-induced epileptiform activity. In contrast, in the DG, NE exhibited a beta-receptor mediated prolongation of the low Mg2+-induced ictal events, and enhanced the stimulus-induced ionic and field potential changes. From these results, we conclude that lowering extracellular [Mg2+], acting in large part through the removal of the Mg2+ voltage-dependent blockade of NMDA receptors, leads to induction of epileptiform activity in both the EC and DG.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Case report of anti-N-methyl-D-aspartate receptor encephalitis in a middle-aged woman with a long history of major depressive disorder.

    PubMed

    Rong, Xia; Xiong, Zhenzhen; Cao, Bingrong; Chen, Juan; Li, Mingli; Li, Zhe

    2017-08-31

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune disease involving antibodies against the NR1 subunits of NMDARs. The disease shows variable clinical presentation, and involves new-onset acute psychotic symptoms, making it difficult to differentiate from major depressive disorder with psychotic symptoms. Potential associations between this autoimmune disorder and onset or progression of major depressive disorder remains unclear. We present a rare case of a patient who had both major depressive disorder and anti-NMDAR encephalitis and in whom the encephalitis initially went undetected. The patient had been suffering from depressive disorder for more than 6 years without any treatment, when she was hospitalized for new-onset psychotic symptoms. She was initially diagnosed only with major depressive disorder with psychotic symptoms, but antipsychotics did not alleviate symptoms and the patient's psychiatric course began to fluctuate rapidly. Anti-NR1 IgG autoantibodies were detected in cerebrospinal fluid, and the combination of immunotherapy and antipsychotics proved more effective than antipsychotics alone. The patient was then also diagnosed with anti-NMDAR encephalitis. Our case suggests that clinicians should consider anti-NMDAR encephalitis when a patient with depressive disorder shows sudden fluctuations in psychiatric symptoms. It also highlights the need for research into possible relationships between anti-NMDAR encephalitis and major depressive disorder.

  18. Blockage of N-methyl-D-aspartate receptors decreases testosterone levels and enhances postnatal neuronal apoptosis in the preoptic area of male rats.

    PubMed

    Hsu, C; Hsieh, Y L; Yang, R C; Hsu, H K

    2000-05-01

    Sexual dimorphism has been found in the preoptic area of the hypothalamus (POA), a major site of glutamate actions via N-methyl-D-aspartate (NMDA) receptors. The sexually dimorphic nucleus of the preoptic area (SDN-POA) of male rats exhibits about seven-fold greater nuclear volume than that of females. A naturally occurring neonatal neuronal apoptosis, that can be prevented by testosterone, may contribute to this sexual difference in SDN-POA nuclear volume. Since activation of NMDA receptors in the POA induces GnRH secretion, it may be involved in both elevation of serum testosterone and prevention of neuronal death in the SDN-POA. In the present study, protein expression of NMDA receptors in the POA of male and female fetuses was quantified on the day preceding the fetal testosterone peak (embryonic day 16; ED 16). Rats were then distributed in four groups: (1) untreated males, (2) untreated females, (3) males pretreated with MK-801 (a noncompetitive NMDA receptor antagonist), and (4) females pretreated with MK-801. Serum levels of testosterone were estimated on the afternoon of ED 18. Expression of Bcl-2 and Bax, as well as neuronal apoptosis in SDN-POA, were observed on postnatal day 8. The results showed that (1) expression of NMDA receptors in the POA of male fetuses was higher than that of females on ED 16; (2) levels of testosterone were lower in MK-801 pretreated male fetuses than in intact males on ED 18; (3) expression of Bcl-2 in the POA of MK-801 pretreated male rats was significantly less than that of control males; (4) the apoptotic incidence in the SDN-POA of MK-801 pretreated male rats was significantly greater than in control males, while there was no significant difference in apoptotic incidence in the SDN-POA between MK-801 pretreated and intact females. These results suggest that the NMDA receptor is highly expressed in prenatal male fetuses, and that it might play an important role in the elevation of testosterone levels. Moreover, activation

  19. GluN2C/GluN2D subunit-selective NMDA receptor potentiator CIQ reverses MK-801-induced impairment in prepulse inhibition and working memory in Y-maze test in mice

    PubMed Central

    Suryavanshi, P S; Ugale, R R; Yilmazer-Hanke, D; Stairs, D J; Dravid, S M

    2014-01-01

    Background and Purpose Despite ample evidence supporting the N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia, progress in the development of effective therapeutics based on this hypothesis has been limited. Facilitation of NMDA receptor function by co-agonists (d-serine or glycine) only partially alleviates the symptoms in schizophrenia; other means to facilitate NMDA receptors are required. NMDA receptor sub-types differ in their subunit composition, with varied GluN2 subunits (GluN2A-GluN2D) imparting different physiological, biochemical and pharmacological properties. CIQ is a positive allosteric modulator that is selective for GluN2C/GluN2D-containing NMDA receptors (Mullasseril et al.). Experimental Approach The effect of systemic administration of CIQ was tested on impairment in prepulse inhibition (PPI), hyperlocomotion and stereotypy induced by i.p. administration of MK-801 and methamphetamine. The effect of CIQ was also tested on MK-801-induced impairment in working memory in Y-maze spontaneous alternation test. Key Results We found that systemic administration of CIQ (20 mg·kg−1, i.p.) in mice reversed MK-801 (0.15 mg·kg−1, i.p.)-induced, but not methamphetamine (3 mg·kg−1, i.p.)-induced, deficit in PPI. MK-801 increased the startle amplitude to pulse alone, which was not reversed by CIQ. In contrast, methamphetamine reduced the startle amplitude to pulse alone, which was reversed by CIQ. CIQ also partially attenuated MK-801- and methamphetamine-induced hyperlocomotion and stereotyped behaviours. Additionally, CIQ reversed the MK-801-induced working memory deficit in spontaneous alternation in a Y-maze. Conclusion and Implications Together, these results suggest that facilitation of GluN2C/GluN2D-containing receptors may serve as an important therapeutic strategy for treating positive and cognitive symptoms in schizophrenia. PMID:24236947

  20. Protection of Retinal Ganglion Cells by Caspase Substrate-Binding Peptide IQACRG from N-Methyl-d-Aspartate Receptor-Mediated Excitotoxicity

    PubMed Central

    Seki, Masaaki; Soussou, Walid; Manabe, Shin-ichi

    2010-01-01

    Purpose. This study investigated whether the enzymatically inactive caspase mimetic IQACRG protects rat retinal ganglion cells (RGCs) from excitotoxic insults. Minimally invasive delivery of the peptide to the retina was explored, and the mechanisms of neuroprotection were elucidated. Methods. IQACRG was linked to penetratin (P-IQACRG) to facilitate cellular uptake. RGC labeling by biotinylated-P-IQACRG delivered via intravitreal or subconjunctival injection was demonstrated by avidin-biotin chemistry. The authors used histologic and electrophysiological measures to evaluate the neuroprotective potential of P-IQACRG against RGC death induced by N-methyl-d-aspartate (NMDA) in vitro and in vivo. In addition, they monitored activity of an enzyme that is downstream of caspase-1, matrix metalloproteinase-9 (MMP-9), and protein levels of the caspase-3/7 substrate, myocyte enhancer factor 2C (MEF2C), to determine the effectiveness of IQACRG in blocking excessive caspase activity. Results. IQACRG significantly reduced NMDA-induced RGC death in culture and in vivo. Ex vivo electrophysiological recording of the retina on multielectrode arrays demonstrated functional rescue of RGCs by IQACRG. The authors also found that delivery of IQACRG to the retina inhibited NMDA-triggered MMP-9 activity and prevented cleavage of MEF2C protein that would otherwise have been engendered by caspase activation preceding RGC death. Strikingly, subconjunctival injection of P-IQACRG was very effective in preventing NMDA-induced RGC death in vivo. Conclusions. These data demonstrate that IQACRG protects RGCs from excitotoxicity in vitro and in vivo. The positive results with subconjunctival administration of P-IQACRG suggest that in the future this treatment may be useful clinically in diseases such as glaucoma and retinal ischemia. PMID:19815732

  1. Involvement of N-methyl-d-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test.

    PubMed

    Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Ostadhadi, Sattar; Amini-Khoei, Hossein; Dehpour, Ahmad Reza

    2016-02-01

    Recent evidence indicates that 5-hydroxytryptamine 3 (5-HT3) antagonists such as ondansetron and tropisetron exert positive behavioral effects in animal models of depression. Due to the ionotropic nature of 5-HT3 and N-methyl-d-aspartate (NMDA) receptors, plus their contribution to the pathophysiology of depression, we investigated the possible role of NMDA receptors in the antidepressant-like effect of 5-HT3 receptor antagonists in male mice. In order to evaluate the animals' behavior in response to different treatments, we performed open-field test (OFT), forced swimming test (FST), and tail-suspension test (TST), which are considered as valid tasks for measuring locomotor activity and depressive-like behaviors in mice. Our data revealed that intraperitoneal (i.p.) administration of tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01, and 0.1μg/kg) significantly decreased the immobility time in FST and TST. Also, co-administration of subeffective doses of tropisetron (1mg/kg, i.p.) or ondansetron (0.001μg/kg, i.p.) with subeffective doses of NMDA receptor antagonists, ketamine (1mg/kg, i.p.), MK-801 (0.05mg/kg, i.p.) and magnesium sulfate (10mg/kg, i.p.) resulted in a reduced immobility time both in FST and TST. The subeffective dose of NMDA (NMDA receptor agonist, 75mg/kg, i.p.) abolished the effects of 5-HT3 antagonists in FST and TST, further supporting the presumed interaction between 5-HT3 and NMDA receptors. These treatments did not affect the locomotor behavior of animals in OFT. Finally, the results of our study suggest that the positive effects of 5-HT3 antagonists on the coping behavior of mice in FST and TST are at least partly mediated through NMDA receptors participation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Neuroprotective effects of NPS 846, a novel N-methyl-D-aspartate receptor antagonist, after closed head trauma in rats.

    PubMed

    Gurevich, B; Artru, A A; Lam, A M; Mueller, A L; Merkind, V; Talmor, D; Katchko, L; Shapira, Y

    1998-06-01

    The authors sought to determine whether 3,3-bis (3-fluorophenyl) propylamine (NPS 846), a novel noncompetitive N-methyl-D-aspartate receptor antagonist, alters outcome after closed head trauma in rats. The experimental variables were: presence or absence of closed head trauma, treatment with NPS 846 or no treatment, and time at which the rats were killed (24 or 48 hours). The NPS 846 (1 mg/kg) was administered intraperitoneally at 1 and 3 hours after closed head trauma or sham operation. Outcome measures were the neurological severity score (NSS), ischemic tissue volume, hemorrhagic necrosis volume, and specific gravity, water content, and concentrations of calcium, sodium, potassium, and magnesium in brain tissue. The following closed head trauma-induced changes in the injured hemisphere (expressed as the mean +/- the standard deviation) were reversed by NPS 846: decreased specific gravity of 1.035 +/- 0.006 at 24 hours was increased to 1.042 +/- 0.004; the decreased potassium level of 0.583 +/- 0.231 mg/L at 48 hours and at 24 hours was increased to 2.442 +/- 0.860 mg/L; the increased water content of 84.7 +/- 2.6% at 24 hours was decreased to 79.8 +/- 2%; the increased calcium level of 0.592 +/- 0.210 mg/L at 24 hours was decreased to 0.048 +/- 0.029 mg/L; and the increased sodium level of 2.035 +/- 0.649 mg/L was decreased to 0.631 +/- 0.102 mg/L. Administration of NPS 846 also lowered the NSS (improved neurological status) at 48 hours (7 +/- 3) and caused no significant changes in ischemic tissue or hemorrhagic necrosis volumes in the injured hemisphere at 24 or 48 hours. In this model of closed head trauma, NPS 846 improved neurological outcome, delayed the onset of brain edema, and improved brain tissue ion homeostasis.

  3. Herpes simplex virus-induced anti-N-methyl-d-aspartate receptor encephalitis: a systematic literature review with analysis of 43 cases.

    PubMed

    Nosadini, Margherita; Mohammad, Shekeeb S; Corazza, Francesco; Ruga, Ezia Maria; Kothur, Kavitha; Perilongo, Giorgio; Frigo, Anna Chiara; Toldo, Irene; Dale, Russell C; Sartori, Stefano

    2017-08-01

    To conduct a systematic literature review on patients with biphasic disease with herpes simplex virus (HSV) encephalitis followed by anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. We conducted a case report and systematic literature review (up to 10 December 2016), focused on differences between herpes simplex encephalitis (HSE) and anti-NMDAR encephalitis phases, age-related characteristics of HSV-induced anti-NMDAR encephalitis, and therapy. For statistical analyses, McNemar's test, Fisher's test, and Wilcoxon rank sum test were used (two-tailed significance level set at 5%). Forty-three patients with biphasic disease were identified (31 children). Latency between HSE and anti-NMDAR encephalitis was significantly shorter in children than adults (median 24 vs 40.5d; p=0.006). Compared with HSE, anti-NMDAR encephalitis was characterized by significantly higher frequency of movement disorder (2.5% vs 75% respectively; p<0.001), and significantly lower rate of seizures (70% vs 30% respectively; p=0.001). Compared with adults, during anti-NMDAR encephalitis children had significantly more movement disorders (86.7% children vs 40% adults; p=0.006), fewer psychiatric symptoms (41.9% children vs 90.0% adults; p=0.025), and a slightly higher median modified Rankin Scale score (5 in children vs 4 in adults; p=0.015). During anti-NMDAR encephalitis, 84.6 per cent of patients received aciclovir (for ≤7d in 22.7%; long-term antivirals in 18.0% only), and 92.7 per cent immune therapy, but none had recurrence of HSE clinically or using cerebrospinal fluid HSV polymerase chain reaction (median follow-up 7mo). Our review suggests that movement disorder may help differentiate clinically an episode of HSV-induced anti-NMDAR encephalitis from HSE relapse. Compared with adults, children have shorter latency between HSE and anti-NMDAR encephalitis and, during anti-NMDAR encephalitis, more movement disorder, fewer psychiatric symptoms, and slightly more severe disease

  4. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    PubMed Central

    Di Fiore, Maria Maddalena; Santillo, Alessandra; Falvo, Sara; Longobardi, Salvatore; Chieffi Baccari, Gabriella

    2016-01-01

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation. PMID:27428949

  5. Role of antioxidant enzymes in redox regulation of N-methyl-D-aspartate receptor function and memory in middle-aged rats.

    PubMed

    Lee, Wei-Hua; Kumar, Ashok; Rani, Asha; Foster, Thomas C

    2014-06-01

    Overexpression of superoxide dismutase 1 (SOD1) in the hippocampus results in age-dependent impaired cognition and altered synaptic plasticity suggesting a possible model for examining the role of oxidative stress in senescent neurophysiology. However, it is unclear if SOD1 overexpression involves an altered redox environment and a decrease in N-methyl-D-aspartate receptor (NMDAR) synaptic function reported for aging animals. Viral vectors were used to express SOD1 and green fluorescent protein (SOD1 + GFP), SOD1 and catalase (SOD1 + CAT), or GFP alone in the hippocampus of middle-aged (17 months) male Fischer 344 rats. We confirm that SOD1 + GFP and SOD1 + CAT reduced lipid peroxidation indicating superoxide metabolites were primarily responsible for lipid peroxidation. SOD1 + GFP impaired learning, decreased glutathione peroxidase activity, decreased glutathione levels, decreased NMDAR-mediated synaptic responses, and impaired long-term potentiation. Co-expression of SOD1 + CAT rescued the effects of SOD1 expression on learning, redox measures, and synaptic function suggesting the effects were mediated by excess hydrogen peroxide. Application of the reducing agent dithiolthreitol to hippocampal slices increased the NMDAR-mediated component of the synaptic response in SOD1 + GFP animals relative to animals that overexpress SOD1 + CAT indicating that the effect of antioxidant enzyme expression on NMDAR function was because of a shift in the redox environment. The results suggest that overexpression of neuronal SOD1 and CAT in middle age may provide a model for examining the role of oxidative stress in senescent physiology and the progression of age-related neurodegenerative diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Rapamycin prevents N-methyl-D-aspartate-induced retinal damage through an ERK-dependent mechanism in rats.

    PubMed

    Ichikawa, Atsuko; Nakahara, Tsutomu; Kurauchi, Yuki; Mori, Asami; Sakamoto, Kenji; Ishii, Kunio

    2014-06-01

    Recent studies have demonstrated that inhibition of the mammalian target of rapamycin (mTOR) protects against neuronal injury, but the mechanisms underlying this protection are not fully understood. The present study investigates whether rapamycin, an inhibitor of the mTOR pathway, protects against N-methyl-D-aspartate (NMDA)-induced retinal neurotoxicity and whether the extracellular signal-regulated kinase (ERK) pathway contributes to this protective effect in rats. Significant cell loss in the ganglion cell layer and a reduction in thickness of the inner plexiform layer were observed 7 days after a single intravitreal injection of NMDA (200 nmol/eye). These NMDA-induced morphological changes were significantly reduced by rapamycin (20 nmol/eye). The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells had increased 6 hr after NMDA injection, an effect that was significantly attenuated by rapamycin. The ERK inhibitor U0126 (1 nmol/eye) almost completely abolished rapamycin's inhibition of NMDA-induced apoptosis. Immunohistochemical studies showed that NMDA caused a time-dependent increase in levels of the phosphorylated form of the ribosomal protein S6 (pS6), a downstream indicator of mTOR activity. The increased pS6 levels were markedly decreased by rapamycin. Both NMDA and rapamycin increased the level of phosphorylated ERK (pERK) in Müller cells, and coinjection of both agents further increased pERK levels. These results suggest that rapamycin has a neuroprotective effect against NMDA-induced retinal neurotoxicity and that this effect could be patially mediated by activation of the ERK pathway in retinal Müller cells. Copyright © 2014 Wiley Periodicals, Inc.

  7. Dynamics of Learning in Cultured Neuronal Networks with Antagonists of Glutamate Receptors

    PubMed Central

    Li, Yanling; Zhou, Wei; Li, Xiangning; Zeng, Shaoqun; Luo, Qingming

    2007-01-01

    Cognitive dysfunction may result from abnormality of ionotropic glutamate receptors. Although various forms of synaptic plasticity in learning that rely on altering of glutamate receptors have been considered, the evidence is insufficient from an informatics view. Dynamics could reflect neuroinformatics encoding, including temporal pattern encoding, spatial pattern encoding, and energy distribution. Discovering informatics encoding is fundamental and crucial to understanding the working principle of the neural system. In this article, we analyzed the dynamic characteristics of response activities during learning training in cultured hippocampal networks under normal and abnormal conditions of ionotropic glutamate receptors, respectively. The rate, which is one of the temporal configurations, was decreased markedly by inhibition of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptors. Moreover, the energy distribution in different characteristic frequencies was changed markedly by inhibition of AMPA receptors. Spatial configurations, including regularization, correlation, and synchrony, were changed significantly by inhibition of N-methyl-d-aspartate receptors. These results suggest that temporal pattern encoding and energy distribution of response activities in cultured hippocampal neuronal networks during learning training are modulated by AMPA receptors, whereas spatial pattern encoding of response activities is modulated by N-methyl-d-aspartate receptors. PMID:17766359

  8. Expression of N-methyl-D-aspartate receptor subunits in the bovine ovum: ova as a potential source of autoantigens causing anti-NMDAR encephalitis.

    PubMed

    Tachibana, Naoko; Kinoshita, Michiaki; Kametani, Fuyuki; Tanaka, Keiko; Une, Yumi; Komatsu, Yotaro; Kobayashi, Yukihiro; Ikeda, Shu-ichi

    2015-03-01

    Autoimmune synaptic encephalitis is characterized by the presence of autoantibodies against synaptic constituent receptors and manifests as neurological and psychiatric disorders. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is such an autoimmune disorder that predominantly affects young women. It is associated with antibodies against the extracellular region of the NR1 subunit of postsynaptic NMDAR. Each NMDAR functions as a heterotetrameric complex that is composed of four subunits, including NR1 and NR2A, NR2B, or NR2C. Importantly, ovarian teratoma is a typical complication of anti-NMDAR encephalitis in female patients and may contain antigenic neural tissue; however, antigenic sites remain unknown in female patients without ovarian teratoma. The purpose of this study was to investigate the expression of NMDARs in the ovum. We detected NR1 and NR2B immunoreactivity in protein fractions extracted from the bovine ovary and ova by SDS-polyacrylamide gel electrophoresis and immunoblotting analysis. Immunoprecipitates digested with trypsin were analyzed by reverse phase liquid chromatography coupled to tandem mass spectrometry. We obtained the following five peptides: SPFGRFK and KNLQDR, which are consistent with partial sequences of human NR1, and GVEDALVSLK, QPTVAGAPK, and NEVMSSK, which correspond to those of NR2A, NR2B and NR2C, respectively. Immunocytochemical analysis revealed that the bovine ovum was stained with the immunoglobulin G purified from the serum of a patient with anti-NMDAR encephalitis. Taken together, we propose that the normal ovum expresses NMDARs that have strong affinity for the disease-specific IgG. The presence of NMDARs in ova may help explain why young females without ovarian teratomas are also affected by anti-NMDAR encephalitis.

  9. Dephosphorylation of GluN2B C-Terminal Tyrosine Residues Does Not Contribute to Acute Ethanol Inhibition of Recombinant NMDA Receptors

    PubMed Central

    Hughes, Benjamin A.; Smothers, Corigan T.; Woodward, John J.

    2013-01-01

    N-methyl-D-aspartate (NMDA) receptors are ion channels activated by the neurotransmitter glutamate and are highly expressed by neurons. These receptors are critical for excitatory synaptic signaling and inhibition of NMDA receptors leads to impaired cognition and learning. Ethanol inhibits NMDA currents at concentrations associated with intoxication and this action may underlie some of the behavioral effects of ethanol. Although numerous sites and mechanisms of action have been tested, the manner in which ethanol inhibits NMDA receptors remains unclear. Recent findings in the literature suggest that ethanol, via facilitation of tyrosine phosphatase activity, may dephosphorylate key tyrosine residues in the C-terminus of GluN2B subunits resulting in diminished channel function. To directly test this hypothesis, we engineered GluN2B mutants that contained phenylalanine in place of tyrosine at three different sites and transiently expressed them with the GluN1 subunit in human embryonic kidney (HEK) cells. Whole-cell patch clamp electrophysiology was used to record glutamate-activated currents in the absence and presence of ethanol (10–600 mM). All mutants were functional and did not differ from one another with respect to current amplitude, steady-state to peak ratio, or magnesium block. Analysis of ethanol dose-response curves showed no significant difference in IC50 values between wild-type receptors and Y1252F, Y1336F, Y1472F or triple Y-F mutants. These findings suggest that dephosphorylation of C-terminal tyrosine residues does not account for ethanol inhibition of GluN2B receptors. PMID:23357553

  10. Prolonged ketamine exposure induces increased activity of the GluN2B-containing N-methyl-d-aspartate receptor in the anterior cingulate cortex of neonatal rats.

    PubMed

    Kokane, Saurabh S; Gong, Kerui; Jin, Jianhui; Lin, Qing

    2017-09-01

    Ketamine is a commonly used anesthetic among pediatric patients due to its high efficacy. However, it has been demonstrated by several preclinical studies that, widespread accelerated programmed death of neurons (neuroapoptosis) occurs due to prolonged or repeated exposure to ketamine specifically in the neonatal brain. Therefore, an emphasis on understanding the molecular mechanisms underlying this selective vulnerability of the neonatal brain to ketamine-induced neuroapoptosis becomes important in order to identify potential therapeutic targets, which would help prevent or at least ameliorate this neuroapoptosis. In this study, we demonstrated that repeated ketamine administration (6 injections of 20mg/kg dose given over 12h time period) in neonatal (postnatal day 7; PND 7) Sprague-Dawley rats induced a progressive increase in N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) in the neurons of the anterior cingulate cortex (ACC) for up to 6h after the last ketamine dose. Specifically, we observed that the increased EPSCs were largely mediated by GluN2B-containing NMDARs in the neurons of the ACC. Along with increased synaptic transmission, there was also a significant increase in the expression of the GluN2B-containing NMDARs as well. Taken together, these results showed that after repeated exposure to ketamine, the synaptic transmission mediated by GluN2B-containing NMDARs was significantly increased in the neonatal brain. This was significant as it showed for the first time that ketamine had subunit-specific effects on GluN2B-containing NMDARs, potentially implicating the involvement of these subunits in the increased vulnerability of immature neurons of the neonatal brain to ketamine-induced neuroapoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The role of NMDA receptor and nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effect of dextromethorphan in mice forced swimming test and tail suspension test.

    PubMed

    Sakhaee, Ehsan; Ostadhadi, Sattar; Khan, Muhammad Imran; Yousefi, Farbod; Norouzi-Javidan, Abbas; Akbarian, Reyhaneh; Chamanara, Mohsen; Zolfaghari, Samira; Dehpour, Ahmad-Reza

    2017-01-01

    Depression is a devastating disorder which has a high impact on the wellbeing of overall society. As such, need for innovative therapeutic agents are always there. Most of the researchers focused on N-methyl-d-aspartate receptor to explore the antidepressant like activity of new therapeutic agents. Dextromethorphan is a cough suppressant agent with potential antidepressant activity reported in mouse force swimming test. Considering N-methyl-d-aspartate as a forefront in exploring antidepressant agents, here we focused to unpin the antidepressant mechanism of dextromethorphan targeting N-methyl-d-aspartate receptor induced nitric oxide-cyclic guanosine monophosphate signaling. Dextromethorphan administered at a dose of 10 and 30mg/kg i.p significantly reduced the immobility time. Interestingly, this effect of drug (30mg/kg) was inhibited when the animals were pretreated either with N-methyl-d-aspartate (75mg/kg), or l-arginine (750mg/kg) as a nitric oxide precursor and/or sildenafil (5mg/kg) as a phosphodiesterase 5 inhibitor. However, the antidepressant effect of Dextromethorphan subeffective dose (3mg/kg) was augmented when the animals were administered with either L-NG-Nitroarginine methyl ester (10mg/kg) non-specific nitric oxide synthase inhibitor, 7-Nitroindazole (30mg/kg) specific neural nitric oxide synthase inhibitor, MK-801 (0.05mg/kg) an N-methyl-d-aspartate receptor antagonist but not aminoguanidine (50mg/kg) which is specific inducible nitric oxide synthase inhibitor as compared to the drugs when administered alone. No remarkable effect on locomotor activity was observed during open field test when the drugs were administered at the above mentioned doses. Therefore, it is evident that the antidepressant like effect of Dextromethorphan is owed due to its inhibitory effect on N-methyl-d-aspartate receptor and NO- Cyclic guanosine monophosphate pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Initial evaluation of 18F-GE-179, a putative PET Tracer for activated N-methyl D-aspartate receptors.

    PubMed

    McGinnity, Colm J; Hammers, Alexander; Riaño Barros, Daniela A; Luthra, Sajinder K; Jones, Paul A; Trigg, William; Micallef, Caroline; Symms, Mark R; Brooks, David J; Koepp, Matthias J; Duncan, John S

    2014-03-01

    N-methyl D-aspartate (NMDA) ion channels play a key role in a wide range of physiologic (e.g., memory and learning tasks) and pathologic processes (e.g., excitotoxicity). To date, suitable PET markers of NMDA ion channel activity have not been available. (18)F-GE-179 is a novel radioligand that selectively binds to the open/active state of the NMDA receptor ion channel, displacing the binding of (3)H-tenocyclidine from the intrachannel binding site with an affinity of 2.4 nM. No significant binding was observed with 10 nM GE-179 at 60 other neuroreceptors, channels, or transporters. We describe the kinetic behavior of the radioligand in vivo in humans. Nine healthy participants (6 men, 3 women; median age, 37 y) each underwent a 90-min PET scan after an intravenous injection of (18)F-GE-179. Continuous arterial blood sampling over the first 15 min was followed by discrete blood sampling over the duration of the scan. Brain radioactivity (KBq/mL) was measured in summation images created from the attenuation- and motion-corrected dynamic images. Metabolite-corrected parent plasma input functions were generated. We assessed the abilities of 1-, 2-, and 3-compartment models to kinetically describe cerebral time-activity curves using 6 bilateral regions of interest. Parametric volume-of-distribution (V(T)) images were generated by voxelwise rank-shaping regularization of exponential spectral analysis (RS-ESA). A 2-brain-compartment, 4-rate-constant model best described the radioligand's kinetics in normal gray matter of subjects at rest. At 30 min after injection, 37% of plasma radioactivity represented unmetabolized (18)F-GE-179. The highest mean levels of gray matter radioactivity were seen in the putamina and peaked at 7.5 min. A significant positive correlation was observed between K1 and V(T) (Spearman ρ = 0.398; P = 0.003). Between-subject coefficients of variation of V(T) ranged between 12% and 16%. Voxelwise RS-ESA yielded similar V(T)s and coefficients of

  13. Changes in cortical N-methyl-D-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide.

    PubMed

    Dean, Brian; Gibbons, Andrew S; Boer, Simone; Uezato, Akihito; Meador-Woodruff, James; Scarr, Elizabeth; McCullumsmith, Robert E

    2016-03-01

    In humans, depending on dose, blocking the N-methyl-D-aspartate receptor (NMDAR) with ketamine can cause psychomimetic or antidepressant effects. The overall outcome for drugs such as ketamine depends on dose and the number of its available binding sites in the central nervous system, and to understand something of the latter variable we measure NMDAR in the frontal pole, dorsolateral prefrontal, anterior cingulate and parietal cortices from people with schizophrenia, bipolar disorder, major depressive disorders and age/sex matched controls. We measured levels of NMDARs (using [(3)H]MK-801 binding) and NMDAR sub-unit mRNAs (GRINs: using in situ hybridisation) as well as post-synaptic density protein 95 (anterior cingulate cortex only; not major depressive disorders: an NMDAR post-synaptic associated protein) in bipolar disorder, schizophrenia and controls. Compared to controls, levels of NMDAR were lower in the outer laminae of the dorsolateral prefrontal cortex (-17%, p = 0.01) in people with schizophrenia. In bipolar disorder, levels of NMDAR binding (laminae IV-VI; -19%, p < 0.01) and GRIN2C mRNA (laminae I-VI; -27%, p < 0.05) were lower in the anterior cingulate cortex and NMDAR binding was lower in the outer lamina IV of the dorsolateral prefrontal cortex (-19%, p < 0.01). In major depressive disorders, levels of GRIN2D mRNA were higher in frontal pole (+22%, p < 0.05). In suicide completers, levels of GRIN2B mRNA were higher in parietal cortex (+20%, p < 0.01) but lower (-35%, p = 0.02) in dorsolateral prefrontal cortex while post-synaptic density protein 95 was higher (+26%, p < 0.05) in anterior cingulate cortex. These data suggest that differences in cortical NMDAR expression and post-synaptic density protein 95 are present in psychiatric disorders and suicide completion and may contribute to different responses to ketamine. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  14. Induced expression of hepatic N-methyl-D-aspartate receptor 2C subunit gene during liver enlargement induced by lead nitrate, a hepatocellular mitogen.

    PubMed

    Nemoto, Kiyomitsu; Ikeda, Ayaka; Hikida, Tokihiro; Kojima, Misaki; Degawa, Masakuni

    2013-02-01

    We previously demonstrated the super-induced expression of the Grin2c gene encoding the N-methyl-D-aspartate receptor 2C subunit during the development of liver enlargement with hepatocellular hypertrophy induced by phenobarbital, clofibrate, or piperonyl butoxide. In the present study, we assessed whether or not Grin2c gene expression was induced during the development of chemically induced liver enlargement with hyperplasia. Male Sprague-Dawley (SD) rats, stroke-prone spontaneously hypertensive rats (SHRSPs), and SHRSP's normotensive control, Wistar-Kyoto (WKY) rats, were administered lead nitrate (LN) (0.1 mmol/kg, single i.v.), a direct inducer of liver hyperplasia, and changes in the level of Grin2c mRNA in the liver were assessed by real-time RT-PCR. The level of hepatic Grin2c mRNA was significantly higher 6-48 hr after the injection in SD rats (about 30~40- and 70-fold over the control at 6~24 hr and 48 hr, respectively) and in WKY rats (about 20-fold over the control only at 12 hr), but was not significantly higher in SHRSPs. Such differences in LN-induced levels of Grin2c mRNA among SD rats, WKY rats, and SHRSPs were closely correlated with those in the previously reported increase in liver weight 48 hr after LN administration. The present findings suggest that the increase in the level of hepatic Grin2c mRNA relates to development of chemically induced liver enlargement with hyperplasia.

  15. Absent anti-N-methyl-D-aspartate receptor NR1a antibodies in herpes simplex virus encephalitis and varicella zoster virus infections.

    PubMed

    Berger, Benjamin; Pytlik, Maximilian; Hottenrott, Tilman; Stich, Oliver

    2017-02-01

    A 2012 report and subsequent case series described anti-N-methyl-D-aspartate receptor (NMDAR) antibodies in patients during the acute phase and relapse of herpes simplex virus 1 (HSV1) encephalitis (HSV1E). However, the prevalence of this phenomenon is unknown and systematic studies on other viral infections of the nervous system are missing. We retrospectively analyzed serial cerebrospinal fluid (CSF) and serum samples of consecutive patients treated for neurological HSV1, HSV2 and varicella zoster virus (VZV) infections in our tertiary care university hospital between 2003 and 2013 for the presence of antibodies directed against the NR1a subunit of the NMDAR using indirect immunofluorescence. In total, 88 patients with the following infections were identified through an electronic database search: HSV1 (24 with encephalitis), HSV2 (6 with meningitis, 3 with encephalitis and 1 with myelitis), or VZV (3 with meningitis, 33 with encephalitis, 17 with radiculitis and 1 with myelitis). Two patients with HSV1E and HSV2E, respectively, experienced a clinical relapse. Clinical follow-up was for up to 85 months, and repetitive serum and CSF analyses for up to 43 months. However, at no time did any of the 88 patients exhibit anti-NMDAR NR1a antibodies. In this study, we did not detect anti-NMDAR NR1a antibodies in serial CSF and serum samples of HSV1E patients or patients with other viral infections (HSV2 and VZV). However, the presence of antibodies directed against other epitopes of the NMDAR and other neuronal cell surface antigens cannot be excluded, necessitating further studies.

  16. Cerebrospinal fluid cyto-/chemokine profile during acute herpes simplex virus induced anti-N-methyl-d-aspartate receptor encephalitis and in chronic neurological sequelae.

    PubMed

    Kothur, Kavitha; Gill, Deepak; Wong, Melanie; Mohammad, Shekeeb S; Bandodkar, Sushil; Arbunckle, Susan; Wienholt, Louise; Dale, Russell C

    2017-08-01

    To examine the cytokine/chemokine profile of cerebrospinal fluid (CSF) during acute herpes simplex virus-induced N-methyl-d-aspartate receptor (NMDAR) autoimmunity and in chronic/relapsing post-herpes simplex virus encephalitis (HSE) neurological syndromes. We measured longitudinal serial CSF cyto-/chemokines (n=34) and a glial marker (calcium-binding astroglial protein, S100B) in one patient during acute HSE and subsequent anti-NMDAR encephalitis, and compared the results with those from two patients with anti-NMDAR encephalitis without preceding HSE. We also compared cyto-/chemokines in cross-sectional CSF samples from three children with previous HSE who had ongoing chronic or relapsing neurological symptoms (2yr 9 mo-16y after HSE) with those in a group of children having non-inflammatory neurological conditions (n=20). Acute HSE showed elevation of a broad range of all T-helper-subset-related cyto-/chemokines and S100B whereas the post-HSE anti-NMDAR encephalitis phase showed persistent elevation of two of five T-helper-1 (chemokine [C-X-C motif] ligand 9 [CXCL9], CXCL10), three of five predominantly B-cell (CXCL13, CCL19, a proliferation-inducing ligand [APRIL])-mediated cyto-/chemokines, and interferon-α. The post-HSE anti-NMDAR encephalitis inflammatory response was more pronounced than anti-NMDAR encephalitis. All three chronic post-HSE cases showed persistent elevation of CXCL9, CXCL10, and interferon-α, and there was histopathological evidence of chronic lymphocytic inflammation in one biopsied case 7 years after HSE. Two of three chronic cases showed a modest response to immune therapy. HSE-induced anti-NMDAR encephalitis is a complex and pronounced inflammatory syndrome. There is persistent CSF upregulation of cyto-/chemokines in chronic or relapsing post-HSE neurological symptoms, which may be modifiable with immune therapy. The elevated cyto-/chemokines may be targets of monoclonal therapies. © 2017 Mac Keith Press.

  17. Subunit Arrangement and Phenylethanolamine Binding in GluN1/GluN2B NMDA Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Karakas; N Simorowski; H Furukawa

    2011-12-31

    Since it was discovered that the anti-hypertensive agent ifenprodil has neuroprotective activity through its effects on NMDA (N-methyl-D-aspartate) receptors, a determined effort has been made to understand the mechanism of action and to develop improved therapeutic compounds on the basis of this knowledge. Neurotransmission mediated by NMDA receptors.

  18. Effects of asparagine mutagenesis of conserved aspartic acids in helix two (D2.50) and three (D3.32) of M1 – M4 muscarinic receptors on the irreversible binding of nitrogen mustard analogs of acetylcholine and McN-A-343

    PubMed Central

    Suga, Hinako; Ehlert, Frederick J.

    2013-01-01

    We investigated how asparagine mutagenesis of conserved aspartic acids in helix two (D2.50) and three (D3.32) of M1 – M4 muscarinic receptors alters the irreversible binding of acetylcholine mustard and BR384 (4-[(2-bromoethyl)methyl-amino]-2-butynyl N-(3-chlorophenyl)carbamate), a nitrogen mustard derivative of McN-A-343 ([4-[[N-(3-chlorophenyl)carbamoyl]oxy]-2-butynyl] trimethylammonium chloride). The D2.50N mutation moderately increased the affinity of the aziridinium ions of acetylcholine mustard and BR384 for M2 – M4 receptors and had little effect on the rate constant for receptor alkylation. The D3.32N mutation greatly reduced the rate constant for receptor alkylation by acetylcholine mustard, but not by BR384, although the affinity of BR384 was reduced. The combination of both mutations (D2.50N/D3.32N) substantially reduced the rate constant for receptor alkylation by BR384 relative to wild type and mutant D2.50N and D3.32N receptors. The change in binding affinity caused by the mutations suggests that the D2.50N mutation alters the interaction of acetylcholine mustard with D3.32 of M1 and M3 receptors, but not that of the M4 receptor. BR384 exhibited the converse relationship. The simplest explanation is that acetylcholine mustard and BR384 alkylate at least two residues on M1 – M4 receptors and that the D2.50N mutation alters the rate of alkylation of D3.32 relative to another residue, perhaps D2.50 itself. PMID:23826889

  19. Differences in magnesium and calcium effects on N-methyl-D-aspartate- and quisqualate-induced decreases in extracellular sodium concentration in rat hippocampal slices.

    PubMed

    Köhr, G; Heinemann, U

    1988-01-01

    Decreases in extracellular sodium concentration [( Na+]o) and associated slow negative field potentials (fp's) were monitored with double barreled sodium sensitive/reference microelectrodes in area CA1 of rat hippocampal slices during iontophoretic application of the glutamate receptor agonists N-methyl-D-aspartate (NMDA) and quisqualate (quis). The effects of lowering [Ca2+]o on these signals were compared to those of lowering [Mg2+]o. Both NMDA- and quis-induced decreases in [Na+]o of up to 60 mM and in the fp's of up to 8 mV. Decreasing [Mg2+]o enhanced NMDA-induced signals, whereas quis-induced signals were unaffected. Lowering [Ca2+]o also enhanced NMDA signals, although somewhat less than lowering [Mg2+]o. This effect was still present, even when voltage dependent Na+ currents were blocked by 10(-7) tetrodotoxin. Interestingly, quis-induced signals could be enhanced in a low Ca2+ medium as well, but only when high quis concentrations were used. The results suggest that, during the sorts of large decreases of [Ca2+]o observed during seizure activity, activation of NMDA receptors is facilitated.

  20. Dizocilpine (MK-801) induces distinct changes of N-methyl-D-aspartic acid receptor subunits in parvalbumin-containing interneurons in young adult rat prefrontal cortex.

    PubMed

    Xi, Dong; Zhang, Wentong; Wang, Huai-Xing; Stradtman, George G; Gao, Wen-Jun

    2009-11-01

    N-methyl-D-aspartic acid receptor (NMDAR) hypofunction has long been implicated in schizophrenia and NMDARs on gamma-aminobutyric acid (GABA)ergic interneurons are proposed to play an essential role in the pathogenesis. However, controversial results have been reported regarding the regulation of NMDAR expression, and direct evidence of how NMDAR antagonists act on specific subpopulations of prefrontal interneurons is missing. We investigated the effects of the NMDAR antagonist dizocilpine (MK-801) on the expression of NMDAR subtypes in the identified interneurons in young adult rat prefrontal cortex (PFC) by using laser microdissection and real-time polymerase chain reaction, combined with Western blotting and immunofluorescent staining. We found that MK-801 induced distinct changes of NMDAR subunits in the parvalbumin-immunoreactive (PV-ir) interneurons vs. pyramidal neurons in the PFC circuitry. The messenger RNA (mRNA) expression of all NMDAR subtypes, including NR1 and NR2A to 2D, exhibited inverted-U dose-dependent changes in response to MK-801 treatment in the PFC. In contrast, subunit mRNAs of NMDARs in PV-ir interneurons were significantly down-regulated at low doses, unaltered at medium doses, and significantly decreased again at high doses, suggesting a biphasic dose response to MK-801. The differential effects of MK-801 in mRNA expression of NMDAR subunits were consistent with the protein expression of NR2A and NR2B subunits revealed with Western blotting and double immunofluorescent staining. These results suggest that PV-containing interneurons in the PFC exhibit a distinct responsiveness to NMDAR antagonism and that NMDA antagonist can differentially and dose-dependently regulate the functions of pyramidal neurons and GABAergic interneurons in the prefrontal cortical circuitry.

  1. Epileptogenesis causes an N-methyl-d-aspartate receptor/Ca2+-dependent decrease in Ca2+/calmodulin-dependent protein kinase II activity in a hippocampal neuronal culture model of spontaneous recurrent epileptiform discharges.

    PubMed

    Blair, Robert E; Sombati, Sompong; Churn, Severn B; Delorenzo, Robert J

    2008-06-24

    Alterations in the function of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) have been observed in both in vivo and in vitro models of epileptogenesis; however the molecular mechanism mediating the effects of epileptogenesis on CaM kinase II has not been elucidated. This study was initiated to evaluate the molecular pathways involved in causing the long-lasting decrease in CaM kinase II activity in the hippocampal neuronal culture model of low Mg2+-induced spontaneous recurrent epileptiform discharges (SREDs). We show here that the decrease in CaM kinase II activity associated with SREDs in hippocampal cultures involves a Ca2+/N-methyl-d-aspartate (NMDA) receptor-dependent mechanism. Low Mg2+-induced SREDs result in a significant decrease in Ca2+/calmodulin-dependent substrate phosphorylation of the synthetic peptide autocamtide-2. Reduction of extracellular Ca2+ levels (0.2 mM in treatment solution) or the addition of dl-2-amino-5-phosphonovaleric acid (APV) 25 microM blocked the low Mg2+-induced decrease in CaM kinase II-dependent substrate phosphorylation. Antagonists of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid receptor or L-type voltage sensitive Ca2+ channel had no effect on the low Mg2+-induced decrease in CaM kinase II-dependent substrate phosphorylation. The results of this study demonstrate that the decrease in CaM kinase II activity associated with this model of epileptogenesis involves a selective Ca2+/NMDA receptor-dependent mechanism and may contribute to the production and maintenance of SREDs in this model.

  2. Epileptogenesis causes an N-methyl-d-aspartate receptor/Ca2+-dependent decrease in Ca2+/calmodulin-dependent protein kinase II activity in a hippocampal neuronal culture model of spontaneous recurrent epileptiform discharges

    PubMed Central

    Blair, Robert E.; Sombati, Sompong; Churn, Severn B.; DeLorenzo, Robert J.

    2008-01-01

    Alterations in the function of Ca2+/calmodulin-dependent protein kinase II (CaM Kinase II) have been observed in both in vivo and in vitro models of epileptogenesis; however the molecular mechanism mediating the effects of epileptogenesis on CaM Kinase II have not been elucidated. This study was initiated to evaluate the molecular pathways involved in causing the long lasting decrease in CaM Kinase II activity in the hippocampal neuronal culture model of low Mg2+ induced spontaneous recurrent epileptiform discharges (SREDs). We show here that the decrease in CaM kinase II activity associated with SREDs in hippocampal cultures involves a Ca2+/N-methyl-d-aspartate (NMDA) receptor-dependent mechanism. Low Mg2+ induced SREDs results in a significant decrease in Ca2+/calmodulin-dependent substrate phosphorylation of the synthetic peptide autocamtide-2. Reduction of extracellular Ca2+ levels (0.2 mM in treatment solution) or the addition of DL-2-amino-5-phosphonovaleric acid (APV) 25 µM blocked the low Mg2+ induced decrease in CaM kinase II-dependent substrate phosphorylation. Antagonists of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid receptor or L-type voltage sensitive Ca2+ channel had no effect on the low Mg2+ induced decrease in CaM kinase II-dependent substrate phosphorylation. The results of this study demonstrate that the decrease in CaM kinase II activity associated with this model of epileptogenesis involves a selective Ca2+/NMDA receptor-dependent mechanism and may contribute to the production and maintenance of SREDs in this model. PMID:18495112

  3. Model mice for mild-form glycine encephalopathy: behavioral and biochemical characterizations and efficacy of antagonists for the glycine binding site of N-methyl D-aspartate receptor.

    PubMed

    Kojima-ishii, Kanako; Kure, Shigeo; Ichinohe, Akiko; Shinka, Toshikatsu; Narisawa, Ayumi; Komatsuzaki, Shoko; Kanno, Junnko; Kamada, Fumiaki; Aoki, Yoko; Yokoyama, Hiroyuki; Oda, Masaya; Sugawara, Taku; Mizoi, Kazuo; Nakahara, Daiichiro; Matsubara, Yoichi

    2008-09-01

    Glycine encephalopathy (GE) is caused by an inherited deficiency of the glycine cleavage system (GCS) and characterized by accumulation of glycine in body fluids and various neurologic symptoms. Coma and convulsions develop in neonates in typical GE while psychomotor retardation and behavioral abnormalities in infancy and childhood are observed in mild GE. Recently, we have established a transgenic mouse line (low-GCS) with reduced GCS activity (29% of wild-type (WT) C57BL/6) and accumulation of glycine in the brain (Stroke, 2007; 38:2157). The purpose of the present study is to characterize behavioral features of the low-GCS mouse as a model of mild GE. Two other transgenic mouse lines were also analyzed: high-GCS mice with elevated GCS activity and low-GCS-2 mice with reduced GCS activity. As compared with controls, low-GCS mice manifested increased seizure susceptibility, aggressiveness and anxiety-like activity, which resembled abnormal behaviors reported in mild GE, whereas high-GCS mice were less sensitive to seizures, hypoactive and less anxious. Antagonists for the glycine-binding site of the N-methyl-D-aspartate receptor significantly ameliorated elevated locomotor activity and seizure susceptibility in the low-GCS mice. Our results suggest the usefulness of low-GCS mice as a mouse model for mild GE and a novel therapeutic strategy.

  4. Protective effect of thalidomide against N-methyl-D-aspartate-induced retinal neurotoxicity.

    PubMed

    Takada, Kazuhide; Munemasa, Yasunari; Kuribayashi, Junko; Fujino, Hiromi; Kitaoka, Yasushi

    2011-10-01

    Thalidomide, an inhibitor of tumor necrosis factor-α (TNF-α) production, has been indicated to be useful for many inflammatory and oncogenic diseases. In the present study, we examined whether thalidomide (50 mg/kg/day, p.o.) has a protective effect against N-methyl-D-aspartate (NMDA)-induced retinal neurotoxicity in rats. A morphometric analysis showed that systemic administration of thalidomide protects neural cells in the ganglion cell layer (GCL) in a dose-dependent manner and significantly decreases the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells in GCL and in the inner nuclear layer (INL). ELISA showed that thalidomide significantly suppressed the elevation of TNF-α 6 and 24 hr after an NMDA injection. Western blot analysis revealed a significant increase in nuclear factor-κB (NF-κB) p65 level in the retinas treated with NMDA at 24 hr after the injection, but not at 6 or 72 hr. Furthermore, an increase in p-JNK and p-p38 levels was also observed in the retina after NMDA injection. Thalidomide suppressed the increased expressions of NF-κB p65, p-JNK, and p-p38 after NMDA injection. Immunohistochemical analysis showed that thalidomide attenuated NF-κB p65 immunoreactivity in the GCL induced by NMDA treatment. In the NMDA-treated group, translocation of NF-κB p65 from the cytoplasm to the nucleus was detected in TUNEL-positive cells exposed to NMDA treatment. These results suggest new indications for thalidomide against neurodegenerative diseases. Copyright © 2011 Wiley-Liss, Inc.

  5. CYP3A4 and CYP3A5 catalyse the conversion of the N-methyl-D-aspartate (NMDA) antagonist CJ-036878 to two novel dimers.

    PubMed

    Emoto, C; Nishida, H; Hirai, H; Iwasaki, K

    2007-12-01

    CJ-036878, N-(3-phenethoxybenzyl)-4-hydroxybenzamide, was developed as an antagonist of the N-methyl-D-aspartate receptor NR2B subunit. Two dimeric metabolites, CJ-047710 and CJ-047713, were identified from the incubation mixture with CJ-036878 in human liver microsomes (HLM). The identification of the enzymes involved in the formation of these dimeric metabolites was investigated in the current study. Inhibition of the formation of CJ-047710 and CJ-047713 in pooled HLM by 1-aminobenztriazole, SKF-525A, and ketoconazole were observed. Ketoconazole played a significant role in inhibiting formation of these two metabolites in a concentration-dependent manner. Recombinant CYP3A4 and CYP3A5 exhibited a markedly high activity toward the formation of CJ-047710 and CJ-047713 from CJ-036878, but the contribution of other CYP enzymes to these formations was at a very low level or negligible. The formation of CJ-047710 and CJ-047713 in pooled HLM, CYP3A4, and CYP3A5 showed sigmoid characteristics. S50 values for CJ-047710 and CJ-047713 formation in HLM were almost equivalent with those for CYP3A4 and CYP3A5. For the CYP3A enzymes, maximal clearance due to auto-activation values for CJ-047710 and CJ-047713 formation catalysed by CYP3A5 were 3.6- and 3.1-fold higher than those catalysed by CYP3A4. This is the first report that shows both CYP3A4 and CYP3A5 simultaneously contribute to dimerization through oxidative C-C and C-O coupling reactions.

  6. The effect of neonatal N-methyl-D-aspartate receptor blockade on exploratory and anxiety-like behaviors in adult BALB/c and C57BL/6 mice.

    PubMed

    Akillioglu, Kubra; Binokay, Secil; Kocahan, Sayad

    2012-07-15

    N-methyl-D-aspartate (NMDA) receptors play an important role in brain maturation and developmental processes. In our study, we evaluated the effects of neonatal NMDA receptor blockade on exploratory locomotion and anxiety-like behaviors of adult BALB/c and C57BL/6 mice. In this study, NMDA receptor hypofunction was induced 7-10 days after birth using MK-801 in BALB/c and C57BL/6 mice (0.25mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF) and elevated plus maze (EPM) tests were used to evaluate exploratory locomotion and anxiety-like behaviors. In the OF, BALB/c mice spent less time in the center of the field (p<0.05) and had less vertical locomotor activity (p<0.01) compared to C57BL/6 mice. In BALB/c mice, MK-801 caused a decrease in vertical and horizontal locomotor activity in the OF test, compared to the control group (p<0.05). In C57BL/6 mice, MK-801 treatment increased horizontal locomotor activity and decreased time spent in the center in the OF test (p<0.05). In the EPM, the number of open-arm entries, the percentage of open-arm time (p<0.01) and total arm entries (p<0.05) were lower in BALB/c mice compared to C57BL/6 mice. In BALB/c mice, MK-801 caused an increase in the percentage of open-arm time compared to the control group (p<0.05). In C57BL/6 mice, MK-801 caused a decrease in the percentage of open-arm time compared to the control group (p<0.05). MK-801 decreased exploratory and anxiety-like behaviors in BALB/c mice. In contrast, MK-801 increased exploratory and anxiety-like behaviors in C57BL/6 mice. In conclusion, hereditary factors may play an important role in neonatal NMDA receptor blockade-induced responses. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Effects of neurosteroid actions at N-methyl-D-aspartate and GABA A receptors in the midbrain ventral tegmental area for anxiety-like and mating behavior of female rats.

    PubMed

    Frye, Cheryl A; Paris, Jason J

    2011-01-01

    In the midbrain ventral tegmental area (VTA), actions of neurosteroids, such as the progesterone metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), can facilitate mating and influence stress-related processes. Some actions of 3α,5α-THP may occur via positive modulation of GABA(A) receptors (GBRs), or negative modulation of N-methyl-D: -aspartate receptors (NMDARs), to influence anxiety-like behavior; but this is not known. We aimed to assess the role that neurosteroids and stress factors play on intra-VTA NMDAR- and/or GBR-mediated anxiety-like and mating behavior. Estradiol-primed, ovariectomized rats, which were partially or completely adrenalectomized (ADX), received infusions of vehicle, an NMDAR blocker (MK-801; 200 ng), or a GBR antagonist (bicuculline, 100 ng) to the VTA. Rats then received intra-VTA vehicle or a neurosteroidogenesis enhancer (N,N-Dihexyl-2-(4-fluorophenyl)indole-3-acetamide, FGIN 1-27, 5 μg) and anxiety-like and sexual behavior was assessed. Complete, compared to partial, ADX significantly reduced open arm exploration on an elevated plus maze, the proportion of females that engaged in mating, lordosis quotients, pacing of sexual contacts, and defensive aggression towards a sexually vigorous male. Intra-VTA MK-801 enhanced open arm investigation and the proportion of females that engaged in mating. Infusions of either, MK-801 or FGIN 1-27, enhanced lordosis and, when co-administered, FGIN 1-27 attenuated MK-801's lordosis-enhancing effects. Intra-VTA infusions of bicuculline, prior to FGIN 1-27, blocked FGIN 1-27's effects to enhance lordosis. Together, these data suggest that reduced NMDAR activity in the VTA may influence motivation to explore and engage in sexual behavior. These data suggest that neurosteroid actions at NMDARs and GBRs in the VTA are important for exploration and/or sexual behavior.

  8. Synthesis and Structure Activity Relationship of Tetrahydroisoquinoline-based Potentiators of GluN2C and GluN2D Containing N-Methyl-D-Aspartate Receptors

    PubMed Central

    Santangelo Freel, Rose M.; Ogden, Kevin K.; Strong, Katie L.; Khatri, Alpa; Chepiga, Kathryn M.; Jensen, Henrik S.; Traynelis, Stephen F.; Liotta, Dennis C.

    2015-01-01

    We describe here the synthesis and evaluation of a series of tetrahydroisoquinolines that show subunit-selective potentiation of NMDA receptors containing the GluN2C or GluN2D subunits. Bischler-Napieralski conditions were employed in the key step for the conversion of acyclic amides to the corresponding tetrahydroisoquinoline containing analogs. Compounds were evaluated using both two electrode voltage clamp recordings from Xenopus laevis oocytes and imaging of mammalian BHK cells loaded with Ca2+-sensitive dyes. The most potent analogues had EC50 values of 300 nM and showed over 2-fold potentiation of the response to maximally effective concentrations of glutamate and glycine, but had no effect on responses from NMDA receptors containing the GluN2A or GluN2B subunits, AMPA, kainate, GABA, or glycine receptors or a variety of other potential targets. These compounds represent a potent class of small molecule subunit-selective potentiators of NMDA receptors. PMID:23627311

  9. Magnetic resonance imaging and magnetic resonance spectroscopy in a young male patient with anti-N-methyl-D-aspartate receptor encephalitis and uncommon cerebellar involvement: A case report with review of the literature

    PubMed Central

    Felli, Valentina; Di Sibio, Alessandra; Gennarelli, Antonio; Patriarca, Lucia; Stratta, Paolo; Di Cesare, Ernesto; Rossi, Alessandro; Massimo, Gallucci

    2015-01-01

    We report a case of a 17-year-old man presenting with new onset psychiatric symptoms. Magnetic resonance imaging (MRI) and proton magnetic resonance (MR) spectroscopy revealed some lesions in the right cerebellar hemisphere and ipsilateral cerebellar tonsil suggestive of encephalitis. An extensive workup was negative for both infectious and neoplastic diseases and he was afterward diagnosed with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. This disorder is an autoimmune encephalitis, highly lethal but curable, predominantly found in young female with ovarian teratoma. He received methylprednisolone. His clinical findings gradually improve and he made a complete recovery. Accordingly, repeated brain MRI and proton MR spectroscopy showed a gradual reduction of the lesions; MRI taken six months after starting therapy showed complete resolution of the lesions. Our case shows that, although rare, anti-NMDAR encephalitis should be considered also in young men for whom a rapid onset of psychiatric neurological disorders cannot be explained by more frequent causes. Our report underlines also the usefulness of MRI and proton MR spectroscopic findings in the diagnosis and follow-up of this disease. PMID:26613928

  10. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss. PMID:26379056

  11. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex.

    PubMed

    Arvanov, V L; Liang, X; Russo, A; Wang, R Y

    1999-09-01

    Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.

  12. Kinetic Contributions to Gating by Interactions Unique to N-methyl-d-aspartate (NMDA) Receptors*

    PubMed Central

    Borschel, William F.; Cummings, Kirstie A.; Tindell, LeeAnn K.; Popescu, Gabriela K.

    2015-01-01

    Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses. PMID:26370091

  13. Gentiopicroside attenuates morphine rewarding effect through downregulation of GluN2B receptors in nucleus accumbens.

    PubMed

    Liu, Shui-Bing; Ma, Lan; Guo, Hong-Ju; Feng, Bin; Guo, Yan-Yan; Li, Xiao-Qiang; Sun, Wen-Ji; Zheng, Lian-He; Zhao, Ming-Gao

    2012-08-01

    Gentiopicroside (Gent) is one of the secoiridoid compound isolated from Gentiana lutea. This compound exhibits analgesic activities and inhibits the expression of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the anterior cingulate cortex in mice. Nucleus accumbens (NAc) is a forebrain structure known for its role in drug addiction. However, little is known about the role of Gent on morphine dependence and synaptic transmission changes in the NAc. Conditioned place preference (CPP) test and behavioral sensitization of locomotor activity were used to investigate drug-seeking related behaviors. Brain slices containing NAc were prepared, and whole-cell patch-clamp recordings were performed to record the excitatory postsynaptic currents (EPSCs). Expression of proteins was detected by Western blot analysis. Systemic administration of Gent attenuated the CPP effect induced by morphine, but had no effect on morphine-induced behavioral sensitization. Gent significantly reversed overexpression of GluN2B-containing NMDA receptors and dopamine D2 receptors in NAc during the first week of morphine withdrawal. However, the compound did not affect the overexpression of GluN2A-containing NMDA receptors, GluA1, and dopamine D1 receptors. Lastly, Gent significantly reduced NMDA receptors-mediated EPSCs in the NAc. Our study provides strong evidence that Gent inhibits morphine dependence through downregulation of GluN2B-containing NMDA receptors in the NAc. © 2012 Blackwell Publishing Ltd.

  14. Comparison of the neuropsychological mechanisms of 2,6-diisopropylphenol and N-methyl-D-aspartate receptor antagonist against electroconvulsive therapy-induced learning and memory impairment in depressed rats.

    PubMed

    Liu, Gang; Liu, Chao; Zhang, Xue-Ning

    2015-09-01

    The present study aimed to examine the neurophysiological mechanisms of the 2,6-diisopropylphenol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning and memory impairment, induced by electroconvulsive therapy (ECT). A total of 48 adult depressed rats without olfactory bulbs were randomly divided into six experimental groups: i) saline; ii) 10 mg/kg MK‑801; iii) 10 mg/kg MK‑801 and a course of ECT; iv) 200 mg/kg 2,6‑diisopropylphenol; v) 200 mg/kg 2,6‑diisopropylphenol and a course of ECT; and vi) saline and a course of ECT. The learning and memory abilities of the rats were assessed using a Morris water maze 1 day after a course of ECT. The hippocampus was removed 1 day after assessment using the Morris water maze assessment. The content of glutamate in the hippocampus was detected using high‑performance liquid chromatography. The expression levels of p‑AT8Ser202 and GSK‑3β1H8 in the hippocampus were determined using immunohistochemical staining and western blot analysis. The results demonstrated that the 2,6‑diisopropylphenol NMDA receptor antagonist, MK‑801 and ECT induced learning and memory impairment in the depressed rats. The glutamate content was significantly upregulated by ECT, reduced by 2,6‑diisopropylphenol, and was unaffected by the NMDA receptor antagonist in the hippocampus of the depressed rats. Tau protein hyperphosphorylation in the hippocampus was upregulated by ECT, but was reduced by 2,6‑diisopropylphenol and the MK‑801 NMDA receptor antagonist. It was also demonstrated that 2,6‑diisopropylphenol prevented learning and memory impairment and reduced the hyperphosphorylation of the Tau protein, which was induced by eECT. GSK‑3β was found to be the key protein involved in this signaling pathway. The ECT reduced the learning and memory impairment, caused by hyperphosphorylation of the Tau protein, in the depressed rats by upregulating the glutamate content.

  15. Sub-acute administration of benzo[a]pyrene (B[a]P) reduces anxiety-related behaviour in adult mice and modulates regional expression of N-methyl-D-aspartate (NMDA) receptors genes in relevant brain regions.

    PubMed

    Grova, Nathalie; Schroeder, Henri; Farinelle, Sophie; Prodhomme, Emmanuel; Valley, Anne; Muller, Claude P

    2008-08-01

    Abnormal glutamatergic transmission caused by modulation of N-methyl-D-aspartate (NMDA) receptors was demonstrated in animal models chronically exposed to various organic micropollutants. Recent developments in neurobiology have implicated these receptors in the regulation of anxiety. In order to investigate anxiety-related effects of benzo[a]pyrene (B[a]P), Balb/c mice were sub-acutely exposed to B[a]P (0.02-200 mg kg(-1) day(-1), 10 days, i.p.). Their performance was tested in the elevated-plus maze and the hole-board apparatus and the NMDA receptor expression genes (NR1, 2A and 2B subunits) was measured in eight brain regions. Mice treated with 20-200 mg kg(-1) B[a]P showed a disproportionate accumulation of B[a]P and its metabolites (in particular, the toxic 7,8-diol-B[a]P) in the blood and even more in the brain. These mice were less anxious than controls in the hole-board test and the elevated-plus maze. This observation was associated with an overexpression of the NMDA NR1 receptor gene and concomitant decreases of the NR2A and NR2B subunits expression in the hippocampus, the hypothalamus and the cerebellum. In the temporal cortex, a significant dose-related decrease of NR2A was observed whereas the other subunits remained unchanged. In conclusion, a sub-acute exposure to B[a]P (20 and 200 mg kg(-1)) reduced anxiety-related behaviour in adult mice and concomitantly impaired NMDA receptor gene expression in relevant brain regions.

  16. Effects of metabotropic glutamate receptor block on the synaptic transmission and plasticity in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Malfagia, C; Pettorossi, V E

    1998-11-01

    In rat brainstem slices, we investigated the possible role of metabotropic glutamate receptors in modulating the synaptic transmission within the medial vestibular nuclei, under basal and plasticity inducing conditions. We analysed the effect of the metabotropic glutamate receptor antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine on the amplitude of the field potentials and latency of unitary potentials evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation, and on the induction and maintenance of long-term potentiation, after high-frequency stimulation. Two effects were observed, consisting of a slight increase of the field potentials and reduction of unit latency during the drug infusion, and a further long-lasting development of these modifications after the drug wash-out. The long-term effect depended on N-methyl-D-aspartate receptor activation, as D,L-2-amino-5-phosphonopentanoic acid prevented its development. We suggest that (R,S)-alpha-methyl-4carboxyphenylglycine enhances the vestibular responses and induces N-methyl-D-aspartate-dependent long-term potentiation by increasing glutamate release, through the block of presynaptic metabotropic glutamate receptors which actively inhibit it. The block of these receptors was indirectly supported by the fact that the agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid reduced the vestibular responses and blocked the induction of long-term potentiation by high-frequency stimulation. The simultaneous block of metabotropic glutamate receptors facilitating synaptic plasticity, impedes the full expression of the long-term effect throughout the (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The involvement of such a facilitatory mechanism in the potentiation is supported by its reversible reduction following a second (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The drug also reduced the expression of potentiation induced by high-frequency stimulation

  17. Magnesium Lithospermate B Implicates 3'-5'-Cyclic Adenosine Monophosphate/Protein Kinase A Pathway and N-Methyl-d-Aspartate Receptors in an Experimental Traumatic Brain Injury.

    PubMed

    Chang, Chih-Zen; Wu, Shu-Chuan; Kwan, Aij-Lie; Lin, Chih-Lung

    2015-10-01

    Decreased 3'-5'-cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and increased N-methyl-d-aspartate (NMDA) related apoptosis were observed in traumatic brain injury (TBI). It is of interest to examine the effect of magnesium lithospermate B (MLB) on cAMP/PKA pathway and NMDAR in TBI. A rodent weight-drop TBI model was used. Administration of MLB was initiated 1 week before (precondition) and 24 hours later (reversal). Cortical homogenates were harvested to measure cAMP (enzyme-linked immunosorbent assay), soluble guanylyl cyclases, PKA and NMDA receptor-2β (Western blot). In addition, cAMP kinase antagonist and H-89 dihydrochloride hydrate were used to test MLB's effect on the cytoplasm cAMP/PKA pathway after TBI. Morphologically, vacuolated neuron and activated microglia were observed in the TBI groups but absent in the MLB preconditioning and healthy controls. Induced cAMP, soluble guanylyl cyclase α1, and PKA were observed in the MLB groups, when compared with the TBI group (P < 0.01) Administration of H-89 dihydrochloride hydrate reversed the effect of MLB on cortical PKA and NMDA-2β expression after TBI. This study showed that MLB exerted an antioxidant effect on the enhancement of cytoplasm cAMP and PKA. This compound also decreased NMDA-2β levels, which may correspond to its neuroprotective effects. This finding lends credence to the presumption that MLB modulates the NMDA-2β neurotoxicity through a cAMP-dependent mechanism in the pathogenesis of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effects of neurosteroid actions at N-methyl-D-aspartate and GABAA receptors in the midbrain ventral tegmental area for anxiety-like and mating behavior of female rats

    PubMed Central

    Paris, Jason J.

    2013-01-01

    Rationale In the midbrain ventral tegmental area (VTA), actions of neurosteroids, such as the progesterone metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), can facilitate mating and influence stress-related processes. Some actions of 3α,5α-THP may occur via positive modulation of GABAA receptors (GBRs), or negative modulation of N-methyl-D-aspartate receptors (NMDARs), to influence anxiety-like behavior; but this is not known. Objectives We aimed to assess the role that neurosteroids and stress factors play on intra-VTA NMDAR- and/or GBR-mediated anxiety-like and mating behavior. Methods Estradiol-primed, ovariectomized rats, which were partially or completely adrenalectomized (ADX), received infusions of vehicle, an NMDAR blocker (MK-801; 200 ng), or a GBR antagonist (bicuculline, 100 ng) to the VTA. Rats then received intra-VTA vehicle or a neurosteroidogenesis enhancer (N,N-Dihexyl-2-(4-fluorophenyl)indole-3-acetamide, FGIN 1-27, 5 μg) and anxiety-like and sexual behavior was assessed. Results Complete, compared to partial, ADX significantly reduced open arm exploration on an elevated plus maze, the proportion of females that engaged in mating, lordosis quotients, pacing of sexual contacts, and defensive aggression towards a sexually vigorous male. Intra-VTA MK-801 enhanced open arm investigation and the proportion of females that engaged in mating. Infusions of either, MK-801 or FGIN 1-27, enhanced lordosis and, when co-administered, FGIN 1-27 attenuated MK-801’s lordosis-enhancing effects. Intra-VTA infusions of bicuculline, prior to FGIN 1-27, blocked FGIN 1-27’s effects to enhance lordosis. Conclusions Together, these data suggest that reduced NMDAR activity in the VTA may influence motivation to explore and engage in sexual behavior. These data suggest that neurosteroid actions at NMDARs and GBRs in the VTA are important for exploration and/or sexual behavior. PMID:20878318

  19. Clinical presentation of anti-N-methyl-d-aspartate receptor and anti-voltage-gated potassium channel complex antibodies in children: A series of 24 cases.

    PubMed

    Konuskan, Bahadir; Yildirim, Mirac; Topaloglu, Haluk; Erol, Ilknur; Oztoprak, Ulkuhan; Tan, Huseyin; Gocmen, Rahsan; Anlar, Banu

    2018-01-01

    The symptomatology and paraclinical findings of antibody-mediated encephalitis, a relatively novel disorder, are still being characterized in adults and children. A high index of suspicion is needed in order to identify these cases among children presenting with various neurological symptoms. The aim of this study is to examine the clinical, demographic and laboratory findings and outcome of children with anti-NMDAR and anti-VGKC encephalitis for any typical or distinctive features. Cases diagnosed with anti-N-Methyl d-aspartate receptor (NMDAR) and anti-voltage gated potassium channel (VGKC) antibody-mediated encephalopathy in four major child neurology centers are described. In four years, 16 children with NMDAR and 8 children with VGKC antibody-associated disease were identified in the participating centers. The most frequent initial manifestation consisted of generalized seizures and cognitive symptoms in both groups. Movement abnormalities were frequent in anti-NMDAR patients and autonomic symptoms, in anti-VGKC patients. Cerebrospinal fluid (CSF) protein, cell count and IgG index were normal in 9/15 anti-NMDAR and 5/8 anti-VGKC patients tested. EEG and MRI findings were usually nonspecific and non-contributory. The rate and time of recovery was not related to age, sex, acute or subacute onset, antibody type, MRI, EEG or CSF results. Treatment within 3 months of onset was associated with normal neurological outcome. Our results suggest anti-NMDAR and VGKC encephalopathies mostly present with non-focal neurological symptoms longer than 3 weeks. In contrast with adult cases, routine CSF testing, MRI and EEG did not contribute to the diagnosis in this series. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  20. NMDA and D2-like receptors modulate cognitive flexibility in a color discrimination reversal task in pigeons.

    PubMed

    Herold, Christina

    2010-06-01

    Reversal and extinction learning represent forms of cognitive flexibility that refer to the ability of an animal to alter behavior in response to unanticipated changes on environmental demands. A role for dopamine and glutamate in modulating this behavior has been implicated. Here, we determined the effects of intracerebroventricular injections in pigeons' forebrain of the D2-like receptor agonist quinpirole, the D2-like receptor antagonist sulpiride and the N-methyl-d-aspartate receptor antagonist AP-5 on initial acquisition and reversal of a color discrimination task. On day one, pigeons had to learn to discriminate two color keys. On day two, pigeons first performed a retention test, which was followed by a reversal of the reward contingencies of the two color keys. None of the drugs altered performance in the initial acquisition of color discrimination or affected the retention of the learned color key. In contrast, all drugs impaired reversal learning by increasing trials and incorrect responses in the reversal session. Our data support the hypothesis that D2-like receptor mechanisms, like N-methyl-d-aspartate receptor modulations, are involved in cognitive flexibility and relearning processes, but not in initial learning of stimulus-reward association.

  1. Subchronic treatment with phencyclidine in adolescence leads to impaired exploratory behavior in adult rats without altering social interaction or N-methyl-D-aspartate receptor binding levels.

    PubMed

    Metaxas, A; Willems, R; Kooijman, E J M; Renjaän, V A; Klein, P J; Windhorst, A D; Donck, L Ver; Leysen, J E; Berckel, B N M van

    2014-11-01

    Although both the onset of schizophrenia and human phencyclidine (PCP) abuse typically present within the interval from adolescence to early adulthood, the majority of preclinical research employing the PCP model of schizophrenia has been conducted on neonatal or adult animals. The present study was designed to evaluate the behavioral and neurochemical sequelae of subchronic exposure to PCP in adolescence. Male 35-42-day-old Sprague Dawley rats were subcutaneously administered either saline (10 ml · kg(-1) ) or PCP hydrochloride (10 mg · kg(-1) ) once daily for a period of 14 days (n = 6/group). The animals were allowed to withdraw from treatment for 2 weeks, and their social and exploratory behaviors were subsequently assessed in adulthood by using the social interaction test. To examine the effects of adolescent PCP administration on the regulation of N-methyl-D-aspartate receptors (NMDARs), quantitative autoradiography was performed on brain sections of adult, control and PCP-withdrawn rats by using 20 nM (3) H-MK-801. Prior subchronic exposure to PCP in adolescence had no enduring effects on the reciprocal contact and noncontact social behavior of adult rats. Spontaneous rearing in response to the novel testing arena and time spent investigating its walls and floor were reduced in PCP-withdrawn animals compared with control. The long-term behavioral effects of PCP occurred in the absence of persistent deficits in spontaneous locomotion or self-grooming activity and were not mediated by altered NMDAR density. Our results document differential effects of adolescent PCP administration on the social and exploratory behaviors of adult rats, suggesting that distinct neurobiological mechanisms are involved in mediating these behaviors. Copyright © 2014 Wiley Periodicals, Inc.

  2. Role of NMDA receptor GluN2D subunit in the antidepressant effects of enantiomers of ketamine.

    PubMed

    Ide, Soichiro; Ikekubo, Yuiko; Mishina, Masayoshi; Hashimoto, Kenji; Ikeda, Kazutaka

    2017-11-01

    We investigated the rapid and sustained antidepressant effects of enantiomers of ketamine in N-methyl-d-aspartate (NMDA) receptor GluN2D subunit knockout (GluN2D-KO) mice. Intraperitoneal administration of ketamine or its enantiomers 10 min before the tail-suspension test exerted significant antidepressant effects on restraint stress-induced depression in both wildtype and GluN2D-KO mice. The antidepressant effects of (RS)-ketamine and (S)-ketamine were sustained 96 h after the injection in both wildtype and GluN2D-KO mice, but such sustained antidepressant effects of (R)-ketamine were only observed in wildtype mice. These data suggest that the GluN2D subunit is critical for the sustained antidepressant effects of (R)-ketamine. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.

    PubMed

    Horio, Mao; Ishima, Tamaki; Fujita, Yuko; Inoue, Ran; Mori, Hisashi; Hashimoto, Kenji

    2013-05-01

    d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Inhibition of protein synthesis by N-methyl-N-nitrosourea in vivo

    PubMed Central

    Kleihues, P.; Magee, P. N.

    1973-01-01

    1. The intraperitoneal injection of N-methyl-N-nitrosourea (100mg/kg) caused a partial inhibition of protein synthesis in several organs of the rat, the maximum effect occurring after 2–3h. 2. In the liver the inhibition of protein synthesis was paralleled by a marked disaggregation of polyribosomes and an increase in ribosome monomers and ribosomal subunits. No significant breakdown of polyribosomes was found in adult rat brains although N-methyl-N-nitrosourea inhibited cerebral and hepatic protein synthesis to a similar extent. In weanling rats N-methyl-N-nitrosourea caused a shift in the cerebral polyribosome profile similar to but less marked than that in rat liver. 3. Reaction of polyribosomal RNA with N-[14C]methyl-N-nitrosourea in vitro did not lead to a disaggregation of polyribosomes although the amounts of 7-methylguanine produced were up to twenty times higher than those found after administration of sublethal doses in vivo. 4. It was concluded that changes in the polyribosome profile induced by N-methyl-N-nitrosourea may reflect the mechanism of inhibition of protein synthesis rather than being a direct consequence of the methylation of polyribosomal mRNA. PMID:4774397

  5. Modulating the Intrinsic Disorder in the Cytoplasmic Domain Alters the Biological Activity of the N-Methyl-d-aspartate-sensitive Glutamate Receptor*

    PubMed Central

    Choi, Ucheor B.; Kazi, Rashek; Stenzoski, Natalie; Wollmuth, Lonnie P.; Uversky, Vladimir N.; Bowen, Mark E.

    2013-01-01

    The NMDA-sensitive glutamate receptor is a ligand-gated ion channel that mediates excitatory synaptic transmission in the nervous system. Extracellular zinc allosterically regulates the NMDA receptor by binding to the extracellular N-terminal domain, which inhibits channel gating. Phosphorylation of the intrinsically disordered intracellular C-terminal domain alleviates inhibition by extracellular zinc. The mechanism for this functional effect is largely unknown. Proline is a hallmark of intrinsic disorder, so we used proline mutagenesis to modulate disorder in the cytoplasmic domain. Proline depletion selectively uncoupled zinc inhibition with little effect on receptor biogenesis, surface trafficking, or ligand-activated gating. Proline depletion also reduced the affinity for a PDZ domain involved in synaptic trafficking and affected small molecule binding. To understand the origin of these phenomena, we used single molecule fluorescence and ensemble biophysical methods to characterize the structural effects of proline mutagenesis. Proline depletion did not eliminate intrinsic disorder, but the underlying conformational dynamics were changed. Thus, we altered the form of intrinsic disorder, which appears sufficient to affect the biological activity. These findings suggest that conformational dynamics within the intrinsically disordered cytoplasmic domain are important for the allosteric regulation of NMDA receptor gating. PMID:23782697

  6. Threshold to N-methyl-D-aspartate-induced seizures in mice undergoing chronic nutritional magnesium deprivation is lowered in a way partly responsive to acute magnesium and antioxidant administrations.

    PubMed

    Maurois, Pierre; Pages, Nicole; Bac, Pierre; German-Fattal, Michèle; Agnani, Geneviève; Delplanque, Bernadette; Durlach, Jean; Poupaert, Jacques; Vamecq, Joseph

    2009-02-01

    Magnesium deficiency may be induced by a diet impoverished in magnesium. This nutritional deficit promotes chronic inflammatory and oxidative stresses, hyperexcitability and, in mice, susceptibility to audiogenic seizures. Potentiation by low-magnesium concentrations of the opening of N-methyl-D-aspartate (NMDA) receptor/calcium channel in in vitro and ex vivo studies, and responsiveness to magnesium of in vivo brain injury states are now well established. By contrast, little or no specific attention has been, however, paid to the in vivo NMDA receptor function/excitability in magnesium deficiency. The present work reports for the first time that, in mice undergoing chronic nutritional deprivation in magnesium (35 v. 930 parts per million for 27 d in OF1 mice), NMDA-induced seizure threshold is significantly decreased (38 % of normal values). The attenuation in the drop of NMDA seizure threshold (percentage of reversal) was 58 and 20 % upon acute intraperitoneal administrations of magnesium chloride hexahydrate (28 mg magnesium/kg) and the antioxidant ebselen (20 mg/kg), respectively. In nutritionally magnesium-deprived animals, audiogenic seizures are completely prevented by these compound doses. Taken as a whole, our data emphasise that chronic magnesium deprivation in mice is a nutritional in vivo model for a lowered NMDA receptor activation threshold. This nutritional model responds remarkably to acute magnesium supply and moderately to acute antioxidant administration.

  7. Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801

    NASA Astrophysics Data System (ADS)

    Trujillo, Keith A.; Akil, Huda

    1991-01-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.

  8. DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward.

    PubMed

    Liu, Zheng; Richmond, Barry J; Murray, Elisabeth A; Saunders, Richard C; Steenrod, Sara; Stubblefield, Barbara K; Montague, Deidra M; Ginns, Edward I

    2004-08-17

    When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11-19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions.

  9. DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward

    PubMed Central

    Liu, Zheng; Richmond, Barry J.; Murray, Elisabeth A.; Saunders, Richard C.; Steenrod, Sara; Stubblefield, Barbara K.; Montague, Deidra M.; Ginns, Edward I.

    2004-01-01

    When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11–19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions. PMID:15302926

  10. Intrathecal injection of the peptide myr-NR2B9c attenuates bone cancer pain via perturbing N-methyl-D-aspartate receptor-PSD-95 protein interactions in mice.

    PubMed

    Liu, Yue; Cui, Xinlong; Sun, Yu-E; Yang, Xuli; Ni, Kun; Zhou, Yu; Ma, Zhengliang; Gu, Xiaoping

    2014-06-01

    N-methyl-D-aspartate receptor (NMDARs)-dependent central sensitization plays an important role in cancer pain. Binding of NMDAR subunit 2B (NR2B) by postsynaptic density protein-95 (PSD-95) can couple NMDAR activity to intracellular enzymes, such as neuronal nitric oxide synthase (nNOS), facilitate downstream signaling pathways, and modulate NMDAR stability, contributing to synaptic plasticity. In this study, we investigated whether perturbing the specific interaction between spinal NR2B-containing NMDAR and PSD-95, using a peptide-mimetic strategy, could attenuate bone cancer-related pain behaviors. Osteosarcoma cells were implanted into the intramedullary space of the right femurs of C3H/HeJ mice to induce progressive bone cancer-related pain behaviors. Western blotting was applied to examine the expression of spinal phospho-Tyr1472 NR2B, nNOS, and PSD-95. We further investigated the effects of intrathecal injection of the mimetic peptide Myr-NR2B9c, which competitively disrupts the interaction between PSD-95 and NR2B, on nociceptive behaviors and on the upregulation of phospho-Tyr1472 NR2B, nNOS, and PSD-95 associated with bone cancer pain in the spinal cord. Inoculation of osteosarcoma cells induced progressive bone cancer pain and resulted in a significant upregulation of phospho-Tyr1472 NR2B, nNOS, and PSD-95. Intrathecal administration of Myr-NR2B9c attenuated bone cancer-evoked mechanical allodynia, thermal hyperalgesia, and reduced spinal phospho-Tyr1472 NR2B, nNOS, and PSD-95 expression. Intrathecal administration of Myr-NR2B9c reduced bone cancer pain. Internalization of spinal NR2B and dissociation NR2B-containing NMDARs activation from downstream nNOS signaling may contribute to the analgesic effects of Myr-NR2B9c. This approach may circumvent the negative consequences associated with blocking NMDARs, and may be a novel strategy for the treatment of bone cancer pain.

  11. The Frequency of Autoimmune N-Methyl-D-Aspartate Receptor Encephalitis Surpasses That of Individual Viral Etiologies in Young Individuals Enrolled in the California Encephalitis Project

    PubMed Central

    Sheriff, Heather; Dalmau, Josep; Tilley, Drake H.; Glaser, Carol A.

    2012-01-01

    Background. In 2007, the California Encephalitis Project (CEP), which was established to study the epidemiology of encephalitis, began identifying cases of anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. Increasing numbers of anti-NMDAR encephalitis cases have been identified at the CEP, and this form rivals commonly known viral etiologies as a causal agent. We report here the relative frequency and differences among encephalitides caused by anti-NMDAR and viral etiologies within the CEP experience. Methods. Demographic, frequency, and clinical data from patients with anti-NMDAR encephalitis are compared with those with viral encephalitic agents: enterovirus, herpes simplex virus type 1 (HSV-1), varicella-zoster virus (VZV), and West Nile virus (WNV). All examined cases presented to the CEP between September 2007 and February 2011 and are limited to individuals aged ≤30 years because of the predominance of anti-NMDAR encephalitis in this group. The diagnostic costs incurred in a single case are also included. Results. Anti-NMDAR encephalitis was identified >4 times as frequently as HSV-1, WNV, or VZV and was the leading entity identified in our cohort. We found that 65% of anti-NMDAR encephalitis occurred in patients aged ≤18 years. This disorder demonstrated a predilection, which was not observed with viral etiologies, for females (P < .01). Seizures, language dysfunction, psychosis, and electroencephalographic abnormalities were significantly more frequent in patients with anti-NMDAR encephalitis (P < .05), and autonomic instability occurred exclusively in this group. Discussion. Anti-NMDAR encephalitis rivals viral etiologies as a cause of encephalitis within the CEP cohort. This entity deserves a prominent place on the encephalitic differential diagnosis to avoid unnecessary diagnostic and treatment costs, and to permit a more timely treatment. PMID:22281844

  12. N-methyl-D-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline

    NASA Technical Reports Server (NTRS)

    Ulus, I. H.; Buyukuysal, R. L.; Wurtman, R. J.

    1992-01-01

    We examined the effects of N-methyl-D-aspartate (NMDA), a glutamate agonist, and of glutamate itself, on acetylcholine (ACh) release from superfused rat striatal slices. In a Mg(++)-free medium, NMDA (32-1000 microM) as well as glutamate (1 mM) increased basal ACh release by 35 to 100% (all indicated differences, P less than .05), without altering tissue ACh or choline contents. This augmentation was blocked by Mg++ (1.2 mM) or by MK-801 (10 microM). Electrical stimulation (15 Hz, 75 mA) increased ACh release 9-fold (from 400 to 3660 pmol/mg of protein): this was enhanced (to 4850 pmol/mg of protein) by NMDA (100 microM). ACh levels in stimulated slices fell by 50 or 65% depending on the absence or presence of NMDA. The addition of choline (40 microM) increased ACh release both basally (570 pmol/mg of protein) and with electrical stimulation (6900 pmol/mg of protein). In stimulated slices choline acted synergistically with NMDA, raising ACh release to 10,520 pmol/mg of protein. The presence of choline also blocked the fall in tissue ACh. No treatment affected tissue phospholipid or protein levels. NMDA (32-320 microM) also augmented basal ACh release from cortical but not hippocampal slices. Choline efflux from striatal and cortical (but not hippocampal) slices decreased by 34 to 50% in Mg(++)-free medium. These data indicate that NMDA-like drugs may be useful, particularly in combination with choline, to enhance striatal and cortical cholinergic activity. ACh release from rat hippocampus apparently is not affected by NMDA receptors.

  13. D-Aspartate drinking solution alleviates pain and cognitive impairment in neuropathic mice.

    PubMed

    Palazzo, Enza; Luongo, Livio; Guida, Francesca; Marabese, Ida; Romano, Rosaria; Iannotta, Monica; Rossi, Francesca; D'Aniello, Antimo; Stella, Luigi; Marmo, Federica; Usiello, Alessandro; de Bartolomeis, Andrea; Maione, Sabatino; de Novellis, Vito

    2016-07-01

    D-Aspartate (D-Asp) is a free D-amino acid detected in multiple brain regions and putative precursor of endogenous N-methyl-D-aspartate (NMDA) acting as agonist at NMDA receptors. In this study, we investigated whether D-Asp (20 mM) in drinking solution for 1 month affects pain responses and pain-related emotional, and cognitive behaviour in a model of neuropathic pain induced by the spared nerve injury (SNI) of the sciatic nerve in mice. SNI mice developed mechanical allodynia and motor coordination impairment 30 days after SNI surgery. SNI mice showed cognitive impairment, anxiety and depression-like behaviour, reduced sociability in the three chamber sociability paradigm, increased expression of NR2B subunit of NMDA receptor and Homer 1a in the medial prefrontal cortex (mPFC). The expression of (post synaptic density) PSD-95 and Shank 1was instead unaffected in the mPFC of the SNI mice. Treatment with D-Asp drinking solution, started right after the SNI (day 0), alleviated mechanical allodynia, improved cognition and motor coordination and increased social interaction. D-Asp also restored the levels of extracellular D-Asp, Homer 1a and NR2B subunit of the NMDA receptor to physiological levels and reduced Shank1 and PSD-95 protein levels in the mPFC. Amitriptyline, a tricyclic antidepressant used also to alleviate neuropathic pain in humans, reverted mechanical allodynia and cognitive impairment, and unlike D-Asp, was effective in reducing depression and anxiety-like behaviour in the SNI mice and increased PSD protein level. Altogether these findings demonstrate that D-Asp improves sensorial, motor and cognitive-like symptoms related to chronic pain possibly through glutamate neurotransmission normalization in neuropathic mice.

  14. [A comparative analysis of anti-N-methyl-D-aspartate receptor encephalitis with or without abnormal findings on cranial magnetic resonance imaging].

    PubMed

    Zhang, Jian-Zhao; Chen, Qian; Zheng, Ping; Xie, Li-Na; Yi, Xiao-Li; Ren, Hai-Tao; Yang, Jian

    2018-01-01

    To investigate the clinical features of children with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis with normal or abnormal cranial magnetic resonance imaging (MRI) findings via a comparative analysis. A retrospective analysis was performed for the clinical data of 33 children with anti-NMDAR encephalitis. The clinical features and prognosis were compared between the children with normal and abnormal cranial MRI findings. In the 33 children with anti-NMDAR encephalitis, the most common initial symptoms were seizures (61%) and involuntary movement (61%), followed by language disorder (54%), mental and behavioral abnormalities (52%), and disturbance of consciousness (30%). All children had positive anti-NMDAR antibody in the cerebrospinal fluid, and 29 children (88%) had positive serum antibody. Of all the children, 15 (46%) had increased leukocytes in the cerebrospinal fluid, 3 (9%) had an increase in protein, and 29 (88%) had positive oligoclonal band; 26 children (79%) had electroencephalographic abnormalities (epileptic wave, slow wave, or a combination of these two types of waves). One child experienced respiratory failure. One child was found to have germinoma in the sellar region during follow-up. Of all the 33 children, 13 (39%) had abnormal cranial MRI findings, with hypointensity or isointensity on T1W1 and hyperintensity on T2WI and T2-FLAIR; 2 children had dural enhancement. As for the location of lesion, 5 children (38%) had lesions in the temporal lobe, 3 (23%) in the frontal lobe, 3 (23%) in the basal ganglia, 2 (15%) in the parietal lobe, 2 (15%) in the occipital lobe, 2 (15%) in the brainstem, 1 (8%) in the thalamus, and 1 (8%) in the cerebellum. Among the 13 children with abnormal cranial MRI findings, 5 (38%) had lesions mainly in the grey matter and 8 (62%) had lesions mainly in the white matter. Compared with the children with normal cranial MRI findings, the children with abnormal cranial MRI findings had significantly higher

  15. Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations

    PubMed Central

    Liu, Lu Tian; Xu, Yan; Tang, Pei

    2010-01-01

    Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662

  16. Benzodiazepine-induced hippocampal CA1 neuron alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid (AMPA) receptor plasticity linked to severity of withdrawal anxiety: differential role of voltage-gated calcium channels and N-methyl-D-aspartic acid receptors.

    PubMed

    Xiang, Kun; Tietz, Elizabeth I

    2007-09-01

    Withdrawal from 1-week oral administration of the benzodiazepine, flurazepam (FZP) is associated with increased alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid (AMPA) receptor (AMPAR) miniature excitatory postsynaptic currents (mEPSCs) but reduction of N-methyl-D-aspartic acid (NMDA) receptor (NMDAR)-evoked (e)EPSCs in hippocampal CA1 neurons. A positive correlation was observed between increased AMPAR-mediated mEPSC amplitude and anxiety-like behavior in 1-day FZP-withdrawn rats. These effects were disrupted by systemic AMPAR antagonist administration (GYKI-52466, 0.5 mg/kg, intraperitoneal) at withdrawal onset, strengthening the hypothesis that CA1 neuron AMPAR-mediated hyperexcitability is a central component of a functional anatomic circuit associated with the expression of withdrawal anxiety. Abolition of AMPAR current upregulation in 2-day FZP withdrawn rats by GYKI-52466 injection also reversed the reduction in NMDAR-mediated eEPSC amplitude in CA1 neurons from the same rats, suggesting that downregulation of NMDAR function may serve a protective, negative-feedback role to prevent AMPAR-mediated neuronal overexcitation. NMDAR antagonist administration (MK-801, 0.25 mg/kg intraperitoneally) had no effect on modifying increased glutamatergic strength or on withdrawal anxiety, whereas injection of an L-type voltage-gated calcium channel antagonist, nimodipine (10 mg/kg, intraperitoneally) averted AMPAR current enhancement and anxiety-like behavior, suggesting that these manifestations may be initiated by a voltage-gated calcium channel-dependent signal transduction pathway. An evidence-based model of likely cellular mechanisms in the hippocampus contributing to benzodiazepine withdrawal anxiety was proposed implicating regulation of multiple CA1 neuron ion channels.

  17. The region preceding the C-terminal NWETF pentapeptide modulates baseline activity and aspartate inhibition of Escherichia coli Tar.

    PubMed

    Lai, Run-Zhi; Bormans, Arjan F; Draheim, Roger R; Wright, Gus A; Manson, Michael D

    2008-12-16

    The Tar chemoreceptor-CheA-CheW ternary complex of Escherichia coli is a transmembrane allosteric enzyme in which binding of ligands to the periplasmic domain modulates the activity of CheA kinase. Kinase activity is also affected by reversible methylation of four glutamyl residues in the cytoplasmic domain of the receptor. E. coli Tar contains 553 residues. Residues 549-553 comprise the NWETF pentapeptide that binds the CheR methyltransferase and CheB methylesterase. The crystal structure of the similar Tsr chemoreceptor predicts that residues 263-289 and 490-515 of Tar form the most membrane-proximal portion of the extended CD1-CD2 four-helix bundle of the cytoplasmic domain. The last methylation site, Glu-491, is in the C19 heptad, and the N22-19 and C22-19 heptads are present in all classes of bacterial transmembrane chemoreceptors. Residues 516-548 probably serve as a flexible tether for the NWETF pentapeptide. Here, we present a mutational analysis of residues 505-548. The more of this region that is deleted, the less sensitive Tar is to inhibition by aspartate. Tar deleted from residue 505 through the NWETF sequence stimulates CheA in vitro but is not inhibited by aspartate. Thus, interaction of the last two heptads (C21 and C22) of CD2 with the first two heptads (N22 and N21) of CD1 must be important for transmitting an inhibitory signal from the HAMP domain to the four-helix bundle. The R514A, K523A, R529A, R540A, and R542A substitutions, singly or together, increase the level of activation of CheA in vitro, whereas the R505A substitution decreases the level of CheA stimulation by 40% and lowers the aspartate K(i) 7-fold. The R505E substitution completely abolishes stimulation of CheA in vitro. Glu-505 may interact electrostatically with Asp-273 to destabilize the "on" signaling state by loosening the four-helix bundle.

  18. Microinjection of l-glutamate into the nucleus ambiguus partially inhibits gastric motility through the NMDA receptor - nitric oxide pathway.

    PubMed

    Sun, Hong-Zhao; Zhao, Shu-Zhen; Ai, Hong-Bin

    2014-06-01

    We have previously reported that both l-glutamate (l-Glu) and nitric oxide (NO) modulate gastric motility in the nucleus ambiguus (NA). The aim of this study is to explore the potential correlation between the l-Glu and NO. A latex balloon connected to a pressure transducer was inserted into the pylorus through the fundus of anesthetized male Wistar rats to continuously record changes in gastric smooth muscle contractile curves. Pretreatment with the NO-synthase inhibitor N-nitro-l-arginine methylester (l-NAME) did not completely abolish the inhibitory effect of l-Glu on gastric motility, but intravenous injection of the ganglionic blocker hexamethonium bromide (Hb) did. By using a specific N-methyl-d-aspartic acid (NMDA) receptor antagonist, we blocked the inhibitory effect of the NO-donor sodium nitroprusside (SNP) on gastric motility. These results suggest that microinjections of l-Glu into the NA inhibits gastric motility by activating the cholinergic preganglionic neurons, partially through the NMDA receptor - NO pathway.

  19. Quantitative determination of free D-Asp, L-Asp and N-methyl-D-aspartate in mouse brain tissues by chiral separation and Multiple Reaction Monitoring tandem mass spectrometry.

    PubMed

    Fontanarosa, Carolina; Pane, Francesca; Sepe, Nunzio; Pinto, Gabriella; Trifuoggi, Marco; Squillace, Marta; Errico, Francesco; Usiello, Alessandro; Pucci, Piero; Amoresano, Angela

    2017-01-01

    Several studies have suggested that free d-Asp has a crucial role in N-methyl d-Asp receptor-mediated neurotransmission playing very important functions in physiological and pathological processes. This paper describes the development of an analytical procedure for the direct and simultaneous determination of free d-Asp, l-Asp and N-methyl d-Asp in specimens of different mouse brain tissues using chiral LC-MS/MS in Multiple Reaction Monitoring scan mode. After comparing three procedures and different buffers and extraction solvents, a simple preparation procedure was selected the analytes of extraction. The method was validated by analyzing l-Asp, d-Asp and N-methyl d-Asp recovery at different spiked concentrations (50, 100 and 200 pg/μl) yielding satisfactory recoveries (75-110%), and good repeatability. Limits of detection (LOD) resulted to be 0.52 pg/μl for d-Asp, 0.46 pg/μl for l-Asp and 0.54 pg/μl for NMDA, respectively. Limits of quantification (LOQ) were 1.57 pg/μl for d-Asp, 1.41 pg/μl for l-Asp and 1.64 pg/μl for NMDA, respectively. Different concentration levels were used for constructing the calibration curves which showed good linearity. The validated method was then successfully applied to the simultaneous detection of d-Asp, l-Asp and NMDA in mouse brain tissues. The concurrent, sensitive, fast, and reproducible measurement of these metabolites in brain tissues will be useful to correlate the amount of free d-Asp with relevant neurological processes, making the LC-MS/MS MRM method well suited, not only for research work but also for clinical analyses.

  20. IgE binding to peanut allergens is inhibited by combined D-aspartic and D-glutamic acids.

    PubMed

    Chung, Si-Yin; Reed, Shawndrika

    2015-01-01

    The objective of this study was to determine if D-amino acids (D-aas) bind and inhibit immunoglobulin E (IgE) binding to peanut allergens. D-aas such as D-Asp (aspartic acid), D-Glu (glutamic acid), combined D-[Asp/Glu] and others were each prepared in a cocktail of 9 other D-aas, along with L-amino acids (L-aas) and controls. Each sample was mixed with a pooled plasma from peanut-allergic donors, and tested by ELISA (enzyme-linked immunosorbent assay) and Western blots for IgE binding to peanut allergens. Results showed that D-[Asp/Glu] (4 mg/ml) inhibited IgE binding (75%) while D-Glu, D-Asp and other D-aas had no inhibitory effect. A higher inhibition was seen with D-[Asp/Glu] than with L-[Asp/Glu]. We concluded that IgE was specific for D-[Asp/Glu], not D-Asp or D-Glu, and that D-[Asp/Glu] was more reactive than was L-[Asp/Glu] in IgE inhibition. The finding indicates that D-[Asp/Glu] may have the potential for removing IgE or reducing IgE binding to peanut allergens in vitro. Published by Elsevier Ltd.

  1. Essential role of GluD1 in dendritic spine development and GluN2B to GluN2A NMDAR subunit switch in the cortex and hippocampus reveals ability of GluN2B inhibition in correcting hyperconnectivity.

    PubMed

    Gupta, Subhash C; Yadav, Roopali; Pavuluri, Ratnamala; Morley, Barbara J; Stairs, Dustin J; Dravid, Shashank M

    2015-06-01

    The glutamate delta-1 (GluD1) receptor is highly expressed in the forebrain. We have previously shown that loss of GluD1 leads to social and cognitive deficits in mice, however, its role in synaptic development and neurotransmission remains poorly understood. Here we report that GluD1 is enriched in the medial prefrontal cortex (mPFC) and GluD1 knockout mice exhibit a higher dendritic spine number, greater excitatory neurotransmission as well as higher number of synapses in mPFC. In addition abnormalities in the LIMK1-cofilin signaling, which regulates spine dynamics, and a lower ratio of GluN2A/GluN2B expression was observed in the mPFC in GluD1 knockout mice. Analysis of the GluD1 knockout CA1 hippocampus similarly indicated the presence of higher spine number and synapses and altered LIMK1-cofilin signaling. We found that systemic administration of an N-methyl-d-aspartate (NMDA) receptor partial agonist d-cycloserine (DCS) at a high-dose, but not at a low-dose, and a GluN2B-selective inhibitor Ro-25-6981 partially normalized the abnormalities in LIMK1-cofilin signaling and reduced excess spine number in mPFC and hippocampus. The molecular effects of high-dose DCS and GluN2B inhibitor correlated with their ability to reduce the higher stereotyped behavior and depression-like behavior in GluD1 knockout mice. Together these findings demonstrate a critical requirement for GluD1 in normal spine development in the cortex and hippocampus. Moreover, these results identify inhibition of GluN2B-containing receptors as a mechanism for reducing excess dendritic spines and stereotyped behavior which may have therapeutic value in certain neurodevelopmental disorders such as autism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers

    PubMed Central

    Navarro, Gemma; Moreno, Estefania; Bonaventura, Jordi; Brugarolas, Marc; Farré, Daniel; Aguinaga, David; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carmen; Ferre, Sergi

    2013-01-01

    Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain. PMID:23637801

  3. -HPLC determination of acidic d-amino acids and their N-methyl derivatives in biological tissues

    PubMed Central

    Tsesarskaia, Mara; Galindo, Erika; Szókán, Gyula; Fisher, George

    2015-01-01

    d-aspartate (d-Asp) and N-methyl-d-aspartate (NMDA) occur in the neuroendocrine systems of vertebrates and invertebrates where they play a role in hormone release and synthesis, neurotransmission, and memory and learning. N-methyl-d-glutamate (NMDG) has also been detected in marine bivalves. Several methods have been used to detect these amino acids, but they require pretreatment of tissue samples with o-phthaldialdehyde (OPA) to remove primary amino acids which interfere with the detection of NMDA and NMDG. We report here a one step derivatization procedure with the chiral reagent N-α-(5-fluoro-2,4-dinitrophenyl)-(d or l)-valine amide, FDNP-Val-NH2, a close analog of Marfey’s reagent but with better resolution and higher molar absorptivity. The diastereomers formed are separated by HPLC on an ODS-Hypersil column eluted with TFA/water – TFA/MeCN. UV absorption at 340 nm permits detection levels as low as 5–10 picomoles. D-Asp, NMDA and NMDG peaks are not obscured by other primary or secondary amino acids; hence pretreatment of tissues with OPA is not required. This method is highly reliable and fast (less than 40 minutes HPLC run). Using this method, we have detected D-Asp, NMDA and NMDG in several biological tissues (octopus brain, optical lobe, and bucchal mass; foot and mantle of the mollusk Scapharca broughtonii), confirming the results of other researchers. PMID:19277955

  4. Methyl-orvinol-Dual activity opioid receptor ligand inhibits gastrointestinal transit and alleviates abdominal pain in the mouse models mimicking diarrhea-predominant irritable bowel syndrome.

    PubMed

    Zielińska, Marta; Jarmuż, Agata; Wasilewski, Andrzej; Cami-Kobeci, Gerta; Husbands, Stephen; Fichna, Jakub

    2017-04-01

    Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional disorder of the gastrointestinal (GI) tract. The major IBS-D symptoms include diarrhea, abdominal pain and discomfort. High density of opioid receptors (ORs) in the GI tract and their participation in the maintenance of GI homeostasis make ORs ligands an attractive option for developing new anti-IBS-D treatments. The aim of this study was to characterize the effect of methyl-orvinol on the GI motility and secretion and in mouse models mimicking symptoms of IBS-D. In vitro, the effects of methyl-orvinol on electrical field stimulated smooth muscle contractility and epithelial ion transport were characterized in the mouse colon. In vivo, the following tests were used to determine methyl-orvinol effect on mouse GI motility: colonic bead expulsion, whole GI transit and fecal pellet output. An antinociceptive action of methyl-orvinol was assessed in the mouse model of visceral pain induced by mustard oil. Methyl-orvinol (10 -10 to 10 -6 M) inhibited colonic smooth muscle contractions in a concentration-dependent manner. This effect was reversed by naloxone (non-selective opioid antagonist) and β-funaltrexamine (selective MOP antagonist). Experiments with a selective KOP receptor agonist, U50488 revealed that methyl-orvinol is a KOP receptor antagonist in the GI tract. Methyl-orvinol enhanced epithelial ion transport. In vivo, methyl-orvinol inhibited colonic bead expulsion and prolonged GI transit. Methyl-orvinol improved hypermotility and reduced abdominal pain in the mouse models mimicking IBS-D symptoms. Methyl-orvinol could become a promising drug candidate in chronic therapy of functional GI diseases such as IBS-D. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. Dissociation of thirst and sodium appetite in the furo/cap model of extracellular dehydration and a role for N-methyl-D-aspartate receptors in the sensitization of sodium appetite

    PubMed Central

    Hurley, Seth. W.; Johnson, Alan Kim

    2015-01-01

    Depletion of extracellular fluids motivates many animals to seek out and ingest water and sodium. Animals with a history of extracellular dehydration display enhanced sodium appetite and in some cases thirst. The progressive increase in sodium intake induced by repeated sodium depletions is known as sensitization of sodium appetite. Administration of the diuretic and natriuretic drug, furosemide, along with a low dose of captopril (furo/cap), elicits thirst and a rapid onset of sodium appetite. In the present studies the furo/cap model was used to explore the physiological mechanisms of sensitization of sodium appetite. However, when thirst and sodium appetite were measured concurrently in the furo/cap model, individual rats exhibited sensitization of either thirst or sodium appetite. In subsequent studies, thirst and sodium appetite were dissociated by offering either water prior to sodium or sodium before water. When water and sodium intake were dissociated in time, the furo/cap model reliably produced sensitization of sodium appetite. It is likely that neuroplasticity mediates this sensitization. Glutamatergic N-methyl-d-aspartate receptor (NMDA-R) activation is critical for the development of most forms of neuroplasticity. Therefore, we hypothesized that integrity of NMDA-R function is necessary for the sensitization of sodium appetite. Pharmacological blockade of NMDA-Rs with systemic administration of MK-801 (0.15mg/kg) prevented the sensitization of fluid intake in general when water and sodium were offered concurrently, and prevented sensitization of sodium intake specifically when water and sodium intake were dissociated. The involvement of NMDA-Rs provides support for the possibility that sensitization of sodium appetite is mediated by neuroplasticity. PMID:24341713

  6. Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories.

    PubMed

    Kishimoto, T; Chawla, J M; Hagi, K; Zarate, C A; Kane, J M; Bauer, M; Correll, C U

    2016-05-01

    Ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists (NMDAR antagonists) recently demonstrated antidepressant efficacy for the treatment of refractory depression, but effect sizes, trajectories and possible class effects are unclear. We searched PubMed/PsycINFO/Web of Science/clinicaltrials.gov until 25 August 2015. Parallel-group or cross-over randomized controlled trials (RCTs) comparing single intravenous infusion of ketamine or a non-ketamine NMDAR antagonist v. placebo/pseudo-placebo in patients with major depressive disorder (MDD) and/or bipolar depression (BD) were included in the analyses. Hedges' g and risk ratios and their 95% confidence intervals (CIs) were calculated using a random-effects model. The primary outcome was depressive symptom change. Secondary outcomes included response, remission, all-cause discontinuation and adverse effects. A total of 14 RCTs (nine ketamine studies: n = 234; five non-ketamine NMDAR antagonist studies: n = 354; MDD = 554, BD = 34), lasting 10.0 ± 8.8 days, were meta-analysed. Ketamine reduced depression significantly more than placebo/pseudo-placebo beginning at 40 min, peaking at day 1 (Hedges' g = -1.00, 95% CI -1.28 to -0.73, p < 0.001), and loosing superiority by days 10-12. Non-ketamine NMDAR antagonists were superior to placebo only on days 5-8 (Hedges' g = -0.37, 95% CI -0.66 to -0.09, p = 0.01). Compared with placebo/pseudo-placebo, ketamine led to significantly greater response (40 min to day 7) and remission (80 min to days 3-5). Non-ketamine NMDAR antagonists achieved greater response at day 2 and days 3-5. All-cause discontinuation was similar between ketamine (p = 0.34) or non-ketamine NMDAR antagonists (p = 0.94) and placebo. Although some adverse effects were more common with ketamine/NMDAR antagonists than placebo, these were transient and clinically insignificant. A single infusion of ketamine, but less so of non-ketamine NMDAR antagonists, has ultra-rapid efficacy for MDD and BD, lasting

  7. Meta-analysis of the association between N-methyl-d-aspartate receptor antibodies and schizophrenia, schizoaffective disorder, bipolar disorder, and major depressive disorder.

    PubMed

    Pearlman, Daniel M; Najjar, Souhel

    2014-08-01

    N-methyl-d-aspartate receptor (NMDAR) antibodies have been documented in the serum of individuals with primary psychiatric disorders from several independent cohorts, but these findings have not been systematically assessed in aggregate or in relation to methodological covariates. We searched MEDLINE, EMBASE, and PsycINFO for studies in any language that provided data on NMDAR antibody seropositivity or absolute serum titers in schizophrenia or schizoaffective, bipolar, or major depressive disorders. We used a random effects model to pool estimates across studies. Nine studies met the eligibility criteria. Five studies (3387 participants) provided data on NMDAR antibody seropositivity in psychiatric versus control groups based on high-specificity seropositivity thresholds (cell-based assays [CBAs]: 1:320 dilution, 1:200 dilution, visual score>1; enzyme-linked immunosorbent assay [ELISA]: 90(th) percentile of control titers). Meta-analysis showed significantly higher odds of NMDAR antibody seropositivity among those with schizophrenia or schizoaffective, bipolar, or major depressive disorders compared with healthy controls (odds ratio [OR], 3.10; 95% confidence interval [CI], 1.04-9.27; P=.043; I(2)=68%). Four studies (3194 participants) provided outcome data for these groups based on low-specificity seropositivity thresholds (CBAs 1:10 dilution; ELISA: 75(th) percentile of control titers). Meta-analysis showed greater heterogeneity and no significant between-group difference (OR, 2.31; 95% CI, 0.55-9.73; P=.25; I(2)=90%). Seropositive participants in psychiatric groups had various combinations of IgG, IgM, and IgA class antibodies against NR1, NR1/NR2B, and NR2A/NR2B subunits. Subgroup analysis revealed significantly higher odds of seropositivity among all participants based on 1:10 versus 1:320 dilution seropositivity thresholds (OR, 4.56; 95% CI, 2.41-8.62; P<.001; I(2)=0%; studies=2, n=2920), but no apparent difference between first-episode and chronic

  8. The uncompetitive N-methyl-D-aspartate antagonist memantine reduces binge-like eating, food-seeking behavior, and compulsive eating: role of the nucleus accumbens shell.

    PubMed

    Smith, Karen L; Rao, Rahul R; Velázquez-Sánchez, Clara; Valenza, Marta; Giuliano, Chiara; Everitt, Barry J; Sabino, Valentina; Cottone, Pietro

    2015-03-13

    Binge-eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. The role of the glutamatergic N-methyl-D-aspartate (NMDA) receptor system in hedonic feeding is poorly understood. The aim of this study was to characterize the effects of the uncompetitive NMDA receptor antagonist memantine on palatable food-induced behavioral adaptations using a rat model, which mimics the characteristic symptomatology observed in binge-eating disorder. For this purpose, we allowed male Wistar rats to respond to obtain a highly palatable, sugary diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day, under a fixed-ratio 1 (FR1) schedule of reinforcement. Upon stabilization of food responding, we tested the effects of memantine on the Chow and Palatable food groups' intake. Then, we tested the effects of memantine on food-seeking behavior, under a second-order schedule of reinforcement. Furthermore, we investigated the effects of memantine on the intake of food when it was offered in an aversive, bright compartment of a light/dark conflict test. Finally, we evaluated the effects of memantine on FR1 responding for food, when microinfused into the nucleus accumbens (NAcc) shell or core. Memantine dose-dependently decreased binge-like eating and fully blocked food-seeking behavior and compulsive eating, selectively in the Palatable food group. The drug treatment did not affect performance of the control Chow food group. Finally, intra-NAcc shell, but not core, microinfusion of memantine decreased binge-like eating. Together, these findings substantiate a role of memantine as a potential pharmacological treatment for binge-eating disorder.

  9. The Uncompetitive N-methyl-D-Aspartate Antagonist Memantine Reduces Binge-Like Eating, Food-Seeking Behavior, and Compulsive Eating: Role of the Nucleus Accumbens Shell

    PubMed Central

    Smith, Karen L; Rao, Rahul R; Velázquez-Sánchez, Clara; Valenza, Marta; Giuliano, Chiara; Everitt, Barry J; Sabino, Valentina; Cottone, Pietro

    2015-01-01

    Binge-eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. The role of the glutamatergic N-methyl-D-aspartate (NMDA) receptor system in hedonic feeding is poorly understood. The aim of this study was to characterize the effects of the uncompetitive NMDA receptor antagonist memantine on palatable food-induced behavioral adaptations using a rat model, which mimics the characteristic symptomatology observed in binge-eating disorder. For this purpose, we allowed male Wistar rats to respond to obtain a highly palatable, sugary diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day, under a fixed-ratio 1 (FR1) schedule of reinforcement. Upon stabilization of food responding, we tested the effects of memantine on the Chow and Palatable food groups' intake. Then, we tested the effects of memantine on food-seeking behavior, under a second-order schedule of reinforcement. Furthermore, we investigated the effects of memantine on the intake of food when it was offered in an aversive, bright compartment of a light/dark conflict test. Finally, we evaluated the effects of memantine on FR1 responding for food, when microinfused into the nucleus accumbens (NAcc) shell or core. Memantine dose-dependently decreased binge-like eating and fully blocked food-seeking behavior and compulsive eating, selectively in the Palatable food group. The drug treatment did not affect performance of the control Chow food group. Finally, intra-NAcc shell, but not core, microinfusion of memantine decreased binge-like eating. Together, these findings substantiate a role of memantine as a potential pharmacological treatment for binge-eating disorder. PMID:25381776

  10. Inhibition of NMDA Receptors Prevents the Loss of BDNF Function Induced by Amyloid β.

    PubMed

    Tanqueiro, Sara R; Ramalho, Rita M; Rodrigues, Tiago M; Lopes, Luísa V; Sebastião, Ana M; Diógenes, Maria J

    2018-01-01

    Brain-derived neurotrophic factor (BDNF) plays important functions in cell survival and differentiation, neuronal outgrowth and plasticity. In Alzheimer's disease (AD), BDNF signaling is known to be impaired, partially because amyloid β (Aβ) induces truncation of BDNF main receptor, TrkB-full length (TrkB-FL). We have previously shown that such truncation is mediated by calpains, results in the formation of an intracellular domain (ICD) fragment and causes BDNF loss of function. Since calpains are Ca 2+ -dependent proteases, we hypothesized that excessive intracellular Ca 2+ build-up could be due to dysfunctional N-methyl-d-aspartate receptors (NMDARs) activation. To experimentally address this hypothesis, we investigated whether TrkB-FL truncation by calpains and consequent BDNF loss of function could be prevented by NMDAR blockade. We herein demonstrate that a NMDAR antagonist, memantine, prevented excessive calpain activation and TrkB-FL truncation induced by Aβ 25-35 . When calpains were inhibited by calpastatin, BDNF was able to increase the dendritic spine density of neurons exposed to Aβ 25135 . Moreover, NMDAR inhibition by memantine also prevented Aβ-driven deleterious impact of BDNF loss of function on structural (spine density) and functional outcomes (synaptic potentiation). Collectively, these findings support NMDAR/Ca 2+ /calpains mechanistic involvement in Aβ-triggered BDNF signaling disruption.

  11. Antenatal blockade of N-methyl-D-aspartate receptors by Memantine reduces the susceptibility to diabetes induced by a high-fat diet in rats with intrauterine growth restriction.

    PubMed

    Huang, Xiao-Ting; Yue, Shao-Jie; Li, Chen; Guo, Jia; Huang, Yan-Hong; Han, Jian-Zhong; Feng, Dan-Dan; Luo, Zi-Qiang

    2017-05-01

    Intrauterine growth retardation (IUGR) is closely related to the later development of type 2 diabetes in adulthood. Excessive activation of N-methly-D-aspartate receptors (NMDARs) causes excitatory neurotoxicity, resulting in neuronal injury or death. Inhibition of NMDARs enhances the glucose-stimulated insulin secretion and survival of islet cells in type 2 diabetic mouse and human islets. Here, we examined whether antenatal blockade of NMDARs by Memantine could decrease the risk of diabetes induced by a high-fat (HF) diet at adulthood in IUGR rats. Pregnant SD rats were assigned to four groups: control, IUGR, Memantine, and Memantine + IUGR. The pregnant rats were exposed to hypoxic conditions (FiO2 = 0.105) for 8 h/day (IUGR group) or given a daily Memantine injection (5 mg/kg, i.p.) before hypoxia exposure from embryonic day (E) 14.5 to E 20.5 (Memantine + IUGR). The offspring were fed an HF diet with 60% of the calories from age 4 to 12 weeks. We found that NMDAR mRNAs were expressed in the fetal rat pancreas. An HF diet resulted in a high rate of diabetes at adulthood in the IUGR group. Antenatal Memantine treatment decreased the risk of diabetes at adulthood of rats with IUGR, which was associated with rescued glucose tolerance, increased insulin release, improved the insulin sensitivity, and increased expression of genes related to beta-cell function in the pancreas. Together, our results suggest that antenatal blockade of NMDARs by Memantine in pregnant rats improves fetal development and reduces the susceptibility to diabetes at adulthood in offspring. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Excitatory amino acid receptors and disease.

    PubMed

    Meldrum, B S

    1992-08-01

    Recent advances in the molecular biology of excitatory amino acid receptors are reviewed. Evidence that drugs blocking the excitatory action of glutamate at the N-methyl-D-aspartate (NMDA) and non-NMDA receptors may be of clinical use in epilepsy, Parkinson's disease, cerebral ischaemia and trauma, acquired immune deficiency syndrome (AIDS) encephalopathy and neuropathic pain is summarized.

  13. A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.

    PubMed

    Sheardown, M J

    1988-04-13

    L(+)-AP4 (2-amino-4-phosphonobutyrate) depolarized slices of rat cerebral cortex, when applied following a 2 min priming application of quisqualate. This response diminishes with time and is not seen after NMDA application. A new selective non-N-methyl-D-aspartate (NMDA) antagonist, 6-cyano-7-nitro-2,3-dihydroxyquinoxaline (FG 9065), inhibits the L(+)-AP4 depolarization. It is argued that the response is mediated indirectly by postsynaptic quisqualate receptors.

  14. Ketamine-induced inhibition of glycogen synthase kinase-3 contributes to the augmentation of AMPA receptor signaling

    PubMed Central

    Beurel, Eléonore; Grieco, Steven F; Amadei, Celeste; Downey, Kimberlee; Jope, Richard S

    2016-01-01

    Objectives Sub-anesthetic doses of ketamine have been found to provide rapid antidepressant actions, indicating that the cellular signaling systems targeted by ketamine are potential sites for therapeutic intervention. Ketamine acts as an antagonist of N-methyl-D-aspartate (NMDA) receptors, and animal studies indicate that subsequent augmentation of signaling by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors is critical for the antidepressant outcome. Methods In this study, we tested if the inhibitory effect of ketamine on glycogen synthase kinase-3 (GSK3) affected hippocampal cell-surface AMPA receptors using immunoblotting of membrane and synaptosomal extracts from wild-type and GSK3 knockin mice. Results Treatment with an antidepressant dose of ketamine increased the hippocampal membrane level of the AMPA glutamate receptor (GluA)1 subunit, but did not alter the localization of GluA2, GluA3, or GluA4. This effect of ketamine was abrogated in GSK3 knockin mice expressing mutant GSK3 that cannot be inhibited by ketamine, demonstrating that ketamine-induced inhibition of GSK3 is necessary for up-regulation of cell surface AMPA GluA1 subunits. AMPA receptor trafficking is regulated by post-synaptic density-95 (PSD-95), a substrate for GSK3. Ketamine treatment decreased the hippocampal membrane level of phosphorylated PSD-95 on Thr-19, the target of GSK3 that promotes AMPA receptor internalization. Conclusions These results demonstrate that ketamine-induced inhibition of GSK3 causes reduced phosphorylation of PSD-95, diminishing the internalization of AMPA GluA1 subunits to allow for augmented signaling through AMPA receptors following ketamine treatment. PMID:27687706

  15. Adaptation Mechanism of the Aspartate Receptor: Electrostatics of the Adaptation Subdomain Play a Key Role in Modulating Kinase Activity†

    PubMed Central

    Starrett, Diane J.; Falke, Joseph J.

    2010-01-01

    The aspartate receptor of the Escherichia coli and Salmonella typhimurium chemotaxis pathway generates a transmembrane signal that regulates the activity of the cytoplasmic kinase CheA. Previous studies have identified a region of the cytoplasmic domain that is critical to receptor adaptation and kinase regulation. This region, termed the adaptation subdomain, contains a high density of acidic residues, including specific glutamate residues that serve as receptor adaptation sites. However, the mechanism of signal propagation through this region remains poorly understood. This study uses site-directed mutagenesis to neutralize each acidic residue within the subdomain to probe the hypothesis that electrostatics in this region play a significant role in the mechanism of kinase activation and modulation. Each point mutant was tested for its ability to regulate chemotaxis in vivo and kinase activity in vitro. Four point mutants (D273N, E281Q, D288N, and E477Q) were found to superactivate the kinase relative to the wild-type receptor, and all four of these kinase-activating substitutions are located along the same intersubunit interface as the adaptation sites. These activating substitutions retained the wild-type ability of the attractant-occupied receptor to inhibit kinase activity. When combined in a quadruple mutant (D273N/E281Q/D288N/E477Q), the four charge-neutralizing substitutions locked the receptor in a kinase-superactivating state that could not be fully inactivated by the attractant. Similar lock-on character was observed for a charge reversal substitution, D273R. Together, these results implicate the electrostatic interactions at the intersubunit interface as a major player in signal transduction and kinase regulation. The negative charge in this region destabilizes the local structure in a way that enhances conformational dynamics, as detected by disulfide trapping, and this effect is reversed by charge neutralization of the adaptation sites. Finally, two

  16. Effects of Ethanol on Phosphorylation Site Mutants of Recombinant NMDA Receptors

    PubMed Central

    Xu, Minfu; Smothers, Corigan T.; Woodward, John J.

    2010-01-01

    N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels activated by the neurotransmitter glutamate. These channels are highly expressed by brain neurons and are critically involved in excitatory synaptic transmission. Results from previous studies show that both native and recombinant NMDA receptors are inhibited by ethanol at concentrations associated with signs of behavioral impairment and intoxication. Given the important role that NMDA receptors play in synaptic transmission and brain function, it is important to understand the factors that regulate the ethanol inhibition of these receptors. One dynamic mechanism for regulating ethanol action may be via phosphorylation of NMDA subunits by serine-threonine and tyrosine kinases. Both NR1 and NR2 subunits contain multiple sites of phosphorylation and in the NR1 subunit, most of these are contained within the C1 domain, a carboxy-terminal cassette that is subject to alternative splicing. While results from our previous studies suggest that single phosphorylation sites do not greatly affect ethanol sensitivity of NMDA receptors, it is likely that in vivo, these subunits are phosphorylated at multiple sites by different kinases. In the present study, we constructed a series of NMDA receptor mutants at serine (S) or threonine (T) residues proposed to be sites of phosphorylation by PKA and various isoforms of PKC. Ethanol (100 mM) inhibited currents from wild-type NR1/2A and NR1/2B receptors expressed in HEK293 cells by approximately 25% and 30% respectively. This inhibition was not different in single site mutants expressing alanine (A) or aspartate/glutamate (D/E) at positions T879, S896 or T900. The mutant NR1(S890D) showed greater ethanol inhibition than NR1(890A) containing receptors although this was only observed when it was combined with the NR2A subunit. Ethanol inhibition was not altered by aspartate substitution at four serines (positions 889, 890, 896, 897) or when T879D was added to the four

  17. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism.

    PubMed

    Aleksandrova, Lily R; Phillips, Anthony G; Wang, Yu Tian

    2017-06-01

    The molecular mechanisms underlying major depressive disorder remain poorly understood, and current antidepressant treatments have many shortcomings. The recent discovery that a single intravenous infusion of ketamine at a subanesthetic dose had robust, rapid and sustained antidepressant effects in individuals with treatment-resistant depression inspired tremendous interest in investigating the molecular mechanisms mediating ketamine's clinical efficacy as well as increased efforts to identify new targets for antidepressant action. We review the clinical utility of ketamine and recent insights into its mechanism of action as an antidepressant, including the roles of N -methyl-D-aspartate receptor inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor upregulation, activation of downstream synaptogenic signalling pathways and the production of an active ketamine metabolite, hydroxynorketamine. Emerging knowledge of the molecular mechanisms underlying both ketamine's positive therapeutic and detrimental side effects will aid the development of a new generation of much-needed superior antidepressant agents.

  18. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit.

    PubMed

    Volkmann, Robert A; Fanger, Christopher M; Anderson, David R; Sirivolu, Venkata Ramana; Paschetto, Kathy; Gordon, Earl; Virginio, Caterina; Gleyzes, Melanie; Buisson, Bruno; Steidl, Esther; Mierau, Susanna B; Fagiolini, Michela; Menniti, Frank S

    2016-01-01

    GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.

  19. Essential Role of NMDA Receptor Channel ε4 Subunit (GluN2D) in the Effects of Phencyclidine, but Not Methamphetamine

    PubMed Central

    Hagino, Yoko; Kasai, Shinya; Han, Wenhua; Yamamoto, Hideko; Nabeshima, Toshitaka; Mishina, Masayoshi; Ikeda, Kazutaka

    2010-01-01

    Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, increases locomotor activity in rodents and causes schizophrenia-like symptoms in humans. Although activation of the dopamine (DA) pathway is hypothesized to mediate these effects of PCP, the precise mechanisms by which PCP induces its effects remain to be elucidated. The present study investigated the effect of PCP on extracellular levels of DA (DAex) in the striatum and prefrontal cortex (PFC) using in vivo microdialysis in mice lacking the NMDA receptor channel ε1 or ε4 subunit (GluRε1 [GluN2A] or GluRε4 [GluN2D]) and locomotor activity. PCP significantly increased DAex in wildtype and GluRε1 knockout mice, but not in GluRε4 knockout mice, in the striatum and PFC. Acute and repeated administration of PCP did not increase locomotor activity in GluRε4 knockout mice. The present results suggest that PCP enhances dopaminergic transmission and increases locomotor activity by acting at GluRε4. PMID:21060893

  20. The role of GluN2B-containing NMDA receptors in short- and long-term fear recall.

    PubMed

    Mikics, Eva; Toth, Mate; Biro, Laszlo; Bruzsik, Biborka; Nagy, Boglarka; Haller, Jozsef

    2017-08-01

    N-methyl-d-aspartate (NMDA) receptors are crucial synaptic elements in long-term memory formation, including the associative learning of fearful events. Although NMDA blockers were consistently shown to inhibit fear memory acquisition and recall, the clinical use of general NMDA blockers is hampered by their side effects. Recent studies revealed significant heterogeneity in the distribution and neurophysiological characteristics of NMDA receptors with different GluN2 (NR2) subunit composition, which may have differential role in fear learning and recall. To investigate the specific role of NMDA receptor subpopulations with different GluN2 subunit compositions in the formation of lasting traumatic memories, we contrasted the effects of general NMDA receptor blockade with GluN2A-, GluN2B-, and GluN2C/D subunit selective antagonists (MK-801, PEAQX, Ro25-6981, PPDA, respectively). To investigate acute and lasting consequences, behavioral responses were investigated 1 and 28days after fear conditioning. We found that MK-801 (0.05 and 0.1mg/kg) decreased fear recall at both time points. GluN2B receptor subunit blockade produced highly similar effects, albeit efficacy was somewhat smaller 28days after fear conditioning. Unlike MK-801, Ro25-6981 (3 and 10mg/kg) did not affect locomotor activity in the open-field. In contrast, GluN2A and GluN2C/D blockers (6 and 20mg/kg PEAQX; 3 and 10mg/kg PPDA, respectively) had no effect on conditioned fear recall at any time point and dose. This sharp contrast between GluN2B- and other subunit-containing NMDA receptor function indicates that GluN2B receptor subunits are intimately involved in fear memory formation, and may provide a novel pharmacological target in post-traumatic stress disorder or other fear-related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. On the mechanism of aluminum ion-induced neurotoxicity: The effects of aluminum species on G-protein-mediated processes and on drug interactions with the N-methyl-D-aspartate modulated ionophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, C.M.

    1989-01-01

    To establish what effects Al{sup 3+} may have on G-protein mediate signal transduction, the effects of Al{sup 3+} on the signal-coupling G-protein from retinal rod outer segments (G{sub t} or transducin) have been investigated as a model for the effects of Al{sup 3+} on signal transduction by G-proteins in general. In this investigation, we have studied the effects of Al{sup 3+} on the isolated, light-dependent rhodopsin catalyzed GTP-GDP exchange on G{sub t}; the light-dependent GTPase activity of G{sub t}; the light-independent cGMP hydrolysis by PDE; and the light activated, rhodopsin catalyzed, cGMP hydrolysis by PDE in vitro. To determine themore » effects of two defined species of aluminum on N-methyl-D-aspartic acid (NMDA) receptor-channel modulation we utilized a specific radioligand binding assay. This allowed us to compare the effects of aluminum to other metal ions on specific ({sup 3}H)MK-801 binding to the NMDA receptor-channel complex. This complex is involved in long-term potentiation, which is currently being investigated as the mechanism by which learning and memory occur and has been implicated in the pathology of Alzheimer's disease. We have investigated the effects of two different species of aluminum, as well as Ca{sup 2+}, Zn{sup 2+}, Mg{sup 2+}, and Li{sup +} on the specific binding of ({sup 3}H)MK-801 to the NMDA receptor-channel complex under depolarized conditions.« less

  2. Intracerebroventricular injection of the antibiotic cefoselis produces convulsion in mice via inhibition of GABA receptors.

    PubMed

    Yamazaki, Shunji; Mochizuki, Yoshitaka; Terai, Takao; Sugimoto, Masahiro; Uchida, Ichiro; Matsuoka, Nobuya; Mutoh, Seitaro

    2002-12-01

    A majority of beta-lactam antibiotics (e.g., cephalosporins and penicillins) have convulsive activity to a greater or lesser extent. (6R,7R)-3-[[3-Amino-2-(2-hydroxyethyl)-2H-pyrazol-1-ium-1-yl]methyl]-7-[(Z)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetylamino]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate monosulfate (cefoselis), a newly developed injectable beta-lactam antibiotic with activity against methicillin-resistant Staphylococcus aureus (MRSA), might induce convulsions if cerebral concentrations become highly elevated. In the present study, we examined whether or not cefoselis had convulsive activity after direct brain administration, and we attempted to clarify the pharmacological mechanism of action. When cefoselis was injected into the lateral ventricle of the mouse brain at doses higher than 20 microg/animal, it produced convulsions dose-dependently. Cefoselis (50 microg/animal)-induced convulsions were prevented by pretreatment with 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), diazepam and phenobarbital (ED(50) values (mg/kg) of 0.78, 1.59 and 33.0, respectively), but not by carbamazepine or phenytoin. When the effects of these anticonvulsants on the convulsions induced by intracerebral injection of bicuculline methiodide (BMI) or N-methyl-D-aspartate (NMDA) were investigated, the inhibitory profile of anticonvulsants on cefoselis-induced convulsions was similar to those induced by BMI (125 ng/animal) but differed markedly in their inhibitory activity on NMDA (100 ng/animal)-induced convulsions, which were not inhibited by diazepam. These results suggest that cefoselis may be convulsive at higher concentrations through a mechanism involving inhibition of gamma-aminobutyric acid (GABA)(A) receptors.

  3. Anticonvulsant effect of minocycline on pentylenetetrazole-induced seizure in mice: involvement of nitric oxide and N-methyl-D-aspartate receptor.

    PubMed

    Amini-Khoei, Hossein; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Haj-Mirzaian, Arvin; Shirzadian, Armin; Hasanvand, Amin; Balali-Dehkordi, Shima; Hassanipoor, Mahsa; Dehpour, Ahmad Reza

    2018-03-20

    Anticonvulsant effects of minocycline have been explored recently. This study was designed to examine the anticonvulsant effect of acute administration of minocycline on pentylenetetrazole (PTZ)-induced seizures in mouse considering the possible role of nitric oxide (NO)/NMDA pathway. We induced seizure using intravenous administration of PTZ. Our results showed that acute administration of minocycline increased the seizure threshold. Furthermore, co-administration of sub-effective doses of the non-selective nitric oxide synthase (NOS) inhibitor, L-NAME (10 mg/kg) and the neuronal NOS inhibitor, 7-nitroindazole (40 mg/kg) enhanced the anticonvulsant effect of sub-effective dose of minocycline (40 mg/kg). We found that inducible NOS inhibitor, aminoguanidine (100 mg/kg), had no effect on the anti-seizure effect of minocycline. Moreover, L-arginine (60 mg/kg), as a NOS substrate, reduced the anticonvulsant effect of minocycline. We also demonstrated that pretreatment with NMDA receptor antagonists, ketamine (0.5 mg/kg) and MK-801 (0.05 mg/kg) increased the anticonvulsant effect of sub-effective dose of minocycline. Results showed that minocycline significantly decreased the hippocampal nitrite level. Furthermore, co-administration of nNOS inhibitor like NMDA receptor antagonists augmented the effect of minocycline on the hippocampal nitrite level. In conclusion, we revealed that anticonvulsant effect of minocycline might be, at least in part, due to decline in constitutive hippocampal nitric oxide activity as well as inhibition of NMDA receptors.

  4. Deletion of striatal adenosine A2A receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning

    PubMed Central

    Singer, Philipp; Wei, Catherine J.; Chen, Jiang-Fan; Boison, Detlev; Yee, Benjamin K.

    2013-01-01

    Following early clinical leads, the adenosine A2AR receptor (A2AR) has continued to attract attention as a potential novel target for treating schizophrenia; especially against the negative and cognitive symptoms of the disease because of A2AR’s unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through the antagonistic interaction with the dopamine D2 receptor, and by regulating glutamate release and N-methyl-d-aspartate receptor function, striatal A2AR is ideally positioned to fine-tune the dopamine-glutamate balance whose disturbance is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A2ARsin the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A2AR knockout (st-A2AR-KO) on latent inhibition (LI) and prepulse inhibition (PPI) – behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A2AR-KO mice; although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning – conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A2ARs– a finding that may undermine the hypothesized importance of A2AR in the genesis and/or treatment of schizophrenia. PMID:23276608

  5. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolevsky, Alexander I.; Rosconi, Michael P.; Gouaux, Eric

    2010-02-02

    Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the {alpha}-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 {angstrom} resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatchmore » between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-D-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.« less

  6. Muscarinic receptor stimulation of D-aspartate uptake into human SH-SY5Y neuroblastoma cells is attenuated by hypoosmolarity.

    PubMed

    Foster, Daniel J; Heacock, Anne M; Fisher, Stephen K

    2010-04-01

    In addition to its function as an excitatory neurotransmitter, glutamate plays a major role as an osmolyte within the central nervous system (CNS). Accordingly, mechanisms that regulate glutamate release and uptake are of physiological importance not only during conditions in which cell volume remains constant but also when cells are subjected to hypoosmotic stress. In the present study, the ability of muscarinic cholinergic receptors (mAChRs) to regulate the uptake of glutamate (monitored as D-aspartate) into human SH-SY5Y neuroblastoma cells under isotonic or hypotonic conditions has been examined. In isotonic media, agonist activation of mAChRs resulted in a significant increase (250-300% of control) in the uptake of D-aspartate and, concurrently, a cellular redistribution of the excitatory amino acid transporter 3 (EAAT3) to the plasma membrane. mAChR-mediated increases in d-aspartate uptake were potently blocked by the EAAT3 inhibitor l-beta-threo-benzyl-aspartate. In hypotonic media, the ability of mAChR activation to facilitate D-aspartate uptake was significantly attenuated (40-50%), and the cellular distribution of EAAT3 was disrupted. Reduction of mAChR-stimulated D-aspartate uptake under hypoosmotic conditions could be fully reversed upon re-exposure of the cells to isotonic media. Under both isotonic and hypotonic conditions, mAChR-mediated increases in D-aspartate uptake depended on cytoskeletal integrity, protein kinase C and phosphatidylinositol 3-kinase activities, and the availability of intracellular Ca2+. In contrast, dependence on extracellular Ca2+ was observed only under isotonic conditions. The results suggest that, although the uptake of D-aspartate into SH-SY5Y cells is enhanced after mAChR activation, this process is markedly attenuated by hypoosmolarity.

  7. DNA methyltransferase homologue TRDMT1 in Plasmodium falciparum specifically methylates endogenous aspartic acid tRNA.

    PubMed

    Govindaraju, Gayathri; Jabeena, C A; Sethumadhavan, Devadathan Valiyamangalath; Rajaram, Nivethika; Rajavelu, Arumugam

    2017-10-01

    In eukaryotes, cytosine methylation regulates diverse biological processes such as gene expression, development and maintenance of genomic integrity. However, cytosine methylation and its functions in pathogenic apicomplexan protozoans remain enigmatic. To address this, here we investigated the presence of cytosine methylation in the nucleic acids of the protozoan Plasmodium falciparum. Interestingly, P. falciparum has TRDMT1, a conserved homologue of DNA methyltransferase DNMT2. However, we found that TRDMT1 did not methylate DNA, in vitro. We demonstrate that TRDMT1 methylates cytosine in the endogenous aspartic acid tRNA of P. falciparum. Through RNA bisulfite sequencing, we mapped the position of 5-methyl cytosine in aspartic acid tRNA and found methylation only at C38 position. P. falciparum proteome has significantly higher aspartic acid content and a higher proportion of proteins with poly aspartic acid repeats than other apicomplexan pathogenic protozoans. Proteins with such repeats are functionally important, with significant roles in host-pathogen interactions. Therefore, TRDMT1 mediated C38 methylation of aspartic acid tRNA might play a critical role by translational regulation of important proteins and modulate the pathogenicity of the malarial parasite. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Vitamin D receptor gene methylation is associated with ethnicity, tuberculosis and TaqI polymorphism

    PubMed Central

    Andraos, Charlene; Koorsen, Gerrit; Knight, Julian C; Bornman, Liza

    2014-01-01

    The Vitamin D Receptor (VDR) gene encodes a transcription factor which, on activation by vitamin D, modulates diverse biological processes including calcium homeostasis and immune function. Genetic variation involving VDR shows striking differences in allele frequency between populations and has been associated with disease susceptibility including tuberculosis and autoimmunity, although results have often been conflicting. We hypothesized that methylation of VDR may be population specific and that the combination of differential methylation and genetic variation may characterise TB predisposition. We use bisulphite conversion and/or pyrosequencing to analyse the methylation status of 17 CpGs of VDR and to genotype 7 SNPs in the 3′ CpG Island (CGI 1060), including the commonly studied SNPs ApaI (rs7975232) and TaqI (rs731236). We show that for lymphoblastoid cell lines from two ethnically diverse populations (Yoruba from HapMap, n=30 and Caucasians, n=30) together with TB cases (n=32) and controls (n=29) from the Venda population of South Africa there are methylation variable positions (MVPs) in the 3′ end that significantly distinguish ethnicity (9/17 CpGs) and TB status (3/17 CpGs). Moreover methylation status shows complex association with TaqI genotype highlighting the need to consider both genetic and epigenetic variants in genetic studies of VDR association with disease. PMID:21168462

  9. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    PubMed

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  10. Stereocontrolled dopamine receptor binding and subtype selectivity of clebopride analogues synthesized from aspartic acid.

    PubMed

    Einsiedel, Jürgen; Weber, Klaus; Thomas, Christoph; Lehmann, Thomas; Hübner, Harald; Gmeiner, Peter

    2003-10-06

    Employing the achiral 4-aminopiperidine derivative clebopride as a lead compound, chiral analogues were developed displaying dopamine receptor binding profiles that proved to be strongly dependent on the stereochemistry. Compared to the D1 receptor, the test compounds showed high selectivity for the D2-like subtypes including D2(long), D2(short), D3 and D4. The highest D4 and D3 affinities were observed for the cis-3-amino-4-methylpyrrolidines 3e and the enantiomer ent3e resulting in K(i) values of 0.23 and 1.8 nM, respectively. The benzamides of type 3 and 5 were synthesized in enantiopure form starting from (S)-aspartic acid and its unnatural optical antipode.

  11. Loss of GluN2D subunit results in social recognition deficit, social stress, 5-HT2C receptor dysfunction, and anhedonia in mice.

    PubMed

    Yamamoto, Hideko; Kamegaya, Etsuko; Hagino, Yoko; Takamatsu, Yukio; Sawada, Wakako; Matsuzawa, Maaya; Ide, Soichiro; Yamamoto, Toshifumi; Mishina, Masayoshi; Ikeda, Kazutaka

    2017-01-01

    The N-methyl-d-aspartate (NMDA) receptor channel is involved in various physiological functions, including learning and memory. The GluN2D subunit of the NMDA receptor has low expression in the mature brain, and its role is not fully understood. In the present study, the effects of GluN2D subunit deficiency on emotional and cognitive function were investigated in GluN2D knockout (KO) mice. We found a reduction of motility (i.e., a depressive-like state) in the tail suspension test and a reduction of sucrose preference (i.e., an anhedonic state) in GluN2D KO mice that were group-housed with littermates. Despite apparently normal olfactory function and social interaction, GluN2D KO mice exhibited a decrease in preference for social novelty, suggesting a deficit in social recognition or memory. Golgi-Cox staining revealed a reduction of the complexity of dendritic trees in the accessory olfactory bulb in GluN2D KO mice, suggesting a deficit in pheromone processing pathway activation, which modulates social recognition. The deficit in social recognition may result in social stress in GluN2D KO mice. Isolation housing is a procedure that has been shown to reduce stress in mice. Interestingly, 3-week isolation and treatment with agomelatine or the 5-hydroxytryptamine-2C (5-HT 2C ) receptor antagonist SB242084 reversed the anhedonic-like state in GluN2D KO mice. In contrast, treatment with the 5-HT 2C receptor agonist CP809101 induced depressive- and anhedonic-like states in isolated GluN2D KO mice. These results suggest that social stress that is caused by a deficit in social recognition desensitizes 5-HT 2c receptors, followed by an anhedonic- and depressive-like state, in GluN2D KO mice. The GluN2D subunit of the NMDA receptor appears to be important for the recognition of individuals and development of normal emotionality in mice. 5-HT 2C receptor antagonism may be a therapeutic target for treating social stress-induced anhedonia. This article is part of the Special

  12. Medial prefrontal cortex TRPV1 and CB1 receptors modulate cardiac baroreflex activity by regulating the NMDA receptor/nitric oxide pathway.

    PubMed

    Lagatta, Davi C; Kuntze, Luciana B; Ferreira-Junior, Nilson C; Resstel, Leonardo B M

    2018-05-29

    The ventral medial prefrontal cortex (vMPFC) facilitates the cardiac baroreflex response through N-methyl-D-aspartate (NMDA) receptor activation and nitric oxide (NO) formation by neuronal NO synthase (nNOS) and soluble guanylate cyclase (sGC) triggering. Glutamatergic transmission is modulated by the cannabinoid receptor type 1 (CB 1 ) and transient receptor potential vanilloid type 1 (TRPV 1 ) receptors, which may inhibit or stimulate glutamate release in the brain, respectively. Interestingly, vMPFC CB 1 receptors decrease cardiac baroreflex responses, while TRPV 1 channels facilitate them. Therefore, the hypothesis of the present study is that the vMPFC NMDA/NO pathway is regulated by both CB 1 and TRPV 1 receptors in the modulation of cardiac baroreflex activity. In order to test this assumption, we used male Wistar rats that had stainless steel guide cannulae bilaterally implanted in the vMPFC. Subsequently, a catheter was inserted into the femoral artery, for cardiovascular recordings, and into the femoral vein for assessing baroreflex activation. The increase in tachycardic and bradycardic responses observed after the microinjection of a CB 1 receptors antagonist into the vMPFC was prevented by an NMDA antagonist as well as by the nNOS and sGC inhibition. NO extracellular scavenging also abolished these responses. These same pharmacological manipulations inhibited cardiac reflex enhancement induced by TRPV 1 agonist injection into the area. Based on these results, we conclude that vMPFC CB 1 and TRPV 1 receptors inhibit or facilitate the cardiac baroreflex activity by stimulating or blocking the NMDA activation and NO synthesis.

  13. Astroglial CB1 Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory.

    PubMed

    Robin, Laurie M; Oliveira da Cruz, José F; Langlais, Valentin C; Martin-Fernandez, Mario; Metna-Laurent, Mathilde; Busquets-Garcia, Arnau; Bellocchio, Luigi; Soria-Gomez, Edgar; Papouin, Thomas; Varilh, Marjorie; Sherwood, Mark W; Belluomo, Ilaria; Balcells, Georgina; Matias, Isabelle; Bosier, Barbara; Drago, Filippo; Van Eeckhaut, Ann; Smolders, Ilse; Georges, Francois; Araque, Alfonso; Panatier, Aude; Oliet, Stéphane H R; Marsicano, Giovanni

    2018-06-06

    Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB 1 receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB 1 receptors from astroglial cells (GFAP-CB 1 -KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB 1 receptors increased intracellular astroglial Ca 2+ levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB 1 -KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB 1 -KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Attenuation of reserpine-induced pain/depression dyad by gentiopicroside through downregulation of GluN2B receptors in the amygdala of mice.

    PubMed

    Liu, Shui-bing; Zhao, Rong; Li, Xu-sheng; Guo, Hong-ju; Tian, Zhen; Zhang, Nan; Gao, Guo-dong; Zhao, Ming-gao

    2014-06-01

    Epidemiological studies demonstrate that pain frequently occurs comorbid with depression. Gentiopicroside (Gent) is a secoiridoid compound isolated from Gentiana lutea that exhibits analgesic properties and inhibits the expression of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the anterior cingulate cortex of mice. However, the effects of Gent on the reserpine-induced pain/depression dyad and its underlying mechanisms are unclear. Reserpine administration (1 mg/kg subcutaneous daily for 3 days) caused a significant decrease in the nociceptive threshold as evidenced by the reduced paw withdrawal latency in response to a radiant heat source and mechanical allodynia. Behavioral detection indicated a significant increase in immobility time during a forced swim test, as well as decreased time in the central area and total travel distance in an open field test. Furthermore, reserpinized animals exhibited increased oxidative stress. Systemic Gent administration dose-dependently ameliorated the behavioral deficits associated with reserpine-induced pain/depression dyad. At the same time, the decrease in biogenic amine levels (norepinephrine, dopamine, and serotonin) was integrated with the increase in caspase-3 levels and GluN2B-containing NMDA receptors in the amygdala of the reserpine-injected mice. Gent significantly reversed the changes in the levels of biogenic amines, caspase-3, and GluN2B-containing NMDA receptors in amygdala. However, Gent did not affect the expression of GluN2A-containing NMDA receptors. The inhibitory effects of Gent on oxidative stress were occluded by simultaneous treatment of GluN2B receptors antagonist Ro25-6981. Our study provides strong evidence that Gent inhibits reserpine-induced pain/depression dyad by downregulating GluN2B receptors in the amygdala.

  15. Functional characterization of α7 nicotinic acetylcholine and NMDA receptor signaling in SH-SY5Y neuroblastoma cells in an ERK phosphorylation assay.

    PubMed

    Elnagar, Mohamed R; Walls, Anne Byriel; Helal, Gouda K; Hamada, Farid M; Thomsen, Morten Skøtt; Jensen, Anders A

    2018-05-05

    In the present study, the functional properties of α7 nicotinic acetylcholine receptors (α7 nAChRs) and N-methyl-D-aspartate receptors (NMDARs) endogenously expressed in SH-SY5Y human neuroblastoma cells were characterized in an extracellular-signal regulated kinase (ERK) phosphorylation assay. Both choline and N-methyl-D-aspartate (NMDA) mediated robust concentration-dependent increases in ERK phosphorylation in the SH-SY5Y cells, exhibiting EC 50 values in good agreement with those reported for the agonists at recombinant α7 nAChRs and NMDARs, respectively. Importantly, the responses evoked by choline (10 mM) and by NMDA (50 μM) were significantly inhibited by the α7-selective antagonist α-bungarotoxin (100 nM) and by the NMDAR-selective antagonist MK-801 (50 μM), respectively. The increased ERK phosphorylation levels observed upon co-application of choline (1, 3, 10 mM) and NMDA (50 μM) compared to those produced by the two agonists on their own were fully reconcilable with additive effects and did not reveal substantial synergy between α7 nAChR and NMDAR signaling. Interestingly, however, the responses evoked by the "choline (10 mM) - NMDA (50 μM)" combination were almost completely inhibited by α-bungarotoxin (100 nM) as well as by MK-801 (50 μM), suggesting some sort of a link between α7 nAChR- and NMDAR-mediated ERK phosphorylation. Finally, oligomeric amyloid-β 1-42 peptide (1000 nM) mediated robust inhibition of the ERK phosphorylation induced by choline (10 mM), NMDA (50 μM) and the "choline (10 mM) - NMDA (50 μM)" combination. In conclusion, ERK phosphorylation measurements in SH-SY5Y cells provides a robust assay for studies of α7 nAChR- and NMDAR-mediating signaling and putative functional interactions between the receptors. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects.

    PubMed

    Robertson, Chelsea L; Ishibashi, Kenji; Mandelkern, Mark A; Brown, Amira K; Ghahremani, Dara G; Sabb, Fred; Bilder, Robert; Cannon, Tyrone; Borg, Jacqueline; London, Edythe D

    2015-04-15

    Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D1- and D2-type receptors are unclear. Although evidence supports dissociable contributions of D1- and D2-type receptors to response inhibition in rats and associations of D2-type receptors to response inhibition in humans, the relationship between D1-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D1- and D2-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D1- and D2-type receptor availability [binding potential referred to nondisplaceable uptake (BPND)], measured using positron emission tomography with [(11)C]NNC-112 and [(18)F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D1- and D2-type BPND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D1- and D2-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D1- and D2-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. Copyright © 2015 the authors 0270-6474/15/355990-08$15.00/0.

  17. Identification of Novel 14-3-3 Residues That Are Critical for Isoform-specific Interaction with GluN2C to Regulate N-Methyl-d-aspartate (NMDA) Receptor Trafficking*

    PubMed Central

    Chung, Connie; Wu, Wei-Hua; Chen, Bo-Shiun

    2015-01-01

    The 14-3-3 family of proteins is widely distributed in the CNS where they are major regulators of essential neuronal functions. There are seven known mammalian 14-3-3 isoforms (ζ,, τ, ϵ, η, β, and σ), which generally function as adaptor proteins. Previously, we have demonstrated that 14-3-3ϵ isoform dynamically regulates forward trafficking of GluN2C-containing NMDA receptors (NMDARs) in cerebellar granule neurons, that when expressed on the surface, promotes neuronal survival following NMDA-induced excitotoxicity. Here, we report 14-3-3 isoform-specific binding and functional regulation of GluN2C. In particular, we show that GluN2C C-terminal domain (CTD) binds to all 14-3-3 isoforms except 14-3-3σ, and binding is dependent on GluN2C serine 1096 phosphorylation. Co-expression of 14-3-3 (ζ and ϵ) and GluN1/GluN2C promotes the forward delivery of receptors to the cell surface. We further identify novel residues serine 145, tyrosine 178, and cysteine 189 on α-helices 6, 7, and 8, respectively, within ζ-isoform as part of the GluN2C binding motif and independent of the canonical peptide binding groove. Mutation of these conserved residues abolishes GluN2C binding and has no functional effect on GluN2C trafficking. Reciprocal mutation of alanine 145, histidine 180, and isoleucine 191 on 14-3-3σ isoform promotes GluN2C binding and surface expression. Moreover, inhibiting endogenous 14-3-3 using a high-affinity peptide inhibitor, difopein, greatly diminishes GluN2C surface expression. Together, these findings highlight the isoform-specific structural and functional differences within the 14-3-3 family of proteins, which determine GluN2C binding and its essential role in targeting the receptor to the cell surface to facilitate glutamatergic neurotransmission. PMID:26229101

  18. The effects of AMPA receptor blockade on resting magnetoencephalography recordings.

    PubMed

    Routley, Bethany C; Singh, Krish D; Hamandi, Khalid; Muthukumaraswamy, Suresh D

    2017-12-01

    The ionotropic N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors of the glutamatergic neurotransmitter system are of fundamental importance to healthy brain function. Neuroimaging studies in humans have previously been conducted using various drugs that interact with N-methyl-D-aspartate glutamate receptors, but no such studies have investigated AMPA receptor signalling. The recent approval of perampanel (Fycompa) for use in humans provides a means to specifically study the role of AMPA receptors in the pharmacological basis of neuroimaging signals. Twenty male subjects participated in this placebo-controlled crossover study that consisted of two study days separated by a minimum two-week washout period. On one occasion participants ingested a 6 mg dose of perampanel, and on the other a placebo. Ten minutes of wakeful rest was recorded before and after each dose using magnetoencephalography. Subjective ratings of intoxication were significantly higher following drug than placebo. Cluster-based randomisation testing of sensor-level magnetoencephalography data showed significant drug-induced increases in low frequency power (1-4 Hz, 4-8 Hz, 8-13 Hz, 13-30 Hz), along with a significant decrease in the high gamma range (50-90 Hz). We also observed selective increases in functional connectivity in the alpha and beta bands. The findings are consistent with preclinical work and are similar to the spectral profile of other anti-epileptic drugs.

  19. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  20. Mechanical stress activates NMDA receptors in the absence of agonists.

    PubMed

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K; Sachs, Frederick; Hua, Susan Z

    2017-01-03

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca 2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca 2+ influx. Extracellular Mg 2+ at 2 mM did not significantly affect the shear induced Ca 2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.

  1. Substitution of lysine-181 to aspartic acid in the third transmembrane region of the endothelin (ET) type B receptor selectively reduces its high-affinity binding with ET-3 peptide.

    PubMed

    Mauzy, C; Wu, L H; Egloff, A M; Mirzadegan, T; Chung, F Z

    1992-01-01

    In the G protein-coupled receptor family, a highly conserved aspartic acid located within the third transmembrane domain has been shown to be involved in ligand binding. Within the endothelin (ET) peptide receptor family, this aspartic acid has been replaced by a lysine. To assess the importance of this residue in ET binding, the lysine (position 181) of rat ET type B receptor was replaced by an aspartic acid. The effects on ligand binding and phosphoinositide turnover of both the wild-type and K181D mutant receptors were examined using transient receptor expression in COS-7 cells. Using [125I]ET-1 as the radioactive peptide ligand in displacement binding studies, the wild-type receptor displayed a typical non-isopeptide-selective binding profile with similar IC50 values (0.2-0.6 nM) for all three ET peptides (ET-1, ET-2, and ET-3). The mutant receptor showed an increase in IC50 values for ET-1 (5 nM), ET-2 (27 nM), and ET-3 (127 nM). The K181D mutant receptor still elicited full inositol phosphate (IP) accumulation responses in the presence of saturating concentrations of ETs (10 nM of ET-1, 100 nM of ET-2, or 1 microM of ET-3), indicating that the mutation did not affect G protein coupling.

  2. Specific Roles of NMDA Receptor Subunits in Mental Disorders.

    PubMed

    Yamamoto, H; Hagino, Y; Kasai, S; Ikeda, K

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed.

  3. Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine.

    PubMed

    Kong, H; Kuang, W; Li, S; Xu, M

    2011-03-10

    Memories of learned associations between the rewarding properties of drugs and environmental cues contribute to craving and relapse in humans. The mesocorticolimbic dopamine (DA) system is involved in reward-related learning induced by drugs of abuse. DA D3 receptors are preferentially expressed in mesocorticolimbic DA projection areas. Genetic and pharmacological studies have shown that DA D3 receptors suppress locomotor-stimulant effects of cocaine and reinstatement of cocaine-seeking behaviors. Activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is also inhibited by D3 receptors. How D3 receptors modulate cocaine-induced reward-related learning and associated changes in cell signaling in reward circuits in the brain, however, have not been fully investigated. In the present study, we show that D3 receptor mutant mice exhibit potentiated acquisition of conditioned place preference (CPP) at low doses of cocaine compared to wild-type mice. Activation of ERK and CaMKIIα, but not the c-Jun N-terminal kinase and p38, in the nucleus accumbens, amygdala and prefrontal cortex is also potentiated in D3 receptor mutant mice compared to that in wild-type mice following CPP expression. These results support a model in which D3 receptors modulate reward-related learning induced by low doses of cocaine by inhibiting activation of ERK and CaMKIIα in reward circuits in the brain. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. NMDAR inhibition-independent antidepressant actions of ketamine metabolites

    PubMed Central

    Zanos, Panos; Moaddel, Ruin; Morris, Patrick J.; Georgiou, Polymnia; Fischell, Jonathan; Elmer, Greg I.; Alkondon, Manickavasagom; Yuan, Peixiong; Pribut, Heather J.; Singh, Nagendra S.; Dossou, Katina S.S.; Fang, Yuhong; Huang, Xi-Ping; Mayo, Cheryl L.; Wainer, Irving W.; Albuquerque, Edson X.; Thompson, Scott M.; Thomas, Craig J.; Zarate, Carlos A.; Gould, Todd D.

    2016-01-01

    Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamine’s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants. PMID:27144355

  5. NMDA inhibits oxotremorine-induced acid secretion via the NO-dependent cyclic GMP system in rat stomach.

    PubMed

    Tsai, L H; Lee, Y J

    2001-12-31

    The mechanism of N-methyl-D-aspartate (NMDA) inhibits oxotremorine-induced acid secretion was examined in rat stomach, in relation to the cyclic GMP system. NMDA (10(-7) M) did not affect the spontaneous acid secretion from the everted preparations of isolated rat stomach, but inhibited the acid secretion stimulated by oxotremorine, and this effect of NMDA was antagonized by 2-amino-5-phosphonovaleric acid (AP-5), (+/-)3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or N(G)-nitro-L-arginine (L-NNA). NMDA also elevated the cyclic GMP content of mucosal slices from rat stomach, and this effect of NMDA was antagonized by L-NNA. These results indicate that NMDA receptors are present in the rat stomach and regulate the gastric acid secretion. The mechanism underlying the effect of NMDA inhibits oxotremorine-induced acid secretion may be mediated by the NO-dependent cyclic GMP system.

  6. Ketamine-induced inhibition of glycogen synthase kinase-3 contributes to the augmentation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor signaling.

    PubMed

    Beurel, Eléonore; Grieco, Steven F; Amadei, Celeste; Downey, Kimberlee; Jope, Richard S

    2016-09-01

    Sub-anesthetic doses of ketamine have been found to provide rapid antidepressant actions, indicating that the cellular signaling systems targeted by ketamine are potential sites for therapeutic intervention. Ketamine acts as an antagonist of N-methyl-D-aspartate (NMDA) receptors, and animal studies indicate that subsequent augmentation of signaling by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors is critical for the antidepressant outcome. In this study, we tested if the inhibitory effect of ketamine on glycogen synthase kinase-3 (GSK3) affected hippocampal cell-surface AMPA receptors using immunoblotting of membrane and synaptosomal extracts from wild-type and GSK3 knockin mice. Treatment with an antidepressant dose of ketamine increased the hippocampal membrane level of the AMPA glutamate receptor (GluA)1 subunit, but did not alter the localization of GluA2, GluA3, or GluA4. This effect of ketamine was abrogated in GSK3 knockin mice expressing mutant GSK3 that cannot be inhibited by ketamine, demonstrating that ketamine-induced inhibition of GSK3 is necessary for up-regulation of cell surface AMPA GluA1 subunits. AMPA receptor trafficking is regulated by post-synaptic density-95 (PSD-95), a substrate for GSK3. Ketamine treatment decreased the hippocampal membrane level of phosphorylated PSD-95 on Thr-19, the target of GSK3 that promotes AMPA receptor internalization. These results demonstrate that ketamine-induced inhibition of GSK3 causes reduced phosphorylation of PSD-95, diminishing the internalization of AMPA GluA1 subunits to allow for augmented signaling through AMPA receptors following ketamine treatment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Regulation of Fear Extinction in the Basolateral Amygdala by Dopamine D2 Receptors Accompanied by Altered GluR1, GluR1-Ser845 and NR2B Levels.

    PubMed

    Shi, Yan-Wei; Fan, Bu-Fang; Xue, Li; Wen, Jia-Ling; Zhao, Hu

    2017-01-01

    The amygdala, a critical structure for both Pavlovian fear conditioning and fear extinction, receives sparse but comprehensive dopamine innervation and contains dopamine D1 and D2 receptors. Fear extinction, which involves learning to suppress the expression of a previously learned fear, appears to require the dopaminergic system. The specific roles of D2 receptors in mediating associative learning underlying fear extinction require further study. Intra-basolateral amygdala (BLA) infusions of a D2 receptor agonist, quinpirole, and a D2 receptor antagonist, sulpiride, prior to fear extinction and extinction retention were tested 24 h after fear extinction training for long-term memory (LTM). LTM was facilitated by quinpirole and attenuated by sulpiride. In addition, A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor glutamate receptor 1 (GluR1) subunit, GluR1 phospho-Ser845, and N -methyl-D-aspartic acid receptor NR2B subunit levels in the BLA were generally increased by quinpirole and down-regulated by sulpiride. The present study suggests that activation of D2 receptors facilitates fear extinction and that blockade of D2 receptors impairs fear extinction, accompanied by changes in GluR1, GluR1-Ser845 and NR2B levels in the amygdala.

  8. N-methyl-N'-nitro-N-nitrosoguanidine interferes with the epidermal growth factor receptor-mediated signaling pathway.

    PubMed

    Gao, Zhihua; Yang, Jun; Huang, Yun; Yu, Yingnian

    2005-03-01

    Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.

  9. D-Cycloserine for Treatment Nonresponders with Obsessive-Compulsive Disorder: A Case Report

    ERIC Educational Resources Information Center

    Norberg, Melissa M.; Gilliam, Christina M.; Villavicencio, Anna; Pearlson, Godfrey D.; Tolin, David F.

    2012-01-01

    Despite being the most effective treatment available, as many as one third of patients who receive exposure and response prevention (ERP) for obsessive-compulsive disorder (OCD) do not initially respond to treatment. Recent research suggests that the n-methyl d-aspartate (NMDA) receptor partial agonist D-Cycloserine (DCS) may speed up the course…

  10. The glycine transport inhibitor sarcosine is an inhibitory glycine receptor agonist.

    PubMed

    Zhang, Hai Xia; Lyons-Warren, Ariel; Thio, Liu Lin

    2009-01-01

    Sarcosine is an endogenous amino acid that is a competitive inhibitor of the type I glycine transporter (GlyT1), an N-methyl-d-aspartate receptor (NMDAR) co-agonist, and an important intermediate in one-carbon metabolism. Its therapeutic potential for schizophrenia further underscores its clinical importance. The structural similarity between sarcosine and glycine and sarcosine's ability to serve as an NMDAR co-agonist led us to examine whether sarcosine is also an agonist at the inhibitory glycine receptor (GlyR). We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons and found that sarcosine evoked a dose-dependent, strychnine sensitive, Cl(-) current that cross-inhibited glycine currents. Sarcosine evoked this current with Li(+) in the extracellular solution to block GlyT1, in neurons treated with the essentially irreversible GlyT1 inhibitor N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS), and in neurons plated in the absence of glia. These results indicate that the sarcosine currents did not result from GlyT1 inhibition or heteroexchange. We conclude that sarcosine is a GlyR agonist.

  11. Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues.

    PubMed

    Adamska-Bartłomiejczyk, Anna; Janecka, Anna; Szabó, Márton Richárd; Cerlesi, Maria Camilla; Calo, Girolamo; Kluczyk, Alicja; Tömböly, Csaba; Borics, Attila

    2017-04-15

    In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ethanol Inhibition of Recombinant NMDA Receptors Is Not Altered by Co-Expression of CaMKII-α or CaMKII-β

    PubMed Central

    Xu, Minfu; Chandler, L. Judson; Woodward, John J.

    2008-01-01

    Previous studies have shown that the N-methyl-D-aspartate (NMDA) receptor is an important target for the actions of ethanol in the brain. NMDA receptors are glutamate-activated ion channels that are highly expressed in neurons. They are activated during periods of significant glutamatergic synaptic activity and are an important source of the signaling molecule calcium in the post-synaptic spine. Alterations in the function of NMDA receptors by drugs or disease are associated with deficits in motor, sensory and cognitive processes of the brain. Acutely, ethanol inhibits ion flow through NMDA receptors while sustained exposure to ethanol can induce compensatory changes in the density and localization of the receptor. Defining factors that govern the acute ethanol sensitivity of NMDA receptors is an important step in how an individual responds to ethanol. In the present study, we investigated the effect of calcium-calmodulin dependent protein kinase II (CaMKII) on the ethanol sensitivity of recombinant NMDA receptors. CaMKII is a major constituent of the post-synaptic density and is critically involved in various forms of learning and memory. NMDA receptor subunits were transiently expressed in human embryonic kidney 293 cells (HEK 293) along with CaMKII-α or CaMKII-β tagged with the green fluorescent protein (GFP). Whole cell currents were elicited by brief exposures to glutamate and were measured using patchclamp electrophysiology. Neither CaMKII-α or CaMKII-β had any significant effect on the ethanol inhibition of NR1/2A or NR1/2B receptors. Ethanol inhibition was also unaltered by deletion of CaMKII binding domains in NR1 or NR2 subunits or by phospho-site mutants that mimic or occlude CaMKII phosphorylation. Chronic treatment of cortical neurons with ethanol had no significant effect on the expression of CaMKII-α or CaMKII-β. The results of this study suggest that CaMKII is not involved in regulating the acute ethanol sensitivity of NMDA receptors. PMID

  13. -(S)-Alpha-phenyl-2-pyridine-ethanamine Dihydrochloride-, a low affinity uncompetitive N-methyl-D-aspartic acid antagonist, is effective in rodent models of global and focal ischemia.

    PubMed

    Cregan, E F; Peeling, J; Corbett, D; Buchan, A M; Saunders, J; Auer, R N; Gao, M; Mccarthy, D J; Eisman, M S; Campbell, T M; Murray, R J; Stagnitto, M L; Palmer, G C

    1997-12-01

    [(S)-Alpha-phenyl-2-pyridine-ethanamine dihydrochloride] (ARL 15896AR) is a low affinity uncompetitive N-methyl-D-aspartic acid receptor antagonist that was tested in animal models of anoxia and ischemia. Pretreatment of rodents with ARL 15896AR extended survival time during exposure to hypoxia. With the rat four-vessel occlusion model of global ischemia (20 min), oral dosing commencing at reflow, resulted in significant protection of the CA1 hippocampal neurons. ARL 15896AR was, however, ineffective in the rat two-vessel occlusion model and in the gerbil models of forebrain ischemia, the latter due to an inability to attain suitable plasma levels. In the spontaneously hypertensive rat model of middle cerebral artery occlusion (MCAO) (2 hr plus 22 hr reflow), acute dosing with ARL 15896AR (i.p.) beginning from 30 min before or up to 1 hr post-MCAO significantly reduced cortical infarct volume. The ability of ARL 15896AR to influence infarct size, as well as functional correlates was examined in SHR after 90 min of MCAO. T2 weighted magnetic resonance images taken at 2 and 6 days post-MCAO revealed significantly smaller lesion sizes in the group receiving injections with ARL 15896AR beginning 30 min after occlusion. Spontaneously hypertensive rats were subsequently tested (30-42 days post-MCAO) and found to be deficient in skilled use of the forepaws (staircase test). The contralateral forepaw was most severely impaired, however, ARL 15896AR treatment prevented motor impairment in only the ipsilateral forepaw. Histopathological examination of cortical infarct size was unremarkable between treated and control rats. The findings indicate that ARL 15896AR exhibits neuroprotection in global and focal models of ischemia

  14. Genetic Inactivation of D-Amino Acid Oxidase Enhances Extinction and Reversal Learning in Mice

    ERIC Educational Resources Information Center

    Labrie, Viviane; Duffy, Steven; Wang, Wei; Barger, Steven W.; Baker, Glen B.; Roder, John C.

    2009-01-01

    Activation of the N-methyl-d-aspartate receptor (NMDAR) glycine site has been shown to accelerate adaptive forms of learning that may benefit psychopathologies involving cognitive and perseverative disturbances. In this study, the effects of increasing the brain levels of the endogenous NMDAR glycine site agonist D-serine, through the genetic…

  15. An anti-NMDA receptor encephalitis mimicking an HIV encephalitis.

    PubMed

    Haneche, Fatiha; Demeret, Sophie; Psimaras, Dimitri; Katlama, Christine; Pourcher, Valérie

    2018-05-14

    The incidence of HIV associated neurocognitive disorders (HAND) were reduced with the use of antiretroviral therapy. In case of neuropsychiatric symptoms, after elimination of all infections, auto-immune encephalitis could be evocated as a differential diagnosis. We describe a case of anti-N-Methyl-d-Aspartate receptor encephalitis in an HIV-1 infected woman. Copyright © 2018. Published by Elsevier Inc.

  16. AMPA, NMDA and kainate glutamate receptor subunits are expressed in human peripheral blood mononuclear cells (PBMCs) where the expression of GluK4 is altered by pregnancy and GluN2D by depression in pregnant women.

    PubMed

    Bhandage, Amol K; Jin, Zhe; Hellgren, Charlotte; Korol, Sergiy V; Nowak, Krzysztof; Williamsson, Louise; Sundström-Poromaa, Inger; Birnir, Bryndis

    2017-04-15

    The amino acid glutamate opens cation permeable ion channels, the iGlu receptors. These ion channels are abundantly expressed in the mammalian brain where glutamate is the main excitatory neurotransmitter. The neurotransmitters and their receptors are being increasingly detected in the cells of immune system. Here we examined the expression of the 18 known subunits of the iGlu receptors families; α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, N-methyl-d-aspartate (NMDA) and delta in human peripheral blood mononuclear cells (PBMCs). We compared the expression of the subunits between four groups: men, non-pregnant women, healthy pregnant women and depressed pregnant women. Out of 18 subunits of the iGlu receptors, mRNAs for 11 subunits were detected in PBMCs from men and non-pregnant women; AMPA: GluA3, GluA4, kainate: GluK2, GluK4, GluK5, NMDA: GluN1, GluN2C, GluN2D, GluN3A, GluN3B, and delta: GluD1. In the healthy and the depressed pregnant women, in addition, the delta GluD2 subunit was identified. The mRNAs for GluK4, GluK5, GluN2C and GluN2D were expressed at a higher level than other subunits. Gender, pregnancy or depression during pregnancy altered the expression of GluA3, GluK4, GluN2D, GluN3B and GluD1 iGlu subunit mRNAs. The greatest changes recorded were the lower GluA3 and GluK4 mRNA levels in pregnant women and the higher GluN2D mRNA level in healthy but not in depressed pregnant women as compared to non-pregnant individuals. Using subunit specific antibodies, the GluK4, GluK5, GluN1, GluN2C and GluN2D subunit proteins were identified in the PBMCs. The results show expression of specific iGlu receptor subunit in the PBMCs and support the idea of physiology-driven changes of iGlu receptors subtypes in the immune cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala

    ERIC Educational Resources Information Center

    Sinai, Laleh; Duffy, Steven; Roder, John C.

    2010-01-01

    The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…

  18. Direct interaction enables cross-talk between ionotropic and group I metabotropic glutamate receptors.

    PubMed

    Perroy, Julie; Raynaud, Fabrice; Homburger, Vincent; Rousset, Marie-Claude; Telley, Ludovic; Bockaert, Joël; Fagni, Laurent

    2008-03-14

    Functional interplay between ionotropic and metabotropic receptors frequently involves complex intracellular signaling cascades. The group I metabotropic glutamate receptor mGlu5a co-clusters with the ionotropic N-methyl-d-aspartate (NMDA) receptor in hippocampal neurons. In this study, we report that a more direct cross-talk can exist between these types of receptors. Using bioluminescence resonance energy transfer in living HEK293 cells, we demonstrate that mGlu5a and NMDA receptor clustering reflects the existence of direct physical interactions. Consequently, the mGlu5a receptor decreased NMDA receptor current, and reciprocally, the NMDA receptor strongly reduced the ability of the mGlu5a receptor to release intracellular calcium. We show that deletion of the C terminus of the mGlu5a receptor abolished both its interaction with the NMDA receptor and reciprocal inhibition of the receptors. This direct functional interaction implies a higher degree of target-effector specificity, timing, and subcellular localization of signaling than could ever be predicted with complex signaling pathways.

  19. Temporal alteration of spreading depression by the glycine transporter type-1 inhibitors NFPS and Org-24461 in chicken retina.

    PubMed

    Kertesz, Szabolcs; Szabo, Geza; Udvari, Szabolcs; Levay, Gyorgy; Matyus, Peter; Harsing, Laszlo G

    2013-01-25

    We used isolated chicken retina to induce spreading depression by the glutamate receptor agonist N-methyl-d-aspartate. The N-methyl-d-aspartate-induced latency time of spreading depression was extended by the glycine(B) binding site competitive antagonist 7-chlorokynurenic acid. Addition of the glycine transporter type-1 inhibitors NFPS and Org-24461 reversed the inhibitory effect of 7-chlorokynurenic acid on N-methyl-d-aspartate-evoked spreading depression. The glycine uptake inhibitory activity of Org-24461, NFPS, and some newly synthesized analogs of NFPS was determined in CHO cells stably expressing human glycine transporter type-1b isoform. Compounds, which failed to inhibit glycine transporter type-1, also did not have effect on retinal spreading depression. These experiments indicate that the spreading depression model in chicken retina is a useful in vitro test to determine activity of glycine transporter type-1 inhibitors. In addition, our data serve further evidence for the role of glycine transporter type-1 in retinal neurotransmission and light processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effects of ketamine and N-methyl-D-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test.

    PubMed

    Owolabi, Rotimi Adegbenga; Akanmu, Moses Atanda; Adeyemi, Oluwole Isaac

    2014-04-30

    This study investigated the effects of ketamine on fluoxetine-induced antidepressant behavior using the forced swimming test (FST) in mice. In order to understand the possible role of N-methyl-d-aspartate (NMDA) neurotransmission in the antidepressant effect of fluoxetine, different groups of mice (n=10) were administered with acute ketamine (3mg/kg, i.p.), acute NMDA (75mg/kg and 150mg/kg, i.p.) and a 21-day chronic ketamine (15mg/kg, i.p./day) were administered prior to the administration of fluoxetine (20mg/kg, i.p.) in the mice. Antidepressant related behavior (immobility score) was measured using the forced swimming test. The results showed that the acute ketamine and fluoxetine alone treatments elicited a significant (p<0.05) reduction in immobility score compared with saline control. Furthermore, pre-treatment with acute ketamine significantly enhanced by the fluoxetine-induced decrease in immobility score. In contrast, pre-treatment with NMDA (150mg/kg) significantly (p<0.05) reversed fluoxetine-induced decrease in immobility score. On the other hand, chronic administration of ketamine significantly elicited an increase in immobility score as well as reversed the reduction induced by fluoxetine. Similarly, NMDA administration at both 75mg/kg and 150mg/kg increased immobility score in chronically administered ketamine groups. Furthermore, chronic administration of ketamine, followed by NMDA (75mg/kg) and fluoxetine significantly elevated the immobility score when compared with the group that received NMDA and fluoxetine but not chronically treated with ketamine. It can be suggested) that facilitation of NMDA transmission blocked fluoxetine-induced reduction in immobility score, while down-regulation of NMDA transmission is associated with increase in fluoxetine-induced antidepressant-related behavior in mice. Down-regulation of the NMDA transmission is proposed as an essential component of mechanism of suppression of depression related behaviors by

  1. Control of Appetite and Food Preference by NMDA Receptor and Its Co-Agonist d-Serine

    PubMed Central

    Sasaki, Tsutomu; Matsui, Sho; Kitamura, Tadahiro

    2016-01-01

    Obesity causes a significant negative impact on health of human beings world-wide. The main reason for weight gain, which eventually leads to obesity, is excessive ingestion of energy above the body’s homeostatic needs. Therefore, the elucidation of detailed mechanisms for appetite control is necessary to prevent and treat obesity. N-methyl-d-aspartate (NMDA) receptor is a post-synaptic glutamate receptor and is important for excitatory neurotransmission. It is expressed throughout the nervous system, and is important for long-term potentiation. It requires both ligand (glutamate) and co-agonist (d-serine or glycine) for efficient opening of the channel to allow calcium influx. d-serine is contained in fermented foods and marine invertebrates, and brain d-serine level is maintained by synthesis in vivo and supply from food and gut microbiota. Although the NMDA receptor has been reported to take part in the central regulation of appetite, the role of d-serine had not been addressed. We recently reported that exogenous d-serine administration can suppress appetite and alter food preference. In this review, we will discuss how NMDA receptor and its co-agonist d-seine participate in the control of appetite and food preference, and elaborate on how this system could possibly be manipulated to suppress obesity. PMID:27399680

  2. Impaired Discrimination Learning in Mice Lacking the NMDA Receptor NR2A Subunit

    ERIC Educational Resources Information Center

    Brigman, Jonathan L.; Feyder, Michael; Saksida, Lisa M.; Bussey, Timothy J.; Mishina, Masayoshi; Holmes, Andrew

    2008-01-01

    N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice…

  3. Spinal sigma-1 receptor activation increases the production of D-serine in astrocytes which contributes to the development of mechanical allodynia in a mouse model of neuropathic pain.

    PubMed

    Moon, Ji-Young; Choi, Sheu-Ran; Roh, Dae-Hyun; Yoon, Seo-Yeon; Kwon, Soon-Gu; Choi, Hoon-Seong; Kang, Suk-Yun; Han, Ho-Jae; Kim, Hyun-Woo; Beitz, Alvin J; Oh, Seog-Bae; Lee, Jang-Hern

    2015-10-01

    We have previously demonstrated that activation of the spinal sigma-1 receptor (Sig-1R) plays an important role in the development of mechanical allodynia (MA) via secondary activation of the N-methyl-d-aspartate (NMDA) receptor. Sig-1Rs have been shown to localize to astrocytes, and blockade of Sig-1Rs inhibits the pathologic activation of astrocytes in neuropathic mice. However, the mechanism by which Sig-1R activation in astrocytes modulates NMDA receptors in neurons is currently unknown. d-serine, synthesized from l-serine by serine racemase (Srr) in astrocytes, is an endogenous co-agonist for the NMDA receptor glycine site and can control NMDA receptor activity. Here, we investigated the role of d-serine in the development of MA induced by spinal Sig-1R activation in chronic constriction injury (CCI) mice. The production of d-serine and Srr expression were both significantly increased in the spinal cord dorsal horn post-CCI surgery. Srr and d-serine were only localized to astrocytes in the superficial dorsal horn, while d-serine was also localized to neurons in the deep dorsal horn. Moreover, we found that Srr exists in astrocytes that express Sig-1Rs. The CCI-induced increase in the levels of d-serine and Srr was attenuated by sustained intrathecal treatment with the Sig-1R antagonist, BD-1047 during the induction phase of neuropathic pain. In behavioral experiments, degradation of endogenous d-serine with DAAO, or selective blockade of Srr by LSOS, effectively reduced the development of MA, but not thermal hyperalgesia in CCI mice. Finally, BD-1047 administration inhibited the development of MA and this inhibition was reversed by intrathecal treatment with exogenous d-serine. These findings demonstrate for the first time that the activation of Sig-1Rs increases the expression of Srr and d-serine in astrocytes. The increased production of d-serine induced by CCI ultimately affects dorsal horn neurons that are involved in the development of MA in neuropathic

  4. Inhibition of TNFα-induced adhesion molecule expression by (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl,1-methyl).

    PubMed

    Chen, Caixia; Jin, Xin; Meng, Xianglan; Zheng, Chengwei; Shen, Yanhui; Wang, Yiqing

    2011-06-25

    Inflammation is a primary event in atherogenesis. Oleoylethanolamide (OEA), a naturally occurring fatty-acid ethanolamide, lowers lipid levels in liver and blood through activation of the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPARα). We designed and synthesized (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl, 1-methyl) (OPA), an OEA analog. The present study investigated the effect of OPA on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVEC). OPA inhibited expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) stimulated by Tumor Necrosis Factor-α (TNF-α) via activation of PPARα. This inhibition of VCAM-1 and ICAM-1 expression decreased adhesion of monocyte-like cells to stimulated endothelial cells. These results demonstrate that OPA may have anti-inflammatory properties. Our results thus provide new insights into possible future therapeutic approaches to the treatment of atherosclerosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. An unusual case of altered mental status in a young woman

    PubMed Central

    Challapalli Sri, Rama Mohana Rao; Chipinapi, Thejo; Bharadwaj, Shishira; Kissell, Kerri Ann

    2011-01-01

    Context: We describe a case of paraneoplastic neurologic syndrome, namely N-Methyl-D-Aspartic acid receptor antibody associated limbic encephalitis, a rare cause of altered mental status in the young. Case Report: A 28 year old Caucasian female nurse presented with acute onset difficulty with word finding and increasing confusion and agitation. She also had visual hallucinations, transient episodes of unresponsiveness, and lingual dyskinesias. Workup including blood, imaging and regular cerebrospinal fluid (CSF) studies was unremarkable. She subsequently developed complex partial seizures. Computerized Tomography scan of chest/abdomen/pelvis revealed a dermoid cyst of the left ovary and CSF N-Methyl-D-Aspartic acid receptor antibody returned positive confirming the diagnosis of paraneoplastic NMDA receptor antibody associated limbic encephalitis. She was treated with methylprednisolone therapy along with plasmapheresis and a left salpingo-opherectomy was performed. The patient showed significant improvement with respect to her cognitive function and had no more seizures. Conclusion: N-Methyl-D-Aspartic acid receptor antibody associated limbic encephalitis is a rare paraneoplastic neurologic syndrome with symptoms including psychiatric manifestations, seizures, language disturbances and autonomic instability. It develops due to antibody induced decrease in N-Methyl-D-Aspartic acid receptors. There is a significant association with ovarian teratoma in >50% female cases. Treatment includes resection of tumor, glucocorticoids, plasmapheresis and Intravenous Immunoglobulin therapy. PMID:22361499

  6. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning

    NASA Technical Reports Server (NTRS)

    Krukowski, A. E.; Miller, K. D.

    2001-01-01

    Cells in cerebral cortex fail to respond to fast-moving stimuli that evoke strong responses in the thalamic nuclei innervating the cortex. The reason for this behavior has remained a mystery. We study an experimentally motivated model of the thalamic input-recipient layer of cat primary visual cortex that accounts for many aspects of cortical orientation tuning. In this circuit, inhibition dominates over excitation, but temporal modulations of excitation and inhibition occur out of phase with one another, allowing excitation to transiently drive cells. We show that this circuit provides a natural explanation of cortical low-pass temporal frequency tuning, provided N-methyl-D-aspartate (NMDA) receptors are present in thalamocortical synapses in proportions measured experimentally. This suggests a new and unanticipated role for NMDA conductances in shaping the temporal response properties of cortical cells, and suggests that common cortical circuit mechanisms underlie both spatial and temporal response tuning.

  7. Inhibition of DOR prevents remifentanil induced postoperative hyperalgesia through regulating the trafficking and function of spinal NMDA receptors in vivo and in vitro.

    PubMed

    Wang, Chunyan; Li, Yize; Wang, Haiyun; Xie, Keliang; Shu, Ruichen; Zhang, Linlin; Hu, Nan; Yu, Yonghao; Wang, Guolin

    2015-01-01

    Several studies have demonstrated that intraoperative remifentanil infusions have been associated with opioid-induced hyperalgesia (OIH). Activation of delta opioid receptor (DOR) and augmentation of N-methyl-d-aspartate (NMDA) receptor expression and function may play an important role in the development of OIH. The aim of this study was to investigate whether DOR inhibition could prevent remifentanil-induced hyperalgesia via regulating spinal NMDA receptor expression and function in vivo and in vitro. A rat model of remifentanil-induced postoperative hyperalgesia was performed with the DOR agonist deltorphin-deltorphin II or the DOR antagonist naltrindole injected intrathecally 10 min before remifentanil infusion. Mechanical and thermal hyperalgesia were measured at -24h, 2, 6, 24 and 48 h after remifentanil infusion. Western blot was applied to detect the membrane and total expression of DOR and NMDA receptor subunits (NR1, NR2A and NR2B) in spinal cord L4-L6 segments. In addition, whole-cell patch-clamp recording was used to investigate the effect of DOR inhibition on NMDA receptor-induced current in spinal cord slices in vitro. We found that membrane trafficking of DOR, NR1 and NR2B subunits in the spinal cord increased after remifentanil administration and surgery. The DOR antagonist naltrindole could attenuate mechanical and thermal hyperalgesia without affecting baseline nociceptive threshold, reduce membrane expression of DOR and decrease the membrane and total expressions of NR1 and NR2B subunits. Furthermore, the amplitude and the frequency of NMDA receptor-induced current were significantly increased by remifentanil incubation in neurons of the dorsal horn, which was reversed by the application of naltrindole. The above results indicate that inhibition of DOR could significantly inhibit remifentanil-induced hyperalgesia via modulating the total protein level, membrane trafficking and function of NMDA receptors in the dorsal horn of spinal cord

  8. Mechanical stress activates NMDA receptors in the absence of agonists

    PubMed Central

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI. PMID:28045032

  9. Regulated internalization of NMDA receptors drives PKD1-mediated suppression of the activity of residual cell-surface NMDA receptors.

    PubMed

    Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min

    2015-11-19

    Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor

  10. The role of striatal NMDA receptors in drug addiction.

    PubMed

    Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian

    2009-01-01

    The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.

  11. Peripheral NMDA Receptor/NO System Blockage Inhibits Itch Responses Induced by Chloroquine in Mice

    PubMed Central

    Haddadi, Nazgol-Sadat; Foroutan, Arash; Ostadhadi, Sattar; Azimi, Ehsan; Rahimi, Nastaran; Nateghpour, Mehdi; Lerner, Ethan A.; Dehpour, Ahmad Reza

    2017-01-01

    Intradermal administration of chloroquine (CQ) provokes scratching behavior in mice. Chloroquine-induced itch is histamine-independent and we have reported that the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is involved in CQ-induced scratching behavior in mice. Previous studies have demonstrated that activation of N-methyl-d-aspartate receptors (NMDARs) induces NO production. Here we show that NMDAR antagonists significantly decrease CQ-induced scratching in mice while a non-effective dose of an NMDAR agonist potentiates the scratching behavior provoked by sub-effective doses of CQ. In contrast, combined pre-treatment with sub-effective doses of an NMDAR antagonist, MK-801, and the NO synthase inhibitor, L-N-nitro arginine methyl ester (L-NAME), decreases CQ-induced scratching behavior. While intradermal administration of CQ significantly increases the concentration of intradermal nitrite, the end product of NO metabolism, effective doses of intraperitoneal and intradermal MK-801 significantly decrease intradermal nitrite levels. Likewise, administration of an effective dose of L-NAME significantly decreases CQ-induced nitrite production. We conclude that the NMDA/NO pathway in the skin modulates CQ-induced scratching behavior. PMID:28119997

  12. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    ERIC Educational Resources Information Center

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  13. Modulation of taurine release by glutamate receptors and nitric oxide.

    PubMed

    Oja, S S; Saransaari, P

    2000-11-01

    Taurine is held to function as a modulator and osmoregulator in the central nervous system, being of particular importance in the immature brain. In view of the possible involvement of excitatory pathways in the regulation of taurine function in the brain, the interference of glutamate receptors with taurine release from different tissue preparations in vitro and from the brain in vivo is of special interest. The release of taurine from the brain is enhanced by glutamate receptor agonists. This enhancement is inhibited by the respective receptor antagonists both in vitro and in vivo. The ionotropic N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor agonists appear to be the most effective in enhancing taurine release, their effects being receptor-mediated. Kainate is less effective, particularly in adults. Of the glutamate receptors, the NMDA class seems to be the most susceptible to modulation by nitric oxide. Nitric oxide also modulates taurine release, enhancing the basal release in both immature and mature hippocampus, whereas the K(+)-stimulated release is generally inhibited. Metabotropic glutamate receptors also participate in the regulation of taurine release, group I metabotropic glutamate receptors potentiating the release in the developing hippocampus, while group III receptors may be involved in the adult. Under various cell-damaging conditions, including ischemia, hypoxia and hypoglycemia, taurine release is enhanced, together with an enhanced release of excitatory amino acids. The increase in extracellular taurine upon excessive stimulation of glutamate receptors and under cell-damaging conditions may serve as an important protective mechanism against excitotoxicity, being particularly effective in the immature brain.

  14. Schizophrenia patients show task switching deficits consistent with N-methyl-d-aspartate system dysfunction but not global executive deficits: implications for pathophysiology of executive dysfunction in schizophrenia.

    PubMed

    Wylie, Glenn R; Clark, E A; Butler, P D; Javitt, D C

    2010-05-01

    Schizophrenia is associated with cognitive processing deficits, including deficits in executive processing, that represent a core component of the disorder. In the Task Switching Test, subjects view ambiguous stimuli and must alternate between competing rules to generate correct responses. Subjects show worse performance (prolonged response time and/or increased error rates) on the first response after a switch than on subsequent responses ("switch costs"), as well as performing worse when stimuli are incongruent as opposed to congruent ("congruence costs"). Finally, subjects show worse performance in the dual vs single task condition ("mixing costs"). In monkeys, the N-methyl-D-aspartate (NMDA) antagonist ketamine has been shown to increase congruence but not switch costs. Here, subjects viewed colored letters and had to respond alternately based upon letter (X vs O) or color (red vs blue). Switch, congruence and mixing costs were calculated. Patients with schizophrenia (n = 16) and controls (n = 17) showed similar switch costs, consistent with prior literature. Patients nevertheless showed increased congruence and mixing costs. In addition, relative to controls, patients showed worse performance across conditions in the letter vs color tasks, suggesting deficits in form vs color processing. Overall, while confirming executive dysfunction in schizophrenia, this study indicates that not all aspects of executive control are impaired and that the task switching paradigm may be useful for evaluating neurochemical vs neuroanatomic hypotheses of schizophrenia.

  15. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    PubMed

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  16. Spatial Discrimination Reversal Learning in Weanling Rats Is Impaired by Striatal Administration of an NMDA-Receptor Antagonist

    ERIC Educational Resources Information Center

    Watson, Deborah J.; Stanton, Mark E.

    2009-01-01

    The striatum plays a major role in both motor control and learning and memory, including executive function and "behavioral flexibility." Lesion, temporary inactivation, and infusion of an N-methyl-d-aspartate (NMDA)-receptor antagonist into the dorsomedial striatum (dmSTR) impair reversal learning in adult rats. Systemic administration of MK-801…

  17. Alterations in GluR2 AMPA receptor phosphorylation at serine 880 following group I metabotropic glutamate receptor stimulation in the rat dorsal striatum.

    PubMed

    Ahn, Sung Min; Choe, Eun Sang

    2010-04-01

    Phosphorylation of ionotropic glutamate receptors in the brain plays a crucial role in the regulation of synaptic plasticity. In this study, we investigated the regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor phosphorylation by the stimulation of group I metabotropic glutamate receptors (mGluRs) in the dorsal striatum in vivo. The results showed that intrastriatal infusion of the group I mGluR agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG, 250 nmol), enhanced the sensitivity of GluR2 subunit in its phosphorylation at serine 880 (S880) in the dorsal striatum. This enhancement of the sensitivity of GluR2-S880 phosphorylation was reduced by blocking group I mGluRs and N-methyl-D-aspartate (NMDA) receptors. Similar reduction of the enhancement was also induced by inhibiting phospholipase C (PLC), calcium/calmodulin-dependent protein kinase (CaMK), c-Jun N-terminal kinase (JNK), and protein kinase C (PKC). Inhibition of protein phosphatase (PP) 1/2A and calcineurin (PP2B) alone enhanced GluR2-S880 phosphorylation in the dorsal striatum, whereas inhibition of these phosphatases did not further enhance the S880 phosphorylation by DHPG stimulation. In addition, inhibition of PP1/2A or PP2B also enhanced the phosphorylation of CaMKII, JNK and PKC. These data suggest that the phosphorylation of AMPA receptor GluR2 subunit at S880 is subject to the upregulation by the stimulation of group I mGluRs. Interactions among glutamate receptors, protein kinases, and PPs participate in this upregulation. (c) 2009 Wiley-Liss, Inc.

  18. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    PubMed Central

    2010-01-01

    Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon. PMID:20444263

  19. CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility.

    PubMed

    Okuda, Kosuke; Kobayashi, Shizuka; Fukaya, Masahiro; Watanabe, Aya; Murakami, Takuto; Hagiwara, Mai; Sato, Tempei; Ueno, Hiroe; Ogonuki, Narumi; Komano-Inoue, Sayaka; Manabe, Hiroyuki; Yamaguchi, Masahiro; Ogura, Atsuo; Asahara, Hiroshi; Sakagami, Hiroyuki; Mizuguchi, Masashi; Manabe, Toshiya; Tanaka, Teruyuki

    2017-10-01

    Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders accompanied by intractable epilepsies, i.e. West syndrome or atypical Rett syndrome. Here we report generation of the Cdkl5 knockout mouse and show that CDKL5 controls postsynaptic localization of GluN2B-containing N-methyl-d-aspartate (NMDA) receptors in the hippocampus and regulates seizure susceptibility. Cdkl5 -/Y mice showed normal sensitivity to kainic acid; however, they displayed significant hyperexcitability to NMDA. In concordance with this result, electrophysiological analysis in the hippocampal CA1 region disclosed an increased ratio of NMDA/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated excitatory postsynaptic currents (EPSCs) and a significantly larger decay time constant of NMDA receptor-mediated EPSCs (NMDA-EPSCs) as well as a stronger inhibition of the NMDA-EPSCs by the GluN2B-selective antagonist ifenprodil in Cdkl5 -/Y mice. Subcellular fractionation of the hippocampus from Cdkl5 -/Y mice revealed a significant increase of GluN2B and SAP102 in the PSD (postsynaptic density)-1T fraction, without changes in the S1 (post-nuclear) fraction or mRNA transcripts, indicating an intracellular distribution shift of these proteins to the PSD. Immunoelectron microscopic analysis of the hippocampal CA1 region further confirmed postsynaptic overaccumulation of GluN2B and SAP102 in Cdkl5 -/Y mice. Furthermore, ifenprodil abrogated the NMDA-induced hyperexcitability in Cdkl5 -/Y mice, suggesting that upregulation of GluN2B accounts for the enhanced seizure susceptibility. These data indicate that CDKL5 plays an important role in controlling postsynaptic localization of the GluN2B-SAP102 complex in the hippocampus and thereby regulates seizure susceptibility, and that aberrant NMDA receptor-mediated synaptic transmission underlies the pathological mechanisms of the CDKL5 loss-of-function. Copyright © 2017 Elsevier Inc. All rights

  20. The protein arginine methyltransferase PRMT5 promotes D2-like dopamine receptor signaling

    PubMed Central

    Likhite, Neah; Jackson, Christopher A.; Liang, Mao-Shih; Krzyzanowski, Michelle C.; Lei, Pedro; Wood, Jordan F.; Birkaya, Barbara; Michaels, Kerry L.; Andreadis, Stelios T.; Clark, Stewart D.; Yu, Michael C.; Ferkey, Denise M.

    2017-01-01

    Protein arginine methylation regulates diverse functions of eukaryotic cells, including gene expression, the DNA damage response, and circadian rhythms. We showed that arginine residues within the third intracellular loop of the human D2 dopamine receptor, which are conserved in the DOP-3 receptor in the nematode Caenorhabditis elegans, were methylated by protein arginine methyl-transferase 5 (PRMT5). By mutating these arginine residues, we further showed that their methylation enhanced the D2 receptor–mediated inhibition of cyclic adenosine monophosphate (cAMP) signaling in cultured human embryonic kidney (HEK) 293T cells. Analysis of prmt-5–deficient worms indicated that methylation promoted the dopamine-mediated modulation of chemosensory and locomotory behaviors in C. elegans through the DOP-3 receptor. In addition to delineating a previously uncharacterized means of regulating GPCR (heterotrimeric guanine nucleotide–binding protein–coupled receptor) signaling, these findings may lead to the development of a new class of pharmacological therapies that modulate GPCR signaling by changing the methylation status of these key proteins. PMID:26554819

  1. The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain.

    PubMed

    Sánchez-Blázquez, Pilar; Rodríguez-Muñoz, Maria; Berrocoso, Esther; Garzón, Javier

    2013-09-15

    Multiple groups have reported the functional cross-regulation between mu-opioid (MOP) receptor and glutamate ionotropic receptor N (GluN), and the post-synaptic association of these receptors has been implicated in the transmission and modulation of nociceptive signals. Opioids, such as morphine, disrupt the MOP receptor-GluN receptor complex to stimulate the activity of GluN receptors via protein kinase C (PKC)/Src. This increased GluN receptor activity opposes MOP receptor signalling, and via neural nitric oxide synthase (nNOS) and calcium and calmodulin regulated kinase II (CaMKII) induces the phosphorylation and uncoupling of the opioid receptor, which results in the development of morphine analgesic tolerance. Both experimental in vivo activation of GluN receptors and neuropathic pain separate the MOP receptor-GluN receptor complex via protein kinase A (PKA) and reduce the analgesic capacity of morphine. The histidine triad nucleotide-binding protein 1 (HINT1) associates with the MOP receptor C-terminus and connects the activities of MOP receptor and GluN receptor. In HINT1⁻/⁻ mice, morphine promotes enhanced analgesia and produces tolerance that is not related to GluN receptor activity. In these mice, the GluN receptor agonist N-methyl-D-aspartate acid (NMDA) does not antagonise the analgesic effects of morphine. Treatments that rescue morphine from analgesic tolerance, such as GluN receptor antagonism or PKC, nNOS and CaMKII inhibitors, all induce MOP receptor-GluN receptor re-association and reduce GluN receptor/CaMKII activity. In mice treated with NMDA or suffering from neuropathic pain (induced by chronic constriction injury, CCI), GluN receptor antagonists, PKA inhibitors or certain antidepressants also diminish CaMKII activity and restore the MOP receptor-GluN receptor association. Thus, the HINT1 protein stabilises the association between MOP receptor and GluN receptor, necessary for the analgesic efficacy of morphine, and this coupling is reduced

  2. The Glycine Transport Inhibitor Sarcosine Is an Inhibitory Glycine Receptor Agonist

    PubMed Central

    Zhang, Hai Xia; Lyons-Warren, Ariel; Thio, Liu Lin

    2009-01-01

    Summary Sarcosine is an endogenous amino acid that is a competitive inhibitor of the type I glycine transporter (GlyT1), an N-methyl-D-aspartate receptor (NMDAR) co-agonist, and an important intermediate in one-carbon metabolism. Its therapeutic potential for schizophrenia further underscores its clinical importance. The structural similarity between sarcosine and glycine and sarcosine's ability to serve as an NMDAR co-agonist led us to examine whether sarcosine is also an agonist at the inhibitory glycine receptor (GlyR). We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons and found that sarcosine evoked a dose-dependent, strychnine sensitive, Cl- current that cross-inhibited glycine currents. Sarcosine evoked this current with Li+ in the extracellular solution to block GlyT1, in neurons treated with the essentially irreversible GlyT1 inhibitor N[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine (NFPS), and in neurons plated in the absence of glia. These results indicate that the sarcosine currents did not result from GlyT1 inhibition or heteroexchange. We conclude that sarcosine is a GlyR agonist. PMID:19619564

  3. Progesterone receptor antagonism inhibits progestogen-related carcinogenesis and suppresses tumor cell proliferation.

    PubMed

    Lee, Oukseub; Choi, Mi-Ran; Christov, Konstantin; Ivancic, David; Khan, Seema A

    2016-07-01

    Blockade of the progestogen-progesterone receptor (PR) axis is a novel but untested strategy for breast cancer prevention. We report preclinical data evaluating telapristone acetate (TPA), ulipristal acetate (UPA), and mifepristone. Tumors were induced with medroxyprogesterone acetate (MPA) plus 7,12-dimethylbenz[a]anthracene (DMBA) in mice, and MPA or progesterone plus N-methyl-N-nitrosourea (MNU) in rats. Mammary gland histology, tumor incidence, latency, multiplicity, burden and histology were evaluated, along with immunohistochemical labeling of pHH3 (proliferation), CD34 (angiogenesis), and estrogen and progesterone receptors (ER and PR). A concentration gradient of TPA, UPA, and mifepristone was tested for growth inhibition of T47D spheroids. In mouse mammary glands, no tumors formed, but TPA opposed the pro-hyperplastic effects of MPA (p = 0.002). In rats, TPA decreased tumor incidence (p = 0.037 for MPA + TPA vs. MPA, and p = 0.032 for progesterone + TPA vs. progesterone) and tumor burden (p = 0.042 for progesterone + TPA vs. progesterone), with significant decreases in pHH3 and CD34 positive cells. TPA and UPA were superior to mifepristone in growth inhibition of T47D spheroids. TPA has consistent anti-tumorigenic effects in several models, which are accompanied by decreases in cell proliferation, angiogenesis, and hormone receptor expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Amygdala Infusions of an NR2B-Selective or an NR2A-Preferring NMDA Receptor Antagonist Differentially Influence Fear Conditioning and Expression in the Fear-Potentiated Startle Test

    ERIC Educational Resources Information Center

    Walker, David L.; Davis, Michael

    2008-01-01

    Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the…

  5. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test.

    PubMed

    Li, Yan; Zhu, Zhuo R; Ou, Bao C; Wang, Ya Q; Tan, Zhou B; Deng, Chang M; Gao, Yi Y; Tang, Ming; So, Ji H; Mu, Yang L; Zhang, Lan Q

    2015-02-15

    Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses. The traditional antidepressants often take several weeks, even months, to obtain clinical effects. However, recent clinical studies have shown that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects within 2h and are long-lasting. The aim of the present study was to investigate whether dopaminergic system was involved in the rapid antidepressant effects of ketamine. The acute administration of ketamine (20 mg/kg) significantly reduced the immobility time in the forced swim test. MK-801 (0.1 mg/kg), the more selective NMDA antagonist, also exerted rapid antidepressant-like effects. In contrast, fluoxetine (10 mg/kg) did not significantly reduced the immobility time in the forced swim test after 30 min administration. Notably, pretreatment with haloperidol (0.15 mg/kg, a nonselective dopamine D2/D3 antagonist), but not SCH23390 (0.04 and 0.1 mg/kg, a selective dopamine D1 receptor antagonist), significantly prevented the effects of ketamine or MK-801. Moreover, the administration of sub-effective dose of ketamine (10 mg/kg) in combination with pramipexole (0.3 mg/kg, a dopamine D2/D3 receptor agonist) exerted antidepressant-like effects compared with each drug alone. In conclusion, our results indicated that the dopamine D2/D3 receptors, but not D1 receptors, are involved in the rapid antidepressant-like effects of ketamine. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Relationship between inhibition of cyclic AMP production in Chinese hamster ovary cells expressing the rat D2(444) receptor and antagonist/agonist binding ratios.

    PubMed Central

    Harley, E. A.; Middlemiss, D. N.; Ragan, C. I.

    1995-01-01

    1. Radioligand binding assays using [3H]-(-)-sulpiride, in the presence of 1 mM ethylenediaminetetraacetic acid (EDTA) and 100 microM guanylylimidodiphosphate (GppNHp) and [3H]-N0437 were developed to label the low and high agonist affinity states of the rD2(444) receptor (long form of the rat D2 receptor) respectively. The ratios of the affinities of compounds in these two assays (Kapp [3H]-(-)-supiride/Kapp [3H]-N-0437) were then calculated. 2. The prediction that the binding ratio reflected the functional efficacy of a compound was supported by measurement of the ability of a number of compounds acting at dopamine receptors to inhibit rD2(444)-mediated inhibition of cyclic AMP production. When the rank order of the ratios of a number of these compounds was compared to their ability to inhibit the production of cyclic AMP, a significant correlation was seen (Spearman rank correlation coefficient = 0.943, P = 0.01). 3. In conclusion, the sulpiride/N-0437 binding ratio reliably predicted the efficacy of compounds acting at dopamine receptors to inhibit cyclic AMP production mediated by the rD2(444) receptor. PMID:7582561

  7. Effect of the non-NMDA receptor antagonist GYKI 52466 on the microdialysate and tissue concentrations of amino acids following transient forebrain ischaemia.

    PubMed

    Arvin, B; Lekieffre, D; Graham, J L; Moncada, C; Chapman, A G; Meldrum, B S

    1994-04-01

    The effect of the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466) on ischaemia-induced changes in the microdialysate and tissue concentrations of glutamate, aspartate, and gamma-aminobutyric acid (GABA) was studied in rats. Twenty minutes of four-vessel occlusion resulted in a transient increase in microdialysate levels of glutamate, aspartate, and GABA in striatum, cortex, and hippocampus. Administration of GYKI 52466 (10 mg/kg bolus + 10 mg/kg/60 min intravenously starting 20 min before onset of ischaemia) inhibited ischaemia-induced increases in microdialysate glutamate and GABA in striatum without affecting the increases in hippocampus or cortex. Twenty minutes of four-vessel occlusion resulted in immediate small decreases and larger delayed (72 h) decreases in tissue levels of glutamate and aspartate. Transient increases in tissue levels of GABA were shown in all three structures at the end of the ischaemic period. At 72 h, after the ischaemic period, significantly reduced GABA levels were observed in striatum and hippocampus. GYKI 52466, given under identical conditions as above, augmented the ischaemia-induced decrease in striatal tissue levels of glutamate and aspartate, without significantly affecting the decreases in hippocampus and cortex. Twenty minutes of ischaemia resulted in a large increase in microdialysate dopamine in striatum. GYKI 52466 failed to inhibit this increase. Kainic acid (500 microM infused through the probe for 20 min) caused increases in microdialysate glutamate and aspartate in the striatum. GYKI 52466 (10 mg/kg bolus + 10 mg/kg/60 min) completely inhibited the kainic acid-induced glutamate release. In conclusion, the action of the non-NMDA antagonist, GYKI 52466, in the striatum is different from that in the cortex and hippocampus. The inhibition by GYKI 52466 of ischaemia-induced and kainate-induced increases in microdialysate

  8. NMDA receptor-antagonistic properties of hyperforin, a constituent of St. John's Wort.

    PubMed

    Kumar, Vikas; Mdzinarishvili, Alexander; Kiewert, Cornelia; Abbruscato, Thomas; Bickel, Ulrich; van der Schyf, Cornelis J; Klein, Jochen

    2006-09-01

    Extracts of the medicinal plant St. John's wort (Hypericum perforatum) are widely used for the treatment of affective disorders. Hyperforin, a constituent of St. John's wort, is known to modulate the release and re-uptake of various neurotransmitters, an action that likely underlies its antidepressive activity. We now report that hyperforin also has N-methyl-D-aspartate (NMDA)-antagonistic effects. Hyperforin (10 microM) was found to inhibit the NMDA-induced calcium influx into cortical neurons. In rat hippocampal slices, hyperforin inhibited the NMDA-receptor-mediated release of choline from phospholipids. Hyperforin also antagonized the increase of water content in freshly isolated hippocampal slices, and it counteracted, at 3 and 10 microM, the increase of water content induced by NMDA. Hyperforin was inactive, however, in two in vivo models of brain edema formation, middle cerebral artery occlusion and water intoxication in mice. In conclusion, hyperforin has NMDA-receptor-antagonistic and potential neuroprotective effects in vitro. This effect may contribute to the therapeutic effectiveness of St. John's wort extracts in some situations, for example, for relapse prevention in alcoholism.

  9. Protein methylation as a marker of aspartate damage in glucose-6-phosphate dehydrogenase-deficient erythrocytes: role of oxidative stress.

    PubMed

    Ingrosso, Diego; Cimmino, Amelia; D'Angelo, Stefania; Alfinito, Fiorella; Zappia, Vincenzo; Galletti, Patrizia

    2002-04-01

    The 'Mediterranean' variant of glucose-6-phosphate dehydrogenase (G6PD) deficiency is due to the C563CT point mutation, leading to replacement of Ser with Phe at position 188, resulting in acute haemolysis triggered by oxidants. Previous work has shown increased formation of altered aspartate residues in membrane proteins during cell ageing and in response to oxidative stress in normal erythrocytes. These abnormal residues are specifically recognized by the repair enzyme L-isoaspartate (d-aspartate) protein O-methyltransferase (PCMT; EC 2.1.1.77). The aim of this work was to study the possible involvement of protein aspartate damage in the mechanism linking the G6PD defect and erythrocyte injury, through oxidative stress. Patients affected by G6PD deficiency (Mediterranean variant) were selected. In situ methylation assays were performed by incubating intact erythrocytes in the presence of methyl-labelled methionine. Altered aspartate residues were detected in membrane proteins by methyl ester quantification. We present here evidence that, in G6PD-deficient erythrocytes, damaged residues are significantly increased in membrane proteins, in parallel with the decay of pyruvate kinase activity, used as a cell age marker. Erythrocytes from patients were subjected to oxidative stress in vitro, by treatment with t-butylhydroperoxide, monitored by a rise in concentration of both methaemoglobin and thiobarbituric acid-reactive substances. L-Isoaspartate residues increased dramatically in G6PD-deficient erythrocytes in response to such treatment, compared with baseline conditions. The increased susceptibility of G6PD-deficient erythrocytes to membrane protein aspartate damage in response to oxidative stress suggests the involvement of protein deamidation/isomerization in the mechanisms of cell injury and haemolysis.

  10. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  11. Glutamate receptor activation in the kindled dentate gyrus.

    PubMed

    Behr, J; Heinemann, U; Mody, I

    2000-01-01

    The contribution of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA), and kainate receptor activation to the enhanced seizure susceptibility of the dentate gyrus was investigated in an experimental model of temporal lobe epilepsy. Using the specific NMDA and AMPA receptor antagonists D-APV and SYM 2206, we examined alterations in glutamate receptor-dependent synaptic currents 48 hours and 28 days after kindling in field-potential and voltage-clamp recordings. Forty-eight hours after kindling, the fractions of AMPA and NMDA receptor-mediated excitatory postsynaptic current components shifted dramatically in favor of the NMDA receptor-mediated response. Four weeks after kindling, however, AMPA and NMDA receptor-mediated excitatory postsynaptic currents reverted to control-like values. Neither single nor repetitive perforant path stimuli evoked kainate receptor-mediated excitatory postsynaptic currents in dentate gyrus granule cells of control or kindled rats. The enhanced excitability of the kindled dentate gyrus 48 hours after the last seizure most likely results from transiently enhanced NMDA receptor activation. The NMDA receptor seems to play a critical role in the induction of the kindled state rather than in the persistence of the enhanced seizure susceptibility.

  12. The N-methyl-D-aspartate-evoked cytoplasmic calcium increase in adult rat dorsal root ganglion neuronal somata was potentiated by substance P pretreatment in a protein kinase C-dependent manner.

    PubMed

    Castillo, C; Norcini, M; Baquero-Buitrago, J; Levacic, D; Medina, R; Montoya-Gacharna, J V; Blanck, T J J; Dubois, M; Recio-Pinto, E

    2011-03-17

    The involvement of substance P (SP) in neuronal sensitization through the activation of the neurokinin-1-receptor (NK1r) in postsynaptic dorsal horn neurons has been well established. In contrast, the role of SP and NK1r in primary sensory dorsal root ganglion (DRG) neurons, in particular in the soma, is not well understood. In this study, we evaluated whether SP modulated the NMDA-evoked transient increase in cytoplasmic Ca2+ ([Ca2+]cyt) in the soma of dissociated adult DRG neurons. Cultures were treated with nerve growth factor (NGF), prostaglandin E2 (PGE2) or both NGF+PGE2. Treatment with NGF+PGE2 increased the percentage of N-methyl-D-aspartate (NMDA) responsive neurons. There was no correlation between the percentage of NMDA responsive neurons and the level of expression of the NR1 and NR2B subunits of the NMDA receptor or of the NK1r. Pretreatment with SP did not alter the percentage of NMDA responsive neurons; while it potentiated the NMDA-evoked [Ca2+]cyt transient by increasing its magnitude and by prolonging the period during which small- and some medium-sized neurons remained NMDA responsive. The SP-mediated potentiation was blocked by the SP-antagonist ([D-Pro4, D-Trp7,9]-SP (4-11)) and by the protein kinase C (PKC) blocker bisindolylmaleimide I (BIM); and correlated with the phosphorylation of PKCε. The Nk1r agonist [Sar9, Met(O2)11]-SP (SarMet-SP) also potentiated the NMDA-evoked [Ca2+]cyt transient. Exposure to SP or SarMet-SP produced a rapid increase in the labeling of phosphorylated-PKCε. In none of the conditions we detected phosphorylation of the NR2B subunit at Ser-1303. Phosphorylation of the NR2B subunit at Tyr1472 was enhanced to a similar extent in cells exposed to NMDA, SP or NMDA+SP, and that enhancement was blocked by BIM. Our findings suggest that NGF and PGE2 may contribute to the injury-evoked sensitization of DRG neurons in part by enhancing their NMDA-evoked [Ca2+]cyt transient in all sized DRG neurons; and that SP may further

  13. Influence of Pharmacological Manipulations of NMDA and Cholinergic Receptors on Working versus Reference Memory in a Dual Component Odor Span Task

    ERIC Educational Resources Information Center

    MacQueen, David A.; Dalrymple, Savannah R.; Drobes, David J.; Diamond, David M.

    2016-01-01

    Developed as a tool to assess working memory capacity in rodents, the odor span task (OST) has significant potential to advance drug discovery in animal models of psychiatric disorders. Prior investigations indicate OST performance is impaired by systemic administration of N-methyl-D-aspartate receptor (NMDA-r) antagonists and is sensitive to…

  14. D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry.

    PubMed

    Kisilevsky, Alexandra E; Mulligan, Sean J; Altier, Christophe; Iftinca, Mircea C; Varela, Diego; Tai, Chao; Chen, Lina; Hameed, Shahid; Hamid, Jawed; Macvicar, Brian A; Zamponi, Gerald W

    2008-05-22

    Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.

  15. N.m.r. studies of the conformation of analogues of methyl beta-lactoside in methyl sulfoxide-d6.

    PubMed

    Rivera-Sagredo, A; Jiménez-Barbero, J; Martín-Lomas, M

    1991-12-16

    The 1H- and 13C-n.m.r. spectra of solutions of methyl beta-lactoside (1), all of its monodeoxy derivatives (2, 3, 6-10), the 3-O-methyl derivative (4), and methyl 4-O-beta-D-galactopyranosyl-D-xylopyranoside (5) in methyl sulfoxide-d6 have been analysed. The n.O.e.'s and specific desheildings indicate similar distributions of low-energy conformers, comparable to those in aqueous solution. The major conformer has torsion angles phi H and psi H of 49 degrees and 5 degrees, respectively, with contributions of conformers with phi/psi 24 degrees/-59 degrees, 22 degrees/32 degrees, and 6 degrees/44 degrees.

  16. The effect of the mGlu5 negative allosteric modulator MTEP and NMDA receptor partial agonist D-cycloserine on Pavlovian conditioned fear.

    PubMed

    Handford, Charlotte E; Tan, Shawn; Lawrence, Andrew J; Kim, Jee Hyun

    2014-09-01

    The metabotropic glutamate receptor 5 (mGlu5) and N-methyl-D-aspartate (NMDA) receptor are critical for processes underlying synaptic plasticity, such as long-term potentiation. mGlu5 signaling increases neuronal excitability and potentiates NMDA receptor currents in the amygdala and the hippocampus. The present study examined the involvement of mGlu5 in the acquisition and consolidation of conditioned fear to a tone and context in mice, and explored the functional relationship between mGlu5 and NMDA receptors in this regard. Experiment 1 showed that systemic administration of the mGlu5 negative allosteric modulator 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) prior to conditioning significantly attenuated cue-elicited freezing during fear conditioning, which suggests that mGlu5 is necessary for the formation of a tone-shock association. This effect was dose-related (Experiment 2) and not due to any effects of MTEP on shock sensitivity or state-dependency (Experiment 3). Post-conditioning injection of MTEP had no effects (Experiment 4). Although post-conditioning injection of the NMDA receptor partial agonist D-cycloserine (DCS) alone facilitated consolidation of conditioned fear (Experiment 6), it was not able to rescue the acquisition deficit caused by MTEP (Experiment 5). Taken together, these findings indicate a crucial role for mGlu5 signaling in acquisition and NMDA receptor signaling in consolidation of conditioned fear.

  17. An ionotropic but not a metabotropic glutamate agonist potentiates the pharmacological effects of olanzapine in the rat.

    PubMed

    Dall'Olio, Rossella; Rimondini, Roberto; Locchi, Federica; Voltattorni, Manuela; Gandolfi, Ottavio

    2005-12-01

    This study aimed to evaluate the possible potentiating action of ionotropic or metabotropic (metabotropic glutamate receptor type 5) glutamate agonists on pharmacological effects induced in rats by the atypical antipsychotic olanzapine. The administration of doses of olanzapine, which did not affect spontaneous motility, inhibited behaviors induced by the selective stimulation of 5HT(2A) and D(2) receptors. In particular, 0.03 or 0.06 mg/kg of olanzapine was sufficient to reduce, respectively, head shakes induced by the 5HT(2A) agonist 1-2,5-dimethoxy-4-iodophenyl-2-aminopropane (1 mg/kg) or hypermotility elicited by the D(2) stimulant quinpirole (0.15 mg/kg). Behavioral responses to a D(1)/D(2) agonist (apomorphine-induced stereotypies) were inhibited by doses of olanzapine that also influenced spontaneous behavior. The concomitant administration of D-cycloserine, an agonist at the glycine site on the N-methyl-D-aspartate receptor complex, given at a dose (3 mg/kg) that did not affect behavior, increased the inhibitory effect of olanzapine on the responses produced by 5HT2A, D(2) and D(1)/D(2) receptor stimulation. The concomitant administration of 2-chloro-5-hydroxyphenylglycine, an agonist of metabotropic glutamate receptor type 5, increased the inhibitory effect of olanzapine on the behaviors induced by the stimulation of D(2), but not 5HT2A or D(1)/D(2) receptors. As the effect on the serotonergic system seems important for the unusual pharmacological profile of atypical antipsychotics, the present results suggest that N-methyl-D-aspartate, but not metabotropic glutamate receptor type 5 agonists could be seen as promising therapeutic agents for increasing the pharmacological effects of olanzapine.

  18. Memantine inhibits β-amyloid aggregation and disassembles preformed β-amyloid aggregates.

    PubMed

    Takahashi-Ito, Kaori; Makino, Mitsuhiro; Okado, Keiko; Tomita, Taisuke

    2017-11-04

    Memantine, an uncompetitive glutamatergic N-methyl-d-aspartate (NMDA) receptor antagonist, is widely used as a medication for the treatment of Alzheimer's disease (AD). We previously reported that chronic treatment of AD with memantine reduces the amount of insoluble β-amyloid (Aβ) and soluble Aβ oligomers in animal models of AD. The mechanisms by which memantine reduces Aβ levels in the brain were evaluated by determining the effect of memantine on Aβ aggregation using thioflavin T and transmission electron microscopy. Memantine inhibited the formation of Aβ(1-42) aggregates in a concentration-dependent manner, whereas amantadine, a structurally similar compound, did not affect Aβ aggregation at the same concentrations. Furthermore, memantine inhibited the formation of different types of Aβ aggregates, including Aβs carrying familial AD mutations, and disaggregated preformed Aβ(1-42) fibrils. These results suggest that the inhibition of Aβ aggregation and induction of Aβ disaggregation may be involved in the mechanisms by which memantine reduces Aβ deposition in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ionotropic glutamate receptor antagonists and cancer therapy: time to think out of the box?

    PubMed

    Ribeiro, Mariana P C; Custódio, José B A; Santos, Armanda E

    2017-02-01

    Glutamate has a trophic function in the development of the central nervous system, regulating the proliferation and migration of neuronal progenitors. The resemblance between neuronal embryonic and tumor cells has paved the way for the investigation of the effects of glutamate on tumor cells. Indeed, tumor cells derived from neuronal tissue express ionotropic glutamate receptor (iGluRs) subunits and iGluR antagonists decrease cell proliferation. Likewise, iGluRs subunits are expressed in several peripheral cancer cells and blockade of the N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptor subtypes decreases their proliferation and migration. Although these mechanisms are still being investigated, the inhibition of the mitogen-activated protein kinase pathway was shown to play a key role in the antiproliferative activity of iGluR antagonists. Importantly, MK-801, a NMDAR channel blocker, was effective and well tolerated in animal models of melanoma, lung, and breast cancers, suggesting that the blockade of iGluR signaling may represent a new strategy for cancer treatment. In this review, we focus on the significance of NMDA and AMPA receptor expression in tumor cells, as well as possible therapeutic strategies targeting these receptors.

  20. Dual action of memantine in Alzheimer disease: a hypothesis.

    PubMed

    Wu, Tzong-Yuan; Chen, Chih-Ping

    2009-09-01

    In this study, we proposed a hypothesis to explain the mechanisms of memantine action in treating Alzheimer disease (AD). Memantine may reduce the expression of amyloid precursor protein and tau protein, as well as acting as an antagonist of N-methyl-D-aspartate receptors in the brain. Two neuropathologic characteristics of AD are neuritic plaques and neurofibrillary tangles. The major molecular components of the plaques and tangles are amyloid-beta peptide and tau, respectively. Drugs able to reduce the expression of amyloid-beta and tau protein provide potential pharmaceutical treatments for AD. We found that memantine inhibited internal ribosome entry site-mediated translation initiation in COS-1 cells. This suggests that the memantine may not only inhibit neuronal excitotoxicity, but also act as an inhibitor of the internal ribosome entry site, to block the expression of amyloid precursor protein and tau in neurons. Memantine may function not only as an antagonist of N-methyl-D-aspartate receptors, but also as an inhibitor of the internal ribosome entry site to block the expression of amyloid precursor protein and tau, and so ameliorate the symptoms of AD.

  1. Glucocorticoid acts on a putative G protein-coupled receptor to rapidly regulate the activity of NMDA receptors in hippocampal neurons.

    PubMed

    Zhang, Yanmin; Sheng, Hui; Qi, Jinshun; Ma, Bei; Sun, Jihu; Li, Shaofeng; Ni, Xin

    2012-04-01

    Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.

  2. N-(4-Trifluoromethylphenyl)amide group of the synthetic histamine receptor agonist inhibits nicotinic acetylcholine receptor-mediated catecholamine secretion.

    PubMed

    Kim, Dong-Chan; Park, Yong-Soo; Jun, Dong-Jae; Hur, Eun-Mi; Kim, Sun-Hee; Choi, Bo-Hwa; Kim, Kyong-Tai

    2006-02-28

    The therapeutic targeting of nicotinic receptors requires the identification of drugs that selectively activate or inhibit a limited range of nicotine acetylcholine receptors (nAChRs). In this study, we identified N-(4-trifluoromethylphenyl)amide group of the synthetic histamine receptor ligands, histamine-trifluoromethyltoluide, that act as potent inhibitors of nAChRs in bovine adrenal chromaffin cells. Catecholamine secretion induced by the nAChRs agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), was significantly inhibited by histamine-trifluoromethyltoluide. Real time carbon-fiber amperometry confirmed the ability of histamine-trifluoromethyltoluide to inhibit DMPP-induced exocytosis in single chromaffin cells. We also found that histamine-trifluoromethyltoluide inhibited DMPP-induced [Ca(2+)](i) and [Na(+)](i) increases, as well as DMPP-induced inward currents in the absence of extracellular calcium. Histamine-trifluoromethyltoluide had no effect on [(3)H]nicotine binding or on calcium increases induced by high K(+), bradykinin, veratridine, histamine, and benzoylbenzoyl ATP. Among the synthetic histamine receptor ligands, clobenpropit exhibited similarity. In addition, 4'-nitroacetanilide also significantly attenuated nAChR-mediated catecholamine secretion. In conclusion, the N-(4-trifluoromethylphenyl)amide group of the histamine-trifluoromethyltoluide might be the critical moiety in the inhibition of nAChR-mediated CA secretion.

  3. Importance of the GluN2B Carboxy-Terminal Domain for Enhancement of Social Memories

    ERIC Educational Resources Information Center

    Jacobs, Stephanie; Wei, Wei; Wang, Deheng; Tsien, Joe Z.

    2015-01-01

    The N-methyl-D-aspartate (NMDA) receptor is known to be necessary for many forms of learning and memory, including social recognition memory. Additionally, the GluN2 subunits are known to modulate multiple forms of memory, with a high GluN2A:GluN2B ratio leading to impairments in long-term memory, while a low GluN2A:GluN2B ratio enhances some…

  4. Point mutation of a conserved aspartate, D69, in the muscarinic M2 receptor does not modify voltage-sensitive agonist potency.

    PubMed

    Ågren, Richard; Sahlholm, Kristoffer; Nilsson, Johanna; Århem, Peter

    2018-01-29

    The muscarinic M 2 receptor (M 2 R) has been shown to display voltage-sensitive agonist binding, based on G protein-activated inward rectifier potassium channel (GIRK) opening and radioligand binding at different membrane voltages. A conserved aspartate in transmembrane segment (TM) II of M 2 R, D69, has been proposed as the voltage sensor. While a recent paper instead presented evidence of tyrosines in TMs III, VI, and VII acting as voltage sensors, these authors were not able to record GIRK channel activation by a D69N mutant M 2 R. In the present study, we succeeded in recording ACh-induced GIRK channel activation by this mutant at -80 and 0 mV. The acetylcholine EC 50 was about 2.5-fold higher at 0 mV, a potency shift very similar to that observed at wild-type M 2 R, indicating that voltage sensitivity persists at the D69N mutant. Thus, our present observations corroborate the notion that D69 is not responsible for voltage sensitivity of the M 2 R. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    PubMed

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of the NMDA receptor antagonist, D-CPPene, on sensitization to the operant decrement produced by naloxone in morphine-treated rats.

    PubMed

    Bespalov, A Y; Medvedev, I O; Sukhotina, I A; Zvartau, E E

    2001-04-01

    Sensitization to the rate-decreasing effects of opioid antagonists induced by acute pretreatment with opioid agonists has been suggested to reflect initial changes in opioid systems that underlie physical dependence. Glutamate receptors are implicated in the development and expression of opioid dependence, and antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors have been shown repeatedly to attenuate the severity of opioid withdrawal. The present study evaluated the ability of a competitive NMDA receptor antagonist, D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid), to affect morphine-induced sensitization to naloxone in rats trained to lever-press on a multiple-trial, fixed-ratio 10 schedule of food reinforcement. D-CPPene (0.3-3 mg/kg) was administered either 4 h or 30 min prior to the test session. Morphine (10 mg/kg) or its vehicle was administered 4 h before naloxone challenge (0.3-3 mg/kg). D-CPPene failed to prevent morphine-induced potentiation of the naloxone-produced decrement in operant performance. Thus, these results suggest that agonist-induced sensitization to behavioral effects of opioid antagonists may be insensitive to NMDA receptor blockade.

  7. Hydrolysis of aspartic acid phosphoramidate nucleotides: a comparative quantum chemical study.

    PubMed

    Michielssens, Servaas; Tien Trung, Nguyen; Froeyen, Matheus; Herdewijn, Piet; Tho Nguyen, Minh; Ceulemans, Arnout

    2009-09-07

    L-Aspartic acid has recently been found to be a good leaving group during HIV reverse transcriptase catalyzed incorporation of deoxyadenosine monophosphate (dAMP) in DNA. This showed that L-Asp is a good mimic for the pyrophosphate moiety of deoxyadenosine triphosphate. The present work explores the thermochemistry and mechanism for hydrolysis of several models for L-aspartic-dAMP using B3LYP/DGDZVP, MP2/6-311++G** and G3MP2 level of theory. The effect of the new compound is gradually investigated: starting from a simple methyl amine leaving group up to the aspartic acid leaving group. The enzymatic environment was mimicked by involving two Mg(2+) ions and some important active site residues in the reaction. All reactions are compared to the corresponding O-coupled leaving group, which is methanol for methyl amine and malic acid for aspartic acid. With methyl amine as a leaving group a tautomeric associative or tautomeric dissociative mechanism is preferred and the barrier is lower than the comparable mechanism with methanol as a leaving group. The calculations on the aspartic acid in the enzymatic environment show that qualitatively the mechanism is the same as for triphosphate but the barrier for hydrolysis by the associative mechanism is higher for L-aspartic-dAMP than for L-malic-dAMP and pyrophosphate.

  8. STEP activation by Gαq coupled GPCRs opposes Src regulation of NMDA receptors containing the GluN2A subunit

    PubMed Central

    Tian, Meng; Xu, Jian; Lei, Gang; Lombroso, Paul J.; Jackson, Michael F.; MacDonald, John F.

    2016-01-01

    N-methyl-D-aspartate receptors (NMDARs) are necessary for the induction of synaptic plasticity and for the consolidation of learning and memory. NMDAR function is tightly regulated by functionally opposed families of kinases and phosphatases. Herein we show that the striatal-enriched protein tyrosine phosphatase (STEP) is recruited by Gαq-coupled receptors, including the M1 muscarinic acetylcholine receptor (M1R), and opposes the Src tyrosine kinase-mediated increase in the function of NMDARs composed of GluN2A. STEP activation by M1R stimulation requires IP3Rs and can depress NMDA-evoked currents with modest intracellular Ca2+ buffering. Src recruitment by M1R stimulation requires coincident NMDAR activation and can augment NMDA-evoked currents with high intracellular Ca2+ buffering. Our findings suggest that Src and STEP recruitment is contingent on differing intracellular Ca2+ dynamics that dictate whether NMDAR function is augmented or depressed following M1R stimulation. PMID:27857196

  9. Intraglomerular inhibition shapes the strength and temporal structure of glomerular output

    PubMed Central

    Shao, Zuoyi; Puche, Adam C.; Liu, Shaolin

    2012-01-01

    Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABAA receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs. PMID:22592311

  10. Intraglomerular inhibition shapes the strength and temporal structure of glomerular output.

    PubMed

    Shao, Zuoyi; Puche, Adam C; Liu, Shaolin; Shipley, Michael T

    2012-08-01

    Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABA(A) receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs.

  11. Anti-NMDA-receptor encephalitis presenting with catatonia and neuroleptic malignant syndrome in patients with intellectual disability and autism.

    PubMed

    Kiani, Reza; Lawden, Mark; Eames, Penelope; Critchley, Peter; Bhaumik, Sabyasachi; Odedra, Sunita; Gumber, Rohit

    2015-02-01

    We report anti-N-methyl-d-aspartate (NMDA) receptor encephalitis in two patients with autism and intellectual disability presenting with neuropsychiatric symptoms of catatonia and neuroleptic malignant syndrome. Case reports such as these help raise awareness of this clinical issue. By paving the way for earlier diagnoses they ultimately maximise the potential for curative treatments and prevention of long-term complications.

  12. Sigma receptor ligand N,N'-di-(ortho-tolyl)guanidine inhibits release of acetylcholine in the guinea pig ileum.

    PubMed

    Cambell, B G; Keana, J F; Weber, E

    1991-11-26

    The inhibition of stimulated contractions of the guinea pig ileum longitudinal muscle/myenteric plexus preparation by sigma receptor ligands has been previously described. In this study, the stimulated release of [3H]acetylcholine from cholinergic nerve terminals in this same preparation was monitored in the presence and absence of sigma receptor ligands. N,N'-Di-(orthotolyl)guanidine (DTG) and other compounds selective for the sigma receptor inhibited stimulated [3H]acetylcholine release. These results suggest that their inhibition of stimulated contractions in this preparation was mediated by inhibition of acetylcholine release.

  13. Differential inhibition of N and P/Q Ca2+ currents by 5-HT1A and 5-HT1D receptors in spinal neurons of Xenopus larvae

    PubMed Central

    Sun, Qian-Quan; Dale, Nicholas

    1998-01-01

    In whole-cell patch clamp recordings made from non-sensory neurons acutely isolated from the spinal cord of Xenopus (stage 40–42) larvae, two forms of inhibition of the high voltage-activated (HVA) Ca2+ currents were produced by 5-HT. One was voltage dependent and associated with both slowing of the activation kinetics and shifting of the voltage dependence of the HVA currents. This inhibition was relieved by strong depolarizing prepulses. A second form of inhibition was neither associated with slowing of the activation kinetics nor relieved by depolarizing prepulses and was thus voltage independent. In all neurons examined, 5-HT (1 μM) reversibly reduced 34 ± 1.6 % (n = 102) of the HVA Ca2+ currents. In about 40 % of neurons, the inhibition was totally voltage independent. In another 5 %, the inhibition was totally voltage dependent. In the remaining neurons, inhibition was only partially (by around 40 %) relieved by a large depolarizing prepulse, suggesting that in these, the inhibition consisted of both voltage-dependent and -independent components. By using selective channel blockers, we found that 5-HT acted on both N- and P/Q-type channels. However, whereas the inhibition of P/Q-type currents was only voltage independent, the inhibition of N-type currents had both voltage-dependent and -independent components. The effects of 5-HT on HVA Ca2+ currents were mediated by 5-HT1A and 5-HT1D receptors. The 5-HT1A receptors not only preferentially caused voltage-independent inhibition, but did so by acting mainly on the ω-agatoxin-IVA-sensitive Ca2+ channels. In contrast, the 5-HT1D receptor produced both voltage-dependent and -independent inhibition and was preferentially coupled to ω-conotoxin-GVIA sensitive channels. This complexity of modulation may allow fine tuning of transmitter release and calcium signalling in the spinal circuitry of Xenopus larvae. PMID:9625870

  14. Intrinsic motions in the N-terminal domain of an ionotropic glutamate receptor detected by fluorescence correlation spectroscopy.

    PubMed

    Jensen, Mette H; Sukumaran, Madhav; Johnson, Christopher M; Greger, Ingo H; Neuweiler, Hannes

    2011-11-18

    Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the central nervous system and play key roles in brain development and disease. iGluRs have two distinct extracellular domains, but the functional role of the distal N-terminal domain (NTD) is poorly understood. Crystal structures of the NTD from some non-N-methyl-d-aspartate (NMDA) iGluRs are consistent with a rigid body that facilitates receptor assembly but suggest an additional dynamic role that could modulate signaling. Here, we moved beyond spatial and temporal limitations of conventional protein single-molecule spectroscopy by employing correlation analysis of extrinsic oxazine fluorescence fluctuations. We observed nanosecond (ns)-to-microsecond (μs) motions of loop segments and helices within a region of an AMPA-type iGluR NTD, which has been identified previously to be structurally variable. Our data reveal that the AMPA receptor NTD undergoes rapid conformational fluctuations, suggesting an inherent allosteric capacity for this domain in addition to its established assembly function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Tryptophanol-derived oxazolopiperidone lactams: identification of a hit compound as NMDA receptor antagonist.

    PubMed

    Pereira, Nuno A L; Sureda, Francesc X; Esplugas, Roser; Pérez, Maria; Amat, Mercedes; Santos, Maria M M

    2014-08-01

    N-Methyl-D-aspartate receptors (NMDAR) exacerbated activation leads to neuron death through a phenomenon called excitotoxicity. These receptors are implicated in several neurological diseases (e.g., Alzheimer and Parkinson) and thus represent an important therapeutic target. We herein describe the study of enantiopure tryptophanol-derived oxazolopiperidone lactams as NMDA receptor antagonists. The most active hit exhibited an IC50 of 63.4 μM in cultured rat cerebellar granule neurons thus being 1.5 fold more active than clinically approved NMDA antagonist amantadine (IC50=92 μM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Antidepressant effect of pramipexole in mice forced swimming test: A cross talk between dopamine receptor and NMDA/nitric oxide/cGMP pathway.

    PubMed

    Ostadhadi, Sattar; Imran Khan, Muhammad; Norouzi-Javidan, Abbas; Dehpour, Ahmad-Reza

    2016-07-01

    Pramipexole is a dopamine D2 receptor agonist indicated for treating Parkinson disorder. This study was aimed to investigate the effect of pramipexole in forced swimming test (FST) in mice and the possible involvement of activation of D2 receptors and inhibition of N-methyl-d-aspartate (NMDA) receptors and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) on this effect. Intraperitoneal administration of pramipexole (1-3mg/kg) reduced the immobility time in the FST similar to fluoxetine (20mg/kg, i.p.). This effect of pramipexole (1mg/kg, i.p.) was ceased when mice were pretreated with haloperidol (0.15mg/kg, i.p,) and sulpiride (5mg/kg, i.p) as D2 receptor antagonists, NMDA (75mg/kg,i.p.), l-arginine (750mg/kg, i.p., a substrate for nitric oxide synthase) or sildenafil (5mg/kg, i.p., a phosphodiesterase 5 inhibitor). The administration of MK-801 (0.05mg/kg, i.p., a NMDA receptor antagonist) l-NG-Nitro arginine methyl ester (l-NAME, 10mg/kg, i.p., a non-specific nitric oxide synthase (NOS) inhibitor), 7-nitroindazole (30mg/kg, i.p., a neuronal NOS inhibitor) and methylene blue (10mg/kg, i.p.), an inhibitor of both NOS and soluble guanylyl cyclase (sGC) in combination with the sub-effective dose of pramipexole (0.3mg/kg, i.p.) reduced the immobility. Altogether, our data suggest that the antidepressant-like effect of pramipexole is dependent on the activation of D2 receptor and inhibition of either NMDA receptors and/or NO-cGMP synthesis. These results contribute to the understanding of the mechanisms underlying the antidepressant-like effect of pramipexole and reinforce the role of D2 receptors, NMDA receptors and l-arginine-NO-GMP pathway in the antidepressant mechanism of this agent. Copyright © 2016. Published by Elsevier Masson SAS.

  17. Activation of µ-opioid receptors and block of KIR3 potassium channels and NMDA receptor conductance by l- and d-methadone in rat locus coeruleus

    PubMed Central

    Matsui, Aya; Williams, John T

    2010-01-01

    BACKGROUND AND PURPOSE Methadone activates opioid receptors to increase a potassium conductance mediated by G-protein-coupled, inwardly rectifying, potassium (KIR3) channels. Methadone also blocks KIR3 channels and N-methyl-D-aspartic acid (NMDA) receptors. However, the concentration dependence and stereospecificity of receptor activation and channel blockade by methadone on single neurons has not been characterized. EXPERIMENTAL APPROACH Intracellular and whole-cell recording were made from locus coeruleus neurons in brain slices and the activation of µ-opioid receptors and blockade of KIR3 and NMDA channels with l- and d-methadone was examined. KEY RESULTS The potency of l-methadone, measured by the amplitude of hyperpolarization was 16.5-fold higher than with d-methadone. A maximum hyperpolarization was caused by both enantiomers (∼30 mV); however, the maximum outward current measured with whole-cell voltage-clamp recording was smaller than the current induced by [Met]5enkephalin. The KIR3 conductance induced by activation of α2-adrenoceptors was decreased with high concentrations of l- and d-methadone (10–30 µM). In addition, methadone blocked the resting inward rectifying conductance (KIR). Both l- and d-methadone blocked the NMDA receptor-dependent current. The block of NMDA receptor-dependent current was voltage-dependent suggesting that methadone acted as a channel blocker. CONCLUSIONS AND IMPLICATIONS Methadone activated µ-opioid receptors at low concentrations in a stereospecific manner. KIR3 and NMDA receptor channel block was not stereospecific and required substantially higher concentrations. The separation in the concentration range suggests that the activation of µ-opioid receptors rather than the channel blocking properties mediate both the therapeutic and toxic actions of methadone. PMID:20659105

  18. Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys

    NASA Technical Reports Server (NTRS)

    Gazzaley, A. H.; Thakker, M. M.; Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    The perforant path, which consists of the projection from the layer II neurons of the entorhinal cortex to the outer molecular layer of the dentate gyrus, is a critical circuit involved in learning and memory formation. Accordingly, disturbances in this circuit may contribute to age-related cognitive deficits. In a previous study, we demonstrated a decrease in N-methyl-D-aspartate receptor subunit 1 immunofluorescence intensity in the outer molecular layer of aged macaque monkeys. In this study, we used the optical fractionator, a stereological method, to determine if a loss of layer II neurons occurred in the same animals in which the N-methyl-D-aspartate receptor subunit 1 alteration was observed. Our results revealed no significant differences in the number of layer II neurons between juvenile, young adult, and aged macaque monkeys. These results suggest that the circuit-specific decrease in N-methyl-D-aspartate receptor subunit 1 reported previously occurs in the absence of structural compromise of the perforant path, and thus may be linked to an age-related change in the physiological properties of this circuit.

  19. Formation of O2-methylthymine in poly(dA-dT) on methylation with N-methyl-N-nitrosourea and dimethyl sulphate. Evidence that O2-methylthymine does not miscode during DNA synthesis.

    PubMed Central

    Saffhill, R; Abbott, P J

    1978-01-01

    The alternating co-polymer has been methylated with either N methyl-N-nitrosourea (MNU) or dimethyl sulphate (DMS) and the levels of the various methylated thymidines (O2-methylthymidine, 3-methylthymidine and O4-methylthymidine) measured. MNU produced all three compounds whereas DMS only produced 3-methylthymidine and O2-methylthymidine at detectable levels. These results have been combined with our earlier results concerning the misincorporation of dGMP with E. coli DNA polymerase using MNU-methylated poly(dA-dT). These results indicate that O2-methylthymidine does not miscode during DNA synthesis. PMID:353735

  20. Glutamate receptors modulate sodium-dependent and calcium-independent vitamin C bidirectional transport in cultured avian retinal cells.

    PubMed

    Portugal, Camila Cabral; Miya, Vivian Sayuri; Calaza, Karin da Costa; Santos, Rochelle Alberto Martins; Paes-de-Carvalho, Roberto

    2009-01-01

    Vitamin C is transported in the brain by sodium vitamin C co-transporter 2 (SVCT-2) for ascorbate and glucose transporters for dehydroascorbate. Here we have studied the expression of SVCT-2 and the uptake and release of [(14)C] ascorbate in chick retinal cells. SVCT-2 immunoreactivity was detected in rat and chick retina, specially in amacrine cells and in cells in the ganglion cell layer. Accordingly, SVCT-2 was expressed in cultured retinal neurons, but not in glial cells. [(14)C] ascorbate uptake was saturable and inhibited by sulfinpyrazone or sodium-free medium, but not by treatments that inhibit dehydroascorbate transport. Glutamate-stimulated vitamin C release was not inhibited by the glutamate transport inhibitor l-beta-threo-benzylaspartate, indicating that vitamin C release was not mediated by glutamate uptake. Also, ascorbate had no effect on [(3)H] D-aspartate release, ruling out a glutamate/ascorbate exchange mechanism. 2-Carboxy-3-carboxymethyl-4-isopropenylpyrrolidine (Kainate) or NMDA stimulated the release, effects blocked by their respective antagonists 6,7-initroquinoxaline-2,3-dione (DNQX) or (5R,2S)-(1)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801). However, DNQX, but not MK-801 or 2-amino-5-phosphonopentanoic acid (APV), blocked the stimulation by glutamate. Interestingly, DNQX prevented the stimulation by NMDA, suggesting that the effect of NMDA was mediated by glutamate release and stimulation of non-NMDA receptors. The effect of glutamate was neither dependent on external calcium nor inhibited by 1,2-bis (2-aminophenoxy) ethane-N',N',N',N',-tetraacetic acid tetrakis (acetoxy-methyl ester) (BAPTA-AM), an internal calcium chelator, but was inhibited by sulfinpyrazone or by the absence of sodium. In conclusion, retinal cells take up and release vitamin C, probably through SVCT-2, and the release can be stimulated by NMDA or non-NMDA glutamate receptors.

  1. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors.

    PubMed

    Andreou, Anna P; Holland, Philip R; Lasalandra, Michele P; Goadsby, Peter J

    2015-03-01

    Migraine is a common and disabling neurologic disorder, with important psychiatric comorbidities. Its pathophysiology involves activation of neurons in the trigeminocervical complex (TCC). Kainate receptors carrying the glutamate receptor subunit 5 (GluK1) are present in key brain areas involved in migraine pathophysiology. To study the influence of kainate receptors on trigeminovascular neurotransmission, we determined the presence of GluK1 receptors within the trigeminal ganglion and TCC with immunohistochemistry. We performed in vivo electrophysiologic recordings from TCC neurons and investigated whether local or systemic application of GluK1 receptor antagonists modulated trigeminovascular transmission. Microiontophoretic application of a selective GluK1 receptor antagonist, but not of a nonspecific ionotropic glutamate receptor antagonist, markedly attenuated cell firing in a subpopulation of neurons activated in response to dural stimulation, consistent with selective inhibition of postsynaptic GluK1 receptor-evoked firing seen in all recorded neurons. In contrast, trigeminovascular activation was significantly facilitated in a different neuronal population. The clinically active kainate receptor antagonist LY466195 attenuated trigeminovascular activation in all neurons. In addition, LY466195 demonstrated an N-methyl-d-aspartate receptor-mediated effect. This study demonstrates a differential role of GluK1 receptors in the TCC, antagonism of which can inhibit trigeminovascular activation through postsynaptic mechanisms. Furthermore, the data suggest a novel, possibly presynaptic, modulatory role of trigeminocervical kainate receptors in vivo. Differential activation of kainate receptors suggests unique roles for this receptor in pro- and antinociceptive mechanisms in migraine pathophysiology.

  2. NR2A- and NR2B-Containing NMDA Receptors in the Prelimbic Medial Prefrontal Cortex Differentially Mediate Trace, Delay, and Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Gilmartin, Marieke R.; Kwapis, Janine L.; Helmstetter, Fred J.

    2013-01-01

    Activation of "N"-methyl-D-aspartate receptors (NMDAR) in the prelimbic medial prefrontal cortex (PL mPFC) is necessary for the acquisition of both trace and contextual fear memories, but it is not known how specific NR2 subunits support each association. The NR2B subunit confers unique properties to the NMDAR and may differentially…

  3. Dopamine induces inhibitory effects on the circular muscle contractility of mouse distal colon via D1- and D2-like receptors.

    PubMed

    Auteri, Michelangelo; Zizzo, Maria Grazia; Amato, Antonella; Serio, Rosa

    2016-08-01

    Dopamine (DA) acts as gut motility modulator, via D1- and D2-like receptors, but its effective role is far from being clear. Since alterations of the dopaminergic system could lead to gastrointestinal dysfunctions, a characterization of the enteric dopaminergic system is mandatory. In this study, we investigated the role of DA and D1- and D2-like receptors in the contractility of the circular muscle of mouse distal colon by organ-bath technique. DA caused relaxation in carbachol-precontracted circular muscle strips, sensitive to domperidone, D2-like receptor antagonist, and mimicked by bromocriptine, D2-like receptor agonist. 7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390), D1-like receptor antagonist, neural toxins, L-NAME (nitric oxide (NO) synthase inhibitor), 2'-deoxy-N 6 -methyl adenosine 3',5'-diphosphate diammonium salt (MRS 2179), purinergic P2Y1 antagonist, or adrenergic antagonists were ineffective. DA also reduced the amplitude of neurally evoked cholinergic contractions. The effect was mimicked by (±)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide (SKF-38393), D1-like receptor agonist and antagonized by SCH-23390, MRS 2179, or L-NAME. Western blotting analysis determined the expression of DA receptor proteins in mouse distal colon. Notably, SCH-23390 per se induced an increase in amplitude of spontaneous and neurally evoked cholinergic contractions, unaffected by neural blockers, L-NAME, MRS 2179, muscarinic, adrenergic, or D2-like receptor antagonists. Indeed, SCH-23390-induced effects were antagonized by an adenylyl cyclase blocker. In conclusion, DA inhibits colonic motility in mice via D2- and D1-like receptors, the latter reducing acetylcholine release from enteric neurons, involving nitrergic and purinergic systems. Whether constitutively active D1-like receptors, linked to adenylyl cyclase pathway, are involved in a tonic inhibitory control of colonic contractility is

  4. NMDA receptor as a newly identified member of the metabotropic glutamate receptor family: clinical implications for neurodegenerative diseases.

    PubMed

    Chung, ChiHye

    2013-08-01

    Recent reports have proposed a novel function for the N-methyl-D-aspartate (NMDA) receptor (NMDAR), a well-known excitatory, ionotropic receptor. A series of observations employing pharmacological techniques has proposed that upon ligand binding, this ionotropic receptor can actually function via signaling cascades independent of traditional ionotropic action. Moreover, the "metabotropic" action of NMDARs is suggested to mediate a form of synaptic plasticity, namely long-term synaptic depression (LTD), which shares cellular mechanisms with the synaptic deficits observed in Alzheimer's disease. Given that a growing body of clinical and preclinical evidence strongly recommends NMDAR antagonists for their therapeutic potentials and advantages in a variety of diseases, further investigation into their molecular and cellular mechanisms is required to better understand the "metabotropic" action of NMDARs.

  5. Functional ionotropic glutamate receptors on peripheral axons and myelin.

    PubMed

    Christensen, Pia Crone; Welch, Nicole Cheryl; Brideau, Craig; Stys, Peter K

    2016-09-01

    Neurotransmitter-dependent signaling is traditionally restricted to axon terminals. However, receptors are present on myelinating glia, suggesting that chemical transmission may also occur along axons. Confocal microscopy and Ca(2+) -imaging using an axonally expressed FRET-based reporter was used to measure Ca(2+) changes and morphological alterations in myelin in response to stimulation of glutamate receptors. Activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or N-methyl-D-aspartate (NMDA) receptors induced a Ca(2+) increase in axon cylinders. However, only the latter caused structural alterations in axons, despite similar Ca(2+) increases. Myelin morphology was significantly altered by NMDA receptor activation, but not by AMPA receptors. Cu(2+) ions influenced the NMDA receptor-dependent response, suggesting that this metal modulates axonal receptors. Glutamate increased ribosomal signal in Schwann cell cytoplasm. Axon cylinders and myelin of peripheral nervous system axons respond to glutamate, with a consequence being an increase in Schwann cell ribosomes. This may have implications for nerve pathology and regeneration. Muscle Nerve 54: 451-459, 2016. © 2016 Wiley Periodicals, Inc.

  6. Inhibition of glycine receptor function of native neurons by aliphatic n-alcohols

    PubMed Central

    Tao, Liang; Ye, Jiang Hong

    2002-01-01

    The inhibitory effects of n-alcohols (methanol to dodecanol) on glycine-activated currents were studied in neurons freshly dissociated from the ventral tegmental area of neonatal rats using whole-cell patch-clamp recording technique.Ethanol enhanced and depressed glycine-activated currents in 35% and 45%, respectively, of neurons of ventral tegmental area of neonatal rats. In this report, we extended our focus of ethanol-induced inhibition of glycine currents to other straight-chain alcohols.Aliphatic n-alcohols, which have carbon numbers less than nine, suppressed glycine currents in 45% (71/158) of the neurons. All results from this study are obtained from the 45% of cells displaying inhibition; the other 55% of the neurons were not studied.Alcohol potency increased as the number of carbon atoms increased from one to five, and was at a maximal plateau from five to nine; alcohols with 10 or more carbons did not inhibit glycine-activated currents. Thus, a ‘cutoff' point in their potency for inhibition of glycine receptor function occurred at about decanol.A coapplication of dodecanol with ethanol eliminated the inhibition resulting from ethanol. Thus, dodecanol may bind to the receptor silently and compete with ethanol.These observations indicate that straight-chain n-alcohols exhibit a ‘cutoff' point in their potency for inhibition of the glycine receptor function between nine and 10 carbon atoms. The inability of longer alcohols to change the activation properties of the receptors may contribute to the cutoff effect. PMID:12055142

  7. Synthesis of methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside and methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside.

    PubMed

    Jain, R K; Dubey, R; Abbas, S A; Matta, K L

    1987-03-15

    Treatment of methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha-D- mannopyranoside (1) with tert-butyldiphenylsilyl chloride in N,N-dimethylformamide afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (2). Oxidation of 2 with pyridinium chlorochromate, followed by reduction of the carbonyl group, and subsequent O-deacetylation afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-alpha-D-mannopyranosyl- alpha-D- talopyranoside (5). Cleavage of the tert-butyldiphenylsilyl group of 5 with tetrabutylammonium fluoride in oxolane, followed by hydrogenolysis, gave methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside (7). O-Deacetylation of 1 gave methyl 3-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (8). Treatment of 8 with tert-butyldiphenylsilyl chloride afforded a 6,6'-disilyl derivative, which was converted into a 2',3'-O-isopropylidene derivative, and then further oxidized with pyridinium chlorochromate. The resulting diketone was reduced and removal of the protecting groups gave methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside (15). The structures of both 7 and 15 were established by 13C-n.m.r. spectroscopy.

  8. A case report: anti-NMDA receptor encephalitis

    PubMed Central

    Bhat, Pavan; Ahmed, Ameer; Jolepalem, Preetam; Sittambalam, Charmian

    2018-01-01

    ABSTRACT N-methyl-d-aspartate receptor (NMDAR) antibody encephalitis is a potentially fatal autoimmune syndrome in which there is antibody production against the NMDAR causing profound dysregulation of neurotransmission. The syndrome is frequently associated with ovarian teratomas and women are disproportionately affected. Patients most often present with a constellation of neuropsychiatric signs and symptoms, including memory loss, hallucinations, and decreased level of consciousness. This condition is lethal if left untreated. Immunotherapy and surgical resection of the culprit malignancy often results in the rapid resolution of symptoms. PMID:29915659

  9. NMDA Receptor Modulators in the Treatment of Drug Addiction.

    PubMed

    Tomek, Seven E; Lacrosse, Amber L; Nemirovsky, Natali E; Olive, M Foster

    2013-02-06

    Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

  10. Neonatal (+)-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists

    PubMed Central

    Graham, Devon L.; Amos-Kroohs, Robyn M.; Braun, Amanda A.; Grace, Curtis E.; Schaefer, Tori L.; Skelton, Matthew R.; Williams, Michael T.; Vorhees, Charles V.

    2015-01-01

    Neonatal exposure to (+)-methamphetamine (Meth) results in long-term behavioural abnormalities but its developmental mechanisms are unknown. In a series of experiments, rats were treated from post-natal days (PD) 11–20 (stage that approximates human development from the second to third trimester) with Meth or saline and assessed using locomotor activity as the readout following pharmacological challenge doses with dopamine, serotonin and glutamate agonists or antagonists during adulthood. Exposure to Meth early in life resulted in an exaggerated adult locomotor hyperactivity response to the dopamine D1 agonist SKF-82958 at multiple doses, a high dose only under-response activating effect of the D2 agonist quinpirole, and an exaggerated under-response to the activating effect of the N-methyl-D-aspartic acid (NMDA) receptor antagonist, MK-801. No change in locomotor response was seen following challenge with the 5-HT releaser p-chloroamphetamine or the 5-HT2/3 receptor agonist, quipazine. These are the first data to show that PD 11-20 Meth exposure induces long-lasting alterations to dopamine D1, D2 and glutamate NMDA receptor function and may suggest how developmental Meth exposure leads to many of its long-term adverse effects. PMID:22391043

  11. Recent insights into the mode of action of memantine and ketamine

    PubMed Central

    Johnson, Jon W.; Glasgow, Nathan G.; Povysheva, Nadezhda V.

    2014-01-01

    The clinical benefits of the glutamate receptor antagonists memantine and ketamine have helped sustain optimism that glutamate receptors represent viable targets for development of therapeutic drugs. Both memantine and ketamine antagonize N-methyl-d-aspartate receptors (NMDARs), a glutamate receptor subfamily, by blocking the receptor-associated ion channel. Although many of the basic characteristics of NMDAR inhibition by memantine and ketamine appear similar, their effects on humans and to a lesser extent on rodents are strongly divergent. Some recent research suggests that preferential inhibition by memantine and ketamine of distinct NMDAR subpopulations may contribute to the drugs' differential clinical effects. Here we review studies that shed light on possible explanations for differences between the effects of memantine and ketamine. PMID:25462293

  12. Interaction of N-benzoyl-D-phenylalanine and related compounds with the sulphonylurea receptor of beta-cells.

    PubMed

    Schwanstecher, C; Meyer, M; Schwanstecher, M; Panten, U

    1998-03-01

    1. The structure activity relationships for the insulin secretagogues N-benzoyl-D-phenylalanine (NBDP) and related compounds were examined at the sulphonylurea receptor level by use of cultured HIT-T15 and mouse pancreatic beta-cells. The affinities of these compounds for the sulphonylurea receptor were compared with their potencies for K(ATP)-channel inhibition. In addition, the effects of cytosolic nucleotides on K(ATP)-channel inhibition by NBDP were investigated. 2. NBDP displayed a dissociation constant for binding to the sulphonylurea receptor (K(D) value) of 11 microM and half-maximally effective concentrations of K(ATP)-channel inhibition (EC50 values) between 2 and 4 microM (in the absence of cytosolic nucleotides or presence of 0.1 mM GDP or 1 mM ADP). 3. In the absence of cytosolic nucleotides or presence of GDP (0.1 mM) maximally effective concentrations of NBDP (0.1-1 mM) reduced K(ATP)-channel activity to 47% and 44% of control, respectively. In the presence of ADP (1 mM), K(ATP)-channel activity was completely suppressed by 0.1 mM NBDP. 4. The L-isomer of N-benzoyl-phenylalanine displayed a 20 fold lower affinity and an 80 fold lower potency than the D-isomer. 5. Introduction of a p-nitro substituent in the D-phenylalanine moiety of NBDP did not decrease lipophilicity but lowered affinity and potency by more than 30 fold. 6. Introduction of a p-amino substituent in the D-phenylalanine moiety of NBDP (N-benzoyl-p-amino-D-phenylalanine, NBADP) reduced lipophilicity and lowered affinity and potency by about 10 fold. This loss of affinity and potency was compensated for by formation of the phenylpropionic acid derivative of NBADP. A similar difference in affinity was observed for the sulphonylurea carbutamide and its phenylpropionic acid derivative. 7. Replacing the benzene ring in the D-phenylalanine moiety of NBDP by a cyclohexyl ring increased lipophilicity, and the K(D) and EC50 values were slightly lower than for NBDP. Exchange of both benzene rings

  13. Increased accuracy of ligand sensing by receptor diffusion on cell surface

    NASA Astrophysics Data System (ADS)

    Aquino, Gerardo; Endres, Robert G.

    2010-10-01

    The physical limit with which a cell senses external ligand concentration corresponds to the perfect absorber, where all ligand particles are absorbed and overcounting of same ligand particles does not occur. Here, we analyze how the lateral diffusion of receptors on the cell membrane affects the accuracy of sensing ligand concentration. Specifically, we connect our modeling to neurotransmission in neural synapses where the diffusion of glutamate receptors is already known to refresh synaptic connections. We find that receptor diffusion indeed increases the accuracy of sensing for both the glutamate α -Amino-3-hydroxy-5-Methyl-4-isoxazolePropionic Acid (AMPA) and N -Methyl-D-aspartic Acid (NMDA) receptor, although the NMDA receptor is overall much noisier. We propose that the difference in accuracy of sensing of the two receptors can be linked to their different roles in neurotransmission. Specifically, the high accuracy in sensing glutamate is essential for the AMPA receptor to start membrane depolarization, while the NMDA receptor is believed to work in a second stage as a coincidence detector, involved in long-term potentiation and memory.

  14. Inhibition of strigolactone receptors by N-phenylanthranilic acid derivatives: Structural and functional insights.

    PubMed

    Hamiaux, Cyril; Drummond, Revel S M; Luo, Zhiwei; Lee, Hui Wen; Sharma, Prachi; Janssen, Bart J; Perry, Nigel B; Denny, William A; Snowden, Kimberley C

    2018-04-27

    The strigolactone (SL) family of plant hormones regulates a broad range of physiological processes affecting plant growth and development and also plays essential roles in controlling interactions with parasitic weeds and symbiotic fungi. Recent progress elucidating details of SL biosynthesis, signaling, and transport offers many opportunities for discovering new plant-growth regulators via chemical interference. Here, using high-throughput screening and downstream biochemical assays, we identified N -phenylanthranilic acid derivatives as potent inhibitors of the SL receptors from petunia (DAD2), rice (OsD14), and Arabidopsis (AtD14). Crystal structures of DAD2 and OsD14 in complex with inhibitors further provided detailed insights into the inhibition mechanism, and in silico modeling of 19 other plant strigolactone receptors suggested that these compounds are active across a large range of plant species. Altogether, these results provide chemical tools for investigating SL signaling and further define a framework for structure-based approaches to design and validate optimized inhibitors of SL receptors for specific plant targets. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Dopamine D1 receptor activation contributes to light-adapted changes in retinal inhibition to rod bipolar cells.

    PubMed

    Flood, Michael Daniel; Moore-Dotson, Johnnie M; Eggers, Erika D

    2018-05-30

    Dopamine modulation of retinal signaling has been shown to be an important part of retinal adaptation to increased background light levels but the role of dopamine modulation of retinal inhibition is not clear. We previously showed that light adaptation causes a large reduction in inhibition to rod bipolar cells, potentially to match the decrease in excitation after rod saturation. In this study we determined how dopamine D1 receptors in the inner retina contribute to this modulation. We found that D1 receptor activation significantly decreased the magnitude of inhibitory light responses from rod bipolar cells, while D1 receptor blockade during light adaptation partially prevented this decline. To determine what mechanisms were involved in the modulation of inhibitory light responses, we measured the effect of D1 receptor activation on spontaneous currents and currents evoked from electrically stimulating amacrine cell inputs to rod bipolar cells. D1 receptor activation decreased the frequency of spontaneous inhibition with no change in event amplitudes, suggesting a presynaptic change in amacrine cell activity in agreement with previous reports that rod bipolar cells lack D1 receptors. Additionally, we found that D1 receptor activation reduced the amplitude of electrically-evoked responses, showing that D1 receptors can modulate amacrine cells directly. Our results suggest that D1 receptor activation can replicate a large portion, but not all of the effects of light adaptation, likely by modulating release from amacrine cells onto rod bipolar cells.

  16. 5-HT1D receptor inhibits renal sympathetic neurotransmission by nitric oxide pathway in anesthetized rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-09-01

    Although serotonin has been shown to inhibit peripheral sympathetic outflow, serotonin regulation on renal sympathetic outflow has not yet been elucidated. This study investigated which 5-HT receptor subtypes are involved. Wistar rats were anesthetized (sodium pentobarbital; 60mg/kg, i.p.), and prepared for in situ autoperfused rat kidney, which allows continuous measurement of systemic blood pressure (SBP), heart rate (HR) and renal perfusion pressure (PP). Electrical stimulation of renal sympathetic nerves resulted in frequency-dependent increases in PP (18.3±1.0, 43.7±2.7 and 66.7±4.0 for 2, 4 and 6Hz, respectively), without altering SBP or HR. 5-HT, 5-carboxamidotryptamine (5-HT1/7 agonist) (0.00000125-0.1μg/kg each) or l-694,247 (5-HT1D agonist; 0.0125μg/kg) i.a. bolus inhibited vasopressor responses by renal nerve electrical stimulation, unlike i.a. bolus of agonists α-methyl-5-HT (5-HT2), 1-PBG (5-HT3), cisapride (5-HT4), AS-19 (5-HT7), CGS-12066B (5-HT1B) or 8-OH-DPAT (5-HT1A) (0.0125μg/kg each). The effect of l-694,247 did not affect the exogenous norepinephrine-induced vasoconstrictions, whereas was abolished by antagonist LY310762 (5-HT1D; 1mg/kg) or l-NAME (nitric oxide; 10mg/kg), but not by indomethacin (COX1/2; 2mg/kg) or glibenclamide (ATP-dependent K(+) channel; 20mg/kg). These results suggest that 5-HT mechanism-induced inhibition of rat vasopressor renal sympathetic outflow is mainly mediated by prejunctional 5-HT1D receptors via nitric oxide release. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. α(2) noradrenergic receptor suppressed CaMKII signaling in spinal dorsal horn of mice with inflammatory pain.

    PubMed

    Wang, Xin-Tai; Lian, Xia; Xu, Ying-Ming; Suo, Zhan-Wei; Yang, Xian; Hu, Xiao-Dong

    2014-02-05

    Intrathecal application of α2 noradrenergic receptor agonists effectively alleviates the pathological pain induced by peripheral tissue injury. However, the spinal antinociceptive mechanisms of α2 noradrenergic receptors remain to be characterized. The present study performed immunohistochemistry and western blot to elucidate the signaling pathway initiated by α2 noradrenergic receptors in spinal dorsal horn of mice, and identified calcium/calmodulin-dependent protein kinase II (CaMKII) as an important target for noradrenergic suppression of inflammatory pain. Our data showed that intraplantar injection of Complete Freund's Adjuvant (CFA) substantially enhanced CaMKII autophosphorylation at Threonine 286, which could be abolished by intrathecal administration of α2 noradrenergic receptor agonist clonidine. Gi protein-coupled α2 noradrenergic receptor might inhibit cAMP-dependent protein kinase (PKA) to disturb CaMKII signaling. We found that pharmacological activation of PKA in intact mice also enhanced spinal CaMKII autophosphorylation level, which was completely antagonized by clonidine. Moreover, direct PKA inhibition in CFA-injected mice mimicked the suppressive effect of α2 noradrenergic receptors on CaMKII. PKA inhibition has been shown to downregulate CaMKII by enhancing protein phosphatase activity. Consistent with this notion, spinal treatment with protein phosphatase inhibitor okadaic acid ruled out clonidine-mediated CaMKII dephosphorylation in CFA-injected mice. Through PKA/protein phosphatase/CaMKII pathway, clonidine noticeably decreased CFA-evoked phosphorylation of N-methyl-d-aspartate subtype glutamate receptor GluN1 and GluN2B subunit as well as α-amino-3-hydroxy-5-methylisoxazole-4-propionic Acid subtype glutamate receptor GluA1 subunit. These data suggested that interference with CaMKII signaling might represent an important mechanism underlying noradrenergic suppression of inflammatory pain. Copyright © 2013 Elsevier B.V. All rights

  18. Cortical NMDA receptor expression in human chronic alcoholism: influence of the TaqIA allele of ANKK1.

    PubMed

    Ridge, Justin P; Dodd, Peter R

    2009-10-01

    Real-time RT-PCR normalized to GAPDH was used to assay N-methyl-D-aspartate (NMDA) receptor NR1, NR2A and NR2B subunit mRNA in human autopsy cortex tissue from chronic alcoholics with and without comorbid cirrhosis of the liver and matched controls. Subunit expression was influenced by the subject's genotype. The TaqIA polymorphism selectively modulated NMDA receptor mean transcript expression in cirrhotic-alcoholic superior frontal cortex, in diametrically opposite ways in male and female subjects. Genetic make-up may differentially influence vulnerability to brain damage by altering the excitation: inhibition balance, particularly in alcoholics with comorbid cirrhosis of the liver. The TaqIA polymorphism occurs within the poorly characterised ankyrin-repeat containing kinase 1 (ANKK1) gene. Using PCR, ANKK1 mRNA transcript was detected in inferior temporal, occipital, superior frontal and primary motor cortex of control human brain. ANKK1 expression may mediate the influence of the TaqIA polymorphism on phenotype.

  19. NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus.

    PubMed

    McDonald, Robert J; Hong, Nancy S; Craig, Laura A; Holahan, Matthew R; Louis, Meira; Muller, Robert U

    2005-09-01

    Recent evidence suggests that N-methyl-D-aspartate (NMDA)-receptor mediated plasticity in hippocampus has a more subtle role in memory-based behaviours than originally thought. One idea is that NMDA-based plasticity is essential for the consolidation of post-training memory but not for the initial encoding or for short-term memory. To further test this idea we used a three-phase variant of the hidden goal water maze task. In the first phase, rats were pre-trained to an initial location. Next, intense, massed training was done in a 2-h interval to teach the rats to go to a new location after either an injection of the NMDA receptor antagonist (6)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or of vehicle. Finally, under drug-free conditions 24 h after new location training, a competition test was done between the original and new locations. We find that N-methyl-D-aspartate (NMDA)-receptor blockade has little or no effect on new location training. In contrast, when tested 24 h later, the strength of the trace for the new location learned during NMDA-receptor blockade was much weaker compared with the trace for the new location learned after saline injection. Further experiments showed similar effects when NMDA-receptors were blocked immediately after the new location training, suggesting that this is a memory consolidation effect. Our results therefore reinforce the notion that hippocampal NMDA-receptors participate in post-training memory consolidation but are not essential for the processes necessary to learn or retain navigational information in the short term.

  20. Synthesis, radiolabeling, and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Pavani, Maria Giovanna; Tabrizi, Mojgan Aghazadeh; Moorman, Allan R; Di Virgilio, Francesco; Cattabriga, Elena; Pancaldi, Cecilia; Gessi, Stefania; Borea, Pier Andrea

    2004-11-15

    The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.1 nM and 727+/-73 fmol/mg of protein, respectively. The high affinity and facile labeling makes it a promising radioligand for a further characterization of P2X(7) receptor subtype.

  1. Control of box C/D snoRNP assembly by N6-methylation of adenine.

    PubMed

    Huang, Lin; Ashraf, Saira; Wang, Jia; Lilley, David Mj

    2017-09-01

    N 6 -methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N 6 -methyladenine at a key trans Hoogsteen-sugar A·G base pair, of which half are methylated in vivo The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5-kDa protein and the induced folding of the RNA Thus, the assembly of the box C/D snoRNP could in principle be regulated by RNA methylation at its critical first stage. Crystallography reveals that N 6 -methylation of adenine prevents the formation of trans Hoogsteen-sugar A·G base pairs, explaining why the box C/D RNA cannot adopt its kinked conformation. More generally, our data indicate that sheared A·G base pairs (but not Watson-Crick base pairs) are more susceptible to disruption by N 6 mA methylation and are therefore possible regulatory sites. The human signal recognition particle RNA and many related Alu retrotransposon RNA species are also methylated at N6 of an adenine that forms a sheared base pair with guanine and mediates a key tertiary interaction. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Vitamin C modulates glutamate transport and NMDA receptor function in the retina.

    PubMed

    Domith, Ivan; Socodato, Renato; Portugal, Camila C; Munis, Andressa F; Duarte-Silva, Aline T; Paes-de-Carvalho, Roberto

    2018-02-01

    Vitamin C (in the reduced form ascorbate or in the oxidized form dehydroascorbate) is implicated in signaling events throughout the central nervous system (CNS). In the retina, a high-affinity transport system for ascorbate has been described and glutamatergic signaling has been reported to control ascorbate release. Here, we investigated the modulatory role played by vitamin C upon glutamate uptake and N-methyl-d-aspartate (NMDA) receptor activation in cultured retinal cells or in intact retinal tissue using biochemical and imaging techniques. We show that both forms of vitamin C, ascorbate or dehydroascorbate, promote an accumulation of extracellular glutamate by a mechanism involving the inhibition of glutamate uptake. This inhibition correlates with the finding that ascorbate promotes a decrease in cell surface levels of the neuronal glutamate transporter excitatory amino acid transporter 3 in retinal neuronal cultures. Interestingly, vitamin C is prone to increase the activity of NMDA receptors but also promotes a decrease in glutamate-stimulated [ 3 H] MK801 binding and decreases cell membrane content of NMDA receptor glutamate ionotropic receptor subunit 1 (GluN1) subunits. Both compounds were also able to increase cAMP response element-binding protein phosphorylation in neuronal nuclei in a glutamate receptor and calcium/calmodulin kinase-dependent manner. Moreover, the effect of ascorbate is not blocked by sulfinpyrazone and then does not depend on its uptake by retinal cells. Overall, these data indicate a novel molecular and functional target for vitamin C impacting on glutamate signaling in retinal neurons. © 2017 International Society for Neurochemistry.

  3. The PICK1 Ca2+ sensor modulates N-methyl-d-aspartate (NMDA) receptor-dependent microRNA-mediated translational repression in neurons.

    PubMed

    Rajgor, Dipen; Fiuza, Maria; Parkinson, Gabrielle T; Hanley, Jonathan G

    2017-06-09

    MicroRNAs (miRNAs) are important regulators of localized mRNA translation in neuronal dendrites. The presence of RNA-induced silencing complex proteins in these compartments and the dynamic miRNA expression changes that occur in response to neuronal stimulation highlight their importance in synaptic plasticity. Previously, we demonstrated a novel interaction between the major RNA-induced silencing complex component Argounaute-2 (Ago2) and the BAR (bin/amphiphysin/rvs) domain protein PICK1. PICK1 recruits Ago2 to recycling endosomes in dendrites, where it inhibits miRNA-mediated translational repression. Chemical induction of long-term depression via NMDA receptor activation causes the dissociation of Ago2 from PICK1 and a consequent increase in dendritic miRNA-mediated gene silencing. The mechanism that underlies the regulation of PICK1-Ago2 binding is unknown. In this study, we demonstrate that the PICK1-Ago2 interaction is directly sensitive to Ca 2+ ions so that high [Ca 2+ ] free reduces PICK1 binding to Ago2. Mutating a stretch of C-terminal Ca 2+ -binding residues in PICK1 results in a complete block of NMDA-induced PICK1-Ago2 disassociation in cortical neurons. Furthermore, the same mutant also blocks NMDA-stimulated miRNA-mediated gene silencing. This study defines a novel mechanism whereby elevated [Ca 2+ ] induced by NMDA receptor activation modulates Ago2 and miRNA activity via PICK1. Our work suggests a Ca 2+ -dependent process to regulate miRNA activity in neurons in response to the induction of long-term depression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Synthesis of methyl 3-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside and methyl 3-O-alpha-D-talopyranosyl-alpha-D-talopyranoside.

    PubMed

    Dubey, R; Jain, R K; Abbas, S A; Matta, K L

    1987-08-01

    Methyl 2-O-benzyl-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha- D-mannopyranoside (4) and methyl 2-O-benzyl-3-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (6) were prepared from a common intermediate, namely, methyl 2-O-benzyl-4,6-O-benzylidene-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D- mannopyranosyl)-alpha-D-mannopyranoside. On treatment with tert-butylchlorodiphenylsilane, in N,N-dimethylformamide in the presence of imidazole, 4 and 6 afforded methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (7), and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert- butyldiphenylsilyl-alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (8), respectively. Compound 8 was converted into its 2,3-O-isopropylidene derivative (9), and oxidation of 7 and 9 with pyridinium chlorochromate, and reduction of the resulting carbonyl intermediates gave methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-talopyranoside and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert-butyldiphe nylsilyl- 2,3-O-isopropylidene-alpha-D-talopyranosyl)-alpha-D-talopyranoside , respectively. Removal of the protecting groups furnished the title disaccharides.

  5. NMDA Receptor as a Newly Identified Member of the Metabotropic Glutamate Receptor Family: Clinical Implications for Neurodegenerative Diseases

    PubMed Central

    Chung, ChiHye

    2013-01-01

    Recent reports have proposed a novel function for the N-methyl-d-aspartate (NMDA) receptor (NMDAR), a well-known excitatory, ionotropic receptor. A series of observations employing pharmacological techniques has proposed that upon ligand binding, this ionotropic receptor can actually function via signaling cascades independent of traditional ionotropic action. Moreover, the “metabotropic” action of NMDARs is suggested to mediate a form of synaptic plasticity, namely long-term synaptic depression (LTD), which shares cellular mechanisms with the synaptic deficits observed in Alzheimer’s disease. Given that a growing body of clinical and preclinical evidence strongly recommends NMDAR antagonists for their therapeutic potentials and advantages in a variety of diseases, further investigation into their molecular and cellular mechanisms is required to better understand the “metabotropic” action of NMDARs. PMID:23740429

  6. The roles of NMDA receptor activation and nucleus reticularis gigantocellularis in the time-dependent changes in descending inhibition after inflammation.

    PubMed

    Terayama, R; Dubner, R; Ren, K

    2002-05-01

    Previous studies indicate that descending modulation of nociception is progressively increased following persistent inflammation. The present study was designed to further examine the role of supraspinal neurons in descending modulation following persistent inflammation. Constant levels of paw withdrawal (PW) and tail flick (TF) latencies to noxious heat stimuli were achieved in lightly anesthetized rats (pentobarbital sodium 3-10 mg/kg/h, i.v.). Electrical stimulation (ES, 0.1 ms, 100 Hz, 20-200 A) was delivered to the rostral ventromedial medulla (RVM), mainly the nucleus raphe magnus (NRM). ES produced intensity-dependent inhibition of PW and TF. Following a unilateral hindpaw inflammation produced by injection of complete Freund's adjuvant (CFA), ES-produced inhibition underwent time-dependent changes. There was an initial decrease at 3 h after inflammation and a subsequent increase after inflammation in the excitability of RVM neurons and the inhibition of nocifensive responses. These changes were most robust after stimulation of the inflamed paw although similar findings were seen on the non-inflamed paw and tail. The inflammation-induced dynamic changes in descending modulation appeared to be correlated with changes in the activation of the N-methyl--aspartate (NMDA) excitatory amino acid receptor. Microinjection of an NMDA receptor antagonist, AP5 (1 pmol), resulted in an increase in the current intensity required for inhibition of the PW and TF. The effect of AP5 was less at 3 h after inflammation and significantly greater at 11-24 h after inflammation. In a subsequent experiment, ES-produced inhibition of nocifensive responses after inflammation was examined following selective chemical lesions of the nuclei reticularis gigantocellularis (NGC). Compared to vehicle-injected animals, microinjection of a soma-selective excitotoxin, ibotenic acid, enhanced ES-produced inhibition at 3 h but not at 24 h after inflammation. We propose that these time course

  7. GluN2B-containing NMDA receptors and AMPA receptors in medial prefrontal cortex are necessary for odor span in rats.

    PubMed

    Davies, Don A; Greba, Quentin; Howland, John G

    2013-01-01

    Working memory is a type of short-term memory involved in the maintenance and manipulation of information essential for complex cognition. While memory span capacity has been extensively studied in humans as a measure of working memory, it has received considerably less attention in rodents. Our aim was to examine the role of the N-methyl-D-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in odor span capacity using systemic injections or infusions of receptor antagonists into the medial prefrontal cortex (mPFC). Long Evans rats were trained on a well-characterized odor span task (OST). Initially, rats were trained to dig for a food reward in sand followed by training on a non-match to sample discrimination using sand scented with household spices. The rats were then required to perform a serial delayed non-match to sample procedure which was their odor span. Systemic injection of the broad spectrum NMDA receptor antagonist 3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) (10 mg/kg) or the GluN2B-selective antagonist Ro 25-6981 (10 mg/kg but not 6 mg/kg) significantly reduced odor span capacity. Infusions of the GluN2B- selective antagonist Ro 25-6981 (2.5 μg/hemisphere) into mPFC reduced span capacity, an effect that was nearly significant (p = 0.069). Infusions of the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (1.25 μg/hemisphere) into mPFC reduced span capacity and latency for the rats to make a choice in the task. These results demonstrate span capacity in rats depends on ionotropic glutamate receptor activation in the mPFC. Further understanding of the circuitry underlying span capacity may aid in the novel therapeutic drug development for persons with working memory impairments as a result of disorders such as schizophrenia and Alzheimer's disease.

  8. Characterization of Human Hippocampal Neural Stem/Progenitor Cells and Their Application to Physiologically Relevant Assays for Multiple Ionotropic Glutamate Receptors.

    PubMed

    Fukushima, Kazuyuki; Tabata, Yoshikuni; Imaizumi, Yoichi; Kohmura, Naohiro; Sugawara, Michiko; Sawada, Kohei; Yamazaki, Kazuto; Ito, Masashi

    2014-09-01

    The hippocampus is an important brain region that is involved in neurological disorders such as Alzheimer disease, schizophrenia, and epilepsy. Ionotropic glutamate receptors-namely,N-methyl-D-aspartate (NMDA) receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors (AMPARs), and kainic acid (KA) receptors (KARs)-are well known to be involved in these diseases by mediating long-term potentiation, excitotoxicity, or both. To predict the therapeutic efficacy and neuronal toxicity of drug candidates acting on these receptors, physiologically relevant systems for assaying brain region-specific human neural cells are necessary. Here, we characterized the functional differentiation of human fetal hippocampus-derived neural stem/progenitor cells-namely, HIP-009 cells. Calcium rise assay demonstrated that, after a 4-week differentiation, the cells responded to NMDA (EC50= 7.5 ± 0.4 µM; n= 4), AMPA (EC50= 2.5 ± 0.1 µM; n= 3), or KA (EC50= 33.5 ± 1.1 µM; n= 3) in a concentration-dependent manner. An AMPA-evoked calcium rise was observed in the absence of the desensitization inhibitor cyclothiazide. In addition, the calcium rise induced by these agonists was inhibited by antagonists for each receptor-namely, MK-801 for NMDA stimulation (IC50= 0.6 ± 0.1 µM; n= 4) and NBQX for AMPA and KA stimulation (IC50= 0.7 ± 0.1 and 0.7 ± 0.03 µM, respectively; n= 3). The gene expression profile of differentiated HIP-009 cells was distinct from that of undifferentiated cells and closely resembled that of the human adult hippocampus. Our results show that HIP-009 cells are a unique tool for obtaining human hippocampal neural cells and are applicable to systems for assay of ionotropic glutamate receptors as a physiologically relevant in vitro model. © 2014 Society for Laboratory Automation and Screening.

  9. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    PubMed

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  10. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity.

    PubMed

    Gray, John A; Zito, Karen; Hell, Johannes W

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction.

  11. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity

    PubMed Central

    Gray, John A.; Zito, Karen; Hell, Johannes W.

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction. PMID:27303637

  12. Interaction of N-benzoyl-D-phenylalanine and related compounds with the sulphonylurea receptor of β-cells

    PubMed Central

    Schwanstecher, Christina; Meyer, Miriam; Schwanstecher, Mathias; Panten, Uwe

    1998-01-01

    The structure activity relationships for the insulin secretagogues N-benzoyl-D-phenylalanine (NBDP) and related compounds were examined at the sulphonylurea receptor level by use of cultured HIT-T15 and mouse pancreatic β-cells. The affinities of these compounds for the sulphonylurea receptor were compared with their potencies for KATP-channel inhibition. In addition, the effects of cytosolic nucleotides on KATP-channel inhibition by NBDP were investigated.NBDP displayed a dissociation constant for binding to the sulphonylurea receptor (KD value) of 11 μM and half-maximally effective concentrations of KATP-channel inhibition (EC50 values) between 2 and 4 μM (in the absence of cytosolic nucleotides or presence of 0.1 mM GDP or 1 mM ADP).In the absence of cytosolic nucleotides or presence of GDP (0.1 mM) maximally effective concentrations of NBDP (0.1–1 mM) reduced KATP-channel activity to 47% and 44% of control, respectively. In the presence of ADP (1 mM), KATP-channel activity was completely suppressed by 0.1 mM NBDP.The L-isomer of N-benzoyl-phenylalanine displayed a 20 fold lower affinity and an 80 fold lower potency than the D-isomer.Introduction of a p-nitro substituent in the D-phenylalanine moiety of NBDP did not decrease lipophilicity but lowered affinity and potency by more than 30 fold.Introduction of a p-amino substituent in the D-phenylalanine moiety of NBDP (N-benzoyl-p-amino-D-phenylalanine, NBADP) reduced lipophilicity and lowered affinity and potency by about 10 fold. This loss of affinity and potency was compensated for by formation of the phenylpropionic acid derivative of NBADP. A similar difference in affinity was observed for the sulphonylurea carbutamide and its phenylpropionic acid derivative.Replacing the benzene ring in the D-phenylalanine moiety of NBDP by a cyclohexyl ring increased lipophilicity, and the KD and EC50 values were slightly lower than for NBDP. Exchange of both benzene rings in NBDP by cyclohexyl rings

  13. The role of NMDA receptors in human eating behavior: evidence from a case of anti-NMDA receptor encephalitis.

    PubMed

    Perogamvros, Lampros; Schnider, Armin; Leemann, Beatrice

    2012-06-01

    Research in animal models has implicated N-methyl-D-aspartate (NMDA) receptors (NMDARs) in the control of food intake. Until now, these findings have been not replicated in humans. Here we describe a 22-year-old woman with anti-NMDAR encephalitis and no prior neurological or psychiatric history. Her clinical course was marked by successive eating disorders: anorexia followed by hyperphagia. We propose that, much as they do in other animals, NMDARs in humans interact with the neuroendocrine, homeostatic, and reward systems controlling food intake in the central and peripheral nervous system structures related to feeding and satiety.

  14. Targeting of glycine site on NMDA receptor as a possible new strategy for autism treatment.

    PubMed

    Ghanizadeh, Ahmad

    2011-05-01

    The exact pathophysiology of the neurodevelopment disorder of autism is not clear and there is not any curative approach for it. There is only one FDA-approved medication for its management. Therefore, providing of novel treatments is highly required. The hypofunction of GABAergic system and glutamate toxicity are generally believed to have a causal role for autism. The antagonist of the N-methyl-D-aspartic acid (NMDA) glutamate receptor improves autism. Glycine is required for the activation of NMDA receptor. The antagonist of glycine site decreases NMDA receptor conductance. It is hypothesis that glycine site antagonists can be tested as a new strategy for the management of autism.

  15. The Pharmacological Inhibition of Fatty Acid Amide Hydrolase Prevents Excitotoxic Damage in the Rat Striatum: Possible Involvement of CB1 Receptors Regulation.

    PubMed

    Aguilera-Portillo, Gabriela; Rangel-López, Edgar; Villeda-Hernández, Juana; Chavarría, Anahí; Castellanos, Pilar; Elmazoglu, Zubeyir; Karasu, Çimen; Túnez, Isaac; Pedraza, Gibrán; Königsberg, Mina; Santamaría, Abel

    2018-05-25

    The endocannabinoid system (ECS) actively participates in several physiological processes within the central nervous system. Among such, its involvement in the downregulation of the N-methyl-D-aspartate receptor (NMDAr) through a modulatory input at the cannabinoid receptors (CBr) has been established. After its production via the kynurenine pathway (KP), quinolinic acid (QUIN) can act as an excitotoxin through the selective overactivation of NMDAr, thus participating in the onset and development of neurological disorders. In this work, we evaluated whether the pharmacological inhibition of fatty acid amide hydrolase (FAAH) by URB597, and the consequent increase in the endogenous levels of anandamide, can prevent the excitotoxic damage induced by QUIN. URB597 (0.3 mg/kg/day × 7 days, administered before, during and after the striatal lesion) exerted protective effects on the QUIN-induced motor (asymmetric behavior) and biochemical (lipid peroxidation and protein carbonylation) alterations in rats. URB597 also preserved the structural integrity of the striatum and prevented the neuronal loss (assessed as microtubule-associated protein-2 and glutamate decarboxylase localization) induced by QUIN (1 μL intrastriatal, 240 nmol/μL), while modified the early localization patterns of CBr1 (CB1) and NMDAr subunit 1 (NR1). Altogether, these findings support the concept that the pharmacological manipulation of the endocannabinoid system plays a neuroprotective role against excitotoxic insults in the central nervous system.

  16. The function of metabotropic glutamate receptors in thalamus and cortex.

    PubMed

    Sherman, S Murray

    2014-04-01

    Metabotropic glutamate receptors (mGluRs) are found throughout thalamus and cortex and are clearly important to circuit behavior in both structures, and so considering only participation of ionotropic glutamate receptors (e.g., [R,S]-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and N-methyl-d-aspartate receptors [NMDA] receptors) in glutamatergic processing would be an unfortunate oversimplification. These mGluRs are found both postsynaptically, on target cells of glutamatergic afferents, and presynaptically, on various synaptic terminals themselves, and when activated, they produce prolonged effects lasting at least hundreds of msec to several sec and perhaps longer. Two main types exist: activation of group I mGluRs causes postsynaptic depolarization, and group II, hyperpolarization. Both types are implicated in synaptic plasticity, both short term and long term. Their evident importance in functioning of thalamus and cortex makes it critical to develop a better understanding of how these receptors are normally activated, especially because they also seem implicated in a wide range of neurological and cognitive pathologies.

  17. The Function of Metabotropic Glutamate Receptors in Thalamus and Cortex

    PubMed Central

    Sherman, S. Murray

    2016-01-01

    Metabotropic glutamate receptors (mGluRs) are found throughout thalamus and cortex and are clearly important to circuit behavior in both structures, and so considering only participation of ionotropic glutamate receptors (e.g., [R,S]-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and N-methyl-d-aspartate receptors [NMDA] receptors) in glutamatergic processing would be an unfortunate oversimplification. These mGluRs are found both postsynaptically, on target cells of glutamatergic afferents, and presynaptically, on various synaptic terminals themselves, and when activated, they produce prolonged effects lasting at least hundreds of msec to several sec and perhaps longer. Two main types exist: activation of group I mGluRs causes postsynaptic depolarization, and group II, hyperpolarization. Both types are implicated in synaptic plasticity, both short term and long term. Their evident importance in functioning of thalamus and cortex makes it critical to develop a better understanding of how these receptors are normally activated, especially because they also seem implicated in a wide range of neurological and cognitive pathologies. PMID:23459618

  18. Deletion of the N-terminal Domain (NTD) Alters the Ethanol Inhibition of NMDA Receptors in a Subunit-Dependent Manner

    PubMed Central

    Smothers, C. Thetford; Jin, Chun; Woodward, John J.

    2013-01-01

    Background Ethanol inhibition of NMDA receptors is poorly understood due in part to the organizational complexity of the receptor that provides ample locations for sites of action. Among these the N-terminal domain of NMDA receptor subunits contains binding sites for a variety of modulatory agents including zinc, protons and GluN2B selective antagonists such as ifenprodil or Ro-25–6981. Ethanol inhibition of neuronal NMDA receptors expressed in some brain areas has been reported to be occluded by the presence of ifenprodil or similar compounds suggesting that the N-terminal domain may be important in regulating the ethanol sensitivity of NMDA receptors. Methods Wild-type GluN1 and GluN2 subunits and those in which the coding sequence for the N-terminal domain was deleted were expressed in HEK293 cells. Whole-cell voltage-clamp recording was used to assess ethanol inhibition of wild-type and mutant receptors lacking the N-terminal domain. Results As compared to wild-type GluN1/GluN2A receptors, ethanol inhibition was slightly greater in cells expressing GluN2A subunits lacking the N-terminal domain. In contrast, GluN2B N-terminal deletion mutants showed normal ethanol inhibition while those lacking the N-terminal domain in both GluN1 and GluN2B subunits had decreased ethanol inhibition as compared to wild-type receptors. N-terminal domain lacking GluN2B receptors were insensitive to ifenprodil but retained normal sensitivity to ethanol. Conclusions These findings indicate that the N-terminal domain modestly influences the ethanol sensitivity of NMDA receptors in a subunit-dependent manner. They also show that ifenprodil’s actions on GluN2B containing receptors can be dissociated from those of ethanol. These results suggest that while the N-terminal domain is not a primary site of action for ethanol on NMDA receptors, it likely affects sensitivity via actions on intrinsic channel properties. PMID:23905549

  19. The N-methyl-D-aspartate receptor subunits NR2A and NR2B bind to the SH2 domains of phospholipase C-gamma.

    PubMed

    Gurd, J W; Bissoon, N

    1997-08-01

    The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-gamma (PLC-gamma). A glutathione S-transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-gamma was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-gamma and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.

  20. Deficient prepulse inhibition of acoustic startle in Hooded-Wistar rats compared with Sprague-Dawley rats.

    PubMed

    van den Buuse, Maarten

    2003-04-01

    1. Prepulse inhibition of acoustic startle has been suggested as a model of sensorimotor gating and central sensory information processing. Prepulse inhibition is impaired in patients with schizophrenia and responses can be restored by antipsychotic drug treatment. In the present study, startle and prepulse inhibition of startle were compared in different rat strains. 2. Sprague-Dawley rats showed robust inhibition of startle responses by increasing intensities of prepulse delivered just before the startle stimulus. In contrast, at both 4 and 10 weeks of age, rats of the Hooded-Wistar line had markedly reduced prepulse inhibition, although startle responses were not different. 3. Treatment with the dopamine receptor agonist apomorphine (0.1 mg/kg) or the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 (0.1 mg/kg) caused disruption of prepulse inhibition in Sprague-Dawley rats. In Hooded-Wistar rats, apomorphine further reduced the already low level of prepulse inhibition, but MK-801 treatment had no significant effect. This suggests that the impaired prepulse inhibition in Hooded-Wistar rats could be caused by changes in glutamatergic activity and/or NMDA receptors in these rats. 4. In photocell cages, spontaneous exploratory activity and inner zone activity were significantly lower in Hooded-Wistar rats than in Sprague-Dawley rats. Similarly, on the elevated plus-maze, Hooded-Wistar rats showed a lower propensity to visit the open arms. In contrast, amphetamine (0.5 mg/kg)-induced locomotor hyperactivity, an animal model of psychosis, was enhanced in Hooded-Wistar rats. 5. These data suggest that the Hooded-Wistar line could be a useful genetic animal model to study the interaction of glutamatergic and dopaminergic mechanisms in anxiety and schizophrenia.

  1. Isolation, activity and immunological characterisation of a secreted aspartic protease, CtsD, from Aspergillus fumigatus.

    PubMed

    Vickers, Imelda; Reeves, Emer P; Kavanagh, Kevin A; Doyle, Sean

    2007-05-01

    Aspergillus fumigatus is an opportunistic fungal pathogen that infects immunocompromised patients. A putative aspartic protease gene (ctsD; 1425 bp; intron-free) was identified and cloned. CtsD is evolutionarily distinct from all previously identified A. fumigatus aspartic proteases. Recombinant CtsD was expressed in inclusion bodies in Escherichia coli (0.2mg/g cells) and subjected to extensive proteolysis in the baculovirus expression system. Activation studies performed on purified, refolded, recombinant CtsD resulted in protease activation with a pH(opt)4.0 and specific activity=10 U/mg. Pepstatin A also inhibited recombinant CtsD activity by up to 72% thereby confirming classification as an aspartic protease. Native CtsD was also immunologically identified in culture supernatants and purified from fungal cultures using pepstatin-agarose affinity chromatography (7.8 microg CtsD/g mycelia). In A. fumigatus, semi-quantitative RT-PCR analysis revealed expression of ctsD in minimal and proteinaceous media only. Expression of ctsD was absent under nutrient-rich conditions. Expression of ctsD was also detected, in vivo, in the Galleria mellonella virulence model following A. fumigatus infection.

  2. Multiple Rising Doses of Oral BI 425809, a GlyT1 Inhibitor, in Young and Elderly Healthy Volunteers: A Randomised, Double-Blind, Phase I Study Investigating Safety and Pharmacokinetics.

    PubMed

    Moschetti, Viktoria; Schlecker, Christina; Wind, Sven; Goetz, Sophia; Schmitt, Holger; Schultz, Armin; Liesenfeld, Karl-Heinz; Wunderlich, Glen; Desch, Michael

    2018-05-30

    Schizophrenia and Alzheimer's disease are characterised by abnormalities in glutamatergic pathways related to N-methyl-D-aspartate receptor hypofunction. Glycine is an N-methyl-D-aspartate receptor co-agonist; inhibition of glycine transporter 1 may improve N-methyl-D-aspartate receptor function. This phase I, randomised, two-part study evaluated the safety, tolerability and pharmacokinetic profile of BI 425809, a novel glycine transporter 1 inhibitor, in healthy male and female volunteers. Part 1 evaluated BI 425809 10, 25, 50 or 75 mg once daily or 75 mg twice daily in young subjects, and 25 mg or 50 mg once daily in elderly subjects. Each dose group comprised 12 subjects who received BI 425809 (n = 9) or placebo (n = 3) for 14 days (day 1: single dose; days 4-14: multiple dosing). Part 2 compared pharmacokinetic profiles in 12 subjects who received a single dose of BI 425809 25 mg in the morning and evening. Pharmacokinetic profiles were similarly shaped for all dose groups. Median time to maximum plasma concentration was 3.0-4.5 h with steady state being reached between days 6 and 10. Pharmacokinetic parameters demonstrated dose linearity at the predicted therapeutic exposure range of BI 425809 ≤ 25 mg once daily, but increased less than dose proportionally for ≥ 50 mg once daily. All reported adverse events were of mild-to-moderate intensity, 51/84 (61%; part 1) subjects had one or more treatment-related adverse event, no serious adverse events occurred and no dose dependency was observed. Pharmacokinetic properties support both morning and evening dosing. BI 425809 was generally well tolerated at all tested doses. CLINICALTRIALS. NCT02337283.

  3. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    PubMed

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D 1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D 1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D 1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D 1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D 1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The distribution of excitatory amino acid receptors on acutely dissociated dorsal horn neurons from postnatal rats.

    PubMed

    Arancio, O; Yoshimura, M; Murase, K; MacDermott, A B

    1993-01-01

    Excitatory amino acid receptor distribution was mapped on acutely dissociated neurons from postnatal rat spinal cord dorsal horn. N-methyl D-aspartate, quisqualate and kainate were applied to multiple locations along the somal and dendritic surfaces of voltage-clamped neurons by means of a pressure application system. To partially compensate for the decrement of response amplitude due to current loss between the site of activation on the dendrite and the recording electrode at the soma, a solution containing 0.15 M KCl was applied on the cell bodies and dendrites of some cells to estimate an empirical length constant. In the majority of the cells tested, the dendritic membrane had regions of higher sensitivity to excitatory amino acid agonists than the somatic membrane, with dendritic response amplitudes reaching more than seven times those at the cell body. A comparison of the relative changes in sensitivity between each combination of two of the three excitatory amino acid agonists along the same dendrite showed different patterns of agonist sensitivity along the dendrite in the majority of the cells. These data were obtained from dorsal horn neurons that had developed and formed synaptic connections in vivo. They demonstrate that in contrast to observations made on ventral horn neurons, receptor density for all the excitatory amino acid receptors on dorsal horn neurons, including the N-methyl-D-aspartate receptor, are generally higher on the dendrites than on the soma. Further, these results are similar to those obtained from dorsal horn neurons grown in culture.

  5. Antistress Effects of Rosa rugosa Thunb. on Total Sleep Deprivation-Induced Anxiety-Like Behavior and Cognitive Dysfunction in Rat: Possible Mechanism of Action of 5-HT6 Receptor Antagonist.

    PubMed

    Na, Ju-Ryun; Oh, Dool-Ri; Han, SeulHee; Kim, Yu-Jin; Choi, EunJin; Bae, Donghyuck; Oh, Dong Hwan; Lee, Yoo-Hyun; Kim, Sunoh; Jun, Woojin

    2016-09-01

    Our previous results suggest that the Rosa rugosa Thunb. (family Rosaceae) alleviates endurance exercise-induced stress by decreasing oxidative stress levels. This study aimed to screen and identify the physiological antistress effects of an extract of R. rugosa (RO) on sleep deprivation-induced anxiety-like behavior and cognitive tests (in vivo) and tested for hippocampal CORT and monoamine levels (ex vivo), corticosterone (CORT)-induced injury, N-methyl-d-aspartate (NMDA) receptor, and serotonin 6 (5-hydroxytryptamine 6, 5-HT6) receptor activities (in vitro) in search of active principles and underlying mechanisms of action. We confirmed the antistress effects of RO in a sleep-deprived stress model in rat and explored the underlying mechanisms of its action. In conclusion, an R. rugosa extract showed efficacy and potential for use as an antistress therapy to treat sleep deprivation through its antagonism of the 5-HT6 receptor and resulting inhibition of cAMP activity.

  6. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-04-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.

  7. TPEN, a Specific Zn2+ Chelator, Inhibits Sodium Dithionite and Glucose Deprivation (SDGD)-Induced Neuronal Death by Modulating Apoptosis, Glutamate Signaling, and Voltage-Gated K+ and Na+ Channels.

    PubMed

    Zhang, Feng; Ma, Xue-Ling; Wang, Yu-Xiang; He, Cong-Cong; Tian, Kun; Wang, Hong-Gang; An, Di; Heng, Bin; Xie, Lai-Hua; Liu, Yan-Qiang

    2017-03-01

    Hypoxia-ischemia-induced neuronal death is an important pathophysiological process that accompanies ischemic stroke and represents a major challenge in preventing ischemic stroke. To elucidate factors related to and a potential preventative mechanism of hypoxia-ischemia-induced neuronal death, primary neurons were exposed to sodium dithionite and glucose deprivation (SDGD) to mimic hypoxic-ischemic conditions. The effects of N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn 2+ -chelating agent, on SDGD-induced neuronal death, glutamate signaling (including the free glutamate concentration and expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor (GluR2) and N-methyl-D-aspartate (NMDA) receptor subunits (NR2B), and voltage-dependent K + and Na + channel currents were also investigated. Our results demonstrated that TPEN significantly suppressed increases in cell death, apoptosis, neuronal glutamate release into the culture medium, NR2B protein expression, and I K as well as decreased GluR2 protein expression and Na + channel activity in primary cultured neurons exposed to SDGD. These results suggest that TPEN could inhibit SDGD-induced neuronal death by modulating apoptosis, glutamate signaling (via ligand-gated channels such as AMPA and NMDA receptors), and voltage-gated K + and Na + channels in neurons. Hence, Zn 2+ chelation might be a promising approach for counteracting the neuronal loss caused by transient global ischemia. Moreover, TPEN could represent a potential cell-targeted therapy.

  8. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus

    PubMed Central

    Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard

    2007-01-01

    The sigma receptor (σR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-d-aspartate receptor (NMDAR) functions by σR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity σR-1 agonist, we found that σR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the σR-1 as postsynaptic regulator of synaptic transmission. PMID:17068104

  9. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus.

    PubMed

    Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard

    2007-01-01

    The sigma receptor (sigmaR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-D-aspartate receptor (NMDAR) functions by sigmaR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity sigmaR-1 agonist, we found that sigmaR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the sigmaR-1 as postsynaptic regulator of synaptic transmission.

  10. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    PubMed

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  11. Reversal of inhibition of putative dopaminergic neurons of the ventral tegmental area: Interaction of GABAB and D2 receptors

    PubMed Central

    Nimitvilai, Sudarat; Arora, Devinder S.; McElvain, Maureen A.; Brodie, Mark S.

    2012-01-01

    Neurons of the ventral tegmental area (VTA) are critical in the rewarding and reinforcing properties of drugs of abuse. Desensitization of VTA neurons to moderate extracellular concentrations of dopamine (DA) is dependent on protein kinase C (PKC) and intracellular calcium levels. This desensitization is called DA inhibition reversal (DIR), as it requires concurrent activation of D2 and D1-like receptors; activation of D2 receptors alone does not result in desensitization. Activation of other G-protein linked receptors can substitute for D1 activation. Like D2 receptors, GABAB receptors in the VTA are coupled to G-protein-linked potassium channels. In the present study, we examined interactions between a GABAB agonist, baclofen, and dopamine agonists, dopamine and quinpirole, to determine whether there was some interaction in the processes of desensitization of GABAB and D2 responses. Long-duration administration of baclofen alone produced reversal of the baclofen-induced inhibition indicative of desensitization, and this desensitization persisted for at least 60 min after baclofen washout. Desensitization to baclofen was dependent on protein kinase C. Dopamine inhibition was reduced for 30 min after baclofen-induced desensitization and conversely, the magnitude of baclofen inhibition was reduced for 30 min by long-duration application of dopamine, but not quinpirole. These results indicate that D2 and GABAB receptors share some protein kinase C-dependent mechanisms of receptor desensitization. PMID:22986166

  12. Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation

    PubMed Central

    Terry-Lorenzo, Ryan T.; Chun, Lawrence E.; Brown, Scott P.; Heffernan, Michele L. R.; Fang, Q. Kevin; Orsini, Michael A.; Pollegioni, Loredano; Hardy, Larry W.; Spear, Kerry L.; Large, Thomas H.

    2014-01-01

    The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, ‘compound 2’ [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors. PMID:25001371

  13. NMDA Receptor Autoantibodies in Autoimmune Encephalitis Cause a Subunit-Specific Nanoscale Redistribution of NMDA Receptors.

    PubMed

    Ladépêche, Laurent; Planagumà, Jesús; Thakur, Shreyasi; Suárez, Irina; Hara, Makoto; Borbely, Joseph Steven; Sandoval, Angel; Laparra-Cuervo, Lara; Dalmau, Josep; Lakadamyali, Melike

    2018-06-26

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder mediated by autoantibodies against the GluN1 subunit of the NMDAR. Patients' antibodies cause cross-linking and internalization of NMDAR, but the synaptic events leading to depletion of NMDAR are poorly understood. Using super-resolution microscopy, we studied the effects of the autoantibodies on the nanoscale distribution of NMDAR in cultured neurons. Our findings show that, under control conditions, NMDARs form nanosized objects and patients' antibodies increase the clustering of synaptic and extrasynaptic receptors inside the nano-objects. This clustering is subunit specific and predominantly affects GluN2B-NMDARs. Following internalization, the remaining surface NMDARs return to control clustering levels but are preferentially retained at the synapse. Monte Carlo simulations using a model in which antibodies induce NMDAR cross-linking and disruption of interactions with other proteins recapitulated these results. Finally, activation of EphB2 receptor partially antagonized the antibody-mediated disorganization of the nanoscale surface distribution of NMDARs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. NMDA receptor GluN2A subunit deletion protects against dependence-like ethanol drinking.

    PubMed

    Jury, Nicholas J; Radke, Anna K; Pati, Dipanwita; Kocharian, Adrina; Mishina, Masayoshi; Kash, Thomas L; Holmes, Andrew

    2018-06-25

    The N-methyl- D -aspartate receptor (NMDAR) is mechanistically involved in the behavioral and neurophysiological effects of alcohol, but the specific role of the GluN2A subunit remains unclear. Here, we exposed mice with constitutive GluN2A gene knockout (KO) to chronic intermittent ethanol vapor (CIE) and tested for EtOH consumption/preference using a two-bottle choice paradigm, as well as NMDAR-mediated transmission at basolateral amygdala synapses via ex vivo slice electrophysiology. Results showed that GluN2A KO mice attained comparable blood EtOH levels in response to CIE exposure, but did not exhibit the significant increase in EtOH drinking that was observed in CIE-exposed wildtypes. GluN2A KO mice also showed no alterations in BLA NMDAR-mediated synaptic transmission after CIE, relative to air-exposed, whereas C57BL/6 J mice showed an attenuated synaptic response to GluN2B antagonism. Taken together, these data add to mounting evidence supporting GluN2A-containing NMDARs as a mechanism underlying relative risk for developing EtOH dependence after repeated EtOH exposure. Copyright © 2018. Published by Elsevier B.V.

  15. Clinically Relevant Concentrations of Ketamine Inhibit Osteoclast Formation In Vitro in Mouse Bone Marrow Cultures.

    PubMed

    Du, Erxia; McAllister, Patrick; Venna, Venugopal Reddy; Xiao, Liping

    2017-04-01

    Ketamine has been used safely in clinics for decades for analgesia and anesthesia. It is increasingly popular in clinical practice due to its new uses and importance for emergency procedures. It is known that ketamine is sequestered in the bone marrow and the major receptors for ketamine, noncompetitive N-methyl-d-aspartate receptors (NMDARs), are expressed in osteoclasts (OCs) and osteoblasts. However, the impact of ketamine on OCs or osteoblasts is unknown. In this study, we investigated the effects of ketamine on osteoclastogenesis and regulation of NMDARs expression in vitro. Bone marrows (BMs) or bone marrow macrophages (BMMs) were cultured in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL) with or without ketamine for up to 6 days. OC formation peaked at day 5. On day 5 of culture, ketamine inhibited OC formation from both BM and BMM cultures at clinically relevant concentrations (3-200 µM). Ketamine inhibited RANKL-induced expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) in BMM cultures. Inhibition of ketamine on RANKL-induced osteoclastogenesis is associated with down-regulation of NMDARs. In addition, ketamine significantly inhibited the M-CSF induced migration of BMMs, inhibited cell fusion and significantly increased mature OC apoptosis. We conclude that clinically relevant concentrations of ketamine inhibit OC formation in both BM and BMM cultures in vitro through inhibiting migration and fusion process and enhancing mature OC apoptosis. It is likely that ketamine regulates osteoclastogenesis, at least in part, via its effects on NMDAR expression. J. Cell. Biochem. 118: 914-923, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.

  17. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  18. Radiosynthesis of carbon-11 and fluorine-18 labelled radiotracers to image the ionotropic and metabotropic glutamate receptors.

    PubMed

    Sobrio, Franck

    2013-01-01

    l-Glutamate is the major neurotransmitter in the central nervous system and activates both ionotropic and metabotropic receptors. Here the radiosynthesis of radiotracers developed for both types of receptors are reviewed with a highlight on the radiopharmaceuticals used or evaluated in humans. At first, radiotracers were developed for ionotropic N-methyl-d-aspartate receptors without any success to obtain radiopharmaceuticals useable for clinical or even preclinical positron emission tomography (PET) imaging purposes. Some compounds were radiolabelled and evaluated for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors without any successful results. The recent development of radiotracers for metabotropic glutamate receptors was more efficient because radiopharmaceuticals are currently evaluated or used in clinical trials to study the mGluR1, mGluR2 or mGluR5 receptors by PET. Although the majority of the radiotracers were classically labelled with carbon-11 by O- or N-[(11) C]-methylation or with fluorine-18 nucleophilic substitution of aromatic nitro or halogeno precursors using krypofix 2.2.2/potassium [(18) F]fluoride complex, some radiosyntheses were performed with recent radiolabelling reactions like the use of iodionium salt for [(18) F]-labelling. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics.

    PubMed

    Jin, Zhe; Bhandage, Amol K; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R; Birnir, Bryndis

    2014-01-01

    The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence.

  20. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics

    PubMed Central

    Jin, Zhe; Bhandage, Amol K.; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R.; Birnir, Bryndis

    2014-01-01

    The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence. PMID:25278838

  1. Endothelial glucocorticoid receptor promoter methylation according to dexamethasone sensitivity

    PubMed Central

    Mata-Greenwood, Eugenia; Jackson, P Naomi; Pearce, William J; Zhang, Lubo

    2016-01-01

    We have previously shown that in vitro sensitivity to dexamethasone (DEX) stimulation in human endothelial cells is positively regulated by the glucocorticoid receptor (NR3C1, GR). The present study determined the role of differential GR transcriptional regulation in glucocorticoid sensitivity. We studied 25 human umbilical vein endothelial cells (HUVECs) that had been previously characterized as DEX-sensitive (n = 15), or resistant (n = 10). Real-time PCR analysis of GR 5′UTR mRNA isoforms showed that all HUVECs expressed isoforms 1B, 1C, 1D, 1F, and 1H, and isoforms 1B and 1C were predominantly expressed. DEX-resistant cells expressed higher basal levels of the 5′UTR mRNA isoforms 1C and 1D, but lower levels of the 5′UTR mRNA isoform 1F than DEX-sensitive cells. DEX treatment significantly decreased GRα and GR-1C mRNA isoform expression in DEX-resistant cells only. Reporter luciferase assays indicated that differential GR mRNA isoform expression was not due to differential promoter usage between DEX-sensitive and DEX-resistant cells. Analysis of promoter methylation, however, showed that DEX-sensitive cells have higher methylation levels of promoter 1D and lower methylation levels of promoter 1F than DEX-resistant cells. Treatment with 5-aza-2-deoxycytidine abolished the differential 5′UTR mRNA isoform expression between DEX-sensitive and DEX-resistant cells. Finally, both GRα overexpression and 5-aza-2-deoxycytidine treatment eliminated the differences between sensitivity groups to DEX-mediated downregulation of endothelial nitric oxide synthase (NOS3), and upregulation of plasminogen activator inhibitor 1 (SERPINE1). In sum, human endothelial GR 5′UTR mRNA expression is regulated by promoter methylation with DEX-sensitive and DEX-resistant cells having different GR promoter methylation patterns. PMID:26242202

  2. Development of 2′-substituted (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine analogues as potent N-methyl-d-aspartic acid receptor agonists

    PubMed Central

    Risgaard, Rune; Nielsen, Simon D.; Hansen, Kasper B.; Jensen, Christina M.; Nielsen, Birgitte; Traynelis, Stephen F.; Clausen, Rasmus P.

    2013-01-01

    A series of 2′-substituted analogues of the selective NMDA receptor ligand (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine ((S)-CCG-IV) have been designed, synthesized and pharmacologically characterized. The design was based on a docking study hypothesizing that substituents in the 2′-position would protrude into a region where differences among the NMDA receptor GluN2 subunits exist. Various synthetic routes were explored, and two different routes provided a series of alkyl-substituted analogues. Pharmacological characterization revealed that these compounds are NMDA receptor agonists and that potency decreases with increasing size of the alkyl groups. Variations in agonist activity are observed at the different recombinant NMDA receptor subtypes. This study demonstrates that it is possible to introduce substituents in the 2′-position of (S)-CCG-IV while maintaining agonist activity and that variation among NMDA receptor subtypes may be achieved by probing this region of the receptor. PMID:23614571

  3. Co-localisation of advanced glycation end products and D-β-aspartic acid-containing proteins in gelatinous drop-like corneal dystrophy.

    PubMed

    Kaji, Yuichi; Oshika, Tetsuro; Takazawa, Yutaka; Fukayama, Masashi; Fujii, Noriko

    2012-08-01

    Gelatinous drop-like corneal dystrophy (GDLD), also known as familial subepithelial corneal amyloidosis, is an autosomal recessive disorder that causes progressive corneal opacity due to accumulation of amyloid fibrils in the corneal stroma. Genetic analyses have revealed that a mutation in membrane component chromosome 1 surface marker 1 gene is responsible for GDLD. However, the mechanism of amyloid formation in the corneal stroma remains unclear. The present study attempted to reveal the role of advanced glycation end products (AGE) and d-amino acids in amyloid formation in GDLD. Informed consent was obtained from five patients with GDLD, three patients with bullous keratopathy and three patients with interstitial keratitis and all the specimens were analysed. Localisation of amyloid fibrils was analysed using Congo-red and thioflavin T staining. In addition, the localisation of AGE (N(ε)-carboxy(methyl)-L-lysine, pyrraline and pentosidine) and D-β-aspartic acid-containing proteins, a major form of d-amino acid-containing proteins, was analysed immunohistochemically. In all GDLD specimens, strong immunoreactivity to AGE and D-β-aspartic acid-containing proteins was detected in the subepithelial amyloid-rich region. In contrast, amyloid fibrils, AGE, or D-amino acid-containing proteins were slightly detected in the corneal stroma of patients with bullous keratopathy and interstitial keratitis. Abnormally accumulated proteins rich in AGE and D-β-aspartic acid co-localise in the amyloid lesions in GDLD. These results indicate that non-enzymatic post-translational modifications of proteins, including AGE formation and isomerisation of aspartyl residues, will be the cause as well as the result of amyloid fibril formations in GDLD.

  4. Early Use of the NMDA Receptor Antagonist Ketamine in Refractory and Superrefractory Status Epilepticus

    PubMed Central

    Zeiler, F. A.

    2015-01-01

    Refractory status epilepticus (RSE) and superrefractory status epilepticus (SRSE) pose a difficult clinical challenge. Multiple cerebral receptor and transporter changes occur with prolonged status epilepticus leading to pharmacoresistance patterns unfavorable for conventional antiepileptics. In particular, n-methyl-d-aspartate (NMDA) receptor upregulation leads to glutamate mediated excitotoxicity. Targeting these NMDA receptors may provide a novel approach to otherwise refractory seizures. Ketamine has been utilized in RSE. Recent systematic review indicates 56.5% and 63.5% cessation in seizures in adults and pediatrics, respectively. No complications were described. We should consider earlier implementation of ketamine or other NMDA receptor antagonists, for RSE. Prospective study of early implementation of ketamine should shed light on the role of such medications in RSE. PMID:25649724

  5. Localization of a gene for a glutamate binding subunit of a NMDA receptor (GRINA) to 8q24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, T.B.; DuPont, B.R.; Leach, R.

    1996-02-15

    This article reports on the localization of a gene for a glutamate binding subunit of an N-methyl-D-aspartate (NMDA) receptor, called GRINA, to human chromosome 8q24 using fluorescence in situ hybridization and radiation hybridization mapping. This gene mapped outside the critical region for benign familial neonatal convulsions (BFNC), a rare form of epilepsy; however, GRINA could be the causative genetic factor inducing idiopathic generalized epilepsy. Further studies need to be conducted. 15 refs., 2 figs.

  6. Expression of messenger RNAs encoding ionotropic glutamate receptors in rat brain: regulation by haloperidol.

    PubMed

    Brené, S; Messer, C; Nestler, E J

    1998-06-01

    In situ hybridization was used to study the regional distribution of messenger RNAs encoding ionotropic glutamate receptor subtypes in the rat brain's dopaminergic cell body regions and their forebrain projection areas. Short oligonucleotide probes specific for the messenger RNAs encoding the flip or flop splice forms of the GluR1 and GluR2 AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) receptor subunits, or for the messenger RNAs encoding the N-methyl-D-aspartate R1 subunit, were used. Significant differences were seen in the relative messenger RNA levels, and the distribution of the flip and flop splice forms, of GluR1 and GluR2. In the dopaminergic cell groups of the substantia nigra pars compacta and the ventral tegmental area, the flip form of both GluR1 and GluR2 dominated over the flop form. Similarly, in the core division of the nucleus accumbens, GluR1 and GluR2 flip forms dominated over the flop forms. In contrast, in the accumbens shell, the GluR1 and GluR2 flop forms dominated over the flip forms. As a comparison to the AMPA receptor subunits, N-methyl-D-aspartate R1 messenger RNA was relatively evenly distributed in all the regions analysed. The results demonstrate a heterogeneous distribution of the flip and flop splice forms of GluR1 and GluR2 in the brain's dopaminergic pathways, which could contribute to physiological differences in regulation of the pathways by glutamatergic neurotransmission. We also studied regulation of glutamate receptor subunit expression in these regions by antipsychotic drugs, based on previous reports of altered levels of subunit immunoreactivity after drug treatment. Chronic administration of the typical antipsychotic drug, haloperidol, caused a small but significant induction of GluR2 flip messenger RNA in the dorsolateral caudate putamen. This effect was not seen after chronic administration of the atypical antipsychotic drug, clozapine. Significant drug regulation of the other glutamate receptor subunits

  7. Exploration of N-arylpiperazine Binding Sites of D2 Dopaminergic Receptor.

    PubMed

    Soskic, Vukic; Sukalovic, Vladimir; Kostic-Rajacic, Sladjana

    2015-01-01

    The crystal structures of the D3 dopamine receptor and several other G-protein coupled receptors (GPCRs) were published in recent times. Those 3D structures are used by us and other scientists as a template for the homology modeling and ligand docking analysis of related GPCRs. Our main scientific interest lies in the field of pharmacologically active N-arylpiperazines that exhibit antipsychotic and/or antidepressant properties, and as such are dopaminergic and serotonergic receptor ligands. In this short review article we are presenting synthesis and biological data on the new N-arylpipereazine as well our results on molecular modeling of the interactions of those N-arylpiperazines with the model of D2 dopamine receptors. To obtain that model the crystal structure of the D3 dopamine receptor was used. Our results show that the N-arylpiperazines binding site consists of two pockets: one is the orthosteric binding site where the N-arylpiperazine part of the ligand is docked and the second is a non-canonical accessory binding site for N-arylpipereazine that is formed by a second extracellular loop (ecl2) of the receptor. Until now, the structure of this receptor region was unresolved in crystal structure analyses of the D3 dopamine receptor. To get a more complete picture of the ligand - receptor interaction, DFT quantum mechanical calculations on N-arylpiperazine were performed and the obtained models were used to examine those interactions.

  8. Allosteric monofunctional aspartate kinases from Arabidopsis.

    PubMed

    Curien, Gilles; Laurencin, Mathieu; Robert-Genthon, Mylène; Dumas, Renaud

    2007-01-01

    Plant monofunctional aspartate kinase is unique among all aspartate kinases, showing synergistic inhibition by lysine and S-adenosyl-l-methionine (SAM). The Arabidopsis genome contains three genes for monofunctional aspartate kinases. We show that aspartate kinase 2 and aspartate kinase 3 are inhibited only by lysine, and that aspartate kinase 1 is inhibited in a synergistic manner by lysine and SAM. In the absence of SAM, aspartate kinase 1 displayed low apparent affinity for lysine compared to aspartate kinase 2 and aspartate kinase 3. In the presence of SAM, the apparent affinity of aspartate kinase 1 for lysine increased considerably, with K(0.5) values for lysine inhibition similar to those of aspartate kinase 2 and aspartate kinase 3. For all three enzymes, the inhibition resulted from an increase in the apparent K(m) values for the substrates ATP and aspartate. The mechanism of aspartate kinase 1 synergistic inhibition was characterized. Inhibition by lysine alone was fast, whereas synergistic inhibition by lysine plus SAM was very slow. SAM by itself had no effect on the enzyme activity, in accordance with equilibrium binding analyses indicating that SAM binding to aspartate kinase 1 requires prior binding of lysine. The three-dimensional structure of the aspartate kinase 1-Lys-SAM complex has been solved [Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL & Dumas R (2006) Plant Cell18, 1681-1692]. Taken together, the data suggest that, upon binding to the inactive aspartate kinase 1-Lys complex, SAM promotes a slow conformational transition leading to formation of a stable aspartate kinase 1-Lys-SAM complex. The increase in aspartate kinase 1 apparent affinity for lysine in the presence of SAM thus results from the displacement of the unfavorable equilibrium between aspartate kinase 1 and aspartate kinase 1-Lys towards the inactive form.

  9. An examination of the roles of glutamate and sex in latent inhibition: Relevance to the glutamate hypothesis of schizophrenia?

    PubMed

    Huang, Andrew Chih Wei; Bo-Han He, Alan; Chen, Chih-Chung

    2017-10-01

    The present study examined the effects of the glutamate receptor antagonist MK-801, the glutamate receptor agonist N-methyl-D-aspartate (NMDA), and sexual dimorphism on latent inhibition to elucidate the glutamate hypothesis of schizophrenia. During the pre-exposure phase, 56 male and 65 female Wistar rats were intracerebroventricularly administered normal saline, MK-801 or NMDA, in the left ventricle and then exposed to a passive avoidance box (or a different context) in three trials over 3 days. Then, all of the rats were placed in the light compartment of the passive avoidance box and were allowed to enter the dark compartment, where they each received a footshock (1mA, 2s) in five trials over 5 days. Injections of the glutamate drugs NMDA and MK-801 did not affect latent inhibition. Sexual dimorphism did not occur in latent inhibition. The present data on the male rats indicated that the glutamate system did not affect latent inhibition, indicating that the glutamate system was not like the dopamine system in terms of mediating the positive symptoms of schizophrenia. The glutamate system might be involved in the negative and cognitive symptoms of schizophrenia. The results may provide information for novel treatments of the negative and cognitive symptoms of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. NMDA Receptors as Potential Therapeutic Targets in Diabetic Nephropathy: Increased Renal NMDA Receptor Subunit Expression in Akita Mice and Reduced Nephropathy Following Sustained Treatment With Memantine or MK-801.

    PubMed

    Roshanravan, Hila; Kim, Eun Young; Dryer, Stuart E

    2016-10-01

    N-methyl-d-aspartate (NMDA) receptors are expressed throughout the kidney, and the abundance of these receptors and some of their endogenous agonists are increased in diabetes. Moreover, sustained activation of podocyte NMDA receptors induces Ca(2+) influx, oxidative stress, loss of slit diaphragm proteins, and apoptosis. We observed that NMDA receptor subunits and their transcripts are increased in podocytes and mesangial cells cultured in elevated glucose compared with controls. A similar increase in NMDA subunits, especially NR1, NR2A, and NR2C, was observed in glomeruli and tubules of Akita mice. Sustained continuous treatment with the strong NMDA receptor antagonist dizocilpine (MK-801) for 28 days starting at 8 weeks of age reduced 24-h albumin excretion and mesangial matrix expansion and improved glomerular ultrastructure in Akita mice. MK-801 did not alleviate reduced Akita mouse body weight and had no effect on kidney histology or ultrastructure in DBA/2J controls. The structurally dissimilar NMDA antagonist memantine also reduced diabetic nephropathy, although it was less effective than MK-801. Inhibition of NMDA receptors may represent a valid therapeutic approach to reduce renal complications of diabetes, and it is possible to develop well-tolerated agents with minimal central nervous system effects. Two such agents, memantine and dextromethorphan, are already in widespread clinical use. © 2016 by the American Diabetes Association.

  11. Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit.

    PubMed

    Lamsa, Karri P; Heeroma, Joost H; Somogyi, Peter; Rusakov, Dmitri A; Kullmann, Dimitri M

    2007-03-02

    Long-term potentiation (LTP), which approximates Hebb's postulate of associative learning, typically requires depolarization-dependent glutamate receptors of the NMDA (N-methyl-D-aspartate) subtype. However, in some neurons, LTP depends instead on calcium-permeable AMPA-type receptors. This is paradoxical because intracellular polyamines block such receptors during depolarization. We report that LTP at synapses on hippocampal interneurons mediating feedback inhibition is "anti-Hebbian":Itis induced by presynaptic activity but prevented by postsynaptic depolarization. Anti-Hebbian LTP may occur in interneurons that are silent during periods of intense pyramidal cell firing, such as sharp waves, and lead to their altered activation during theta activity.

  12. A novel antagonist, phenylbenzene omega-phosphono-alpha-amino acid, for strychnine-sensitive glycine receptors in the rat spinal cord.

    PubMed Central

    Saitoh, T; Ishida, M; Maruyama, M; Shinozaki, H

    1994-01-01

    1. 3-[2'-Phosphonomethyl[1,1'-biphenyl]-3-yl]alanine (PMBA) is a novel glycine antagonist at strychnine-sensitive receptors. The chemical structure of PMBA, possessing both a glycine moiety and a phosphono group, is quite different from that of strychnine. 2. In the spinal motoneurone of newborn rats, glycine (100 microM-1 mM) induced depolarizing responses in a concentration-dependent manner. PMBA effectively inhibited depolarizing responses to glycine and other agonists, such as taurine and beta-alanine. The dose-response curves for glycine were shifted to the right in an almost parallel manner (pA2 value: 5.30 +/- 0.23, n = 5) by PMBA which was about 60 times less potent than strychnine (pA2 value: 7.08 +/- 0.21, n = 5) as a glycine antagonist. 3. PMBA (1-100 microM) did not interact with modulatory glycine sites on N-methyl-D-aspartate (NMDA) receptors, which suggests a high selectivity of PMBA for strychnine-sensitive glycine receptors. At considerably high concentrations (0.1 mM-1 mM), PMBA depressed responses to GABA (pA2 value: 3.57 +/- 0.24, n = 3). 4. PMBA inhibited the binding of [3H]-strychnine to synaptosomes from adult rat spinal cords; the IC50 values of PMBA, glycine and strychnine were 8 +/- 2, 9 +/- 3 and 0.08 +/- 0.04 microM, respectively (n = 5) for [3H]-strychnine (4.8 nM). 5. PMBA is a central excitant drug with relatively high potency and selectivity and should be useful as a pharmacological probe for analysing the mechanisms underlying physiological functions of glycine receptors. PMID:7812607

  13. Schizophrenia, dissociative anaesthesia and near-death experience; three events meeting at the NMDA receptor.

    PubMed

    Bonta, Iván L

    2004-01-01

    The three events, viz. schizophrenia, dissociative anaesthesia and Near-Death Experience, despite their seemingly unrelated manifestation to each other, have nevertheless similar functional basis. All three events are linked to the glutamate sensitive N-methyl-D-aspartate (NMDA) receptor complex, which serves as their common functional denominator. Arguments and speculations are presented in favor of the view that, the three events might be considered as functional models of each other. Antagonism to the recognition NMDA-site of the receptor induces dissociative anaesthesia and precipitates Near-Death Experience. Agonist reinforcement at the modulatory glycine-site of the receptor counteracts negative symptoms of schizophrenia. Both types of challenges towards the receptor are compatible with a glutamate deficiency concept which underlies the meeting of the three events at the NMDA receptor.

  14. Effects of GABA and bicuculline on N-methyl-D-aspartate- and quisqualate-induced reductions in extracellular free calcium in area CA1 of the hippocampal slice.

    PubMed

    Hamon, B; Heinemann, U

    1986-01-01

    Decreases in extracellular free calcium ([Ca2+]o) and concomitant field potentials were recorded from the dendritic and cell body layers of the CA1 field in transverse hippocampal slices. They were elicited by tetanic stimulation of Schaffer collaterals and commissural fibers or by iontophoretic application of the excitatory amino acids N-methyl-D-aspartate (NMDA) and quisqualate (Quis). Under control conditions, decreases in [Ca2+]o were found to be maximal in stratum pyramidale (SP). In stratum radiatum (SR), 100 micron away from SP, decreases in [Ca2+]o were half the size of those observed in SP. Bicuculline methiodide, bath-applied at concentrations of 10-100 microM, enhanced the reductions in [Ca2+]o, increased the field potentials in all layers and also induced "spontaneous" epileptiform activity. In the presence of bicuculline, the decreases in [Ca2+]o were particularly enhanced in SR and were often greater than those recorded in SP. This was the case for changes in [Ca2+]o induced either by repetitive electrical stimulation or by application of NMDA and Quis. When synaptic transmission was blocked by perfusing the slices with a low Ca2+ medium, all NMDA and Quis-induced changes in [Ca2+]o were predictably reduced but there was a relative enhancement of changes in [Ca2+]o in SR with respect to those in SP. We propose that, under normal conditions, an inhibitory control mediated by GABA limits the reductions of [Ca2+]o particularly in SR. In support of this proposal, we found that bath-applied GABA had a depressant action on changes in [Ca2+]o.

  15. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  16. Aspartic cathepsin D endopeptidase contributes to extracellular digestion in clawed lobsters Homarus americanus and Homarus gammarus.

    PubMed

    Rojo, Liliana; Muhlia-Almazan, Adriana; Saborowski, Reinhard; García-Carreño, Fernando

    2010-11-01

    Acid digestive proteinases were studied in the gastric fluids of two species of clawed lobster (Homarus americanus and Homarus gammarus). An active protein was identified in both species as aspartic proteinase by specific inhibition with pepstatin A. It was confirmed as cathepsin D by mass mapping, N-terminal, and full-length cDNA sequencing. Both lobster species transcribed two cathepsin D mRNAs: cathepsin D1 and cathepsin D2. Cathepsin D1 mRNA was detected only in the midgut gland, suggesting its function as a digestive enzyme. Cathepsin D2 mRNA was found in the midgut gland, gonads, and muscle. The deduced amino acid sequence of cathepsin D1 and cathepsin D2 possesses two catalytic DTG active-site motifs, the hallmark of aspartic proteinases. The putatively active cathepsin D1 has a molecular mass of 36.4 kDa and a calculated pI of 4.14 and possesses three potential glycosylation sites. The sequences showed highest similarities with cathepsin D from insects but also with another crustacean cathepsin D. Cathepsin D1 transcripts were quantified during a starvation period using real-time qPCR. In H. americanus, 15 days of starvation did not cause significant changes, but subsequent feeding caused a 2.5-fold increase. In H. gammarus, starvation caused a 40% reduction in cathepsin D1 mRNA, and no effect was observed with subsequent feeding.

  17. Amino acid neurotransmitters and new approaches to anticonvulsant drug action.

    PubMed

    Meldrum, B

    1984-01-01

    Amino acids provide the most universal and important inhibitory (gamma-aminobutyric acid (GABA), glycine) and excitatory (glutamate, aspartate, cysteic acid, cysteine sulphinic acid) neurotransmitters in the brain. An anticonvulsant action may be produced (1) by enhancing inhibitory (GABAergic) processes, and (2) by diminishing excitatory transmission. Possible pharmacological mechanisms for enhancing GABA-mediated inhibition include (1) GABA agonist action, (2) GABA prodrugs, (3) drugs facilitating GABA release from terminals, (4) inhibition of GABA-transaminase, (5) allosteric enhancement of the efficacy of GABA at the receptor complex, (6) direction action on the chloride ionophore, and (7) inhibition of GABA reuptake. Examples of these approaches include the use of irreversible GABA-transaminase inhibitors, such as gamma-vinyl GABA, and the development of anticonvulsant beta-carbolines that interact with the "benzodiazepine receptor." Pharmacological mechanisms for diminishing excitatory transmission include (1) enzyme inhibitors that decrease the maximal rate of synthesis of glutamate or aspartate, (2) drugs that decrease the synaptic release of glutamate or aspartate, and (3) drugs that block the post-synaptic action of excitatory amino acids. Compounds that selectively antagonise excitation due to dicarboxylic amino acids have recently been developed. Those that selectively block excitation produced by N-methyl-D-aspartate (and aspartate) have proved to be potent anticonvulsants in many animal models of epilepsy. This provides a novel approach to the design of anticonvulsant drugs.

  18. Glutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus.

    PubMed

    Suryavanshi, Pratyush S; Gupta, Subhash C; Yadav, Roopali; Kesherwani, Varun; Liu, Jinxu; Dravid, Shashank M

    2016-08-01

    The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function. Copyright © 2016 by The American Society for Pharmacology and Experimental

  19. Radiosynthesis and radiopharmacological evaluation of [N-methyl-11C]Org 34850 as a glucocorticoid receptor (GR)-binding radiotracer.

    PubMed

    Wuest, Frank; Kniess, Torsten; Henry, Brian; Peeters, Bernardus W M M; Wiegerinck, Peter H G; Pietzsch, Jens; Bergmann, Ralf

    2009-02-01

    The radiosynthesis of [N-methyl-(11)C]Org 34850 as a potential brain glucocorticoid receptor (GR)-binding radiotracer is described. The radiosynthesis was accomplished via N-methylation of the corresponding desmethyl precursor with [(11)C]methyl triflate in a remotely controlled synthesis module to give the desired compound in a radiochemical yield of 23+/-5% (decay-corrected, based upon [(11)C]CO(2)) at a specific activity of 47+/-12 GBq/micromol (n=15) at the end-of-synthesis (EOS). The radiochemical purity after semi-preparative HPLC purification exceeded 95%. The total synthesis time was 35-40 min after end-of-bombardment (EOB). The radiotracer is rapidly metabolized in rat plasma leading to the formation of two more hydrophilic metabolites as the major metabolites. Radiopharmacological evaluation involving biodistribution and small animal PET imaging in normal Wistar rats showed that the compound [N-methyl-(11)C]Org 34850 is not able to sufficiently penetrate the blood-brain barrier. Therefore, compound [N-methyl-(11)C]Org 34850 seems not to be a suitable PET radiotracer for imaging rat brain GRs. However, involvement of Pgp or species differences requires further clarification to establish whether the radiotracer [N-methyl-(11)C]Org 34850 may still represent a suitable candidate for imaging GRs in humans.

  20. N-aryl piperazine metabotropic glutamate receptor 5 positive allosteric modulators possess efficacy in preclinical models of NMDA hypofunction and cognitive enhancement.

    PubMed

    Gregory, K J; Herman, E J; Ramsey, A J; Hammond, A S; Byun, N E; Stauffer, S R; Manka, J T; Jadhav, S; Bridges, T M; Weaver, C D; Niswender, C M; Steckler, T; Drinkenburg, W H; Ahnaou, A; Lavreysen, H; Macdonald, G J; Bartolomé, J M; Mackie, C; Hrupka, B J; Caron, M G; Daigle, T L; Lindsley, C W; Conn, P J; Jones, C K

    2013-11-01

    Impaired transmission through glutamatergic circuits has been postulated to play a role in the underlying pathophysiology of schizophrenia. Furthermore, inhibition of the N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptors (NMDAR) induces a syndrome that recapitulates many of the symptoms observed in patients with schizophrenia. Selective activation of metabotropic glutamate receptor subtype 5 (mGlu5) may provide a novel therapeutic approach for treatment of symptoms associated with schizophrenia through facilitation of transmission through central glutamatergic circuits. Here, we describe the characterization of two novel N-aryl piperazine mGlu5 positive allosteric modulators (PAMs): 2-(4-(2-(benzyloxy)acetyl)piperazin-1-yl)benzonitrile (VU0364289) and 1-(4-(2,4-difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethanone (DPFE). VU0364289 and DPFE induced robust leftward shifts in the glutamate concentration-response curves for Ca(2+) mobilization and extracellular signal-regulated kinases 1 and 2 phosphorylation. Both PAMs displayed micromolar affinity for the common mGlu5 allosteric binding site and high selectivity for mGlu5. VU0364289 and DPFE possessed suitable pharmacokinetic properties for dosing in vivo and produced robust dose-related effects in reversing amphetamine-induced hyperlocomotion, a preclinical model predictive of antipsychotic-like activity. In addition, DPFE enhanced acquisition of contextual fear conditioning in rats and reversed behavioral deficits in a mouse model of NMDAR hypofunction. In contrast, DPFE had no effect on reversing apomorphine-induced disruptions of prepulse inhibition of the acoustic startle reflex. These mGlu5 PAMs also increased monoamine levels in the prefrontal cortex, enhanced performance in a hippocampal-mediated memory task, and elicited changes in electroencephalogram dynamics commensurate with procognitive effects. Collectively, these data support and extend the role for the development of

  1. Role of AMPA and NMDA receptors and back-propagating action potentials in spike timing-dependent plasticity.

    PubMed

    Fuenzalida, Marco; Fernández de Sevilla, David; Couve, Alejandro; Buño, Washington

    2010-01-01

    The cellular mechanisms that mediate spike timing-dependent plasticity (STDP) are largely unknown. We studied in vitro in CA1 pyramidal neurons the contribution of AMPA and N-methyl-d-aspartate (NMDA) components of Schaffer collateral (SC) excitatory postsynaptic potentials (EPSPs; EPSP(AMPA) and EPSP(NMDA)) and of the back-propagating action potential (BAP) to the long-term potentiation (LTP) induced by a STDP protocol that consisted in pairing an EPSP and a BAP. Transient blockade of EPSP(AMPA) with 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX) during the STDP protocol prevented LTP. Contrastingly LTP was induced under transient inhibition of EPSP(AMPA) by combining SC stimulation, an imposed EPSP(AMPA)-like depolarization, and BAP or by coupling the EPSP(NMDA) evoked under sustained depolarization (approximately -40 mV) and BAP. In Mg(2+)-free solution EPSP(NMDA) and BAP also produced LTP. Suppression of EPSP(NMDA) or BAP always prevented LTP. Thus activation of NMDA receptors and BAPs are needed but not sufficient because AMPA receptor activation is also obligatory for STDP. However, a transient depolarization of another origin that unblocks NMDA receptors and a BAP may also trigger LTP.

  2. Reactivation-Dependent Amnesia for Appetitive Memories Is Determined by the Contingency of Stimulus Presentation

    ERIC Educational Resources Information Center

    Lee, Jonathan L. C.; Everitt, Barry J.

    2008-01-01

    Previously acquired aversive and appetitive memories are not stable and permanent. The reactivation of such memories by re-exposure to training stimuli renders them vulnerable to disruption by amnestic agents such as the noncompetitive N-methyl-"D"-aspartate receptor antagonist (+)-5-methyl-10,11-dihydro-"SH"-dibenzo{a,d}cyclohepten-5,10imine…

  3. Glutamate mediates platelet activation through the AMPA receptor

    PubMed Central

    Morrell, Craig N.; Sun, Henry; Ikeda, Masahiro; Beique, Jean-Claude; Swaim, Anne Marie; Mason, Emily; Martin, Tanika V.; Thompson, Laura E.; Gozen, Oguz; Ampagoomian, David; Sprengel, Rolf; Rothstein, Jeffrey; Faraday, Nauder; Huganir, Richard; Lowenstein, Charles J.

    2008-01-01

    Glutamate is an excitatory neurotransmitter that binds to the kainate receptor, the N-methyl-D-aspartate (NMDA) receptor, and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each receptor was first characterized and cloned in the central nervous system (CNS). Glutamate is also present in the periphery, and glutamate receptors have been identified in nonneuronal tissues, including bone, heart, kidney, pancreas, and platelets. Platelets play a central role in normal thrombosis and hemostasis, as well as contributing greatly to diseases such as stroke and myocardial infarction. Despite the presence of glutamate in platelet granules, the role of glutamate during hemostasis is unknown. We now show that activated platelets release glutamate, that platelets express AMPAR subunits, and that glutamate increases agonist-induced platelet activation. Furthermore, we demonstrate that glutamate binding to the AMPAR increases intracellular sodium concentration and depolarizes platelets, which are important steps in platelet activation. In contrast, platelets treated with the AMPAR antagonist CNQX or platelets derived from GluR1 knockout mice are resistant to AMPA effects. Importantly, mice lacking GluR1 have a prolonged time to thrombosis in vivo. Our data identify glutamate as a regulator of platelet activation, and suggest that the AMPA receptor is a novel antithrombotic target. PMID:18283118

  4. Bidirectional modulation of windup by NMDA receptors in the rat spinal trigeminal nucleus.

    PubMed

    Woda, Alain; Blanc, Olivier; Voisin, Daniel L; Coste, Jérôme; Molat, Jean-Louis; Luccarini, Philippe

    2004-04-01

    Activation of afferent nociceptive pathways is subject to activity-dependent plasticity, which may manifest as windup, a progressive increase in the response of dorsal horn nociceptive neurons to repeated stimuli. At the cellular level, N-methyl-d-aspartate (NMDA) receptor activation by glutamate released from nociceptive C-afferent terminals is currently thought to generate windup. Most of the wide dynamic range nociceptive neurons that display windup, however, do not receive direct C-fibre input. It is thus unknown where the NMDA mechanisms for windup operate. Here, using the Sprague-Dawley rat trigeminal system as a model, we anatomically identify a subpopulation of interneurons that relay nociceptive information from the superficial dorsal horn where C-fibres terminate, to downstream wide dynamic range nociceptive neurons. Using in vivo electrophysiological recordings, we show that at the end of this pathway, windup was reduced (24 +/- 6%, n = 7) by the NMDA receptor antagonist AP-5 (2.0 fmol) and enhanced (62 +/- 19%, n = 12) by NMDA (1 nmol). In contrast, microinjections of AP-5 (1.0 fmol) within the superficial laminae increased windup (83 +/- 44%, n = 9), whereas NMDA dose dependently decreased windup (n = 19). These results indicate that NMDA receptor function at the segmental level depends on their precise location in nociceptive neural networks. While some NMDA receptors actually amplify pain information, the new evidence for NMDA dependent inhibition of windup we show here indicates that, simultaneously, others act in the opposite direction. Working together, the two mechanisms may provide a fine tuning of gain in pain.

  5. DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors.

    PubMed

    Grau, Cristina; Arató, Krisztina; Fernández-Fernández, José M; Valderrama, Aitana; Sindreu, Carlos; Fillat, Cristina; Ferrer, Isidre; de la Luna, Susana; Altafaj, Xavier

    2014-01-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser(1048) of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser(1048) hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser(1048) increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons.

  6. DYRK1A-mediated phosphorylation of GluN2A at Ser1048 regulates the surface expression and channel activity of GluN1/GluN2A receptors

    PubMed Central

    Grau, Cristina; Arató, Krisztina; Fernández-Fernández, José M.; Valderrama, Aitana; Sindreu, Carlos; Fillat, Cristina; Ferrer, Isidre; de la Luna, Susana; Altafaj, Xavier

    2014-01-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser1048 of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser1048 hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser1048 increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons. PMID:25368549

  7. Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil.

    PubMed

    Seeman, Philip; Guan, Hong-Chang; Hirbec, Hélène

    2009-08-01

    Although it is commonly stated that phencyclidine is an antagonist at ionotropic glutamate receptors, there has been little measure of its potency on other receptors in brain tissue. Although we previously reported that phencyclidine stimulated cloned-dopamine D2Long and D2Short receptors, others reported that phencyclidine did not stimulate D2 receptors in homogenates of rat brain striatum. This study, therefore, examined whether phencyclidine and other hallucinogens and psychostimulants could stimulate the incorporation of [(35)S]GTP-gamma-S into D2 receptors in homogenates of rat brain striatum, using the same conditions as previously used to study the cloned D2 receptors. Using 10 microM dopamine to define 100% stimulation, phencyclidine elicited a maximum incorporation of 46% in rat striata, with a half-maximum concentration of 70 nM for phencyclidine, when compared with 80 nM for dopamine, 89 nM for salvinorin A (48 nM for D2Long), 105 nM for lysergic acid diethylamide (LSD), 120 nM for R-modafinil, 710 nM for dizocilpine, 1030 nM for ketamine, and >10,000 nM for S-modafinil. These compounds also inhibited the binding of the D2-selective ligand [(3)H]domperidone. The incorporation was inhibited by the presence of 200 microM guanylylimidodiphosphate and also by D2 blockade, using 10 microM S-sulpiride, but not by D1 blockade with 10 microM SCH23390. Hypertonic buffer containing 150 mM NaCl inhibited the stimulation by phencyclidine, which may explain negative results by others. It is concluded that phencyclidine and other psychostimulants and hallucinogens can stimulate dopamine D2 receptors at concentrations related to their behavioral actions.

  8. Ionotropic glutamate receptors: regulation by G-protein-coupled receptors.

    PubMed

    Rojas, Asheebo; Dingledine, Raymond

    2013-04-01

    The function of many ion channels is under dynamic control by coincident activation of G-protein-coupled receptors (GPCRs), particularly those coupled to the Gαs and Gαq family members. Such regulation is typically dependent on the subunit composition of the ionotropic receptor or channel as well as the GPCR subtype and the cell-specific panoply of signaling pathways available. Because GPCRs and ion channels are so highly represented among targets of U.S. Food and Drug Administration-approved drugs, functional cross-talk between these drug target classes is likely to underlie many therapeutic and adverse effects of marketed drugs. GPCRs engage a myriad of signaling pathways that involve protein kinases A and C (PKC) and, through PKC and interaction with β-arrestin, Src kinase, and hence the mitogen-activated-protein-kinase cascades. We focus here on the control of ionotropic glutamate receptor function by GPCR signaling because this form of regulation can influence the strength of synaptic plasticity. The amino acid residues phosphorylated by specific kinases have been securely identified in many ionotropic glutamate (iGlu) receptor subunits, but which of these sites are GPCR targets is less well known even when the kinase has been identified. N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and heteromeric kainate receptors are all downstream targets of GPCR signaling pathways. The details of GPCR-iGlu receptor cross-talk should inform a better understanding of how synaptic transmission is regulated and lead to new therapeutic strategies for neuropsychiatric disorders.

  9. [N(omega)-nitro-L-arginine methyl ester inhibits the up-regulated expression of neuronal nitric oxide synthase/NMDA receptor in the morphine analgesia tolerance rats].

    PubMed

    Yu, Ling; Xue, Fu-Shan; Li, Cheng-Wen; Xu, Ya-Chao; Zhang, Guo-Hua; Liu, Kun-Peng; Liu, Yi; Sun, Hai-Tao

    2006-12-25

    The effect of systemic administration of nonspecific nitric oxide synthase inhibitor (N(omega)-nitro-L-arginine methyl ester, L-NAME) on morphine analgesia tolerance was observed by using the thermal tail-flick method, and the roles of NO and NMDA receptors in morphine analgesia tolerance were evaluated on the basis of the expressions of nNOS mRNA, NR1A mRNA and NR2A mRNA in spinal cord and midbrain. Thirty-six healthy adult Sprague-Dawley rats were randomly divided into six groups (6 rats per group). Group 1, control group, received a subcutaneous (s.c.) injection of normal saline (1 ml); Groups 2, 3, 4, 5 and 6, the treatment groups received s.c. injection of L-NAME 10 mg/kg, L-NAME 20 mg/kg, morphine 10 mg/kg, L-NAME 10 mg/kg + morphine 10 mg/kg, and L-NAME 20 mg/kg + morphine 10 mg/kg, respectively. All rats received s.c. injections twice per day (8:00 and 17:00). The tail-flick latency (TFL) was measured in each rat before the injection as a baseline value, and then TFL at 50 min after the 1st injection every day as the measuring values. The animals (except for groups 2 and 5) were decapitated at 80 min after the last injection on the 8th day. The spinal segments and midbrain were removed for analysis of nNOS mRNA, NR1A mRNA and NR2A mRNA expressions by the RT-PCR method. The results showed that TFL remained unchangeable in group 2 compared with baseline value during the 7-day observation, while increased significantly on the 7th day in group 3. In group 4, TFL was longest on the 1st day, then decreased gradually from the 2nd day to the 6th day, and restored to the baseline value on the 6th day. In group 5, TFL showed a decreasing tendency during the 7-day observation, but was still significantly longer than the baseline value on the 7th day. The changes of TFL obtained in group 6 were similar to those in group 5. The results of RT-PCR showed that as compared with group 1, nNOS mRNA expressions in spinal cord and midbrain were significantly down-regulated in

  10. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    PubMed

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH 2 O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Angiotensin II attenuates NMDA receptor-mediated neuronal cell death and prevents the associated reduction in Bcl-2 expression.

    PubMed

    Schelman, William R; Andres, Robert; Ferguson, Paul; Orr, Brent; Kang, Evan; Weyhenmeyer, James A

    2004-09-10

    While angiotensin II (Ang II) plays a major role in the regulation of blood pressure, fluid homeostasis and neuroendocrine function, recent studies have also implicated the peptide hormone in cell growth, differentiation and apoptosis. In support of this, we have previously demonstrated that Ang II attenuates N-methyl-D-aspartate (NMDA) receptor signaling [Molec. Brain Res. 48 (1997) 197]. To further examine the modulatory role of Ang II on NMDA receptor function, we investigated the effect of angiotensin receptor (AT) activation on NMDA-mediated cell death and the accompanying decrease in Bcl-2 expression. The viability of differentiated N1E-115 and NG108-15 neuronal cell lines was reduced following exposure to NMDA in a dose-dependent manner. MTT analysis (mitochondrial integrity) revealed a decrease in cell survival of 49.4+/-12.3% in NG108 cells and 79.9+/-6.8% in N1E cells following treatment with 10 mM NMDA for 20 h. Cytotoxicity in N1E cells was inhibited by the noncompetitive NMDA receptor antagonist, MK-801. Further, NMDA receptor-mediated cell death in NG108 cells was attenuated by treatment with Ang II. The Ang II effect was inhibited by both AT1 and AT2 receptor antagonists, losartan and PD123319, respectively, suggesting that both receptor subtypes may play a role in the survival effect of Ang II. Since it has been shown that activation of NMDA receptors alters the expression of Bcl-2 family proteins, Western blot analysis was performed in N1E cells to determine whether Ang II alters the NMDA-induced changes in Bcl-2 expression. A concentration-dependent decrease of intracellular Bcl-2 protein levels was observed following treatment with NMDA, and this reduction was inhibited by MK801. Addition of Ang II suppressed the NMDA receptor-mediated reduction in Bcl-2. The Ang II effect on NMDA-mediated changes in Bcl-2 levels was blocked by PD123319, but was not significantly changed by losartan, suggesting AT2 receptor specificity. Taken together, these

  12. The N-terminal region of the dopamine D2 receptor, a rhodopsin-like GPCR, regulates correct integration into the plasma membrane and endocytic routes

    PubMed Central

    Cho, DI; Min, C; Jung, KS; Cheong, SY; Zheng, M; Cheong, SJ; Oak, MH; Cheong, JH; Lee, BK; Kim, KM

    2012-01-01

    BACKGROUND AND PURPOSE Functional roles of the N-terminal region of rhodopsin-like GPCR family remain unclear. Using dopamine D2 and D3 receptors as a model system, we probed the roles of the N-terminal region in the signalling, intracellular trafficking of receptor proteins, and explored the critical factors that determine the functionality of the N-terminal region. EXPERIMENTAL APPROACH The N-terminal region of the D2 receptor was gradually shortened or switched with that of the D3 receptor or a non-specific sequence (FLAG), or potential N-terminal glycosylation sites were mutated. Effects of these manipulations on surface expression, internalization, post-endocytic behaviours and signalling were determined. KEY RESULTS Shortening the N-terminal region of the D2 receptor enhanced receptor internalization and impaired surface expression and signalling; ligand binding, desensitization and down-regulation were not affected but their association with a particular microdomain, caveolae, was disrupted. Replacement of critical residues within the N-terminal region with the FLAG epitope failed to restore surface expression but partially restored the altered internalization and signalling. When the N-terminal regions were switched between D2 and D3 receptors, cell surface expression pattern of each receptor was switched. Mutations of potential N-terminal glycosylation sites inhibited surface expression but enhanced internalization of D2 receptors. CONCLUSIONS AND IMPLICATIONS Shortening of N-terminus or mutation of glycosylation sites located within the N-terminus enhanced receptor internalization but impaired the surface expression of D2 receptors. The N-terminal region of the D2 receptor, in a sequence-specific manner, controls the receptor's conformation and integration into the plasma membrane, which determine its subcellular localization, intracellular trafficking and signalling properties. PMID:22117524

  13. Modulation of mGlu2 Receptors, but Not PDE10A Inhibition Normalizes Pharmacologically-Induced Deviance in Auditory Evoked Potentials and Oscillations in Conscious Rats

    PubMed Central

    Ahnaou, Abdallah; Biermans, Ria; Drinkenburg, Wilhelmus H.

    2016-01-01

    Improvement of cognitive impairments represents a high medical need in the development of new antipsychotics. Aberrant EEG gamma oscillations and reductions in the P1/N1 complex peak amplitude of the auditory evoked potential (AEP) are neurophysiological biomarkers for schizophrenia that indicate disruption in sensory information processing. Inhibition of phosphodiesterase (i.e. PDE10A) and activation of metabotropic glutamate receptor (mGluR2) signaling are believed to provide antipsychotic efficacy in schizophrenia, but it is unclear whether this occurs with cognition-enhancing potential. The present study used the auditory paired click paradigm in passive awake Sprague Dawley rats to 1) model disruption of AEP waveforms and oscillations as observed in schizophrenia by peripheral administration of amphetamine and the N-methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP); 2) confirm the potential of the antipsychotics risperidone and olanzapine to attenuate these disruptions; 3) evaluate the potential of mGluR2 agonist LY404039 and PDE10 inhibitor PQ-10 to improve AEP deficits in both the amphetamine and PCP models. PCP and amphetamine disrupted auditory information processing to the first click, associated with suppression of the P1/N1 complex peak amplitude, and increased cortical gamma oscillations. Risperidone and olanzapine normalized PCP and amphetamine-induced abnormalities in AEP waveforms and aberrant gamma/alpha oscillations, respectively. LY404039 increased P1/N1 complex peak amplitudes and potently attenuated the disruptive effects of both PCP and amphetamine on AEPs amplitudes and oscillations. However, PQ-10 failed to show such effect in either models. These outcomes indicate that modulation of the mGluR2 results in effective restoration of abnormalities in AEP components in two widely used animal models of psychosis, whereas PDE10A inhibition does not. PMID:26808689

  14. Timosaponin derivative YY-23 acts as a non-competitive NMDA receptor antagonist and exerts a rapid antidepressant-like effect in mice.

    PubMed

    Zhang, Qi; Guo, Fei; Fu, Zhi-wen; Zhang, Bing; Huang, Cheng-gang; Li, Yang

    2016-02-01

    N-methyl-D-aspartic acid (NMDA) receptor modulators have shown promising results as potential antidepressant agents, whereas timosaponins extracted from the Chinese herb Rhizoma Anemarrhenae exhibit antidepressant activities. In the present study we examined whether YY-23, a modified metabolite of timosaponin B-III, could affect NMDA receptors in rat hippocampal neurons in vitro, and evaluated its antidepressant-like effects in stressed mice. NMDA-induced currents were recorded in acutely dissociated rat hippocampal CA1 neurons using a whole-cell recording technique. C57BL/6 mice were exposed to a 6-week chronic mild stress (CMS) or a 10-d chronic social defeat stress (CSDS). The stressed mice were treated with YY-23 (20 mg·kg(-1)·d(-1)) or a positive-control drug, fluoxetine (10 mg·kg(-1)·d(-1)) for 3 weeks. Behavioral assessments were carried out every week. In acutely dissociated rat hippocampal CA1 neurons, YY-23 selectively and reversibly inhibited NMDA-induced currents with an EC50 value of 2.8 μmol/L. This inhibition of NMDA-induced currents by YY-23 was non-competitive, and had no features of voltage-dependency or use-dependency. Treatment of the stressed mice with YY-23 not only reversed CMS-induced deficiency of sucrose preference and immobility time, and CSDS-induced reduction of social interaction, but also had faster onset as compared to fluoxetine. YY-23 is a novel non-competitive antagonist of NMDA receptors with promising rapid antidepressant-like effects in mouse models of CMS and CSDS depression.

  15. L-type Calcium Channel Blockers Enhance Trafficking and Function of Epilepsy-associated α1(D219N) Subunits of GABA(A) Receptors.

    PubMed

    Han, Dong-Yun; Guan, Bo-Jhih; Wang, Ya-Juan; Hatzoglou, Maria; Mu, Ting-Wei

    2015-09-18

    Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory ion channels in the mammalian central nervous system and play an essential role in regulating inhibition-excitation balance in neural circuits. The α1 subunit harboring the D219N mutation of GABAA receptors was reported to be retained in the endoplasmic reticulum (ER) and traffic inefficiently to the plasma membrane, leading to a loss of function of α1(D219N) subunits and thus idiopathic generalized epilepsy (IGE). We present the use of small molecule proteostasis regulators to enhance the forward trafficking of α1(D219N) subunits to restore their function. We showed that treatment with verapamil (4 μM, 24 h), an L-type calcium channel blocker, substantially increases the α1(D219N) subunit cell surface level in both HEK293 cells and neuronal SH-SY5Y cells and remarkably restores the GABA-induced maximal chloride current in HEK293 cells expressing α1(D219N)β2γ2 receptors to a level that is comparable to wild type receptors. Our drug mechanism study revealed that verapamil treatment promotes the ER to Golgi trafficking of the α1(D219N) subunits post-translationally. To achieve that, verapamil treatment enhances the interaction between the α1(D219N) subunit and β2 subunit and prevents the aggregation of the mutant protein by shifting the protein from the detergent-insoluble fractions to detergent-soluble fractions. By combining (35)S pulse-chase labeling and MG-132 inhibition experiments, we demonstrated that verapamil treatment does not inhibit the ER-associated degradation of the α1(D219N) subunit. In addition, its effect does not involve a dynamin-1 dependent endocytosis. To gain further mechanistic insight, we showed that verapamil increases the interaction between the mutant protein and calnexin and calreticulin, two major lectin chaperones in the ER. Moreover, calnexin binding promotes the forward trafficking of the mutant subunit. Taken together, our data indicate that

  16. Exploring details about structure requirements based on novel CGRP receptor antagonists urethanamide, aspartate, succinate and pyridine derivatives by in silico methods

    NASA Astrophysics Data System (ADS)

    Li, Yan; He, Haoran; Wang, Jinghui; Han, Chunxiao; Feng, Jiaqi; Zhang, Shuwei; Yang, Ling

    2014-09-01

    The migraine never fails to afflict individuals in the world that knows no lack of such cases. CGRP (calcitonin gene-related peptide) is found closely related to migraine and olcegepant (BIBN4096) is effective in alleviating the pain. In our work, the combination of ligand- and receptor-based three-dimensional quantitative structure-activity relationship (3D-QSAR) studies along with molecular docking was applied to provide us insights about how urethanamide, pyridine and aspartate and succinate derivatives (novel CGRP receptor antagonists) play a part in inhibiting the activity of CGRP receptor. The optimal CoMSIA model shows the Q2 of 0.505, R2ncv of 0.992 and its accurate predictive ability was confirmed by checking out an independent test set which gave R2pred value of 0.885. Besides, the 3D contour maps help us identify how different groups affect the antagonist activity while connecting to some key positions. In addition, the docking analysis shows the binding site emerging as the distorted “V” shape and including two binding pockets: one of them is hydrophobic, fixing the structural part 3 of compound 80, the other anchors the part 1 of compound 80. The docking analysis also shows the interaction mechanism between compound 80 and CGRP receptor, similar to the interaction between olcegepant and CGRP receptor. The findings derived from this work reveal the mechanism of related antagonists and facilitate the future rational design of novel antagonists with higher potency.

  17. Involvement of pre- and postsynaptic NMDA receptors at local circuit interneuron connections in rat neocortex

    PubMed Central

    De-May, C.L.; Ali, A.B.

    2013-01-01

    To investigate the involvement of N-Methyl-D-aspartate (NMDA) receptors in local neocortical synaptic transmission, dual whole-cell recordings – combined with biocytin labelling – were obtained from bitufted adapting, multipolar adapting or multipolar non-adapting interneurons and pyramidal cells in layers II–V of rat (postnatal days 17–22) sensorimotor cortex. The voltage dependency of the amplitude of Excitatory postsynaptic potentials (EPSPs) received by the three types of interneuron appeared to coincide with the interneuron subclass; upon depolarisation, EPSPs received by multipolar non-adapting interneurons either decreased in amplitude or appeared insensitive, multipolar adapting interneuron EPSP amplitudes increased or appeared insensitive, whereas bitufted interneuron EPSP amplitudes increased or decreased. Connections were challenged with the NMDA receptor antagonist d-(−)-2-amino-5-phosphonopentanoic acid (d-AP5) (50 μM) revealing NMDA receptors to contribute to EPSPs received by all cell types, this also abolished the non-conventional voltage dependency. Reciprocal connections were frequent between pyramidal cells and multipolar interneurons, and inhibitory postsynaptic potentials (IPSPs) elicited in pyramidal cells by both multipolar adapting and multipolar non-adapting interneurons were sensitive to a significant reduction in amplitude by d-AP5. The involvement of presynaptic NMDA receptors was indicated by coefficient of variation analysis and an increase in the failures of transmission. Furthermore, by loading MK-801 into the pre- or postsynaptic neurons, we observed that a reduction in inhibition requires presynaptic and not postsynaptic NMDA receptors. These results suggest that NMDA receptors possess pre- and postsynaptic roles at selective neocortical synapses that are probably important in governing spike-timing and information flow. PMID:23079623

  18. Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness

    PubMed Central

    Papouin, Thomas; Dunphy, Jaclyn; Tolman, Michaela; Dineley, Kelly T.; Haydon, Philip G.

    2017-01-01

    Summary The activation of the N-methyl D-aspartate receptor (NMDAR) is controlled by a glutamate-binding site and a distinct, independently regulated, co-agonist-binding site. In most brain regions, the NMDAR co-agonist is the astrocyte-derived gliotransmitter D-serine. We found that D-serine levels oscillate in mouse hippocampus as a function of wakefulness, in vitro and in vivo. This causes a full saturation of the NMDAR co-agonist site in the dark (active)-phase that dissipates to sub-saturating levels during the light (sleep)-phase, and influences learning performance throughout the day. We demonstrate that hippocampal astrocytes sense the wakefulness-dependent activity of septal cholinergic fibers through the α7-nicotinic acetylcholine receptor (α7nAChR), whose activation drives D-serine release. We conclude that astrocytes tune the gating of synaptic NMDARs to the vigilance state and demonstrate that this is directly relevant to schizophrenia, a disorder characterized by NMDAR and cholinergic hypofunctions. Indeed, bypassing cholinergic activity with a clinically-tested α7nAChR agonist successfully enhances NMDARs activation. PMID:28479102

  19. Crystal Structure of Serine Racemase that Produces Neurotransmitter d-Serine for Stimulation of the NMDA Receptor

    NASA Astrophysics Data System (ADS)

    Goto, Masaru

    d-Serine is an endogenous coagonist for the N-methyl-d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5’-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of l-serine to yield d-serine and vice versa. We have determined the structures of three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe. Lys57 and Ser82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique lysino-d-alanyl residue at the active site, also binds the substrate serine in the active site, suggesting that the lysino-d-alanyl residue acts as a catalytic base in the same manner as Lys57 of the wild type enzyme.

  20. Immunohistochemical localization of ionotropic glutamate receptors in the rat red nucleus

    PubMed Central

    Minbay, Zehra; Kocoglu, Sema Serter; Yurtseven, Duygu Gok; Eyigor, Ozhan

    2017-01-01

    In this study, we aimed to determine the presence as well as the diverse distribution of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor subunits in the rat red nucleus. Using adult Sprague-Dawley rats as the experimental animals, immunohistochemistry was performed on 30 µm thick coronal brain sections with antibodies against α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (GluA1-4), kainate (GluK1, GluK2/3, and GluK5), and NMDA (GluN1 and GluN2A) receptor subunits. The results showed that all ionotropic glutamate receptor subunits are expressed in the red nucleus. Specific staining was localized in the neuron bodies and processes. However, the pattern of immunoreactivity and the number of labeled neurons changed depending on the type of ionotropic glutamate receptor subunits and the localization of neurons in the red nucleus. The neurons localized in the magnocellular part of the red nucleus were particularly immunopositive for GluA2, GluA4, GluK2/3, GluK5, GluN1, and GluN2A receptor proteins. In the parvocellular part of the red nucleus, ionotropic glutamate receptor subunit immunoreactivity of variable intensity (lightly to moderately stained) was detected in the neurons. These results suggest that red nucleus neurons in rat heterogeneously express ionotropic glutamate receptor subunits to form functional receptor channels. In addition, the likelihood of the coexpression of different subunits in the same subgroup of neurons suggests the formation of receptor channels with diverse structure by way of different subunit combination, and the possibility of various neuronal functions through these channels in the red nucleus. PMID:28027456

  1. Immunohistochemical localization of ionotropic glutamate receptors in the rat red nucleus.

    PubMed

    Minbay, Zehra; Serter Kocoglu, Sema; Gok Yurtseven, Duygu; Eyigor, Ozhan

    2017-02-21

    In this study, we aimed to determine the presence as well as the diverse distribution of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor subunits in the rat red nucleus. Using adult Sprague-Dawley rats as the experimental animals, immunohistochemistry was performed on 30 µm thick coronal brain sections with antibodies against α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (GluA1-4), kainate (GluK1, GluK2/3, and GluK5), and NMDA (GluN1 and GluN2A) receptor subunits. The results showed that all ionotropic glutamate receptor subunits are expressed in the red nucleus. Specific staining was localized in the neuron bodies and processes. However, the pattern of immunoreactivity and the number of labeled neurons changed depending on the type of ionotropic glutamate receptor subunits and the localization of neurons in the red nucleus. The neurons localized in the magnocellular part of the red nucleus were particularly immunopositive for GluA2, GluA4, GluK2/3, GluK5, GluN1, and GluN2A receptor proteins. In the parvocellular part of the red nucleus, ionotropic glutamate receptor subunit immunoreactivity of variable intensity (lightly to moderately stained) was detected in the neurons. These results suggest that red nucleus neurons in rat heterogeneously express ionotropic glutamate receptor subunits to form functional receptor channels. In addition, the likelihood of the coexpression of different subunits in the same subgroup of neurons suggests the formation of receptor channels with diverse structure by way of different subunit combination, and the possibility of various neuronal functions through these channels in the red nucleus.

  2. Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology.

    PubMed

    Sasabe, Jumpei; Suzuki, Masataka

    2018-05-22

    Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.

  3. Anesthetic synergy between two n-alkanes.

    PubMed

    Brosnan, Robert J; Fukushima, Fabíola B; Pham, Trung L

    2017-05-01

    N-butane and n-pentane can both produce general anesthesia. Both compounds potentiate γ-aminobutyric acid type A (GABA A ) receptor function, but only butane inhibits N-methyl-d-aspartate (NMDA) receptors. It was hypothesized that butane and pentane would exhibit anesthetic synergy due to their different actions on ligand-gated ion channels. Prospective experimental study. A total of four Xenopus laevis frogs and 43 Sprague-Dawley rats. Alkane concentrations for all studies were determined via gas chromatography. Using a Xenopus oocyte expression model, standard two-electrode voltage clamp techniques were used to measure NMDA and GABA A receptor responses in vitro as a function of butane and pentane concentrations relevant to anesthesia. The minimum alveolar concentrations (MAC) of butane and pentane were measured separately in rats, and then pentane MAC was measured during coadministration of 0.25, 0.50 or 0.75 times MAC of butane. An isobole with 95% confidence intervals was constructed using regression analysis. A sum of butane and pentane that was statistically less than the lower-end confidence bound isobole indicated a synergistic interaction. Both butane and pentane dose-dependently potentiated GABA A receptor currents over the study concentration range. Butane dose-dependently inhibited NMDA receptor currents, but pentane did not modulate NMDA receptors. Butane and pentane MAC in rats was 39.4±0.7 and 13.7±0.4 %, respectively. A small but significant (p<0.03) synergistic anesthetic effect with pentane was observed during administration of either 0.50 or 0.75×MAC butane. Butane and pentane show synergistic anesthetic effects in vivo consistent with their different in vitro receptor effects. Findings support the relevance of NMDA receptors in mediating anesthetic actions for some, but not all, inhaled agents. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd

  4. Retrieval Is Not Necessary to Trigger Reconsolidation of Object Recognition Memory in the Perirhinal Cortex

    ERIC Educational Resources Information Center

    Santoyo-Zedillo, Marianela; Rodriguez-Ortiz, Carlos J.; Chavez-Marchetta, Gianfranco; Bermudez-Rattoni, Federico; Balderas, Israela

    2014-01-01

    Memory retrieval has been considered as requisite to initiate memory reconsolidation; however, some studies indicate that blocking retrieval does not prevent memory from undergoing reconsolidation. Since N-methyl-D-aspartate (NMDA) and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in the perirhinal cortex have…

  5. The interplay of BDNF-TrkB with NMDA receptor in propofol-induced cognition dysfunction : Mechanism for the effects of propofol on cognitive function.

    PubMed

    Zhou, Junfei; Wang, Fang; Zhang, Jun; Li, Jianfeng; Ma, Li; Dong, Tieli; Zhuang, Zhigang

    2018-04-05

    The aim of the present study was to verify whether propofol impaired learning and memory through the interplay of N-methyl-D-aspartate (NMDA) receptor with brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling pathway. 120 Sprague-Dawley (SD) rats were randomly assigned into eight groups. Experimental drugs including saline, intralipid, propofol, N-methyl-D-aspartate (NMDA), 7,8-dihydroxyflavone (7,8-DHF), K252a and MK-801. Spatial learning and memory of rats were tested by the Morris water maze (MWM) test. The mRNA and protein expression were determined by immunohistochemistry, RT-PCR and western blot. Finally, hippocampus cells proliferation and apoptosis were examined by PCNA immunohistochemistry and TUNEL respectively. The memory and learning was diminished in the propofol exposure group, however, the impaired memory and learning of rats were improved with the addition of NMDA and 7,8-DHF, while the improvement of memory and learning of rats were reversed with the addition of K252a and MK-801. In addition, the mRNA and protein expression levels and hippocampus cells proliferation were the same trend with the results of the MWM test, while apoptosis in hippocampus was reversed. The propofol can impair memory and learning of rats and induce cognition dysfunction through the interplay of NMDA receptor and BDNF-TrkB-CREB signaling pathway.

  6. Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring.

    PubMed

    Kesby, James P; O'Loan, Jonathan C; Alexander, Suzanne; Deng, Chao; Huang, Xu-Feng; McGrath, John J; Eyles, Darryl W; Burne, Thomas H J

    2012-04-01

    Developmental vitamin D (DVD) deficiency is a candidate risk factor for developing schizophrenia in humans. In rodents DVD deficiency induces subtle changes in the way the brain develops. This early developmental insult leads to select behavioural changes in the adult, such as an enhanced response to amphetamine-induced locomotion in female DVD-deficient rats but not in male DVD-deficient rats and an enhanced locomotor response to the N-methyl-D: -aspartate (NMDA) receptor antagonist, MK-801, in male DVD-deficient rats. However, the response to MK-801-induced locomotion in female DVD-deficient rats is unknown. Therefore, the aim of the current study was to further examine this behavioural finding in male and female rats and assess NMDA receptor density. DVD-deficient Sprague Dawley rats were assessed for locomotion, ataxia, acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR to multiple doses of MK-801. The NMDA receptor density in relevant brain regions was assessed in a drug-naive cohort. DVD deficiency increased locomotion in response to MK-801 in both sexes. DVD-deficient rats also showed an enhanced ASR compared with control rats, but PPI was normal. Moreover, DVD deficiency decreased NMDA receptor density in the caudate putamen of both sexes. These results suggest that a transient prenatal vitamin D deficiency has a long-lasting effect on NMDA-mediated signalling in the rodent brain and may be a plausible candidate risk factor for schizophrenia and other neuropsychiatric disorders.

  7. Okadaic acid induces epileptic seizures and hyperphosphorylation of the NR2B subunit of the NMDA receptor in rat hippocampus in vivo.

    PubMed

    Arias, Clorinda; Montiel, Teresa; Peña, Fernando; Ferrera, Patricia; Tapia, Ricardo

    2002-09-01

    Overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors is closely related to epilepsy and excitotoxicity, and the phosphorylation of these receptors may facilitate glutamate-mediated synaptic transmission. Here we show that in awake rats the microinjection into the hippocampus of okadaic acid, a potent inhibitor of protein phosphatases 1 and 2A, induces in about 20 min intense electroencephalographic and behavioral limbic-type seizures, which are suppressed by the systemic administration of the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]cyclohepten-5,10-imine hydrogen maleate and by the intrahippocampal administration of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, an inhibitor of protein kinases. Two hours after okadaic acid, when the EEG seizures were intense, an increased serine phosphorylation of some hippocampal proteins, including an enhancement of the serine phosphorylation of the NMDA receptor subunit NR2B, was detected by immunoblotting. Twenty-four hours after okadaic acid a marked destruction of hippocampal CA1 region was observed, which was not prevented by the receptor antagonists. These findings suggest that hyperphosphorylation of glutamate receptors in vivo may result in an increased sensitivity to the endogenous transmitter and therefore induce neuronal hyperexcitability and epilepsy.

  8. Mapping the central effects of (±)-ketamine and traxoprodil using pharmacological magnetic resonance imaging in awake rats.

    PubMed

    Tang, Haiying; Kukral, Daniel; Li, Yu-Wen; Fronheiser, Matthew; Malone, Harold; Pena, Adrienne; Pieschl, Rick; Sidik, Kurex; Tobon, Gabriel; Chow, Patrick L; Bristow, Linda J; Hayes, Wendy; Luo, Feng

    2018-02-01

    Major depressive disorder is a leading cause of disability globally. Improvements in the efficacy of antidepressant therapy are needed as a high proportion (>40%) of individuals with major depressive disorder fail to respond adequately to current treatments. The non-selective N-methyl-D-aspartate receptor channel blocker, (±)-ketamine, has been reported to produce a rapid and long-lasting antidepressant response in treatment-resistant major depressive disorder patients, which provides a unique opportunity for investigation of mechanisms that mediate its therapeutic effect. Efforts have also focused on the development of selective N-methyl-D-aspartate receptor subtype 2B antagonists which may retain antidepressant activity but have lower potential for dissociative/psychotomimetic effects. In the present study, we examined the central nervous system effects of acute, intravenous administration of (±)-ketamine or the N-methyl-D-aspartate receptor subtype 2B antagonist, traxoprodil, in awake rats using pharmacological magnetic resonance imaging. The study contained five treatment groups: vehicle, 3 mg/kg (±)-ketamine, and three doses of traxoprodil (0.3 mg/kg, 5 mg/kg, and 15 mg/kg). Non-linear model fitting was performed on the temporal hemodynamic pharmacological magnetic resonance imaging data to generate brain activation maps as well as regional responses based on blood oxygen level dependent signal changes for group analysis. Traxoprodil at 5 mg/kg and 15 mg/kg produced a dose-dependent pharmacological magnetic resonance imaging signal in rat forebrain regions with both doses achieving >80% N-methyl-D-aspartate receptor subtype 2B occupancy determined by ex vivo [ 3 H]Ro 25-6981 binding. The middle dose of traxoprodil (5 mg/kg) generated region-specific activations in medial prefrontal cortex, ventral orbital cortex, and anterior cingulate cortex whereas the high dose (15 mg/kg) produced a widespread pharmacological magnetic resonance imaging response in both

  9. Inhibition of tetrodotoxin-resistant sodium current in dorsal root ganglia neurons mediated by D1/D5 dopamine receptors

    PubMed Central

    2013-01-01

    Background Dopaminergic fibers originating from area A11 of the hypothalamus project to different levels of the spinal cord and represent the major source of dopamine. In addition, tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines, is expressed in 8-10% of dorsal root ganglia (DRG) neurons, suggesting that dopamine may be released in the dorsal root ganglia. Dopamine has been shown to modulate calcium current in DRG neurons, but the effects of dopamine on sodium current and on the firing properties of small DRG neurons are poorly understood. Results The effects of dopamine and dopamine receptor agonists were tested on the tetrodotoxin-resistant (TTX-R) sodium current recorded from acutely dissociated small (diameter ≤ 25 μm) DRG neurons. Dopamine (20 μM) and SKF 81297 (10 μM) caused inhibition of TTX-R sodium current in small DRG neurons by 23% and 37%, respectively. In contrast, quinpirole (20 μM) had no effects on the TTX-R sodium current. Inhibition by SKF 81297 of the TTX-R sodium current was not affected when the protein kinase A (PKA) activity was blocked with the PKA inhibitory peptide (6–22), but was greatly reduced when the protein kinase C (PKC) activity was blocked with the PKC inhibitory peptide (19–36), suggesting that activation of D1/D5 dopamine receptors is linked to PKC activity. Expression of D1and D5 dopamine receptors in small DRG neurons, but not D2 dopamine receptors, was confirmed by Western blotting and immunofluorescence analysis. In current clamp experiments, the number of action potentials elicited in small DRG neurons by current injection was reduced by ~ 30% by SKF 81297. Conclusions We conclude that activation of D1/D5 dopamine receptors inhibits TTX-R sodium current in unmyelinated nociceptive neurons and dampens their intrinsic excitability by reducing the number of action potentials in response to stimulus. Increasing or decreasing levels of dopamine in the dorsal root ganglia

  10. Separate Functional Properties of NMDARs Regulate Distinct Aspects of Spatial Cognition

    ERIC Educational Resources Information Center

    Sanders, Erin M.; Nyarko-Odoom, Akua O.; Zhao, Kevin; Nguyen, Michael; Liao, Hong Hong Liao; Keith, Matthew; Pyon, Jane; Kozma, Alyssa; Sanyal, Mohima; McHail, Daniel G.; Dumas, Theodore C.

    2018-01-01

    N-methyl-D-aspartate receptors (NMDARs) at excitatory synapses are central to activity-dependent synaptic plasticity and learning and memory. NMDARs act as ionotropic and metabotropic receptors by elevating postsynaptic calcium concentrations and by direct intracellular protein signaling. In the forebrain, these properties are controlled largely…

  11. Fractionating spatial memory with glutamate receptor subunit-knockout mice.

    PubMed

    Bannerman, David M

    2009-12-01

    In recent years, the contribution that different glutamate receptor subtypes and subunits make to spatial learning and memory has been studied extensively using genetically modified mice in which key proteins are knocked out. This has revealed dissociations between different aspects of spatial memory that were not previously apparent from lesion studies. For example, studies with GluA1 AMPAR [AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] subunit-knockout mice have revealed the presence of a GluA1-dependent, non-associative short-term memory mechanism that is important for performance on spatial working memory tasks, and a GluA1-independent, long-term associative memory mechanism which underlies performance on spatial reference memory tasks. Within this framework we have also studied the contributions of different GluN2-containing NMDARs [NMDA (N-methyl-D-aspartate) receptors] to spatial memory. Studies with GluN2 NMDAR mutants have revealed different contributions from GluN2A- and GluN2B-containing NMDARs to spatial learning. Furthermore, comparison of forebrain- and hippocampus-specific GluN2B-knockout mice has demonstrated that both hippocampal and extra-hippocampal NMDARs make important contributions to spatial memory performance.

  12. A hit to lead discovery of novel N-methylated imidazolo-, pyrrolo-, and pyrazolo-pyrimidines as potent and selective mTOR inhibitors.

    PubMed

    Lee, Wendy; Ortwine, Daniel F; Bergeron, Philippe; Lau, Kevin; Lin, Lichuan; Malek, Shiva; Nonomiya, Jim; Pei, Zhonghua; Robarge, Kirk D; Schmidt, Stephen; Sideris, Steve; Lyssikatos, Joseph P

    2013-09-15

    A series of N-7-methyl-imidazolopyrimidine inhibitors of the mTOR kinase have been designed and prepared, based on the hypothesis that the N-7-methyl substituent on imidazolopyrimidine would impart selectivity for mTOR over the related PI3Kα and δ kinases. The corresponding N-Me substituted pyrrolo[3,2-d]pyrimidines and pyrazolo[4,3-d]pyrimidines also show potent mTOR inhibition with selectivity toward both PI3α and δ kinases. The most potent compound synthesized is pyrazolo[4,3-d]pyrimidine 21c. Compound 21c shows a Ki of 2 nM against mTOR inhibition, remarkable selectivity (>2900×) over PI3 kinases, and excellent potency in cell-based assays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Kanako; Department of Anesthesiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501; Kanno, Takeshi

    2008-03-07

    The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression ofmore » the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.« less

  14. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis.

    PubMed

    Bien, Christian G; Vincent, Angela; Barnett, Michael H; Becker, Albert J; Blümcke, Ingmar; Graus, Francesc; Jellinger, Kurt A; Reuss, David E; Ribalta, Teresa; Schlegel, Jürgen; Sutton, Ian; Lassmann, Hans; Bauer, Jan

    2012-05-01

    Classical paraneoplastic encephalitis syndromes with 'onconeural' antibodies directed to intracellular antigens, and the recently described paraneoplastic or non-paraneoplastic encephalitides and antibodies against both neural surface antigens (voltage-gated potassium channel-complexes, N-methyl-d-aspartate receptors) and intracellular antigens (glutamic acid decarboxylase-65), constitute an increasingly recognized group of immune-mediated brain diseases. Evidence for specific immune mechanisms, however, is scarce. Here, we report qualitative and quantitative immunopathology in brain tissue (biopsy or autopsy material) of 17 cases with encephalitis and antibodies to either intracellular (Hu, Ma2, glutamic acid decarboxylase) or surface antigenic targets (voltage-gated potassium channel-complex or N-methyl-d-aspartate receptors). We hypothesized that the encephalitides with antibodies against intracellular antigens (intracellular antigen-onconeural and intracellular antigen-glutamic acid decarboxylase groups) would show neurodegeneration mediated by T cell cytotoxicity and the encephalitides with antibodies against surface antigens would be antibody-mediated and would show less T cell involvement. We found a higher CD8/CD3 ratio and more frequent appositions of granzyme-B(+) cytotoxic T cells to neurons, with associated neuronal loss, in the intracellular antigen-onconeural group (anti-Hu and anti-Ma2 cases) compared to the patients with surface antigens (anti-N-methyl-d-aspartate receptors and anti-voltage-gated potassium channel complex cases). One of the glutamic acid decarboxylase antibody encephalitis cases (intracellular antigen-glutamic acid decarboxylase group) showed multiple appositions of GrB-positive T cells to neurons. Generally, however, the glutamic acid decarboxylase antibody cases showed less intense inflammation and also had relatively low CD8/CD3 ratios compared with the intracellular antigen-onconeural cases. Conversely, we found complement C9neo

  15. Effects of methyl p-hydroxybenzoate (methyl paraben) on Ca2+ concentration and histamine release in rat peritoneal mast cells

    PubMed Central

    Fukugasako, Sanae; Ito, Shinichi; Ikemoto, Yoshimi

    2003-01-01

    Mechanisms of methyl p-hydroxybenzoate (methyl paraben) action in allergic reactions were investigated by measuring the intracellular Ca2+ concentration ([Ca2+]i) and histamine release in rat peritoneal mast cells (RPMCs). In the presence or absence of extracellular Ca2+, methyl paraben (0.1–10 mM) increased [Ca2+]i, in a concentration-dependent manner. Under both the conditions, methyl paraben alone did not evoke histamine release. In RPMCs pretreated with a protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate (PMA) 3 and 10 nM), methyl paraben (0.3–3 mM) induced histamine release. However, a high concentration (10 mM) of the agent did not increase the histamine release. U73122 (0.1 and 0.5 μM), an inhibitor of phospholipase C (PLC), significantly inhibited the methyl paraben-induced histamine release in PMA-pretreated RPMCs. U73343 (0.5 μM), an inactive analogue of U73122, did not inhibit the histamine release caused by methyl paraben. In Ca2+-free solution, PLC inhibitors (U73122 0.1 and 0.5 μM, D609 1–10 μM) inhibited the methyl paraben-induced increase in [Ca2+]i, whereas U73343 (0.5 μM) did not. Xestospongin C (2–20 μM) and 2 aminoethoxydiphenyl borate (30 and 100 μM), blockers of the inositol 1,4,5-trisphosphate (IP3) receptor, inhibited the methyl paraben-induced increase in [Ca2+]i in Ca2+-free solution. In conclusion, methyl paraben causes an increase in [Ca2+]i, which may be due to release of Ca2+ from storage sites by IP3 via activation of PLC in RPMCs. In addition, methyl paraben possibly has some inhibitory effects on histamine release via unknown mechanisms. PMID:12770943

  16. NMDA receptor activation upstream of methyl farnesoate signaling for short day-induced male offspring production in the water flea, Daphnia pulex.

    PubMed

    Toyota, Kenji; Miyakawa, Hitoshi; Yamaguchi, Katsushi; Shigenobu, Shuji; Ogino, Yukiko; Tatarazako, Norihisa; Miyagawa, Shinichi; Iguchi, Taisen

    2015-03-14

    The cladoceran crustacean Daphnia pulex produces female offspring by parthenogenesis under favorable conditions, but in response to various unfavorable external stimuli, it produces male offspring (environmental sex determination: ESD). We recently established an innovative system for ESD studies using D. pulex WTN6 strain, in which the sex of the offspring can be controlled simply by changes in the photoperiod: the long-day and short-day conditions can induce female and male offspring, respectively. Taking advantage of this system, we demonstrated that de novo methyl farnesoate (MF) synthesis is necessary for male offspring production. These results indicate the key role of innate MF signaling as a conductor between external environmental stimuli and the endogenous male developmental pathway. Despite these findings, the molecular mechanisms underlying up- and downstream signaling of MF have not yet been well elucidated in D. pulex. To elucidate up- and downstream events of MF signaling during sex determination processes, we compared the transcriptomes of daphnids reared under the long-day (female) condition with short-day (male) and MF-treated (male) conditions. We found that genes involved in ionotropic glutamate receptors, known to mediate the vast majority of excitatory neurotransmitting processes in various organisms, were significantly activated in daphnids by the short-day condition but not by MF treatment. Administration of specific agonists and antagonists, especially for the N-methyl-D-aspartic acid (NMDA) receptor, strongly increased or decreased, respectively, the proportion of male-producing mothers. Moreover, we also identified genes responsible for male production (e.g., protein kinase C pathway-related genes). Such genes were generally shared between the short-day reared and MF-treated daphnids. We identified several candidate genes regulating ESD which strongly suggests that these genes may be essential factors for male offspring production as an

  17. Receptor-like glycocompounds in human milk that inhibit classical and El Tor Vibrio cholerae cell adherence (hemagglutination).

    PubMed Central

    Holmgren, J; Svennerholm, A M; Lindblad, M

    1983-01-01

    The two biotypes of Vibrio cholerae were found to have cell-associated hemagglutinins which differ with regard to binding to different species of erythrocytes and inhibition by monosaccharides. A total of 12 classical V. cholerae strains (Inaba or Ogawa) strongly agglutinated human erythrocytes in a reaction specifically inhibited by L-fucose, whereas 12 El Tor strains preferably agglutinated chicken erythrocytes, a reaction reversed by D-mannose or by higher concentrations of D-fructose, D-glucose, alpha-methyl-D-mannoside, or sucrose. Milk from Swedish women inhibited both of these adherence reactions, and the predominating inhibitory activity for each reaction resisted boiling, was destroyed by periodate treatment, and bound a concanavalin A-Sepharose column, suggesting a carbohydrate structure. Further characterization indicated that the inhibitory activity for classical V. cholerae hemagglutination was distributed about equally on glycoprotein and free oligosaccharide, but was not present on glycolipid. The El Tor inhibiting activity, on the other hand, was almost exclusively of a high-molecular-weight glycoprotein nature. These results support our previous suggestion (Holmgren et al., Infect. Immun. 33:136-141, 1981) that human milk may contain receptor-like glycocompounds which can prevent bacterial adherence by competition with receptors on target cells. PMID:6295953

  18. Increased phencyclidine-induced hyperactivity following cortical cholinergic denervation.

    PubMed

    Mattsson, Anna; Lindqvist, Eva; Ogren, Sven Ove; Olson, Lars

    2005-11-07

    Altered cholinergic function is considered as a potential contributing factor in the pathogenesis of schizophrenia. We hypothesize that cortical cholinergic denervation may result in changes in glutamatergic activity. Therefore, we lesioned the cholinergic corticopetal projections by local infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of rats. Possible effects of this lesion on glutamatergic systems were examined by phencyclidine-induced locomotor activity, and also by N-methyl-D-aspartate receptor binding. We find that cholinergic lesioning of neocortex leads to enhanced sensitivity to phencyclidine in the form of a dramatic increase in horizontal activity. Further, N-methyl-D-aspartate receptor binding is unaffected in denervated rats. These results suggest that aberrations in cholinergic function might lead to glutamatergic dysfunctions, which might be of relevance for the pathophysiology for schizophrenia.

  19. Temporal-difference prediction errors and Pavlovian fear conditioning: role of NMDA and opioid receptors.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2007-10-01

    Three experiments studied temporal-difference (TD) prediction errors during Pavlovian fear conditioning. In Stage I, rats received conditioned stimulus A (CSA) paired with shock. In Stage II, they received pairings of CSA and CSB with shock that blocked learning to CSB. In Stage III, a serial overlapping compound, CSB --> CSA, was followed by shock. The change in intratrial durations supported fear learning to CSB but reduced fear of CSA, revealing the operation of TD prediction errors. N-methyl- D-aspartate (NMDA) receptor antagonism prior to Stage III prevented learning, whereas opioid receptor antagonism selectively affected predictive learning. These findings support a role for TD prediction errors in fear conditioning. They suggest that NMDA receptors contribute to fear learning by acting on the product of predictive error, whereas opioid receptors contribute to predictive error. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  20. The effect of aspartate-lysine-isoleucine and aspartate-arginine-tyrosine mutations on the expression and activity of vasopressin V2 receptor gene.

    PubMed

    Najafzadeh, Hossein; Safaeian, Leila; Mirmohammad Sadeghi, Hamid; Rabbani, Mohammad; Jafarian, Abbas

    2010-01-01

    Vasopressin type 2 receptor (V2R) plays an important role in the water reabsorption in the kidney collecting ducts. V2R is a G protein coupled receptor (GPCR) and the triplet of amino acids aspartate-arginine-histidine (DRH) in this receptor might significantly influence its activity similar to other GPCR. However, the role of this motif has not been fully confirmed. Therefore, the present study attempted to shed some more light on the role of DRH motif in G protein coupling and V2R function with the use of site-directed mutagenesis. Nested PCR using specific primers was used to produce DNA fragments containing aspartate-lysine-isoleucine and aspartate-arginine-tyrosine mutations with replacements of the arginine to lysine and histidine to tyrosine, respectively. After digestion, these inserts were ligated into the pcDNA3 vector and transformation into E. coli HB101 was performed using heat shock method. The obtained colonies were analyzed for the presence and orientation of the inserts using proper restriction enzymes. After transient transfection of COS-7 cells using diethylaminoethyl-dextran method, the adenylyl cyclase activity assay was performed for functional study. The cell surface expression was analyzed by indirect ELISA method. The functional assay indicated that none of these mutations significantly altered cAMP production and cell surface expression of V2R in these cells. Since some substitutions in arginine residue have shown to lead to the inactive V2 receptor, further studies are required to define the role of this residue more precisely. However, it seems that the role of the histidine residue is not critical in the V2 receptor function.

  1. Platelet Kainate Receptor Signaling Promotes Thrombosis by Stimulating Cyclooxygenase Activation

    PubMed Central

    Sun, Henry; Swaim, AnneMarie; Herrera, Jesus Enrique; Becker, Diane; Becker, Lewis; Srivastava, Kalyan; Thompson, Laura E.; Shero, Michelle R.; Perez-Tamayo, Alita; Suktitpat, Bhoom; Mathias, Rasika; Contractor, Anis; Faraday, Nauder; Morrell, Craig N.

    2009-01-01

    Rationale Glutamate is a major signaling molecule that binds to glutamate receptors including the ionotropic glutamate receptors; kainate (KA) receptor (KAR), the N-methyl-D-aspartate (NMDA) receptor (NMDAR), and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each is well characterized in the central nervous system (CNS), but glutamate has important signaling roles in peripheral tissues as well, including a role in regulating platelet function. Objective Our previous work has demonstrated that glutamate is released by platelets in high concentrations within a developing thrombus and increases platelet activation and thrombosis. We now show that platelets express a functional KAR that drives increased agonist induced platelet activation. Methods and Results KAR induced increase in platelet activation is in part the result of activation of platelet cyclooxygenase (COX) in a Mitogen Activated Protein Kinase (MAPK) dependent manner. Platelets derived from KA receptor subunit knockout mice (GluR6−/−) are resistant to KA effects and have a prolonged time to thrombosis in vivo. Importantly, we have also identified polymorphisms in KA receptor subunits that are associated with phenotypic changes in platelet function in a large group of Caucasians and African Americans. Conclusion Our data demonstrate that glutamate regulation of platelet activation is in part COX dependent, and suggest that the KA receptor is a novel anti-thrombotic target. PMID:19679838

  2. Discovery of 5-substituted tetrahydronaphthalen-2yl-methyl with N-phenyl-N-(piperidin-4-yl)propionamide derivatives as potent opioid receptor ligands.

    PubMed

    Deekonda, Srinivas; Wugalter, Lauren; Kulkarni, Vinod; Rankin, David; Largent-Milnes, Tally M; Davis, Peg; Bassirirad, Neemah M; Lai, Josephine; Vanderah, Todd W; Porreca, Frank; Hruby, Victor J

    2015-09-15

    A new series of novel opioid ligands have been designed and synthesized based on the 4-anilidopiperidine scaffold containing a 5-substituted tetrahydronaphthalen-2yl)methyl group with different N-phenyl-N-(piperidin-4-yl)propionamide derivatives to study the biological effects of these substituents on μ and δ opioid receptor interactions. Recently our group reported novel 4-anilidopiperidine analogues, in which several aromatic ring-contained amino acids were conjugated with N-phenyl-N-(piperidin-4-yl)propionamide and examined their biological activities at the μ and δ opioid receptors. In continuation of our efforts in these novel 4-anilidopiperidine analogues, we took a peptidomimetic approach in the present design, in which we substituted aromatic amino acids with tetrahydronaphthalen-2yl methyl moiety with amino, amide and hydroxyl substitutions at the 5th position. In in vitro assays these ligands, showed very good binding affinity and highly selective toward the μ opioid receptor. Among these, the lead ligand 20 showed excellent binding affinity (2 nM) and 5000 fold selectivity toward the μ opioid receptor, as well as functional selectivity in GPI assays (55.20 ± 4.30 nM) and weak or no agonist activities in MVD assays. Based on the in vitro bioassay results the lead compound 20 was chosen for in vivo assessment for efficacy in naïve rats after intrathecal administration. Compound 20 was not significantly effective in alleviating acute pain. This discrepancy between high in vitro binding affinity, moderate in vitro activity, and low in vivo activity may reflect differences in pharmacodynamics (i.e., engaging signaling pathways) or pharmacokinetics (i.e., metabolic stability). In sum, our data suggest that further optimization of this compound 20 is required to enhance in vivo activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of N-Methyl-D-Aspartate Receptor Antagonist Dextromethorphan on Opioid Analgesia in Pediatric Intensive Care Unit

    PubMed Central

    Al Alem, Hala; Al Shehri, Ali; Al-Jeraisy, Majed

    2016-01-01

    Objective. Pain control is an essential goal in the management of critical children. Narcotics are the mainstay for pain control. Patients frequently need escalating doses of narcotics. In such cases an adjunctive therapy may be beneficial. Dextromethorphan (DM) is NMDA receptor antagonist and may prevent tolerance to narcotics; however, its definitive role is still unclear. We sought whether dextromethorphan addition could decrease the requirements of fentanyl to control pain in critical children. Design. Double-blind, randomized control trial (RCT). Setting. Pediatric multidisciplinary ICU in tertiary care center. Patients. Thirty-six pediatric patients 2–14 years of age in a multidisciplinary PICU requiring analgesia were randomized into dextromethorphan and placebo. The subjects in both groups showed similarity in most of the characteristics. Interventions. Subjects while receiving fentanyl for pain control received dextromethorphan or placebo through nasogastric/orogastric tubes for 96 hours. Pain was assessed using FLACC and faces scales. Measurements and Main Results. This study found no statistical significant difference in fentanyl requirements between subjects receiving dextromethorphan and those receiving placebo (p = 0.127). Conclusions. Dextromethorphan has no effect on opioid requirement for control of acute pain in children admitted with acute critical care illness in PICU. The registration number for this trial is NCT01553435. PMID:27867308

  4. Effect of N-Methyl-D-Aspartate Receptor Antagonist Dextromethorphan on Opioid Analgesia in Pediatric Intensive Care Unit.

    PubMed

    Naeem, Mohammed; Al Alem, Hala; Al Shehri, Ali; Al-Jeraisy, Majed

    2016-01-01

    Objective . Pain control is an essential goal in the management of critical children. Narcotics are the mainstay for pain control. Patients frequently need escalating doses of narcotics. In such cases an adjunctive therapy may be beneficial. Dextromethorphan (DM) is NMDA receptor antagonist and may prevent tolerance to narcotics; however, its definitive role is still unclear. We sought whether dextromethorphan addition could decrease the requirements of fentanyl to control pain in critical children. Design . Double-blind, randomized control trial (RCT). Setting . Pediatric multidisciplinary ICU in tertiary care center. Patients . Thirty-six pediatric patients 2-14 years of age in a multidisciplinary PICU requiring analgesia were randomized into dextromethorphan and placebo. The subjects in both groups showed similarity in most of the characteristics. Interventions . Subjects while receiving fentanyl for pain control received dextromethorphan or placebo through nasogastric/orogastric tubes for 96 hours. Pain was assessed using FLACC and faces scales. Measurements and Main Results . This study found no statistical significant difference in fentanyl requirements between subjects receiving dextromethorphan and those receiving placebo ( p = 0.127). Conclusions . Dextromethorphan has no effect on opioid requirement for control of acute pain in children admitted with acute critical care illness in PICU. The registration number for this trial is NCT01553435.

  5. Calcitonin gene-related peptide enhances substance P-induced behaviors via metabolic inhibition: in vivo evidence for a new mechanism of neuromodulation.

    PubMed

    Mao, J; Coghill, R C; Kellstein, D E; Frenk, H; Mayer, D J

    1992-03-06

    The present study examined the effects of intrathecal (i.t.) injection of calcitonin gene-related peptide (CGRP) on caudally directed biting and scratching induced by i.t. substance P (SP), bombesin (BBS), strychnine (STR), and kainic acid (KA). CGRP alone (5.25, 10.5 and 21 nmol) had no effect on these behaviors, but CGRP pretreatment produced a dose-related enhancement of behaviors induced by SP or BBS, but not by KA or STR. 2-Amino-5-phosphonovaleric acid (APV, 25 nmol), a selective N-methyl-D-aspartate (NMDA) receptor antagonist, did not block the CGRP potentiation of SP and BBS induced behaviors. CGRP, however, failed to enhance scratching and biting induced by a SP analogue [pGlu5-Mephe8-MeGly9]SP(5-11) (Dime-C7) that is resistant to enzymatic degradation by SP endopeptidase. These findings demonstrate that CGRP potentiates SP induced behavioral responses via inhibition of neuropeptide degradation and that this mechanism may serve as a physiological mechanism of SP modulation.

  6. NMDA and D1 receptors are involved in one-trial tolerance to the anxiolytic-like effects of diazepam in the elevated plus maze test in rats.

    PubMed

    Zhou, Heng; Yu, Cheng-Long; Wang, Li-Ping; Yang, Yue-Xiong; Mao, Rong-Rong; Zhou, Qi-Xin; Xu, Lin

    2015-08-01

    The elevated plus maze (EPM) test is used to examine anxiety-like behaviors in rodents. One interesting phenomenon in the EPM test is one-trial tolerance (OTT), which refers to the reduction in the anxiolytic-like effects of benzodiazepines when rodents are re-exposed to the EPM. However, the underlying mechanism of OTT is still unclear. In this study, we reported that OTT occurred when re-exposure to the EPM (trial 2) only depended on the prior experience of the EPM (trial 1) rather than diazepam treatment. This process was memory-dependent, as it was prevented by the N-methyl-D-aspartate (NMDA) receptors antagonist MK-801 1.5h before trial 2. In addition, OTT was maintained for at least one week but was partially abolished after an interval of 28 days. Furthermore, the administration of the D1-like receptors agonist SKF38393 to the bilateral dorsal hippocampus largely prevented OTT, as demonstrated by the ability of the diazepam treatment to produce significant anxiolytic-like effects in trial 2 after a one-day interval. These findings suggest that OTT to the EPM test may occur via the activation of NMDA receptors and the inactivation of D1-like receptors in certain brain regions, including the hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    PubMed

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  8. Attenuation of behavioral effects of cocaine by the Metabotropic Glutamate Receptor 5 Antagonist 2-Methyl-6-(phenylethynyl)-pyridine in squirrel monkeys: comparison with dizocilpine.

    PubMed

    Lee, Buyean; Platt, Donna M; Rowlett, James K; Adewale, Adepero S; Spealman, Roger D

    2005-03-01

    Growing evidence suggests a role for metabotropic glutamate receptors (mGluRs) in the behavioral effects of cocaine related to its abuse. The mGluR5 subtype, in particular, has come under scrutiny due to its distribution in brain regions associated with drug addiction. This study investigated interactions between the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) and cocaine in squirrel monkeys whose lever-pressing behavior was 1) maintained under a second-order schedule of cocaine self-administration, 2) extinguished and then reinstated by cocaine priming, and 3) controlled by the discriminative stimulus (DS) effects of cocaine. Additional studies determined the effects of MPEP on unconditioned behaviors, coordination, and muscle resistance. In each experiment, the effects of MPEP were compared with those of the N-methyl-d-aspartate antagonist dizocilpine. MPEP attenuated cocaine self-administration, cocaine-induced reinstatement of drug seeking, and the DS effects of cocaine at doses that did not markedly impair motor function or operant behavior in the context of drug discrimination. Dizocilpine also attenuated cocaine self-administration, but it did not significantly alter cocaine-induced reinstatement of drug seeking, and it enhanced rather than attenuated the DS effects of cocaine. The findings point to a significant contribution of mGluR5 mechanisms in the behavioral effects of cocaine related to its abuse and suggest that MPEP has properties of a functional cocaine antagonist, which are not secondary to antagonism at NMDA receptors. The contrasting interactions of MPEP and dizocilpine with cocaine imply that glutamate acting through different metabotropic and ionotropic receptors may modulate the behavioral effects of cocaine in qualitatively different ways.

  9. Group IIA secretory phospholipase A2 (GIIA) mediates apoptotic death during NMDA receptor activation in rat primary cortical neurons.

    PubMed

    Chiricozzi, Elena; Fernandez-Fernandez, Seila; Nardicchi, Vincenza; Almeida, Angeles; Bolaños, Juan Pedro; Goracci, Gianfrancesco

    2010-03-01

    Phospholipases A(2) (PLA(2)) participate in neuronal death signalling pathways because of their ability to release lipid mediators, although the contribution of each isoform and mechanism of neurotoxicity are still elusive. Using a novel fluorogenic method to assess changes in a PLA(2) activity by flow cytometry, here we show that the group IIA secretory phospholipase A(2) isoform (GIIA) was specifically activated in cortical neurons following stimulation of N-methyl-d-aspartate glutamate receptor subtype (NMDAR). For activation, GIIA required Ca(2+) and reactive oxygen/nitrogen species, and inhibition of its activity fully prevented NMDAR-mediated neuronal apoptotic death. Superoxide, nitric oxide or peroxynitrite donors stimulated GIIA activity, which mediated neuronal death. Intriguingly, we also found that GIIA activity induced mitochondrial superoxide production after NMDAR stimulation. These results reveal a novel role for GIIA in excitotoxicity both as target and producer of superoxide in a positive-loop of activation that may contribute to the propagation of neurodegeneration.

  10. Involvement of NMDA receptors in the antidepressant-like effect of tramadol in the mouse forced swimming test.

    PubMed

    Ostadhadi, Sattar; Norouzi-Javidan, Abbas; Chamanara, Mohsen; Akbarian, Reyhaneh; Imran-Khan, Muhammad; Ghasemi, Mehdi; Dehpour, Ahmad-Reza

    2017-09-01

    Tramadol is an analgesic agent that is mainly used to treat moderate to severe pain. There is evidence that tramadol may have antidepressant property. However, the mechanisms underlying the antidepressant effects of tramadol have not been elucidated yet. Considering that fact that N-methyl-d-aspartate (NMDA) receptor signaling may play an important role in the pathophysiology of depression, the aim of the present study was to investigate the role of NMDA receptor signaling in the possible antidepressant-like effects of tramadol in the mouse forced swimming test (mFST). We found that tramadol exerted antidepressant-like effects at high dose (40mg/kg, intraperitoneally [i.p.]) in the mFST. Co-administration of non-effective doses of NMDA receptor antagonists (ketamine [1mg/kg, i.p.], MK-801 [0.05mg/kg, i.p.], or magnesium sulfate [10mg/kg, i.p.]) with sub-effective dose of tramadol (20mg/kg, i.p.) exerted significant antidepressant-like effects in the mFST. The antidepressant-like effects of tramadol (40mg/kg) was also inhibited by pre-treatment with non-effective dose of the NMDA receptor agonist NMDA (75mg/kg, i.p.). Our data suggest a role for NMDA receptor signaling in the antidepressant-like effects of tramadol in the mFST. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Reevaluation of the effect of ellagic acid on N-methyl-N-nitrosourea DNA alkylation and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, H.L.; Josephy, P.D.; Snieckus, V.A.

    N-Methyl-N-nitrosourea (MNU) is a reactive, mutagenic methylating agent. MNU methylates DNA at various sites, including guanine N{sup 7}, guanine O{sup 6}, and adenine N{sup 3}. Dixit and Gold ((1986) Proc. Natl, Acad. Sci. U.S.A. 83, 8039-8043) reported that ellagic acid, a phenolic natural product, inhibited the mutagenicity of MNU in Salmonella typhimurium strain TA 100, inhibited salmon sperm DNA alkylation by ({sup 3}H)MNU, and also greatly reduced the ratio of guanine O{sup 6} to guanine N{sup 7} alkylation. We have examined the MNU-induced alkylation of calf thymus DNA and evaluated the effect of ellagic acid on this binding. Ellagic acidmore » had only a slight effect on total alkylation and did not alter the ratio of methylation at guanine-O{sup 6} and -N{sup 7} positions. In further experiments, ellagic acid did not significantly inhibit MNU mutagenicity. These findings do not support the potential use of ellagic acid as an inhibitor of biological damage induced by nitrosoureas.« less

  12. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD.

    PubMed

    Han, Jing; Kesner, Philip; Metna-Laurent, Mathilde; Duan, Tingting; Xu, Lin; Georges, Francois; Koehl, Muriel; Abrous, Djoher Nora; Mendizabal-Zubiaga, Juan; Grandes, Pedro; Liu, Qingsong; Bai, Guang; Wang, Wei; Xiong, Lize; Ren, Wei; Marsicano, Giovanni; Zhang, Xia

    2012-03-02

    Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Metabotropic Glutamate Receptors for Parkinson's Disease Therapy

    PubMed Central

    Gasparini, Fabrizio; Di Paolo, Thérèse; Gomez-Mancilla, Baltazar

    2013-01-01

    Excessive glutamatergic signalling within the basal ganglia is implicated in the progression of Parkinson's disease (PD) and inthe emergence of dyskinesia associated with long-term treatment with L-DOPA. There is considerable research focus on the discovery and development of compounds that modulate glutamatergic signalling via glutamate receptors, as treatments for PD and L-DOPA-induced dyskinesia (LID). Although initial preclinical studies with ionotropic glutamate receptor antagonists showed antiparkinsonian and antidyskinetic activity, their clinical use was limited due to psychiatric adverse effects, with the exception of amantadine, a weak N-methyl-d-aspartate (NMDA) antagonist, currently used to reduce dyskinesia in PD patients. Metabotropic receptor (mGlu receptor) modulators were considered to have a more favourable side-effect profile, and several agents have been studied in preclinical models of PD. The most promising results have been seen clinically with selective antagonists of mGlu5 receptor and preclinically with selective positive allosteric modulators of mGlu4 receptor. The growing understanding of glutamate receptor crosstalk also raises the possibility of more precise modulation of glutamatergic transmission, which may lead to the development of more effective agents for PD. PMID:23853735

  14. Effects of the NMDA receptor antagonist memantine on the expression and development of acute opiate dependence as assessed by withdrawal-potentiated startle and hyperalgesia.

    PubMed

    Harris, Andrew C; Rothwell, Patrick E; Gewirtz, Jonathan C

    2008-03-01

    While the N-methyl-D: -aspartate (NMDA) glutamate receptor has been strongly implicated in chronic opiate dependence, relatively few studies have examined the effects of NMDA receptor antagonists on withdrawal from acute opiate exposure. The current study examined the effects of memantine, a well-tolerated NMDA receptor antagonist, on acute opiate dependence as assessed by elevations in rodent startle responding (i.e., "withdrawal-potentiated startle") and increased pain sensitivity (i.e., hyperalgesia). Administration of memantine either attenuated (5 mg/kg) or blocked (10 mg/kg) the expression of withdrawal-potentiated startle during naloxone (2.5 mg/kg)-precipitated withdrawal from a single dose of morphine sulfate (10 mg/kg). Pre-treatment with the NMDA receptor antagonist also inhibited the exacerbation of withdrawal-potentiated startle across repeated acute opiate exposures. Memantine blocked the expression of acute dependence, but was less effective in inhibiting its escalation, when hyperalgesia was used as a measure of withdrawal. These doses of memantine did not affect startle responding or nociception in otherwise drug-free animals. Data from additional control groups indicated that the effects of memantine on the expression of withdrawal were not influenced by nonspecific interactions between the NMDA antagonist and either morphine or naloxone. These findings suggest that the NMDA receptor may play a key role in the earliest stages of opiate dependence and provide further evidence that memantine may be useful for the treatment of opiate withdrawal.

  15. Effects of Acetylcholinesterase Inhibition on Cholinergic Transmission in the Hippocampal Slice.

    DTIC Science & Technology

    1985-02-08

    compare desensitizing and non- desensitizing amino acids with the changes produced by comparable treatment with carbachol , a cholinergic agonist. We...strong evidence that the effect is due to a classical desensitization of an extra synaptic receptor (Fig. 4). Carbachol (1 min. perfusion) produced a...15 minutes) of the following: glutamate (G),n-methyl-aspartate (NMA), homocysteate (H), or carbachol (C). Each ofthese compounds depolarizes the

  16. [Influence of activation and blockade of NMDA receptors on extinction of passive avoidance response in mice with different levels of anxiety].

    PubMed

    Tomilenko, R A; Dubrovina, N I

    2006-03-01

    Influence of agonist (D-cycloserine) and antagonist (dizocilpine) N-methyl-D-aspartate receptors on learning and extinction of passive avoidance response in medium-, high-, and low-anxious mice was studied. In medium-anxious mice, D-cycloserine (30 mg/kg) although not changing learning accelerated development of extinction, whereas dizocilpine (0.15 mg/kg), while impairing passive avoidance learning, detained the extinction. In high-anxious mice with good retrieval of memory trace and absence of extinction, D-cycloserine was ineffective, whereas dizocilpine reduced learning and promoted retention of memory trace retrieval at the generated level on extinction. In low-anxious mice, D-cycloserine impaired learning and accelerated extinction, whereas dizocilpine completely blocked learning and retention of passive avoidance response.

  17. An evolutionary switch in ND2 enables Src kinase regulation of NMDA receptors

    NASA Astrophysics Data System (ADS)

    Scanlon, David P.; Bah, Alaji; Krzeminski, Mickaël; Zhang, Wenbo; Leduc-Pessah, Heather L.; Dong, Yi Na; Forman-Kay, Julie D.; Salter, Michael W.

    2017-05-01

    The non-receptor tyrosine kinase Src is a key signalling hub for upregulating the function of N-methyl D-aspartate receptors (NMDARs). Src is anchored within the NMDAR complex via NADH dehydrogenase subunit 2 (ND2), a mitochondrially encoded adaptor protein. The interacting regions between Src and ND2 have been broadly identified, but the interaction between ND2 and the NMDAR has remained elusive. Here we generate a homology model of ND2 and dock it onto the NMDAR via the transmembrane domain of GluN1. This interaction is enabled by the evolutionary loss of three helices in bilaterian ND2 proteins compared to their ancestral homologues. We experimentally validate our model and demonstrate that blocking this interaction with an ND2 fragment identified in our experimental studies prevents Src-mediated upregulation of NMDAR currents in neurons. Our findings establish the mode of interaction between an NMDAR accessory protein with one of the core subunits of the receptor.

  18. The Relationship Between the Renin-Angiotensin-Aldosterone System and NMDA Receptor-Mediated Signal and the Prevention of Retinal Ganglion Cell Death.

    PubMed

    Kobayashi, Mamoru; Hirooka, Kazuyuki; Ono, Aoi; Nakano, Yuki; Nishiyama, Akira; Tsujikawa, Akitaka

    2017-03-01

    Excitotoxicity, which is due to glutamate-induced toxic effects on the retinal ganglion cell (RGC), is one of several mechanisms of RGC loss. The renin-angiotensin-aldosterone system (RAAS) has also been implicated in RGC death. Therefore, it is important to determine the exact relationship between the RAAS and N-methyl-d-aspartate (NMDA) receptor-mediated signal in order to prevent RGC death. N-methyl-d-aspartate or aldosterone was injected into the vitreous body. After intravitreal injection of NMDA or aldosterone, animals were treated with spironolactone or memantine. Retinal damage was evaluated by measuring the number of RGCs at 4 weeks after local administration of aldosterone or at 2 weeks after local administration of NMDA. Vitreous humor levels of aldosterone were measured using enzyme immunoassay kits. A significantly decreased number of RGCs were observed after intravitreal injection of NMDA. Although spironolactone did not show any neuroprotective effects, memantine significantly reduced NMDA-induced degeneration in the retina. Furthermore, a significant decrease in the number of RGCs was observed after an intravitreal injection of aldosterone. While memantine did not exhibit any neuroprotective effects, spironolactone caused a significant reduction in the aldosterone-induced degeneration in the retina. There was no change in the aldosterone concentration in the vitreous humor after an NMDA injection. Our findings indirectly show that there is no relationship between the RAAS and NMDA receptor-mediated signal with regard to RGC death.

  19. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model

    PubMed Central

    Sershen, Henry; Hashim, Audrey; Dunlop, David S.; Suckow, Raymond F.; Cooper, Tom B.; Javitt, Daniel C.

    2016-01-01

    Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol®) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor sodium benzoate (NaB) (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level

  20. Ionotropic glutamate receptor expression in human white matter.

    PubMed

    Christensen, Pia Crone; Samadi-Bahrami, Zahra; Pavlov, Vlady; Stys, Peter K; Moore, G R Wayne

    2016-09-06

    Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.