Sample records for n-methyl-n-nitrosourea-induced retinal degeneration

  1. Cell Fate of Müller Cells During Photoreceptor Regeneration in an N-Methyl-N-nitrosourea-Induced Retinal Degeneration Model of Zebrafish.

    PubMed

    Ogai, Kazuhiro; Hisano, Suguru; Sugitani, Kayo; Koriyama, Yoshiki; Kato, Satoru

    2016-01-01

    Zebrafish can regenerate several organs such as the tail fin, heart, central nervous system, and photoreceptors. Very recently, a study has demonstrated the photoreceptor regeneration in the alkylating agent N-methyl-N-nitrosourea (MNU)-induced retinal degeneration (RD) zebrafish model, in which whole photoreceptors are lost within a week after MNU treatment and then regenerated within a month. The research has also shown massive proliferation of Müller cells within a week. To address the question of whether proliferating Müller cells are the source of regenerating photoreceptors, which remains unknown in the MNU-induced zebrafish RD model, we employed a BrdU pulse-chase technique to label the proliferating cells within a week after MNU treatment. As a result of the BrdU pulse-chase technique, a number of BrdU(+) cells were observed in the outer nuclear layer as well as the inner nuclear layer. This implies that regenerating photoreceptors are derived from proliferating Müller cells in the zebrafish MNU-induced RD model.

  2. Cyanidin-3-glucoside extracted from mulberry fruit can reduce N-methyl-N-nitrosourea-induced retinal degeneration in rats.

    PubMed

    Lee, Seung Hee; Jeong, Eojin; Paik, Sun-Sook; Jeon, Ji Hyun; Jung, Sung Won; Kim, Hyun-Bok; Kim, Muyan; Chun, Myung-Hoon; Kim, In-Beom

    2014-01-01

    To investigate the effect of cyanidin-3-O-glucoside (C3G) on a rat retinal degeneration (RD) model. Experimental RD was induced in rats by the intraperitoneal injection of N-methyl-N-nitrosourea (MNU) at 50 mg/kg. C3G extracted from mulberry (Morus alba L.) fruit (50 mg/kg) was orally administered, daily for 1, 2 and 4 weeks after MNU injection. The effects of C3G administration on MNU-induced RD retinas were histologically and functionally assessed by hematoxylin and eosin staining and electroretinography (ERG), respectively. The degree of retinal injury in C3G-administered RD rats was evaluated by immunohistochemistry with an antibody against glial fibrillary acidic protein (GFAP). The preferential protective effect of C3G on scotopic vision was examined by western blot analysis. Marked loss of photoreceptors in the outer nuclear layer (ONL) was observed in RD rats at 2 and 4 weeks after MNU injection, while the ONL in the MNU-induced RD rats given C3G was relatively well preserved. Immunohistochemistry with anti-GFAP showed that retinal injury was also reduced in the retinas of the rats given C3G. Functional assessment by using ERG recordings showed that scotopic ERG responses were significantly increased in RD rats given C3G for 4 weeks (p < 0.01) compared with that of untreated RD rats. In the RD rats given short-term C3G (for 1 and 2 weeks), the increase in ERG responses was not significant. In addition, western blot analysis showed that rhodopsin level in the C3G-administered RD retinas significantly increased compared to that in the non-administered RD retinas (p < 0.05), whereas red/green opsin level did not show any significant difference. Long-term administration of C3G extracted from mulberry fruit could structurally reduce photoreceptor damage and functionally improve scotopic visual functions in the RD rat model induced by MNU.

  3. Multiple programmed cell death pathways are involved in N-methyl-N-nitrosourea-induced photoreceptor degeneration.

    PubMed

    Reisenhofer, Miriam; Balmer, Jasmin; Zulliger, Rahel; Enzmann, Volker

    2015-05-01

    To identify programmed cell death (PCD) pathways involved in N-methyl-N-nitrosourea (MNU)-induced photoreceptor (PR) degeneration. Adult C57BL/6 mice received a single MNU i.p. injection (60 mg/kg bodyweight), and were observed over a period of 7 days. Degeneration was visualized by H&E overview staining and electron microscopy. PR cell death was measured by quantifying TUNEL-positive cells in the outer nuclear layer (ONL). Activity measurements of key PCD enzymes (calpain, caspases) were used to identify the involved cell death pathways. Furthermore, the expression level of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), key players in endoplasmic reticulum (ER) stress-induced apoptosis, was analyzed using quantitative real-time PCR. A decrease in ONL thickness and the appearance of apoptotic PR nuclei could be detected beginning 3 days post-injection (PI). This was accompanied by an increase of TUNEL-positive cells. Significant upregulation of activated caspases (3, 9, 12) was found at different time periods after MNU injection. Additionally, several other players of nonconventional PCD pathways were also upregulated. Consequently, calpain activity increased in the ONL, with a maximum on day 7 PI and an upregulation of CHOP and GRP78 expression beginning on day 1 PI was found. The data indicate that regular apoptosis is the major cause of MNU-induced PR cell death. However, alternative PCD pathways, including ER stress and calpain activation, are also involved. Knowledge about the mechanisms involved in this mouse model of PR degeneration could facilitate the design of putative combinatory therapeutic approaches.

  4. Topographic Quantification of the Transcorneal Electrical Stimulation (TES)-Induced Protective Effects on N-Methyl-N-Nitrosourea-Treated Retinas.

    PubMed

    Tao, Ye; Chen, Tao; Liu, Zhong-Yu; Wang, Li-Qiang; Xu, Wei-Wei; Qin, Li-Min; Peng, Guang-Hua; Yi-Fei, Huang

    2016-09-01

    To quantify the transcorneal electrical stimulation (TES)-induced effects on regional photoreceptors and visual signal pathway of N-methyl-N-nitrosourea (MNU)-treated retinas via topographic measurements. N-methyl-N-nitrosourea-administered mice received TES or sham stimulations and were subsequently subjected to electroretinography (ERG), multielectrode array (MEA), and histologic and immunohistochemistry examinations. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses were also performed to determine the mRNA levels of Bax, Bcl-2, Calpain-2, Caspase-3, brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF). Amplitudes of ERG b-wave in the TES-treated mice were significantly larger than those in the sham controls (P < 0.01). Microelectrode array examination revealed that the photoreceptors in TES-treated retina were efficiently preserved (P < 0.01). Morphologic measurements showed that the central retina region was more consolidated than the other areas in the TES-treated mice. Together with the disproportionate distribution of immunostaining in retinal flat mounts, these findings indicated that different rescuing kinetics existed among regional photoreceptors. Compared with the sham controls, a significantly increased signal-to-noise ratio was also found in the TES-treated mice (TES100: 2.02 ± 1.12; TES200: 4.42 ± 1.51; sham: 0.25 ± 0.13; P < 0.01). Moreover, qRT-PCR measurements suggested that the altered expression of several apoptotic factors and neurotrophic cytokines was correlated with TES-induced protection. Regional photoreceptors in the MNU-administered retinas exhibit different sensitivities to TES. Transcorneal electrical stimulation is capable of ameliorating MNU-induced photoreceptor degeneration and rectifying abnormalities in the inner visual signal pathways.

  5. Inhibition of protein synthesis by N-methyl-N-nitrosourea in vivo

    PubMed Central

    Kleihues, P.; Magee, P. N.

    1973-01-01

    1. The intraperitoneal injection of N-methyl-N-nitrosourea (100mg/kg) caused a partial inhibition of protein synthesis in several organs of the rat, the maximum effect occurring after 2–3h. 2. In the liver the inhibition of protein synthesis was paralleled by a marked disaggregation of polyribosomes and an increase in ribosome monomers and ribosomal subunits. No significant breakdown of polyribosomes was found in adult rat brains although N-methyl-N-nitrosourea inhibited cerebral and hepatic protein synthesis to a similar extent. In weanling rats N-methyl-N-nitrosourea caused a shift in the cerebral polyribosome profile similar to but less marked than that in rat liver. 3. Reaction of polyribosomal RNA with N-[14C]methyl-N-nitrosourea in vitro did not lead to a disaggregation of polyribosomes although the amounts of 7-methylguanine produced were up to twenty times higher than those found after administration of sublethal doses in vivo. 4. It was concluded that changes in the polyribosome profile induced by N-methyl-N-nitrosourea may reflect the mechanism of inhibition of protein synthesis rather than being a direct consequence of the methylation of polyribosomal mRNA. PMID:4774397

  6. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss. PMID:26379056

  7. Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice.

    PubMed

    Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker

    2016-12-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate

  8. Reaction products from N-methyl-N-nitrosourea and deoxyribonucleic acid containing thymidine residues. Synthesis and identification of a new methylation product, O4-methyl-thymidine

    PubMed Central

    Lawley, P. D.; Orr, D. J.; Shah, S. A.; Farmer, P. B.; Jarman, M.

    1973-01-01

    1. DNA was treated with N-methyl-N-nitrosourea at pH7–8, 37°C, degraded to yield 3- and 7-methylpurines and deoxyribonucleosides and the reaction products were separated by chromatography on ion-exchange resins. The following methods for identification and determination of products were used: with unlabelled N-methyl-N-nitrosourea, u.v. absorption; use of methyl-14C-labelled N-methyl-N-nitrosourea and use of [14C]thymine-labelled DNA. 2. The synthesis of O4-methylthymidine and its identification by u.v. and mass spectroscopy are reported. 3. 3-Methylthymidine and O4-methylthymidine were found as methylation products from N-methyl-N-nitrosourea with thymidine and with DNA, in relatively small yields. Unidentified products containing thymine were found in enzymic digests of N-methyl-N-nitrosourea-treated DNA, which may be phosphotriesters. 4. The possible role of formation of methylthymines in mutagenesis by N-methyl-N-nitrosourea is discussed. PMID:4798180

  9. Reevaluation of the effect of ellagic acid on N-methyl-N-nitrosourea DNA alkylation and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, H.L.; Josephy, P.D.; Snieckus, V.A.

    N-Methyl-N-nitrosourea (MNU) is a reactive, mutagenic methylating agent. MNU methylates DNA at various sites, including guanine N{sup 7}, guanine O{sup 6}, and adenine N{sup 3}. Dixit and Gold ((1986) Proc. Natl, Acad. Sci. U.S.A. 83, 8039-8043) reported that ellagic acid, a phenolic natural product, inhibited the mutagenicity of MNU in Salmonella typhimurium strain TA 100, inhibited salmon sperm DNA alkylation by ({sup 3}H)MNU, and also greatly reduced the ratio of guanine O{sup 6} to guanine N{sup 7} alkylation. We have examined the MNU-induced alkylation of calf thymus DNA and evaluated the effect of ellagic acid on this binding. Ellagic acidmore » had only a slight effect on total alkylation and did not alter the ratio of methylation at guanine-O{sup 6} and -N{sup 7} positions. In further experiments, ellagic acid did not significantly inhibit MNU mutagenicity. These findings do not support the potential use of ellagic acid as an inhibitor of biological damage induced by nitrosoureas.« less

  10. The neurotoxic effects of N-methyl-N-nitrosourea on the electrophysiological property and visual signal transmission of rat's retina.

    PubMed

    Tao, Ye; Chen, Tao; Liu, Bei; Yang, Guo Qing; Peng, Guanghua; Zhang, Hua; Huang, Yi Fei

    2015-07-01

    The neurotoxic effects of N-methyl-N-nitrosourea (MNU) on the inner retinal neurons and related visual signal circuits have not been described in any animal models or human, despite ample morphological evidences about the MNU induced photoreceptor (PR) degeneration. With the helping of MEA (multielectrode array) recording system, we gained the opportunity to systemically explore the neural activities and visual signal pathways of MNU administrated rats. Our MEA research identified remarkable alterations in the electrophysiological properties and firstly provided instructive information about the neurotoxicity of MNU that affects the signal transmission in the inner retina. Moreover, the spatial electrophysiological functions of retina were monitored and found that the focal PRs had different vulnerabilities to the MNU. The MNU-induced PR dysfunction exhibited a distinct spatial- and time-dependent progression. In contrast, the spiking activities of both central and peripheral RGCs altered synchronously in response to the MNU administration. Pharmacological tests suggested that gap junctions played a pivotal role in this homogeneous response of RGCs. SNR analysis of MNU treated retina suggested that the signaling efficiency and fidelity of inner retinal circuits have been ruined by this toxicant, although the microstructure of the inner retina seemed relatively consolidated. The present study provided an appropriate example of MEA investigations on the toxicant induced pathological models and the effects of the pharmacological compounds on neuron activities. The positional MEA information would enrich our knowledge about the pathology of MNU induced RP models, and eventually be instrumental for elucidating the underlying mechanism of human RP. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Vanillin as a modulator agent in SMART test: inhibition in the steps that precede N-methyl-N-nitrosourea-, N-ethyl-N-nitrosourea-, ethylmethanesulphonate- and bleomycin-genotoxicity.

    PubMed

    Sinigaglia, Marialva; Lehmann, Maurício; Baumgardt, Paula; do Amaral, Viviane Souza; Dihl, Rafael Rodrigues; Reguly, Maria Luíza; de Andrade, Heloísa Helena Rodrigues

    2006-09-05

    Vanillin (VA), the world's major flavoring compound used in food industry and confectionery products - that has antimutagenic and anticarcinogenic activity against a variety of mutagenic/carcinogenic agents - was tested for the interval between the formation of premutational lesion and it is finalization as a DNA lesion. The overall findings using co-treatment protocols in SMART test suggest that VA can lead to a significant protection against the general genotoxicity of ethylmethanesulphonate (EMS), N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU) and bleomycin sulphate (BLEO). Considering MNU, ENU and EMS the desmutagenic activity observed could result from VA-stimulation of detoxification, via induction of glutathione S-transferase. However, the protector effect related to BLEO could be attributed to its powerful scavenger ability, which has the potential to prevent oxidative damage induced by BLEO.

  12. In vitro cytotoxicity and differential cellular sensitivity of derivatives of diamino acids. II. N1-methyl, N1-allyl, N1-(2-chloroethyl) and N1-propargyl nitrosoureas.

    PubMed

    Dulude, H; Salvador, R; Gallant, G

    1995-01-01

    The in vitro cytotoxicity and differential cellular sensitivity of a series of new N1-methyl, N1-allyl, N1-2-chloroethyl and N1-propargyl nitrosourea derivatives of diamino acids were determined in the National Cancer Institute's primary antitumor drug screen. The compounds tested showed an in vitro anticancer activity similar to commercialized nitrosoureas such as CCNU, BCNU, MeCCNU, chlorozotocin, streptozotocin and PCNU. The alkylating moiety of the nitrosoureas seems to play a role in the general selectivity of our compounds. The N1-methyl and N1-2-chloroethyl nitrosourea derivatives are more selective for central nervous system cell lines, the N1-allyl nitrosourea derivatives are more selective for lung cancer cell lines and the N1-propargyl nitrosoureas are more selective for leukemia cell lines.

  13. The neurotoxic effects of N-methyl-N-nitrosourea on the electrophysiological property and visual signal transmission of rat's retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Ye; Chen, Tao; Liu, Bei

    The neurotoxic effects of N-methyl-N-nitrosourea (MNU) on the inner retinal neurons and related visual signal circuits have not been described in any animal models or human, despite ample morphological evidences about the MNU induced photoreceptor (PR) degeneration. With the helping of MEA (multielectrode array) recording system, we gained the opportunity to systemically explore the neural activities and visual signal pathways of MNU administrated rats. Our MEA research identified remarkable alterations in the electrophysiological properties and firstly provided instructive information about the neurotoxicity of MNU that affects the signal transmission in the inner retina. Moreover, the spatial electrophysiological functions of retinamore » were monitored and found that the focal PRs had different vulnerabilities to the MNU. The MNU-induced PR dysfunction exhibited a distinct spatial- and time-dependent progression. In contrast, the spiking activities of both central and peripheral RGCs altered synchronously in response to the MNU administration. Pharmacological tests suggested that gap junctions played a pivotal role in this homogeneous response of RGCs. SNR analysis of MNU treated retina suggested that the signaling efficiency and fidelity of inner retinal circuits have been ruined by this toxicant, although the microstructure of the inner retina seemed relatively consolidated. The present study provided an appropriate example of MEA investigations on the toxicant induced pathological models and the effects of the pharmacological compounds on neuron activities. The positional MEA information would enrich our knowledge about the pathology of MNU induced RP models, and eventually be instrumental for elucidating the underlying mechanism of human RP. - Highlights: • We systemically explored the neural activities and visual signal pathways of MNU administrated retinas. • The focal photoreceptors had different vulnerabilities to the MNU administration.

  14. The Enzymatic Release of O6-methylguanine and 3-methyladenine from DNA Reacted with the Carcinogen N-methyl-N-nitrosourea

    PubMed Central

    Kirtikar, D. M.; Goldthwait, D. A.

    1974-01-01

    Endonuclease II (deoxyribonucleate oligonucleotidohydrolase, EC 3.1.4.30) of Escherichia coli has been shown to break phosphodiester bonds in alkylated DNA and depurinated DNA. The hypothesis that depurination is a step in the mechanism of the reaction with alkylated DNA is supported by in vitro experiments with DNA reacted with N-methyl-N-nitrosourea. Endonuclease II releases O6-methylguanine and 3-methyladenine, but not 7-methylguanine, from DNA that has been methylated by the carcinogen N-methyl-N-nitrosourea. PMID:4600266

  15. Garlic and associated allyl sulfur components inhibit N-methyl-N-nitrosourea induced rat mammary carcinogenesis.

    PubMed

    Schaffer, E M; Liu, J Z; Green, J; Dangler, C A; Milner, J A

    1996-04-19

    Our previous studies demonstrated that dietary garlic powder supplementation inhibits N-nitrosamine induced DNA alkylation in liver and mammary tissue. The present studies compared the impact of dietary supplementation with garlic powder or two garlic constituents, water-soluble S-allyl cysteine (SAC) and oil-soluble diallyl disulfide (DADS), on the incidence of mammary tumorigenesis induced by N-methyl-N-nitrosourea (MNU). Female Sprague-Dawley rats were fed semi-purified casein based diets with or without supplements of garlic powder(20g/kg), SAC (57 micromol/kg) or DADS (57 micromol/kg) for 2 weeks prior to treatment with MNU (15 mg/kg body wt). Garlic powder, SAC and DADS supplementation significantly delayed the onset of mammary tumors compared to rats receiving the unsupplemented diet. Tumor incidence 23 weeks after MNU treatment was reduced by 76, 41 and 53% in rats fed garlic, SAC and DADS, respectively, compared to controls (P<0.05). Total tumor number was reduced 81, 35 and 65% by these supplements, respectively (P<0.05). In a separate study the quantity of mammary DNA alkylation occurring 3 h after MNU treatment was reduced in rats fed garlic, SAC or DADS (P<0.05). Specifically, O(6)-methylguanine adducts were reduced by 27, 18 and 23% in rats fed supplemental garlic, SAC and DADS, respectively, compared to controls. N(7)-Methylguanine adducts decreased by 48, 22 and 21% respectively, compared to rats fed the control diet. These studies demonstrate that garlic and associated allyl sulfur components, SAC and DADS, are effective inhibitors of MNU-induced mammary carcinogenesis.

  16. Methylation of ribonucleic acid by the carcinogens dimethyl sulphate, N-methyl-N-nitrosourea and N-methyl-N′-nitro-N-nitrosoguanidine. Comparisons of chemical analyses at the nucleoside and base levels

    PubMed Central

    Lawley, P. D.; Shah, S. A.

    1972-01-01

    1. The following methods for hydrolysis of methyl-14C-labelled RNA, and for chromatographic isolation and determination of the products, were investigated: enzymic digestion to nucleosides at pH6 or 8; alkaline hydrolysis and conversion into nucleosides; hydrolysis by acid to pyrimidine nucleotides and purine bases, or completely to bases; chromatography on Dowex 50 (NH4+ form) at pH6 or 8.9, or on Dowex 50 (H+ form), or on Sephadex G-10. 2. The suitability of the various methods for determination of methylation products was assessed. The principal product, 7-methylguanosine, was unstable under the conditions used for determinations of nucleosides. 3- and 7-Methyladenine and 3- and 7-methylguanine are best determined as bases; 1-methyladenine and 3-methylcytosine can be isolated as either nucleosides or bases; O6-methylguanine is unstable under the acid hydrolysis conditions used and can be determined as the nucleoside; 3-methyluracil was detected, but may be derived from methylation of the ionized form of uracil. 3. Differences between the patterns of methylation of RNA and homopolyribonucleotides by the N-methyl-N-nitroso compounds and dimethyl sulphate were found: the nitroso compounds were able to methylate O-6 of guanine, were relatively more reactive at N-7 of adenine and probably at N-3 of guanine, but less reactive at N-1 of adenine, N-3 of cytosine and probably at N-3 of uridine. They probably reacted more with the ribose–phosphate chain, but no products from this were identified. 4. The possible influences of these differences on biological action of the methylating agents is discussed. Nitroso compounds may differ principally in their ability to induce miscoding in the Watson–Crick sense by reaction at O-6 of guanine. Both types of agent may induce miscoding to a lesser extent through methylation at N-3 of guanine; both can methylate N atoms, presumably preventing Watson–Crick hydrogen-bonding. N-Methyl-N-nitrosourea can degrade RNA, possibly

  17. Alkylation of deoxyribonucleic acid by carcinogens dimethyl sulphate, ethyl methanesulphonate, N-ethyl-N-nitrosourea and N-methyl-N-nitrosourea. Relative reactivity of the phosphodiester site thymidylyl(3'-5')thymidine.

    PubMed Central

    Swenson, D H; Lawley, P D

    1978-01-01

    1. The ethyl phosphotriester of thymidylyl(3'-5')thymidine, dTp(Et)dT, was identified as a product from reaction of DNA with N-ethyl-N-nitrosourea, by procedures parallel to those reported previously for the methyl homologue produced by N-methyl-N-nitrosourea. 2. Enzymic degradation to yield alkyl phosphotriesters from DNA alkylated by these carcinogens and by dimethyl sulphate and ethyl methanesulphonate was studied quantitatively, and the relative yields of the triesters dTp(Alk)dT were determined. The relative reactivity of the phosphodiester group dTpdT to each of the four carcinogens was thus obtained, and compared with that of DNA overall, or with that of the N-7 atom of guanine in DNA. Relative reactivity of the phosphodiester group was lowest towards dimethyl sulphate, the least electrophilic of the reagents used, and was highest towards N-ethyl-N-nitrosourea, the most electrophilic reagent. 3. The nature of the alkyl group transferred also influenced reactivity of the phosphodiester site, since this site was relatively more reactive towards ethylation than would be predicted simply from the known Swain-Scott s values of the alkylating agents. It was therefore suggested that the steric accessibility of the weakly nucleophilic phosphodiester group on the outside of the DNA macromolecule favours its reaction with ethylating, as opposed to methylating, reagents. 4. Taking a value of the Swain-Scott nucleophilicity (n) of 2.5 for an average DNA nucleotide unit [Walles & Ehrenberg (1969) Acta Chem. Scand. 23, 1080-1084], a value of n of about 1 for the phosphodiester group was deduced, and this value was found to be 2-3 units less than that for the N-7 atom of guanine in DNA. 5. The reactivity of DNA overall was markedly high towards the alkylnitrosoureas, despite their relatively low s values. This was ascribed to an electrostatic factor that favoured reaction of the negatively charged polymer with alkyldiazonium cation intermediates. PMID:208508

  18. Effects of Dietary Xanthophylls, Canthaxanthin and Astaxanthin on N-Methyl-N-nitrosourea-induced Rat Mammary Carcinogenesis.

    PubMed

    Yuri, Takashi; Yoshizawa, Katsuhiko; Emoto, Yuko; Kinoshita, Yuichi; Yuki, Michiko; Tsubura, Airo

    Natural xanthophylls, canthaxanthin and astaxanthin are known to exhibit anticancer activity. However, the dietary effects of canthaxanthin and astaxanthin on N-methyl-N-nitrosourea (MNU)-induced mammary cancer remain controversial, and their mechanisms of action have not been clearly identified. Three-week-old female Sprague-Dawley rats were fed a xanthophyll-free (basal diet) diet or experimental diets containing canthaxanthin or astaxanthin (0.04% and 0.4%) for 5 weeks (until 8 weeks of age), after which all rats were provided the basal diet (n=15 each). Rats were administered MNU at 6 weeks of age, and the incidence of mammary tumors at 20 weeks of age was compared. The expression of adiponectin in mammary adipose tissues taken at 7 weeks of age was also compared. Compared to the basal diet group, the 0.4% (but not the 0.04%) astaxanthin diet significantly reduced the incidence of palpable mammary carcinoma (92% vs. 42%; p<0.05), while the low and high canthaxanthin diets produced no significant inhibition. Adiponectin immunoblotting showed significantly higher expression in the 0.4% astaxanthin diet group, while the other groups were similar to the basal diet group. High concentrations of astaxanthin suppress MNU-induced mammary carcinoma. Changes in adiponectin may be involved in the mechanism of action. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Chemical carcinogenesis in the nervous system. Preferential accumulation of O6-methylguanine in rat brain deoxyribonucleic acid during repetitive administration of N-methyl-N-nitrosourea.

    PubMed Central

    Margison, G P; Kleihues, P

    1975-01-01

    The alkylation of purine bases in DNA of several rat tissues was determined during weekly injections (10 mg/kg) of N-[3H]methyl-N-nitrosourea, a dose schedule known to selectively induce tumours of the nervous system. Each group of animals was killed 1 week after the final injection, and the DNA hydrolysates were analysed by chromatography on Sephadex G-10. After five weekly applications, O6-methylguanine had accumulated in brain DNA to an extent which greatly exceeded that in kidney, spleen and intestine. In the liver, the final O6-methylguanine concentration was less than 1% of that in brain. Between the first and the fifth injection, the O6-methylguanine/7-methylguanine ratio in cerebral DNA increased from 0.28 to 0.68. In addition, 3-methylguanine was found to accumulate in brain DNA whereas in the other organs no significant quantities of this base were detectable. The results are compatible with the hypothesis that O6-alkylation of guanine in DNA plays a major role in the induction of tumours by N-methyl-N-nitrosourea and related carcinogens. The kinetics of the increase of O6-methylguanine in cerebral DNA suggest that there is no major cell fraction in the brain which is capable of excising chemically methylated bases from DNA. This repair deficiency could be a determining factor in the selective induction of nervous-system tumours by N-methyl-N-nitrosourea and other neuro-oncogenic compounds. PMID:1200992

  20. Preventive effect of Oenothera rosea on N-methyl-N-nitrosourea-(NMU) induced gastric cancer in rats.

    PubMed

    Almora-Pinedo, Yuan; Arroyo-Acevedo, Jorge; Herrera-Calderon, Oscar; Chumpitaz-Cerrate, Víctor; Hañari-Quispe, Renán; Tinco-Jayo, Aldo; Franco-Quino, Cesar; Figueroa-Salvador, Linder

    2017-01-01

    Currently, gastric cancer (GC) is considered a public health problem worldwide. Using medicinal plants for the prevention of chronic diseases such as cancer constitutes new alternatives in traditional medicine. Oenothera rosea (OR) could be an option, but it needs to be evaluated. The main objective of this study was to evaluate the protective effect of OR extract on N-methyl-N-nitrosourea (NMU)-induced GC in rats. In total, 80 male Holtzman rats were randomized into five groups. Group A received the saline solution (5mL/kg), group B received NMU 500 μg/kg (cancer inductor) by oral administration for 16 weeks, and groups C, D, and E were treated with OR extract (100, 200, and 300 mg/kg, respectively) and NMU in order to evaluate the preventive effect on cancer induced by NMU for 16 weeks. Blood and histological samples of stomachs were collected to determine histopathological, biochemical, and hematological parameters between different experimental groups. Groups C, D, and E presented less histopathological changes such as anaplastic and hyperplastic cells, compared with group B. Hematological and biochemical parameters were recorded, and superoxide dismutase, malondialdehyde, and nitric oxide levels were statistically less than those of NMU group ( P <0.05, P <0.01, and P <0.01). Considering the histopathological signs and the antioxidant activity in vivo as well as hematological and biochemical parameters of ethanolic extract of OR, we concluded that its administration in rats has a protective effect on GC, which is induced experimentally. This species could be studied in clinical trials for patients with GC in the future.

  1. Preventive effect of Oenothera rosea on N-methyl-N-nitrosourea-(NMU) induced gastric cancer in rats

    PubMed Central

    Almora-Pinedo, Yuan; Arroyo-Acevedo, Jorge; Herrera-Calderon, Oscar; Chumpitaz-Cerrate, Víctor; Hañari-Quispe, Renán; Tinco-Jayo, Aldo; Franco-Quino, Cesar; Figueroa-Salvador, Linder

    2017-01-01

    Background Currently, gastric cancer (GC) is considered a public health problem worldwide. Using medicinal plants for the prevention of chronic diseases such as cancer constitutes new alternatives in traditional medicine. Oenothera rosea (OR) could be an option, but it needs to be evaluated. Aim The main objective of this study was to evaluate the protective effect of OR extract on N-methyl-N-nitrosourea (NMU)-induced GC in rats. Methods In total, 80 male Holtzman rats were randomized into five groups. Group A received the saline solution (5mL/kg), group B received NMU 500 μg/kg (cancer inductor) by oral administration for 16 weeks, and groups C, D, and E were treated with OR extract (100, 200, and 300 mg/kg, respectively) and NMU in order to evaluate the preventive effect on cancer induced by NMU for 16 weeks. Blood and histological samples of stomachs were collected to determine histopathological, biochemical, and hematological parameters between different experimental groups. Results Groups C, D, and E presented less histopathological changes such as anaplastic and hyperplastic cells, compared with group B. Hematological and biochemical parameters were recorded, and superoxide dismutase, malondialdehyde, and nitric oxide levels were statistically less than those of NMU group (P<0.05, P<0.01, and P<0.01). Conclusion Considering the histopathological signs and the antioxidant activity in vivo as well as hematological and biochemical parameters of ethanolic extract of OR, we concluded that its administration in rats has a protective effect on GC, which is induced experimentally. This species could be studied in clinical trials for patients with GC in the future. PMID:29270029

  2. Pyrrolidon carboxypeptidase activities in the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-ovary axes of rats with mammary gland cancer induced by N-methyl nitrosourea.

    PubMed

    Carrera, M P; Ramírez-Expósito, M J; Valenzuela, M T; García, M J; Mayas, M D; Arias de Saavedra, J M; Sánchez, R; Pérez, M C; Martínez-Martos, J M

    2005-02-01

    Pyrrolidon carboxypeptidase is an omega-peptidase that hydrolyses N-terminal pyroglutamyl residues from biologically active peptides such as gonadotropin-releasing and thyrotrophin-releasing hormones. We previously described a decrease in both rat and human pyrrolidon carboxypeptidase activity with breast cancer, suggesting that gonadotropin-releasing hormone may be an important local intracrine, autocrine and/or paracrine hormonal factor in the pathogenesis of breast cancer while playing a role in the tumoral process. However, the other susceptible substrate of pyrrolidon carboxypeptidase, thyrotrophin-releasing hormone, may also be modified with breast cancer, supporting an association between breast cancer and thyroid disorders. The present work analyses soluble and membrane-bound pyrrolidon carboxypeptidase activities in the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-ovary axes in N-methyl nitrosourea-induced breast cancer in rats. Our aim was to determine the possible relationship between gonadotropin-releasing hormone and thyrotrophin-releasing hormone regulation through pyrrolidon carboxypeptidase activity. We propose that pyrrolidon carboxypeptidase activity dysregulation at various local and systemic levels may participate in the initiation, promotion and progression of breast cancer induced in rat by N-methyl nitrosourea through the increase in gonadotropin-releasing hormone. Since pyrrolidon carboxypeptidase activity also acts on thyrotrophin-releasing hormone, the dysregulation of this enzyme's activity could indirectly affect hypothalamus-pituitary-thyroid axis function, and thus potentially represent a link between the diseases of thyroid and breast cancer.

  3. Reduced DNA repair in mouse satellite DNA after treatment with methylmethanesulfonate, and N-methyl-N-nitrosourea.

    PubMed Central

    Bodell, W J; Banerjee, M R

    1976-01-01

    We have measured DNA repair in mouse satellite and main band DNA as resolved by Ag+-Cs2SO4 centrifugation in response to treatment with the alkylating agents, methyl methanesulfonate, and N-methyl-N-nitrosourea. We find that there is a statistically significant lower incorporation of 3H-Tdr into the satellite DNA as compared to the main band at varying periods after treatment with the alkylating agents. This suggests a reduced repair activity in the satellite DNA. We have measured the extent of binding of 14C-methyl methanesulfonate to the satellite, and main band DNA, and no difference in binding was observed, indicating that the reduced repair activity of satellite DNA is not due to a difference in binding of alkylating agents. We believe that the reduced incorporation of 3H-Tdr into satellite DNA may be due to its location in the condensed chromatin fraction. PMID:184436

  4. Antimutagenic components in Glycyrrhiza against N-methyl-N-nitrosourea in the Ames assay.

    PubMed

    Inami, Keiko; Mine, Yusuke; Kojo, Yukiko; Tanaka, Satomi; Ishikawa, Satoko; Mochizuki, Masataka

    2017-03-01

    Antimutagenesis against N-nitroso compounds contribute to prevention of human cancer. We have found that Glycyrrhiza aspera ethanolic extract exhibits antimutagenic activity against N-methyl-N-nitrosourea (MNU) using the Ames assay with Salmonella typhimurium TA1535. In the present study, eight purified components from Glycyrrhiza, namely glabridin, glycyrrhetinic acid, glycyrrhizin, licochalcone A, licoricesaponin H2, licoricesaponin G2, liquiritigenin and liquiritin were evaluated for their antimutagenicity against MNU in the Ames assay with S. typhimurium TA1535. Glycyrrhetinic acid, glycyrrhizin, licoricesaponin G2, licoricesaponin H2 and liquiritin did not show the antimutagenicity against MNU in S. typhimurium TA1535. Glabridin, licochalcone A and liquiritigenin reduced revertant colonies derived from MNU in S. typhimurium TA1535 without showing cytotoxic effects, indicating that these compounds possess antimutagenic activity against MNU. The inhibitory activity of glabridin and licochalcone A was more effective than that of liquiritigenin. Thus, Glycyrrhiza contains antimutagenic components against DNA alkylating, direct-acting carcinogens.

  5. Analysis of the expression level and methylation of tumor protein p53, phosphatase and tensin homolog and mutS homolog 2 in N-methyl-N-nitrosourea-induced thymic lymphoma in C57BL/6 mice.

    PubMed

    Huo, Xueyun; Li, Zhenkun; Zhang, Shuangyue; Li, Changlong; Guo, Meng; Lu, Jing; Lv, Jianyi; Du, Xiaoyan; Chen, Zhenwen

    2017-10-01

    Tumorigenesis is often caused by somatic mutation or epigenetic changes in genes that regulate aspects of cell death, proliferation and survival. Although the functions of multiple tumor suppressor genes have been well studied in isolation, how these genes cooperate during the progression of a single tumor remains unclear in numerous cases. The present study used N-methyl-N-nitrosourea (MNU), one of the most potent mutagenic nitrosourea compounds, to induce thymic lymphoma in C57BL/6J mice. Subsequently, the protein expression levels of phosphatase and tensin homolog (PTEN), transformation protein 53 and mutS homolog 2 (MSH2) were evaluated concomitantly in the thymus, liver, kidney and spleen of MNU-treated mice by western blotting. To determine whether changes in expression level were due to aberrant epigenetic regulation, the present study further examined the methylation status of each gene by MassARRAY analysis. During the tumorigenesis process of an MNU-induced single thymic lymphoma, the expression level of PTEN was revealed to be reduced in thymic lymphoma samples but not in normal or non-tumor thymus tissue samples. Furthermore, a marked reduction of P53 expression levels were demonstrated in thymic lymphomas and spleens with a metastatic tumor. Conversely, MSH2 upregulation was identified only in liver, kidney, and spleen samples that were infiltrated by thymic lymphoma cells. Furthermore, the present study revealed that a number of 5'-C-phosphate-G-3' sites located in the promoter of aberrantly expressed genes had significantly altered methylation statuses. These results improve the understanding of the course of mutagen-induced cancer, and highlight that epigenetic regulation may serve an important function in cancer.

  6. Organ differences in the impact of p27(kip1) deficiency on carcinogenesis induced by N-methyl-N-nitrosourea.

    PubMed

    Ogawa, Kumiko; Murasaki, Toshiya; Sugiura, Satoshi; Nakanishi, Makoto; Shirai, Tomoyuki

    2013-06-01

    To evaluate the impact of p27 on carcinogenesis in various organs, N-methyl-N-nitrosourea (MNU), a direct-acting alkylating agent, was given to p27 knock-out mice. Groups of 20-40 male and female mice with null, hetero- or wild-type p27 alleles were given drinking water containing 240 ppm MNU or distilled water every other week for five cycles. The incidence and multiplicity of the induced proliferative lesions were then histologically evaluated at weeks 14 and 20. MNU treatment induced various lesions including squamous hyperplasia and squamous cell carcinoma in the forestomach, atypical hyperplasia and adenocarcinomas in the fundic and pyloric glands, adenomas and adenocarcinomas in the duodenum, malignant lymphomas in the thymus, liver, kidney and spleen and alveolar hyperplasia, adenomas, adenocarcinomas and malignant lymphomas in the lung. Although the incidences of the lesions in the forestomach, fundic and pyloric glands did not differ among the p27 genotypes, those of alveolar hyperplasia of the lung and malignant lymphoma of the thymus were significantly increased in p27-null males as compared with both wild- and hetero-type animals. Moreover, in both p27(+/+) and p27(+/-) cases, the rates for p27-positive cells were obviously increased in proliferative lesions of the pyloric gland and the lung. However, an increased rate of p27-positive cells was not observed in malignant lymphoma of the thymus. These findings suggest that p27 does not control the cell cycle equally in all organs affected by MNU-induced carcinogenesis. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Induction of glandular stomach cancers in Helicobacter pylori-sensitive Mongolian gerbils treated with N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine in drinking water.

    PubMed

    Tatematsu, M; Yamamoto, M; Shimizu, N; Yoshikawa, A; Fukami, H; Kaminishi, M; Oohara, T; Sugiyama, A; Ikeno, T

    1998-02-01

    An animal model of stomach carcinogenesis was established using Mongolian gerbils with N-methyl-N-nitrosourea (MNU) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) as the carcinogens. In addition, the sensitivity of these gerbils to Helicobacter pylori (H. pylori) was confirmed. One hundred and sixty specific pathogen-free male MGS/Sea animals, 7 weeks old, were treated with MNU in the drinking water (30 ppm for alternate weeks to give 10 weeks exposure, or 10 ppm or 3 ppm for 20 weeks continuous exposure), or given MNNG in the drinking water at 400 ppm or 200 ppm for 20 weeks, or orally inoculated with ATCC43504 H. pylori (1.7 x 10(8) CFUs/animal). Adenocarcinomas in the glandular stomach were found in 2 out of 12 effective animals (2/ 12) treated with 30 ppm MNU at week 20, although all were dead or moribund by week 30 due to MNU toxicity. At week 50, the incidences of gastric adenocarcinomas in groups treated with 10 ppm MNU, 3 ppm MNU, 400 ppm MNNG, and 200 ppm MNNG were 2/21 (9.5%), 1/23 (4.3%), 7/ 11 (63.6%), and 1/10 (10.0%). The lesions were generally well differentiated, although poorly differentiated adenocarcinoma was also found in a single gerbil in each of the 10 ppm MNU and 400 ppm MNNG groups. In control animals no tumors were found. In the infection study, the animals were killed at week 20, and H. pylori was detected in all cases, causing multiple erosions with marked inflammatory cell infiltration in the lamina propria and submucosa, and frequent formation of lymphoid follicles. Thus, MNU and MNNG in the drinking water induced neoplastic lesions in the glandular stomach epithelium of H. pylori-sensitive gerbils.

  8. Nitrosamine-induced carcinogenesis. The alkylation of N-7 of guanine of nucleic acids of the rat by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl methanesulphonate

    PubMed Central

    Swann, P. F.; Magee, P. N.

    1971-01-01

    1. The extent of ethylation of N-7 of guanine in the nucleic acids of rat tissue in vivo by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl methanesulphonate was measured. 2. All compounds produced measurable amounts of 7-ethyl-guanine. 3. A single dose of diethylnitrosamine or N-ethyl-N-nitrosourea produced tumours of the kidney in the rat. Three doses of ethyl methanesulphonate produced kidney tumours, but a single dose did not. 4. A single dose of diethylnitrosamine produced twice as much ethylation of N-7 of guanine in DNA of kidney as did N-ethyl-N-nitrosourea. A single dose of both compounds induced kidney tumours, although of a different histological type. 5. A single dose of ethyl methanesulphonate produced ten times as much ethylation of N-7 of guanine in kidney DNA as did N-ethyl-N-nitrosourea without producing tumours. 6. The relevance of these findings to the hypothesis that alkylation of a cellular component is the mechanism of induction of tumours by nitroso compounds is discussed. PMID:5145908

  9. Ex vivo culture of tumor cells from N-methyl-N-nitrosourea-induced bladder cancer in rats: Development of organoids and an immortalized cell line.

    PubMed

    Yoshida, Takahiro; Kates, Max; Sopko, Nikolai A; Liu, Xiaopu; Singh, Alok K; Bishai, William R; Joice, Gregory; McConkey, David J; Bivalacqua, Trinity J

    2018-04-01

    We ex vivo cultured primary tumor cells from N-methyl-N-nitrosourea (MNU)-induced bladder tumors in rats and established an immortalized cell line from them. Bladder tumors in rats were induced by instillation of MNU into the murine bladder. Primary tumor cells were prepared by the cancer-tissue originated spheroid method. An immortalized cell line was established by co-culture with fibroblasts. The cultured tumor cells were molecularly and functionally characterized by quantitative real-time polymerase chain reaction, Western blot, growth assay, and transwell migration assay. Primary tumor cells were successfully prepared as multicellular spheroids from MNU-induced bladder tumors. The differentiation marker expression patterns observed in the original tumors were largely retained in the spheroids. We succeeded in establishing a cell line from the spheroids and named it T-MNU-1. Although basal markers (CK14 and CK5) were enriched in T-MNU-1 compared to the spheroids, T-MNU-1 expressed both luminal and basal markers. T-MNU-1 was able to migrate through a transwell. Tumor cells in MNU-induced bladder tumors were successfully cultured ex vivo as organoids, and an immortalized cell line was also established from them. The ex vivo models offer a platform that enables analysis of intrinsic characteristics of tumor cells excluding influence of microenvironment in MNU-induced bladder tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. DNA precursor pool: a significant target for N-methyl-N-nitrosourea in C3H/10T1/2 clone 8 cells.

    PubMed Central

    Topal, M D; Baker, M S

    1982-01-01

    Synchronized C3H/10T1/2 clone 8 cells were treated in vitro with a nontoxic dose of N-methyl-N-nitrosourea during their S phase. Chromatographic isolation of the deoxyribonucleotide DNA precursor pool and measurement of the precursor content per cell showed that a nucleic acid residue in the precursor pool is 190-13,000 times more susceptible to methylation than a residue in the DNA duplex, depending on the site of methylation. This conclusion comes from measurements indicating that, for example, the N-1 position of adenine in dATP is 6.3 times more methylated than the same position in the DNA, even though the adenine content of the pool is only a fraction (0.0005) of the adenine content of the DNA helix. The comparative susceptibility between pool and DNA was found to vary with the site of methylation in the order the N-1 position of adenine greater than phosphate greater than the N-3 position of adenine greater than the O6 position of guanine greater than the N-7 position of guanine. The significance of these results for chemical mutagenesis and carcinogenesis is discussed. PMID:6954535

  11. Investigation of J-shaped dose-responses induced by exposure to the alkylating agent N-methyl-N-nitrosourea.

    PubMed

    Chapman, Katherine E; Hoffmann, George R; Doak, Shareen H; Jenkins, Gareth J S

    2017-07-01

    Hormesis is defined as a biphasic dose-response where biological effects of low doses of a stressor demonstrate the opposite effect to high-dose effects of the same stressor. Hormetic, or J-shaped, dose-response relationships are relatively rarely observed in toxicology, resulting in a limited understanding and even some skepticism of the concept. Low dose-response studies for genotoxicity endpoints have been performed at Swansea University for over a decade. However, no statistically significant decreases below control genotoxicity levels have been detected until recently. A hormetic-style dose-response following a 24h exposure to the alkylating agent N-methyl-N-nitrosourea (MNU) was observed in a previous study for HPRT mutagenesis in the human lymphoblastoid cell line AHH-1. A second recent study demonstrated a J-shaped dose-response for the induction of micronuclei by MNU in a 24h treatment in a similar test system. Following mechanistic investigations, it was hypothesized that p53 may be responsible for the observed hormetic phenomenon. As genotoxic carcinogens are a major causative factor of many cancers, consideration of hormesis in carcinogenesis could be important in safety assessment. The data examined here offer possible insights into hormesis, including its estimated prevalence, underlying mechanisms and lack of generalizability. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Formation of O2-methylthymine in poly(dA-dT) on methylation with N-methyl-N-nitrosourea and dimethyl sulphate. Evidence that O2-methylthymine does not miscode during DNA synthesis.

    PubMed Central

    Saffhill, R; Abbott, P J

    1978-01-01

    The alternating co-polymer has been methylated with either N methyl-N-nitrosourea (MNU) or dimethyl sulphate (DMS) and the levels of the various methylated thymidines (O2-methylthymidine, 3-methylthymidine and O4-methylthymidine) measured. MNU produced all three compounds whereas DMS only produced 3-methylthymidine and O2-methylthymidine at detectable levels. These results have been combined with our earlier results concerning the misincorporation of dGMP with E. coli DNA polymerase using MNU-methylated poly(dA-dT). These results indicate that O2-methylthymidine does not miscode during DNA synthesis. PMID:353735

  13. Activated N-nitrosocarbamates for regioselective synthesis of N-nitrosoureas.

    PubMed

    Martinez, J; Oiry, J; Imbach, J L; Winternitz, F

    1982-02-01

    A practical and convenient method for synthesizing antitumor compounds, N-alkyl-N-nitrosoureas, regioselectively nitrosated on the nitrogen atom bearing the alkyl group is proposed. N-Alkyl-N-nitrosocarbamates are interesting intermediates in these syntheses and yield, by reaction with amino compounds, the regioselectively nitrosated N-alkyl-N-nitrosoureas. As an interesting example, N,N'-bis[(2-chloroethyl)nitrosocarbamoyl]cystamine, a new attractive oncostatic derivative, has been prepared. The cytotoxic activity of these various compounds were tested on L1210 leukemia.

  14. Oxygen-induced retinopathy in mice with retinal photoreceptor cell degeneration.

    PubMed

    Zhang, Qian; Zhang, Zuo-Ming

    2014-04-25

    It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration. Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21. Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (P<0.01). The degree of oxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice. Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Protective effect of zinc on N-methyl-N-nitrosourea and testosterone-induced prostatic intraepithelial neoplasia in the dorsolateral prostate of Sprague Dawley rats.

    PubMed

    Banudevi, Sivanantham; Elumalai, Perumal; Sharmila, Govindaraj; Arunkumar, Ramachandran; Senthilkumar, Kalimuthu; Arunakaran, Jagadeesan

    2011-09-01

    Previous studies have suggested that zinc exerts anticarcinogenic and antiproliferative effects against prostate cancer both in vitro and in rat ventral prostate. Zinc accumulation diminishes early in the course of prostate malignancy and it inhibits the growth of several carcinoma cells through induction of cell cycle arrest and apoptosis. In this study, we have investigated the influence of zinc on N-methyl-N-nitrosourea (MNU) and testosterone (T)-induced prostatic intraepithelial neoplasia in the dorsolateral prostate of Sprague Dawley (SD) rats. The results indicate that zinc plays an important role in prostate carcinogenesis. Increased tumor incidence was accompanied by a decrease in prostatic acid phosphatase activity, citrate, zinc, glutathione-S-transferase, reduced glutathione, p53, B-cell lymphoma protein (Bcl-2)-associated X protein and caspase-3 levels in MNU + T-treated rats. On the contrary, significantly increased phase I drug metabolizing enzyme activities, lipid peroxide, hydrogen peroxide, proliferating cell nuclear antigen, Bcl-2 and Bcl-X(L) protein levels were observed in the dorsolateral prostate of MNU + T-treated rats. Simultaneous zinc supplementation significantly reversed these effects in MNU + T-treated rats. Signs of dysplasia, a characteristic of prostatic intraepithelial neoplasia, were evident in the dorsolateral prostatic tissue sections by MNU + T administration. However, zinc supplementation has reversed these effects in the dorsolateral prostatic histoarchitecture. These results suggest that zinc may act as an essential trace element against MNU and testosterone-induced prostatic preneoplastic progression in SD rats.

  16. Evaluation of the immunological cellular response of Cebus apella exposed to the carcinogen N-methyl-N-nitrosourea and treated with CANOVA®.

    PubMed

    Feio, Danielle Cristinne Azevedo; Muniz, José Augusto Pereira Carneiro; Montenegro, Raquel Carvalho; Burbano, Rommel Rodriguez; De Brito Junior, Lacy Cardoso; De Lima, Patrícia Danielle Lima

    2014-01-01

    The immune response modifier Canova® is a homeopathic remedy indicated for patients with depressed immune system, since this drug appears to increase adaptive immunity and induce an immune response against multiple and severe pathological conditions, including cancer. We evaluated the pattern of immune cellular response in non-human primates of the species Cebus apella exposed to N-methyl-N-nitrosourea (MNU) with and without Canova®. Twelve animals were divided into four groups, with three animals each: negative control and three experimental groups, MNU-alone (35 days); MNU (35 days)-plus-Canova® (3 days) and Canova®-alone (3 days). The animals received MNU orally and Canova® by three intravenous injections. Evaluation of the cellular immune response was performed by immunophenotyping of T-lymphocytes (CD4(+), CD8(+)), B-lymphocytes and natural killer cells. Analysis was also performed of the cell cycle. Our results suggest an increase of T-lymphocytes (CD4(+)CD3(+)) only in the Canova® group, while in the MNU-plus-Canova® group only B-lymphocytes increased. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Interrelationships among angiogenesis, proliferation, and apoptosis in the tumor microenvironment during N-methyl-N-nitrosourea androgen-induced prostate carcinogenesis in rats.

    PubMed

    Liao, Zhiming; Boileau, Thomas W-M; Erdman, John W; Clinton, Steven K

    2002-10-01

    Proliferation, apoptosis and angiogenesis are critical biologic processes altered during carcinogenesis. Surrogate biomarkers of these processes represent potential intermediate endpoints for short-term intervention studies with preventive and therapeutic agents. We examined the interrelationships among these processes during prostate carcinogenesis induced by N-methyl-N-nitrosourea (MNU) in male Wistar-Unilever rats. Immunohistochemical and digital image analysis techniques were used to evaluate the proliferation index, the apoptotic index and microvessel density (MVD) in tissue representing stages of prostate carcinogenesis. The proliferation index in the normal glandular epithelium of the prostate is lower than that observed in hyperplastic foci and atypical hyperplasia (P < 0.01) and is further increased in carcinoma (P < 0.01). Apoptosis in the normal prostate epithelium or hyperplastic lesions is lower than in adenocarcinoma (P < 0.01). In parallel to proliferation index, MVD increases as prostate cancer progresses. As tumors enlarge, we observed a predictable change in biomarker expression within the tumor microenvironment. We examined prostate tumors vertical line 1 cm in diameter and biomarker expression was quantified within the peripheral (outer 1-2 mm), central (perinecrotic) and intermediate (remaining) areas of each tumor. The proliferation index is higher (P < 0.01) in the intermediate area than either in the peripheral area or central area. Similarly, the vascular density in the intermediate area is higher (P < 0.01) than either in the peripheral or central area. The apoptotic index is higher (P < 0.05) in the central perinecrotic core than that in either the intermediate or the peripheral area. In conclusion, we observe that angiogenesis, proliferation and apoptosis are linked biological processes predictably altered temporally and spatially during prostate carcinogenesis in the MNU model. These biomarker changes are similar to those reported in

  18. Increased phospho-AKT is associated with loss of the androgen receptor during the progression of N-methyl-N-nitrosourea-induced prostate carcinogenesis in rats.

    PubMed

    Liao, Zhiming; Wang, Shihua; Boileau, Thomas W-M; Erdman, John W; Clinton, Steven K

    2005-07-01

    Characterization of molecular events during N-methyl-N-nitrosourea (MNU)-induced rat prostate carcinogenesis enhances the utility of this model for the preclinical assessment of preventive strategies. Androgen independence is typical of advanced human prostate cancer and may occur through multiple mechanisms including the loss of androgen receptor (AR) expression and the activation of alternative signaling pathways. We examined the interrelationships between AR and p-AKT expression by immunohistochemical staining during MNU-androgen-induced prostate carcinogenesis in male Wistar-Unilever rats. Histone nuclear staining and image analysis was employed to assess parallel changes in chromatin and nuclear structure. The percentage of AR positive nuclei decreased (P < 0.01) as carcinogenesis progressed: hyperplasia (92%), atypical hyperplasia (92%), well-differentiated adenocarcinoma (57%), moderately-differentiated adenocarcinoma (19%), and poorly-differentiated adenocarcinoma (10%). Conversely, p-AKT staining increased significantly during carcinogenesis. Sparse staining was observed in normal tissues (0.2% of epithelial area) and hyperplastic lesions (0.1%), while expression increased significantly (P < 0.001) in atypical hyperplasia (7.6%), well-differentiated adenocarcinoma (16.7%), moderately-differentiated adenocarcinoma (19.6%), and poorly-differentiated adenocarcinoma (17.4%). In parallel, nuclear morphometry revealed increased nuclear size, greater irregularity, and lower DNA compactness as cancers became more poorly differentiated. In the MNU model, the progressive evolution of dominant tumor cell populations showing an increase in p-AKT in parallel with a decline in AR staining suggests that activation of AKT signaling may be one of several mechanisms contributing to androgen insensitivity during prostate cancer progression. Our observations mimic findings suggested by human studies and support the relevance of the MNU model in preclinical studies of

  19. [The biochemical mechanisms of the action of N-alkyl-N-nitrosoureas. The possible reasons for drug resistance to these compounds].

    PubMed

    Syrkin, A B; Gorbacheva, L B

    1996-01-01

    N-alkyl-N-nitrosoureas exhibit a wide spectrum of antitumor activity. They react as alkylating agents at nucleophilic sites in purine and pyrimidine moieties of DNA. The predominant site of this alkylation is N7 of guanine, which is followed by the site N3 of adenine and 06 of guanine. The formation and persistence of 0(6)-alkylguanine (0(6)-AG) may be of primary importance in cytotoxicity of the nitrosoureas. 0(6)-AG adducts of DNA of the tumor cells are repaired by protein 0(6)-alkylguanine-DNA transferase (0(6)-AGT) which transfers the alkyl group to internal cysteine residue being the acceptor protein for the alkyl group in an irreversible transfer reaction. 0(6)-AGT can protect the tumor cells against 0(6)-AG adducts by the way of inhibiting the formation of the DNA interstrand cross-links 0(6)-AGT plays an important role in the drug resistance because it repairs the DNA alkyl adducts at the 0(6) position of guanine. The 0(6)-AGT activity inversely correlates with the cytotoxic effect of the nitrosoureas. The agents like 0(6)-methylguanosine, 0(6)-methyl-2'-deoxyguanosine, and some 0(6)-benzylated guanine derivatives are effective inactivators of 0(6)-AGT, and thus can be used to enhance the cytotoxicity of N-nitrosoureas. The activation of 0(6)-AGT and other repairing enzymes such as alpha and beta DNA-polymerases as well as an increase in the level of reduced glutathione may be used in developing the resistance to the nitrosoureas.

  20. Rapamycin prevents N-methyl-D-aspartate-induced retinal damage through an ERK-dependent mechanism in rats.

    PubMed

    Ichikawa, Atsuko; Nakahara, Tsutomu; Kurauchi, Yuki; Mori, Asami; Sakamoto, Kenji; Ishii, Kunio

    2014-06-01

    Recent studies have demonstrated that inhibition of the mammalian target of rapamycin (mTOR) protects against neuronal injury, but the mechanisms underlying this protection are not fully understood. The present study investigates whether rapamycin, an inhibitor of the mTOR pathway, protects against N-methyl-D-aspartate (NMDA)-induced retinal neurotoxicity and whether the extracellular signal-regulated kinase (ERK) pathway contributes to this protective effect in rats. Significant cell loss in the ganglion cell layer and a reduction in thickness of the inner plexiform layer were observed 7 days after a single intravitreal injection of NMDA (200 nmol/eye). These NMDA-induced morphological changes were significantly reduced by rapamycin (20 nmol/eye). The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells had increased 6 hr after NMDA injection, an effect that was significantly attenuated by rapamycin. The ERK inhibitor U0126 (1 nmol/eye) almost completely abolished rapamycin's inhibition of NMDA-induced apoptosis. Immunohistochemical studies showed that NMDA caused a time-dependent increase in levels of the phosphorylated form of the ribosomal protein S6 (pS6), a downstream indicator of mTOR activity. The increased pS6 levels were markedly decreased by rapamycin. Both NMDA and rapamycin increased the level of phosphorylated ERK (pERK) in Müller cells, and coinjection of both agents further increased pERK levels. These results suggest that rapamycin has a neuroprotective effect against NMDA-induced retinal neurotoxicity and that this effect could be patially mediated by activation of the ERK pathway in retinal Müller cells. Copyright © 2014 Wiley Periodicals, Inc.

  1. Variable phenotypic expressivity in inbred retinal degeneration mouse lines: A comparative study of C3H/HeOu and FVB/N rd1 mice.

    PubMed

    van Wyk, Michiel; Schneider, Sabine; Kleinlogel, Sonja

    2015-01-01

    Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded

  2. Experimental induction of ovarian Sertoli cell tumors in rats by N-nitrosoureas.

    PubMed Central

    Maekawa, A; Onodera, H; Tanigawa, H; Furuta, K; Kanno, J; Ogiu, T; Hayashi, Y

    1987-01-01

    Spontaneous ovarian tumors are very rare in ACI, Wistar, F344 and Donryu rats; the few neoplasms found are of the granulosa/theca cell type. Ovarian tumors were also rare in these strains of rats when given high doses of N-alkyl-N-nitrosoureas continuously in the drinking water for their life-span; however, relatively high incidences of Sertoli cell tumors or Sertoli cell tumors mixed with granulosa cell tumors were induced in Donryu rats after administration of either a 400 ppm N-ethyl-N-nitrosourea solution in the drinking water for 4 weeks or as a single dose of 200 mg N-propyl-N-nitrosourea per kg body weight by stomach tube. Typical Sertoli cell tumors consisted of solid areas showing tubular formation. The tubules were lined by tall, columnar cells, with abundant, faintly eosinophilic, often vacuolated cytoplasm, and basally oriented, round nuclei, resembling seminiferous tubules in the testes. In some cases, Sertoli cell tumor elements were found mixed with areas of granulosa cells. The induction of ovarian Sertoli cell tumors in Donryu rats by low doses of nitrosoureas may provide a useful model for these tumors in man. Images PLATE 1. PLATE 2. PLATE 3. PLATE 4. PLATE 5. PLATE 6. PLATE 7. PLATE 8. PLATE 9. PLATE 10. PLATE 11. PLATE 12. PLATE 13. PLATE 14. PLATE 15. PLATE 16. PMID:3665856

  3. Studies on synthesis and anticancer activity of selected N-(2-fluoroethyl)-N-nitrosoureas.

    PubMed

    Johnston, T P; Kussner, C L; Carter, R L; Frye, J L; Lomax, N R; Plowman, J; Narayanan, V L

    1984-11-01

    An activated carbamate, 2-nitrophenyl (2-fluoroethyl)nitrosocarbamate (3), was used to advantage in the synthesis of the water-soluble (2-fluoroethyl)nitrosoureas 6a--d from 2-aminoethanol, (1 alpha, 2 beta, 3 alpha)-2-amino-1,3-cyclohexanediol, cis-2-hydroxycyclohexanol, and 2-amino-2-deoxy-D-glucose. In a variation of this method, 2,4,5-trichlorophenyl (2-fluoroethyl)carbamate (4) was used to prepare the urea from which the essentially water-insoluble N-(2,6-dioxo-3-piperidinyl)-N-(2-fluoroethyl)-N-nitrosourea (6e) was derived. The anticancer activity of these nitrosoureas was determined against the murine tumors B16 melanoma and Lewis lung carcinoma and found to be significant and comparable to their chloroethyl counterparts. On the basis of results from both systems, the dihydroxycyclohexyl derivative 6b may be the most effective.

  4. Protective effect of thalidomide against N-methyl-D-aspartate-induced retinal neurotoxicity.

    PubMed

    Takada, Kazuhide; Munemasa, Yasunari; Kuribayashi, Junko; Fujino, Hiromi; Kitaoka, Yasushi

    2011-10-01

    Thalidomide, an inhibitor of tumor necrosis factor-α (TNF-α) production, has been indicated to be useful for many inflammatory and oncogenic diseases. In the present study, we examined whether thalidomide (50 mg/kg/day, p.o.) has a protective effect against N-methyl-D-aspartate (NMDA)-induced retinal neurotoxicity in rats. A morphometric analysis showed that systemic administration of thalidomide protects neural cells in the ganglion cell layer (GCL) in a dose-dependent manner and significantly decreases the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells in GCL and in the inner nuclear layer (INL). ELISA showed that thalidomide significantly suppressed the elevation of TNF-α 6 and 24 hr after an NMDA injection. Western blot analysis revealed a significant increase in nuclear factor-κB (NF-κB) p65 level in the retinas treated with NMDA at 24 hr after the injection, but not at 6 or 72 hr. Furthermore, an increase in p-JNK and p-p38 levels was also observed in the retina after NMDA injection. Thalidomide suppressed the increased expressions of NF-κB p65, p-JNK, and p-p38 after NMDA injection. Immunohistochemical analysis showed that thalidomide attenuated NF-κB p65 immunoreactivity in the GCL induced by NMDA treatment. In the NMDA-treated group, translocation of NF-κB p65 from the cytoplasm to the nucleus was detected in TUNEL-positive cells exposed to NMDA treatment. These results suggest new indications for thalidomide against neurodegenerative diseases. Copyright © 2011 Wiley-Liss, Inc.

  5. Mutagenic synergism detected between dimethyl sulfate and X-rays but not found between N-methyl-N-nitrosourea and X-rays in the stamen hairs of Tradescantia clone BNL 4430.

    PubMed

    Shima, N; Ichikawa, S

    1995-09-01

    Mutagenic interactions with X-rays of two monofunctional alkylating agents, dimethyl sulfate (DMS) and N-methyl-N-nitrosourea (MNU), were studied in the stamen hairs of Tradescantia clone BNL 4430, a blue/pink heterozygote. The young inflorescence-bearing shoots with roots cultivated in the nutrient solution circulating growth chamber were used as tester plants. Synergism between two different mutagens was judged to have occurred when the mutation frequency observed after applying the two mutagens concurrently was statistically significantly higher than the mutation frequency expected from the additive effects of the two mutagens. Clear synergistic effects in inducing somatic pink mutations were detected with all combinations of doses of DMS and X-rays examined, even in a relatively low X-ray dose range (down to 299 mGy), resembling those confirmed earlier between ethyl methanesulfonate (EMS) and X-rays, but somewhat differing from the synergisms observed earlier between methyl methanesulfonate (MMS) and X-rays. On the other hand, no mutagenic synergism was detected between MNU and X-rays, even in a relatively high X-ray dose range (up to 862 mGy). The presence or absence of mutagenic synergisms of these alkylating agents with X-rays could be related to the action mechanism of each alkylating agent.

  6. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa.

    PubMed

    Olivares-González, Lorena; Martínez-Fernández de la Cámara, Cristina; Hervás, David; Millán, José María; Rodrigo, Regina

    2018-05-01

    Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies characterized by progressive and irreversible loss of vision due to rod and cone degeneration. Evidence suggests that an inappropriate oxygen level could contribute to its pathogenesis. Rod cell death could increase oxygen concentration, reduce hypoxia-inducible factor 1 (HIF-1α) and contribute to cone cell death. The purposes of this study were: 1) to analyze the temporal profile of HIF-1α, its downstream effectors VEGF, endothelin-1 (ET-1), iNOS, and glucose transporter 1 (GLUT1), and neuroinflammation in retinas of the murine model of rd10 ( retinal degeneration 10) mice with RP; 2) to study oxygen bioavailability in these retinas; and 3) to investigate how stabilizing HIF-1α proteins with dimethyloxaloglycine (DMOG), a prolyl hydroxylase inhibitor, affects retinal degeneration, neuroinflammation, and antioxidant response in rd10 mice. A generalized down-regulation of HIF-1α and its downstream targets was detected in parallel with reactive gliosis, suggesting high oxygen levels during retinal degeneration. At postnatal d 18, DMOG treatment reduced photoreceptor cell death and glial activation. In summary, retinas of rd10 mice seem to be exposed to a hyperoxic environment even at early stages of degeneration. HIF-1α stabilization could have a temporal neuroprotective effect on photoreceptor cell survival, glial activation, and antioxidant response at early stages of RP.-Olivares-González, L., Martínez-Fernández de la Cámara, C., Hervás, D., Millán, J. M., Rodrigo, R. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa.

  7. The effect of isoprenaline on induction of tumours by methyl nitrosourea in the salivary and mammary glands of female wistar rats.

    PubMed Central

    Parkin, R.; Neale, S.

    1976-01-01

    Pretreatment of rats with isoprenaline sulphate (IPR) stimulated DNA synthesis in both salivary and mammary gland tissues. Salivary gland tumours induced by N-methyl-N-nitrosourea (MNU) were observed for the first time in rats, but occurred only in IPR-pretreated animals given MNU during the period of IPR-stimulated DNA synthesis. The cumulative index of MNU-induced mammary tumours and the number of tumours per tumour-bearing rat were increased by IPR-pretreament only if the animals received MNU during the period of IPR-stimulated DNA synthesis. PMID:974007

  8. Differential Light-induced Responses in Sectorial Inherited Retinal Degeneration*

    PubMed Central

    Ramon, Eva; Cordomí, Arnau; Aguilà, Mònica; Srinivasan, Sundaramoorthy; Dong, Xiaoyun; Moore, Anthony T.; Webster, Andrew R.; Cheetham, Michael E.; Garriga, Pere

    2014-01-01

    Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous inherited degenerative retinopathies caused by abnormalities of photoreceptors or retinal pigment epithelium in the retina leading to progressive sight loss. Rhodopsin is the prototypical G-protein-coupled receptor located in the vertebrate retina and is responsible for dim light vision. Here, novel M39R and N55K variants were identified as causing an intriguing sector phenotype of RP in affected patients, with selective degeneration in the inferior retina. To gain insights into the molecular aspects associated with this sector RP phenotype, whose molecular mechanism remains elusive, the mutations were constructed by site-directed mutagenesis, expressed in heterologous systems, and studied by biochemical, spectroscopic, and functional assays. M39R and N55K opsins had variable degrees of chromophore regeneration when compared with WT opsin but showed no gross structural misfolding or altered trafficking. M39R showed a faster rate for transducin activation than WT rhodopsin with a faster metarhodopsinII decay, whereas N55K presented a reduced activation rate and an altered photobleaching pattern. N55K also showed an altered retinal release from the opsin binding pocket upon light exposure, affecting its optimal functional response. Our data suggest that these sector RP mutations cause different protein phenotypes that may be related to their different clinical progression. Overall, these findings illuminate the molecular mechanisms of sector RP associated with rhodopsin mutations. PMID:25359768

  9. Constitutive Overexpression of Human Erythropoietin Protects the Mouse Retina against Induced But Not Inherited Retinal Degeneration

    PubMed Central

    Grimm, Christian; Wenzel, Andreas; Stanescu, Dinu; Samardzija, Marijana; Hotop, Svenja; Groszer, Mathias; Naash, Muna; Gassmann, Max; Remé, Charlotte

    2010-01-01

    Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of recombinant human Epo (huEpo) protects the mouse retina against light-induced degeneration by inhibiting photoreceptor cell apoptosis. Because photoreceptor apoptosis is also the common path to cell loss in retinal dystrophies such as retinitis pigmentosa (RP), we tested whether high levels of huEpo would reduce apoptotic cell death in two mouse models of human RP. We combined the two respective mutant mouse lines with a transgenic line (tg6) that constitutively overexpresses huEpo mainly in neural tissues. Transgenic expression of huEpo caused constitutively high levels of Epo in the retina and protected photoreceptors against light-induced degeneration; however, the presence of high levels of huEpo did not affect the course or the extent of retinal degeneration in a light-independent (rd1) and a light-accelerated (VPP) mouse model of RP. Similarly, repetitive intraperitoneal injections of recombinant huEpo did not protect the retina in the rd1 and the VPP mouse. Lack of neuroprotection by Epo in the two models of inherited retinal degeneration was not caused by adaptational downregulation of Epo receptor. Our results suggest that apoptotic mechanisms during acute, light-induced photoreceptor cell death differ from those in genetically based retinal degeneration. Therapeutic intervention with cell death in inherited retinal degeneration may therefore require different drugs and treatments. PMID:15215287

  10. Influence of N-methyl-N-nitrosourea, testosterone, and N-(4-hydroxyphenyl)-all-trans-retinamide on prostate cancer induction in Wistar-Unilever rats.

    PubMed

    McCormick, D L; Rao, K V; Dooley, L; Steele, V E; Lubet, R A; Kelloff, G J; Bosland, M C

    1998-08-01

    The influence of chemical carcinogen, hormonal stimulation, and chronic dietary administration of the synthetic retinoid, N-(4-hydroxyphenyl)-all-trans-retinamide (4-HPR), on the induction of prostate cancer in male Wistar-Unilever rats was determined. Three different tumor induction regimens were used: (a) a single i.v. dose of 50 mg of N-methyl-N-nitrosourea (MNU) per kg body weight, followed by chronic androgen stimulation via s.c. implantation of two silastic capsules containing 40 mg testosterone each; (b) a single i.v. dose of 50 mg of MNU per kg body weight (no testosterone treatment); and (c) chronic androgen stimulation with implanted testosterone capsules (no MNU treatment). In a fourth series of animals, the incidence of spontaneous prostate tumors was determined in groups of rats receiving neither carcinogen nor hormone stimulation. Within each series, parallel groups of animals were fed a control (vehicle-supplemented) diet or control diet supplemented with 4-HPR beginning 1 day after carcinogen administration; retinoid administration was continuous until termination of the study at 450 days. The incidence of accessory sex gland cancer in rats treated sequentially with MNU + testosterone was >60%, in comparison with cancer incidences of <20% in rats receiving MNU only and <5% in rats treated with testosterone only. No spontaneous accessory sex gland tumors were observed in rats receiving no carcinogen and no testosterone. Tumor induction in the accessory sex glands by MNU + testosterone was relatively specific for the prostate: the incidence of carcinoma of the dorsolateral/anterior prostate was more than 5-fold greater than the incidence of cancer present only in the seminal vesicle. 4-HPR conferred no protection against cancer induction in the prostate by any regimen of MNU and/or testosterone. These results demonstrate the importance of both carcinogen exposure and hormone stimulation on the induction of neoplasia in the prostate of Wistar

  11. Suppression of HSP27 Restores Retinal Function and Protects Photoreceptors From Apoptosis in a Light-Induced Retinal Degeneration Animal Model.

    PubMed

    Chien, Chih-Cheng; Huang, Chi-Jung; Tien, Lu-Tai; Cheng, Yu-Che; Ke, Chia-Ying; Lee, Yih-Jing

    2017-06-01

    We used a light-induced retinal degeneration animal model to investigate possible roles of heat shock protein 27 (HSP27) in retinal/photoreceptor protection. Sprague-Dawley rats were used for the light-induced retinal degeneration animal model. The histology of eye sections was observed for morphologic changes in the retina. Cell apoptosis was examined in each group using the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and electroretinography was used to evaluate retinal function. Protein and mRNA expression levels of different retinal cell markers were also detected through immunofluorescence staining, Western blotting, and real-time PCR. The thickness of the outer nuclear layer significantly decreased after 7-day light exposure. Moreover, we injected a viral vector for silencing HSP27 expression into the eyes and observed that photoreceptors were better preserved in the HSP27-suppressed (sHSP27) retina 2 weeks after injection. HSP27 suppression also reduced retinal cell apoptosis caused by light exposure. In addition, the loss of retinal function caused by light exposure was reversed on suppressing HSP27 expression. We subsequently found that the expression of the Rho gene and immunofluorescence staining of rhodopsin and arrestin (cell markers for photoreceptors) increased in sHSP27-treated retinas. HSP27 suppression did not affect the survival of ganglion and amacrine cells. Retinal cell apoptosis and functional loss were observed after 7-day light exposure. However, in the following 2 weeks after light exposure, HSP27 suppression may initiate a protective effect for retinal cells, particularly photoreceptors, from light-induced retinal degeneration.

  12. Persimmon Leaves (Diospyros kaki) Extract Protects Optic Nerve Crush-Induced Retinal Degeneration

    PubMed Central

    Ryul Ahn, Hong; Kim, Kyung-A; Kang, Suk Woo; Lee, Joo Young; Kim, Tae-Jin; Jung, Sang Hoon

    2017-01-01

    Retinal ganglion cell (RGC) death is part of many retinal diseases. Here, we report that the ethanol extract of Diospyros kaki (EEDK) exhibits protective properties against retinal degeneration, both in vitro and in vivo. Upon exposure to cytotoxic compounds, RGC-5 cells showed approximately 40% cell viability versus the control, while pre-treatment with EEDK markedly increased cell viability in a concentration-dependent manner. Further studies revealed that cell survival induced by EEDK was associated with decreased levels of apoptotic proteins, such as poly (ADP-ribose) polymerase, p53, and cleaved caspase-3. In addition to apoptotic pathways, we demonstrated that expression levels of antioxidant-associated proteins, such as superoxide dismutase-1, glutathione S-transferase, and glutathione peroxidase-1, were positively modulated by EEDK. In a partial optic nerve crush mouse model, EEDK had similar ameliorating effects on retinal degeneration resulting from mechanical damages. Therefore, our results suggest that EEDK may have therapeutic potential against retinal degenerative disorders, such as glaucoma. PMID:28425487

  13. Short-interfering RNAs Induce Retinal Degeneration via TLR3 and IRF3

    PubMed Central

    Kleinman, Mark E; Kaneko, Hiroki; Cho, Won Gil; Dridi, Sami; Fowler, Benjamin J; Blandford, Alexander D; Albuquerque, Romulo JC; Hirano, Yoshio; Terasaki, Hiroko; Kondo, Mineo; Fujita, Takashi; Ambati, Balamurali K; Tarallo, Valeria; Gelfand, Bradley D; Bogdanovich, Sasha; Baffi, Judit Z; Ambati, Jayakrishna

    2012-01-01

    The discovery of sequence-specific gene silencing by endogenous double-stranded RNAs (dsRNA) has propelled synthetic short-interfering RNAs (siRNAs) to the forefront of targeted pharmaceutical engineering. The first clinical trials utilized 21-nucleotide (nt) siRNAs for the treatment of neovascular age-related macular degeneration (AMD). Surprisingly, these compounds were not formulated for cell permeation, which is required for bona fide RNA interference (RNAi). We showed that these “naked” siRNAs suppress neovascularization in mice not via RNAi but via sequence-independent activation of cell surface Toll-like receptor-3 (TLR3). Here, we demonstrate that noninternalized siRNAs induce retinal degeneration in mice by activating surface TLR3 on retinal pigmented epithelial cells. Cholesterol conjugated siRNAs capable of cell permeation and triggering RNAi also induce the same phenotype. Retinal degeneration was not observed after treatment with siRNAs shorter than 21-nts. Other cytosolic dsRNA sensors are not critical to this response. TLR3 activation triggers caspase-3-mediated apoptotic death of the retinal pigment epithelium (RPE) via nuclear translocation of interferon regulatory factor-3. While this unexpected adverse effect of siRNAs has implications for future clinical trials, these findings also introduce a new preclinical model of geographic atrophy (GA), a late stage of dry AMD that causes blindness in millions worldwide. PMID:21988875

  14. Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N-ethyl-N-nitrosourea, a potential anticancer agent

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Islam, S. S.; Ahmad, Hilal; Prabaharan, A.

    2018-02-01

    Nitrosourea plays an important role in the treatment of cancer. N-ethyl-N-nitrosourea, also known as ENU, (chemical formula C3H7N3O2), is a highly potent mutagen. The chemical is an alkylating agent and acts by transferring the ethyl group of ENU to nucleobases (usually thymine) in nucleic acids. The molecular structure of N-ethyl-N-nitrosourea has been elucidated using experimental (FT-IR and FT-Raman) and theoretical (DFT) techniques. APT charges, Mulliken atomic charges, Natural bond orbital, Electrostatic potential, HOMO-LUMO and AIM analysis were performed to identify the reactive sites and charge transfer interactions. Furthermore, to evaluate the anticancer activity of ENU molecular docking studies were carried out against 2JIU protein.

  15. Adenosine A1 receptor: A neuroprotective target in light induced retinal degeneration.

    PubMed

    Soliño, Manuel; López, Ester María; Rey-Funes, Manuel; Loidl, César Fabián; Larrayoz, Ignacio M; Martínez, Alfredo; Girardi, Elena; López-Costa, Juan José

    2018-01-01

    Light induced retinal degeneration (LIRD) is a useful model that resembles human retinal degenerative diseases. The modulation of adenosine A1 receptor is neuroprotective in different models of retinal injury. The aim of this work was to evaluate the potential neuroprotective effect of the modulation of A1 receptor in LIRD. The eyes of rats intravitreally injected with N6-cyclopentyladenosine (CPA), an A1 agonist, which were later subjected to continuous illumination (CI) for 24 h, showed retinas with a lower number of apoptotic nuclei and a decrease of Glial Fibrillary Acidic Protein (GFAP) immunoreactive area than controls. Lower levels of activated Caspase 3 and GFAP were demonstrated by Western Blot (WB) in treated animals. Also a decrease of iNOS, TNFα and GFAP mRNA was demonstrated by RT-PCR. A decrease of Iba 1+/MHC-II+ reactive microglial cells was shown by immunohistochemistry. Electroretinograms (ERG) showed higher amplitudes of a-wave, b-wave and oscillatory potentials after CI compared to controls. Conversely, the eyes of rats intravitreally injected with dipropylcyclopentylxanthine (DPCPX), an A1 antagonist, and subjected to CI for 24 h, showed retinas with a higher number of apoptotic nuclei and an increase of GFAP immunoreactive area compared to controls. Also, higher levels of activated Caspase 3 and GFAP were demonstrated by Western Blot. The mRNA levels of iNOS, nNOS and inflammatory cytokines (IL-1β and TNFα) were not modified by DPCPX treatment. An increase of Iba 1+/MHC-II+ reactive microglial cells was shown by immunohistochemistry. ERG showed that the amplitudes of a-wave, b-wave, and oscillatory potentials after CI were similar to control values. A single pharmacological intervention prior illumination stress was able to swing retinal fate in opposite directions: CPA was neuroprotective, while DPCPX worsened retinal damage. In summary, A1 receptor agonism is a plausible neuroprotective strategy in LIRD.

  16. Protective Effect of Total Flavones from Hippophae rhamnoides L. against Visible Light-Induced Retinal Degeneration in Pigmented Rabbits.

    PubMed

    Wang, Yong; Huang, Fenghong; Zhao, Liang; Zhang, Di; Wang, Ou; Guo, Xiaoxuan; Lu, Feng; Yang, Xue; Ji, Baoping; Deng, Qianchun

    2016-01-13

    Sea buckthorn (Hippophae rhamnoides L.) flavones have been used as candidate functional food ingredients because of their bioactivities, such as treating cardiovascular disorders, lowering plasma cholesterol level, and regulating immune function. However, the protective effects of sea buckthorn flavones against retinal degeneration remain unclear to date. This study investigated the protective effects of total flavones from H. rhamnoides (TFH) against visible light-induced retinal damage and explored the related mechanisms in pigmented rabbits. Rabbits were treated with TFH (250 and 500 mg/kg) for 2 weeks pre-illumination and 1 week post-illumination until sacrifice. Retinal function was quantified by performing electroretinography 1 day before and 1, 3, and 7 days after light exposure (18000 lx for 2 h). Retinal degeneration was evaluated by measuring the thickness of the outer nuclear layer (ONL) and performing the TUNEL assay 7 days after light exposure. Enzyme-linked immunosorbent assay, Western blot analysis, and immunohistochemistry were used to explore the antioxidant, anti-inflammatory, and anti-apoptotic mechanisms of TFH during visible light-induced retinal degeneration. Light exposure produced a degenerative effect primarily on the ONL, inner nuclear layer (INL), and ganglion cell layer (GCL). TFH significantly attenuated the destruction of electroretinograms caused by light damage, maintained ONL thickness, and decreased the number of TUNEL-positive cells in the INL and GCL. TFH ameliorated the retinal oxidative stress (GSH-Px, CAT, T-AOC, and MDA), inflammation (IL-1β and IL-6), angiogenesis (VEGF), and apoptosis (Bax, Bcl2, and caspase-3) induced by light exposure. Therefore, TFH exhibited protective effects against light-induced retinal degeneration by increasing the antioxidant defense mechanisms, suppressing pro-inflammatory and angiogenic cytokines, and inhibiting retinal cell apoptosis.

  17. Effects of phenolic acid metabolites formed after chlorogenic acid consumption on retinal degeneration in vivo.

    PubMed

    Jang, Holim; Choi, Yongsoo; Ahn, Hong Ryul; Jung, Sang Hoon; Lee, Chang Yong

    2015-10-01

    Although ingestion of coffee and its constituent chlorogenic acid (CGA) protects the retina from oxidative stress, the bioaccessibility and bioavailability of coffee metabolites are not well understood. The aim of this study was to determine which coffee metabolites reach the retina and protect against retinal degeneration. UPLC-MS/MS was used to detect CGA and coffee metabolites in the rat eye. The methyl thiazolyl tetrazolium assay and double staining with Hoechst and propidium iodide showed that CGA, caffeic acid (CA), and dihydrocaffeic acid (DHCA) protect retinal ganglion cells from hypoxia-induced damage. Western blots showed that treatment with coffee metabolites up-regulated anti-apoptotic proteins such as Bcl-2 and Bcl-XL and down-regulated pro-apoptotic proteins such as Bad, PARP, and cleaved caspase 3. Adult ICR mice were subjected to optic nerve crush-induced retinal ganglion cell death with intravitreal pre-treatment with coffee metabolites 1 day before and 1 h after the procedure. Retrograde Fluorogold(TM) labeling showed severe retinal ganglion cell loss after optic nerve crushing, and coffee metabolites significantly reduced damage to retinal ganglion cells. CGA and coffee metabolites, especially, CA, and DHCA, reach the eye, where they can significantly reduce apoptosis induced by hypoxia and optic nerve crush stress, and thus prevent retinal degeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Protective effects of folic acid on DNA damage and DNA methylation levels induced by N-methyl- N'-nitro- N-nitrosoguanidine in Kazakh esophageal epithelial cells.

    PubMed

    Chen, Y; Feng, H; Chen, D; Abuduwaili, K; Li, X; Zhang, H

    2018-01-01

    The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p < 0.01); a significant reduction of genome-wide DNA MLs ( p < 0.01); and an increase in the methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p < 0.01). Our study indicated that a reduction in folic acid concentration promotes DNA damage and DNA methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.

  19. Enhancement by O6-benzyl-N2-acetylguanosine of N'-[2-chloroethyl]-N-[2-(methylsulphonyl)ethyl]-N'-nitrosourea therapeutic index on nude mice bearing resistant human melanoma.

    PubMed Central

    Debiton, E.; Cussac-Buchdhal, C.; Mounetou, E.; Rapp, M.; Dupuy, J. M.; Maurizis, J. C.; Veyre, A.; Madelmont, J. C.

    1997-01-01

    The exposure of cells to O6-benzyl-N2-acetylguanosine (BNAG) and several guanine derivatives is known to reduce the activity of O6-alkylguanine-DNA alkyltransferase (MGMT) and to enhance the sensitivity of Mer+ (methyl enzyme repair positive) tumour cells to chloroethylnitrosoureas (CENUs) in vitro and in vivo. High water solubility and the pharmacokinetic properties of BNAG make it a candidate for simultaneous administration with CENUs by the i.v. route in human clinical use. In vivo we have shown previously that BNAG significantly increases the efficiency of N'-[2-chloroethyl]-N-[2-(methylsulphonyl)ethyl]-N'-nitrosourea (cystemustine) against M4Beu melanoma cells (Mer+) through its cytostatic activity by the i.p. route, but also increases its toxicity. To investigate the toxicity of BNAG and cystemustine when administered simultaneously in mice, we compared the maximum tolerated dose and LD50 doses of cystemustine alone or in combination with 40 mg kg(-1) BNAG by the i.p. route. The toxicity of cystemustine was enhanced by a factor of almost 1.44 when combined with BNAG. To compare the therapeutic index of cystemustine alone and the cystemustine/BNAG combination, pharmacological tests were carried out in nude mice bearing Mer+ M4Beu human melanoma cells. Isotoxic doses were calculated using the 1.44 ratio. The treatments were administered three times by the i.v. route on days 1, 5 and 9 after s.c. inoculation of tumour cells. Although the toxicities of the treatments were equal, BNAG strongly enhanced tumour growth inhibition. These results demonstrate the increase of the therapeutic index of cystemustine by BNAG and justify the use of BNAG to enhance nitrosourea efficiency in vivo by i.v. co-injection. PMID:9365163

  20. [Effects of Nomega-nitro-L-arginine on photoreceptor apoptosis in inherited retinal degeneration of RCS rats].

    PubMed

    Li, Ai-jun; Fang, Jun; Zhu, Xiu-an

    2004-08-18

    To investigate inducible nitric oxide synthase(iNOS) activity of retina and the effects of N(omega)-nitro-L-arginine(N-Arg) on photoreceptor apoptosis in inherited retinal degeneration of Royal College of Surgeons (RCS) rats. iNOS activity was assayed in the whole retinal homogenates of RCS rats and Wistar rats by monitoring the conversion rate of (3)H-arginine to (3)H-citrulline. Intravitreal injection of the NOS inhibitor, N(omega)-nitro-L-arginine(N-Arg), in one lateral eye on postnatal days 17 (P17), P22, P27 and P32 was performed, while the other lateral eye was treated with PBS by intravitreal injection as controls. Then the retinas of the RCS rats were studied by TdT-mediated biotin-dUTP nick-end labeling (TUNEL) for apoptosis on P38. The enzymatic activity of iNOS was elevated in RCS rat retinas on P25. In RCS rats on P38, the percent area of apoptotic photoreceptor nuclei and the thickness of rod and cone layer in the treated group were significantly reduced compared with the controls, while the thickness of outer nuclear layer (ONL) was increased. The inhibitor of NOS might supply a potential medicine for inherited retinal degeneration.

  1. Negative electroretinograms in pericentral pigmentary retinal degeneration.

    PubMed

    Hotta, Kazuki; Kondo, Mineo; Nakamura, Makoto; Hotta, Junko; Terasaki, Hiroko; Miyake, Yozo; Hida, Tetsuo

    2006-01-01

    The clinical presentation and electrophysiological findings are described of three consecutive cases with pericentral pigmentary retinal degeneration. The responses to bright flashes after dark adaptation showed negative waveform shape in all cases. Rod responses were strongly reduced compared with cone responses. Cone electroretinograms elicited by long-duration stimuli showed greater loss of the on-response than the off-response. The ratio of the on-response amplitude to off-response amplitude of these patients (0.52 +/- 0.12; mean +/- SD, n = 6) was significantly smaller than that of normal subject (0.83 +/- 0.21; mean +/- SD, n = 8) (Mann-Whitney U-test, P < 0.01). The electrophysiological findings of these cases suggest a greater defect of inner retinal function, especially in transmission between photoreceptors and depolarizing bipolar cells.

  2. Sequencing analysis of mutations induced by N-ethyl-N-nitrosourea at different sampling times in mouse bone marrow.

    PubMed

    Wang, Jianyong; Chen, Tao

    2010-03-01

    In our previous study (Wang et al., 2004, Toxicol. Sci. 82: 124-128), we observed that the cII gene mutant frequency (MF) in the bone marrow of Big Blue mice showed significant increase as early as day 1, reached the maximum at day 3 and then decreased to a plateau by day 15 after a single dose of carcinogen N-ethyl-N-nitrosourea (ENU) treatment, which is different from the longer mutation manifestation time and the constancy of MFs after reaching their maximum in some other tissues. To determine the mechanism underlying the quick increase in MF and the peak formation in the mutant manifestation, we examined the mutation frequencies and spectra of the ENU-induced mutants collected from different sampling times in this study. The cII mutants from days 1, 3 and 120 after ENU treatment were randomly selected from different animals. The mutation frequencies were 33, 217, 305 and 144 x 10(-6) for control, days 1, 3, and 120, respectively. The mutation spectra at days 1 and 3 were significantly different from that at day 120. Considering that stem cells are responsible for the ultimate MF plateau (day 120) and transit cells are accountable for the earlier MF induction (days 1 or 3) in mouse bone marrow, we conclude that transit cells are much more sensitive to mutation induction than stem cells in mouse bone marrow, which resulted in the specific mutation manifestation induced by ENU.

  3. Molecular genetic basis for fluoroquinolone-induced retinal degeneration in cats.

    PubMed

    Ramirez, Christina J; Minch, Jonathan D; Gay, John M; Lahmers, Sunshine M; Guerra, Dan J; Haldorson, Gary J; Schneider, Terri; Mealey, Katrina L

    2011-02-01

    Distribution of fluoroquinolones to the retina is normally restricted by ABCG2 at the blood-retinal barrier. As the cat develops a species-specific adverse reaction to photoreactive fluoroquinolones, our goal was to investigate ABCG2 as a candidate gene for fluoroquinolone-induced retinal degeneration and blindness in cats. Feline ABCG2 was sequenced and the consensus amino acid sequence was compared with that of 10 other mammalian species. Expression of ABCG2 in feline retina was assessed by immunoblot. cDNA constructs for feline and human ABCG2 were constructed in a pcDNA3 expression vector and expressed in HEK-293 cells, and ABCG2 expression was analyzed by western blot and immunofluorescence. Mitoxantrone and BODIPY-prazosin efflux measured by flow cytometry and a phototoxicity assay were used to assess feline and human ABCG2 function. Four feline-specific (compared with 10 other mammalian species) amino acid changes in conserved regions of ABCG2 were identified. Expression of ABCG2 on plasma membranes was confirmed in feline retina and in cells transfected with human and feline ABCG2, although some intracellular expression of feline ABCG2 was detected by immunofluorescence. Function of feline ABCG2, compared with human ABCG2, was found to be deficient as determined by flow cytometric measurement of mitoxantrone and BODIPY-prazosin efflux and enrofloxacin-induced phototoxicity assays. Feline-specific amino acid changes in ABCG2 cause a functional defect of the transport protein in cats. This functional defect may be owing, in part, to defective cellular localization of feline ABCG2. Regardless, dysfunction of ABCG2 at the blood-retinal barrier likely results in accumulation of photoreactive fluoroquinolones in feline retina. Exposure of the retina to light would then generate reactive oxygen species that would cause the characteristic retinal degeneration and blindness documented in some cats receiving high doses of some fluoroquinolones. Pharmacological

  4. Synergistic effects of N-ethyl-N-nitrosourea (an alkylating agent with a low Swain-Scott substrate constant) and X-rays in the stamen hairs of Tradescantia clone BNL 4430.

    PubMed

    Shima, N; Ichikawa, S

    1997-01-01

    The mutagenic interaction between N-ethyl-N-nitrosourea (ENU) and X-rays was tested in the stamen hairs of Tradescantia clone BNL 4430, a blue/pink heterozygote. ENU, a monofunctional alkylating agent with a low Swain-Scott substrate constant (s) of 0.26, exhibited a strong cytotoxicity. ENU-induced somatic pink mutation frequency per 10(4) hair-cell divisions increased with increasing ENU dose, with a slope of 1.243 on a log-log graph, the slope value being similar to that for X-ray-induced mutation frequency. Three out of five combined treatments with ENU and X-rays produced mutation frequencies significantly higher than those expected from the additive effects of the two mutagens. Clear synergistic effects were detected when relatively higher X-ray doses were applied, resembling those confirmed earlier between methyl methanesulfonate (MMS) and X-rays, although the s value for ENU is very much smaller than that (0.88) for MMS. It is therefore concluded that mutagenic interactions between alkylating agents and X-rays do not have any clear relationship with the s values.

  5. [Synthesis of new nitrosoureas].

    PubMed

    Papadaki-Valiraki, A; Siatra-Papastaikoudi, T; Skaltsounis, A L; Roussakis, C

    1989-01-01

    Two chemical pathways were used for the synthesis of three new N'-(2-chloroethyl)-N-[2-(4-alkoxyphenylthio)ethyl]-N'-nitrosoureas and two new N'-(2-chloroethyl)-N)[2-(4-alkoxyphenyl-thio)ethyl]-N-nitrosoureas . The study of the cytotoxicity of the three N'-nitrosoureas, was carried out in two experimental models (P 388 and NSCLCN6).

  6. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides:

    NASA Astrophysics Data System (ADS)

    Chen, Junping; Patil, Swanand; Seal, Sudipta; McGinnis, James F.

    2006-11-01

    Photoreceptor cells are incessantly bombarded with photons of light, which, along with the cells' high rate of oxygen metabolism, continuously exposes them to elevated levels of toxic reactive oxygen intermediates (ROIs). Vacancy-engineered mixed-valence-state cerium oxide nanoparticles (nanoceria particles) scavenge ROIs. Our data show that nanoceria particles prevent increases in the intracellular concentrations of ROIs in primary cell cultures of rat retina and, in vivo, prevent loss of vision due to light-induced degeneration of photoreceptor cells. These data indicate that the nanoceria particles may be effective in inhibiting the progression of ROI-induced cell death, which is thought to be involved in macular degeneration, retinitis pigmentosa and other blinding diseases, as well as the ROI-induced death of other cell types in diabetes, Alzheimer's disease, atherosclerosis, stroke and so on. The use of nanoceria particles as a direct therapy for multiple diseases represents a novel strategy and suggests that they may represent a unique platform technology.

  7. Iron homeostasis and toxicity in retinal degeneration.

    PubMed

    He, Xining; Hahn, Paul; Iacovelli, Jared; Wong, Robert; King, Chih; Bhisitkul, Robert; Massaro-Giordano, Mina; Dunaief, Joshua L

    2007-11-01

    Iron is essential for many metabolic processes but can also cause damage. As a potent generator of hydroxyl radical, the most reactive of the free radicals, iron can cause considerable oxidative stress. Since iron is absorbed through diet but not excreted except through menstruation, total body iron levels buildup with age. Macular iron levels increase with age, in both men and women. This iron has the potential to contribute to retinal degeneration. Here we present an overview of the evidence suggesting that iron may contribute to retinal degenerations. Intraocular iron foreign bodies cause retinal degeneration. Retinal iron buildup resulting from hereditary iron homeostasis disorders aceruloplasminemia, Friedreich's ataxia, and panthothenate kinase-associated neurodegeneration cause retinal degeneration. Mice with targeted mutation of the iron exporter ceruloplasmin have age-dependent retinal iron overload and a resulting retinal degeneration with features of age-related macular degeneration (AMD). Post mortem retinas from patients with AMD have more iron and the iron carrier transferrin than age-matched controls. Over the past 10 years much has been learned about the intricate network of proteins involved in iron handling. Many of these, including transferrin, transferrin receptor, divalent metal transporter-1, ferritin, ferroportin, ceruloplasmin, hephaestin, iron-regulatory protein, and histocompatibility leukocyte antigen class I-like protein involved in iron homeostasis (HFE) have been found in the retina. Some of these proteins have been found in the cornea and lens as well. Levels of the iron carrier transferrin are high in the aqueous and vitreous humors. The functions of these proteins in other tissues, combined with studies on cultured ocular tissues, genetically engineered mice, and eye exams on patients with hereditary iron diseases provide clues regarding their ocular functions. Iron may play a role in a broad range of ocular diseases, including

  8. Iron homeostasis and toxicity in retinal degeneration

    PubMed Central

    He, Xining; Hahn, Paul; Iacovelli, Jared; Wong, Robert; King, Chih; Bhisitkul, Robert; Massaro-Giordano, Mina; Dunaief, Joshua L.

    2007-01-01

    Iron is essential for many metabolic processes but can also cause damage. As a potent generator of hydroxyl radical, the most reactive of the free radicals, iron can cause considerable oxidative stress. Since iron is absorbed through diet but not excreted except through menstruation, total body iron levels build up with age. Macular iron levels increase with age, in both men and women. This iron has the potential to contribute to retinal degeneration. Here we present an overview of the evidence suggesting that iron may contribute to retinal degenerations. Intraocular iron foreign bodies cause retinal degeneration. Retinal iron buildup resulting from hereditary iron homeostasis disorders aceruloplasminemia, Friedreich’s Ataxia, and panthothenate kinase associated neurodegeneration cause retinal degeneration. Mice with targeted mutation of the iron exporter ceruloplasmin have age-dependent retinal iron overload and a resulting retinal degeneration with features of age-related macular degeneration (AMD). Post mortem retinas from patients with AMD have more iron and the iron carrier transferrin than age- matched controls. Over the past ten years much has been learned about the intricate network of proteins involved in iron handling. Many of these, including transferrin, transferrin receptor, divalent metal transporter 1, ferritin, ferroportin, ceruloplasmin, hephaestin, iron regulatory protein, and histocompatibility leukocyte antigen class I-like protein involved in iron homeostasis (HFE) have been found in the retina. Some of these proteins have been found in the cornea and lens as well. Levels of the iron carrier transferrin are high in the aqueous and vitreous humors. The functions of these proteins in other tissues, combined with studies on cultured ocular tissues, genetically engineered mice, and eye exams on patients with hereditary iron diseases provide clues regarding their ocular functions. Iron may play a role in a broad range of ocular diseases, including

  9. The carcinogenicity of 1-methyl-3(p-bromophenyl)-1-nitrosourea (Br-MPNU).

    PubMed

    Warzok, R; Martin, J; Mendel, J; Thust, R; Schwarz, H

    1983-01-01

    In long-term experiments with Hooded rats the carcinogenic potential of 1-methyl-3(p-bromophenyl)-1-nitrosourea (Br-MPNU) could be demonstrated for the first time. Br-MPNU is formed also endogenously after combined administration of 1-methyl-3(p-bromophenyl)-urea (Br-MPU) and sodium nitrite. After repeated intragastric administration of 0.33 mmol Br-MPU and 0.73 mmol NaNO2 per kg b.w. papillomas and carcinomas of the forestomach developed in 83%. After repeated administration of 0.28 mmol Br-MPNU per kg b.w. these neoplasms were observed in 88%. The comparison of results obtained in similar experiments with 1-methyl-3-phenyl-1-nitrosourea shows that bromine substitution led to a reduction of the carcinogenic activity. The present paper is part of a complex program studying the interrelationships between structure, physico-chemical properties, mutagenicity and carcinogenicity of nitrosoureas.

  10. Dietary Supplement Enriched in Antioxidants and Omega-3 Protects from Progressive Light-Induced Retinal Degeneration

    PubMed Central

    Ramchani-Ben Othman, Khaoula; Cercy, Christine; Amri, Mohamed; Doly, Michel; Ranchon-Cole, Isabelle

    2015-01-01

    In the present study, we have evaluated one of the dietary supplements enriched with antioxidants and fish oil used in clinical care for patient with age-related macular degeneration. Rats were orally fed by a gastric canula daily with 0.2 ml of water or dietary supplement until they were sacrificed. After one week of treatment, animals were either sacrificed for lipid analysis in plasma and retina, or used for evaluation of rod-response recovery by electroretinography (ERG) followed by their sacrifice to measure rhodopsin content, or used for progressive light-induced retinal degeneration (PLIRD). For PLIRD, animals were transferred to bright cyclic light for one week. Retinal damage was quantified by ERG, histology and detection of apoptotic nuclei. Animals kept in dim-cyclic-light were processed in parallel. PLIRD induced a thinning of the outer nuclear layer and a reduction of the b-wave amplitude of the ERG in the water group. Retinal structure and function were preserved in supplemented animals. Supplement induced a significant increase in omega-3 fatty acids in plasma by 168% for eicosapentaenoic acid (EPA), 142% for docosapentaenoic acid (DPA) and 19% for docosahexaenoic acid (DHA) and a decrease in the omega-6 fatty acids, DPA by 28%. In the retina, supplement induced significant reduction of linolenic acid by 67% and an increase in EPA and DPA by 80% and 72%, respectively, associated with significant decrease in omega-6 DPA by 42%. Supplement did not affect rhodopsin content or rod-response recovery. The present data indicate that supplement rapidly modified the fatty acid content and induced an accumulation of EPA in the retina without affecting rhodopsin content or recovery. In addition, it protected the retina from oxidative stress induced by light. Therefore, this supplement might be beneficial to slow down progression of certain retinal degeneration. PMID:26042773

  11. Development of Choroidal Neovascularization in rats with Advanced Intense Cyclic Light-induced Retinal Degeneration

    PubMed Central

    Albert, Daniel M.; Neekhra, Aneesh; Wang, Shoujian; Darjatmoko, Soesiawati R.; Sorenson, Christine M.; Dubielzig, Richard R.; Sheibani, Nader

    2010-01-01

    Objective To study the progressive changes of intense cyclic light-induced retinal degeneration and determine whether it results in choroidal neovascularization (CNV). Methods Albino rats were exposed to 12 h of 3000 lux cyclic light for 1, 3, or 6 months. Prior to euthanization, fundus examination, fundus photographs, fluorescein and indocyanine green angiography, and Optical Coherence Tomography (OCT) evaluations were performed. Light exposed animals were euthanized after 1, 3, or 6 months for histopathological evaluation. Retinas were examined for the presence of 4-hydroxy-2-nonenal (HNE) and nitrotyrosine modified proteins by immunofluorescence staining. Results Chronic intense cyclic light exposure resulted in retinal degeneration with loss of the outer segments of photoreceptors and approximately two-thirds of the outer nuclear layer (ONL) and development of sub-retinal pigment epithelium (RPE) neovascularization after 1 month. Almost the entire ONL was absent with the presence of CNV, which penetrated Bruch’s membrane and extended into the outer retina after 3 months. Absence of the ONL, multiple foci of CNV, RPE fibrous metaplasia, and connective tissue bands containing blood vessels extending into the retina were observed after 6 months. All intense light exposed animals showed an increased presence of HNE and nitrotyrosine staining. OCT and angiographic studies confirmed retinal thinning and leakiness of the newly fromed blood vessels. Conclusions Our results suggest albino rats develop progressive stages of retinal degeneration and CNV after chronic intense cyclic light exposure allowing the detailed study of the pathogenesis and treatment of age-related macular degeneration. PMID:20142545

  12. Cytostatic action of two nitrosoureas derived from cysteamine.

    PubMed Central

    Bourut, C.; Chenu, E.; Godenèche, D.; Madelmont, J. C.; Maral, R.; Mathé, G.; Meyniel, G.

    1986-01-01

    2-Chloroethyl nitrosocarbamoylcystamine or ICIG-1325 (CNCC) is a lipid-soluble isomeric mixture of nitrosoureas. Its dose-effect relationship on L1210 leukaemia is characterized by a large maximally efficient dose-range (MEDR), greater than that of other nitrosoureas. CNCC also demonstrated significant therapeutic activity on intracerebrally (i.c.) transplanted L1210 leukaemia and on six transplanted solid tumours, TM2 mammary carcinoma, M555 ovarian carcinoma, B16 melanoma, glioma 26, 3LL, Lewis lung carcinoma and colon 26 carcinoma. It was inactive on fibrosarcoma ICIG-Ci4. Its antitumour activity spectrum is wider than that of the related compounds 2-[3-(2-chloroethyl) 3-nitrosoureido]D-glucopyranose (CZT), (chloro-2-ethyl)-1(ribofuranosyl-isopropylidene-2'-3' paranitrobenzoate-5')-3 nitrosourea (RFCNU), and (chloro-2-ethyl)-1 (ribopyranosyl triacetate-2'-3'-4')-3 nitrosourea (RPCNU). A study of its metabolic disposition in animals has shown that CNCC undergoes extensive first-pass metabolism leading to the formation of four main plasma metabolites. These metabolites are water-soluble nitrosoureas that arose from the bioreduction of the disulphide bridge followed by the methylation and the oxidation of the thiol groups. Experimental screening was performed with these chemically synthesized metabolites. Both N'-(2-chloroethyl)-N-[2-(methylsulphinyl)ethyl]-N'-nitrosourea (CMSOEN2) and N'-(2-chloroethyl)-N-[2-(methylsulphonyl)ethyl]-N'-nitrosourea (CMSO2EN2) are very active on L1210 leukaemia grafted intraperitoneally (i.p.) and i.c., L40 leukaemia, B16 melanoma, glioma 26 and Lewis lung carcinoma. Their effectiveness is better than that of the parent compound CNCC. In addition,the percentage of mice cured after CMSOEN2 or CMSO2EN2 treatment is increased especially on B16 melanoma and glioma 26.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3801787

  13. Effects of Combined Ketamine/Xylazine Anesthesia on Light Induced Retinal Degeneration in Rats

    PubMed Central

    Bolz, Sylvia; Eslava-Schmalbach, Javier; Willmann, Gabriel; Zhour, Ahmad; Zrenner, Eberhart; Fischer, M. Dominik; Gekeler, Florian

    2012-01-01

    Objectives To explore the effect of ketamine-xylazine anesthesia on light-induced retinal degeneration in rats. Methods Rats were anesthetized with ketamine and xylazine (100 and 5 mg, respectively) for 1 h, followed by a recovery phase of 2 h before exposure to 16,000 lux of environmental illumination for 2 h. Functional assessment by electroretinography (ERG) and morphological assessment by in vivo imaging (optical coherence tomography), histology (hematoxylin/eosin staining, TUNEL assay) and immunohistochemistry (GFAP and rhodopsin staining) were performed at baseline (ERG), 36 h, 7 d and 14 d post-treatment. Non-anesthetized animals treated with light damage served as controls. Results Ketamine-xylazine pre-treatment preserved retinal function and protected against light-induced retinal degeneration. In vivo retinal imaging demonstrated a significant increase of outer nuclear layer (ONL) thickness in the non-anesthetized group at 36 h (p<0.01) and significant reduction one week (p<0.01) after light damage. In contrast, ketamine-xylazine pre-treated animals showed no significant alteration of total retinal or ONL thickness at either time point (p>0.05), indicating a stabilizing and/or protective effect with regard to phototoxicity. Histology confirmed light-induced photoreceptor cell death and Müller cells gliosis in non-anesthetized rats, especially in the superior hemiretina, while ketamine-xylazine treated rats showed reduced photoreceptor cell death (TUNEL staining: p<0.001 after 7 d), thicker ONL and longer IS/OS. Fourteen days after light damage, a reduction of standard flash induced a-wave amplitudes and a-wave slopes (p = 0.01) and significant alterations in parameters of the scotopic sensitivity function (e.g. Vmax of the Naka Rushton fit p = 0.03) were observed in non-treated vs. ketamine-xylazine treated animals. Conclusions Our results suggest that pre-treatment with ketamine-xylazine anesthesia protects retinas against light damage

  14. Carcinogenicity of 1-methyl-3(p-chlorophenyl)-1-nitrosourea and its 1-methyl trideuterated derivative in rats.

    PubMed

    Schreiber, D; Martin, J; Mendel, J

    1986-01-01

    The carcinogenic activity of 1-methyl-3(p-chlorophenyl)-1-nitrosourea (Cl-MPNU) and its 1-methyl trideuterated analog (Cl-MPNU-d3) was compared by intragastric administration to hooded rats of equimolar doses of both compounds. A 100% frequency of forestomach tumors was observed in both groups. However, the mean latency period of the animals treated with Cl-MPNU-d3 was significantly longer (P less than 0.01). The results suggest the occurrence of a deuterium isotope effect in nitrosoureas but not as distinct as in nitrosamines.

  15. Reprogramming the metabolome rescues retinal degeneration.

    PubMed

    Park, Karen Sophia; Xu, Christine L; Cui, Xuan; Tsang, Stephen H

    2018-05-01

    Metabolomics studies in the context of ophthalmology have largely focused on identifying metabolite concentrations that characterize specific retinal diseases. Studies involving mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have shown that individuals suffering from retinal diseases exhibit metabolic profiles that markedly differ from those of control individuals, supporting the notion that metabolites may serve as easily identifiable biomarkers for specific conditions. An emerging branch of metabolomics resulting from biomarker studies, however, involves the study of retinal metabolic dysfunction as causes of degeneration. Recent publications have identified a number of metabolic processes-including but not limited to glucose and oxygen metabolism-that, when perturbed, play a role in the degeneration of photoreceptor cells. As a result, such studies have led to further research elucidating methods for prolonging photoreceptor survival in an effort to halt degeneration in its early stages. This review will explore the ways in which metabolomics has deepened our understanding of the causes of retinal degeneration and discuss how metabolomics can be used to prevent retinal degeneration from progressing to its later disease stages.

  16. Primary amines protect against retinal degeneration in mouse models of retinopathies

    PubMed Central

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-01-01

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore, 11-cis-retinal, and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomered product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing FDA-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by mass spectrometry. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that displays features of Stargardt’s and age-related retinal degeneration. PMID:22198730

  17. Pigment epithelium-derived factor reduces apoptosis and pro-inflammatory cytokine gene expression in a murine model of focal retinal degeneration.

    PubMed

    Wang, Yujuan; Subramanian, Preeti; Shen, Defen; Tuo, Jingsheng; Becerra, S Patricia; Chan, Chi-Chao

    2013-11-26

    AMD (age-related macular degeneration) is a neurodegenerative disease causing irreversible central blindness in the elderly. Apoptosis and inflammation play important roles in AMD pathogenesis. PEDF (pigment epithelium-derived factor) is a potent neurotrophic and anti-inflammatory glycoprotein that protects the retinal neurons and photoreceptors against cell death caused by pathological insults. We studied the effects of PEDF on focal retinal lesions in DKO rd8 (Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)]) mice, a model for progressive, focal rd (retinal degeneration). First, we found a significant decrease in PEDF transcript expression in DKO rd8 mouse retina and RPE (retinal pigment epithelium) than WT (wild-type, C57BL/6N). Next, cultured DKO rd8 RPE cells secreted lower levels of PEDF protein in the media than WT. Then the right eyes of DKO rd8 mice were injected intravitreously with recombinant human PEDF protein (1 μg), followed by a subconjunctival injection of PEDF (3 μg) 4 weeks later. The untreated left eyes served as controls. The effect of PEDF was assessed by fundoscopy, ocular histopathology and A2E {[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl) 1E,3E,5E,7E-hexatrienyl]-pyridinium} levels, as well as apoptotic and inflammatory molecules. The PEDF-treated eyes showed slower progression or attenuation of the focal retinal lesions, fewer and/or smaller photoreceptor and RPE degeneration, and significantly lower A2E, relative to the untreated eyes. In addition, lower expression of apoptotic and inflammatory molecules were detected in the PEDF-treated than untreated eyes. Our results establish that PEDF potently stabilizes photoreceptor degeneration via suppression of both apoptotic and inflammatory pathways. The multiple beneficial effects of PEDF represent a novel approach for potential AMD treatment.

  18. Protective Effect of Proanthocyanidins from Sea Buckthorn (Hippophae Rhamnoides L.) Seed against Visible Light-Induced Retinal Degeneration in Vivo.

    PubMed

    Wang, Yong; Zhao, Liang; Huo, Yazhen; Zhou, Feng; Wu, Wei; Lu, Feng; Yang, Xue; Guo, Xiaoxuan; Chen, Peng; Deng, Qianchun; Ji, Baoping

    2016-05-02

    Dietary proanthocyanidins (PACs) as health-protective agents have become an important area of human nutrition research because of their potent bioactivities. We investigated the retinoprotective effects of PACs from sea buckthorn (Hippophae rhamnoides L.) seed against visible light-induced retinal degeneration in vivo. Pigmented rabbits were orally administered sea buckthorn seed PACs (50 and 100 mg/kg/day) for 14 consecutive days of pre-illumination and seven consecutive days of post-illumination. Retinal function was quantified via electroretinography 7 days after light exposure. Retinal damage was evaluated by measuring the thickness of the full-thickness retina and outer nuclear layer 7 days after light exposure. Sea buckthorn seed PACs significantly attenuated the destruction of electroretinograms and maintained the retinal structure. Increased retinal photooxidative damage was expressed by the depletion of glutathione peroxidase and catalase activities, the decrease of total antioxidant capacity level and the increase of malondialdehyde level. Light exposure induced a significant increase of inflammatory cytokines (IL-1β, TNF-α and IL-6) and angiogenesis (VEGF) levels in retina. Light exposure upregulated the expression of pro-apoptotic proteins Bax and caspase-3 and downregulated the expression of anti-apoptotic protein Bcl-2. However, sea buckthorn seed PACs ameliorated these changes induced by light exposure. Sea buckthorn seed PACs mediated the protective effect against light-induced retinal degeneration via antioxidant, anti-inflammatory and antiapoptotic mechanisms.

  19. Protective Effect of Proanthocyanidins from Sea Buckthorn (Hippophae Rhamnoides L.) Seed against Visible Light-Induced Retinal Degeneration in Vivo

    PubMed Central

    Wang, Yong; Zhao, Liang; Huo, Yazhen; Zhou, Feng; Wu, Wei; Lu, Feng; Yang, Xue; Guo, Xiaoxuan; Chen, Peng; Deng, Qianchun; Ji, Baoping

    2016-01-01

    Dietary proanthocyanidins (PACs) as health-protective agents have become an important area of human nutrition research because of their potent bioactivities. We investigated the retinoprotective effects of PACs from sea buckthorn (Hippophae rhamnoides L.) seed against visible light-induced retinal degeneration in vivo. Pigmented rabbits were orally administered sea buckthorn seed PACs (50 and 100 mg/kg/day) for 14 consecutive days of pre-illumination and seven consecutive days of post-illumination. Retinal function was quantified via electroretinography 7 days after light exposure. Retinal damage was evaluated by measuring the thickness of the full-thickness retina and outer nuclear layer 7 days after light exposure. Sea buckthorn seed PACs significantly attenuated the destruction of electroretinograms and maintained the retinal structure. Increased retinal photooxidative damage was expressed by the depletion of glutathione peroxidase and catalase activities, the decrease of total antioxidant capacity level and the increase of malondialdehyde level. Light exposure induced a significant increase of inflammatory cytokines (IL-1β, TNF-α and IL-6) and angiogenesis (VEGF) levels in retina. Light exposure upregulated the expression of pro-apoptotic proteins Bax and caspase-3 and downregulated the expression of anti-apoptotic protein Bcl-2. However, sea buckthorn seed PACs ameliorated these changes induced by light exposure. Sea buckthorn seed PACs mediated the protective effect against light-induced retinal degeneration via antioxidant, anti-inflammatory and antiapoptotic mechanisms. PMID:27144578

  20. Glucocorticoid-Induced Leucine Zipper Protects the Retina From Light-Induced Retinal Degeneration by Inducing Bcl-xL in Rats.

    PubMed

    Gu, Ruiping; Tang, Wenyi; Lei, Boya; Ding, Xinyi; Jiang, Cheng; Xu, Gezhi

    2017-07-01

    The aim of the present study was to investigate the neuroprotective effects of glucocorticoid-induced leucine zipper (GILZ) in a light-induced retinal degeneration model and to explore the underlying mechanisms. Intravitreal injection of recombinant GILZ-overexpressing lentivirus (OE-GILZ-rLV) and short hairpin RNA targeting GILZ recombinant lentivirus (shRNA-GILZ-rLV) was performed to up- and downregulate retinal GILZ, respectively. Three days after stable transduction, rats were exposed to continuous bright light (5000 lux) for 2 days. Retinal function was assessed by full-field electroretinography (ERG), and the retinal structure was examined for photoreceptor survival and death in rats kept under a 12-hour light:2-hour dark cycle following light exposure. The expression levels of retinal Bcl-xL, caspase-9, and caspase-3 were examined by Western blotting or real-time PCR at 1, 3, 5, and 7 days after light exposure. Exposure to bright light downregulated retinal GILZ in parallel with the downregulation of Bcl-xL and the upregulation of active caspase-3. Overexpression of retinal GILZ attenuated the decrease of Bcl-xL and the activation of caspase-9 and caspase-3 at 1, 3, 5, and 7 days after bright light exposure, respectively. GILZ silencing aggravated the downregulation of Bcl-xL induced by bright light exposure. Bright light exposure reduced the amplitude of ERG, increased the number of apoptotic photoreceptor cells, and decreased retinal thickness; and GILZ overexpression could attenuate all these effects. Overexpression of GILZ by OE-GILZ-rLV transduction protected the retina from light-induced cellular damage by activating antiapoptotic pathways.

  1. Retinal degeneration is delayed by tissue factor pathway inhibitor-2 in RCS rats and a sodium-iodate-induced model in rabbits.

    PubMed

    Obata, R; Yanagi, Y; Tamaki, Y; Hozumi, K; Mutoh, M; Tanaka, Y

    2005-04-01

    To investigate the in vivo effects of tissue factor pathway inhibitor 2 (TFPI-2), which stimulates proliferation of retinal pigment epithelial cells, but not the proliferation of fibroblast and vascular endothelial cells in vitro, on retinal degeneration using a sodium-iodate (SI)-induced model in rabbits and Royal Collage of Surgeons (RCS) rats. 79 microg of recombinant TFPI-2 (rTFPI-2) or vehicle alone was injected intravitreously to 18 eyes of 12 pigmented rabbits a day after 20 mg/kg of SI was intravenously administered. Retinal function was assessed 4, 7, 14, and 21 days after the injection by analysing amplitudes of the c-wave of a bright flash electroretinogram. Additionally, 10 microg of rTFPI-2 or vehicle alone was injected intravitreously to 11 eyes of RCS rats at both 3 and 4 weeks old, then the retina was examined histologically at 5 weeks old. The rTFPI-2-treated eyes in rabbits showed a significantly less decrease in the relative amplitude of the c-wave than control eyes on days 4 and 7. The thickness of the outer nuclear layer was significantly thicker and the vacuole in the photoreceptor layer was less frequently observed in the rTFPI-2-treated RCS rats than the controls. Intravitreal injection of TFPI-2 rescues SI-induced retinal degeneration in rabbits and naturally occurring retinal degeneration in RCS rats at least partly. These results may suggest that this compound can be utilized in the treatment of retinal degeneration.

  2. Quantitative metabolomics of photoreceptor degeneration and the effects of stem cell-derived retinal pigment epithelium transplantation

    PubMed Central

    Wang, Junhua; Westenskow, Peter D.; Fang, Mingliang; Friedlander, Martin

    2016-01-01

    Photoreceptor degeneration is characteristic of vision-threatening diseases including age-related macular degeneration. Photoreceptors are metabolically demanding cells in the retina, but specific details about their metabolic behaviours are unresolved. The quantitative metabolomics of retinal degeneration could provide valuable insights and inform future therapies. Here, we determined the metabolomic ‘fingerprint’ of healthy and dystrophic retinas in rat models using optimized metabolite extraction techniques. A number of classes of metabolites were consistently dysregulated during degeneration: vitamin A analogues, fatty acid amides, long-chain polyunsaturated fatty acids, acyl carnitines and several phospholipid species. For the first time, a distinct temporal trend of several important metabolites including DHA (4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid), all-trans-retinal and its toxic end-product N-retinyl-N-retinylidene-ethanolamine were observed between healthy and dystrophic retinas. In this study, metabolomics was further used to determine the temporal effects of the therapeutic intervention of grafting stem cell-derived retinal pigment epithelium (RPE) in dystrophic retinas, which significantly prevented photoreceptor atrophy in our previous studies. The result revealed that lipid levels such as phosphatidylethanolamine in eyes were restored in those animals receiving the RPE grafts. In conclusion, this study provides insight into the metabolomics of retinal degeneration, and further understanding of the efficacy of RPE transplantation. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644974

  3. Optimal dose selection of N-methyl-N-nitrosourea for the rat comet assay to evaluate DNA damage in organs with different susceptibility to cytotoxicity.

    PubMed

    Kitamoto, Sachiko; Matsuyama, Ryoko; Uematsu, Yasuaki; Ogata, Keiko; Ota, Mika; Yamada, Toru; Miyata, Kaori; Funabashi, Hitoshi; Saito, Koichi

    2015-07-01

    The in vivo rodent alkaline comet assay (comet assay) is a promising technique to evaluate DNA damage in vivo. However, there is no agreement on a method to evaluate DNA damage in organs where cytotoxicity is observed. As a part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the comet assay, we examined DNA damage in the liver, stomach, and bone marrow of rats given three oral doses of N-methyl-N-nitrosourea (MNU) up to the maximum tolerated dose based on systemic toxicity. MNU significantly increased the % tail DNA in all the organs. Histopathological analysis showed no cytotoxic effect on the liver, indicating clearly that MNU has a genotoxic potential in the liver. In the stomach, however, the cytotoxic effects were very severe at systemically non-toxic doses. Low-dose MNU significantly increased the % tail DNA even at a non-cytotoxic dose, indicating that MNU has a genotoxic potential also in the stomach. Part of the DNA damage at cytotoxic doses was considered to be a secondary effect of severe cell damage. In the bone marrow, both the % tail DNA and incidence of micronucleated polychromatic erythrocytes significantly increased at non-hematotoxic doses, which were different from the non-cytotoxic doses for liver and stomach. These findings indicate that an optimal dose for detecting DNA damage may vary among organs and that careful attention is required to select an optimum dose for the comet assay based on systemic toxicity such as mortality and clinical observations. The present study shows that when serious cytotoxicity is suggested by increased % hedgehogs in the comet assay, histopathological examination should be included for the evaluation of a positive response. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung-A; Shim, Sang Hee; Ahn, Hong Ryul

    2013-06-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca{sup 2+}more » was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by

  5. Progress toward the maintenance and repair of degenerating retinal circuitry.

    PubMed

    Vugler, Anthony A

    2010-01-01

    Retinal diseases such as age-related macular degeneration and retinitis pigmentosa remain major causes of severe vision loss in humans. Clinical trials for treatment of retinal degenerations are underway and advancements in our understanding of retinal biology in health/disease have implications for novel therapies. A review of retinal biology is used to inform a discussion of current strategies to maintain/repair neural circuitry in age-related macular degeneration, retinitis pigmentosa, and Type 2 Leber congenital amaurosis. In age-related macular degeneration/retinitis pigmentosa, a progressive loss of rods/cones results in corruption of bipolar cell circuitry, although retinal output neurons/photoreceptive melanopsin cells survive. Visual function can be stabilized/enhanced after treatment in age-related macular degeneration, but in advanced degenerations, reorganization of retinal circuitry may preclude attempts to restore cone function. In Type 2 Leber congenital amaurosis, useful vision can be restored by gene therapy where central cones survive. Remarkable progress has been made in restoring vision to rodents using light-responsive ion channels inserted into bipolar cells/retinal ganglion cells. Advances in genetic, cellular, and prosthetic therapies show varying degrees of promise for treating retinal degenerations. While functional benefits can be obtained after early therapeutic interventions, efforts should be made to minimize circuitry changes as soon as possible after rod/cone loss. Advances in retinal anatomy/physiology and genetic technologies should allow refinement of future reparative strategies.

  6. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells

    PubMed Central

    Johansson, Ida; Monsen, Vivi Talstad; Pettersen, Kristine; Mildenberger, Jennifer; Misund, Kristine; Kaarniranta, Kai; Schønberg, Svanhild; Bjørkøy, Geir

    2015-01-01

    Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD. PMID:26237736

  7. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration.

    PubMed

    Inoue, Yuji; Iriyama, Aya; Ueno, Shuji; Takahashi, Hidenori; Kondo, Mineo; Tamaki, Yasuhiro; Araie, Makoto; Yanagi, Yasuo

    2007-08-01

    Because there is no effective treatment for this retinal degeneration, potential application of cell-based therapy has attracted considerable attention. Several investigations support that bone marrow mesenchymal stem cells (MSCs) can be used for a broad spectrum of indications. Bone marrow MSCs exert their therapeutic effect in part by secreting trophic factors to promote cell survival. The current study investigates whether bone marrow MSCs secrete factor(s) to promote photoreceptor cell survival and whether subretinal transplantation of bone marrow MSCs promotes photoreceptor survival in a retinal degeneration model using Royal College of Surgeons (RCS) rats. In vitro, using mouse retinal cell culture, it was demonstrated that the conditioned medium of the MSCs delays photoreceptor cell apoptosis, suggesting that the secreted factor(s) from the MSCs promote photoreceptor cell survival. In vivo, the MSCs were injected into the subretinal space of the RCS rats and histological analysis, real-time RT-PCR and electrophysiological analysis demonstrated that the subretinal transplantation of MSCs delays retinal degeneration and preserves retinal function in the RCS rats. These results suggest that MSC is a useful cell source for cell-replacement therapy for some forms of retinal degeneration.

  8. Increased levels of N(ε)- Carboxy methyl lysine (N(ε)-CML) are associated with topographic alterations in retinal pigment epithelium: A preliminary study.

    PubMed

    Mishra, Nibha; Saxena, Sandeep; Ruia, Surabhi; Prasad, Senthamizh; Singh, Vinita; Khanna, Vinay; Staffa, Robert; Gaspar, Ludovit; Kruzliak, Peter

    2016-07-01

    To evaluate the association of serum levels of N(ε)- Carboxy methyl lysine (N(ε)-CML), an advanced glycation end product with topographic alterations in retinal pigment epithelium (RPE) in diabetic retinopathy on spectral domain optical coherence tomography (SD-OCT). Consecutive cases of type 2 diabetes mellitus with no retinopathy (n=20); non-proliferative diabetic retinopathy (n=20); proliferative diabetic retinopathy (n=20) and healthy controls (n=20) between the ages of 40 and 65years were included. RPE alterations were graded on segmentation map of SD-OCT: grade 0, No RPE alterations; grade 1, RPE alterations in up to two quadrants and grade 2, RPE alterations in more than two quadrants. Serum level of N(ε)-CML and glycated hemoglobin (HbA1c) was analyzed using the standard protocol. Statistical analysis was done. Significant increase in N(ε)-CML was observed with increased severity of diabetic retinopathy (F=34.1; p<0.0001). Fisher exact test revealed significant increase in grades of RPE alterations with increased severity of diabetic retinopathy (p<0.001). Univariate ordinal regression analysis was done to calculate the risk of progression in grades of RPE alteration with individual changes in variables like duration of diabetes (odds ratio=1.37; p=0.001), HbA1c (odds ratio=1.37; p=0.002) and Nε-CML (odds ratio=1.37; p<0.0001). Multivariate ordinal regression analysis for predicting progression in grades of RPE alteration revealed Nε-CML to be an independent predictor of increase in grades of RPE alteration (adjusted odds ratio=1.07; p<0.01) when duration of diabetes and HbA1c were held constant. Increase in serum levels of N(ε)- Carboxy methyl lysine is significantly associated with topographic alterations in RPE. Grades of RPE alteration increase significantly with increased severity of diabetic retinopathy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. LONGITUDINAL STRUCTURAL CHANGES IN LATE-ONSET RETINAL DEGENERATION.

    PubMed

    Cukras, Catherine; Flamendorf, Jason; Wong, Wai T; Ayyagari, Radha; Cunningham, Denise; Sieving, Paul A

    2016-12-01

    To characterize longitudinal structural changes in early stages of late-onset retinal degeneration to investigate pathogenic mechanisms. Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence images, near-infrared reflectance fundus images, and spectral domain optical coherence tomography scans were acquired during follow-up. Both patients, aged 45 and 50 years, had good visual acuities (>20/20) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on fundus autofluorescence and near-infrared reflectance imaging. Baseline spectral domain optical coherence tomography imaging revealed subretinal deposits that resemble reticular pseudodrusen described in age-related macular degeneration. During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt retinal pigment epithelium and outer retinal atrophy. Structural changes in early stages of late-onset retinal degeneration, revealed by multimodal imaging, resemble those of reticular pseudodrusen observed in age-related macular degeneration and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations.

  10. Enhancing the efficacy of AREDS antioxidants in light-induced retinal degeneration

    PubMed Central

    Wong, Paul; Markey, M.; Rapp, C. M.; Darrow, R. M.; Ziesel, A.

    2017-01-01

    Purpose Light-induced photoreceptor cell degeneration and disease progression in age-related macular degeneration (AMD) involve oxidative stress and visual cell loss, which can be prevented, or slowed, by antioxidants. Our goal was to test the protective efficacy of a traditional Age-related Eye Disease Study antioxidant formulation (AREDS) and AREDS combined with non-traditional antioxidants in a preclinical animal model of photooxidative retinal damage. Methods Male Sprague-Dawley rats were reared in a low-intensity (20 lux) or high-intensity (200 lux) cyclic light environment for 6 weeks. Some animals received a daily dietary supplement consisting of a small cracker infused with an AREDS antioxidant mineral mixture, AREDS antioxidants minus zinc, or zinc oxide alone. Other rats received AREDS combined with a detergent extract of the common herb rosemary, AREDS plus carnosic acid, zinc oxide plus rosemary, or rosemary alone. Antioxidant efficacy was determined by measuring retinal DNA levels 2 weeks after 6 h of intense exposure to white light (9,000 lux). Western blotting was used to determine visual cell opsin and arrestin levels following intense light treatment. Rhodopsin regeneration was determined after 1 h of exposure to light. Gene array analysis was used to determine changes in the expression of retinal genes resulting from light rearing environment or from antioxidant supplementation. Results Chronic high-intensity cyclic light rearing resulted in lower levels of rod and cone opsins, retinal S-antigen (S-ag), and medium wavelength cone arrestin (mCAR) than found for rats maintained in low cyclic light. However, as determined by retinal DNA, and by residual opsin and arrestin levels, 2 weeks after acute photooxidative damage, visual cell loss was greater in rats reared in low cyclic light. Retinal damage decreased with AREDS plus rosemary, or with zinc oxide plus rosemary whereas AREDS alone and zinc oxide alone (at their daily recommended levels

  11. Degeneration modulates retinal response to transient exogenous oxidative injury.

    PubMed

    Lederman, Michal; Hagbi-Levi, Shira; Grunin, Michelle; Obolensky, Alexey; Berenshtein, Eduard; Banin, Eyal; Chevion, Mordechai; Chowers, Itay

    2014-01-01

    Oxidative injury is involved in retinal and macular degeneration. We aim to assess if retinal degeneration associated with genetic defect modulates the retinal threshold for encountering additional oxidative challenges. Retinal oxidative injury was induced in degenerating retinas (rd10) and in control mice (WT) by intravitreal injections of paraquat (PQ). Retinal function and structure was evaluated by electroretinogram (ERG) and histology, respectively. Oxidative injury was assessed by immunohistochemistry for 4-Hydroxy-2-nonenal (HNE), and by Thiobarbituric Acid Reactive Substances (TBARS) and protein carbonyl content (PCC) assays. Anti-oxidant mechanism was assessed by quantitative real time PCR (QPCR) for mRNA of antioxidant genes and genes related to iron metabolism, and by catalase activity assay. Three days following PQ injections (1 µl of 0.25, 0.75, and 2 mM) the average ERG amplitudes decreased more in the WT mice compared with the rd10 mice. For example, following 2 mM PQ injection, ERG amplitudes reduced 1.84-fold more in WT compared with rd10 mice (p = 0.02). Injection of 4 mM PQ resulted in retinal destruction. Altered retina morphology associated with PQ was substantially more severe in WT eyes compared with rd10 eyes. Oxidative injury according to HNE staining and TBARS assay increased 1.3-fold and 2.1-fold more, respectively, in WT compared with rd10 mice. At baseline, prior to PQ injection, mRNA levels of antioxidant genes (Superoxide Dismutase1, Glutathione Peroxidase1, Catalase) and of Transferrin measured by quantitative PCR were 2.1-7.8-fold higher in rd10 compared with WT mice (p<0.01 each), and catalase activity was 1.7-fold higher in rd10 (p = 0.0006). This data suggests that degenerating rd10 retinas encounter a relatively lower degree of damage in response to oxidative injury compared with normal retinas. Constitutive up-regulation of the oxidative defense mechanism in degenerating retinas may confer such relative protection from

  12. Degeneration Modulates Retinal Response to Transient Exogenous Oxidative Injury

    PubMed Central

    Lederman, Michal; Hagbi-Levi, Shira; Grunin, Michelle; Obolensky, Alexey; Berenshtein, Eduard; Banin, Eyal; Chevion, Mordechai; Chowers, Itay

    2014-01-01

    Purpose Oxidative injury is involved in retinal and macular degeneration. We aim to assess if retinal degeneration associated with genetic defect modulates the retinal threshold for encountering additional oxidative challenges. Methods Retinal oxidative injury was induced in degenerating retinas (rd10) and in control mice (WT) by intravitreal injections of paraquat (PQ). Retinal function and structure was evaluated by electroretinogram (ERG) and histology, respectively. Oxidative injury was assessed by immunohistochemistry for 4-Hydroxy-2-nonenal (HNE), and by Thiobarbituric Acid Reactive Substances (TBARS) and protein carbonyl content (PCC) assays. Anti-oxidant mechanism was assessed by quantitative real time PCR (QPCR) for mRNA of antioxidant genes and genes related to iron metabolism, and by catalase activity assay. Results Three days following PQ injections (1 µl of 0.25, 0.75, and 2 mM) the average ERG amplitudes decreased more in the WT mice compared with the rd10 mice. For example, following 2 mM PQ injection, ERG amplitudes reduced 1.84-fold more in WT compared with rd10 mice (p = 0.02). Injection of 4 mM PQ resulted in retinal destruction. Altered retina morphology associated with PQ was substantially more severe in WT eyes compared with rd10 eyes. Oxidative injury according to HNE staining and TBARS assay increased 1.3-fold and 2.1-fold more, respectively, in WT compared with rd10 mice. At baseline, prior to PQ injection, mRNA levels of antioxidant genes (Superoxide Dismutase1, Glutathione Peroxidase1, Catalase) and of Transferrin measured by quantitative PCR were 2.1–7.8-fold higher in rd10 compared with WT mice (p<0.01 each), and catalase activity was 1.7-fold higher in rd10 (p = 0.0006). Conclusions This data suggests that degenerating rd10 retinas encounter a relatively lower degree of damage in response to oxidative injury compared with normal retinas. Constitutive up-regulation of the oxidative defense mechanism in degenerating retinas

  13. Permissive role for mGlu1 metabotropic glutamate receptors in excitotoxic retinal degeneration.

    PubMed

    Liberatore, Francesca; Bucci, Domenico; Mascio, Giada; Madonna, Michele; Di Pietro, Paola; Beneventano, Martina; Puliti, Alda Maria; Battaglia, Giuseppe; Bruno, Valeria; Nicoletti, Ferdinando; Romano, Maria Rosaria

    2017-11-05

    Neuroprotection is an unmet need in eye disorders characterized by retinal ganglion cell (RGC) death, such as prematurity-induced retinal degeneration, glaucoma, and age-related macular degeneration. In all these disorders excitotoxicity is a prominent component of neuronal damage, but clinical data discourage the development of NMDA receptor antagonists as neuroprotectants. Here, we show that activation of mGlu1 metabotropic glutamate receptors largely contributes to excitotoxic degeneration of RGCs. Mice at postnatal day 9 were challenged with a toxic dose of monosodium glutamate (MSG, 3g/kg), which caused the death of >70% of Brn-3a + RGCs. Systemic administration of the mGlu1 receptor negative allosteric modulator (NAM), JNJ16259685 (2.5mg/kg, s.c.), was largely protective against MSG-induced RGC death. This treatment did not cause changes in motor behavior in the pups. We also injected MSG to crv4 mice, which lack mGlu1 receptors because of a recessive mutation of the gene encoding the mGlu1 receptor. MSG did not cause retinal degeneration in crv4 mice, whereas it retained its toxic activity in their wild-type littermates. These findings demonstrate that mGlu1 receptors play a key role in excitotoxic degeneration of RGCs, and encourage the study of mGlu1 receptor NAMs in models of retinal neurodegeneration. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Alterations in NMDA receptor expression during retinal degeneration in the RCS rat.

    PubMed

    Gründer, T; Kohler, K; Guenther, E

    2001-01-01

    To determine how a progressive loss of photoreceptor cells and the concomitant loss of glutamatergic input to second-order neurons can affect inner-retinal signaling, glutamate receptor expression was analyzed in the Royal College of Surgeons (RCS) rat, an animal model of retinitis pigmentosa. Immunohistochemistry was performed on retinal sections of RCS rats and congenic controls between postnatal (P) day 3 and the aged adult (up to P350) using specific antibodies against N-methyl-D-aspartate (NMDA) subunits. All NMDA subunits (NR1, NR2A-2D) were expressed in control and dystrophic retinas at all ages, and distinct patterns of labeling were found in horizontal cells, subpopulations of amacrine cells and ganglion cells, as well as in the outer and inner plexiform layer (IPL). NRI immunoreactivity in the inner plexiform layer of adult control retinas was concentrated in two distinct bands, indicating a synaptic localization of NMDA receptors in the OFF and ON signal pathways. In the RCS retina, these bands of NRI immunoreactivity in the IPL were much weaker in animals older than P40. In parallel, NR2B immunoreactivity in the outer plexiform layer (OPL) of RCS rats was always reduced compared to controls and vanished between P40 and P120. The most striking alteration observed in the degenerating retina, however, was a strong expression of NRI immunoreactivity in Müller cell processes in the inner retina which was not observed in control animals and which was present prior to any visible sign of photoreceptor degeneration. The results suggest functional changes in glutamatergic receptor signaling in the dystrophic retina and a possible involvement of Müller cells in early processes of this disease.

  15. Apigenin-7-diglucuronide protects retinas against bright light-induced photoreceptor degeneration through the inhibition of retinal oxidative stress and inflammation.

    PubMed

    Bian, Minjuan; Zhang, Yong; Du, Xiaoye; Xu, Jing; Cui, Jingang; Gu, Jiangping; Zhu, Weiliang; Zhang, Teng; Chen, Yu

    2017-05-15

    Vision impairment in retinal degenerative diseases such as age-related macular degeneration is primarily associated with photoreceptor degeneration, in which oxidative stress and inflammatory responses are mechanistically involved as central players. Therapies with photoreceptor protective properties remain to be developed. Apigenin-7-diglucuronide (A7DG), a flavonoid glycoside, is present in an assortment of medicinal plants with anti-inflammatory or ant-oxidant activities. However, the pharmacological significance of A7DG remains unknown in vivo. The current study isolated A7DG from Glechoma longituba (Nakai) Kuprian and investigated the retinal protective effect A7DG in mice characterized by bright light-induced photoreceptor degeneration. The results showed that A7DG treatment led to remarkable photoreceptor protection in bright light-exposed BALB/c mice. Moreover, A7DG treatment alleviated photoreceptor apoptosis, mitigated oxidative stress, suppressed reactive gliosis and microglial activation and attenuated the expression of proinflammatory genes in bright light-exposed retinas. The results demonstrated for the first time remarkable photoreceptor protective activities of A7DG in vivo. Inhibition of bright light-induced retinal oxidative stress and retinal inflammatory responses was associated with the retinal protection conferred by A7DG. The work here warrants further evaluation of A7DG as a pharmacological candidate for the treatment of vision-threatening retinal degenerative disorders. Moreover, given the general implication of oxidative stress and inflammation in the pathogenesis of neurodegeneration, A7DG could be further tested for the treatment of other neurodegenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bilateral rhegmatogenous retinal detachment due to unusual retinal degeneration in Down syndrome: A case report.

    PubMed

    Yonemoto, Yumiko; Morishita, Seita; Fukumoto, Masanori; Mimura, Masashi; Sato, Takaki; Kida, Teruyo; Kojima, Shota; Oku, Hidehiro; Sugasawa, Jun; Ikeda, Tsunehiko

    2018-06-01

    The aim of this study was to report a case of Down syndrome (DS) complicated with bilateral retinal detachment (RD) due to unusual retinal degeneration. A 9-year-old girl complained of bilateral visual disturbance during a follow-up examination for myopia and strabismus. Slit-lamp examination revealed moderate posterior subcapsular cataract in both eyes. B-mode echography showed bilateral bullous RD; however, it was difficult to detect the causal retinal breaks due to poor mydriasis. For treatment, the patient underwent bilateral lensectomy, vitrectomy, and silicone oil tamponade. Intraoperative findings revealed symmetrical retinal breaks and unusual caterpillar-like retinal degeneration on the upper temporal side of both eyes. Three months later, the patient underwent bilateral silicone oil removal and intraocular lens implantation. In this case, the retinal degeneration was morphologically different from retinal lattice degeneration, thus suggesting that it might be involved in the onset of DS-related bilateral RD.

  17. Lipocalin 2 Plays an Important Role in Regulating Inflammation in Retinal Degeneration.

    PubMed

    Parmar, Tanu; Parmar, Vipul M; Perusek, Lindsay; Georges, Anouk; Takahashi, Masayo; Crabb, John W; Maeda, Akiko

    2018-05-01

    It has become increasingly important to understand how retinal inflammation is regulated because inflammation plays a role in retinal degenerative diseases. Lipocalin 2 (LCN2), an acute stress response protein with multiple innate immune functions, is increased in ATP-binding cassette subfamily A member 4 ( Abca4 ) -/- retinol dehydrogenase 8 ( Rdh8 ) -/- double-knockout mice, an animal model for Stargardt disease and age-related macular degeneration (AMD). To examine roles of LCN2 in retinal inflammation and degeneration, Lcn2 -/- Abca4 -/- Rdh8 -/- triple-knockout mice were generated. Exacerbated inflammation following light exposure was observed in Lcn2 -/- Abca4 -/- Rdh8 -/- mice as compared with Abca4 -/- Rdh8 -/- mice, with upregulation of proinflammatory genes and microglial activation. RNA array analyses revealed an increase in immune response molecules such as Ccl8 , Ccl2 , and Cxcl10 To further probe a possible regulatory role for LCN2 in retinal inflammation, we examined the in vitro effects of LCN2 on NF-κB signaling in human retinal pigmented epithelial (RPE) cells differentiated from induced pluripotent stem cells derived from healthy donors. We found that LCN2 induced expression of antioxidant enzymes heme oxygenase 1 and superoxide dismutase 2 in these RPE cells and could inhibit the cytotoxic effects of H 2 O 2 and LPS. ELISA revealed increased LCN2 levels in plasma of patients with Stargardt disease, retinitis pigmentosa, and age-related macular degeneration as compared with healthy controls. Finally, overexpression of LCN2 in RPE cells displayed protection from cell death. Overall these results suggest that LCN2 is involved in prosurvival responses during cell stress and plays an important role in regulating inflammation during retinal degeneration. Copyright © 2018 by The American Association of Immunologists, Inc.

  18. Protective effects of a grape-supplemented diet in a mouse model of retinal degeneration.

    PubMed

    Patel, Amit K; Davis, Ashley; Rodriguez, Maria Esperanza; Agron, Samantha; Hackam, Abigail S

    2016-03-01

    Retinal degenerations are a class of devastating blinding diseases that are characterized by photoreceptor dysfunction and death. In this study, we tested whether grape consumption, in the form of freeze-dried grape powder (FDGP), improves photoreceptor survival in a mouse model of retinal degeneration. Retinal degeneration was induced in mice by acute oxidative stress using subretinal injection of paraquat. The grape-supplemented diet was made by formulating base mouse chow with FDGP, corresponding to three daily human servings of grapes, and a control diet was formulated with equivalent sugar composition as FDGP (0.68% glucose-0.68% fructose mixture). Mice were placed on the diets at weaning for 5 wk before oxidative stress injury until analysis at 2 wk post-injection. Retinal function was measured using electroretinography, thickness of the photoreceptor layer was measured using optical coherence tomography, and rows of photoreceptor nuclei were counted on histologic sections. In mice fed the control diet, oxidative stress significantly reduced photoreceptor layer thickness and photoreceptor numbers. In contrast, retinal thickness and photoreceptor numbers were not reduced by oxidative stress in mice on the grape-supplemented diet, indicating significantly higher photoreceptor survival after injury than mice on the control diet. Furthermore, mice on the grape diet showed preservation of retinal function after oxidative stress injury compared with mice on the control diet. A diet supplemented with grapes rescued retinal structure and function in an oxidative stress-induced mouse model of retinal degeneration, which demonstrates the beneficial effect of grapes on photoreceptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Protection of Retinal Ganglion Cells by Caspase Substrate-Binding Peptide IQACRG from N-Methyl-d-Aspartate Receptor-Mediated Excitotoxicity

    PubMed Central

    Seki, Masaaki; Soussou, Walid; Manabe, Shin-ichi

    2010-01-01

    Purpose. This study investigated whether the enzymatically inactive caspase mimetic IQACRG protects rat retinal ganglion cells (RGCs) from excitotoxic insults. Minimally invasive delivery of the peptide to the retina was explored, and the mechanisms of neuroprotection were elucidated. Methods. IQACRG was linked to penetratin (P-IQACRG) to facilitate cellular uptake. RGC labeling by biotinylated-P-IQACRG delivered via intravitreal or subconjunctival injection was demonstrated by avidin-biotin chemistry. The authors used histologic and electrophysiological measures to evaluate the neuroprotective potential of P-IQACRG against RGC death induced by N-methyl-d-aspartate (NMDA) in vitro and in vivo. In addition, they monitored activity of an enzyme that is downstream of caspase-1, matrix metalloproteinase-9 (MMP-9), and protein levels of the caspase-3/7 substrate, myocyte enhancer factor 2C (MEF2C), to determine the effectiveness of IQACRG in blocking excessive caspase activity. Results. IQACRG significantly reduced NMDA-induced RGC death in culture and in vivo. Ex vivo electrophysiological recording of the retina on multielectrode arrays demonstrated functional rescue of RGCs by IQACRG. The authors also found that delivery of IQACRG to the retina inhibited NMDA-triggered MMP-9 activity and prevented cleavage of MEF2C protein that would otherwise have been engendered by caspase activation preceding RGC death. Strikingly, subconjunctival injection of P-IQACRG was very effective in preventing NMDA-induced RGC death in vivo. Conclusions. These data demonstrate that IQACRG protects RGCs from excitotoxicity in vitro and in vivo. The positive results with subconjunctival administration of P-IQACRG suggest that in the future this treatment may be useful clinically in diseases such as glaucoma and retinal ischemia. PMID:19815732

  20. Mercury-induced toxicity of rat cortical neurons is mediated through N-Methyl-D-Aspartate receptors.

    PubMed

    Xu, Fenglian; Farkas, Svetlana; Kortbeek, Simone; Zhang, Fang-Xiong; Chen, Lina; Zamponi, Gerald W; Syed, Naweed I

    2012-09-14

    Mercury is a well-known neurotoxin implicated in a wide range of neurological or psychiatric disorders including autism spectrum disorders, Alzheimer's disease, Parkinson's disease, epilepsy, depression, mood disorders and tremor. Mercury-induced neuronal degeneration is thought to invoke glutamate-mediated excitotoxicity, however, the underlying mechanisms remain poorly understood. Here, we examine the effects of various mercury concentrations (including pathological levels present in human plasma or cerebrospinal fluid) on cultured, rat cortical neurons. We found that inorganic mercuric chloride (HgCl₂--at 0.025 to 25 μM) not only caused neuronal degeneration but also perturbed neuronal excitability. Whole-cell patch-clamp recordings of pyramidal neurons revealed that HgCl₂ not only enhanced the amplitude and frequency of synaptic, inward currents, but also increased spontaneous synaptic potentials followed by sustained membrane depolarization. HgCl₂ also triggered sustained, 2-5 fold rises in intracellular calcium concentration ([Ca²⁺]i). The observed increases in neuronal activity and [Ca²⁺]i were substantially reduced by the application of MK 801, a non-competitive antagonist of N-Methyl-D-Aspartate (NMDA) receptors. Importantly, our study further shows that a pre incubation or co-application of MK 801 prevents HgCl₂-induced reduction of cell viability and a disruption of β-tubulin. Collectively, our data show that HgCl₂-induced toxic effects on central neurons are triggered by an over-activation of NMDA receptors, leading to cytoskeleton instability.

  1. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  2. Bilateral aniridia lenticular coloboma and snowflake retinal degeneration.

    PubMed

    Doganay, Selim; Emre, Sinan; Firat, Penpegül

    2009-01-01

    A 6-year-old boy presented with bilateral aniridia associated with lens coloboma and snowflake retinal degeneration. Ophthalmologic examination revealed bilateral corneal peripheral epithelial thickening and aniridia. Additionally, the patient had lenticular coloboma and snowflake retinal degeneration in both eyes. Intraocular pressure was 22 mm Hg bilaterally. The patient also had pendular nystagmus. Uncorrected visual acuity was counting fingers at 2 meters for both eyes, but improved to 0.2 and 0.05, respectively, with correction. Congenital aniridia has been reported with various ophthalmic pathologies, but this is the first case to display bilateral lenticular coloboma and snowflake retinal degeneration associated with aniridia.

  3. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

    PubMed

    Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2018-01-24

    No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

  4. H1N1-associated acute retinitis.

    PubMed

    Rifkin, Lana; Schaal, Shlomit

    2012-06-01

    To present the first reported case of bilateral H(1)N(1)-associated acute retinitis and its successful treatment. Interventional case report. A 41-year-old HIV-positive male presented with acute vision loss, panuveitis, and retinitis. A diagnostic and therapeutic vitrectomy with intravitreal injection of vancomycin and ganciclovir and endolaser was performed. One month later, the patient returned with similar symptoms in the fellow eye and underwent the same procedure. ELISA immunoassay revealed H(1)N(1) antibodies in both the vitreous and serum. PCR for herpes viruses included HSV, CMV, and VZV. Bacterial and fungal cultures were negative. On 1-year follow-up, the vision remained 20/20 in both eyes without evidence of recurrent inflammation. H(1)N(1) should be included in the differential diagnosis of any patient with a history of recent influenza A (H(1)N(1)) infection and acute retinitis. H(1)N(1) may carry a better prognosis than other viruses causing acute retinitis.

  5. Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration.

    PubMed

    Machida, Shigeki; Raz-Prag, Dorit; Fariss, Robert N; Sieving, Paul A; Bush, Ronald A

    2008-01-01

    The authors investigated photopic electroretinographic changes during degeneration in the Royal College of Surgeons (RCS) and transgenic P23H rhodopsin rat models, including the cellular origins of a large corneal-negative component that persists in the RCS rat. Photopic and scotopic electroretinograms (ERGs) were recorded from dystrophic RCS (RCS-p(+)/Lav) rats (4-18 weeks old) and transgenic rhodopsin Pro23His line 1 (P23H) rats (4-30 weeks old). Age-matched congenic (RCS-rdy(+)p(+)/Lav) and Sprague-Dawley rats were used as controls. N-methyl-DL-aspartic acid (NMA), dopamine, and gamma-aminobutyric acid (GABA) were injected intravitreally, and optic nerve sectioning (ONS) was performed to suppress or remove inner retinal neuron activity. Retinal morphology for cone cell counts and immunohistochemistry for quantification of Kir4.1 channels were performed at various stages of degeneration. As degeneration progressed, the photopic ERG of RCS dystrophic rats was distinctly different from that of P23H rats, primarily because of the growth of a corneal-negative response (RCS-NPR) after the b-wave in RCS rats. This response had a peak time similar to the photopic negative response (PhNR) in controls but with a more gradual recovery phase, and it was not affected by ONS. The PhNR in P23H rats declined linearly with the b-wave. NMA and GABA eliminated the RCS-NPR and uncovered a larger b-wave in RCS rats at late stages of degeneration, but NMA had little effect on the ERG in P23H rats. The NMA-sensitive negative response in RCS rats declined with age more slowly than did the NMA-isolated b-wave. The density of Kir4.1 channels at the endfeet of Müller cells and in the proximal retina increased significantly between 6 to 10 weeks and 14 weeks of age in the RCS rat retina but not in the P23H rat retina. The photopic ERG of the dystrophic RCS rat retina becomes increasingly electronegative because of an aberrant negative response, originating from amacrine cell activity

  6. Combination of Neuroprotective and Regenerative Agents for AGE-Induced Retinal Degeneration: In Vitro Study

    PubMed Central

    Yamamoto, Shuichi

    2017-01-01

    To determine the most effective combination of neuroprotective and regenerative agents for cultured retinal neurons from advanced glycation end products- (AGEs-) induced degeneration, retinal explants of 7 adult Sprague-Dawley rats were three-dimensionally cultured in collagen gel and incubated in serum-free media and in 7 media; namely, AGEs, AGEs + 100 μM citicoline, AGEs + 10 ng/mL NT-4, AGEs + 100 μM TUDCA, AGEs + 100 μM citicoline + TUDCA (doublet), and AGEs + 100 μM citicoline + TUDCA + 10 ng/mL NT-4 (triplet) were examined. The number of regenerating neurites was counted after 7 days of culture, followed by performing TUNEL and DAPI staining. The ratio of TUNEL-positive cells to the number of DAPI-stained nuclei was calculated. Immunohistochemical examinations for the active form of caspase-9 and JNK were performed. All of the neuroprotectants increased the number of neurites and decreased the number of TUNEL-positive cells. However, the number of neurites was significantly higher, and the number of TUNEL-positive cells and caspase-9- and JNK-immunopositive cells was fewer in the retinas incubated with the combined three agents. Combination solutions containing citicoline, TUDCA, and NT-4 should be considered for neuroprotective and regenerative therapy for AGE-related retinal degeneration. PMID:28573143

  7. Progranulin, a Major Secreted Protein of Mouse Adipose-Derived Stem Cells, Inhibits Light-Induced Retinal Degeneration

    PubMed Central

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina. PMID:24233842

  8. Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration.

    PubMed

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru; Hara, Hideaki

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina.

  9. Proinsulin slows retinal degeneration and vision loss in the P23H rat model of retinitis pigmentosa.

    PubMed

    Fernández-Sánchez, Laura; Lax, Pedro; Isiegas, Carolina; Ayuso, Eduard; Ruiz, José M; de la Villa, Pedro; Bosch, Fatima; de la Rosa, Enrique J; Cuenca, Nicolás

    2012-12-01

    Proinsulin has been characterized as a neuroprotective molecule. In this work we assess the therapeutic potential of proinsulin on photoreceptor degeneration, synaptic connectivity, and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). P23H homozygous rats received an intramuscular injection of an adeno-associated viral vector serotype 1 (AAV1) expressing human proinsulin (hPi+) or AAV1-null vector (hPi-) at P20. Levels of hPi in serum were determined by enzyme-linked immunosorbent assay (ELISA), and visual function was evaluated by electroretinographic (ERG) recording at P30, P60, P90, and P120. Preservation of retinal structure was assessed by immunohistochemistry at P120. Human proinsulin was detected in serum from rats injected with hPi+ at all times tested, with average hPi levels ranging from 1.1 nM (P30) to 1.4 nM (P120). ERG recordings showed an amelioration of vision loss in hPi+ animals. The scotopic b-waves were significantly higher in hPi+ animals than in control rats at P90 and P120. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. hPi+ animals had 48.7% more photoreceptors than control animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in hPi+ P23H rats. Furthermore, in hPi+ rat retinas the number of rod bipolar cell bodies was greater than in control rats. Our data demonstrate that hPi expression preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in the P23H rat. These data strongly support the further development of proinsulin-based therapy to counteract retinitis pigmentosa.

  10. Retinal Remodeling in the Tg P347L Rabbit, a Large-Eye Model of Retinal Degeneration

    PubMed Central

    Jones, Bryan William; Kondo, Mineo; Terasaki, Hiroko; Watt, Carl Brock; Rapp, Kevin; Anderson, James; Lin, Yanhua; Shaw, Marguerite Victoria; Yang, Jia-Hui; Marc, Robert Edward

    2013-01-01

    Retinitis pigmentosa (RP) is an inherited blinding disease characterized by progressive loss of retinal photo-receptors. There are numerous rodent models of retinal degeneration, but most are poor platforms for interventions that will translate into clinical practice. The rabbit possesses a number of desirable qualities for a model of retinal disease including a large eye and an existing and substantial knowledge base in retinal circuitry, anatomy, and ophthalmology. We have analyzed degeneration, remodeling, and reprogramming in a rabbit model of retinal degeneration, expressing a rhodopsin proline 347 to leucine transgene in a TgP347L rabbit as a powerful model to study the pathophysiology and treatment of retinal degeneration. We show that disease progression in the TgP347L rabbit closely tracks human cone-sparing RP, including the cone-associated preservation of bipolar cell signaling and triggering of reprogramming. The relatively fast disease progression makes the TgP347L rabbit an excellent model for gene therapy, cell biological intervention, progenitor cell transplantation, surgical interventions, and bionic prosthetic studies. PMID:21681749

  11. Expression Profiling Analysis Reveals Key MicroRNA-mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa.

    PubMed

    Anasagasti, Ander; Ezquerra-Inchausti, Maitane; Barandika, Olatz; Muñoz-Culla, Maider; Caffarel, María M; Otaegui, David; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2018-05-01

    The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. miRNAs-mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. This study contributes to our understanding of the etiology and progression of retinal degeneration.

  12. The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration.

    PubMed

    Arnold, Edith; Thebault, Stéphanie; Baeza-Cruz, German; Arredondo Zamarripa, David; Adán, Norma; Quintanar-Stéphano, Andrés; Condés-Lara, Miguel; Rojas-Piloni, Gerardo; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-01-29

    Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision. We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it preserved the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated. Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with decreased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate glial-neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration.

  13. 40 CFR 721.4080 - MNNG (N-methyl-N′-nitro-N-nitrosoguanidine).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false MNNG (N-methyl-Nâ²-nitro-N... Specific Chemical Substances § 721.4080 MNNG (N-methyl-N′-nitro-N-nitrosoguanidine). (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance MNNG (N-methyl-N′-nitro-N...

  14. 40 CFR 721.4080 - MNNG (N-methyl-N′-nitro-N-nitrosoguanidine).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false MNNG (N-methyl-Nâ²-nitro-N... Specific Chemical Substances § 721.4080 MNNG (N-methyl-N′-nitro-N-nitrosoguanidine). (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance MNNG (N-methyl-N′-nitro-N...

  15. Changes in morphology of retinal ganglion cells with eccentricity in retinal degeneration.

    PubMed

    Anderson, E E; Greferath, U; Fletcher, E L

    2016-05-01

    Ganglion cells are the output neurons of the retina and are known to remodel during the subtle plasticity changes that occur following the death of photoreceptors in inherited retinal degeneration. We examine the influence of retinal eccentricity on anatomical remodelling and ganglion cell morphology well after photoreceptor loss. Rd1 mice that have a mutation in the β subunit of phosphodiesterase 6 were used as a model of retinal degeneration and gross remodelling events were examined by processing serial sections for immunocytochemistry. Retinal wholemounts from rd1-Thy1 and control Thy1 mice that contained a fluorescent protein labelling a subset of ganglion cells were processed for immunohistochemistry at 11 months of age. Ganglion cells were classified based on their soma size, dendritic field size and dendritic branching pattern and their dendritic fields were analysed for their length, area and quantity of branching points. Overall, more remodelling was found in the central compared with the peripheral retina. In addition, the size and complexity of A2, B1, C1 and D type ganglion cells located in the central region of the retina decreased. We propose that the changes in ganglion cell morphology are correlated with remodelling events in these regions and impact the function of retinal circuitry in the degenerated retina.

  16. Expression Profiling Analysis Reveals Key MicroRNA–mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa

    PubMed Central

    Anasagasti, Ander; Ezquerra-Inchausti, Maitane; Barandika, Olatz; Muñoz-Culla, Maider; Caffarel, María M.; Otaegui, David; López de Munain, Adolfo

    2018-01-01

    Purpose The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. Methods miRNAs–mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Results Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. Conclusions This study contributes to our understanding of the etiology and progression of retinal degeneration. PMID:29847644

  17. Preventive effect of rebamipide on N-methyl-N'-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats.

    PubMed

    Tsukamoto, Hironobu; Mizoshita, Tsutomu; Katano, Takahito; Hayashi, Noriyuki; Ozeki, Keiji; Ebi, Masahide; Shimura, Takaya; Mori, Yoshinori; Tanida, Satoshi; Kataoka, Hiromi; Tsukamoto, Tetsuya; Tatematsu, Masae; Joh, Takashi

    2015-03-01

    Chemoprevention strategies against gastric cancer (GC) need to be explored in light of the fact that stomach cancer still occurs in the absence of Helicobacter pylori (HP) infection and following HP eradication. We evaluated the effect of rebamipide on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced carcinogenesis in SD rats. Thirty-nine male rats were divided into four groups based on whether or not they were treated with rebamipide and/or MNNG: Control, Rebamipide, Control-M, and Rebamipide-M groups. From 8 weeks of age, rats in the Control-M and Rebamipide-M groups received MNNG in drinking water for 30 weeks. The Rebamipide and Rebamipide-M groups were administered 5mg/kg/day of rebamipide. At 50 weeks, cancerous lesions were not observed in either the Control or Rebamipide groups. Nine rats in the Control-M group had developed GC, while four rats in the Rebamipide-M group had developed GC. The incidence of cancer in the Rebamipide-M group was significantly less than in the Control-M group (p<0.05), with a trend toward a lower incidence of invasive carcinoma in the Rebamipide-M group. Carcinomatous invasion into the muscularis propria was not observed in the Rebamipide-M group. In conclusion, the present study demonstrates that rebamipide suppresses. MNNG-induced carcinogenesis and may also inhibit progression of cancer in rats. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. The Relationship Between the Renin-Angiotensin-Aldosterone System and NMDA Receptor-Mediated Signal and the Prevention of Retinal Ganglion Cell Death.

    PubMed

    Kobayashi, Mamoru; Hirooka, Kazuyuki; Ono, Aoi; Nakano, Yuki; Nishiyama, Akira; Tsujikawa, Akitaka

    2017-03-01

    Excitotoxicity, which is due to glutamate-induced toxic effects on the retinal ganglion cell (RGC), is one of several mechanisms of RGC loss. The renin-angiotensin-aldosterone system (RAAS) has also been implicated in RGC death. Therefore, it is important to determine the exact relationship between the RAAS and N-methyl-d-aspartate (NMDA) receptor-mediated signal in order to prevent RGC death. N-methyl-d-aspartate or aldosterone was injected into the vitreous body. After intravitreal injection of NMDA or aldosterone, animals were treated with spironolactone or memantine. Retinal damage was evaluated by measuring the number of RGCs at 4 weeks after local administration of aldosterone or at 2 weeks after local administration of NMDA. Vitreous humor levels of aldosterone were measured using enzyme immunoassay kits. A significantly decreased number of RGCs were observed after intravitreal injection of NMDA. Although spironolactone did not show any neuroprotective effects, memantine significantly reduced NMDA-induced degeneration in the retina. Furthermore, a significant decrease in the number of RGCs was observed after an intravitreal injection of aldosterone. While memantine did not exhibit any neuroprotective effects, spironolactone caused a significant reduction in the aldosterone-induced degeneration in the retina. There was no change in the aldosterone concentration in the vitreous humor after an NMDA injection. Our findings indirectly show that there is no relationship between the RAAS and NMDA receptor-mediated signal with regard to RGC death.

  19. Lipofuscin and N-Retinylidene-N-Retinylethanolamine (A2E) Accumulate in Retinal Pigment Epithelium in Absence of Light Exposure

    PubMed Central

    Boyer, Nicholas P.; Higbee, Daniel; Currin, Mark B.; Blakeley, Lorie R.; Chen, Chunhe; Ablonczy, Zsolt; Crouch, Rosalie K.; Koutalos, Yiannis

    2012-01-01

    The age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been associated with the development of retinal diseases, particularly age-related macular degeneration and Stargardt disease. A major component of lipofuscin is the bis-retinoid N-retinylidene-N-retinylethanolamine (A2E). The current model for the formation of A2E requires photoactivation of rhodopsin and subsequent release of all-trans-retinal. To understand the role of light exposure in the accumulation of lipofuscin and A2E, we analyzed RPEs and isolated rod photoreceptors from mice of different ages and strains, reared either in darkness or cyclic light. Lipofuscin levels were determined by fluorescence imaging, whereas A2E levels were quantified by HPLC and UV-visible absorption spectroscopy. The identity of A2E was confirmed by tandem mass spectrometry. Lipofuscin and A2E levels in the RPE increased with age and more so in the Stargardt model Abca4−/− than in the wild type strains 129/sv and C57Bl/6. For each strain, the levels of lipofuscin precursor fluorophores in dark-adapted rods and the levels and rates of increase of RPE lipofuscin and A2E were not different between dark-reared and cyclic light-reared animals. Both 11-cis- and all-trans-retinal generated lipofuscin-like fluorophores when added to metabolically compromised rod outer segments; however, it was only 11-cis-retinal that generated such fluorophores when added to metabolically intact rods. The results suggest that lipofuscin originates from the free 11-cis-retinal that is continuously supplied to the rod for rhodopsin regeneration and outer segment renewal. The physiological role of Abca4 may include the translocation of 11-cis-retinal complexes across the disk membrane. PMID:22570475

  20. Retinal degeneration increases susceptibility to myopia in mice

    PubMed Central

    Park, Hanna; Tan, Christopher C.; Faulkner, Amanda; Jabbar, Seema B.; Schmid, Gregor; Abey, Jane; Iuvone, P. Michael

    2013-01-01

    Purpose Retinal diseases are often associated with refractive errors, suggesting the importance of normal retinal signaling during emmetropization. For instance, retinitis pigmentosa, a disease characterized by severe photoreceptor degeneration, is associated with myopia; however, the underlying link between these conditions is not known. This study examines the influence of photoreceptor degeneration on refractive development by testing two mouse models of retinitis pigmentosa under normal and form deprivation visual conditions. Dopamine, a potential stop signal for refractive eye growth, was assessed as a potential underlying mechanism. Methods Refractive eye growth in mice that were homozygous for a mutation in Pde6b, Pde6brd1/rd1 (rd1), or Pde6brd10/rd10 (rd10) was measured weekly from 4 to 12 weeks of age and compared to age-matched wild-type (WT) mice. Refractive error was measured using an eccentric infrared photorefractor, and axial length was measured with partial coherence interferometry or spectral domain ocular coherence tomography. A cohort of mice received head-mounted diffuser goggles to induce form deprivation from 4 to 6 weeks of age. Dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels were measured with high-performance liquid chromatography in each strain after exposure to normal or form deprivation conditions. Results The rd1 and rd10 mice had significantly greater hyperopia relative to the WT controls throughout normal development; however, axial length became significantly longer only in WT mice starting at 7 weeks of age. After 2 weeks of form deprivation, the rd1 and rd10 mice demonstrated a faster and larger myopic shift (−6.14±0.62 and −7.38±1.46 diopter, respectively) compared to the WT mice (−2.41±0.47 diopter). Under normal visual conditions, the DOPAC levels and DOPAC/dopamine ratios, a measure of dopamine turnover, were significantly lower in the rd1 and rd10 mice compared to the WT mice, while the dopamine levels were

  1. RPGR-Associated Retinal Degeneration in Human X-Linked RP and a Murine Model

    PubMed Central

    Huang, Wei Chieh; Wright, Alan F.; Roman, Alejandro J.; Cideciyan, Artur V.; Manson, Forbes D.; Gewaily, Dina Y.; Schwartz, Sharon B.; Sadigh, Sam; Limberis, Maria P.; Bell, Peter; Wilson, James M.; Swaroop, Anand; Jacobson, Samuel G.

    2012-01-01

    Purpose. We investigated the retinal disease due to mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene in human patients and in an Rpgr conditional knockout (cko) mouse model. Methods. XLRP patients with RPGR-ORF15 mutations (n = 35, ages at first visit 5–72 years) had clinical examinations, and rod and cone perimetry. Rpgr-cko mice, in which the proximal promoter and first exon were deleted ubiquitously, were back-crossed onto a BALB/c background, and studied with optical coherence tomography and electroretinography (ERG). Retinal histopathology was performed on a subset. Results. Different patterns of rod and cone dysfunction were present in patients. Frequently, there were midperipheral losses with residual rod and cone function in central and peripheral retina. Longitudinal data indicated that central rod loss preceded peripheral rod losses. Central cone-only vision with no peripheral function was a late stage. Less commonly, patients had central rod and cone dysfunction, but preserved, albeit abnormal, midperipheral rod and cone vision. Rpgr-cko mice had progressive retinal degeneration detectable in the first months of life. ERGs indicated relatively equal rod and cone disease. At late stages, there was greater inferior versus superior retinal degeneration. Conclusions. RPGR mutations lead to progressive loss of rod and cone vision, but show different patterns of residual photoreceptor disease expression. Knowledge of the patterns should guide treatment strategies. Rpgr-cko mice had onset of degeneration at relatively young ages and progressive photoreceptor disease. The natural history in this model will permit preclinical proof-of-concept studies to be designed and such studies should advance progress toward human therapy. PMID:22807293

  2. Circulating anti-retinal antibodies as immune markers in age-related macular degeneration

    PubMed Central

    Patel, Nishal; Ohbayashi, Masahara; Nugent, Alex K; Ramchand, Kanchan; Toda, Masako; Chau, Kai-Yin; Bunce, Catey; Webster, Andrew; Bird, Alan C; Ono, Santa Jeremy; Chong, Victor

    2005-01-01

    Age-related macular maculopathy (ARM) and age-related macular degeneration (AMD) are the leading causes of blindness in the Western world. Despite the magnitude of this clinical problem, very little is known about the pathogenesis of the disease. In this study, we analysed the sera (using indirect immunohistochemistry and Western blot analysis) from a very large cohort of such patients and normal age-matched controls to detect circulating anti-retinal antibodies. Patients with bilateral drusen (n = 64) and with chorioretinal neovascularization (CNV) (n = 51) were recruited in addition to age-matched control subjects (n = 39). The sera were analysed for anti-retinal immunoglobulins on retinal sections. The data were then correlated with the clinical features graded according to the International Classification and Grading System of ARM and AMD. The sera of patients with drusen (93·75%) and CNV (82·27%) were found to have a significantly (P = 0·02) higher titre of autoantibodies to the retina in comparison with controls (8·69%), indicating significant evidence of involvement of the immune process in early stages of AMD. Subsequent statistical analysis of the drusen group showed significant progressive staining (P = 0·0009) in the nuclei layers from early to late stages of ARM. Western blotting confirmed the presence of anti-retinal immunoglobulins to retinal antigens. As anti-retinal immunoglobulins are present in patients with bilateral drusen and exudative AMD, these antibodies could play a significant role in the pathogenesis of AMD. Whilst we do not have evidence that these antibodies precede disease onset, the possibility that their presence might contribute to disease progression needs to be investigated. Finally, the eventual identification of the target antigens detected by these antibodies may permit the future development of new diagnostic methods for ARM and AMD. PMID:15946260

  3. Stanniocalcin-1 Rescued Photoreceptor Degeneration in Two Rat Models of Inherited Retinal Degeneration

    PubMed Central

    Roddy, Gavin W; Rosa Jr, Robert H; Youn Oh, Joo; Ylostalo, Joni H; Bartosh, Thomas J; Choi, Hosoon; Lee, Ryang Hwa; Yasumura, Douglas; Ahern, Kelly; Nielsen, Gregory; Matthes, Michael T; LaVail, Matthew M; Prockop, Darwin J

    2012-01-01

    Oxidative stress and photoreceptor apoptosis are prominent features of many forms of retinal degeneration (RD) for which there are currently no effective therapies. We previously observed that mesenchymal stem/stromal cells reduce apoptosis by being activated to secrete stanniocalcin-1 (STC-1), a multifunctional protein that reduces oxidative stress by upregulating mitochondrial uncoupling protein-2 (UCP-2). Therefore, we tested the hypothesis that intravitreal injection of STC-1 can rescue photoreceptors. We first tested STC-1 in the rhodopsin transgenic rat characterized by rapid photoreceptor loss. Intravitreal STC-1 decreased the loss of photoreceptor nuclei and transcripts and resulted in measurable retinal function when none is otherwise present in this rapid degeneration. We then tested STC-1 in the Royal College of Surgeons (RCS) rat characterized by a slower photoreceptor degeneration. Intravitreal STC-1 reduced the number of pyknotic nuclei in photoreceptors, delayed the loss of photoreceptor transcripts, and improved function of rod photoreceptors. Additionally, STC-1 upregulated UCP-2 and decreased levels of two protein adducts generated by reactive oxygen species (ROS). Microarrays from the two models demonstrated that STC-1 upregulated expression of a similar profile of genes for retinal development and function. The results suggested that intravitreal STC-1 is a promising therapy for various forms of RD including retinitis pigmentosa and atrophic age-related macular degeneration (AMD). PMID:22294148

  4. Bmp6 Regulates Retinal Iron Homeostasis and Has Altered Expression in Age-Related Macular Degeneration

    PubMed Central

    Hadziahmetovic, Majda; Song, Ying; Wolkow, Natalie; Iacovelli, Jared; Kautz, Leon; Roth, Marie-Paule; Dunaief, Joshua L.

    2011-01-01

    Iron-induced oxidative stress causes hereditary macular degeneration in patients with aceruloplasminemia. Similarly, retinal iron accumulation in age-related macular degeneration (AMD) may exacerbate the disease. The cause of retinal iron accumulation in AMD is poorly understood. Given that bone morphogenetic protein 6 (Bmp6) is a major regulator of systemic iron, we examined the role of Bmp6 in retinal iron regulation and in AMD pathogenesis. Bmp6 was detected in the retinal pigment epithelium (RPE), a major site of pathology in AMD. In cultured RPE cells, Bmp6 was down-regulated by oxidative stress and up-regulated by iron. Intraocular Bmp6 protein injection in mice up-regulated retinal hepcidin, an iron regulatory hormone, and altered retinal labile iron levels. Bmp6−/− mice had age-dependent retinal iron accumulation and degeneration. Postmortem RPE from patients with early AMD exhibited decreased Bmp6 levels. Because oxidative stress is associated with AMD pathogenesis and down-regulates Bmp6 in cultured RPE cells, the diminished Bmp6 levels observed in RPE cells in early AMD may contribute to iron build-up in AMD. This may in turn propagate a vicious cycle of oxidative stress and iron accumulation, exacerbating AMD and other diseases with hereditary or acquired iron excess. PMID:21703414

  5. Modifying effects of lemongrass essential oil on specific tissue response to the carcinogen N-methyl-N-nitrosurea in female BALB/c mice.

    PubMed

    Bidinotto, Lucas T; Costa, Celso A R A; Costa, Mirtes; Rodrigues, Maria A M; Barbisan, Luís F

    2012-02-01

    Lemongrass (Cymbopogon citratus Stapf) essential oil has been used worldwide because of its ethnobotanical and medicinal usefulness. Regarding its medicinal usefulness, the present study evaluated the beneficial effects of lemongrass essential oil (LGEO) oral treatment on cell proliferation and apoptosis events and on early development of hyperplastic lesions in the mammary gland, colon, and urinary bladder induced by N-methyl-N-nitrosourea (MNU) in female BALB/c mice. The animals were allocated into three groups: G1, treated with LGEO vehicle for 5 weeks (five times per week); G2, treated with LGEO vehicle as for G1 and MNU (two injections each of 30 mg/kg of body weight at weeks 3 and 5); and G3, treated with LGEO (five times each with 500 mg/kg of body weight per week) and MNU as for G2. Twenty-four hours after the last MNU application, all animals were euthanized, and mammary glands, colon, and urinary bladder were collected for histological and immunohistochemical analysis. LGEO oral treatment significantly changed the indexes of apoptosis and/or cellular proliferation for the tissues analyzed. In particular, the treatment reduced the incidence of hyperplastic lesions and increased apoptosis in mammary epithelial cells. This increment in the apoptosis response may be related to a favorable balance in Bcl-2/Bax immunoreactivity in mammary epithelial cells. These findings indicate that LGEO presented a protective role against early MNU-induced mammary gland alterations in BALB/c mice.

  6. Interstrand cross-linking of DNA by 1,3-bis(2-chloroethyl)-1-nitrosourea and other 1-(2-haloethyl)-1-nitrosoureas.

    PubMed

    Kohn, K W

    1977-05-01

    Bifunctional alkylating agents are known to cross-link DNA by simultaneously alkylating two guanine residues located on opposite strands. Despite this apparent requirement for bifunctionality, 1-(2-chloroethyl)-1-nitrosoureas bearing a single alkylating function were found to cross-link DNA in vitro. Cross-linking was demonstrated by showing inhibition of alkali-induced strand separation. Extensive cross-linking was observed in DNA treated with 1-(2-chloroethyl)-1-nitrosourea, 1,3-bis-(2-chloroethyl)-1-nitrosourea, and 1-(2-chloroethyl(-3-cyclohexyl-1-nitrosourea. The reaction occurs in two steps, an intital binding followed by a second step which can proceed after removal of unbound drug. It is suggested that the first step is chloroethylation of a nucleophilic site on one strand and that the second step involves displacement of Cl- by a nucleophilic site on the opposite strand, resulting in an ethyl bridge between the strands. Consistent with this possibility, 1-(2-fluoroethyl)-3-cyclohexyl-1-nitrosourea produced much less cross-linking, as expected from the known low activity of F-, compared with Cl-, as leaving group. 1-Methyl-1-nitrosourea, which is known to depurinate DNA, produced no detectable cross-linking.

  7. Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N-Methyl-D-Aspartate Receptor Subunit.

    PubMed

    Tozzi, Alessandro; de Iure, Antonio; Bagetta, Vincenza; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Costa, Cinzia; Di Filippo, Massimiliano; Ghiglieri, Veronica; Latagliata, Emanuele Claudio; Wegrzynowicz, Michal; Decressac, Mickael; Giampà, Carmela; Dalley, Jeffrey W; Xia, Jing; Gardoni, Fabrizio; Mellone, Manuela; El-Agnaf, Omar Mukhtar; Ardah, Mustafa Taleb; Puglisi-Allegra, Stefano; Björklund, Anders; Spillantini, Maria Grazia; Picconi, Barbara; Calabresi, Paolo

    2016-03-01

    Advanced Parkinson's disease (PD) is characterized by massive degeneration of nigral dopaminergic neurons, dramatic motor and cognitive alterations, and presence of nigral Lewy bodies, whose main constituent is α-synuclein (α-syn). However, the synaptic mechanisms underlying behavioral and motor effects induced by early selective overexpression of nigral α-syn are still a matter of debate. We performed behavioral, molecular, and immunohistochemical analyses in two transgenic models of PD, mice transgenic for truncated human α-synuclein 1-120 and rats injected with the adeno-associated viral vector carrying wild-type human α-synuclein. We also investigated striatal synaptic plasticity by electrophysiological recordings from spiny projection neurons and cholinergic interneurons. We found that overexpression of truncated or wild-type human α-syn causes partial reduction of striatal dopamine levels and selectively blocks the induction of long-term potentiation in striatal cholinergic interneurons, producing early memory and motor alterations. These effects were dependent on α-syn modulation of the GluN2D-expressing N-methyl-D-aspartate receptors in cholinergic interneurons. Acute in vitro application of human α-syn oligomers mimicked the synaptic effects observed ex vivo in PD models. We suggest that striatal cholinergic dysfunction, induced by a direct interaction between α-syn and GluN2D-expressing N-methyl-D-aspartate receptors, represents a precocious biological marker of the disease. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes

    NASA Astrophysics Data System (ADS)

    Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James

    2016-04-01

    Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.

  9. Intravitreal ranibizumab may induce retinal arteriolar vasoconstriction in patients with neovascular age-related macular degeneration.

    PubMed

    Papadopoulou, Domniki N; Mendrinos, Efstratios; Mangioris, Georgios; Donati, Guy; Pournaras, Constantin J

    2009-09-01

    To study the effect of intravitreal (IVT) ranibizumab (Lucentis; Genentech, Inc, San Francisco, CA) on the retinal arteriolar diameter in patients with neovascular age-related macular degeneration (AMD). Prospective consecutive interventional case series. Eleven eyes of eleven patients with previously untreated neovascular AMD. All eyes had 3 monthly IVT injections of ranibizumab. The diameter of the retinal arterioles was measured in vivo with a retinal vessel analyzer (RVA) before the first IVT injection and then 7 and 30 days after the first, second, and third injections. Primary end points were changes in retinal arteriolar diameter and mean arterial pressure (MAP) after IVT ranibizumab. Secondary end points were changes in best-corrected visual acuity (BCVA), central retinal thickness, and intraocular pressure after IVT ranibizumab, and appearance of adverse events during the follow-up period. A significant decrease of the retinal arteriolar diameter was observed after each IVT injection of ranibizumab. Thirty days after the first, second, and third injections, there was a mean decrease of 8.1+/-3.2%, 11.5+/-4.4%, and 17.6+/-7.4%, respectively, of the retinal arteriolar diameter compared with baseline values (P<0.01). There was no significant change in MAP during the period of follow-up (P>0.05). Thirty days after the third IVT injection of ranibizumab, mean BCVA improved by 6.5+/-4.9 Early Treatment Diabetic Retinopathy Study (ETDRS) letters, and central retinal thickness decreased by 91+/-122 microm (P = 0.03). These results suggest that IVT ranibizumab may induce retinal arteriolar vasoconstriction in patients with neovascular AMD after IVT ranibizumab. Further studies evaluating larger sample sizes are needed to confirm these results and potential adverse effects on the retinal circulation in patients with AMD and retinal vascular diseases. The author(s) have no proprietary or commercial interest in any materials discussed in this article.

  10. Alkylarylnitrosoureas--stability in aqueous solution, partition coefficient, alkylating activity and its relationship to SCE induction in Chinese hamster V 79-E cells.

    PubMed

    Mendel, J; Thust, R; Schwarz, H

    1982-01-01

    The alkylating activity, chemical stability in aqueous solution (pH 7.0; 37 degrees C), and partition coefficient (octanol/water) of the following compounds were determined: 1-methyl-3-phenyl-1-nitrosourea (MPNU), 1-ethyl-3-phenyl-1-nitrosourea (EPNU), 1-isopropyl-3-phenyl-1-nitrosourea (i-PrPNU), 1-methyl-3-(p-fluorophenyl)-1-nitrosourea (F-MPNU), 1-methyl-3-(p-chlorophenyl)-1-nitrosourea (Cl-MPNU), 1-methyl-3-(p-bromophenyl)-1-nitrosourea (Br-MPNU), 1,3-dimethyl-3-phenyl-1-nitrosourea (DMPNU), and 1-methyl-3-naphthyl-1-nitrosocarbamate (NCA). 1-Methyl-1-nitrosourea (MNU) and 1-ethyl-1-nitrosourea (ENU) were used for the comparison. THe rate of decomposition in aqueous solution is discussed concerning the influences of the substituents at the 1- and 3-N-atom. The mono- and disubstituted N-nitrosoureas showed a coarse correlation between alkylating activity and SCE induction in Chinese hamster V 79-E cells. On the other hand, this correlation is missing in the case of NCA, which is a potent SCE inducer despite relatively low alkylating activity. DMPNU is the strongest SCE inducer, but this compound shows a high stability in aqueous solution and, consequently, we were not able to detect an alkylating activity.

  11. An Unconventional Approach to Reducing Retinal Degeneration After Traumatic Ocular Injury

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0138 TITLE: An Unconventional Approach to Reducing Retinal Degeneration After Traumatic Ocular Injury PRINCIPAL...2015 - 30 Jun 2017 4. TITLE AND SUBTITLE An Unconventional Approach to Reducing Retinal Degeneration After Traumatic Ocular Injury 5 a . CONTRACT...optic confocal microscope system , test it, and establish protocols for the first successful in vivo retinal microvessel and pericyte advanced

  12. The Rate of Vitamin A Dimerization in Lipofuscinogenesis, Fundus Autofluorescence, Retinal Senescence and Degeneration.

    PubMed

    Washington, Ilyas; Saad, Leonide

    2016-01-01

    One of the earliest events preceding several forms of retinal degeneration is the formation and accumulation of vitamin A dimers in the retinal pigment epithelium (RPE) and underlying Bruch's membrane (BM). Such degenerations include Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related macular degeneration (AMD). Since their discovery in the 1990's, dimers of vitamin A, have been postulated as chemical triggers driving retinal senescence and degeneration. There is evidence to suggest that the rate at which vitamin A dimerizes and the eye's response to the dimerization products may dictate the retina's lifespan. Here, we present outstanding questions, finding the answers to which may help to elucidate the role of vitamin A dimerization in retinal degeneration.

  13. Longitudinal Structural changes in Late-onset Retinal Degeneration

    PubMed Central

    Cukras, Catherine; Flamendorf, Jason; Wong, Wai T; Ayyagari, Radha; Cunningham, Denise; Sieving, Paul A.

    2016-01-01

    Purpose To characterize longitudinal structural changes in early stages of late-onset retinal degeneration (L-ORD) to investigate pathogenic mechanisms. Methods Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence (FAF) images, near infrared reflectance (NIR-R) fundus images, and spectral domain optical coherence tomography (SD-OCT) scans were acquired during follow-up. Results Both patients, aged 45 and 50 years, had good visual acuities (> 20/20 OU) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on FAF and NIR-R imaging. Baseline SD-OCT imaging revealed subretinal deposits that resemble reticular pseudodrusen (RPD) described in age-related macular degeneration (AMD). During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial (RPE) layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt RPE and outer retinal atrophy. Conclusions Structural changes in early stage L-ORD revealed by multimodal imaging resemble those of RPD observed in AMD and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations. PMID:27388725

  14. Immunity against mouse thymus-leukemia antigen (TL) protects against development of lymphomas induced by a chemical carcinogen, N-butyl-N-nitrosourea.

    PubMed

    Tsujimura, Kunio; Obata, Yuichi; Matsudaira, Yasue; Ozeki, Satoshi; Taguchi, Osamu; Nishida, Keiko; Okanami, Yuko; Akatsuka, Yoshiki; Kuzushima, Kiyotaka; Takahashi, Toshitada

    2004-11-01

    Mouse thymus-leukemia antigens (TL) are aberrantly expressed on T lymphomas in C57BL/6 (B6) and C3H/He (C3H) mice, while they are not expressed on normal T lymphocytes in these strains. When N-butyl-N-nitrosourea (NBU), a chemical carcinogen, was administered orally to B6 and C3H strains, lymphoma development was slower than in T3(b)-TL gene-transduced counterpart strains expressing TL ubiquitously as self-antigens, suggesting that anti-TL immunity may play a protective role. In addition, the development of lymphomas was slightly slower in C3H than in B6, which seems to be in accordance with the results of skin graft experiments indicating that both cellular and humoral immunities against TL were stronger in C3H than B6 mice. The interesting finding that B lymphomas derived from a T3(b)-TL transgenic strain (C3H background) expressing a very high level of TL were rejected in C3H, but not in H-2K(b) transgenic mice (C3H background), raises the possibility that TL-specific effector T cell populations are eliminated and/or energized to a certain extent by interacting with H-2K(b) molecules.

  15. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement.

    PubMed

    Cideciyan, Artur V; Jacobson, Samuel G; Beltran, William A; Sumaroka, Alexander; Swider, Malgorzata; Iwabe, Simone; Roman, Alejandro J; Olivares, Melani B; Schwartz, Sharon B; Komáromy, András M; Hauswirth, William W; Aguirre, Gustavo D

    2013-02-05

    Leber congenital amaurosis (LCA) associated with retinal pigment epithelium-specific protein 65 kDa (RPE65) mutations is a severe hereditary blindness resulting from both dysfunction and degeneration of photoreceptors. Clinical trials with gene augmentation therapy have shown partial reversal of the dysfunction, but the effects on the degeneration are not known. We evaluated the consequences of gene therapy on retinal degeneration in patients with RPE65-LCA and its canine model. In untreated RPE65-LCA patients, there was dysfunction and degeneration of photoreceptors, even at the earliest ages. Examined serially over years, the outer photoreceptor nuclear layer showed progressive thinning. Treated RPE65-LCA showed substantial visual improvement in the short term and no detectable decline from this new level over the long term. However, retinal degeneration continued to progress unabated. In RPE65-mutant dogs, the first one-quarter of their lifespan showed only dysfunction, and there was normal outer photoreceptor nuclear layer thickness retina-wide. Dogs treated during the earlier dysfunction-only stage showed improved visual function and dramatic protection of treated photoreceptors from degeneration when measured 5-11 y later. Dogs treated later during the combined dysfunction and degeneration stage also showed visual function improvement, but photoreceptor loss continued unabated, the same as in human RPE65-LCA. The results suggest that, in RPE65 disease treatment, protection from visual function deterioration cannot be assumed to imply protection from degeneration. The effects of gene augmentation therapy are complex and suggest a need for a combinatorial strategy in RPE65-LCA to not only improve function in the short term but also slow retinal degeneration in the long term.

  16. Resistance of Salmonella typhimurium TA 1535 to O6-guanine methylation and mutagenesis induced by low doses of N-methyl-N'-nitro-N-nitrosoguanidine: an apparent constitutive repair activity.

    PubMed

    Guttenplan, J B; Milstein, S

    1982-01-01

    Salmonella tester strains which are reverted by base-pair substitution mutagens are relatively insensitive to the mutagenic effects of N-methyl-N-nitroso compounds. One reason for this insensitivity is the ability of these strains to withstand low doses of these compounds before they become sensitive to their mutagenic effects. In this report it is shown that mutagenesis induced by treatment of Salmonella typhimurium TA 1535 with N-methyl-N'-nitro-N-nitroso-guanidine (MNNG) in buffer is biphasic with a low sensitivity range at low doses where little mutagenesis occurs, followed by a high sensitivity range whose onset begins after an apparent threshold dose has been exceeded. levels of O6-methylguanine (O6-MeG) in the DNA extracted from the bacteria follow a similar dose-response curve suggesting a dependency of mutagenesis on O6-MeG. In contrast, levels of 7-methylguanine (7-MeG) in the DNA increase linearly with dose. O6-MeG was undetectable at the lowest dose of MNNG whereas 7-MeG was readily detectable. Although such resistance to O6-alkylation has been demonstrated in MNNG- pretreated (adapted) E. coli, it has not been reported in unpretreated cells. Then isolated DNA was treated with MNNG a linear dose-response in the generation of O6-MeG was observed. The lack of O6-MeG in DNA isolated from MNNG treated cells after low doses is attributed to a saturable, constitutive repair activity in the bacteria. An attempt to observe the removal of O6-MeG from the bacteria after exposure to a short challenge dose of N-nitroso-N-methylurea (NMU) followed by a subsequent incubation in buffer was unsuccessful, probably because all the repair occurred within the time necessary to treat and lyse the cells.

  17. [Mammary gland tumor induction in rats by N-nitroso-N-methylurea and N-methyl-N1-nitro-N-nitrosoguanidine].

    PubMed

    Eliseev, V V; Vlasov, N N

    1980-01-01

    Cancer of the mammary gland was induced in female non-inbred rats under the local effect of N-nitroso-N-methylurea (NMU) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG). During 10 weeks 2.5 mg of the substance in 0.2 ml of saline was injected in the region of the third mammary gland once a week. Under NMU exposure a primary tumor arose 3 months following the initiation of the experiment, the average latent period being 5.8 months, the incidence rate--76.7%. All tumors of this series were adenocarcinomas, in 5 cases there were noted sites of fibroadenomatosis with malignification along the tumor node margins. MNNG produced a primary tumor at the 7th month of the experiment, an average latent period--8.3 months, the incidence rate--56.7%. Tumors were mostly adenocarcinomas.

  18. Quercetin-3-O-α-l-arabinopyranoside protects against retinal cell death via blue light-induced damage in human RPE cells and Balb-c mice.

    PubMed

    Kim, Jun; Jin, Hong Lan; Jang, Dae Sik; Jeong, Kwang Won; Choung, Se-Young

    2018-04-25

    Age-related macular degeneration (AMD) is among the increasing number of diseases causing irreversible blindness in the elderly. Dry AMD is characterized by the accumulation of lipofuscin in retinal pigment epithelium (RPE) cells. N-Retinylidene-N-retinylethanolamine (A2E), a component of lipofuscin, is oxidized to oxo-A2E under blue light illumination, leading to retinal cell death. The aim of this study was to investigate the protective effect and mechanism of quercetin-3-O-α-l-arabinopyranoside (QA) against blue light (BL)-induced damage in both RPE cells and mice models. Treatment by QA inhibited A2E uptake in RPE cells, as determined by a decrease in fluorescence intensity. QA also protected A2E-laden RPE cells against BL-induced apoptosis. QA inhibited C3 complement activation and poly (ADP-ribose) polymerase (PARP) cleavage, as determined by western blotting. QA showed an inhibitory effect on AP1 and NF-kB activity as estimated in a reporter gene assay. In addition, QA activated the gene expression of aryl hydrocarbon receptor target genes (CYP1A1, CYP1B1) in TCDD-treated RPE cells. In the mice model, oral administration of QA protected against retinal degeneration induced by BL exposure as determined by histological analyses (thickness of retinal layers and immunostaining for caspase-3). In addition, QA inhibited apoptosis and inflammation via inhibition of NF-kB p65 translocation, C3 activation, and PARP cleavage. Collectively, these results revealed the protective mechanism of QA against BL-induced retinal damage both in vitro and in vivo.

  19. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration.

    PubMed

    Iezzi, Raymond; Guru, Bharath R; Glybina, Inna V; Mishra, Manoj K; Kennedy, Alexander; Kannan, Rangaramanujam M

    2012-01-01

    Retinal neuroinflammation, mediated by activated microglia, plays a key role in the pathogenesis of photoreceptor and retinal pigment epithelial cell loss in age-related macular degeneration and retinitis pigmentosa. Targeted drug therapy for attenuation of neuroinflammation in the retina was explored using hydroxyl-terminated polyamidoamine (PAMAM) dendrimer-drug conjugate nanodevices. We show that, upon intravitreal administration, PAMAM dendrimers selectively localize within activated outer retinal microglia in two rat models of retinal degeneration, but not in the retina of healthy controls. This pathology-dependent biodistribution was exploited for drug delivery, by covalently conjugating fluocinolone acetonide to the dendrimer. The conjugate released the drug in a sustained manner over 90 days. In vivo efficacy was assessed using the Royal College of Surgeons (RCS) rat retinal degeneration model over a four-week period when peak retinal degeneration occurs. One intravitreal injection of 1 μg of FA conjugated to 7 μg of the dendrimer was able to arrest retinal degeneration, preserve photoreceptor outer nuclear cell counts, and attenuate activated microglia, for an entire month. These studies suggest that PAMAM dendrimers (with no targeting ligands) have an intrinsic ability to selectively localize in activated microglia, and can deliver drugs inside these cells for a sustained period for the treatment of retinal neuroinflammation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Inhibition of Polyisoprenylated Methylated Protein Methyl Esterase by Synthetic Musks Induces Cell Degeneration

    PubMed Central

    Ayuk-Takem, Lambert; Amissah, Felix; Aguilar, Byron J.; Lamango, Nazarius S.

    2013-01-01

    Synthetic fragrances are persistent environmental pollutants that tend to bioaccumulate in animal tissues. They are widely used in personal care products and cleaning agents. Worldwide production of Galaxolide and Tonalide are in excess of 4500 tons annually. Because of their widespread production and use, they have been detected in surface waters and fish in the US and Europe. Consumption of contaminated water and fish from such sources leads to bioaccumulation and eventual toxicity. Since fragrances and flavors bear structural similarities to polyisoprenes, it was of interest to determine whether toxicity by Galaxolide and Tonalide may be linked with polyisoprenylated methylated protein methyl esterase (PMPMEase) inhibition. A concentration-dependent study of PMPMEase inhibition by Galaxolide and Tonalide as well as their effects on the degeneration of cultured cells were conducted. Galaxolide and Tonalide inhibited purified porcine liver PMPMEase with Ki values of 11 and 14 µM, respectively. Galaxolide and Tonalide also induced human cancer cell degeneration with EC50 values of 26 and 98 µM (neuroblastoma SH-SY5Y cells) and 58 and 14 µM (lung cancer A549 cells), respectively. The effects on cell viability correlate well with the inhibition of PMPMEase activity in the cultured cells. Molecular docking analysis revealed that the binding interactions are most likely between the fragrance molecules and hydrophobic amino acids in the active site of the enzyme. These results appear to suggest that the reported neurotoxicity of these compounds may be associated with their inhibition of PMPMEase. Exposure to fragrances may pose a significant risk to individuals predisposed to developing degenerative disorders. PMID:22489002

  1. Structure-based design of nitrosoureas containing tyrosine derivatives as potential antimelanoma agents.

    PubMed

    Gadjeva, Vesselina

    2002-04-01

    Two new nitrosoureas (TNUs), containing tyrosine derivatives as carriers of nitrosourea cytotoxic group have been synthesised. The physicochemical properties such as half-life time (tau(0.5)), alkylating and carbamoylating activities were determined. The nitrosoureas showed a higher inhibiting effect on the DOPA-oxidase activity of mushroom tyrosinase than that of the antitumour drug N'-cyclohexyl-N-(2-chloroethyl)-N-nitrosourea (lomustine, CCNU). In vitro cytotoxic effects of newly synthesised tyrosine containing nitrosoureas have been studied and compared to those of CCNU. A higher cytotoxicity to B16 melanoma cells than to YAC-1 and to lymphocytes was demonstrated for the tyrosine containing nitrosoureas in comparison with CCNU. Based on the results presented, we accept that a new trend for synthesis of more selective and less toxic nitrosourea derivatives as potential antimelanomic drugs might be developed.

  2. Evidence of early ultrastructural photoreceptor abnormalities in light-induced retinal degeneration using spectral domain optical coherence tomography.

    PubMed

    Aziz, Mehak K; Ni, Aiguo; Esserman, Denise A; Chavala, Sai H

    2014-07-01

    To study spatiotemporal in vivo changes in retinal morphology and quantify thickness of retinal layers in a mouse model of light-induced retinal degeneration using spectral domain optical coherence tomography (SD-OCT). BALB/c mice were exposed to 5000 lux of constant light for 3 h. SD-OCT images were taken 3 h, 24 h, 3 days, 1 week and 1 month after light exposure and were compared with histology at the same time points. SD-OCT images were also taken at 0, 1 and 2 h after light exposure in order to analyse retinal changes at the earliest time points. The thickness of retinal layers was measured using the Bioptigen software InVivoVue Diver. SD-OCT demonstrated progressive outer retinal thinning. 3 h after light exposure, the outer nuclear layer converted from hyporeflective to hyper-reflective. At 24 h, outer retinal bands and nuclear layer demonstrated similar levels of hyper-reflectivity. Significant variations in outer retinal thickness, vitreous opacities and retinal detachments occurred within days of injury. Thinning of the retina was observed at 1 month after injury. It was also determined that outer nuclear layer changes precede photoreceptor segment structure disintegration and the greatest change in segment structure occurs between 1 and 2 h after light exposure. Longitudinal SD-OCT reveals intraretinal changes that cannot be observed by histopathology at early time points in the light injury model. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Propofol effectively inhibits lithium-pilocarpine- induced status epilepticus in rats via downregulation of N-methyl-D-aspartate receptor 2B subunit expression

    PubMed Central

    Wang, Henglin; Wang, Zhuoqiang; Mi, Weidong; Zhao, Cong; Liu, Yanqin; Wang, Yongan; Sun, Haipeng

    2012-01-01

    Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine. The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior, electroencephalography and 24-hour survival rate. Propofol (12.5–100 mg/kg) improved status epilepticus in a dose-dependent manner, and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection. Western blot results showed that, 24 hours after induction of status epilepticus, the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus. Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels, but not the increase in N-methyl-D-aspartate receptor 2A subunit levels. The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine. This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures. PMID:25737709

  4. N-methylated tryptamine derivatives in citrus genus plants: identification of N,N,N-trimethyltryptamine in bergamot.

    PubMed

    Servillo, Luigi; Giovane, Alfonso; Balestrieri, Maria Luisa; Cautela, Domenico; Castaldo, Domenico

    2012-09-19

    The occurrence of N-methylated tryptamine derivatives in bergamot plant (Citrus bergamia Risso et Poit) is reported for the first time. Interestingly, the most abundant of these substances is N,N,N-trimethyltryptamine, which has not been previously identified in any citrus plant. The N-methylated tryptamine derivatives were identified and quantitated in leaves, peel, juice, and seeds by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. N,N,N-Trimethyltryptamine was confirmed by MS(3) and comparison with the synthesized authentic standard. In addition, the study of the distribution of tryptophan, tryptamine, N-methyltryptamine, N,N-dimethyltryptamine, and N,N,N-trimethyltryptamine indicated that these compounds are differently expressed in the various tissues of the bergamot plant. Intriguingly, chemically synthesized N,N,N-trimethyltryptamine was reported to possess nicotine-like activity being a stimulant of parasympathetic ganglia by exerting its action on acetylcholine receptors. On this basis, the identification of N,N,N-trimethyltryptamine at a relatively high level in leaves suggests a possible role in a physiological mechanism of plant defense.

  5. Degeneration of Bethe subalgebras in the Yangian of gl_n

    NASA Astrophysics Data System (ADS)

    Ilin, Aleksei; Rybnikov, Leonid

    2018-04-01

    We study degenerations of Bethe subalgebras B( C) in the Yangian Y(gl_n), where C is a regular diagonal matrix. We show that closure of the parameter space of the family of Bethe subalgebras, which parameterizes all possible degenerations, is the Deligne-Mumford moduli space of stable rational curves \\overline{M_{0,n+2}}. All subalgebras corresponding to the points of \\overline{M_{0,n+2}} are free and maximal commutative. We describe explicitly the "simplest" degenerations and show that every degeneration is the composition of the simplest ones. The Deligne-Mumford space \\overline{M_{0,n+2}} generalizes to other root systems as some De Concini-Procesi resolution of some toric variety. We state a conjecture generalizing our results to Bethe subalgebras in the Yangian of arbitrary simple Lie algebra in terms of this De Concini-Procesi resolution.

  6. Attenuation by genistein of sodium-chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats.

    PubMed

    Tatsuta, M; Iishi, H; Baba, M; Yano, H; Uehara, H; Nakaizumi, A

    1999-01-29

    The effects of prolonged administration of genistein, a tyrosine-kinase inhibitor, on sodium-chloride-enhanced induction of gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine, and the labeling and apoptotic indices and vessel counts in the gastric mucosa and gastric cancers, were investigated in Wistar rats. After 25 weeks of the carcinogen treatment, rats were fed chow pellets containing 10% sodium chloride and were given s.c. injections of genistein at dosages of 15 mg/kg or 30 mg/kg body weight every other day. In week 52, the incidence of gastric cancers was significantly greater in rats fed sodium chloride than in untreated control rats. Prolonged administration of genistein at a dosage of 30 mg/kg, but not 15 mg/kg, body weight significantly reduced the incidence of gastric cancers, which was increased by oral treatment with sodium chloride. Genistein at the higher dose significantly decreased the labeling index and vessel counts of the antral mucosa and the gastric cancers (which were increased by treatment with sodium chloride) and significantly increased the apoptotic index of the antral mucosa and the cancers (which was lowered by the treatment with sodium chloride). These findings suggest that genistein attenuates gastric carcinogenesis promoted by sodium chloride, by inducing increased apoptosis and lower cell proliferation and angiogenesis of antral mucosa and gastric cancers.

  7. Activation of mitochondrial calpain and release of apoptosis-inducing factor from mitochondria in RCS rat retinal degeneration.

    PubMed

    Mizukoshi, Sayuri; Nakazawa, Mitsuru; Sato, Kota; Ozaki, Taku; Metoki, Tomomi; Ishiguro, Sei-ichi

    2010-09-01

    The present study was performed to investigate changes of cytosolic and mitochondrial calpain activities, and effects of intravitreously injected calpain inhibitor on photoreceptor apoptosis in Royal College of Surgeon's (RCS) rats. Time courses of activities for both cytosolic and mitochondrial calpains and amount of calpastatin in RCS rat retina were analyzed by subcellular fractionation, calpain assay and western blotting. Calpain assay was colorimetrically performed using Suc-LLVY-Glo as substrate. Effects of intravitreously injected calpain inhibitor (ALLN and PD150606) on RCS rat retinal degeneration were analyzed by TUNEL staining. Effects of mitochondrial calpain activity on activation and translocation of apoptosis-inducing factor (AIF) were analyzed by western blotting. Mitochondrial calpain started to be significantly activated at postnatal (p) 28 days in RCS rat retina, whereas cytosolic micro-calpain was activated at p 35 days, although specific activity of mitochondrial calpain was 13% compared to cytosolic micro-calpain. Intravitreously injected ALLN and PD150606 effectively inhibited photoreceptor apoptosis only when injected at p 25 days, but did not inhibit photoreceptor apoptosis when injected at p 32 days. Parts of AIF were truncated/activated by mitochondrial calpains and translocated to the nucleus. These results suggest that 1), calpain presents not only in the cytosolic fraction but also in the mitochondrial fraction in RCS rat retina; 2), mitochondrial calpain is activated earlier than cytosolic calpain during retinal degeneration in RCS rats; 3), photoreceptor apoptosis may be regulated by not only calpain systems but also other mechanisms; 4), mitochondrial calpain may activate AIF to induce apoptosis; and 5), calpain inhibitors may be partially effective to inhibit photoreceptor apoptosis in RCS rats. The present study provides new insights into the molecular basis for photoreceptor apoptosis in RCS rats and the future possibility of new

  8. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration.

    PubMed

    Chen, Yuanyuan; Chen, Yu; Jastrzebska, Beata; Golczak, Marcin; Gulati, Sahil; Tang, Hong; Seibel, William; Li, Xiaoyu; Jin, Hui; Han, Yong; Gao, Songqi; Zhang, Jianye; Liu, Xujie; Heidari-Torkabadi, Hossein; Stewart, Phoebe L; Harte, William E; Tochtrop, Gregory P; Palczewski, Krzysztof

    2018-05-17

    Rhodopsin homeostasis is tightly coupled to rod photoreceptor cell survival and vision. Mutations resulting in the misfolding of rhodopsin can lead to autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration that currently is untreatable. Using a cell-based high-throughput screen (HTS) to identify small molecules that can stabilize the P23H-opsin mutant, which causes most cases of adRP, we identified a novel pharmacological chaperone of rod photoreceptor opsin, YC-001. As a non-retinoid molecule, YC-001 demonstrates micromolar potency and efficacy greater than 9-cis-retinal with lower cytotoxicity. YC-001 binds to bovine rod opsin with an EC 50 similar to 9-cis-retinal. The chaperone activity of YC-001 is evidenced by its ability to rescue the transport of multiple rod opsin mutants in mammalian cells. YC-001 is also an inverse agonist that non-competitively antagonizes rod opsin signaling. Significantly, a single dose of YC-001 protects Abca4 -/- Rdh8 -/- mice from bright light-induced retinal degeneration, suggesting its broad therapeutic potential.

  9. N-METHYL GROUPS IN BACTERIAL LIPIDS

    PubMed Central

    Goldfine, Howard; Ellis, Martha E.

    1964-01-01

    Goldfine, Howard (Harvard Medical School, Boston, Mass.), and Martha E. Ellis. N-methyl groups in bacterial lipids. J. Bacteriol. 87:8–15. 1964.—The ability of bacteria to synthesize lecithin was examined by measuring the incorporation of the methyl group of methionine into the water-soluble moieties obtained on acid hydrolysis of bacterial lipids. Of 21 species examined, mostly of the order Eubacteriales, only 2, Agrobacterium radiobacter and A. rhizogenes, incorporated the methyl group of methionine into lipid-bound choline. Evidence was also obtained for the formation of lipid-bound N-methylethanolamine and N,N′-dimethylethanolamine in these two organisms. Two other species, Clostridium butyricum and Proteus vulgaris, incorporated the methyl group of methionine into lipid-bound N-methylethanolamine, but did not appear to be able to further methylate these lipids to form lecithin. The results of this study lend further strength to the generalization that bacteria, with the exception of the genus Agrobacterium, are unable to synthesize lecithin. PMID:14102879

  10. N-Acetylcysteine Amide Protects Against Oxidative Stress–Induced Microparticle Release From Human Retinal Pigment Epithelial Cells

    PubMed Central

    Carver, Kyle A.; Yang, Dongli

    2016-01-01

    Purpose Oxidative stress is a major factor involved in retinal pigment epithelium (RPE) apoptosis that underlies AMD. Drusen, extracellular lipid- and protein-containing deposits, are strongly associated with the development of AMD. Cell-derived microparticles (MPs) are small membrane-bound vesicles shed from cells. The purpose of this study was to determine if oxidative stress drives MP release from RPE cells, to assess whether these MPs carry membrane complement regulatory proteins (mCRPs: CD46, CD55, and CD59), and to evaluate the effects of a thiol antioxidant on oxidative stress–induced MP release. Methods Retinal pigment epithelium cells isolated from human donor eyes were cultured and treated with hydrogen peroxide (H2O2) to induce oxidative stress. Isolated MPs were fixed for transmission electron microscopy or processed for component analysis by flow cytometry, Western blot analysis, and confocal microscopy. Results Transmission electron microscopy showed that MPs ranged in diameter from 100 to 1000 nm. H2O2 treatment led to time- and dose-dependent elevations in MPs with externalized phosphatidylserine and phosphatidylethanolamine, known markers of MPs. These increases were strongly correlated to RPE apoptosis. Oxidative stress significantly increased the release of mCRP-positive MPs, which were prevented by a thiol antioxidant, N-acetylcysteine amide (NACA). Conclusions This is the first evidence that oxidative stress induces cultured human RPE cells to release MPs that carry mCRPs on their surface. The levels of released MPs are strongly correlated with RPE apoptosis. N-acetylcysteine amide prevents oxidative stress–induced effects. Our findings indicate that oxidative stress reduces mCRPs on the RPE surface through releasing MPs. PMID:26842754

  11. New cysteamine (2-chloroethyl)nitrosoureas. Synthesis and preliminary antitumor results.

    PubMed

    Madelmont, J C; Godeneche, D; Parry, D; Duprat, J; Chabard, J L; Plagne, R; Mathe, G; Meyniel, G

    1985-09-01

    Three chemical pathways were used for the synthesis of four new N'-(2-chloroethyl)-N-[2-(methylsulfinyl)ethyl]- and N'-(2-chloroethyl)-N-[2-(methylsulfonyl)ethyl]-N- or N'-nitrosoureas. These compounds are plasma metabolites of CNCC, a promising antineoplastic (2-chloroethyl)nitrosourea. Preliminary antitumor evaluation was performed against L1210 leukemia implanted intraperitoneally in mice. Among these compounds, two of them exhibited a greater antitumor activity compared to that of the parent mixture.

  12. Functional expression of SCL/TAL1 interrupting locus (Stil) protects retinal dopaminergic cells from neurotoxin-induced degeneration.

    PubMed

    Li, Jingling; Li, Ping; Carr, Aprell; Wang, Xiaokai; DeLaPaz, April; Sun, Lei; Lee, Eric; Tomei, Erika; Li, Lei

    2013-01-11

    We previously isolated a dominant mutation, night blindness b (nbb), which causes a late onset of retinal dopaminergic cell degeneration in zebrafish. In this study, we cloned the zebrafish nbb locus. Sequencing results revealed that nbb is a homolog of the vertebrate SCL/TAL1 interrupting locus (Stil). The Stil gene has been shown to play important roles in the regulation of vertebrate embryonic neural development and human cancer cell proliferation. In this study, we demonstrate that functional expression of Stil is also required for neural survival. In zebrafish, decreased expression of Stil resulted in increased toxic susceptibility of retinal dopaminergic cells to 6-hydroxydopamine. Increases in Stil-mediated Shh signaling transduction (i.e. by knocking down the Shh repressor Sufu) prevented dopaminergic cell death induced by neurotoxic insult. The data suggest that the oncogene Stil also plays important roles in neural protection.

  13. Activation of Müller cells occurs during retinal degeneration in RCS rats.

    PubMed

    Zhao, Tong Tao; Tian, Chun Yu; Yin, Zheng Qin

    2010-01-01

    Müller cells can be activated and included in different functions under many kinds of pathological conditions, however, the status of Müller cells in retinitis pigmentosa are still unknown. Using immunohistochemisty, Western blots and co-culture, we found that Müller cells RCS rats, a classic model of RP, could be activated during the progression of retinal degeneration. After being activated at early stage, Müller cells began to proliferate and hypertrophy, while at later stages, they formed a local 'glial seal' in the subretinal space. As markers of Müller cells activation, the expression of GFAP and ERK increased significantly with progression of retinal degeneration. Co-cultures of normal rat Müller cells and mixed RCS rat retinal cells show that Müller cells significantly increase GFAP and ERK in response to diffusable factors from the degenerting retina, which implies that Müller cells activation is a secondary response to retinal degeneration.

  14. 40 CFR 721.225 - 2-Chloro-N-methyl-N-substituted acetamide (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2-Chloro-N-methyl-N-substituted... Specific Chemical Substances § 721.225 2-Chloro-N-methyl-N-substituted acetamide (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance 2-chloro-N...

  15. 40 CFR 721.225 - 2-Chloro-N-methyl-N-substituted acetamide (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2-Chloro-N-methyl-N-substituted... Specific Chemical Substances § 721.225 2-Chloro-N-methyl-N-substituted acetamide (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance 2-chloro-N...

  16. Treatment of Laser Induced Retinal Injuries

    DTIC Science & Technology

    1989-06-21

    AD Treatment of Laser Induced Retinal Injuries0 0 " Midterm Report (September 30, 1987 through March 31, 1989) .rj1- .I N. Naveh, M.D. Michael Belkin...208 11. TITLE (Incude Secunty Olasufiation) Treatment of Laser Induced Retinal Injuries 12. PERSONAL. AUTHOR(S) M. Belkin, NJ. Naveh 13a. TYPE OF REPORT...enhancement in arachidonic acid metabolism and that steroid treatment curtailed this response. In the prsent study we investigated the involvement of

  17. Stem cells in clinical trials for treatment of retinal degeneration.

    PubMed

    Klassen, Henry

    2016-01-01

    After decades of basic science research involving the testing of regenerative strategies in animal models of retinal degenerative diseases, a number of clinical trials are now underway, with additional trials set to begin shortly. These efforts will evaluate the safety and preliminary efficacy of cell-based products in the eyes of patients with a number of retinal conditions, notably including age-related macular degeneration, retinitis pigmentosa and Stargardt's disease. This review considers the scientific work and early trials with fetal cells and tissues that set the stage for the current clinical investigatory work, as well the trials themselves, specifically those either now completed, underway or close to initiation. The cells of interest include retinal pigment epithelial cells derived from embryonic stem or induced pluripotent stem cells, undifferentiated neural or retinal progenitors or cells from the vascular/bone marrow compartment or umbilical cord tissue. Degenerative diseases of the retina represent a popular target for emerging cell-based therapeutics and initial data from early stage clinical trials suggest that short-term safety objectives can be met in at least some cases. The question of efficacy will require additional time and testing to be adequately resolved.

  18. Superior cervical gangliectomy induces non-exudative age-related macular degeneration in mice.

    PubMed

    Dieguez, Hernán H; Romeo, Horacio E; González Fleitas, María F; Aranda, Marcos L; Milne, Georgia A; Rosenstein, Ruth E; Dorfman, Damián

    2018-02-07

    Non-exudative age-related macular degeneration, a prevalent cause of blindness, is a progressive and degenerative disease characterized by alterations in Bruch's membrane, retinal pigment epithelium, and photoreceptors exclusively localized in the macula. Although experimental murine models exist, the vast majority take a long time to develop retinal alterations and, in general, these alterations are ubiquitous, with many resulting from non-eye-specific genetic manipulations; additionally, most do not always reproduce the hallmarks of human age-related macular degeneration. Choroid vessels receive sympathetic innervation from the superior cervical ganglion, which, together with the parasympathetic system, regulates blood flow into the choroid. Choroid blood flow changes have been involved in age-related macular degeneration development and progression. At present, no experimental models take this factor into account. The aim of this work was to analyze the effect of superior cervical gangliectomy (also known as ganglionectomy) on the choroid, Bruch's membrane, retinal pigment epithelium and retina. Adult male C57BL/6J mice underwent unilateral superior cervical gangliectomy and a contralateral sham procedure. Although superior cervical gangliectomy induced ubiquitous choroid and choriocapillaris changes, it induced Bruch's membrane thickening, loss of retinal pigment epithelium melanin content and retinoid isomerohydrolase, the appearance of drusen-like deposits, and retinal pigment epithelium and photoreceptor atrophy, exclusively localized in the temporal side. Moreover, superior cervical gangliectomy provoked a localized increase in retinal pigment epithelium and photoreceptor apoptosis, and a decline in photoreceptor electroretinographic function. Therefore, superior cervical gangliectomy recapitulated the main features of human non-exudative age-related macular degeneration, and could become a new experimental model of dry age-related macular degeneration, and

  19. N=2 gauge theories and degenerate fields of Toda theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanno, Shoichi; Matsuo, Yutaka; Shiba, Shotaro

    We discuss the correspondence between degenerate fields of the W{sub N} algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W{sub N} algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W{sub N} generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.

  20. Nucleotide excision repair modulates the cytotoxic and mutagenic effects of N-n-butyl-N-nitrosourea in cultured mammalian cells as well as in mouse splenocytes in vivo.

    PubMed

    Bol, S A; van Steeg, H; van Oostrom, C T; Tates, A D; Vrieling, H; de Groot, A J; Mullenders, L H; van Zeeland, A A; Jansen, J G

    1999-05-01

    The butylating agent N-n-butyl-N-nitrosourea (BNU) was employed to study the role of nucleotide excision repair (NER) in protecting mammalian cells against the genotoxic effects of monofunctional alkylating agents. The direct acting agent BNU was found to be mutagenic in normal and XPA mouse splenocytes after a single i.p. treatment in vivo. After 25 and 35 mg/kg BNU, but not after 75 mg/ kg, 2- to 3-fold more hprt mutants were detected in splenocytes from XPA mice than from normal mice. Using O6-alkylguanine-DNA alkyltransferase (AGT)-deficient hamster cells, it was found that NER-deficient CHO UV5 cells carrying a mutation in the ERCC-2 gene were 40% more mutable towards lesions induced by BNU when compared with parental NER-proficient CHO AA8 cells. UV5 cells were 1.4-fold more sensitive to the cytotoxic effects of BNU compared with AA8 cells. To investigate whether this increased sensitivity of NER-deficient cells is modulated by AGT activity, cell survival studies were performed in human and mouse primary fibroblasts as well. BNU was 2.7-fold more toxic for mouse XPA fibroblasts compared with normal mouse fibroblasts. Comparable results were found for human fibroblasts. Taken together these data indicate that the role of NER in protecting rodent cells against the mutagenic and cytotoxic effects of the alkylating agent BNU depends on AGT.

  1. Melatonin delays photoreceptor degeneration in a mouse model of autosomal recessive retinitis pigmentosa.

    PubMed

    Xu, Xiao-Jian; Wang, Shu-Min; Jin, Ying; Hu, Yun-Tao; Feng, Kang; Ma, Zhi-Zhong

    2017-10-01

    Retinitis pigmentosa (RP) comprises a group of incurable inherited retinal degenerations. Targeting common processes, instead of mutation-specific treatment, has proven to be an innovative strategy to combat debilitating retinal degeneration. Growing evidence indicates that melatonin possesses a potent activity against neurodegenerative disorders by mitigating cell damage associated with apoptosis and inflammation. Given the pleiotropic role of melatonin in central nervous system, the aim of the present study was to investigate whether melatonin would afford protection against retinal degeneration in autosomal recessive RP (arRP). Rd10, a well-characterized murine model of human arRP, received daily intraperitoneal injection of melatonin (15 mg/kg) between postnatal day (P) 13 and P30. Retinas treated with melatonin or vehicle were harvested for analysis at P30 and P45, respectively. The findings showed that melatonin could dampen the photoreceptors death and delay consequent retinal degeneration. We also observed that melatonin weakened the expression of glial fibrillary acidic protein (GFAP) in Müller cells. Additionally, melatonin could alleviate retinal inflammatory response visualized by IBA1 staining, which was further corroborated by downregulation of inflammation-related genes, such as tumor necrosis factor alpha (Tnf-α), chemokine (C-C motif) ligand 2 (Ccl2), and chemokine (C-X-C motif) ligand 10 (Cxcl10). These data revealed that melatonin could ameliorate retinal degeneration through potentially attenuating apoptosis, reactive gliosis, and microglial activation in rd10 mice. Moreover, these results suggest melatonin as a promising agent improving photoreceptors survival in human RP. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1085 Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-. (a) Chemical...

  3. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1085 Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-. (a) Chemical...

  4. Vapor Pressure of Methyl Salicylate and n-Hexadecane

    DTIC Science & Technology

    2014-01-01

    VAPOR PRESSURE OF METHYL SALICYLATE AND N-HEXADECANE ECBC-TR-1184 David E. Tevault Leonard C. Buettner...REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2000-Dec 2001 4. TITLE AND SUBTITLE Vapor Pressure of Methyl Salicylate and n-Hexadecane 5a...ABSTRACT Vapor pressure data are reported for O-hydroxybenzoic acid, methyl ester, more commonly known as methyl salicylate (MeS), and n-hexadecane in

  5. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to reporting...

  6. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to reporting...

  7. Therapeutic effect of the NMDA antagonist MK-801 on low-level laser induced retinal injury

    NASA Astrophysics Data System (ADS)

    Yan, W.-H.; Wu, J.; Chen, P.; Dou, J.-T.; Pan, C.-Y.; Mu, Y.-M.; Lu, J.-M.

    2009-03-01

    The aim of this article was to explore the mechanism of injury in rat retina after constant low-level helium-neon (He-Ne) laser exposure and therapeutic effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, on laser-induced retinal injury. He-Ne laser lesions were created in the central retina of adult Wistar Kyoto rats and were followed immediately by intraperitoneal injection of MK-801 (2 mg/kg) or saline, macroscopical and microscopical lesion were observed by funduscope and light microscope. Ultrastructural changes of the degenerating cells were examined by electron microscopy. Photoreceptor apoptosis was evaluated by TdT-mediated dUTP nick end-labeling (TUNEL). mRNA levels were measured by in situ hybridization and NMDA receptor expression was determined by immunohistochemistry. Laser induced damage was histologically quantified by image-analysis morphometry. Electroretinograms (ERGs) were recorded at different time point after the cessation of exposure to constant irradiation. There was no visible bleeding, exudation or necrosis under funduscope. TUNEL and electron microscopy showed photoreceptor apoptosis after irradiation. MK-801-treated animals had significantly fewer TUNEL-positive cells in the photoreceptors than saline-treated animals after exposure to laser. In situ hybridization (ISH) showed that the NMDAR mRNA level of MK-801-treated rats decreased in the inner plexiform layer 6 h after the cessation of exposure to constant irradiation when compared with that of saline-treated rats. So did Immunohistochemistry (IHC). Electroretinogram showed that b-wave amplitudes of MK-801-treated group were higher than that of saline-treated group after laser exposure. These findings suggest that Low level laser may cause the retinal pathological changes under given conditions. High expression of NMDAR is one of the possible mechanisms causing experimental retinal laser injury of rats. MK-801 exhibits the therapeutic effect due to promote the

  8. N-(3-azidophenyl)-N-methyl-N'-([4-1H]- and [4-3H]-1-naphthyl)guanidine. A potent and selective ligand designed as a photoaffinity label for the phencyclidine site of the N-methyl-D-aspartate receptor.

    PubMed

    Gee, K R; Durant, G J; Holmes, D L; Magar, S S; Weber, E; Wong, S T; Keana, J F

    1993-01-01

    A novel radiolabeled photoaffinity ligand has been synthesized for the phencyclidine (PCP) site of the N-methyl-D-aspartate (NMDA) receptor. N-(3-Azidophenyl)-N-methyl-N'-([4-3H]-1-naphthyl)guanidine (13) was prepared with a specific activity of 25 Ci/mmol by diazotization of N-(3-aminophenyl)-N-methyl-N'-([4-3H]-1-naphthyl)guanidine (12) followed by treatment with sodium azide. Guanidine 12 was obtained by catalytic tritiation of N-(4-bromo-1-naphthyl)-N'-methyl-N'-(3-nitrophenyl)guanidine (11). The nontritiated analog 5 of 13 was prepared beginning with N-methyl-N'-1-naphthyl-N-(3-nitrophenyl)guanidine (9). The guanidines 9 and 11 were prepared in moderate yield by the aluminum chloride-catalyzed reaction of N-methyl-3-nitroaniline hydrochloride with 1-naphthylcyanamide and 4-bromo-1-naphthylcyanamide, respectively. Azide 5 showed high selectivity and affinity (IC50 = 100 nM vs [3H]MK801; 3000 nM vs [3H]ditolylguanidine) for the PCP site of the NMDA receptor in guinea pig brain homogenate. Photolabeling experiments with 13, however, failed to radiolabel a significant amount of receptor polypeptide.

  9. The Severity of Retinal Degeneration in Rp1h Gene-Targeted Mice Is Dependent on Genetic Background

    PubMed Central

    Liu, Qin; Saveliev, Alexei; Pierce, Eric A.

    2009-01-01

    Purpose The severity of disease in patients with retinitis pigmentosa (RP) can vary significantly, even among patients with the same primary mutations. It is hypothesized that modifier genes play important roles in determining the severity of RP, including the retinitis pigmentosa 1 (RP1) form of disease. To investigate the basis of variation in disease expression for RP1 disease, the authors generated congenic mice with a gene-targeted retinitis pigmentosa 1 homolog (Rp1h) allele (Rp1htm1Eap) on several different genetic backgrounds and analyzed their retinal phenotypes. Methods The Rp1htm1Eap allele was placed onto the C57BL/6J, DBA1/J, and A/J backgrounds. Retinal function of the resultant congenic mice was evaluated using electroretino-graphic analyses. Retinal structure and ultrastructure were evaluated using light and electron microscopy. Rp1h protein location was determined with immunofluorescence microscopy. Results Analysis of the retinal phenotype of incipient congenic (N6) B6.129S-Rp1h+/tm1Eap, DBA.129S(B6)-Rp1h+/tm1Eap, and A.129S(B6)-Rp1h+/tm1Eap mice at 1 year of age showed retinal degeneration only in the A.129S(B6)-Rp1h+/tm1Eap mice. Further analyses revealed that the photoreceptors of the fully congenic A.129S(B6)-Rp1h+/tm1Eap mice show evidence of degeneration at 6 months of age and are almost completely lost by 18 months of age. In contrast, the photoreceptor cells in the fully congenic B6.129S-Rp1h+/tm1Eap mice remain healthy up to 18 months. Conclusions The severity of the retinal degeneration caused by the Rp1htm1Eap allele is notably dependent on genetic background. The development and characterization of the B6.129S-Rp1h+/tm1Eap and A.129S(B6)-Rp1h+/tm1Eap congenic mouse lines will facilitate identification of sequence alterations in genes that modify the severity of RP1 disease. PMID:19060274

  10. The severity of retinal degeneration in Rp1h gene-targeted mice is dependent on genetic background.

    PubMed

    Liu, Qin; Saveliev, Alexei; Pierce, Eric A

    2009-04-01

    The severity of disease in patients with retinitis pigmentosa (RP) can vary significantly, even among patients with the same primary mutations. It is hypothesized that modifier genes play important roles in determining the severity of RP, including the retinitis pigmentosa 1 (RP1) form of disease. To investigate the basis of variation in disease expression for RP1 disease, the authors generated congenic mice with a gene-targeted retinitis pigmentosa 1 homolog (Rp1h) allele (Rp1h(tm1Eap)) on several different genetic backgrounds and analyzed their retinal phenotypes. The Rp1h(tm1Eap) allele was placed onto the C57BL/6J, DBA1/J, and A/J backgrounds. Retinal function of the resultant congenic mice was evaluated using electroretinographic analyses. Retinal structure and ultrastructure were evaluated using light and electron microscopy. Rp1h protein location was determined with immunofluorescence microscopy. Analysis of the retinal phenotype of incipient congenic (N6) B6.129S-Rp1h(+/tm1Eap), DBA.129S(B6)-Rp1h(+/tm1Eap), and A.129S(B6)-Rp1h(+/tm1Eap) mice at 1 year of age showed retinal degeneration only in the A.129S(B6)-Rp1h(+/tm1Eap) mice. Further analyses revealed that the photoreceptors of the fully congenic A.129S(B6)-Rp1h(+/tm1Eap) mice show evidence of degeneration at 6 months of age and are almost completely lost by 18 months of age. In contrast, the photoreceptor cells in the fully congenic B6.129S-Rp1h(+/tm1Eap) mice remain healthy up to 18 months. The severity of the retinal degeneration caused by the Rp1h(tm1Eap) allele is notably dependent on genetic background. The development and characterization of the B6.129S-Rp1h(+/tm1Eap) and A.129S(B6)-Rp1h(+/tm1Eap) congenic mouse lines will facilitate identification of sequence alterations in genes that modify the severity of RP1 disease.

  11. Retinal O-linked N-acetylglucosamine protein modifications: implications for postnatal retinal vascularization and the pathogenesis of diabetic retinopathy

    PubMed Central

    Sieg, Kelsey M.; Shallow, Keegan D.; Sorenson, Christine M.; Sheibani, Nader

    2013-01-01

    Purpose Hyperglycemia activates several metabolic pathways, including the hexosamine biosynthetic pathway. Uridine diphosphate N-acetylglucosamine (GlcNAc) is the product of the hexosamine biosynthetic pathway and the substrate for O-linked GlcNAc (O-GlcNAc) modification. This modification affects a wide range of proteins by altering their activity, cellular localization, and/or protein interactions. However, the role O-GlcNAcylation may play in normal postnatal retinal vascular development and in the ocular complications of diabetes, including diabetic retinopathy, requires further investigation. Methods The total levels of O-GlcNAc-modified proteins were evaluated by western blot analysis of lysates prepared from retinas obtained at different days during postnatal retinal vascularization and oxygen-induced ischemic retinopathy. Similar experiments were performed with retinal lysate prepared from diabetic Ins2Akita/+ mice with different durations of diabetes and retinal vascular cells cultured under various glucose conditions. The localization of O-GlcNAc-modified proteins in the retinal vasculature was confirmed by immunofluorescence staining. The impact of altered O-GlcNAcylation on the migration of retinal vascular cells was determined using scratch wound and transwell migration assays. Results We detected an increase in protein O-GlcNAcylation during mouse postnatal retinal vascularization and aging, in part through the regulation of the enzymes that control this modification. The study of the diabetic Ins2Akita/+ mouse retina showed an increase in the O-GlcNAc modification of retinal proteins. We also observed an increase in retinal O-GlcNAcylated protein levels during the neovascularization phase of oxygen-induced ischemic retinopathy. Our fluorescence microscopy data confirmed that the alterations in retinal O-GlcNAcylation are similarly represented in the retinal vasculature and in retinal pericytes and endothelial cells. Particularly, the migration of

  12. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    PubMed Central

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  13. DFT investigations of phosphotriesters hydrolysis in aqueous solution: a model for DNA single strand scission induced by N-nitrosoureas.

    PubMed

    Liu, Tingting; Zhao, Lijiao; Zhong, Rugang

    2013-02-01

    DNA phosphotriester adducts are common alkylation products of DNA phosphodiester moiety induced by N-nitrosoureas. The 2-hydroxyethyl phosphotriester was reported to hydrolyze more rapidly than other alkyl phosphotriesters both in neutral and in alkaline conditions, which can cause DNA single strand scission. In this work, DFT calculations have been employed to map out the four lowest activation free-energy profiles for neutral and alkaline hydrolysis of triethyl phosphate (TEP) and diethyl 2-hydroxyethyl phosphate (DEHEP). All the hydrolysis pathways were illuminated to be stepwise involving an acyclic or cyclic phosphorane intermediate for TEP or DEHEP, respectively. The rate-limiting step for all the hydrolysis reactions was found to be the formation of phosphorane intermediate, with the exception of DEHEP hydrolysis in alkaline conditions that the decomposition process turned out to be the rate-limiting step, owing to the extraordinary low formation barrier of cyclic phosphorane intermediate catalyzed by hydroxide. The rate-limiting barriers obtained for the four reactions are all consistent with the available experimental information concerning the corresponding hydrolysis reactions of phosphotriesters. Our calculations performed on the phosphate triesters hydrolysis predict that the lower formation barriers of cyclic phosphorane intermediates compared to its acyclic counter-part should be the dominant factor governing the hydrolysis rate enhancement of DEHEP relative to TEP both in neutral and in alkaline conditions.

  14. Molecular pharmacodynamics of emixustat in protection against retinal degeneration

    PubMed Central

    Zhang, Jianye; Kiser, Philip D.; Badiee, Mohsen; Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Tochtrop, Gregory P.; Palczewski, Krzysztof

    2015-01-01

    Emixustat is a visual cycle modulator that has entered clinical trials as a treatment for age-related macular degeneration (AMD). This molecule has been proposed to inhibit the visual cycle isomerase RPE65, thereby slowing regeneration of 11-cis-retinal and reducing production of retinaldehyde condensation byproducts that may be involved in AMD pathology. Previously, we reported that all-trans-retinal (atRAL) is directly cytotoxic and that certain primary amine compounds that transiently sequester atRAL via Schiff base formation ameliorate retinal degeneration. Here, we have shown that emixustat stereoselectively inhibits RPE65 by direct active site binding. However, we detected the presence of emixustat-atRAL Schiff base conjugates, indicating that emixustat also acts as a retinal scavenger, which may contribute to its therapeutic effects. Using agents that lack either RPE65 inhibitory activity or the capacity to sequester atRAL, we assessed the relative importance of these 2 modes of action in protection against retinal phototoxicity in mice. The atRAL sequestrant QEA-B-001-NH2 conferred protection against phototoxicity without inhibiting RPE65, whereas an emixustat derivative incapable of atRAL sequestration was minimally protective, despite direct inhibition of RPE65. These data indicate that atRAL sequestration is an essential mechanism underlying the protective effects of emixustat and related compounds against retinal phototoxicity. Moreover, atRAL sequestration should be considered in the design of next-generation visual cycle modulators. PMID:26075817

  15. Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration

    PubMed Central

    Zhang, Lijuan; Du, Jianhai; Justus, Sally; Hsu, Chun-Wei; Bonet-Ponce, Luis; Wu, Wen-Hsuan; Tsai, Yi-Ting; Wu, Wei-Pu; Jia, Yading; Duong, Jimmy K.; Mahajan, Vinit B.; Lin, Chyuan-Sheng; Wang, Shuang; Hurley, James B.

    2016-01-01

    Retinitis pigmentosa (RP) encompasses a diverse group of Mendelian disorders leading to progressive degeneration of rods and then cones. For reasons that remain unclear, diseased RP photoreceptors begin to deteriorate, eventually leading to cell death and, consequently, loss of vision. Here, we have hypothesized that RP associated with mutations in phosphodiesterase-6 (PDE6) provokes a metabolic aberration in rod cells that promotes the pathological consequences of elevated cGMP and Ca2+, which are induced by the Pde6 mutation. Inhibition of sirtuin 6 (SIRT6), a histone deacetylase repressor of glycolytic flux, reprogrammed rods into perpetual glycolysis, thereby driving the accumulation of biosynthetic intermediates, improving outer segment (OS) length, enhancing photoreceptor survival, and preserving vision. In mouse retinae lacking Sirt6, effectors of glycolytic flux were dramatically increased, leading to upregulation of key intermediates in glycolysis, TCA cycle, and glutaminolysis. Both transgenic and AAV2/8 gene therapy–mediated ablation of Sirt6 in rods provided electrophysiological and anatomic rescue of both rod and cone photoreceptors in a preclinical model of RP. Due to the extensive network of downstream effectors of Sirt6, this study motivates further research into the role that these pathways play in retinal degeneration. Because reprogramming metabolism by enhancing glycolysis is not gene specific, this strategy may be applicable to a wide range of neurodegenerative disorders. PMID:27841758

  16. (+)-Pentazocine Reduces NMDA-Induced Murine Retinal Ganglion Cell Death Through a σR1-Dependent Mechanism

    PubMed Central

    Zhao, Jing; Mysona, Barbara A.; Qureshi, Azam; Kim, Lily; Fields, Taylor; Gonsalvez, Graydon B.; Smith, Sylvia B.; Bollinger, Kathryn E.

    2016-01-01

    Purpose To evaluate, in vivo, the effects of the sigma-1 receptor (σR1) agonist, (+)-pentazocine, on N-methyl-D-aspartate (NMDA)-mediated retinal excitotoxicity. Methods Intravitreal NMDA injections were performed in C57BL/6J mice (wild type [WT]) and σR1−/− (σR1 knockout [KO]) mice. Fellow eyes were injected with phosphate-buffered saline (PBS). An experimental cohort of WT and σR1 KO mice was administered (+)-pentazocine by intraperitoneal injection, and untreated animals served as controls. Retinas derived from mice were flat-mounted and labeled for retinal ganglion cells (RGCs). The number of RGCs was compared between NMDA and PBS-injected eyes for all groups. Apoptosis was assessed using TUNEL assay. Levels of extracellular-signal–regulated kinases (ERK1/2) were analyzed by Western blot. Results N-methyl-D-aspartate induced a significant increase in TUNEL-positive nuclei and a dose-dependent loss of RGCs. Mice deficient in σR1 showed greater RGC loss (≈80%) than WT animals (≈50%). (+)-Pentazocine treatment promoted neuronal survival, and this effect was prevented by deletion of σR1. (+)-Pentazocine treatment resulted in enhanced activation of ERK at the 6-hour time point following NMDA injection. The (+)-pentazocine–induced ERK activation was diminished in σR1 KO mice. Conclusions Targeting σR1 activation prevented RGC death while enhancing activation of the mitogen-activated protein kinase (MAPK), ERK1/2. Sigma-1 receptor is a promising therapeutic target for retinal neurodegenerative diseases. PMID:26868747

  17. Low-protein diet promotes sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats.

    PubMed

    Iishi, H; Tatsuta, M; Baba, M; Hirasawa, R; Sakai, N; Yano, H; Uehara, H; Nakaizumi, A

    1999-07-01

    Sodium chloride (NaCl) initiates and promotes experimental carcinogenesis in rats. We recently found that a high-protein diet attenuates NaCl-enhanced gastric carcinogenesis in Wistar rats. To investigate the effect of a purified low-protein diet on NaCl-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in Wistar rats, rats were fed a purified diet with an equalized caloric content containing 1% or 2% NaCl and 25% casein (normal-protein diet) or 10% casein (low-protein diet) after oral treatment with MNNG for 25 weeks. In week 52, neither 1% nor 2% NaCl had a significant effect on gastric carcinogenesis in rats fed a normal-protein diet. However, oral administration of 2%, but not 1%, NaCl significantly increased the incidence of gastric cancers in rats fed a low-protein diet. Oral administration of 2% NaCl also significantly increased the bromodeoxyuridine (BrdU)-labeling index and the ornithine decarboxylase (ODC) activity and decreased apoptosis of gastric cancers in rats fed a low-protein diet. However, 2% NaCl had no significant effect on these three parameters in rats fed a normal-protein diet. These findings indicate that a low-protein diet enhances the effect of NaCl in gastric carcinogenesis and that this enhancement may be mediated by increased cell proliferation and reduced apoptosis of gastric cancers.

  18. Retinal Structure Measurements as Inclusion Criteria for Stem Cell-Based Therapies of Retinal Degenerations.

    PubMed

    Jacobson, Samuel G; Matsui, Rodrigo; Sumaroka, Alexander; Cideciyan, Artur V

    2016-04-01

    We reviewed and illustrated the most optimal retinal structural measurements to make in stem cell clinical trials. Optical coherence tomography (OCT) and autofluorescence (AF) imaging were used to evaluate patients with severe visual loss from nonsyndromic and syndromic retinitis pigmentosa (RP), ABCA4-Stargardt disease, and nonneovascular age-related macular degeneration (AMD). Outer nuclear layer (ONL), rod outer segment (ROS) layer, inner retina, ganglion cell layer (GCL), and nerve fiber layer (NFL) thicknesses were quantified. All patients had severely reduced visual acuities. Retinitis pigmentosa patients had limited visual fields; maculopathy patients had central scotomas with retained peripheral function. For the forms of RP illustrated, there was detectable albeit severely reduced ONL across the scanned retina, and normal or hyperthick GCL and NFL. Maculopathy patients had no measurable ONL centrally; it became detectable with eccentricity. Some maculopathy patients showed unexpected GCL losses. Autofluorescence imaging illustrated central losses of RPE integrity. A hypothetical scheme to relate patient data with different phases of retinal remodeling in animal models of retinal degeneration was presented. Stem cell science is advancing, but it is not too early to open the discussion of criteria for patient selection and monitoring. Available clinical tools, such as OCT and AF imaging, can provide inclusion/exclusion criteria and robust objective outcomes. Accepting that early trials may not lead to miraculous cures, we should be prepared to know why-scientifically and clinically-so we can improve subsequent trials. We also must determine if retinal remodeling is an impediment to efficacy.

  19. Edaravone Prevents Retinal Degeneration in Adult Mice Following Optic Nerve Injury.

    PubMed

    Akiyama, Goichi; Azuchi, Yuriko; Guo, Xiaoli; Noro, Takahiko; Kimura, Atsuko; Harada, Chikako; Namekata, Kazuhiko; Harada, Takayuki

    2017-09-01

    To assess the therapeutic potential of edaravone, a free radical scavenger that is used for the treatment of acute brain infarction and amyotrophic lateral sclerosis, in a mouse model of optic nerve injury (ONI). Two microliters of edaravone (7.2 mM) or vehicle were injected intraocularly 3 minutes after ONI. Optical coherence tomography, retrograde labeling of retinal ganglion cells (RGCs), histopathology, and immunohistochemical analyses of phosphorylated apoptosis signal-regulating kinase-1 (ASK1) and p38 mitogen-activated protein kinase (MAPK) in the retina were performed after ONI. Reactive oxygen species (ROS) levels were assessed with a CellROX Green Reagent. Edaravone ameliorated ONI-induced ROS production, RGC death, and inner retinal degeneration. Also, activation of the ASK1-p38 MAPK pathway that induces RGC death following ONI was suppressed with edaravone treatment. The results of this study suggest that intraocular administration of edaravone may be a useful treatment for posttraumatic complications.

  20. Characterization of an Early-Onset, Autosomal Recessive, Progressive Retinal Degeneration in Bengal Cats.

    PubMed

    Ofri, Ron; Reilly, Christopher M; Maggs, David J; Fitzgerald, Paul G; Shilo-Benjamini, Yael; Good, Kathryn L; Grahn, Robert A; Splawski, Danielle D; Lyons, Leslie A

    2015-08-01

    A form of retinal degeneration suspected to be hereditary was discovered in a family of Bengal cats. A breeding colony was established to characterize disease progression clinically, electrophysiologically, and morphologically, and to investigate the mode of inheritance. Affected and related cats were donated by owners for breeding trials and pedigree analysis. Kittens from test and complementation breedings underwent ophthalmic and neuro-ophthalmic examinations and ERG, and globes were evaluated using light microscopy. Pedigree analysis, along with test and complementation breedings, indicated autosomal recessive inheritance and suggested that this disease is nonallelic to a retinal degeneration found in Persian cats. Mutation analysis confirmed the disease is not caused by CEP290 or CRX variants found predominantly in Abyssinian and Siamese cats. Ophthalmoscopic signs of retinal degeneration were noted at 9 weeks of age and became more noticeable over the next 4 months. Visual deficits were behaviorally evident by 1 year of age. Electroretinogram demonstrated reduced rod and cone function at 7 and 9 weeks of age, respectively. Rod responses were mostly extinguished at 14 weeks of age; cone responses were minimal by 26 weeks. Histologic degeneration was first observed at 8 weeks, evidenced by reduced photoreceptor numbers, then rapid deterioration of the photoreceptor layer and, subsequently, severe outer retinal degeneration. A recessively inherited primary photoreceptor degeneration was characterized in the Bengal cat. The disease is characterized by early onset, with histologic, ophthalmoscopic, and electrophysiological signs evident by 2 months of age, and rapid progression to blindness.

  1. Inhibition of N-methyl-D-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Xuan; Tian Feng; Okagaki, Peter

    2005-10-01

    Organophosphorus (OP) compounds, used as insecticides and chemical warfare agents, are potent neurotoxins. We examined the neurotoxic effect of paraoxon (O,O-diethyl O-p-nitrophenyl phosphate), an organophosphate compound, and the role of NMDA receptors as a mechanism of action in cultured cerebellar granule cells. Paraoxon is neurotoxic to cultured rat cerebellar granule cells in a time- and concentration-dependent manner. Cerebellar granule cells are less sensitive to the neurotoxic effects of paraoxon on day in vitro (DIV) 4 than neurons treated on DIV 8. Surprisingly, the N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, enhances paraoxon-mediated neurotoxicity suggesting that NMDA receptors may play a protective role.more » Pretreatment with a subtoxic concentration of N-methyl-D-aspartate (NMDA) [100 {mu}M] protects about 40% of the vulnerable neurons that would otherwise die from paraoxon-induced neurotoxicity. Moreover, addition of a neuroprotective concentration of NMDA 3 h after treatment with paraoxon provides the same level of protection. Because paraoxon-mediated neuronal cell death is time-dependent, we hypothesized that apoptosis may be involved. Paraoxon increases apoptosis about 10-fold compared to basal levels. The broad-spectrum caspase inhibitor (Boc-D-FMK) and the caspase-9-specific inhibitor (Z-LEHD-FMK) protect against paraoxon-mediated apoptosis, paraoxon-stimulated caspase-3 activity and neuronal cell death. MK-801 increases, whereas NMDA blocks paraoxon-induced apoptosis and paraoxon-stimulated caspase-3 activity. These results suggest that activation of NMDA receptors protect neurons against paraoxon-induced neurotoxicity by blocking apoptosis initiated by paraoxon.« less

  2. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    PubMed

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy.

  3. Generation of N-Ethyl-N-nitrosourea (ENU) Diabetes Models in Mice Demonstrates Genotype-specific Action of Glucokinase Activators*

    PubMed Central

    Fenner, Deborah; Odili, Stella; Hong, Hee-Kyung; Kobayashi, Yumiko; Kohsaka, Akira; Siepka, Sandra M.; Vitaterna, Martha H.; Chen, Pan; Zelent, Bogumil; Grimsby, Joseph; Takahashi, Joseph S.; Matschinsky, Franz M.; Bass, Joseph

    2011-01-01

    We performed genome-wide mutagenesis in C57BL/6J mice using N-ethyl-N-nitrosourea to identify mutations causing high blood glucose early in life and to produce new animal models of diabetes. Of a total of 13 new lines confirmed by heritability testing, we identified two semi-dominant pedigrees with novel missense mutations (GckK140E and GckP417R) in the gene encoding glucokinase (Gck), the mammalian glucose sensor that is mutated in human maturity onset diabetes of the young type 2 and the target of emerging anti-hyperglycemic agents that function as glucokinase activators (GKAs). Diabetes phenotype corresponded with genotype (mild-to-severe: Gck+/+ < GckP417R/+, GckK140E/+ < GckP417R/P417R, GckP417R/K140E, and GckK140E/K140E) and with the level of expression of GCK in liver. Each mutant was produced as the recombinant enzyme in Escherichia coli, and analysis of kcat and tryptophan fluorescence (I320/360) during thermal shift unfolding revealed a correlation between thermostability and the severity of hyperglycemia in the whole animal. Disruption of the glucokinase regulatory protein-binding site (GCKK140E), but not the ATP binding cassette (GCKP417R), prevented inhibition of enzyme activity by glucokinase regulatory protein and corresponded with reduced responsiveness to the GKA drug. Surprisingly, extracts from liver of diabetic GCK mutants inhibited activity of the recombinant enzyme, a property that was also observed in liver extracts from mice with streptozotocin-induced diabetes. These results indicate a relationship between genotype, phenotype, and GKA efficacy. The integration of forward genetic screening and biochemical profiling opens a pathway for preclinical development of mechanism-based diabetes therapies. PMID:21921030

  4. Effects of Acutely Elevated Hydrostatic Pressure in a Rat Ex Vivo Retinal Preparation

    PubMed Central

    Yoshitomi, Takeshi; Zorumski, Charles F.; Izumi, Yukitoshi

    2010-01-01

    Purpose. A new experimental glaucoma model was developed by using an ex vivo rat retinal preparation to examine the effects of elevated hydrostatic pressure on retinal morphology and glutamine synthetase (GS) activity. Methods. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours in the presence of glutamate or glutamate receptor antagonists and examined histologically. GS activity was assessed by colorimetric assay. Results. Pressure elevation induced axonal swelling in the nerve fiber layer. Axonal swelling was prevented by a combination of non-N-methyl-d-aspartate (non-NMDA) receptor antagonist and an NMDA receptor antagonist, indicating that the damage results from activation of both types of glutamate receptor. When glial function was preserved, the typical changes induced by glutamate consisted of reversible Müller cell swelling resulting from excessive glial glutamate uptake. The irreversible Müller cell swelling in hyperbaric conditions may indicate that pressure disrupts glutamate metabolism. Indeed, elevated pressure inhibited GS activity. In addition, glutamate exposure after termination of pressure exposure exhibited apparent Müller cell swelling. Conclusions. These results suggest that the neural degeneration observed during pressure elevation is caused by impaired glial glutamate metabolism after uptake. PMID:20688725

  5. Attenuation by all-trans-retinoic acid of sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats.

    PubMed

    Tatsuta, M; Iishi, H; Baba, M; Hirasawa, R; Yano, H; Sakai, N; Nakaizumi, A

    1999-02-01

    The effect of prolonged administration of all-trans-retinoic acid (RA) on sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine, and the labelling and apoptotic indices and immunoreactivity of transforming growth factor (TGF) alpha in the gastric cancers was investigated in Wistar rats. After 25 weeks of carcinogen treatment, the rats were given chow pellets containing 10% sodium chloride and subcutaneous injections of RA at doses of 0.75 or 1.5 mg kg(-1) body weight every other day. In week 52, oral supplementation with sodium chloride significantly increased the incidence of gastric cancers compared with the untreated controls. Long-term administration of RA at both doses significantly reduced the incidence of gastric cancers, which was enhanced by oral administration of sodium chloride. RA at both doses significantly decreased the labelling index and TGF-alpha immunoreactivity of gastric cancers, which were enhanced by administration of sodium chloride, and significantly increased the apoptotic index of cancers, which was lowered by administration of sodium chloride. These findings suggest that RA attenuates gastric carcinogenesis, enhanced by sodium chloride, by increasing apoptosis, decreasing DNA synthesis, and reducing TGF-alpha expression in gastric cancers.

  6. Characterization of an Early-Onset, Autosomal Recessive, Progressive Retinal Degeneration in Bengal Cats

    PubMed Central

    Ofri, Ron; Reilly, Christopher M.; Maggs, David J.; Fitzgerald, Paul G.; Shilo-Benjamini, Yael; Good, Kathryn L.; Grahn, Robert A.; Splawski, Danielle D.; Lyons, Leslie A.

    2015-01-01

    Purpose A form of retinal degeneration suspected to be hereditary was discovered in a family of Bengal cats. A breeding colony was established to characterize disease progression clinically, electrophysiologically, and morphologically, and to investigate the mode of inheritance. Methods Affected and related cats were donated by owners for breeding trials and pedigree analysis. Kittens from test and complementation breedings underwent ophthalmic and neuro-ophthalmic examinations and ERG, and globes were evaluated using light microscopy. Results Pedigree analysis, along with test and complementation breedings, indicated autosomal recessive inheritance and suggested that this disease is nonallelic to a retinal degeneration found in Persian cats. Mutation analysis confirmed the disease is not caused by CEP290 or CRX variants found predominantly in Abyssinian and Siamese cats. Ophthalmoscopic signs of retinal degeneration were noted at 9 weeks of age and became more noticeable over the next 4 months. Visual deficits were behaviorally evident by 1 year of age. Electroretinogram demonstrated reduced rod and cone function at 7 and 9 weeks of age, respectively. Rod responses were mostly extinguished at 14 weeks of age; cone responses were minimal by 26 weeks. Histologic degeneration was first observed at 8 weeks, evidenced by reduced photoreceptor numbers, then rapid deterioration of the photoreceptor layer and, subsequently, severe outer retinal degeneration. Conclusions A recessively inherited primary photoreceptor degeneration was characterized in the Bengal cat. The disease is characterized by early onset, with histologic, ophthalmoscopic, and electrophysiological signs evident by 2 months of age, and rapid progression to blindness. PMID:26258614

  7. N-acetylcysteine and acute retinal laser lesions in the colubrid snake eye

    NASA Astrophysics Data System (ADS)

    Elliott, William R., III; Rentmeister-Bryant, Heike K.; Barsalou, Norman; Beer, Jeremy; Zwick, Harry

    2004-07-01

    This study examined the role of oxidative stress and the effect of a single dose treatment with N-Acetylcysteine (NAC) on the temporal development of acute laser-induced retinal injury. We used the snake eye/Scanning Laser Ophthalmoscope (SLO) model, an in vivo, non-invasive ocular imaging technique, which has the ability to image cellular retinal detail and allows for studying morphological changes of retinal injury over time. For this study 12 corn-snakes (Elaphe g. guttata) received 5 laser exposures per eye, followed by either a single dose of the antioxidant NAC (150mg/kg, IP in sterile saline) or placebo. Laser exposures were made with a Nd: VO4 DPSS, 532nm laser, coaxially aligned to the SLO. Shuttered pulses were 20msec x 50 mW; 1mJ each. Retinal images were taken using a Rodenstock cSLO and were digitally recorded at 1, 6, 24-hrs, and at 3-wks post-exposure. Lesions were assessed by two raters blind to the conditions of the study yielding measures of damaged area and counts of missing or damaged photoreceptors. Treated eyes showed a significant beneficial effect overall, and these results suggest that oxidative stress plays a role in laser-induced retinal injury. The use of NAC or a similar antioxidant shows promise as a therapeutic tool.

  8. An Unconventional Approach To Reducing Retinal Degeneration After Traumatic Ocular Injury

    DTIC Science & Technology

    2016-07-01

    regulating drugs – currently not purposed to treat retinal damage – may serve to ameliorate retinal degeneration in mice who have experienced blast...to buy a set for for our experiments going forward). A parallel experiments of SNR experiments with red vs green dye (data not shown), moreover

  9. Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation.

    PubMed

    Huang, Zijing; Zhou, Tian; Sun, Xiaowei; Zheng, Yingfeng; Cheng, Bing; Li, Mei; Liu, Xialin; He, Chang

    2018-01-01

    Inflammation has emerged to be a critical mechanism responsible for neural damage and neurodegenerative diseases. Microglia, the resident innate immune cells in retina, are implicated as principal components of the immunological insult to retinal neural cells. The involvement of microglia in retinal inflammation is complex and here we propose for the first time that necroptosis in microglia triggers neuroinflammation and exacerbates retinal neural damage and degeneration. We found microglia experienced receptor-interacting protein kinase 1 (RIP1)- and RIP3-dependent necroptosis not only in the retinal degenerative rd1 mice, but also in the acute retinal neural injury mice. The necroptotic microglia released various pro-inflammatory cytokines and chemokines, such as tumor necrosis factor-α and chemokine (C-C motif) ligand 2, which orchestrated the retinal inflammation. Importantly, necroptosis blockade using necrostatin-1 could suppress microglia-mediated inflammation, rescue retinal degeneration or prevent neural injury in vivo. Meanwhile, cultured microglia underwent RIP1/3-mediated necroptosis and the necroptotic microglia produced large amounts of pro-inflammatory cytokines in response to lipopolysaccharide or oxidative stress in vitro. Mechanically, TLR4 deficiency ameliorated microglia necroptosis with decreased expression levels of machinery molecules RIP1 and RIP3, and suppressed retinal inflammation, suggesting that TLR4 signaling was required in microglia necroptosis-mediated inflammation. Thus, we proposed that microglia experienced necroptosis through TLR4 activation, promoting an inflammatory response that serves to exacerbate considerable neural damage and degeneration. Necroptosis blockade therefore emerged as a novel therapeutic strategy for tempering microglia-mediated neuroinflammation and ameliorating neural injury and neurodegenerative diseases.

  10. Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation

    PubMed Central

    Huang, Zijing; Zhou, Tian; Sun, Xiaowei; Zheng, Yingfeng; Cheng, Bing; Li, Mei; Liu, Xialin; He, Chang

    2018-01-01

    Inflammation has emerged to be a critical mechanism responsible for neural damage and neurodegenerative diseases. Microglia, the resident innate immune cells in retina, are implicated as principal components of the immunological insult to retinal neural cells. The involvement of microglia in retinal inflammation is complex and here we propose for the first time that necroptosis in microglia triggers neuroinflammation and exacerbates retinal neural damage and degeneration. We found microglia experienced receptor-interacting protein kinase 1 (RIP1)- and RIP3-dependent necroptosis not only in the retinal degenerative rd1 mice, but also in the acute retinal neural injury mice. The necroptotic microglia released various pro-inflammatory cytokines and chemokines, such as tumor necrosis factor-α and chemokine (C-C motif) ligand 2, which orchestrated the retinal inflammation. Importantly, necroptosis blockade using necrostatin-1 could suppress microglia-mediated inflammation, rescue retinal degeneration or prevent neural injury in vivo. Meanwhile, cultured microglia underwent RIP1/3-mediated necroptosis and the necroptotic microglia produced large amounts of pro-inflammatory cytokines in response to lipopolysaccharide or oxidative stress in vitro. Mechanically, TLR4 deficiency ameliorated microglia necroptosis with decreased expression levels of machinery molecules RIP1 and RIP3, and suppressed retinal inflammation, suggesting that TLR4 signaling was required in microglia necroptosis-mediated inflammation. Thus, we proposed that microglia experienced necroptosis through TLR4 activation, promoting an inflammatory response that serves to exacerbate considerable neural damage and degeneration. Necroptosis blockade therefore emerged as a novel therapeutic strategy for tempering microglia-mediated neuroinflammation and ameliorating neural injury and neurodegenerative diseases. PMID:28885615

  11. Phenylethylamine N-methylation by human brain preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosnaim, A.D.; Callaghan, O.H.; Wolf, M.E.

    Alterations in the brain metabolism of biogenic amines has been postulated to play a role in the pathophysiology of several psychiatric disorders. There is some evidence suggesting schizogenic properties for some abnormal neuroamine methylated derivatives. The authors now report that postmortem human brain preparations, obtained from the putamen and thalamus, convert phenylethylamine (PEA) to its behaviorally active derivative N-methyl PEA, a reaction which is carried out by the 100,000 xg supernatant (in presence of 1 x 10 /sup -5/M pargyline) and enhanced by the addition of NADPH. PEA N-methylation occurred in schizophrenics as well as in sex and age matchedmore » controls. The formation of increased amounts of (/sup 3/H-) or (/sup 14/C-) N-methyl PEA when incubating either cold amine and /sup 3/H-SAM or 1-/sup 14/C PEA and cold SAM, respectively, indicates that SAM is a methyl group donor in this reaction. They will discuss the physiological and pharmacological implications of these results.« less

  12. Highly sensitive sites for guanine-O6 ethylation in rat brain DNA exposed to N-ethyl-N-nitrosourea in vivo.

    PubMed Central

    Nehls, P; Rajewsky, M F; Spiess, E; Werner, D

    1984-01-01

    Brain chromosomal DNA isolated from fetal BDIX-rats 1 h after i.v. administration of the ethylating N-nitroso carcinogen N-ethyl-N-nitrosourea (75 micrograms/g body weight), statistically contained one molecule of O6-ethyl-2'-deoxyguanosine (O6-EtdGuo) per 81 micron of DNA, as determined in enzymatic DNA hydrolysates by competitive radio-immunoassay using a high-affinity anti-(O6-EtdGuo) monoclonal antibody (ER-6). After fragmentation of the DNA by the restriction enzyme AluI (average fragment length, Lav = 0.28 micron = 970 bp; length range, Lr = 1.87-0.02 micron = 6540 - 60 bp), a small (approximately 2%) fraction of DNA enriched in specific polypeptides tightly associated with DNA was separated from the bulk DNA by a glass fiber binding technique. As analyzed by immune electron microscopy, approximately 1% of the DNA molecules in this fraction contained clusters of 2-10 (O6-EtdGuo)-antibody binding sites (ABS). On the cluster-bearing fragments (Lav, 0.85 micron +/- 0.50 micron S.D.; corresponding to 2970 +/- 1760 bp) the average ABS-ABS interspace distance was 110 nm (= 390 bp; range approximately 9-600 nm), indicating a highly non-random distribution of O6-EtdGuo in target cell DNA. Images Fig. 2. PMID:6370677

  13. Radiative and Auger recombination of degenerate carriers in InN

    NASA Astrophysics Data System (ADS)

    McAllister, Andrew; Bayerl, Dylan; Kioupakis, Emmanouil

    Group-III nitrides find applications in many fields - energy conversion, sensors, and solid-state lighting. The band gaps of InN, GaN and AlN alloys span the infrared to ultraviolet spectral range. However, nitride optoelectronic devices suffer from a drop in efficiency as carrier density increases. A major component of this decrease is Auger recombination, but its influence is not fully understood, particularly for degenerate carriers. For nondegenerate carriers the radiative rate scales as the carrier density squared, while the Auger rate scales as the density cubed. However, it is unclear how these power laws decrease as carriers become degenerate. Using first-principles calculations we studied the dependence of the radiative and Auger recombination rates on carrier density in InN. We found a more complex dependence on the Auger rate than expected. The power law of the Auger rate changes at different densities depending on the type of Auger process involved and the type of carriers that have become degenerate. In contrast, the power law of the radiative rate changes when either carrier type becomes degenerate. This creates problems in designing devices, as Auger remains a major contributor to carrier recombination at densities for which radiative recombination is suppressed by phase-space filling. This work was supported by NSF (GRFP DGE 1256260 and CAREER DMR-1254314). Computational resources provided by the DOE NERSC facility (DE-AC02-05CH11231).

  14. Two-step iron(0)-mediated N-demethylation of N-methyl alkaloids.

    PubMed

    Kok, Gaik B; Pye, Cory C; Singer, Robert D; Scammells, Peter J

    2010-07-16

    A mild and simple two-step Fe(0)-mediated N-demethylation of a number of tertiary N-methyl alkaloids is described. The tertiary N-methylamine is first oxidized to the corresponding N-oxide, which is isolated as the hydrochloride salt. Subsequent treatment of the N-oxide hydrochloride with iron powder readily provides the N-demethylated amine. Representative substrates include a number of opiate and tropane alkaloids. Key intermediates in the synthesis of semisynthetic 14-hydroxy pharmaceutical opiates such as oxycodone and oxymorphone are also readily N-demethylated using this method.

  15. Direct binding of Toll-like receptor 4 to ionotropic glutamate receptor N-methyl-D-aspartate subunit 1 induced by lipopolysaccharide in microglial cells N9 and EOC 20.

    PubMed

    Cui, Jie; Yu, Siyuan; Li, Yihui; Li, Pan; Liu, Feng

    2018-03-01

    Microglia, the primary immune cells in the brain, are the predominant cells regulating inflammation-mediated neuronal damage. In response to immunological challenges, such as lipopolysaccharide (LPS), microglia are activated and the inflammatory process is subsequently initiated. The aim of the present study was to determine whether LPS induces interactions between the Toll-like receptor 4 (TLR4) and the ionotropic glutamate receptor N-methyl-D‑aspartate subunit 1 (GluN1) in N9 and EOC 20 microglial cells. Immunocytochemistry demonstrated co-localization of TLR4 and GluN1 in response to LPS, and the direct binding of TLR4 and GluN1 was further validated by antibody-based Fluorescence Resonance Energy Transfer technology. Inhibition of the group I metabotropic glutamate receptor 5 with its selective antagonist, MTEP, abolished LPS-induced direct binding of TLR4 to GluN1. Therefore, these data demonstrated that GluN1 and TLR4 act reciprocally in response to LPS in N9 and EOC 20 microglial cells.

  16. Diverse spectrum of tumors in male Sprague-Dawley rats following single high doses of N-ethyl-N-nitrosourea (ENU).

    PubMed Central

    Stoica, G.; Koestner, A.

    1984-01-01

    In this study, 30-day-old male Sprague-Dawley rats, were inoculated intraperitoneally with a single dose of 45, 90, and 180 mg/kg of N-ethyl-N-Nitrosourea (ENU). A wide spectrum of neoplasms occurred. The most common tumors were those of the mammary gland and of the nervous system. Although the incidence of mammary tumors was highest in the two high-dose groups (90 and 180 mg/kg ENU), the incidence of neurogenic tumors was highest in the 45 mg/kg dose group. Mammary tumor development led to early death and precluded development of tumors of the nervous system, which require a longer latency period. A variety of neoplasms of other organs have been associated particularly with high doses of ENU, including ameloblastic tumors, carcinomas of the thyroid, prostate, kidney, pancreas, intestine, and lung, hemilymphatic tumors, and sarcomas. It is concluded that large doses of ENU are capable of expanding the tumor spectrum in young male rats beyond the target organs generally affected with lower doses, as described in earlier reports. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:6465287

  17. Autoimmune Responses against Photoreceptor Antigens during Retinal Degeneration and their Role in Macrophage Recruitment into Retinas of RCS Rats

    PubMed Central

    Kyger, Madison; Worley, Aneta; Adamus, Grazyna

    2012-01-01

    Autoimmunity may contribute to retinal degeneration. The studies examined the evolution of autoimmune responses against retina in naïve dystrophic RCS rats over the course of retinal degeneration. We showed that anti-retinal autoantibodies and T cells are generated in response to the availability of antigenic material released from dying photoreceptor cells during retinal degeneration but with distinctive activation trends. Passive transfer of anti-retinal antibodies enhanced disease progression by disrupting the BRB, upregulating MCP-1, attracting blood macrophages into retina, and augmenting apoptotic photoreceptor cell death. Our findings directly link anti-retinal autoantibodies to activated macrophage entry and their possible role in neurodegeneration. PMID:23110938

  18. Plasma-activated medium suppresses choroidal neovascularization in mice: a new therapeutic concept for age-related macular degeneration.

    PubMed

    Ye, Fuxiang; Kaneko, Hiroki; Nagasaka, Yosuke; Ijima, Ryo; Nakamura, Kae; Nagaya, Masatoshi; Takayama, Kei; Kajiyama, Hiroaki; Senga, Takeshi; Tanaka, Hiromasa; Mizuno, Masaaki; Kikkawa, Fumitaka; Hori, Masaru; Terasaki, Hiroko

    2015-01-09

    Choroidal neovascularization (CNV) is the main pathogenesis of age-related macular degeneration (AMD), which leads to severe vision loss in many aged patients in most advanced country. CNV compromises vision via hemorrhage and retinal detachment on account of pathological neovascularization penetrating the retina. Plasma medicine represents the medical application of ionized gas "plasma" that is typically studied in the field of physical science. Here we examined the therapeutic ability of plasma-activated medium (PAM) to suppress CNV. The effect of PAM on vascularization was assessed on the basis of human retinal endothelial cell (HREC) tube formation. In mice, laser photocoagulation was performed to induce CNV (laser-CNV), followed by intravitreal injection of PAM. N-Acetylcysteine was used to examine the role of reactive oxygen species in PAM-induced CNV suppression. Fundus imaging, retinal histology examination, and electroretinography (ERG) were also performed to evaluate PAM-induced retinal toxicity. Interestingly, HREC tube formation and laser-CNV were both reduced by treatment with PAM. N-acetylcysteine only partly neutralized the PAM-induced reduction in laser-CNV. In addition, PAM injection had no effect on regular retinal vessels, nor did it show retinal toxicity in vivo. Our findings indicate the potential of PAM as a novel therapeutic agent for suppressing CNV.

  19. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition

    PubMed Central

    HAN, NING; YU, LI; SONG, ZHIDU; LUO, LIFU; WU, YAZHEN

    2015-01-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy. PMID:25816073

  20. Control of box C/D snoRNP assembly by N6-methylation of adenine.

    PubMed

    Huang, Lin; Ashraf, Saira; Wang, Jia; Lilley, David Mj

    2017-09-01

    N 6 -methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N 6 -methyladenine at a key trans Hoogsteen-sugar A·G base pair, of which half are methylated in vivo The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5-kDa protein and the induced folding of the RNA Thus, the assembly of the box C/D snoRNP could in principle be regulated by RNA methylation at its critical first stage. Crystallography reveals that N 6 -methylation of adenine prevents the formation of trans Hoogsteen-sugar A·G base pairs, explaining why the box C/D RNA cannot adopt its kinked conformation. More generally, our data indicate that sheared A·G base pairs (but not Watson-Crick base pairs) are more susceptible to disruption by N 6 mA methylation and are therefore possible regulatory sites. The human signal recognition particle RNA and many related Alu retrotransposon RNA species are also methylated at N6 of an adenine that forms a sheared base pair with guanine and mediates a key tertiary interaction. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling

    PubMed Central

    Luhmann, Ulrich F. O.; Lange, Clemens A.; Robbie, Scott; Munro, Peter M. G.; Cowing, Jill A.; Armer, Hannah E. J.; Luong, Vy; Carvalho, Livia S.; MacLaren, Robert E.; Fitzke, Frederick W.; Bainbridge, James W. B.; Ali, Robin R.

    2012-01-01

    Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2−/−/Crb1Rd8/RD8, Cx3cr1−/−/Crb1Rd8/RD8 and CCl2−/−/Cx3cr1−/−/Crb1Rd8/RD8 mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings

  2. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal NG-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    PubMed

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N G -nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N G -nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N G -nitro-L-arginine-methyl ester, N G -nitro-L-arginine-methyl ester +melatonin, and N G -nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N G -nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N G -nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N G -nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N G -nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N G -nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway

  3. Autoimmune responses against photoreceptor antigens during retinal degeneration and their role in macrophage recruitment into retinas of RCS rats.

    PubMed

    Kyger, Madison; Worley, Aneta; Adamus, Grazyna

    2013-01-15

    Autoimmunity may contribute to retinal degeneration. The studies examined the evolution of autoimmune responses against retina in naïve dystrophic RCS rats over the course of retinal degeneration. We showed that anti-retinal autoantibodies and T cells are generated in response to the availability of antigenic material released from dying photoreceptor cells during retinal degeneration but with distinctive activation trends. Passive transfer of anti-retinal antibodies enhanced disease progression by disrupting the BRB, upregulating MCP-1, attracting blood macrophages into retina, and augmenting apoptotic photoreceptor cell death. Our findings directly link anti-retinal autoantibodies to activated macrophage entry and their possible role in neurodegeneration. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. INTERLABORATORY STUDY OF A THERMOSPRAY-LIQUID CHROMATOGRAPHIC/MASS SPECTROMETRIC METHOD FOR SELECTED N-METHYL CARBAMATES, N-METHYL CARBAMOYLOXIMES, AND SUBSTITUTED UREA PESTICIDES

    EPA Science Inventory

    A thermospray-liquid chromatographic/mass spectrometric (TS-LC/MS) method was evaluated in an interlaboratory study for determining 3 N-methyl carbamates (bendiocarb, carbaryl, and carbofuran), 3-N-methyl carbamoyloximes (aldicarb, methomyl, and oxamyl), 2 substituted urea pestic...

  5. Retinal abnormalities in β-thalassemia major

    PubMed Central

    Bhoiwala, Devang L.; Dunaief, Joshua L.

    2015-01-01

    Patients with beta (β)-thalassemia (β-TM: thalassemia major, β-TI: thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelium degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-TM are transfusion dependent and require iron chelation therapy (ICT) in order to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by ICT. Some who were never treated with ICT exhibited retinopathy, and others receiving ICT had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-TM viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  6. 27 CFR 21.118 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...

  7. 21 CFR 500.1410 - N-methyl-2-pyrrolidone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false N-methyl-2-pyrrolidone. 500.1410 Section 500.1410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Used in Food-Producing Animals § 500.1410 N-methyl-2-pyrrolidone. (a) Standard for residues. No...

  8. 21 CFR 500.1410 - N-methyl-2-pyrrolidone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false N-methyl-2-pyrrolidone. 500.1410 Section 500.1410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Used in Food-Producing Animals § 500.1410 N-methyl-2-pyrrolidone. (a) Standard for residues. No...

  9. 27 CFR 21.118 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...

  10. Progesterone up-regulates vasodilator effects of calcitonin gene-related peptide in N(G)-nitro-L-arginine methyl ester-induced hypertension.

    PubMed

    Gangula, P R; Wimalawansa, S J; Yallampalli, C

    1997-04-01

    period, and these effects were lost when progesterone treatment was stopped. Again, at these doses calcitonin gene-related peptide and progesterone were each ineffective alone. Calcitonin gene-related peptide reverses the N(G)-nitro-L-arginine methyl ester-induced hypertension during pregnancy, when progesterone levels are elevated, but not post partum or in ovariectomized nonpregnant rats. The blood pressure-lowering effects of calcitonin gene-related peptide were restored in both postpartum and ovariectomized rats with progesterone treatment. Therefore we conclude that progesterone modulates vasodilator effects of calcitonin gene-related peptide in hypertensive rats.

  11. Sleep-inducing N-alkyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)cinnamamides.

    PubMed

    Houlihan, W J; Gogerty, J H; Ryan, E A; Schmitt, G

    1985-01-01

    A series of N-alkyl-3-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)-cinnamamides were prepared and screened in a series of tests designed to detect potential sleep inducers. The more active members of the series were evaluated for their ability to induce sleep in Cebus monkeys. The most active compound, N-methyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinone, was equal to methaqualone.

  12. Protective role of somatostatin receptor 2 against retinal degeneration in response to hypoxia.

    PubMed

    Dal Monte, Massimo; Latina, Valentina; Cupisti, Elena; Bagnoli, Paola

    2012-05-01

    In mouse retinal explants, octreotide, a somatostatin [somatotropin release-inhibiting factor (SRIF)] receptor 2 (sst(2)) agonist, prevents the hypoxia-induced vascular endothelial growth factor upregulation. In mice with oxygen-induced retinopathy (OIR), a model of retinopathy of prematurity, either sst(2) overexpression or octreotide have been found to limit hypoxia-induced angiogenic processes. Here, we investigated whether sst(2) influences retinal degeneration in response to hypoxia in wild-type (WT), sst(1)- and sst(2)-knockout (KO) mice. In retinal explants, we determined the role of sst(2) on apoptotic signals. In control condition, caspase-3 activity and the Bax/Bcl-2 ratio were lower in sst(1)-KO than in WT, but higher in sst(2)-KO than in WT retinas. In all strains, a comparable increase in caspase-3 activity and the Bax/Bcl-2 ratio was observed after hypoxia. The hypoxia-induced increase in apoptotic signals was recovered by octreotide in both WT and sst(1)-KO retinas. To investigate the role of sst(2) on retinal function, we recorded electroretinogram (ERG) in response to light flashes in OIR mice. ERG responses did not differ between WT and KO mice with the exception of oscillatory potentials (OPs) which, in sst(1)-KO mice, displayed much larger amplitude. In all strains, hypoxia drastically reduced a-, b-waves and OPs. In both WT and sst(1)-KO mice, octreotide recovered a- and b-waves, but did not recover OPs in sst(1)-KO mice. Neither apoptotic signals nor ERG was affected by octreotide in sst(2)-KO mice. These results show that sst(2) may protect retinal cells from hypoxia, thus implementing the background to establish potential pharmacological targets based on sst(2) pharmacology.

  13. Assessment of the best N(3-) donors in preparation of [M(N)(PNP)]-based (M=(99m)Tc-; (188)Re) target-specific radiopharmaceuticals: Comparison among succinic dihydrazide (SDH), N-methyl-S-methyl dithiocarbazate (HDTCZ) and PEGylated N-methyl-S-methyl dithiocarbazate (HO2C-PEG600-DTCZ).

    PubMed

    Carta, Davide; Jentschel, Christian; Thieme, Stefan; Salvarese, Nicola; Morellato, Nicolò; Refosco, Fiorenzo; Ruzza, Paolo; Bergmann, Ralf; Pietzsch, Hans-Jurgen; Bolzati, Cristina

    2014-08-01

    Succinic dihydrazide (SDH), N-methyl-S-methyl dithiocarbazate (HDTCZ) and PEGylated N-methyl-S-methyl dithiocarbazate (HO2C-PEG600-DTCZ) are nitrido nitrogen atom donors employed for the preparation of nitride [M(N)]-complexes (M=(99m)Tc and (188)Re). This study aims to compare the capability and the efficiency of these three N(3-) group donors, in the preparation of [M(N)PNP]-based target-specific compounds (M=(99m)Tc, (188)Re; PNP=aminodiphosphine). For this purpose, three different kit formulations (SDH kit; HO2C-PEG600-DTCZ kit; HDTCZ kit) were assembled and used in the preparation of [M(N)(cys~)(PNP3)](0/+) complexes (cys~=cysteine derivate ligands). For each formulation, the radiochemical yield (RCY) of the [M(N)(~cys)(PNP3)] compounds, was determined by HPLC. The deviation of the percentage of RCY, due to changes in concentration of the N(3-) donors and of the exchanging ligand, was determined. For (99m)Tc, data clearly show that HDTCZ is the most efficient donor of N(3-); however, SDH is the most suitable nitrido nitrogen atom donor for the preparation of [(99m)Tc(N)(PNP)]-based target-specific agents with high specific activity. When HO2C-PEG600-DTCZ or HDTCZ are used in N(3-) donation, high amounts of the exchanging ligand (10(-4)M) were required for the formation of the final complex in acceptable yield. The possibility to use microgram amounts of HDTCZ also in [(188)Re(N)] preparation (0.050mg) reduces its ability to compete in ligand exchange reactions, minimizing the quantity of chelators required to obtain the final complex in high yield. This finding can be exploit for increasing the radiolabeling efficiency in [(188)Re(N)]-radiopharmaceutical preparations compared to the previously reported HDTCZ-based procedure, notwithstanding a purification process could be necessary to improve the specific activity of the complexes. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Preclinical studies of steroid-linked nitrosoureas in murine pancreatic adenocarcinoma PANO2.

    PubMed

    Papageorgiou, A; Lialiaris, Th; Stergiou, E; Stergiou, I; Tsigris, C; Kourti, A; Geromichalos, G; Stravoravdi, P; Trafalis, D; Athanassiou, A E; Pitsas, A; Camoutsis, Ch

    2008-01-01

    In earlier studies, this laboratory carried out research on the synthesis and anticancer evaluation of hybrid compounds, which combine two molecules in one such as homo-aza-steroidal esters (HASE) of carboxylic derivatives of N, N-bis (2-chloroethyl) aniline. In this combination, steroidal hormones are employed as carriers for transporting the alkylating agents to specific targeted tissues. Aiming to continue our research, we used alkylating agents, as nitrosoureas, instead of nitrogen mustards. In this work the N-[N- (2-chloroethyl)-N-nitroso-carbomoyl]-L-alanine (CNC-ala) has been used and was bound to 7 newly synthesized modified steroidal esters (carrier molecule) of nitrosourea and the hybrid molecules were tested for antitumor activity against PANO2 murine pancreatic adenocarcinoma. PANO2 adenocarcinoma was used in this study. C57Bl mice were used for chemotherapy evaluation. The activity was assessed from the inhibition of tumor growth and the oncostatic parameter T/C %. The antitumor activity displayed by 7 hybrid steroidal esters of nitrosourea was quite interesting. It was able to discern 4 of 7 compounds that exhibited considerable antitumor activity, increasing the lifespan of the tumor-bearing mice by inhibiting the tumor growth. The comparative study of 7 newly synthesized hybrid steroidal esters of nitrosourea shows that the antitumor effects of compound 7, which has an enlarged (7 carbon atoms) A-lactamic ring and nitrosourea esterified at the position 17, which seems to be the most appropriate for the connection of a DNA cross-linking amino acid derivative is superior.

  15. Combined exposure to X-irradiation followed by N-ethyl-N-nitrosourea treatment alters the frequency and spectrum of Ikaros point mutations in murine T-cell lymphoma.

    PubMed

    Kakinuma, Shizuko; Nishimura, Mayumi; Amasaki, Yoshiko; Takada, Mayumi; Yamauchi, Kazumi; Sudo, Satomi; Shang, Yi; Doi, Kazutaka; Yoshinaga, Shinji; Shimada, Yoshiya

    2012-09-01

    Ionizing radiation is a well-known carcinogen, but its potency may be influenced by other environmental carcinogens, which is of practical importance in the assessment of risk. Data are scarce, however, on the combined effect of radiation with other environmental carcinogens and the underlying mechanisms involved. We studied the mode and mechanism of the carcinogenic effect of radiation in combination with N-ethyl-N-nitrosourea (ENU) using doses approximately equal to the corresponding thresholds. B6C3F1 mice exposed to fractionated X-irradiation (Kaplan's method) followed by ENU developed T-cell lymphomas in a dose-dependent manner. Radiation doses above an apparent threshold acted synergistically with ENU to promote lymphoma development, whereas radiation doses below that threshold antagonized lymphoma development. Ikaros, which regulates the commitment and differentiation of lymphoid lineage cells, is a critical tumor suppressor gene frequently altered in both human and mouse lymphomas and shows distinct mutation spectra between X-ray- and ENU-induced lymphomas. In the synergistically induced lymphomas, we observed a low frequency of LOH and an inordinate increase of Ikaros base substitutions characteristic of ENU-induced point mutations, G:C to A:T at non-CpG, A:T to G:C, G:C to T:A and A:T to T:A. This suggests that radiation doses above an apparent threshold activate the ENU mutagenic pathway. This is the first report on the carcinogenic mechanism elicited by combined exposure to carcinogens below and above threshold doses based on the mutation spectrum of the causative gene. These findings constitute a basis for assessing human cancer risk following exposure to multiple carcinogens. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Drosophila melanogaster White Mutant w 1118 Undergo Retinal Degeneration.

    PubMed

    Ferreiro, María José; Pérez, Coralia; Marchesano, Mariana; Ruiz, Santiago; Caputi, Angel; Aguilera, Pedro; Barrio, Rosa; Cantera, Rafael

    2017-01-01

    Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster , using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w 1118 strain undergo retinal degeneration. We observed also that w 1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white + in the white null background w 1118 . We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w 1118 strain as a wild-type control should be avoided.

  17. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia

    PubMed Central

    Tolmachova, Tanya; Anders, Ross; Abrink, Magnus; Bugeon, Laurence; Dallman, Margaret J.; Futter, Clare E.; Ramalho, José S.; Tonagel, Felix; Tanimoto, Naoyuki; Seeliger, Mathias W.; Huxley, Clare; Seabra, Miguel C.

    2006-01-01

    Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene. Heterozygous-null females exhibit characteristic hallmarks of CHM: progressive degeneration of the photoreceptors, patchy depigmentation of the RPE, and Rab prenylation defects. Using tamoxifen-inducible and tissue-specific Cre expression in combination with floxed Chm alleles, we show that CHM pathogenesis involves independently triggered degeneration of photoreceptors and the RPE, associated with different subsets of defective Rabs. PMID:16410831

  18. 40 CFR 721.2275 - N,N,N′,N′-Tetrakis(oxi-ranyl- methyl)-1,3-cyclohexane di-meth-anamine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false N,N,Nâ²,Nâ²-Tetrakis(oxi-ranyl- methyl... Significant New Uses for Specific Chemical Substances § 721.2275 N,N,N′,N′-Tetrakis(oxi-ranyl- methyl)-1,3... chemical substance identified as N,N,N′,N′-tetrakis(oxiranylmethyl)-1,3-cyclohexanedimethanamine (P-84-7...

  19. 40 CFR 721.2275 - N,N,N′,N′-Tetrakis(oxi-ranyl- methyl)-1,3-cyclohexane di-meth-anamine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false N,N,Nâ²,Nâ²-Tetrakis(oxi-ranyl- methyl... Significant New Uses for Specific Chemical Substances § 721.2275 N,N,N′,N′-Tetrakis(oxi-ranyl- methyl)-1,3... chemical substance identified as N,N,N′,N′-tetrakis(oxiranylmethyl)-1,3-cyclohexanedimethanamine (P-84-7...

  20. Retrograde and Wallerian Axonal Degeneration Occur Synchronously after Retinal Ganglion Cell Axotomy

    PubMed Central

    Kanamori, Akiyasu; Catrinescu, Maria-Magdalena; Belisle, Jonathan M.; Costantino, Santiago; Levin, Leonard A.

    2013-01-01

    Axonal injury and degeneration are pivotal pathological events in diseases of the nervous system. In the past decade, it has been recognized that the process of axonal degeneration is distinct from somal degeneration and that axoprotective strategies may be distinct from those that protect the soma. Preserving the cell body via neuroprotection cannot improve function if the axon is damaged, because the soma is still disconnected from its target. Therefore, understanding the mechanisms of axonal degeneration is critical for developing new therapeutic interventions for axonal disease treatment. We combined in vivo imaging with a multilaser confocal scanning laser ophthalmoscope and in vivo axotomy with a diode-pumped solid-state laser to assess the time course of Wallerian and retrograde degeneration of unmyelinated retinal ganglion cell axons in living rats for 4 weeks after intraretinal axotomy. Laser injury resulted in reproducible axon loss both distal and proximal to the site of injury. Longitudinal polarization-sensitive imaging of axons demonstrated that Wallerian and retrograde degeneration occurred synchronously. Neurofilament immunostaining of retinal whole-mounts confirmed axonal loss and demonstrated sparing of adjacent axons to the axotomy site. In vivo fluorescent imaging of axonal transport and photobleaching of labeled axons demonstrated that the laser axotomy model did not affect adjacent axon function. These results are consistent with a shared mechanism for Wallerian and retrograde degeneration. PMID:22642911

  1. Integrated scanning laser ophthalmoscopy and optical coherence tomography for quantitative multimodal imaging of retinal degeneration and autofluorescence

    NASA Astrophysics Data System (ADS)

    Issaei, Ali; Szczygiel, Lukasz; Hossein-Javaheri, Nima; Young, Mei; Molday, L. L.; Molday, R. S.; Sarunic, M. V.

    2011-03-01

    Scanning Laser Ophthalmoscopy (SLO) and Coherence Tomography (OCT) are complimentary retinal imaging modalities. Integration of SLO and OCT allows for both fluorescent detection and depth- resolved structural imaging of the retinal cell layers to be performed in-vivo. System customization is required to image rodents used in medical research by vision scientists. We are investigating multimodal SLO/OCT imaging of a rodent model of Stargardt's Macular Dystrophy which is characterized by retinal degeneration and accumulation of toxic autofluorescent lipofuscin deposits. Our new findings demonstrate the ability to track fundus autofluorescence and retinal degeneration concurrently.

  2. Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration

    PubMed Central

    Lorach, Henri; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Dalal, Roopa; Huie, Philip; Harris, James; Palanker, Daniel

    2015-01-01

    Purpose Prosthetic restoration of partial sensory loss leads to interactions between artificial and natural inputs. Ideally, the rehabilitation should allow perceptual fusion of the two modalities. Here we studied the interactions between normal and prosthetic vision in a rodent model of local retinal degeneration. Methods Implantation of a photovoltaic array in the subretinal space of normally sighted rats induced local degeneration of the photoreceptors above the chip, and the inner retinal neurons in this area were electrically stimulated by the photovoltaic implant powered by near-infrared (NIR) light. We studied prosthetic and natural visually evoked potentials (VEP) in response to simultaneous stimulation by NIR and visible light patterns. Results We demonstrate that electrical and natural VEPs summed linearly in the visual cortex, and both responses decreased under brighter ambient light. Responses to visible light flashes increased over 3 orders of magnitude of contrast (flash/background), while for electrical stimulation the contrast range was limited to 1 order of magnitude. The maximum amplitude of the prosthetic VEP was three times lower than the maximum response to a visible flash over the same area on the retina. Conclusions Ambient light affects prosthetic responses, albeit much less than responses to visible stimuli. Prosthetic representation of contrast in the visual scene can be encoded, to a limited extent, by the appropriately calibrated stimulus intensity, which also depends on the ambient light conditions. Such calibration will be important for patients combining central prosthetic vision with natural peripheral sight, such as in age-related macular degeneration. PMID:26618643

  3. Kinetic and analytic investigations on the formation of N-nitroso-N-methyl-N-cyclohexylamine from bromhexine and nitrite.

    PubMed

    Schmid, J; Daneck, K; Koss, F W; Eisenbrand, G; Schlemmer, K H

    1988-09-01

    Bromhexine (N-methyl-N-cyclohexyl-(2-amino-3,5-dibromobenzyl)-ammoniumhydr ochloride) forms N-nitroso-N-methyl-N-cyclohexylamine (NMCA) under the conditions of the WHO Nitrosation Assay Procedure (NAP-test). The formation kinetics of this compound was investigated. The formation of NMCA depends on the square of the nitrite concentration. The reaction has a narrow pH-optimum at pH 3. The reaction is quick: After 1 h about 70% of the maximum amount of NMCA is formed. To study this reaction kinetics sensitive assays with a detection limit up to 0.5 ng/ml NMCA were developed. The stability of the components of the system, especially that of NMCA and nitrite, were further studied. The latter is rather instable under conditions found in an acidic stomach.

  4. Moderate Light-Induced Degeneration of Rod Photoreceptors with Delayed Transducin Translocation in shaker1 Mice

    PubMed Central

    Zallocchi, Marisa; Wang, Wei-Min; Delimont, Duane; Cosgrove, Dominic

    2011-01-01

    Purpose. Usher syndrome is characterized by congenital deafness associated with retinitis pigmentosa (RP). Mutations in the myosin VIIa gene (MYO7A) cause a common and severe subtype of Usher syndrome (USH1B). Shaker1 mice have mutant MYO7A. They are deaf and have vestibular dysfunction but do not develop photoreceptor degeneration. The goal of this study was to investigate abnormalities of photoreceptors in shaker1 mice. Methods. Immunocytochemistry and hydroethidine-based detection of intracellular superoxide production were used. Photoreceptor cell densities under various conditions of light/dark exposures were evaluated. Results. In shaker1 mice, the rod transducin translocation is delayed because of a shift of its light activation threshold to a higher level. Even moderate light exposure can induce oxidative damage and significant rod degeneration in shaker1 mice. Shaker1 mice reared under a moderate light/dark cycle develop severe retinal degeneration in less than 6 months. Conclusions. These findings show that, contrary to earlier studies, shaker1 mice possess a robust retinal phenotype that may link to defective rod protein translocation. Importantly, USH1B animal models are likely vulnerable to light-induced photoreceptor damage, even under moderate light. PMID:21447681

  5. Alkaloid fraction of Uncaria rhynchophylla protects against N-methyl-D-aspartate-induced apoptosis in rat hippocampal slices.

    PubMed

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Sun-Yeou; Kim, Hocheol; Kim, Chang-Ju; Lim, Eunhee

    2003-09-04

    Uncaria rhynchophylla is a medicinal herb which has sedative and anticonvulsive effects and has been applied in the treatment of epilepsy in Oriental medicine. In this study, the effect of alkaloid fraction of U. rhynchophylla against N-methyl-D-aspartate (NMDA)-induced neuronal cell death was investigated. Pretreatment with an alkaloid fraction of U. rhynchophylla for 1 h decreased the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices and also inhibited NMDA-induced enhanced expressions of apoptosis-related genes such as c-jun, p53, and bax. In the present study, the alkaloid fraction of U. rhynchophylla was shown to have a protective property against NMDA-induced cytotoxicity by suppressing the NMDA-induced apoptosis in rat hippocampal slices.

  6. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Early Microglia Activation Precedes Photoreceptor Degeneration in a Mouse Model of CNGB1-Linked Retinitis Pigmentosa.

    PubMed

    Blank, Thomas; Goldmann, Tobias; Koch, Mirja; Amann, Lukas; Schön, Christian; Bonin, Michael; Pang, Shengru; Prinz, Marco; Burnet, Michael; Wagner, Johanna E; Biel, Martin; Michalakis, Stylianos

    2017-01-01

    Retinitis pigmentosa (RP) denotes a family of inherited blinding eye diseases characterized by progressive degeneration of rod and cone photoreceptors in the retina. In most cases, a rod-specific genetic defect results in early functional loss and degeneration of rods, which is followed by degeneration of cones and loss of daylight vision at later stages. Microglial cells, the immune cells of the central nervous system, are activated in retinas of RP patients and in several RP mouse models. However, it is still a matter of debate whether activated microglial cells may be responsible for the amplification of the typical degenerative processes. Here, we used Cngb1 -/- mice, which represent a slow degenerative mouse model of RP, to investigate the extent of microglia activation in retinal degeneration. With a combination of FACS analysis, immunohistochemistry and gene expression analysis we established that microglia in the Cngb1 -/- retina were already activated in an early, predegenerative stage of the disease. The evidence available so far suggests that early retinal microglia activation represents a first step in RP, which might initiate or accelerate photoreceptor degeneration.

  8. Electron transport properties of degenerate n-type GaN prepared by pulsed sputtering

    NASA Astrophysics Data System (ADS)

    Ueno, Kohei; Fudetani, Taiga; Arakawa, Yasuaki; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2017-12-01

    We report a systematic investigation of the transport properties of highly degenerate electrons in Ge-doped and Si-doped GaN epilayers prepared using the pulsed sputtering deposition (PSD) technique. Secondary-ion mass spectrometry and Hall-effect measurements revealed that the doping efficiency of PSD n-type GaN is close to unity at electron concentrations as high as 5.1 × 1020 cm-3. A record low resistivity for n-type GaN of 0.16 mΩ cm was achieved with an electron mobility of 100 cm2 V-1 s-1 at a carrier concentration of 3.9 × 1020 cm-3. We explain this unusually high electron mobility of PSD n-type GaN within the framework of conventional scattering theory by modifying a parameter related to nonparabolicity of the conduction band. The Ge-doped GaN films show a slightly lower electron mobility compared with Si-doped films with the same carrier concentrations, which is likely a consequence of the formation of a small number of compensation centers. The excellent electrical properties presented in this letter clearly demonstrate the striking advantages of the low-temperature PSD technique for growing high-quality and highly conductive n-type GaN.

  9. Evaluation of hyaloid-retinal relationship during triamcinolone-assisted vitrectomy for primary rhegmatogenous retinal detachment.

    PubMed

    Sundar, Dheepak; Takkar, Brijesh; Venkatesh, Pradeep; Chawla, Rohan; Temkar, Shreyas; Azad, Shorya Vardhan; Vohra, Rajpal

    2018-03-01

    To determine hyaloid-retinal relationship in primary rhegmatogenous retinal detachment during vitreous surgery. This is a prospective, interventional study of patients (n = 72) undergoing triamcinolone-assisted 25G vitreous surgery for primary rhegmatogenous retinal detachment. Hyaloid-retinal relationship was noted intraoperatively to identify regions and patterns of firm attachment and was classified into subgroups. Analysis was done to determine association between hyaloid-retinal relationship patterns and preoperative findings: posterior vitreous detachment, proliferative vitreoretinopathy, type of retinal tear, the presence of peripheral degenerations, and postoperative outcomes. Three patterns of hyaloid-retinal relationship were identified: type1 (complete absence of posterior vitreous detachment (21%)), type 2 (incomplete posterior vitreous detachment (47%)) and type 3 (complete posterior vitreous detachment (32%)). Posterior vitreous detachment in some form was present in 84% of the cases with retinal tears as the causative break but none of the cases with retinal holes (p < 0.001). None of the cases with vitreoretinal degeneration had complete posterior vitreous detachment (p = 0.001). 69% of proliferative vitreoretinopathy-C cases had type 1 hyaloid-retinal relationship as compared to 11% cases with no proliferative vitreoretinopathy (p < 0.001). Proliferative vitreoretinopathy-related anatomical failure was seen in 7.5%, and 80% of these eyes with recurrent RD had type 1 hyaloid-retinal relationship (p<0.001). Nearly half the patients diagnosed as complete posterior vitreous detachment preoperatively were found to have incomplete posterior vitreous detachment intraoperatively. Majority of the cases with rhegmatogenous retinal detachment have some form of strong vitreoretinal adhesion. Hyaloid-retinal relationship varies with types of retinal breaks, retinal degeneration, and proliferative vitreoretinopathy. Intraoperative hyaloid-retinal relationship is

  10. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    PubMed Central

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  11. Free radical trap phenyl-N-tert-butylnitrone protects against light damage but does not rescue P23H and S334ter rhodopsin transgenic rats from inherited retinal degeneration.

    PubMed

    Ranchon, Isabelle; LaVail, Matthew M; Kotake, Yashige; Anderson, Robert E

    2003-07-09

    Phenyl-N-tert-butylnitrone (PBN) protects rat retinas against light damage. Because the degenerative process involved in light damage and inherited retinal degeneration both lead to a common final cell death, apoptosis, we used transgenic rats with a P23H or S334ter rhodopsin mutation to test the effects of PBN on retinal degeneration and light damage and the susceptibility of the transgenic rats to light damage. In the first study, 3-week-old mutant and wild-type rats were given no drug, 0.25% PBN in drinking water, or 0.25% PBN in drinking water plus three daily intraperitoneal injections of PBN (100 mg/kg, i.p., every 8 hr). Electroretinograms were recorded at postnatal day 49, after which the rats were killed for morphometric analysis. There was no photoreceptor rescue by PBN in P23H or S334ter rats, as evidenced by equivalent loss of function and photoreceptor cells in the three treatment groups. In the second study, P23H, S334ter, and wild-type rats were exposed for 24 hr to 2700 lux light. The rats were untreated or treated with PBN (50 mg/kg per injection, every 6 hr, starting before exposure). ERGs were recorded before and 1 d after exposure. Animals were killed 6 d later for morphometric analysis. PBN protected wild-type and P23H but not S334ter retinas from light damage. S334ter retinas were relatively less susceptible to light damage than P23H and wild-type rats. The results suggest that the initiating event(s) that causes photoreceptor cell death in the mutated rats is different from that which occurs in light damage, although both ultimately undergo an apoptotic cell death.

  12. Inhibiting autophagy reduces retinal degeneration caused by protein misfolding.

    PubMed

    Yao, Jingyu; Qiu, Yaoyan; Frontera, Eric; Jia, Lin; Khan, Naheed W; Klionsky, Daniel J; Ferguson, Thomas A; Thompson, Debra A; Zacks, David N

    2018-06-25

    Mutations in the genes necessary for the structure and function of vertebrate photoreceptor cells are associated with multiple forms of inherited retinal degeneration. Mutations in the gene encoding RHO (rhodopsin) are a common cause of autosomal dominant retinitis pigmentosa (adRP), with the Pro23His variant of RHO resulting in a misfolded protein that activates endoplasmic reticulum stress and the unfolded protein response. Stimulating macroautophagy/autophagy has been proposed as a strategy for clearing misfolded RHO and reducing photoreceptor death. We found that retinas from mice heterozygous for the gene encoding the RHO P23H variant (hereafter called P23H) exhibited elevated levels of autophagy flux, and that pharmacological stimulation of autophagy accelerated retinal degeneration. In contrast, reducing autophagy flux pharmacologically or by rod-specific deletion of the autophagy-activating gene Atg5, improved photoreceptor structure and function. Furthermore, proteasome levels and activity were reduced in the P23H retina, and increased when Atg5 was deleted. Our findings suggest that autophagy contributes to photoreceptor cell death in P23H mice, and that decreasing autophagy shifts the degradation of misfolded RHO protein to the proteasome and is protective. These observations suggest that modulating the flux of misfolded proteins from autophagy to the proteasome may represent an important therapeutic strategy for reducing proteotoxicity in adRP and other diseases caused by protein folding defects.

  13. Gene Therapy for MERTK-Associated Retinal Degenerations

    PubMed Central

    Matthes, Michael T.; Yang, Haidong; Hauswirth, William W.; Deng, Wen-Tao; Vollrath, Douglas

    2016-01-01

    MERTK-associated retinal degenerations are thought to have defects in phagocytosis of shed outer segment membranes by the retinal pigment epithelium (RPE), as do the rodent models of these diseases. We have subretinally injected an RPE-specific AAV2 vector, AAV2-VMD2-hMERTK, to determine whether this would provide long-term photoreceptor rescue in the RCS rat, which it did for up to 6.5 months, the longest time point examined. Moreover, we found phagosomes in the RPE in the rescued regions of RCS retinas soon after the onset of light. The same vector also had a major protective effect in Mertk-null mice, with a concomitant increase in ERG response amplitudes in the vector-injected eyes. These findings suggest that planned clinical trials with this vector will have a favorable outcome. PMID:26427450

  14. Drosophila melanogaster White Mutant w1118 Undergo Retinal Degeneration

    PubMed Central

    Ferreiro, María José; Pérez, Coralia; Marchesano, Mariana; Ruiz, Santiago; Caputi, Angel; Aguilera, Pedro; Barrio, Rosa; Cantera, Rafael

    2018-01-01

    Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster, using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w1118 strain undergo retinal degeneration. We observed also that w1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white+ in the white null background w1118. We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w1118 strain as a wild-type control should be avoided. PMID:29354028

  15. Treatment of mycosis fungoides with topical nitrosourea compounds: Further studies.

    PubMed

    Zackheim, H S; Epstein, E H

    1975-12-01

    Twenty-six patients with mycosis fungoides were treated topically with three nitrosourea compounds: carmustine (BCNU), lomustine (CCNU), and 1-methyl-1-nitrosourea. A high percentage experienced good to excellent results. Remissions following treatment of individual lesions varied from one month to at least three years. Remissions following total body surface treatment varied from two weeks to at least four months. Two of 13 patients treated over the entire body suffered temporary bone marrow depression, indluding one with severe pancytopenia. This toxic effect was attributed to lomustine and was not seen in patients treated with carmustine alone. Thirteen patients highly allergic to mechlorethamine hydrochloride showed no cross-sensitivity to nitrosourea compounds. A primary irritant dermatitis occurred in about one half of the patients and telangiectasia in two. Two patients developed hypersensitivity to nitrosourea compounds. Carmustine is the preferred nitrosourea compound for topical therapy of mycosis fungoides.

  16. 5-Bromo-N-methyl­pyrimidin-2-amine

    PubMed Central

    Yang, Qi; Xu, Ning; Zhu, Kai; Lv, Xiaoping; Han, Ping-fang

    2012-01-01

    In the title mol­ecule, C5H6BrN3, the pyrimidine ring is essentially planar, with an r.m.s. deviation of 0.007 Å. The Br and N atoms substituted to the pyrimidine ring are coplanar with the ring [displacements = 0.032 (1) and 0.009 (5) Å, respectively], while the methyl C atom lies 0.100 (15) Å from this plane with a dihedral angle between the pyrimidine ring and the methyl­amine group of 4.5 (3)°. In the crystal, C—H⋯N, C—H⋯Br and N—H⋯N hydrogen bonds link the mol­ecules into a two-dimensional network in the (011) plane. PMID:22259398

  17. Investigation of TRPV1 loss-of-function phenotypes in TRPV1 Leu206Stop mice generated by N-ethyl-N-nitrosourea mutagenesis.

    PubMed

    Christoph, Thomas; Kögel, Babette; Schiene, Klaus; Peters, Thomas; Schröder, Wolfgang

    2018-06-02

    N-ethyl-N-nitrosourea (ENU) random mutagenesis was used to generate a mouse model for the analysis of the transient receptor potential vanilloid 1 (TRPV1) cation channel. A transversion from T→A in exon 4 led to a Leu206Stop mutation generating a loss-of-function mutant. The TRPV1 agonist capsaicin was used to analyze functional and nociceptive parameters in vitro and in vivo in TRPV1 Leu206Stop mice and congenic C3HeB/FeJ controls. Capsaicin-induced [Ca 2+ ] i changes in small diameter DRG neurons were significantly diminished in TRPV1 Leu206Stop mice and administration of capsaicin induced neither hypothermia nor nocifensive behaviour in vivo. TRPV1 Leu206Stop mice were tested in the spinal nerve ligation of mononeuropathic pain and developed mechanical hypersensitivity two weeks after nerve injury. In the open field test, a significant increase in spontaneous locomotion was detected in TRPV1 Leu206Stop mice as compared to wildtype controls. TRPV1 knockout mice have been reported to carry a similar phenotype regarding capsaicin-evoked responses in vitro and in vivo. However, in contrast to TRPV1 Leu206Stop mice, TRPV1 knockout mice did not differ in spontaneous locomotion as compared to congenic C57BL/6 mice, suggesting subtle ENU-dependent or independent strain differences between TRPV1 Leu206Stop mice and their wildtype controls. In summary, these data revealed a target-related (i.e. capsaicin-evoked) phenotype of TRPV1 Leu206Stop mice closely resembling that of published TRPV1 knockout mice. However, since ENU-mutant mice are congenic with the mouse strain initially used in random mutagenesis, direct phenotypic comparison with the respective wildtype controls is possible, and the time-consuming backcrossing in lines with targeted mutations is avoided. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Sudden acquired retinal degeneration syndrome in western Canada: 93 cases.

    PubMed

    Leis, Marina L; Lucyshyn, Danica; Bauer, Bianca S; Grahn, Bruce H; Sandmeyer, Lynne S

    2017-11-01

    This study reviewed clinical data from dogs diagnosed with sudden acquired retinal degeneration syndrome (SARDS) in western Canada. Medical records from the Western College of Veterinary Medicine from 2002 to 2016 showed that 93 cases of SARDS were diagnosed based on presentation for sudden blindness and a bilaterally extinguished electroretinogram. The most common pure breeds were the miniature schnauzer, dachshund, and pug. The mean age at diagnosis was 8.1 years and males and females were equally affected. Most of the dogs were presented with normal non-chromatic, but abnormal chromatic pupillary light reflexes. The incidence of retinal degeneration as detected via ophthalmoscopy increased over time after SARDS diagnosis. Polyuria, polydipsia, polyphagia, weight gain, elevated liver enzyme values, isosthenuria, and proteinuria were common clinical and laboratory findings. Chromatic pupillary light reflex testing may be more valuable than non-chromatic pupillary light testing in detecting pupil response abnormalities in dogs with SARDS, although electroretinography remains the definitive diagnostic test.

  19. Sudden acquired retinal degeneration syndrome in western Canada: 93 cases

    PubMed Central

    Leis, Marina L.; Lucyshyn, Danica; Bauer, Bianca S.; Grahn, Bruce H.; Sandmeyer, Lynne S.

    2017-01-01

    This study reviewed clinical data from dogs diagnosed with sudden acquired retinal degeneration syndrome (SARDS) in western Canada. Medical records from the Western College of Veterinary Medicine from 2002 to 2016 showed that 93 cases of SARDS were diagnosed based on presentation for sudden blindness and a bilaterally extinguished electroretinogram. The most common pure breeds were the miniature schnauzer, dachshund, and pug. The mean age at diagnosis was 8.1 years and males and females were equally affected. Most of the dogs were presented with normal non-chromatic, but abnormal chromatic pupillary light reflexes. The incidence of retinal degeneration as detected via ophthalmoscopy increased over time after SARDS diagnosis. Polyuria, polydipsia, polyphagia, weight gain, elevated liver enzyme values, isosthenuria, and proteinuria were common clinical and laboratory findings. Chromatic pupillary light reflex testing may be more valuable than non-chromatic pupillary light testing in detecting pupil response abnormalities in dogs with SARDS, although electroretinography remains the definitive diagnostic test. PMID:29089658

  20. N-methyl-N'-nitro-N-nitrosoguanidine interferes with the epidermal growth factor receptor-mediated signaling pathway.

    PubMed

    Gao, Zhihua; Yang, Jun; Huang, Yun; Yu, Yingnian

    2005-03-01

    Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.

  1. Corneal and Retinal Neuronal Degeneration in Early Stages of Diabetic Retinopathy.

    PubMed

    Srinivasan, Sangeetha; Dehghani, Cirous; Pritchard, Nicola; Edwards, Katie; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2017-12-01

    To examine the neuronal structural integrity of cornea and retina as markers for neuronal degeneration in nonproliferative diabetic retinopathy (NPDR). Participants were recruited from the broader Brisbane community, Queensland, Australia. Two hundred forty-one participants (187 with diabetes and 54 nondiabetic controls) were examined. Diabetic retinopathy (DR) was graded according to the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Corneal nerve fiber length (CNFL), corneal nerve branch density (CNBD), corneal nerve fiber tortuosity (CNFT), full retinal thickness, retinal nerve fiber layer (RNFL), ganglion cell complex (GCC), focal (FLV) and global loss volumes (GLV), hemoglobin A1c (HbA1c), nephropathy, neuropathy, and cardiovascular measures were examined. The central zone (P = 0.174), parafoveal thickness (P = 0.090), perifovea (P = 0.592), RNFL (P = 0.866), GCC (P = 0.798), and GCC GLV (P = 0.338) did not differ significantly between the groups. In comparison to the control group, those with very mild NPDR and those with mild NPDR had significantly higher focal loss in GCC volume (P = 0.036). CNFL was significantly lower in those with mild NPDR (P = 0.004) in comparison to the control group and those with no DR. The CNBD (P = 0.094) and CNFT (P = 0.458) did not differ between the groups. Both corneal and retinal neuronal degeneration may occur in early stages of diabetic retinopathy. Further studies are required to examine these potential markers for neuronal degeneration in the absence of clinical signs of DR.

  2. Laser-induced retinal nerve fiber layer injury in the nonhuman primate

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Belkin, Michael; Zuclich, Joseph A.; Lund, David J.; Schuschereba, Steven T.; Scales, David K.

    1996-04-01

    We have evaluated the acute effects of Argon laser injury to the retinal nerve fiber layer (NFL) in the non-human primate. Single Argon laser exposures of 150 millijoules were employed to induce retinal NFL injury. Retinal NFL injury is not acute; unlike its parallel in retinal disease it has two components that emanate from the acute retinal injury site. The ascending component is more visible, primarily because it is ascending toward the disk, representing ganglion cell axons cut off from their nutrient base, the ganglion cell body; the descending component may require up to 3 weeks to develop. Its characterization depends on the distribution of retinal NFL and the slower degeneration of the ganglion cell bodies. Fluorescein angiography suggest a retinal capillary loss that occurs in the capillary bed of the retinal NFL defect. It may reflect a reduced capillary vascular requirement of the NFL as well as a possible reduction of activity in the axonal transport mechanisms in the ascending NFL defect.

  3. Altered IFN-γ-mediated immunity and transcriptional expression patterns in N-Ethyl-N-nitrosourea-induced STAT4 mutants confer susceptibility to acute typhoid-like disease.

    PubMed

    Eva, Megan M; Yuki, Kyoko E; Dauphinee, Shauna M; Schwartzentruber, Jeremy A; Pyzik, Michal; Paquet, Marilène; Lathrop, Mark; Majewski, Jacek; Vidal, Silvia M; Malo, Danielle

    2014-01-01

    Salmonella enterica is a ubiquitous Gram-negative intracellular bacterium that continues to pose a global challenge to human health. The etiology of Salmonella pathogenesis is complex and controlled by pathogen, environmental, and host genetic factors. In fact, patients immunodeficient in genes in the IL-12, IL-23/IFN-γ pathway are predisposed to invasive nontyphoidal Salmonella infection. Using a forward genomics approach by N-ethyl-N-nitrosourea (ENU) germline mutagenesis in mice, we identified the Ity14 (Immunity to Typhimurium locus 14) pedigree exhibiting increased susceptibility following in vivo Salmonella challenge. A DNA-binding domain mutation (p.G418_E445) in Stat4 (Signal Transducer and Activator of Transcription Factor 4) was the causative mutation. STAT4 signals downstream of IL-12 to mediate transcriptional regulation of inflammatory immune responses. In mutant Ity14 mice, the increased splenic and hepatic bacterial load resulted from an intrinsic defect in innate cell function, IFN-γ-mediated immunity, and disorganized granuloma formation. We further show that NK and NKT cells play an important role in mediating control of Salmonella in Stat4(Ity14/Ity14) mice. Stat4(Ity14/Ity14) mice had increased expression of genes involved in cell-cell interactions and communication, as well as increased CD11b expression on a subset of splenic myeloid dendritic cells, resulting in compromised recruitment of inflammatory cells to the spleen during Salmonella infection. Stat4(Ity14/Ity14) presented upregulated compensatory mechanisms, although inefficient and ultimately Stat4(Ity14/Ity14) mice develop fatal bacteremia. The following study further elucidates the pathophysiological impact of STAT4 during Salmonella infection.

  4. Involvement of all-trans-retinal in acute light-induced retinopathy of mice.

    PubMed

    Maeda, Akiko; Maeda, Tadao; Golczak, Marcin; Chou, Steven; Desai, Amar; Hoppel, Charles L; Matsuyama, Shigemi; Palczewski, Krzysztof

    2009-05-29

    Exposure to bright light can cause visual dysfunction and retinal photoreceptor damage in humans and experimental animals, but the mechanism(s) remain unclear. We investigated whether the retinoid cycle (i.e. the series of biochemical reactions required for vision through continuous generation of 11-cis-retinal and clearance of all-trans-retinal, respectively) might be involved. Previously, we reported that mice lacking two enzymes responsible for clearing all-trans-retinal, namely photoreceptor-specific ABCA4 (ATP-binding cassette transporter 4) and RDH8 (retinol dehydrogenase 8), manifested retinal abnormalities exacerbated by light and associated with accumulation of diretinoid-pyridinium-ethanolamine (A2E), a condensation product of all-trans-retinal and a surrogate marker for toxic retinoids. Now we show that these mice develop an acute, light-induced retinopathy. However, cross-breeding these animals with lecithin:retinol acyltransferase knock-out mice lacking retinoids within the eye produced progeny that did not exhibit such light-induced retinopathy until gavaged with the artificial chromophore, 9-cis-retinal. No significant ocular accumulation of A2E occurred under these conditions. These results indicate that this acute light-induced retinopathy requires the presence of free all-trans-retinal and not, as generally believed, A2E or other retinoid condensation products. Evidence is presented that the mechanism of toxicity may include plasma membrane permeability and mitochondrial poisoning that lead to caspase activation and mitochondria-associated cell death. These findings further understanding of the mechanisms involved in light-induced retinal degeneration.

  5. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration.

    PubMed

    Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin

    2013-11-01

    All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.

  6. 40 CFR 721.1070 - Benzenamine, 4-methoxy-2-methyl-N-(3-methylphenyl).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as benzenamine, 4-methoxy-2-methyl-N-(3-methylphenyl) (PMN P-01-152; CAS No. 93072-06-1) is subject... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenamine, 4-methoxy-2-methyl-N-(3... Specific Chemical Substances § 721.1070 Benzenamine, 4-methoxy-2-methyl-N-(3-methylphenyl). (a) Chemical...

  7. Attenuation by d-limonene of sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats.

    PubMed

    Yano, H; Tatsuta, M; Iishi, H; Baba, M; Sakai, N; Uedo, N

    1999-08-27

    The effects of prolonged administration of d-limonene, a monocyclic monoterpene, on sodium chloride-enhanced induction of gastric carcinogenesis by N-methyl-N'-nitro-N-nitrosoguanidine, the labeling and apoptotic indices, and ornithine decarboxylase (ODC) activity of gastric cancers were investigated in Wistar rats. After 25 weeks of carcinogen treatment, rats were given chow pellets containing 10% sodium chloride and 1% limonene ad libitum. In week 52, the incidence of gastric cancers, the labeling index and ODC activity were significantly higher and the apoptotic index was significantly lower in rats given sodium chlolide than in untreated control rats. However, in rats given both sodium chloride and d-limonene, the incidence of gastric cancers, the labeling index and ODC activity were significantly lower and the apoptotic index was significantly higher than in rats given sodium chloride alone. Our findings suggest that limonene attenuates the gastric carcinogenesis enhanced by sodium chloride via increased apoptosis and decreased ODC activity in gastric cancers. Copyright 1999 Wiley-Liss, Inc.

  8. CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING.

    PubMed

    Hafler, Brian P

    2017-03-01

    Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.

  9. Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-κB suppression.

    PubMed

    Wang, Yong; Huo, Yazhen; Zhao, Liang; Lu, Feng; Wang, Ou; Yang, Xue; Ji, Baoping; Zhou, Feng

    2016-07-01

    Cyanidin-3-glucoside (C3G) is a major anthocyanin in berries and a potential nutritional supplement for preventing retinal degeneration. However, the protective mechanism of C3G and its metabolites, protocatechuic acid (PCA) and ferulic acid (FA), remain unclear. The molecular mechanisms of C3G and its metabolites against retinal photooxidative damage in vivo are investigated. Pigmented rabbits were orally administered C3G, PCA, and FA (0.11 mmol/kg/day) for 3 weeks. Electroretinography, histological analysis, and TUNEL assay showed that C3G and its metabolites attenuated retinal cell apoptosis. The expression of oxidative stress markers were upregulated after light exposure but attenuated by C3G and FA, which may be attributed to the elevated secretion and expression of heme oxygenase (HO-1) and nuclear factor erythroid-2 related factor 2 (Nrf2). C3G, PCA, and FA attenuated the secretion or expression of inflammation-related genes; FA suppressed nuclear factor kappa B (NF-κB) activation. The treatments attenuated the light-induced changes on certain apoptotic proteins and angiogenesis-related cytokines. C3G and FA reduced light-induced retinal oxidative stress by activating the Nrf2/HO-1 antioxidant pathway. FA attenuated the light-induced retinal inflammation by suppressing NF-κB activation. C3G and its metabolites attenuated the photooxidation-induced apoptosis and angiogenesis in the retina. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice

    PubMed Central

    Strazzeri, Jennifer M.; Williams, David R.; Merigan, William H.

    2018-01-01

    Here we demonstrate the application of a method that could accelerate the development of novel therapies by allowing direct and repeatable visualization of cellular function in the living eye, to study loss of vision in animal models of retinal disease, as well as evaluate the time course of retinal function following therapeutic intervention. We use high-resolution adaptive optics scanning light ophthalmoscopy to image fluorescence from the calcium sensor GCaMP6s. In mice with photoreceptor degeneration (rd10), we measured restored visual responses in ganglion cell layer neurons expressing the red-shifted channelrhodopsin ChrimsonR over a six-week period following significant loss of visual responses. Combining a fluorescent calcium sensor, a channelrhodopsin, and adaptive optics enables all-optical stimulation and recording of retinal neurons in the living eye. Because the retina is an accessible portal to the central nervous system, our method also provides a novel non-invasive method of dissecting neuronal processing in the brain. PMID:29596518

  11. Macular Pigment and Lutein Supplementation in ABCA4-associated Retinal Degenerations

    PubMed Central

    Aleman, Tomas S.; Cideciyan, Artur V.; Windsor, Elizabeth A. M.; Schwartz, Sharon B.; Swider, Malgorzata; Chico, John D.; Sumaroka, Alexander; Pantelyat, Alexander Y.; Duncan, Keith G.; Gardner, Leigh M.; Emmons, Jessica M.; Steinberg, Janet D.; Stone, Edwin M.; Jacobson, Samuel G.

    2008-01-01

    PURPOSE To determine macular pigment (MP) optical density (OD) in patients with ABCA4-associated retinal degenerations (ABCA4-RD) and the response of MP and vision to supplementation with lutein. METHODS Stargardt disease or cone-rod dystrophy patients with foveal fixation and with known or suspected disease-causing mutations in the ABCA4 gene were included. MPOD profiles were measured with heterochromatic flicker photometry. Serum carotenoids, visual acuity, foveal sensitivity and retinal thickness were quantified. Changes in MPOD and central vision were determined in a subset of patients receiving oral supplementation with lutein for 6 months. RESULTS MPOD in patients ranged from normal to markedly abnormal. As a group, ABCA4-RD patients had reduced foveal MPOD and there was strong correlation with retinal thickness. Average foveal tissue concentration of MP, estimated by dividing MPOD by retinal thickness, was normal in patients whereas serum concentration of lutein and zeaxanthin was significantly lower than normal. After oral lutein supplementation for 6 months, 91% of the patients showed significant increases in serum lutein and 63% of the patient eyes showed a significant augmentation in MPOD. The retinal responders tended to be female, and have lower serum lutein and zeaxanthin, lower MPOD and greater retinal thickness at baseline. Responding eyes had significantly lower baseline MP concentration compared to non-responding eyes. Central vision was unchanged after the period of supplementation. CONCLUSIONS MP is strongly affected by the stage of ABCA4 disease leading to abnormal foveal architecture. MP could be augmented by supplemental lutein in some patients. There was no change in central vision after 6 months of lutein supplementation. Long-term influences on the natural history of this supplement on macular degenerations require further study. PMID:17325179

  12. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  13. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  14. Iron Mediates N-Methyl-d-aspartate Receptor-dependent Stimulation of Calcium-induced Pathways and Hippocampal Synaptic Plasticity*

    PubMed Central

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.

    2011-01-01

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883

  15. Amplification of bovine papillomavirus DNA by N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, or infection with herpes simplex virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, J.; Schlehofer, J.R.; Mergener, K.

    1989-09-01

    Treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or irradiation with ultraviolet light (uv254 nm) induces amplification of integrated as well as episomal sequences of bovine papillomavirus (BPV) type 1 DNA in BPV-1-transformed mouse C127 cells (i.e., ID13 cells). This is shown by filter in situ hybridization and Southern blot analysis of cellular DNA. Similarly, infection of ID13 cells with herpes simplex virus (HSV) type 1 which has been shown to be mutagenic for host cell DNA leads to amplification of BPV DNA sequences. In contrast to this induction of DNA amplification by initiators, treatment of ID13 cells with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)more » does not result in increased synthesis of BPV DNA nor does TPA treatment modulate the initiator-induced DNA amplification. Similar to other cell systems infection with adeno-associated virus (AAV) type 2 inhibits BPV-1 DNA amplification irrespective of the inducing agent. In contrast to initiator-induced DNA amplification, treatment with carcinogen (MNNG) or tumor promoters or combination of MNNG and promoter of C127 cells prior to transformation by BPV-1 does not lead to an increase in the number of transformed foci. The induction of amplification of papillomavirus DNA by initiating agents possibly represents one of the mechanisms by which the observed synergism between papillomavirus infection and initiators in tumorigenesis might occur.« less

  16. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration.

    PubMed

    Chavali, Venkata R M; Khan, Naheed W; Cukras, Catherine A; Bartsch, Dirk-Uwe; Jablonski, Monica M; Ayyagari, Radha

    2011-05-15

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5(+/-)) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5(+/-) mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies.

  17. Fasudil, a Clinically Used ROCK Inhibitor, Stabilizes Rod Photoreceptor Synapses after Retinal Detachment.

    PubMed

    Townes-Anderson, Ellen; Wang, Jianfeng; Halász, Éva; Sugino, Ilene; Pitler, Amy; Whitehead, Ian; Zarbin, Marco

    2017-06-01

    Retinal detachment disrupts the rod-bipolar synapse in the outer plexiform layer by retraction of rod axons. We showed that breakage is due to RhoA activation whereas inhibition of Rho kinase (ROCK), using Y27632, reduces synaptic damage. We test whether the ROCK inhibitor fasudil, used for other clinical applications, can prevent synaptic injury after detachment. Detachments were made in pigs by subretinal injection of balanced salt solution (BSS) or fasudil (1, 10 mM). In some animals, fasudil was injected intravitreally after BSS-induced detachment. After 2 to 4 hours, retinae were fixed for immunocytochemistry and confocal microscopy. Axon retraction was quantified by imaging synaptic vesicle label in the outer nuclear layer. Apoptosis was analyzed using propidium iodide staining. For biochemical analysis by Western blotting, retinal explants, detached from retinal pigmented epithelium, were cultured for 2 hours. Subretinal injection of fasudil (10 mM) reduced retraction of rod spherules by 51.3% compared to control detachments ( n = 3 pigs, P = 0.002). Intravitreal injection of 10 mM fasudil, a more clinically feasible route of administration, also reduced retraction (28.7%, n = 5, P < 0.05). Controls had no photoreceptor degeneration at 2 hours, but by 4 hours apoptosis was evident. Fasudil 10 mM reduced pyknotic nuclei by 55.7% ( n = 4, P < 0.001). Phosphorylation of cofilin and myosin light chain, downstream effectors of ROCK, was decreased with 30 μM fasudil ( n = 8-10 explants, P < 0.05). Inhibition of ROCK signaling with fasudil reduced photoreceptor degeneration and preserved the rod-bipolar synapse after retinal detachment. These results support the possibility, previously tested with Y27632, that ROCK inhibition may attenuate synaptic damage in iatrogenic detachments.

  18. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection

    PubMed Central

    Costa, Vivian V.; Del Sarto, Juliana L.; Rocha, Rebeca F.; Silva, Flavia R.; Doria, Juliana G.; Olmo, Isabella G.; Marques, Rafael E.; Queiroz-Junior, Celso M.; Foureaux, Giselle; Araújo, Julia Maria S.; Cramer, Allysson; Real, Ana Luíza C. V.; Ribeiro, Lucas S.; Sardi, Silvia I.; Ferreira, Anderson J.; Machado, Fabiana S.; de Oliveira, Antônio C.; Teixeira, Antônio L.; Nakaya, Helder I.; Souza, Danielle G.

    2017-01-01

    ABSTRACT Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. PMID:28442607

  19. Correlation of Cytokine Levels and Microglial Cell Infiltration during Retinal Degeneration in RCS Rats

    PubMed Central

    Liu, Yong; Yang, Xuesen; Utheim, Tor Paaaske; Guo, Chenying; Xiao, Mingchun; Liu, Yan; Yin, Zhengqin; Ma, Jie

    2013-01-01

    Microglial cells, which are immunocompetent cells, are involved in all diseases of the central nervous system. During their activation in various diseases, a variety of soluble factors are released. In the present study, the correlation between cytokine levels and microglial cell migration in the course of retinal degeneration of Royal College of Surgeons (RCS) rats was evaluated. MFG-E8 and CD11b were used to confirm the microglial cells. In the retina of RCS rats, the mRNA expression of seven genes (MFG-E8 and its integrins αυ and ß5, CD11b and the cytokines TNF-α, IL-1ß, and MCP-1) formed almost similar bimodal peak distributions, which were centred at P7 and P45 to P60. In contrast, in rdy rats, which comprised the control group, a unimodal peak distribution centred at P14 was observed. The gene expression accompanied the activation and migration of microglial cells from the inner to the outer layer of the retina during the process of degeneration. Principal component analysis and discriminant function analysis revealed that the expression of these seven genes, especially TNF-α and CD11b, positively correlated with retinal degeneration and microglial activity during retinal degeneration in RCS rats, but not in the control rats. Furthermore, linear regression analysis demonstrated a significant correlation between the expression of these genes and the activation of microglial cells in the dystrophic retina. Our findings suggest that the suppression of microglial cells and the blockade of their cytotoxic effects may constitute a novel therapeutic strategy for treating photoreceptor death in various retinal disorders. PMID:24349184

  20. Correlation of cytokine levels and microglial cell infiltration during retinal degeneration in RCS rats.

    PubMed

    Liu, Yong; Yang, Xuesen; Utheim, Tor Paaaske; Guo, Chenying; Xiao, Mingchun; Liu, Yan; Yin, Zhengqin; Ma, Jie

    2013-01-01

    Microglial cells, which are immunocompetent cells, are involved in all diseases of the central nervous system. During their activation in various diseases, a variety of soluble factors are released. In the present study, the correlation between cytokine levels and microglial cell migration in the course of retinal degeneration of Royal College of Surgeons (RCS) rats was evaluated. MFG-E8 and CD11b were used to confirm the microglial cells. In the retina of RCS rats, the mRNA expression of seven genes (MFG-E8 and its integrins αυ and ß5, CD11b and the cytokines TNF-α, IL-1ß, and MCP-1) formed almost similar bimodal peak distributions, which were centred at P7 and P45 to P60. In contrast, in rdy rats, which comprised the control group, a unimodal peak distribution centred at P14 was observed. The gene expression accompanied the activation and migration of microglial cells from the inner to the outer layer of the retina during the process of degeneration. Principal component analysis and discriminant function analysis revealed that the expression of these seven genes, especially TNF-α and CD11b, positively correlated with retinal degeneration and microglial activity during retinal degeneration in RCS rats, but not in the control rats. Furthermore, linear regression analysis demonstrated a significant correlation between the expression of these genes and the activation of microglial cells in the dystrophic retina. Our findings suggest that the suppression of microglial cells and the blockade of their cytotoxic effects may constitute a novel therapeutic strategy for treating photoreceptor death in various retinal disorders.

  1. Bioconversion of 6-(N-methyl-N-phenyl)aminomethyl androstane steroids by Nocardioides simplex.

    PubMed

    Sukhodolskaya, Galina; Fokina, Victoria; Shutov, Andrei; Nikolayeva, Vera; Savinova, Tatiana; Grishin, Yuri; Kazantsev, Alexey; Lukashev, Nikolay; Donova, Marina

    2017-02-01

    The newly synthesized (α/β)-diastereomers of 6-(N-methyl-N-phenyl)aminomethylandrost-4-ene-3,17-dione (5) and 6-(N-methyl-N-phenyl)aminomethylandrost-4-en-17β-ol-3-one (6) were firstly investigated as substrates for the whole cells of Nocardioides simplex VKM Ac-2033D in comparison with their unsubstituted analogs, - androst-4-ene-3,17-dione (1) and androst-4-en-17β-ol-3-one (2). 1(2)-Dehydroderivatives were identified as the major bioconversion products from all the substrates tested. When using the mixtures of (α/β)-stereoisomers of 5 and 6 as the substrates, only β-stereoisomers of the corresponding 1,4-diene-steroids were formed. Along with 1(2)-dehydrogenation, N. simplex VKM Ac-2033D promoted oxidation of the hydroxyl group at C-17 position of 6: both 6(α) and 6(β) were transformed to the corresponding 17-keto derivatives. No steroid core destruction was observed during the conversion of the 6-substituted androstanes 5 and 6, while it was significant when 1 or 2 was used as the substrate. The results suggested high potentials of N. simplex VKM Ac-2033D for the generation of novel 1(2)-dehydroanalogs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Clinical Characteristics and Current Therapies for Inherited Retinal Degenerations

    PubMed Central

    Sahel, José-Alain; Marazova, Katia; Audo, Isabelle

    2015-01-01

    Inherited retinal degenerations (IRDs) encompass a large group of clinically and genetically heterogeneous diseases that affect approximately 1 in 3000 people (>2 million people worldwide) (Bessant DA, Ali RR, Bhattacharya SS. 2001. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 11: 307–316.). IRDs may be inherited as Mendelian traits or through mitochondrial DNA, and may affect the entire retina (e.g., rod–cone dystrophy, also known as retinitis pigmentosa, cone dystrophy, cone–rod dystrophy, choroideremia, Usher syndrome, and Bardet-Bidel syndrome) or be restricted to the macula (e.g., Stargardt disease, Best disease, and Sorsby fundus dystrophy), ultimately leading to blindness. IRDs are a major cause of severe vision loss, with profound impact on patients and society. Although IRDs remain untreatable today, significant progress toward therapeutic strategies for IRDs has marked the past two decades. This progress has been based on better understanding of the pathophysiological pathways of these diseases and on technological advances. PMID:25324231

  3. Protective effect of methanol extract of Uncaria rhynchophylla against excitotoxicity induced by N-methyl-D-aspartate in rat hippocampus.

    PubMed

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Dae-Keun; Shin, Min-Chul; Jang, Mi-Hyeon; Kim, Chang-Ju; Kim, Yong-Sik; Kim, Sun-Yeou; Kim, Hocheol

    2003-05-01

    Uncaria rhynchophylla is a medicinal herb used for convulsive disorders in Oriental medicine. In this study, the effect of the methanol extract of Uncaria rhynchophylla against N-methyl-D-aspartate (NMDA)-induced excitotoxicity was investigated. Pretreatment with the extract of Uncaria rhynchopylla reduced the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices. In the patch clamp study, Uncaria rhynchophylla significantly inhibited NMDA receptor-activated ion current in acutely dissociated hippocampal CA1 neurons. These results indicate that Uncaria rhynchophylla offers protection against NMDA-induced neuronal injury and inhibitory action on NMDA receptor-mediated ion current may be a mechanism behind the neuroprotective effect of Uncaria rhynchophylla.

  4. CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING

    PubMed Central

    HAFLER, BRIAN P.

    2017-01-01

    Purpose Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. Methods A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Results Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Conclusion Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies. PMID:27753762

  5. Chemopreventive effect of epigallocatechin-3-gallate (EGCG) and folic acid on the N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastrointestinal cancer in rat model.

    PubMed

    Xu, Qi; Yang, Chuan Hua; Liu, Qiang; Jin, Xi Feng; Xu, Xi Tao; Tong, Jin Lu; Xiao, Shu Dong; Ran, Zhi Hua

    2011-06-01

    To investigate the chemopreventive effect and mechanisms of epigallocatechin-3-gallate (EGCG) and folic acid on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastrointestinal cancer in rats, and to investigate and compare the combinatorial effects of EGCG and folic acid on the chemoprevention of gastrointestinal carcinogenesis. A total of 159 healthy male Wistar rats were randomly divided into seven groups to have the MNNG in drink (group M), MNNG in drink and EGCG in the feed (group ME), MNNG in drink and folic acid in the feed (group MF), MNNG in drink and EGCG+folic acid in the feed (group MEF), EGCG in the feed (group E), folic acid in the feed (group F) or normal feed (group C), respectively. At 44 weeks, all the rats were killed and assessed for the presence of gastrointestinal tumor. The occurrence of cancer was evaluated by histology. Ki-67 in cancerous tissues and in situ apoptosis were determined by immunohistochemical staining or terminal deoxyribonucleotide transferase-mediated nick-end labeling (TUNEL) assay, respectively. The experiment was completed in 157 rats (98.74%). As compared with group M, the tumor incidence of group MEF decreased significantly (P=0.011). Ki-67 expression in cancerous tissues of group ME and MEF also decreased significantly (P=0.038, P=0.009), while apoptosis of group ME, MF and MEF increased significantly (P=0.000, P=0.003, P=0.000). EGCG combined with folic acid has an obvious chemopreventive effect on gastrointestinal carcinogenesis induced by MNNG in rats. © 2011 The Authors. Journal of Digestive Diseases © 2011 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Blackwell Publishing Asia Pty Ltd.

  6. Inhibition of de novo ceramide biosynthesis by FTY720 protects rat retina from light-induced degeneration[S

    PubMed Central

    Chen, Hui; Tran, Julie-Thu A.; Eckerd, Annette; Huynh, Tuan-Phat; Elliott, Michael H.; Brush, Richard S.; Mandal, Nawajes A.

    2013-01-01

    Light-induced retinal degeneration (LIRD) in albino rats causes apoptotic photoreceptor cell death. Ceramide is a second messenger for apoptosis. We tested whether increases in ceramide mediate photoreceptor apoptosis in LIRD and if inhibition of ceramide synthesis protects the retina. Sprague-Dawley rats were exposed to 2,700 lux white light for 6 h, and the retinal levels of ceramide and its intermediary metabolites were measured by GC-MS or electrospray ionization tandem mass spectrometry. Enzymes of the de novo biosynthetic and sphingomyelinase pathways of ceramide generation were assayed, and gene expression was measured. The dosage and temporal effect of the ceramide synthase inhibitor FTY720 on the LIRD retina were measured by histological and functional analyses. Retinal ceramide levels increased coincident with the increase of dihydroceramide at various time points after light stress. Light stress in retina induces ceramide generation predominantly through the de novo pathway, which was prevented by systemic administration of FTY720 (10 mg/kg) leading to the protection of retinal structure and function. The neuroprotection of FTY720 was independent of its immunosuppressive action. We conclude that ceramide increase by de novo biosynthesis mediates photoreceptor apoptosis in the LIRD model and that inhibition of ceramide production protects the retina against light stress. PMID:23468130

  7. Curcumin Delays Retinal Degeneration by Regulating Microglia Activation in the Retina of rd1 Mice.

    PubMed

    Wang, Yanhe; Yin, Zhiyuan; Gao, Lixiong; Sun, Dayu; Hu, Xisu; Xue, Langyue; Dai, Jiaman; Zeng, YuXiao; Chen, Siyu; Pan, Boju; Chen, Min; Xie, Jing; Xu, Haiwei

    2017-01-01

    Retinitis pigmentosa (RP) is characterized by degeneration of photoreceptors, and there are currently no effective treatments for this disease. However, curcumin has shown neuroprotectant efficacy in a RP rat and swine model, and thus, may have neuroprotective effects in this disease. Immunofluorescence staining, electroretinogram recordings, and behavioral tests were used to analyze the effects of curcumin and the underlying mechanism in retinal degeneration 1 (rd1) mice. The number of apoptotic cells in the retina of rd1 mice at postnatal day 14 significantly decreased with curcumin treatment and visual function was improved. The activation of microglia and secretion of chemokines and matrix metalloproteinases in the retina were inhibited by curcumin. These effects were also observed in a co-culture of BV2 microglial cells and retina-derived 661W cells. Curcumin delayed retinal degeneration by suppressing microglia activation in the retina of rd1 mice. Thus, it may be an effective treatment for neurodegenerative disorders such as RP. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities

    PubMed Central

    Di Pierdomenico, Johnny; García-Ayuso, Diego; Pinilla, Isabel; Cuenca, Nicolás; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Villegas-Pérez, María P.

    2017-01-01

    To study the course of photoreceptor cell death and macro and microglial reactivity in two rat models of retinal degeneration with different etiologies. Retinas from P23H-1 (rhodopsin mutation) and Royal College of Surgeon (RCS, pigment epithelium malfunction) rats and age-matched control animals (Sprague-Dawley and Pievald Viro Glaxo, respectively) were cross-sectioned at different postnatal ages (from P10 to P60) and rhodopsin, L/M- and S-opsin, ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acid protein (GFAP), and proliferating cell nuclear antigen (PCNA) proteins were immunodetected. Photoreceptor nuclei rows and microglial cells in the different retinal layers were quantified. Photoreceptor degeneration starts earlier and progresses quicker in P23H-1 than in RCS rats. In both models, microglial cell activation occurs simultaneously with the initiation of photoreceptor death while GFAP over-expression starts later. As degeneration progresses, the numbers of microglial cells increase in the retina, but decreasing in the inner retina and increasing in the outer retina, more markedly in RCS rats. Interestingly, and in contrast with healthy animals, microglial cells reach the outer nuclei and outer segment layers. The higher number of microglial cells in dystrophic retinas cannot be fully accounted by intraretinal migration and PCNA immunodetection revealed microglial proliferation in both models but more importantly in RCS rats. The etiology of retinal degeneration determines the initiation and pattern of photoreceptor cell death and simultaneously there is microglial activation and migration, while the macroglial response is delayed. The actions of microglial cells in the degeneration cannot be explained only in the basis of photoreceptor death because they participate more actively in the RCS model. Thus, the retinal degeneration caused by pigment epithelium malfunction is more inflammatory and would probably respond better to interventions

  9. Alcohol- and light-induced electro-oculographic responses in age-related macular degeneration & central serous chorioretinopathy. alcohol- and light-induced EOG responses in ARMD & CSC.

    PubMed

    Wu, Kathy H C; Marmor, Michael F

    2005-01-01

    The non-photic electro-oculographic (EOG) response induced by alcohol has been proposed as an indicator of retinal pigment epithelial (RPE) integrity, and reported to be abnormal in age-related macular degeneration (ARMD). To evaluate this proposal, we have measured the alcohol-EOG as well as the ISCEV-standard EOG in patients with ARMD (n=11 patients, 4 eyes with drusen, 8 eyes with 'dry' and 7 eyes with 'wet' lesions) and central serous chorioretinopathy (CSC, n=11 patients, 7 eyes with active and 6 eyes with inactive lesions), compared with 29 normal controls. We recorded the alcohol-induced EOG response after a single oral administration of ethanol at 160 mg/kg, followed by an ISCEV-standard EOG. Blood alcohol levels were monitored with a breath analyzer. We found that neither the alcohol-EOG nor the light-induced EOG response showed any difference between either ARMD or CSC patients and normal controls. Nor was there difference among eyes of different ARMD or CSC subgroups. In addition, blood alcohol concentrations near the time of the alcohol-EOG peak showed no obvious relationship with peak/baseline ratios. These data suggest that neither the alcohol- nor the light-induced EOG is a sensitive indicator of these diseases.

  10. Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration

    PubMed Central

    Wang, Xu; Ma, Wenxin; Gonzalez, Shaimar R.; Kretschmer, Friedrich; Badea, Tudor C.

    2017-01-01

    Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease. SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be

  11. Inhibition of non-NMDA ionotropic glutamate receptors delays the retinal degeneration in rd10 mouse.

    PubMed

    Xiang, Zongqin; Bao, Yiqin; Zhang, Jia; Liu, Chao; Xu, Di; Liu, Feng; Chen, Hui; He, Liumin; Ramakrishna, Seeram; Zhang, Zaijun; Vardi, Noga; Xu, Ying

    2018-06-22

    Retinitis pigmentosa (RP) is a hereditary blinding disease characterized by neurodegeneration of photoreceptors. Retinal ganglion cells (RGCs) in animal models of RP exhibit an abnormally high spontaneous activity that interferes with signal processing. Blocking AMPA/Kainate receptors by bath application of CNQX decreases the spontaneous firing, suggesting that inhibiting these receptors in vivo may help maintain the function of inner retinal neurons in rd10 mice experiencing photoreceptor degeneration. To test this, rd10 mice were i.p. injected with CNQX or GYKI 52466 (an AMPA receptor antagonist) for 1-2 weeks, and examined for their retinal morphology (by immunocytochemistry), function (by MEA recordings) and visual behaviors (using a black/white box). Our data show that iGluRs were up-regulated in the inner plexiform layer (IPL) of rd10 retinas. Application of CNQX at low doses both in vitro and in vivo, attenuated the abnormal spontaneous spiking in RGCs, and increased the light-evoked response of ON RGCs, whereas GYKI 52466 had little effect. CNQX application also improved the behavioral performance. Interestingly, in vivo administration of CNQX delayed photoreceptor degeneration, evidenced by the increased cell number and restored structure. CNQX also improved the structure of bipolar cells. Together, we demonstrated that during photoreceptor degeneration, blockade of the non-NMDA iGluRs decelerates the progression of RGCs dysfunction, possibly by dual mechanisms including slowing photoreceptor degeneration and modulating signal processing within the IPL. Accordingly, this strategy may effectively extend the time window for treating RP. Copyright © 2018. Published by Elsevier Ltd.

  12. A novel RPE65 inhibitor CU239 suppresses visual cycle and prevents retinal degeneration.

    PubMed

    Shin, Younghwa; Moiseyev, Gennadiy; Petrukhin, Konstantin; Cioffi, Christopher L; Muthuraman, Parthasarathy; Takahashi, Yusuke; Ma, Jian-Xing

    2018-07-01

    The retinoid visual cycle is an ocular retinoid metabolism specifically dedicated to support vertebrate vision. The visual cycle serves not only to generate light-sensitive visual chromophore 11-cis-retinal, but also to clear toxic byproducts of normal visual cycle (i.e. all-trans-retinal and its condensation products) from the retina, ensuring both the visual function and the retinal health. Unfortunately, various conditions including genetic predisposition, environment and aging may attribute to a functional decline of the all-trans-retinal clearance. To combat all-trans-retinal mediated retinal degeneration, we sought to slow down the retinoid influx from the RPE by inhibiting the visual cycle with a small molecule. The present study describes identification of CU239, a novel non-retinoid inhibitor of RPE65, a key enzyme in the visual cycle. Our data demonstrated that CU239 selectively inhibited isomerase activity of RPE65, with IC 50 of 6 μM. Further, our results indicated that CU239 inhibited RPE65 via competition with its substrate all-trans-retinyl ester. Mice with systemic injection of CU239 exhibited delayed chromophore regeneration after light bleach, and conferred a partial protection of the retina against injury from high intensity light. Taken together, CU239 is a potent visual cycle modulator and may have a therapeutic potential for retinal degeneration. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Rebamipide induces dendritic cell recruitment to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-exposed rat gastric mucosa based on IL-1β upregulation.

    PubMed

    Yamamichi, Nobutake; Oka, Masashi; Inada, Ken-ichi; Konno-Shimizu, Maki; Kageyama-Yahara, Natsuko; Tamai, Hideyuki; Kato, Jun; Fujishiro, Mitsuhiro; Kodashima, Shinya; Niimi, Keiko; Ono, Satoshi; Tsutsumi, Yutaka; Ichinose, Masao; Koike, Kazuhiko

    2012-07-20

    Rebamipide is usually used for mucosal protection, healing of gastric ulcers, treatment of gastritis, etc., but its effects on gastric malignancy have not been elucidated. Using Lewis and Buffalo rat strains treated with peroral administration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we evaluated the effect of rebamipide on the induction of tumor-suppressive dendritic cells, which are known to be heterogeneous antigen-presenting cells of bone marrow origin and are critical for the initiation of primary T-cell responses. Using CD68 as a marker for dendritic cells, the stomach pyloric mucosae of Lewis and Buffalo rats were immunohistochemically analyzed in the presence or absence of rebamipide and MNNG. After a 14-day treatment of rebamipide alone, no significant change in number of CD68-expressing cells was detected in either rat strain. However, after concurrent exposure to MNNG for 14 days, treatment with rebamipide slightly increased CD68-positive cells in the Lewis strain, and significantly increased them in the Buffalo strain. Analysis of two chemotactic factors of dendritic cells, IL-1β and TNF-α, in the gastric cancer cells showed that expression of IL-1β, but not TNF-α, was induced by rebamipide in a dose-dependent manner. A luciferase promoter assay using gastric SH-10-TC cells demonstrated that an element mediating rebamipide action exists in the IL-1β gene promoter region. In conclusion, rebamipide has potential tumor-suppressive effects on gastric tumorigenesis via the recruitment of dendritic cells, based on the upregulation of the IL-1β gene in gastric epithelial cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. MK-801, but not naloxone, attenuates high-dose dextromethorphan-induced convulsive behavior: Possible involvement of the GluN2B receptor.

    PubMed

    Tran, Hai-Quyen; Chung, Yoon Hee; Shin, Eun-Joo; Tran, The-Vinh; Jeong, Ji Hoon; Jang, Choon-Gon; Nah, Seung-Yeol; Yamada, Kiyofumi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2017-11-01

    Dextromethorphan (DM) is a dextrorotatory isomer of levorphanol, a typical morphine-like opioid. When administered at supra-antitussive doses, DM produces psychotoxic and neurotoxic effects in humans. Although DM abuse has been well-documented, few studies have examined the effects of high-dose DM. The present study aimed to explore the effects of a single high dose of DM on mortality and seizure occurrence. After intraperitoneal administration with a high dose of DM (80mg/kg), Sprague-Dawley rats showed increased seizure occurrence and intensity. Hippocampal expression levels of N-methyl-d-aspartate (NMDA) receptor subunits (GluN1N2AN2B), c-Fos and pro-apoptotic factors (Bax and cleaved caspase-3) were upregulated by DM treatment; while levels of anti-apoptotic factors (Bcl-2 and Bcl-xL) were downregulated. Consistently, DM also induced ultrastructural degeneration in the hippocampus. A non-competitive NMDA receptor antagonist, MK-801, attenuated these effects of high-dose DM, whereas an opioid antagonist, naloxone, did not affect DM-induced neurotoxicity. Moreover, pretreatment with a highly specific GluN2B subunit inhibitor, traxoprodil, was selectively effective in preventing DM-induced c-Fos expression and apoptotic changes. These results suggest that high-dose DM produces convulsive behaviors by activating GluN2B/NMDA signaling that leads to pro-apoptotic changes. Copyright © 2017. Published by Elsevier Inc.

  15. Inflammatory pain-induced signaling events following a conditional deletion of the N-methyl-D-aspartate receptor in spinal cord dorsal horn.

    PubMed

    Cheng, H T; Suzuki, M; Hegarty, D M; Xu, Q; Weyerbacher, A R; South, S M; Ohata, M; Inturrisi, C E

    2008-08-26

    The N-methyl-d-aspartate (NMDA) receptor in the spinal cord dorsal horn (SCDH) is one of the mechanisms involved in central sensitization during chronic pain. Previously, this laboratory created a spatio-temporal knockout (KO) of the N-methyl-d-aspartate receptor I (NR1) subunit in the mouse SCDH. The NR1 KO completely blocks NR1 gene and subsequent NMDA receptor expression and function in SCDH neurons. In the NR1 KO mice, the mechanical and cold allodynia induced at 24 h after complete Freund's adjuvant (CFA) was reduced. However, the protective effects of KO were transient and were not seen at 48 h after CFA. These observations suggest the presence of NMDA-independent pathways that contribute to CFA-induced pain. CFA induces the activation of several signaling cascades in the SCDH, including protein kinase C (PKC)gamma and extracellular signal-regulated kinases (ERK1/2). The phosphorylation of PKCgamma and ERK1/2 was inhibited in the SCDH of NR1 KO mice up to 48 h after CFA treatment, suggesting that these pathways are NMDA receptor-dependent. Interestingly, neuronal cyclooxygenase (COX) -2 expression and microglial p38 phosphorylation were induced in the SCDH of the NR1 KO at 48 h after CFA. Our findings provide evidence that inflammatory reactions are responsible for the recurrence of pain after NR1 KO in the SCDH.

  16. Dopaminergic neurotoxicity of S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, and S-methyl-N,N-diethylthiocarbamate (MeDETC) in Caenorhabditis elegans

    PubMed Central

    Caito, Samuel W.; Valentine, William M.; Aschner, Michael

    2013-01-01

    Epidemiological studies corroborate a correlation between pesticide use and Parkinson’s disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S-methyl-N,N-diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. Additionally, worms treated with the three test compounds showed a drastic loss of DAergic-dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD. PMID:23786526

  17. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration

    PubMed Central

    Chavali, Venkata R.M.; Khan, Naheed W.; Cukras, Catherine A.; Bartsch, Dirk-Uwe; Jablonski, Monica M.; Ayyagari, Radha

    2011-01-01

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5+/−) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5+/−mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies. PMID:21349921

  18. A new class of nitrosoureas. 4. Synthesis and antitumor activity of disaccharide derivatives of 3,3-disubstituted 1-(2-chloroethyl)-1-nitrosoureas.

    PubMed

    Tsujihara, K; Ozeki, M; Morikawa, T; Kawamori, M; Akaike, Y; Arai, Y

    1982-04-01

    A series of 33 N-(2-chloroethyl)-N-nitrosocarbamoyl derivatives of N-substituted glycosylamines has been prepared and tested for antitumor activities. The compounds were obtained by reaction of glycosylamines with isocyanate, followed by nitrosation with N2O4. Structure-activity relationships of these trisubstituted nitrosoureas were investigated by varying the N-substituents and disaccharide groups and by comparing them with the corresponding disubstituted analogues. A large number of the nitrosoureas bearing a maltosyl group exhibited strong antitumor activities against leukemia L1210 and Ehrlich ascites carcinoma, and 60-day survivors against leukemia L1210 were found at the optimal dose for these derivatives. In contrast, the lactosyl and the melibiosyl derivatives were almost inactive. The most interesting compound in this series, the 3-isobutyl-3-maltosyl derivative (37), was tested against leukemia L1210 by single and multiple treatment. Its therapeutic ratio (96.3) obtained by multiple treatment is 3 times larger than that (31.5) obtained by single treatment, suggesting a possible clinical utility of 37 by multiple treatment. The favorable effect of a maltosyl moiety in this class of compounds is discussed.

  19. Improvement in vision: a new goal for treatment of hereditary retinal degenerations

    PubMed Central

    Jacobson, Samuel G; Cideciyan, Artur V; Aguirre, Gustavo D; Roman, Alejandro J; Sumaroka, Alexander; Hauswirth, William W; Palczewski, Krzysztof

    2015-01-01

    Introduction: Inherited retinal degenerations (IRDs) have long been considered untreatable and incurable. Recently, one form of early-onset autosomal recessive IRD, Leber congenital amaurosis (LCA) caused by mutations in RPE65 (retinal pigment epithelium-specific protein 65 kDa) gene, has responded with some improvement of vision to gene augmentation therapy and oral retinoid administration. This early success now requires refinement of such therapeutics to fully realize the impact of these major scientific and clinical advances. Areas covered: Progress toward human therapy for RPE65-LCA is detailed from the understanding of molecular mechanisms to preclinical proof-of-concept research to clinical trials. Unexpected positive and complicating results in the patients receiving treatment are explained. Logical next steps to advance the clinical value of the therapeutics are suggested. Expert opinion: The first molecularly based early-phase therapies for an IRD are remarkably successful in that vision has improved and adverse events are mainly associated with surgical delivery to the subretinal space. Yet, there are features of the gene augmentation therapeutic response, such as slowed kinetics of night vision, lack of foveal cone function improvement and relentlessly progressive retinal degeneration despite therapy, that still require research attention. PMID:26246977

  20. AAV-mediated Gene Therapy Halts Retinal Degeneration in PDE6β-deficient Dogs

    PubMed Central

    Pichard, Virginie; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Hulin, Philippe; Tshilenge, Kizito-Tshitoko; Biget, Marine; Ameline, Baptiste; Deschamps, Jack-Yves; Weber, Michel; Le Meur, Guylène; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2016-01-01

    We previously reported that subretinal injection of AAV2/5 RK.cpde6β allowed long-term preservation of photoreceptor function and vision in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency. The present study builds on these earlier findings to provide a detailed assessment of the long-term effects of gene therapy on the spatiotemporal pattern of retinal degeneration in rcd1 dogs treated at 20 days of age. We analyzed the density distribution of the retinal layers and of particular photoreceptor cells in 3.5-year-old treated and untreated rcd1 dogs. Whereas no rods were observed outside the bleb or in untreated eyes, gene transfer halted rod degeneration in all vector-exposed regions. Moreover, while gene therapy resulted in the preservation of cones, glial cells and both the inner nuclear and ganglion cell layers, no cells remained in vector-unexposed retinas, except in the visual streak. Finally, the retinal structure of treated 3.5-year-old rcd1 dogs was identical to that of unaffected 4-month-old rcd1 dogs, indicating near complete preservation. Our findings indicate that gene therapy arrests the degenerative process even if intervention is initiated after the onset of photoreceptor degeneration, and point to significant potential of this therapeutic approach in future clinical trials. PMID:26857842

  1. AAV-mediated Gene Therapy Halts Retinal Degeneration in PDE6β-deficient Dogs.

    PubMed

    Pichard, Virginie; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Hulin, Philippe; Tshilenge, Kizito-Tshitoko; Biget, Marine; Ameline, Baptiste; Deschamps, Jack-Yves; Weber, Michel; Le Meur, Guylène; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2016-05-01

    We previously reported that subretinal injection of AAV2/5 RK.cpde6β allowed long-term preservation of photoreceptor function and vision in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency. The present study builds on these earlier findings to provide a detailed assessment of the long-term effects of gene therapy on the spatiotemporal pattern of retinal degeneration in rcd1 dogs treated at 20 days of age. We analyzed the density distribution of the retinal layers and of particular photoreceptor cells in 3.5-year-old treated and untreated rcd1 dogs. Whereas no rods were observed outside the bleb or in untreated eyes, gene transfer halted rod degeneration in all vector-exposed regions. Moreover, while gene therapy resulted in the preservation of cones, glial cells and both the inner nuclear and ganglion cell layers, no cells remained in vector-unexposed retinas, except in the visual streak. Finally, the retinal structure of treated 3.5-year-old rcd1 dogs was identical to that of unaffected 4-month-old rcd1 dogs, indicating near complete preservation. Our findings indicate that gene therapy arrests the degenerative process even if intervention is initiated after the onset of photoreceptor degeneration, and point to significant potential of this therapeutic approach in future clinical trials.

  2. Decomposition reactions of (hydroxyalkyl) nitrosoureas and related compounds: possible relationship to carcinogenicity.

    PubMed

    Singer, S S

    1985-08-01

    (Hydroxyalkyl)nitrosoureas and the related cyclic carbamates N-nitrosooxazolidones are potent carcinogens. The decompositions of four such compounds, 1-nitroso-1-(2-hydroxyethyl)urea (I), 3-nitrosooxazolid-2-one (II), 1-nitroso-1-(2-hydroxypropyl)urea (III), and 5-methyl-3-nitrosooxazolid-2-one (IV), in aqueous buffers at physiological pH were studied to determine if any obvious differences in decomposition pathways could account for the variety of tumors obtained from these four compounds. The products predicted by the literature mechanisms for nitrosourea and nitrosooxazolidone decompositions (which were derived from experiments at pH 10-12) were indeed the products formed, including glycols, active carbonyl compounds, epoxides, and, from the oxazolidones, cyclic carbonates. Furthermore, it was shown that in pH 6.4-7.4 buffer epoxides were stable reaction products. However, in the presence of hepatocytes, most of the epoxide was converted to glycol. The analytical methods developed were then applied to the analysis of the decomposition products of some related dialkylnitrosoureas, and similar results were obtained. The formation of chemically reactive secondary products and the possible relevance of these results to carcinogenesis studies are discussed.

  3. Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel small molecule Hypoxia Inducible Factor-1 (HIF-1) pathway inhibitors and anti-cancer agents

    PubMed Central

    Mun, Jiyoung; Jabbar, Adnan Abdul; Devi, Narra Sarojini; Yin, Shaoman; Wang, Yingzhe; Tan, Chalet; Culver, Deborah; Snyder, James P.; Van Meir, Erwin G.; Goodman, Mark M.

    2013-01-01

    The Hypoxia Inducible Factor (HIF) pathway is an attractive target for cancer as it controls tumor adaptation to growth under hypoxia and mediates chemo- and radiation resistance. We previously discovered 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, as a novel small molecule HIF-1 pathway inhibitor in a high-throughput cell-based assay, but its in vivo delivery is hampered by poor aqueous solubility (0.009 μM in water; logP7.4: 3.7). Here we describe the synthesis of twelve N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, which were designed to possess optimal lipophilicities and aqueous solubilities by in silico calculations. Experimental logP7.4 values of 8 of the 12 new analogs ranged from 1.2 ∼ 3.1. Aqueous solubilities of 3 analogs were measured, among which the most soluble N-[(8-methoxy-2,2-dimethyl-2H-chromen-6-yl)methyl]-N-(propan-2-yl)pyridine-2-sulfonamide had an aqueous solubility of 80 μM, e.g. a solubility improvement of ∼9,000-fold. The pharmacological optimization had minimal impact on drug efficacy as the compounds retained IC50 values at or below 5 μM in our HIF-dependent reporter assay. PMID:22746274

  4. Spin labeled amino acid nitrosourea derivatives--synthesis and antitumour activity.

    PubMed

    Zheleva, A; Raikov, Z; Ilarionova, M; Todorov, D

    1995-01-01

    The synthesis of three spin labeled derivatives of N-[N'-(chloroethyl)-N'-nitrosocarbamoyl] amino acids is reported. The new nitrosoureas are obtained by condensation of the corresponding N-[N'-(2-chloroethyl)-N'-nitrosocarbamoyl] amino acid with 2,2,6,6-tetramethyl-1-oxyl-4-aminopiperidine using dicyclohexylcarbodiimide. Their chemical structures are confirmed by elemental analysis, IR, MS, and EPR spectroscopy. All newly synthesized compounds showed high antitumour activity against the lymphoid leukemia L1210 in BDF1 mice.

  5. Neuroprotection in rabbit retina with N-acetyl-aspartylglutamate and 2-phosphonyl-methyl pentanedioic acid

    NASA Astrophysics Data System (ADS)

    Hacker, Henry D.; Yourick, Debra L.; Koenig, Michael K.; Slusher, Barbara S.; Meyerhoff, James L.

    1999-06-01

    Retinal tissue is subject to ischemia from diabetic retinopathy and other conditions that affect the retinal vasculature such as lupus erythematosus and temporal arteritis. There is evidence in animal models of reversible ischemia that a therapeutic window exists during early recovery when agents that reduce glutamate activity at its receptor sites can rescue neurons from injury. To model ischemia, we used sodium cyanide (NaCN), to inhibit oxidative metabolism, and 2-deoxyglucose (2-DG) to inhibit glycolysis. Dissociated rabbit retina cells were studied to evaluate the potential neuroprotective effects of N-acetyl-aspartyl-glutamate (MAAG), which competes with glutamate as a low-potency agonist at the NMDA receptor complex. N-acetylated α-linked acidic dipeptidase (NAALADase; the NAAG-hydrolyzing enzyme) is responsible for the hydrolysis of NAAG into glutamate, a neurotransmitter and potent excitotoxin, and N-acetylaspartate. 2-Phosphonyl-methyl pentanedioic acid (PMPA) and β-linked NAAG (β-NAAG), inhibitors of NAALADase, were also tested, since inhibition of NAALADase could reduce synaptic glutamate and increase the concentration of NAAG. We found that metabolic inhibition with NaCN/2-DG for 1 hour caused 50% toxicity as assessed with the MTT assay. Co-treatment with NAAG resulted in dose-dependent protection of up to 55% (p<0.005). When the non-hydrolyzable, NAALADase inhibitor β-NAAG was employed dose-dependent protection of up to 37% was observed (p<0.001). PMPA also showed 48% protection (p<.05-.001) against these insults. These data suggest that NAAG may antagonize the effect of glutamate at the NMDA receptor complex in retina. Inhibition of NAALADase by PMPA and β-NAAG may increase the activity of endogenous NAAG.

  6. The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation.

    PubMed

    Xie, Laiqing; Cheng, Long; Xu, Guoxu; Zhang, Ji; Ji, Xiaoyan; Song, E

    2017-06-10

    Excessive Ultra violet (UV) radiation induces injuries to retinal pigment epithelium (RPE) cells (RPEs) and retinal ganglion cells (RGCs), causing retinal degeneration. Cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates UV-induced cell death. In this study, we show that a novel Cyp-D inhibitor compound 19 efficiently protected RPEs and RGCs from UV radiation. Compound 19-mediated cytoprotection requires Cyp-D, as it failed to further protect RPEs/RGCs from UV when Cyp-D was silenced by targeted shRNAs. Compound 19 almost blocked UV-induced p53-Cyp-D mitochondrial association, mPTP opening and subsequent cytochrome C release. Further studies showed that compound 19 inhibited UV-induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage. Together, compound 19 protects RPEs and RGCs from UV radiation, possibly via silencing Cyp-D-regulated intrinsic mitochondrial death pathway. Compound 19 could a lead compound for treating UV-associated retinal degeneration diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. N-CAM Exhibits a Regulatory Function in Pathological Angiogenesis in Oxygen Induced Retinopathy

    PubMed Central

    Håkansson, Joakim; Ståhlberg, Anders; Wolfhagen Sand, Fredrik; Gerhardt, Holger; Semb, Henrik

    2011-01-01

    Background Diabetic retinopathy and retinopathy of prematurity are diseases caused by pathological angiogenesis in the retina as a consequence of local hypoxia. The underlying mechanism for epiretinal neovascularization (tuft formation), which contributes to blindness, has yet to be identified. Neural cell adhesion molecule (N-CAM) is expressed by Müller cells and astrocytes, which are in close contact with the retinal vasculature, during normal developmental angiogenesis. Methodology/Principal Findings Notably, during oxygen induced retinopathy (OIR) N-CAM accumulated on astrocytes surrounding the epiretinal tufts. Here, we show that N-CAM ablation results in reduced vascular tuft formation due to reduced endothelial cell proliferation despite an elevation in VEGFA mRNA expression, whereas retinal developmental angiogenesis was unaffected. Conclusion/Significance We conclude that N-CAM exhibits a regulatory function in pathological angiogenesis in OIR. This is a novel finding that can be of clinical relevance in diseases associated with proliferative vasculopathy. PMID:22043302

  8. Prolonged ketamine exposure induces increased activity of the GluN2B-containing N-methyl-d-aspartate receptor in the anterior cingulate cortex of neonatal rats.

    PubMed

    Kokane, Saurabh S; Gong, Kerui; Jin, Jianhui; Lin, Qing

    2017-09-01

    Ketamine is a commonly used anesthetic among pediatric patients due to its high efficacy. However, it has been demonstrated by several preclinical studies that, widespread accelerated programmed death of neurons (neuroapoptosis) occurs due to prolonged or repeated exposure to ketamine specifically in the neonatal brain. Therefore, an emphasis on understanding the molecular mechanisms underlying this selective vulnerability of the neonatal brain to ketamine-induced neuroapoptosis becomes important in order to identify potential therapeutic targets, which would help prevent or at least ameliorate this neuroapoptosis. In this study, we demonstrated that repeated ketamine administration (6 injections of 20mg/kg dose given over 12h time period) in neonatal (postnatal day 7; PND 7) Sprague-Dawley rats induced a progressive increase in N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) in the neurons of the anterior cingulate cortex (ACC) for up to 6h after the last ketamine dose. Specifically, we observed that the increased EPSCs were largely mediated by GluN2B-containing NMDARs in the neurons of the ACC. Along with increased synaptic transmission, there was also a significant increase in the expression of the GluN2B-containing NMDARs as well. Taken together, these results showed that after repeated exposure to ketamine, the synaptic transmission mediated by GluN2B-containing NMDARs was significantly increased in the neonatal brain. This was significant as it showed for the first time that ketamine had subunit-specific effects on GluN2B-containing NMDARs, potentially implicating the involvement of these subunits in the increased vulnerability of immature neurons of the neonatal brain to ketamine-induced neuroapoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Extrasynaptic N-Methyl-d-aspartate (NMDA) Receptor Stimulation Induces Cytoplasmic Translocation of the CDKL5 Kinase and Its Proteasomal Degradation*

    PubMed Central

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-01-01

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-d-aspartate receptors and suggest regulation of CDKL5 by cell death pathways. PMID:21832092

  10. Extrasynaptic N-methyl-D-aspartate (NMDA) receptor stimulation induces cytoplasmic translocation of the CDKL5 kinase and its proteasomal degradation.

    PubMed

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-10-21

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-D-aspartate receptors and suggest regulation of CDKL5 by cell death pathways.

  11. Efficacy of a Fatty Acids Dietary Supplement in a Polyethylene Glycol-Induced Mouse Model of Retinal Degeneration

    PubMed Central

    Locri, Filippo; Lardner, Emma; Kvanta, Anders; Rusciano, Dario; Bagnoli, Paola

    2017-01-01

    Current knowledge of the benefits of nutrition supplements for eye pathologies is based largely on the use of appropriate animal models, together with defined dietary supplementation. Here, C57BL6 mice were subretinally injected with polyethylene glycol (PEG)-400, an established model of retinal degeneration with a dry age-related macular degeneration (AMD)-like phenotype, an eye pathology that lacks treatment. In response to PEG-400, markers of the complement system, angiogenesis, inflammation, gliosis, and macrophage infiltration were upregulated in both retinas and retinal pigment epithelium (RPE)/choroids, whereas dietary supplementation with a mixture based on fatty acids counteracted their upregulation. Major effects include a reduction of inflammation, in both retinas and RPE/choroids, and an inhibition of macrophage infiltration in the choroid, yet not in the retina, suggesting a targeted action through the choroidal vasculature. Histological analysis revealed a thinning of the outer nuclear layer (ONL), together with dysregulation of the epithelium layer in response to PEG-400. In addition, immunohistofluorescence demonstrated Müller cell gliosis and macrophage infiltration into subretinal tissues supporting the molecular findings. Reduced ONL thickness, gliosis, and macrophage infiltration were counteracted by the diet supplement. The present data suggest that fatty acids may represent a useful form of diet supplementation to prevent or limit the progression of dry AMD. PMID:28961167

  12. Rasagiline delays retinal degeneration in a mouse model of retinitis pigmentosa via modulation of Bax/Bcl-2 expression.

    PubMed

    Garcia-Delgado, Ana B; Valdés-Sánchez, Lourdes; Calado, Sofia M; Diaz-Corrales, Francisco J; Bhattacharya, Shom S

    2018-05-01

    Retinitis pigmentosa (RP) is an inherited disease characterized by a progressive degeneration of rod photoreceptors. An imbalance between pro- and antiapoptotic factors, such as Bax/Bcl-2, has been involved in retinal degeneration. To date, no cure or effective treatments are available for RP. Rasagiline is an antiparkinsonian drug that has shown neuroprotective effects in part attributed to a modulation of Bax/Bcl-2 expression. In this study, we have evaluated the use of rasagiline as a potential treatment for RP. Newborn rd10 mice, a RP model, were treated with oral rasagiline during 30 days followed by a functional and morphological characterization of their mouse retinas. Treated animals showed a significant improvement in visual acuity and in the electrical responses of photoreceptors to light stimuli. Rasagiline delayed photoreceptor degeneration, which was confirmed not only by a high photoreceptor nuclei counting, but also by a sustained expression of photoreceptor-specific markers. In addition, the expression of proapoptotic Bax decreased, whereas the antiapoptotic factor Bcl-2 increased after rasagiline treatment. This study provides new evidences regarding the neuroprotective effect of rasagiline in the retina, and it brings new insight into the development of future clinical trials using this well-established antiparkinsonian drug to treat RP. © 2017 John Wiley & Sons Ltd.

  13. Clinical characteristics and current therapies for inherited retinal degenerations.

    PubMed

    Sahel, José-Alain; Marazova, Katia; Audo, Isabelle

    2014-10-16

    Inherited retinal degenerations (IRDs) encompass a large group of clinically and genetically heterogeneous diseases that affect approximately 1 in 3000 people (>2 million people worldwide) (Bessant DA, Ali RR, Bhattacharya SS. 2001. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 11: 307-316.). IRDs may be inherited as Mendelian traits or through mitochondrial DNA, and may affect the entire retina (e.g., rod-cone dystrophy, also known as retinitis pigmentosa, cone dystrophy, cone-rod dystrophy, choroideremia, Usher syndrome, and Bardet-Bidel syndrome) or be restricted to the macula (e.g., Stargardt disease, Best disease, and Sorsby fundus dystrophy), ultimately leading to blindness. IRDs are a major cause of severe vision loss, with profound impact on patients and society. Although IRDs remain untreatable today, significant progress toward therapeutic strategies for IRDs has marked the past two decades. This progress has been based on better understanding of the pathophysiological pathways of these diseases and on technological advances. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. TOXICITY OF TETRYL (N-METHYL-N,2,4,6-TETRANITROANILINE) IN F344 RATS

    EPA Science Inventory

    The toxicity of tetryl (N-methyl-N,2,4,6-tetranitroaniline) in male and female F344 rats was evaluated after adminstration in the diet for 14 or 90 days. The 14-day study diet concentrations used were 0, 500, 1250, 2000, 2500, and 5000 ppm; the 90-day study diet concentrations we...

  15. Edaravone Protect against Retinal Damage in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes. PMID:24897298

  16. Edaravone protect against retinal damage in streptozotocin-induced diabetic mice.

    PubMed

    Yuan, Dongqing; Xu, Yidan; Hang, Hui; Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes.

  17. Blockade of N-methyl-d-aspartate receptor activation suppresses learning-induced synaptic elimination

    PubMed Central

    Bock, Jörg; Braun, Katharina

    1999-01-01

    Auditory filial imprinting in the domestic chicken is accompanied by a dramatic loss of spine synapses in two higher associative forebrain areas, the mediorostral neostriatum/hyperstriatum ventrale (MNH) and the dorsocaudal neostriatum (Ndc). The cellular mechanisms that underlie this learning-induced synaptic reorganization are unclear. We found that local pharmacological blockade of N-methyl-d-aspartate (NMDA) receptors in the MNH, a manipulation that has been shown previously to impair auditory imprinting, suppresses the learning-induced spine reduction in this region. Chicks treated with the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV) during the behavioral training for imprinting (postnatal day 0–2) displayed similar spine frequencies at postnatal day 7 as naive control animals, which, in both groups, were significantly higher than in imprinted animals. Because the average dendritic length did not differ between the experimental groups, the reduced spine frequency can be interpreted as a reduction of the total number of spine synapses per neuron. In the Ndc, which is reciprocally connected with the MNH and not directly influenced by the injected drug, learning-induced spine elimination was partly suppressed. Spine frequencies of the APV-treated, behaviorally trained but nonimprinted animals were higher than in the imprinted animals but lower than in the naive animals. These results provide evidence that NMDA receptor activation is required for the learning-induced selective reduction of spine synapses, which may serve as a mechanism of information storage specific for juvenile emotional learning events. PMID:10051669

  18. N-methyl-D-aspartate neurotoxicity in hippocampal slices: protection by aniracetam.

    PubMed

    Pizzi, M; Consolandi, O; Memo, M; Spano, P

    1995-03-14

    Aniracetam, a drug known to elicit cognition enhancing properties in both animals and humans, was found to counteract the neurotoxicity induced by excitatory amino acids in primary cultures of cerebellar neurons. We report here that aniracetam prevents the neurotoxic effect induced by N-methyl-D-aspartate (NMDA) in rat hippocampal slices. Time-course experiments showed that the aniracetam-induced neuroprotection does not require preincubation of the slices with the drug. Maximal effective concentration of aniracetam was 10 microM. Since the NMDA-mediated cell death in hippocampal slices is considered a valuable experimental model of ischemia, these results suggest a possible novel therapeutic application for aniracetam.

  19. Expression and regulation of enzymes in the ceramide metabolic pathway in human retinal pigment epithelial cells and their relevance to retinal degeneration.

    PubMed

    Zhu, DanHong; Sreekumar, Parameswaran G; Hinton, David R; Kannan, Ram

    2010-03-31

    Ceramide and its metabolic derivatives are important modulators of cellular apoptosis and proliferation. Dysregulation or imbalance of their metabolic pathways may promote the development of retinal degeneration. The aim of this study was to identify the expression and regulation of key enzymes of the ceramide pathway in retinal pigment epithelial (RPE) cells. RT-PCR was used to screen the enzymes involved in ceramide metabolism that are expressed in RPE. Over-expression of neutral sphingomyelinase-2 (SMPD3) or sphingosine kinase 1 (Sphk1) in ARPE-19 cells was achieved by transient transfection of SMPD3 or Sphk1 cDNA subcloned into an expression vector. The number of apoptotic or proliferating cells was determined using TUNEL and BrdU assays, respectively. Neutral sphingomyelinase-1, neutral sphingomyelinase-2, acidic ceramidase, ceramide kinase, SphK1 and Sphk2 were expressed in both ARPE-19 and early passage human fetal RPE (fRPE) cells, while alkaline ceramidase 2 was only expressed in fRPE cells. Over-expression of SMPD3 decreased RPE cell proliferation and increased cell apoptosis. The percentage of apoptotic cells increased proportionally with the amount of transfected SMPD3 DNA. Over-expression of SphK1 promoted cell proliferation and protected ARPE-19 cells from ceramide-induced apoptosis. The effect of C(2) ceramide on induction of apoptosis was evaluated in polarized vs. non-polarized RPE cultures; polarization of RPE was associated with much reduced apoptosis in response to ceramide. In conclusion, RPE cells possess the synthetic machinery for the production of ceramide, sphingosine, ceramide-1-phosphate (C1P), and sphingosine-1-phosphate (S1P). Over-expression of SMPD3 may increase cellular ceramide levels, leading to enhanced cell death and arrested cell proliferation. The selective induction of apoptosis in non-polarized RPE cultures by C(2) ceramide suggests that increased ceramide levels will preferentially affect non-polarized RPE, as are found in

  20. Bioassay-guided Isolation of Neuroprotective Fatty Acids from Nigella sativa against 1-methyl-4-phenylpyridinium-induced Neurotoxicity

    PubMed Central

    Hosseinzadeh, Leila; Monaghash, Hoda; Ahmadi, Farahnaz; Ghiasvand, Nastaran; Shokoohinia, Yalda

    2017-01-01

    Objective: Parkinson's disease, a slowly progressive neurological disease, is associated with degeneration of the basal ganglia of the brain and a deficiency of the neurotransmitter dopamine. The main aspects of researches are the protection of normal neurons against degeneration. Fatty acids (FAs), the key structural elements of dietary lipids, are carboxylic straight chains and notable parameters in nutritional and industrial usefulness of a plant. Materials and Methods: Black cumin, a popular anti-inflammatory and antioxidant food seasoning, contains nonpolar constituents such as FAs which were extracted using hexane. Different fractions and subfractions were apt to cytoprotection against apoptosis and inflammation induced by 1-methyl-4-phenylpyridinium (MPP+) in rat pheochromocytoma cell line (PC12) as a neural cell death model. The experiment consisted of examination of cell viability assessment, mitochondrial membrane potential (MMP), caspase-3 and -9 activity, and measurement of cyclooxygenase (COX) activity. Results: MPP+ induced neurotoxicity in PC12 cells. Pretreatment with subfractions containing FA mixtures attenuated MPP+-mediated apoptosis partially dependent on the inhibition of caspase-3 and -9 activity and increasing the MMP. A mixture of linoleic acid, oleic acid, and palmitic acid also decreased the COX activity induced by MPP+ in PC12 cells. Conclusion: Our observation indicated that subtoxic concentration of FA from Nigella sativa may exert cytoprotective effects through their anti-apoptotic and anti-inflammation actions and could be regarded as a dietary supplement. SUMMARY MPP+ induced neurotoxicity in PC12 cellsNigella sativa contains bioactive fatty acidsPretreatment with fatty acids attenuated MPP+ mediated apoptosis through inhibition of caspase 3 and 9 activityA mixture of linoleic acid, oleic acid, and palmitic acid decreased the COX activity induced by MPP+ in PC12 cellsDue to cytoprotective, anti apoptotic and anti inflammation

  1. A novel platform for minimally invasive delivery of cellular therapy as a thin layer across the subretina for treatment of retinal degeneration

    NASA Astrophysics Data System (ADS)

    Rotenstreich, Ygal; Tzameret, Adi; Kalish, Sapir E.; Belkin, Michael; Meir, Amilia; Treves, Avraham J.; Nagler, Arnon; Sher, Ifat

    2015-03-01

    Incurable retinal degenerations affect millions worldwide. Stem cell transplantation rescued visual functions in animal models of retinal degeneration. In those studies cells were transplanted in subretinal "blebs", limited number of cells could be injected and photoreceptor rescue was restricted to areas in proximity to the injection sites. We developed a minimally-invasive surgical platform for drug and cell delivery in a thin layer across the subretina and extravascular spaces of the choroid. The novel system is comprised of a syringe with a blunt-tipped needle and an adjustable separator. Human bone marrow mesenchymal stem cells (hBM-MSCs) were transplanted in eyes of RCS rats and NZW rabbits through a longitudinal triangular scleral incision. No immunosuppressants were used. Retinal function was determined by electroretinogram analysis and retinal structure was determined by histological analysis and OCT. Transplanted cells were identified as a thin layer across the subretina and extravascular spaces of the choroid. In RCS rats, cell transplantation delayed photoreceptor degeneration across the entire retina and significantly enhanced retinal functions. No retinal detachment or choroidal hemorrhages were observed in rabbits following transplantation. This novel platform opens a new avenue for drug and cell delivery, placing the transplanted cells in close proximity to the damaged RPE and retina as a thin layer, across the subretina and thereby slowing down cell death and photoreceptor degeneration, without retinal detachment or choroidal hemorrhage. This new transplantation system may increase the therapeutic effect of other cell-based therapies and therapeutic agents. This study is expected to directly lead to phase I/II clinical trials for autologous hBM-MSCs transplantation in retinal degeneration patients.

  2. [Chemotherapeutic characterization of new nitrosourea compounds].

    PubMed

    Zeller, W J; Berger, M R; Eisenbrand, G; Petru, E

    1988-01-01

    The development of new nitrosoureas is described using selected examples. Results obtained with water-soluble analogs and with compounds linked to biomolecules as for instance amino acids, oligopeptides and steroids, are presented. The pronounced antineoplastic effect of some water-soluble analogs is paralleled by an increased rate of DNA-interstrand cross-links and by an increased suppression of hematopoietic stem cells. The suppression of bone marrow stem cells is followed by their rapid regeneration. Water-soluble nitrosoureas induce significant less inhibition of glutathione reductase as compared with established compounds. With regard to long-term toxicity and carcinogenicity water-soluble are superior to established compounds as for instance BCNU. Linking of the nitrosourea moiety to amino acids and oligopeptides led to some analogs with outstanding therapeutic ratio. Out of a group of steroid-linked nitrosoureas, CNC-L-alanine-estradiol-17-ester (CNC-ala-17-E2) is chosen to demonstrate the possibility of reducing bone marrow toxicity despite unchanged or increased therapeutic activity by attachment of the nitrosourea moiety to a steroid. Results of a comparative interspecies in vitro evaluation of CNC-ala-17-E2 in transplanted MXT mammary carcinoma of the mouse, MNU-induced autochthonous rat mammary carcinoma and primary human mammary carcinomas are presented and the question is discussed to what extent in vitro activity of such receptor agents using the tumor stem cell assay reflects their in vivo activity.

  3. Subacute combined degeneration of the cord due to folate deficiency: response to methyl folate treatment.

    PubMed Central

    Lever, E G; Elwes, R D; Williams, A; Reynolds, E H

    1986-01-01

    Subacute combined degeneration of the cord is a rare complication of folate deficiency. Disturbance of methylation reactions in nervous tissue probably underlie subacute combined degeneration of the cord arising from folate as well as vitamin B12 deficiency. Methyl tetrahydrofolate is the form in which folic acid is transported into the CNS. Therefore methyl tetrahydrofolate treatment of the neurological and psychiatric manifestations of folate deficiency would seem to be theoretically advantageous. A case of subacute combined degeneration of the cord due to dietary folate deficiency and associated with an organic brain syndrome is reported. There was striking haematological, neurological and psychiatric response to methyl folate treatment. PMID:3783183

  4. 40 CFR 721.1000 - Benzenamine, 3-chloro-2,6-dinitro-N,N-dipropyl-4-(tri-fluoro-methyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenamine, 3-chloro-2,6-dinitro-N,N-dipropyl-4-(tri-fluoro-methyl)-. 721.1000 Section 721.1000 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.1000 Benzenamine, 3-chloro-2,6-dinitro-N,N...

  5. Retinal Diseases

    MedlinePlus

    ... You are here Home Listen Retinal Diseases Macular Degeneration Age-related macular degeneration (AMD) is a retinal degenerative disease that causes ... is the most common form of inherited juvenile macular degeneration. The progressive vision loss associated with Stargardt disease ...

  6. Intravitreal silicon-based quantum dots as neuroprotective factors in a model of retinal photoreceptor degeneration.

    PubMed

    Olson, Jeffrey L; Velez-Montoya, Raul; Mandava, Naresh; Stoldt, Conrad R

    2012-08-17

    To study the intravitreal application of silicon quantum dots (QDs) and their capabilities to deliver electrical stimulation to the retinal cells and to assess the potential effect on retinal electrophysiology and anatomy. A Royal College of Surgeon rat model of retinal degeneration was used in this study. A total of 32 eyes were used, divided in four groups of 8 eyes each; the first group received the silicon-based QD, the second group received an inactive gold-based QD, the third group received a sham injection, and the fourth group was used as a control. An electroretinogram (ERG) was done at baseline and thereafter every week for 9 weeks. At the end of the follow-up, eyes were collected for further pathologic analysis and nuclei cell counts. Eyes within the silicon-based QD group showed a definite but transient increase in the waves of the ERG, especially in the rod response compared with the sham and control groups (P < 0.05). The pathologic examination demonstrated a higher nuclei count in the QD group, consistent with a higher cell survival rate than that in the sham and control groups in which cells degenerated as expected. Intravitreal injection of silicon-based QD seems to be safe and well tolerated, with no evident toxic reaction and demonstrates a beneficial effect by prolonging cell survival rate and improving ERG patterns in a well-established model of retinal degeneration. (ClinicalTrials.gov numbers NCT00407602, NCT01490827.).

  7. A Proinflammatory Function of Toll-Like Receptor 2 in the Retinal Pigment Epithelium as a Novel Target for Reducing Choroidal Neovascularization in Age-Related Macular Degeneration.

    PubMed

    Feng, Lili; Ju, Meihua; Lee, Kei Ying V; Mackey, Ashley; Evangelista, Mariasilvia; Iwata, Daiju; Adamson, Peter; Lashkari, Kameran; Foxton, Richard; Shima, David; Ng, Yin Shan

    2017-10-01

    Current treatments for choroidal neovascularization, a major cause of blindness for patients with age-related macular degeneration, treat symptoms but not the underlying causes of the disease. Inflammation has been strongly implicated in the pathogenesis of choroidal neovascularization. We examined the inflammatory role of Toll-like receptor 2 (TLR2) in age-related macular degeneration. TLR2 was robustly expressed by the retinal pigment epithelium in mouse and human eyes, both normal and with macular degeneration/choroidal neovascularization. Nuclear localization of NF-κB, a major downstream target of TLR2 signaling, was detected in the retinal pigment epithelium of human eyes, particularly in eyes with advanced stages of age-related macular degeneration. TLR2 antagonism effectively suppressed initiation and growth of spontaneous choroidal neovascularization in a mouse model, and the combination of anti-TLR2 and antivascular endothelial growth factor receptor 2 yielded an additive therapeutic effect on both area and number of spontaneous choroidal neovascularization lesions. Finally, in primary human fetal retinal pigment epithelium cells, ligand binding to TLR2 induced robust expression of proinflammatory cytokines, and end products of lipid oxidation had a synergistic effect on TLR2 activation. Our data illustrate a functional role for TLR2 in the pathogenesis of choroidal neovascularization, likely by promoting inflammation of the retinal pigment epithelium, and validate TLR2 as a novel therapeutic target for reducing choroidal neovascularization. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl-benzene-sulfonamide moiety. In the crystal, mol-ecules are -connected through N-H⋯N hydrogen bonds and weak C-H⋯O contacts, forming a two-dimensional network parallel to (001).

  9. Inner Segment Remodeling and Mitochondrial Translocation in Cone Photoreceptors in Age-Related Macular Degeneration With Outer Retinal Tubulation.

    PubMed

    Litts, Katie M; Messinger, Jeffrey D; Freund, K Bailey; Zhang, Yuhua; Curcio, Christine A

    2015-04-01

    To quantify impressions of mitochondrial translocation in degenerating cones and to determine the nature of accumulated material in the subretinal space with apparent inner segment (IS)-like features by examining cone IS ultrastructure. Human donor eyes with advanced age-related macular degeneration (AMD) were screened for outer retinal tubulation (ORT) in macula-wide, high-resolution digital sections. Degenerating cones inside ORT (ORT cones) and outside ORT (non-ORT cones) from AMD eyes and unaffected cones in age-matched control eyes were imaged using transmission electron microscopy. The distances of mitochondria to the external limiting membrane (ELM), cone IS length, and cone IS width at the ELM were measured. Outer retinal tubulation and non-ORT cones lose outer segments (OS), followed by shortening of IS and mitochondria. In non-ORT cones, IS broaden. Outer retinal tubulation and non-ORT cone IS myoids become undetectable due to mitochondria redistribution toward the nucleus. Some ORT cones were found lacking IS and containing mitochondria in the outer fiber (between soma and ELM). Unlike long, thin IS mitochondria in control cones, ORT and non-ORT IS mitochondria are ovoid or reniform. Shed IS, some containing mitochondria, were found in the subretinal space. In AMD, macula cones exhibit loss of detectable myoid due to IS shortening in addition to OS loss, as described. Mitochondria shrink and translocate toward the nucleus. As reflectivity sources, translocating mitochondria may be detectable using in vivo imaging to monitor photoreceptor degeneration in retinal disorders. These results improve the knowledge basis for interpreting high-resolution clinical retinal imaging.

  10. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations

    PubMed Central

    Laudenbach, Beatrice Theres; Martínez-Montero, Saúl; Cencic, Regina; Habjan, Matthias; Pichlmair, Andreas; Damha, Masad J.; Pelletier, Jerry; Nagar, Bhushan

    2017-01-01

    IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2′-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2′-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA. PMID:28251928

  11. The frequency of Pig-a mutant red blood cells in rats exposed in utero to N-ethyl-N-nitrosourea.

    PubMed

    Dobrovolsky, Vasily N; Heflich, Robert H; Ferguson, Sherry A

    2012-07-01

    The Pig-a assay has been developed as a rapid sensitive measure of gene mutation in adult rats; however, no data exist on its ability to detect mutation following in utero exposures or in neonatal animals. Pregnant Sprague-Dawley rats were treated daily on gestational days 12-18 with oral doses of 0, 6, or 12 mg/kg/day N-ethyl-N-nitrosourea (ENU); following parturition, the offspring and dams were monitored over a period of 5 months for the frequency of CD59-deficient erythrocytes as a marker of Pig-a mutation. Significant dose-related increases in Pig-a mutant red blood cells (RBCs) were observed in ENU-treated dams. However, only very weak increases in RBC Pig-a mutant frequency (MF) were noted in offspring treated in utero with the lower ENU dose. The higher ENU dose produced extremely variable responses in the offspring as a function of age, even among littermates, ranging from a steady low or moderately high Pig-a MF to a rapidly increasing or decreasing Pig-a MF. The manifestation kinetics of Pig-a mutant RBCs in the offspring suggest that the change from predominantly hepatic to predominantly bone marrow erythropoiesis that occurs during early development may have contributed to this variability. Our results indicate that using the RBC Pig-a model for mutation detection in animals treated in utero may require analysis of multiple offspring from the same litter to account for potential "jack pot" effects, and that detection of the earliest treatment effect (i.e., in neonates using the hepatic RBC fraction) may require optimization of blood processing. Published 2012 Wiley Periodicals, Inc.

  12. GluN2B N-methyl-D-aspartate receptor and excitatory amino acid transporter 3 are upregulated in primary sensory neurons after 7 days of morphine administration in rats: implication for opiate-induced hyperalgesia.

    PubMed

    Gong, Kerui; Bhargava, Aditi; Jasmin, Luc

    2016-01-01

    The contribution of the peripheral nervous system to opiate-induced hyperalgesia (OIH) is not well understood. In this study, we determined the changes in excitability of primary sensory neurons after sustained morphine administration for 7 days. Changes in the expression of glutamate receptors and glutamate transporters after morphine administration were ascertained in dorsal root ganglions. Patch clamp recordings from intact dorsal root ganglions (ex vivo preparation) of morphine-treated rats showed increased excitability of small diameter (≤30 μm) neurons with respect to rheobase and membrane threshold, whereas the excitability of large diameter (>30 μm) neurons remained unchanged. Small diameter neurons also displayed increased responses to glutamate, which were mediated mainly by GluN2B containing N-methyl-D-aspartate (NMDA) receptors, and to a lesser degree by the neuronal excitatory amino acid transporter 3/excitatory amino acid carrier 1. Coadministration in vivo of the GluN2B selective antagonist Ro 25-6981 with morphine for 7 days prevented the appearance of OIH and increased morphine-induced analgesia. Administration of morphine for 7 days led to an increased expression of GluN2B and excitatory amino acid transporter 3/excitatory amino acid carrier 1, but not of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate, kainate, or group I metabotropic glutamate receptors, or of the vesicular glutamate transporter 2. These results suggest that peripheral glutamatergic neurotransmission contributes to OIH and that GluN2B subunit of NMDA receptors in the periphery may be a target for therapy.

  13. Morphology of 1-methyl-1-nitrosourea induced rat mammary tumours after treatment with precursor of phytanic acid or its combination with vitamin D analogue.

    PubMed

    Liska, J; Macejova, D; Ondkova, S; Brtko, J

    2012-01-01

    The proposed therapeutical effect of phytol (PHY), a precursor of the phytanic acid (PHYA), on mammary tumours induced with 1-methyl-1-nitrosourea (MNU), was investigated in Sprague-Dawley rats in combination with vitamin D analogue, Seocalcitol (SEO). Female Sprague-Dawley rats were administered intraperitoneally with MNU (50 mg/kg of body weight) at the 46th and 52th days of age. Controls and MNU animals received propyleneglycol appropriate to their body weight. PHY (MNU + PHY) (500 mg/kg) was administered after tumour detection (approximately in 100th day of the life) three times/week. Combination of PHY with SEO (7 μg/kg per week) was administered to rats after tumour detection (approximately in 100th day of the life) until the 181st day of age. Then the animals were sacrificed, the tumours removed, and fixed in 10% formalin. Haematoxylin and eosine stained sections were evaluated under microscope. Tumour invasiveness observed in all groups of animals was ranging from 80 to 90%. Treatment with PHY alone did not inhibit the progression of the MNU induced tumours in the rat breast but it decreased the tumour burden and volume in comparison with MNU treated controls. Decreased tumour burden and volume were induced by combined treatment of PHY with SEO. Malignity and invasivity of carcinomas were not affected. No redifferentiating effect on mammary tumour cells induced by NMU after treatment with PHY alone or in combination with SEO was observed in rats. SEO alone or in combination with PHY inhibited the progression of MNU induced mammary tumours and also inhibited the increase of tumour burden and volume in comparison with MNU treated control group. However, none of the compounds, either alone or in mutual combination, reduced the malignity or the number of invasive tumours in this experimental study.

  14. Associations of human retinal very long-chain polyunsaturated fatty acids with dietary lipid biomarkers

    PubMed Central

    Gorusupudi, Aruna; Liu, Aihua; Hageman, Gregory S.; Bernstein, Paul S.

    2016-01-01

    The human retina is well-known to have unique lipid profiles enriched in long-chain polyunsaturated fatty acids (LC-PUFAs) and very long-chain polyunsaturated fatty acids (VLC-PUFAs) that appear to promote normal retinal structure and function, but the influence of diet on retinal lipid profiles in health and disease remains controversial. In this study, we examined two independent cohorts of donor eyes and related their retinal lipid profiles with systemic biomarkers of lipid intake. We found that serum and red blood cell lipids, and to a lesser extent orbital fat, are indeed excellent biomarkers of retinal lipid content and n-3/n-6 ratios in both the LC-PUFA and VLC-PUFA series. Eyes from age-related macular degeneration (AMD) donors have significantly decreased levels of VLC-PUFAs and low n-3/n-6 ratios. These results are consistent with the protective role of dietary n-3 LC-PUFAs against AMD and emphasize the importance of monitoring systemic biomarkers of lipid intake when undertaking clinical trials of lipid supplements for prevention and treatment of retinal disease. PMID:26764040

  15. The Role of IGFs in the Dietary Lipid Regulation of Breast Cancer

    DTIC Science & Technology

    1998-01-01

    study examining the development of n-methyl nitrosourea (NMU) induced mammary tumors in female Harlan Sprague Dawley rats. These rats received an IV...34 synthesis of growth hormone by pituitaries from rats on different quantitative omega-6 PUFA diets despite significant diet induced differences in

  16. N-hexane inhalation during pregnancy alters DNA promoter methylation in the ovarian granulosa cells of rat offspring.

    PubMed

    Li, Hong; Liu, Jin; Sun, Yan; Wang, Wenxiang; Weng, Shaozheng; Xiao, Shihua; Huang, Huiling; Zhang, Wenchang

    2014-08-01

    The N-hexane-induced impact on the reproductive system of the offspring of animals exposed to n-hexane has caused great concern. Pregnant Wistar rats inhaled 500, 2 500 or 12 500 ppm n-hexane during gestational days 1-20. Clinical characteristics and developmental indices were observed. Ovarian granulosa cells were extracted from F1 rats, the number of follicles was determined in ovarian slices and promoter methylation was assessed using MeDIP-Chip. Several methods were used to analyze the scanned genes, including the Gene Ontology Consortium tools, the DAVID Functional Annotation Clustering Tool, hierarchical clustering and KEGG pathway analysis. The results indicated that the live pups/litter ratio was significantly lowest in the 12 500 ppm group. A significant decrease in secondary follicles and an increase in atresic follicles were observed in the 12 500 ppm group. The number of shared demethylated genes was higher than that of the methylated genes, and the differentially methylated genes were enriched in cell death and apoptosis, cell growth and hormone regulation. The methylation profiles of the offspring from the 500 ppm and control groups were different from those of the 2500 and 12 500 ppm groups. Furthermore, the methylation status of genes in the PI3K-Akt and NF-kappa B signaling pathways was changed after n-hexane exposure. The Cyp11a1, Cyp17a1, Hsd3b1, Cyp1a1 and Srd5a1 promoters were hypermethylated in the n-hexane-exposed groups. These results indicate that the developmental toxicity of n-hexane in F1 ovaries is accompanied by the altered methylation of promoters of genes associated with apoptotic processes and steroid hormone biosynthesis. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse.

    PubMed

    Gargini, Claudia; Novelli, Elena; Piano, Ilaria; Biagioni, Martina; Strettoi, Enrica

    2017-07-18

    Hallmarks of Retinitis Pigmentosa (RP), a family of genetic diseases, are a typical rod-cone-degeneration with initial night blindness and loss of peripheral vision, followed by decreased daylight sight and progressive visual acuity loss up to legal blindness. Great heterogeneity in nature and function of mutated genes, variety of mutations for each of them, variability in phenotypic appearance and transmission modality contribute to make RP a still incurable disease. Translational research relies on appropriate animal models mimicking the genetic and phenotypic diversity of the human pathology. Here, we provide a systematic, morphological and functional analysis of Rho Tvrm4 /Rho + rhodopsin mutant mice, originally described in 2010 and portraying several features of common forms of autosomal dominant RP caused by gain-of-function mutations. These mice undergo photoreceptor degeneration only when exposed briefly to strong, white light and allow controlled timing of induction of rod and cone death, which therefore can be elicited in adult animals, as observed in human RP. The option to control severity and retinal extent of the phenotype by regulating intensity and duration of the inducing light opens possibilities to exploit this model for multiple experimental purposes. Altogether, the unique features of this mutant make it an excellent resource for retinal degeneration research.

  18. Proline analogue of nitrosourea as a new cytotoxic prodrug.

    PubMed

    Stankiewicz-Kranc, Anna; Bielawska, Anna; Bielawski, Krzysztof; Skrzydlewska, Elzbieta

    2009-11-01

    Carmustine is frequently used as anticancer drug. High toxicity and low selectivity reduces the application of this drug. Though, there is a necessity to find new compounds characterized by similar therapeutic effects but a higher selectivity and safety. As a result, the proline analogue of nitrosourea, N-[N'-(2-bromophenyl)-N'-nitrosocarbamoyl]proline (AC), has been synthesized. The aim of this study was to compare the influence of carmustine and the proline analogue of nitrosourea on the antioxidant abilities of fibroblasts and leukemia cells, MOLT4. It was shown that carmustine as well as AC cause an increase in hydrogen peroxide concentration in normal and neoplastic cells. Incubation with both compounds led to a diminution of the activity of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and reductase. Changes in activity / level of antioxidant parameters were accompanied by augmentation of lipid and oxidative protein modifications. In conclusion, carmustine and AC cause changes in the antioxidative system of normal and MOLT4 cells and are a reason of oxidative stress formation.

  19. Chemopreventive effects of rofecoxib and folic acid on gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in rats.

    PubMed

    Fei, Su Juan; Xiao, Shu Dong; Peng, Yan Shen; Chen, Xiao Yu; Shi, Yao

    2006-01-01

    Epidemiological and experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) are chemopreventive agents of gastrointestinal cancers, but few studies on gastric cancer have been carried out. A decrease in folic acid supplement and subsequent DNA hypomethylation are related to gastrointestinal cancers, and it has been shown that high-dose folic acid may interfere with gastric carcinogenesis in dogs. The objective of this study was to investigate the effects of rofecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, and folic acid on the chemoprevention of gastric cancer induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in Wistar rats, and to evaluate the cell proliferation of gastric mucosa in different experimental groups. Eighty male Wistar rats were randomly divided into five groups (16 rats in each group). In the control group, the rats were given pure water and basal diet. In the MNNG group, the rats received MNNG in drinking water (100 mg/L) and basal diet. In the MNNG + low-dose rofecoxib group, the rats were given MNNG and rofecoxib 5 mg/kg per day with basal diet. In the MNNG + high-dose rofecoxib group, the rats were given MNNG and rofecoxib 15 mg/kg per day with basal diet. In the MNNG + folic acid group, the rats were given MNNG and folic acid 5 mg/kg per day with basal diet. The experiment was terminated at 50 weeks, and all rats were killed. Blood samples of 3 mL were obtained for measurement of serum folic acid concentrations in the control group, the MNNG group and the MNNG + folic acid group by using chemiluminescent method. The stomach was removed from all rats for histopathological examination and immunohistochemical study. Proliferating cell nuclear antigen (PCNA) expression in gastric epithelial cells was also determined. In the MNNG group, five of 11 rats (45.5%) developed gastric cancer, while in all other four groups no gastric cancer was found (P < 0.05). The positivity rate of PCNA expression in the cancerous

  20. Novel Animal Model of Crumbs-Dependent Progressive Retinal Degeneration That Targets Specific Cone Subtypes.

    PubMed

    Fu, Jinling; Nagashima, Mikiko; Guo, Chuanyu; Raymond, Pamela A; Wei, Xiangyun

    2018-01-01

    Human Crb1 is implicated in some forms of retinal degeneration, suggesting a role in photoreceptor maintenance. Multiple Crumbs (Crb) polarity genes are expressed in vertebrate retina, although their functional roles are not well understood. To gain further insight into Crb and photoreceptor maintenance, we compared retinal cell densities between wild-type and Tg(RH2-2:Crb2b-sfEX/RH2-2:GFP)pt108b transgenic zebrafish, in which the extracellular domain of Crb2b-short form (Crb2b-sfEX) is expressed in the retina as a secreted protein, which disrupts the planar organization of RGB cones (red, green, and blue) by interfering with Crb2a/2b-based cone-cone adhesion. We used standard morphometric techniques to assess age-related changes in retinal cell densities in adult zebrafish (3 to 27 months old), and to assess effects of the Crb2b-sfEX transgene on retinal structure and photoreceptor densities. Linear cell densities were measured in all retinal layers in radial sections with JB4-Feulgen histology. Planar (surface) densities of cones were determined in retinal flat-mounts. Cell counts from wild-type and pt108b transgenic fish were compared with both a "photoreceptor maintenance index" and statistical analysis of cell counts. Age-related changes in retinal cell linear densities and cone photoreceptor planar densities in wild-type adult zebrafish provided a baseline for analysis. Expression of Crb2b-sfEX caused progressive and selective degeneration of RGB cones, but had no effect on ultraviolet-sensitive (UV) cones, and increased numbers of rod photoreceptors. These differential responses of RGB cones, UV cones, and rods to sustained exposure to Crb2b-sfEX suggest that Crb-based photoreceptor maintenance mechanisms are highly selective.

  1. [Tapeto-retinal degeneration combined with incomplete general albinism (author's transl)].

    PubMed

    Ivandić, T

    1975-05-01

    Report on a family, which presented the rare autosomal dominant transmitted, incomplete general albinism associated with autosomal recessive inherited, diffuse tapeto-retinal degeneration "sine pigmento". hypopigmentation of skin, eyebrows and hair, blue iris and fundus albinoticus with hypoplasia of the macula. In 3 cases additionally appeared: waxy pallor of optic disc, vascular narrowing, reflexless hypoplastic macula, pigmentless periphery, acquired blue-yellow blindness, concentric limitation of the visual field, reduced darkadaptation, abolished electroretinogram and myopic astigmatism.

  2. The toxicity of N-methyl-alpha-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine.

    PubMed

    Carvalho, Márcia; Remião, Fernando; Milhazes, Nuno; Borges, Fernanda; Fernandes, Eduarda; Carvalho, Félix; Bastos, Maria Lourdes

    2004-08-05

    In the past decade, clinical evidence has increasingly shown that the liver is a target organ for 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") toxicity. The aims of the present in vitro study were: (1) to evaluate and compare the hepatotoxic effects of MDMA and one of its main metabolites, N-methyl-alpha-methyldopamine (N-Me-alpha-MeDA) and (2) to investigate the ability of antioxidants, namely ascorbic acid and N-acetyl-L-cysteine (NAC), to prevent N-Me-alpha-MeDA-induced toxic injury, using freshly isolated rat hepatocytes. Cell suspensions were incubated with MDMA or N-Me-alpha-MeDA in the final concentrations of 0.1, 0.2, 0.4, 0.8, and 1.6 mM for 3 h. To evaluate the potential protective effects of antioxidants, cells were preincubated with ascorbic acid in the final concentrations of 0.1 and 0.5 mM, or NAC in the final concentrations of 0.1 and 1 mM for 15 min before treatment with 1.6 mM N-Me-alpha-MeDA for 3 h (throughout this incubation period the cells were exposed to both compounds). The toxic effects were evaluated by measuring the cell viability, glutathione (GSH) and glutathione disulfide (GSSG), ATP, and the cellular activities of GSH peroxidase (GPX), GSSG reductase (GR), and GSH S-transferase (GST). MDMA induced a concentration- and time-dependent GSH depletion, but had a negligible effect on cell viability, ATP levels, or on the activities of GR, GPX, and GST. In contrast, N-Me-alpha-MeDA was shown to induce not only a concentration- and time-dependent depletion of GSH, but also a depletion of ATP levels accompanied by a loss in cell viability, and decreases in the antioxidant enzyme activities. For both compounds, GSH depletion was not accompanied by increases in GSSG levels, which seems to indicate GSH depletion by adduct formation. Importantly, the presence of ascorbic acid (0.5 mM) or NAC (1 mM) prevented cell death and GSH depletion induced by N-Me-alpha-MeDA. The results provide evidence that MDMA and its metabolite N

  3. The effects of retinal abnormalities on the multifocal visual evoked potential.

    PubMed

    Chen, John Y; Hood, Donald C; Odel, Jeffrey G; Behrens, Myles M

    2006-10-01

    To examine the effects on the amplitude and latency of the multifocal visual evoked potential (mfVEP) in retinal diseases associated with depressed multifocal electroretinograms (mfERG). Static automated perimetry (SAP), mfERGs, and mfVEPs were obtained from 15 individuals seen by neuro-ophthalmologists and diagnosed with retinal disease based on funduscopic examination, visual field, and mfERG. Optic neuropathy was ruled out in all cases. Diagnoses included autoimmune retinopathy (n = 3), branch retinal arterial occlusion (n = 3), branch retinal vein occlusion (n = 1), vitamin A deficiency (n = 1), digoxin/age-related macular degeneration (n = 1), multiple evanescent white dot syndrome (n = 1), and nonspecific retinal disease (n = 5). Patients were selected from a larger group based on abnormal mfERG amplitudes covering a diameter of 20 degrees or greater. Fourteen (93%) of 15 patients showed significant mfVEP delays, as determined by either mean latency or the probability of a cluster of delayed local responses. Thirteen of 15 patients had normal mfVEP amplitudes in regions corresponding to markedly reduced or nonrecordable mfERG responses. These findings can be mimicked in normal individuals by viewing the display through a neutral-density filter. Retinal diseases can result in mfVEPs of relatively normal amplitudes, often with delays, in regions showing decreased mfERG responses and visual field sensitivity loss. Consequently, a retinal problem can be missed, or dismissed as functional, if a diagnosis is based on an mfVEP of normal or near-normal amplitude. Further, in patients with marked mfVEP delays, a retinal problem could be confused with optic neuritis, especially in a patient with a normal appearing fundus.

  4. The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model.

    PubMed

    Nakamura, Maho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    The aim of study was to establish a mouse model of blue light emitting diode (LED) light-induced retinal damage and to evaluate the effects of the antioxidant N-acetylcysteine (NAC). Mice were exposed to 400 or 800 lx blue LED light for 2 h, and were evaluated for retinal damage 5 d later by electroretinogram amplitude and outer nuclear layer (ONL) thickness. Additionally, we investigated the effect of blue LED light exposure on shorts-wave-sensitive opsin (S-opsin), and rhodopsin expression by immunohistochemistry. Blue LED light induced light intensity dependent retinal damage and led to collapse of S-opsin and altered rhodopsin localization from inner and outer segments to ONL. Conversely, NAC administered at 100 or 250 mg/kg intraperitoneally twice a day, before dark adaptation and before light exposure. NAC protected the blue LED light-induced retinal damage in a dose-dependent manner. Further, blue LED light-induced decreasing of S-opsin levels and altered rhodopsin localization, which were suppressed by NAC. We established a mouse model of blue LED light-induced retinal damage and these findings indicated that oxidative stress was partially involved in blue LED light-induced retinal damage.

  5. N-substituted methyl maleamates as larvicidal compounds against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Harburguer, Laura; Gonzalez, Paula V; Gonzalez Audino, Paola; Zerba, Eduardo; Masuh, Héctor

    2018-02-01

    Severe human arboviral diseases can be transmitted by the mosquito Aedes aegypti (L.), including dengue, chikungunya, zika, and yellow fever. The use of larvicides in containers that can result as potential breeding places and cannot be eliminated is the main alternative in control programs. However, their continuous and widespread use caused an increase in insecticide-resistant populations of this mosquito. The aim of this study was to evaluate the effect of three N-substituted methyl maleamates as larvicides on Ae. aegypti, the N-propyl methyl maleamate (PMM), N-butyl methyl maleamate (BMM), and N-hexyl methyl maleamate (HMM). These compounds could have a different mode of action from those larvicides known so far. We evaluated the larva mortality after 1 and 24 h of exposure and we found that mortality was fast and occurs within the first 60 min. HMM was slightly more effective with LC 50 values of 0.7 and 0.3 ppm for 1 and 24 h of exposure and LC 95 of 11 and 3 ppm. Our results demonstrate that N-substituted methyl maleamates have insecticidal properties for the control of Ae. aegypti larvae. These compounds could become useful alternatives to traditional larvicides after studying their insecticidal mechanism as well as their toxicity towards non target organisms.

  6. Neuroprotective vaccination with copolymer-1 decreases laser-induced retinal damage

    NASA Astrophysics Data System (ADS)

    Belokopytov, Mark; Dubinsky, Galina; Belkin, Michael; Rosner, Mordechai

    2003-06-01

    The retinal damage induced by laser photocoagulation increases manifold by the secondary degeneration process whereby tissues adjacent to the primary lesion are destroyed. The neuroprotective effect of immunization by glatiramer acetate (Copolymer-1, Cop-1) in adjuvant was previously demonstrated in models of retina, optic nerve, brain, and spinal cord lesions. The present study tested the neuroprotective ability of Cop-1 to reduce the spread of laser-induced retinal damage. Standard argon laser lesions were created in 72 DA pigmented rats divided into four groups: two Cop-1 treated groups (animals treated seven days before or immediately after the laser session) and two control groups treated respectively by saline or the effective but toxic neuroprotective compound MK-801. The histological and morphological evaluations of the lesions 3, 20, and 60 days after the injury revealed significant reduction in photoreceptor loss of the retinas of the pre-immunized animals. Cop-1 given after the laser injury did not prevent cell loss significantly, while the neuroprotective effect of MK-801 was observed only on the third day after the laser injury. The results show that pre-immunization with Cop-1 is neuroprotective in unmyelinated (gray matter) neural tissue such as the retina. This approach may be of clinical significance in ameliorating laser-induced retinal injuries in humans.

  7. The changes of potassium currents in RCS rat Müller cell during retinal degeneration.

    PubMed

    Zhao, TongTao; Li, YaoChen; Weng, ChuanHuang; Yin, ZhengQin

    2012-01-03

    Müller cells are the principal glial cells expressing membrane-bound potassium channel and predominantly mediating the homeostatic regulation of extracellular K+ produced by neuronal activity in retina. It's well known that Müller cells can be activated in many pathological conditions, but little is known about the change of potassium currents of Müller cells during the progression of retinitis pigmentosa. Herein, the Royal College of Surgeons rats (RCS rat) were employed to investigate some phenotypic and functional changes of Müller cells during retinal degeneration such as the expression of Kir4.1, membrane properties and K+ channel currents by using immunohistochemistry, RT-PCR, western blot and whole-cell patch clamping respectively. Compared with Müller cells in control retina, increased glutamine synthetase (GS) mRNA levels were seen at P30 and P60, and then decreased gradually in RCS rat retina. Morphologically, Müller cells showed significant hypertrophy and proliferation after p60. The increased expression of intermediate filament, glial fibrillary acidic protein (GFAP) and vimentin began at P30 and reached a peak at p60. Kir4.1 channels presented a peak expression at P30. Concomitantly, K(+) currents of Müller cells increased at P30 and decreased at P90 significantly. We concluded that retinal Müller cells of RCS rats underwent an activation initiated by the onset of retinal degeneration before p60 and then an obvious reactive gliosis, which led the basic membrane properties to suffer marked changes, and caused the Kir4.1 channels of Müller cells to occur a clear functional shift, even lose their normal electrophysiological properties. This process aggravates the impairment caused by the initial photoreceptor degeneration. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Preventive effects of fructose and N-acetyl-L-cysteine against cytotoxicity induced by the psychoactive compounds N-methyl-5-(2-aminopropyl)benzofuran and 3,4-methylenedioxy-N-methamphetamine in isolated rat hepatocytes.

    PubMed

    Nakagawa, Yoshio; Suzuki, Toshinari; Inomata, Akiko

    2018-02-01

    Psychoactive compounds, N-methyl-5-(2-aminopropyl)benzofuran (5-MAPB) and 3,4-methylenedioxy-N-methamphetamine (MDMA), are known to be hepatotoxic in humans and/or experimental animals. As previous studies suggested that these compounds elicited cytotoxicity via mitochondrial dysfunction and/or oxidative stress in rat hepatocytes, the protective effects of fructose and N-acetyl-l-cysteine (NAC) on 5-MAPB- and MDMA-induced toxicity were studied in rat hepatocytes. These drugs caused not only concentration-dependent (0-4 mm) and time-dependent (0-3 hours) cell death accompanied by the depletion of cellular levels of adenosine triphosphate (ATP) and glutathione (reduced form; GSH) but also an increase in the oxidized form of GSH. The toxic effects of 5-MAPB were greater than those of MDMA. Pretreatment of hepatocytes with either fructose at a concentration of 10 mm or NAC at a concentration of 2.5 mm prevented 5-MAPB-/MDMA-induced cytotoxicity. In addition, the exposure of hepatocytes to 5-MAPB/MDMA caused the loss of mitochondrial membrane potential, although the preventive effect of fructose was weaker than that of NAC. These results suggest that: (1) 5-MAPB-/MDMA-induced cytotoxicity is linked to mitochondrial failure and depletion of cellular GSH; (2) insufficient cellular ATP levels derived from mitochondrial dysfunction were ameliorated, at least in part, by the addition of fructose; and (3) GSH loss via oxidative stress was prevented by NAC. Taken collectively, these results indicate that the onset of toxic effects caused by 5-MAPB/MDMA may be partially attributable to cellular energy stress as well as oxidative stress. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Autophagy and KRT8/keratin 8 protect degeneration of retinal pigment epithelium under oxidative stress.

    PubMed

    Baek, Ahruem; Yoon, Soojin; Kim, Jean; Baek, Yu Mi; Park, Hanna; Lim, Daehan; Chung, Hyewon; Kim, Dong-Eun

    2017-02-01

    Contribution of autophagy and regulation of related proteins to the degeneration of retinal pigment epithelium (RPE) in age-related macular degeneration (AMD) remain unknown. We report that upregulation of KRT8 (keratin 8) as well as its phosphorylation are accompanied with autophagy and attenuated with the inhibition of autophagy in RPE cells under oxidative stress. KRT8 appears to have a dual role in RPE pathophysiology. While increased expression of KRT8 following autophagy provides a cytoprotective role in RPE, phosphorylation of KRT8 induces pathologic epithelial-mesenchymal transition (EMT) of RPE cells under oxidative stress, which is mediated by MAPK1/ERK2 (mitogen-activated protein kinase 1) and MAPK3/ERK1. Inhibition of autophagy further promotes EMT, which can be reversed by inhibition of MAPK. Thus, regulated enhancement of autophagy with concurrent increased expression of KRT8 and the inhibition of KRT8 phosphorylation serve to inhibit oxidative stress-induced EMT of RPE cells as well as to prevent cell death, suggesting that pharmacological manipulation of KRT8 upregulation through autophagy with combined inhibition of the MAPK1/3 pathway may be attractive therapeutic strategies for the treatment of AMD.

  10. Effect of thiopental sodium on N-methyl-D-aspartate-gated currents.

    PubMed

    Liu, Hongliang; Dai, Tijun; Yao, Shanglong

    2006-05-01

    N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex (PFC) are closely related with the excitability of pyramidal neurons and PFC function. As the effect of thiopental sodium on the central nervous system may partly result from the inhibition of PFC NMDA receptors, we investigated the effect of thiopental sodium with different concentrations on NMDA-gated currents in acutely dissociated rat PFC pyramidal neurons. We sought to determine whether thiopental sodium inhibits NMDA receptor function. Three to four week old male Sprague-Dawley rats were sacrificed and the PFC was dissected. Pyramidal neurons from the PFC were prepared and standard whole-cell patch clamp recordings were performed. Escalating concentrations from 3-1000 microM NMDA were applied 100 microm from the pyramidal cells, and the concentration in the effect compartment related to 50% effect (EC50) of NMDA was determined for the ensuing experiments. One hundred microM NMDA alone (control) or NMDA with different concentrations (10-1000 microM) of thiopental sodium were applied. After the inhibitory concentration, in 50% of NMDA effect (IC50) of thiopental sodium was established this IC50 and NMDA 3-1000 microM were applied 100 microm from the pyramidal cells. The EC50 value of NMDA under the effect of IC50 thiopental sodium was determined. N-methyl-D-aspartate induced inward currents in a concentration-dependent manner, which were completely antagonized by 50 microM AP5. The maximal amplitude of NMDA-induced current was 1.15 +/- 0.27 nA. The EC50 of NMDA was 53.6 +/- 12.4 microM. The NMDA (100 microM)-gated current was inhibited by thiopental sodium in a concentration-dependent manner, and the IC50 of thiopental sodium was 33.6 +/- 6.1 microM. Under the effect of 33.6 microM thiopental sodium, the maximal amplitude of NMDA-induced current was 0.87 +/- 0.17 nA. The concentration-response curve of NMDA was shifted rightwards. The EC50 of NMDA was 128 +/- 15 microM, which was greater than that

  11. ELOVL4 protein preferentially elongates 20:5n3 to very long chain PUFAs over 20:4n6 and 22:6n3[S

    PubMed Central

    Yu, Man; Benham, Aaron; Logan, Sreemathi; Brush, R. Steven; Mandal, Md Nawajes A.; Anderson, Robert E.; Agbaga, Martin-Paul

    2012-01-01

    We hypothesized that reduction/loss of very long chain PUFAs (VLC-PUFAs) due to mutations in the ELOngase of very long chain fatty acid-4 (ELOVL4) protein contributes to retinal degeneration in autosomal dominant Stargardt-like macular dystrophy (STGD3) and age-related macular degeneration; hence, increasing VLC-PUFA in the retina of these patients could provide some therapeutic benefits. Thus, we tested the efficiency of elongation of C20-C22 PUFA by the ELOVL4 protein to determine which substrates are the best precursors for biosynthesis of VLC-PUFA. The ELOVL4 protein was expressed in pheochromocytoma cells, while green fluorescent protein-expressing and nontransduced cells served as controls. The cells were treated with 20:5n3, 22:6n3, and 20:4n6, either individually or in equal combinations. Both transduced and control cells internalized and elongated the supplemented FAs to C22-C26 precursors. Only ELOVL4-expressing cells synthesized C28-C38 VLC-PUFA from these precursors. In general, 20:5n3 was more efficiently elongated to VLC-PUFA in the ELOVL4-expressing cells, regardless of whether it was in combination with 22:6n3 or with 20:4n6. In each FA treatment group, C34 and C36 VLC-PUFAs were the predominant VLC-PUFAs in the ELOVL4-expressing cells. In summary, 20:5n3, followed by 20:4n6, seems to be the best precursor for boosting the synthesis of VLC-PUFA by ELOVL4 protein. PMID:22158834

  12. Modulatory effect of phytoglycoprotein (38 kDa) on cyclin D1/CDK4 in BNL CL.2 cells induced by N-methyl-N'-nitro-N-nitrosoguanidine.

    PubMed

    Lee, Jin; Lim, Kye-Taek

    2012-02-01

    In the developmental stages of cancer, cell transformation occurs after the promotion stage and is a marker of cancer progression. This cell transformation is related to abnormal proliferation during the cancer initiation stage. The purpose of this study was to evaluate the effect of Styrax japonica Siebold et al. Zuccarin (SJSZ) glycoprotein on cell transformation in murine embryonic liver cells (BNL CL.2) following N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. To determine abnormal proliferation during the initiation stage, intracellular reactive oxygen species (ROS), phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), activities of cell cycle-related factors [cyclin D1/cyclin dependent kinase (CDK) 4], cell cycle inhibitors (p53, p21, and p27), nuclear factor (NF)-κB, and proliferating cell nuclear antigen (PCNA) were evaluated using Western blot analysis and real-time PCR. Our study demonstrated that SJSZ glycoprotein (50 μg/ml) reduces foci formation with combined treatment [MNNG and 12-O-tetradecanoyl phorbol-13-acetate] of BNL CL.2 cells. With regard to proliferation-related signals, our finding indicated that SJSZ glycoprotein (50 μg/ml) diminished the production of intracellular ROS, activity of phosphorylated ERK, p38 MAPK, NF-κB (p50 and p65), PCNA, and cyclin D1/CDK4 in MNNG-induced BNL CL.2 cells. Taken together, these results lead us to speculate that SJSZ glycoprotein can inhibit abnormal cell proliferation at the initiation stage of hepatocarcinogenesis.

  13. Electronic transport with dielectric confinement in degenerate InN nanowires.

    PubMed

    Blömers, Ch; Lu, J G; Huang, L; Witte, C; Grützmacher, D; Lüth, H; Schäpers, Th

    2012-06-13

    In this Letter, we present the size effects on charge conduction in InN nanowires by comprehensive transport studies supported by theoretical analysis. A consistent model for highly degenerate narrow gap semiconductor nanowires is developed. In contrast to common knowledge of InN, there is no evidence of an enhanced surface conduction, however, high intrinsic doping exists. Furthermore, the room-temperature resistivity exhibits a strong increase when the lateral size becomes smaller than 80 nm and the temperature dependence changes from metallic to semiconductor-like. This effect is modeled by donor deactivation due to dielectric confinement, yielding a shift of the donor band to higher ionization energies as the size shrinks.

  14. TUDCA Slows Retinal Degeneration in Two Different Mouse Models of Retinitis Pigmentosa and Prevents Obesity in Bardet-Biedl Syndrome Type 1 Mice

    PubMed Central

    Drack, Arlene V.; Dumitrescu, Alina V.; Bhattarai, Sajag; Gratie, Daniel; Stone, Edwin M.; Mullins, Robert

    2012-01-01

    Purpose. To evaluate and compare the protective effect of tauroursodeoxycholic acid (TUDCA) on photoreceptor degeneration in different models of retinal degeneration (RD) in mice. Methods. BbsM390R/M390R mice were injected subcutaneously twice a week, from P40 to P120, and rd10 mice were injected every 3 days from P6 to P38 with TUDCA or vehicle (0.15 M NaHCO3). Rd1 and rd16 mice were injected daily from P6 to P30 with TUDCA or vehicle. Retinal structure and function were determined at multiple time points by electroretinography (ERG), optical coherence tomography (OCT), and histology. Results. The amplitude of ERG b-waves was significantly higher in TUDCA-treated Bbs1 and rd10 animals than in controls. Retinal thickness on OCT was slightly greater in treated Bbs1 animals than in the controls. Histologically, outer segments were preserved, and the outer nuclear layer was significantly thicker in the treated Bbs1 and rd10 mice than in the controls. Bbs1M390R/M390R mice developed less obesity than the control Bbs1M390R/M390R while receiving TUDCA. The Rd1 and rd16 mice showed no improvement with TUDCA treatment, and the rd1 mice did not have normal weight gain during treatment. Conclusions. TUDCA treatment preserved ERG b-waves and the outer nuclear layer in Bbs1M390R/M390R mice, and prevented obesity assessed at P120. TUDCA treatment preserved ERG b-waves and the outer nuclear layer in the rd10 mice to P30. TUDCA is a prime candidate for treatment of humans with retinal degeneration, especially those with Bardet-Biedl syndrome, whom it may help not only with the vision loss, but with the debilitating obesity as well. PMID:22110077

  15. N-Methyl Inversion in Pseudo-Pelletierine

    NASA Astrophysics Data System (ADS)

    Vallejo-López, Montserrat; Ecija, Patricia; Cocinero, Emilio J.; Lesarri, Alberto; Basterretxea, Francisco J.; Fernández, José A.

    2016-06-01

    We have previously conducted rotational studies of several tropanes, since this bicyclic structural motif forms the core of different alkaloids of pharmaceutical interest. Now we report on the conformational properties and molecular structure of pseudo-pelletierine (9-methyl-9-azabicyclo[3.3.1]nonan-3-one), probed in a jet expansion with Fourier-transform microwave spectroscopy. Pseudo-pelletierine is an azabicycle with two fused six-membered rings, where the N-methyl group can produce inverting axial o equatorial conformations. The two conformations were detected in the rotational spectrum, recorded in the region 6-18 GHz. Unlike tropinone and N-methylpiperidone, where the most stable conformer is equatorial, the axial species was found dominant for pseudo-pelletierine. All monosubstituted isotopic species (13C, 15N and 18O) were identified for the axial conformer, leading to an accurate determination of the effective and substitution structures. An estimation of conformational populations was derived from relative intensities. The experimental results will be compared with ab initio (MP2) and DFT (M06-2X, B3LYP) calculations. E. J. Cocinero, A. Lesarri, P. Écija, J.-U. Grabow, J. A. Fernández, F. Castaño, Phys. Chem. Chem. Phys. 2010, 49, 4503 P. Écija, E. J. Cocinero, A. Lesarri, F. J. Basterretxea, J. A. Fernández, F. Castaño, Chem. Phys. Chem. 2013, 14, 1830 P. Écija, M. Vallejo-Lopez, I. Uriarte, F. J. Basterretxea, A. Lesarri, J. A. Fernández, E. J. Cocinero, submitted 2016

  16. Crystal structure of 2-bromo-3-di­methyl­amino-N,N,N′,N′,4-penta­methyl-4-(tri­methyl­sil­yloxy)pent-2-eneamidinium bromide

    PubMed Central

    Tiritiris, Ioannis; Kress, Ralf; Kantlehner, Willi

    2015-01-01

    The reaction of the ortho­amide 1,1,1-tris­(di­methyl­amino)-4-methyl-4-(tri­methyl­sil­yloxy)pent-2-yne with bromine in benzene, yields the title salt, C15H33BrN3OSi+·Br−. The C—N bond lengths in the amidinium unit are 1.319 (6) and 1.333 (6) Å, indicating double-bond character, pointing towards charge delocalization within the NCN plane. The C—Br bond length of 1.926 (5) Å is characteristic for a C—Br single bond. Additionally, there is a bromine–bromine inter­action [3.229 (3) Å] present involving the anion and cation. In the crystal, weak C—H⋯Br inter­actions between the methyl H atoms of the cation and the bromide ions are present. PMID:26870498

  17. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2018-05-30

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  18. Effect of pressure on bilayer phase behavior of N-methylated di-O-hexadecylphosphatidylethanolamines: relevance of head-group modification on the bilayer interdigitation.

    PubMed

    Goto, Masaki; Aoki, Yuya; Tamai, Nobutake; Matsuki, Hitoshi

    2017-12-01

    The phase transitions of N-methylated di-O-hexadecylphosphatidylethanolamines (DHPE, DH-N-methyl-PE (DHMePE) and DH-N,N-dimethyl-PE (DHMe 2 PE)) were observed by differential scanning calorimetry (DSC) and fluorometry under atmospheric pressure and by light-transmittance measurements under high pressure. The DSC thermograms showed that the N-methylated DHPE bilayers underwent the phase transition from the gel phase to the liquid crystalline (L α ) phase under atmospheric pressure. The gel phase was identified by fluorometry as the lamellar gel (L β ) phase, and not interdigitated gel (L β I) phase. The gel/L α transition temperature increased with pressure while decreased stepwise with increasing polar head-group size. This stepwise depression of the transition temperature may be caused by the inverse-proportional hydrogen-bonding capabilities of the head-group to the head-group size. The thermodynamic quantities of the gel/L α transition were comparable for the N-methylated DHPE bilayers. The pressure-induced L β I phase was not found in these bilayers although the bilayer of di-O-hexadecylphosphatidylcholine (DHPC), which is a kind of N-methylated DHPEs, forms the L β I phase only by hydration under atmospheric pressure. Taking into account that the bilayers of diacyl-homologs of N-methylated DHPEs, N-methylated dipalmitoyl-PEs except for dipalmitoylphosphatidylcholine (DPPC), do not form the L β I phase in the whole pressure range investigated but the DPPC bilayer forms the L β I phase under high pressure, we can say that the interdigitation requires weaker interaction between large-sized head groups like the bulky choline group. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  20. Crystal structure and electrochemical properties of [Ni(bztmpen)(CH3CN)](BF4)2 {bztmpen is N-benzyl-N,N',N'-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine}.

    PubMed

    Chen, Lin; Ren, Gan; Guo, Yakun; Sang, Ge

    2017-06-01

    The mononuclear nickel title complex (acetonitrile-κ N ){ N -benzyl- N , N ', N '-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine}-nickel(II) bis-(tetra-fluor-ido-borate), [Ni(C 30 H 35 N 5 )(CH 3 CN)](BF 4 ) 2 , was prepared from the reaction of Ni(BF 4 ) 2 ·6H 2 O with N -benzyl- N , N ', N '-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine ( bztmpen ) in aceto-nitrile at room temperature. With an open site occupied by the aceto-nitrile mol-ecule, the nickel(II) atom is chelated by five N-atom sites from the ligand and one N atom from the ligand, showing an overall octa-hedral coordination environment. Compared with analogues where the 6-methyl substituent is absent, the bond length around the Ni 2+ cation are evidently longer. Upon reductive dissociation of the acetro-nitrile mol-ecule, the title complex has an open site for a catalytic reaction. The title complex has two redox couples at -1.50 and -1.80 V ( versus F c +/0 ) based on nickel. The F atoms of the two BF 4 - counter-anions are split into two groups and the occupancy ratios refined to 0.611 (18):0.389 (18) and 0.71 (2):0.29 (2).

  1. Retinal vascular injuries and intravitreal human embryonic stem cell-derived haemangioblasts.

    PubMed

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Zhang, Wei; Lanza, Robert; Lu, Shi-Jiang; Jonas, Jost B; Xu, Liang

    2017-09-01

    To investigate whether intravitreally applied haemangioblasts (HB) derived from human embryonic stem cells (hESCs) are helpful for the repair of vascular damage caused in animals by an oxygen-induced retinopathy (OIR), by an induced diabetic retinopathy (DR) or by an induced retinal ischaemia with subsequent reperfusion. Human embryonic stem cell-derived HBs were transplanted intravitreally into C57BL/6J mice (OIR model), into male Wistar rats with an induced DR and into male Wistar rats undergoing induced retinal ischaemia with subsequent reperfusion. Control groups of animals received an intravitreal injection of endothelial cells (ECs) or phosphate-buffered saline (PBS). We examined the vasculature integrity in the mice with OIR, the blood-retina barrier in the rats with induced DR, and retinal thickness and retinal ganglion cell density in retina flat mounts of the rats with the retinal ischaemic-reperfusion retinopathy. In the OIR model, the study group versus control groups showed a significantly (p < 0.001) smaller retinal avascular area [5.1 ± 2.7%;n = 18 animals versus 12.2 ± 2.8% (PBS group; n = 10 animals) and versus 11.8 ± 3.7% (EC group; n = 8 animals)] and less retinal neovascularization [6.3 ± 2.5%;n = 18 versus 15.2 ± 6.3% (n = 10; PBS group) and versus 15.8 ± 3.3% (n = 8; EC group)]. On retinal flat mounts, hESC-HBs were integrated into damaged retinal vessels and stained positive for PECAM (CD31) as EC marker. In the DR model, the study group versus the EC control group showed a significantly (p = 0.001) better blood-retina barrier function as measured at 2 days after the intravitreal injections [study group: 20.2 ± 12.8 μl/(g × hr); n = 6; versus EC control group: 52.9 ± 9.9 μl/(g × hr; n = 6)]. In the retinal ischaemia-reperfusion model, the groups did not differ significantly in retinal thickness and retinal ganglion cell density at 2, 5 and 7 days after baseline. By integrating into

  2. Long-term Characterization of Retinal Degeneration in Royal College of Surgeons Rats Using Spectral-Domain Optical Coherence Tomography.

    PubMed

    Ryals, Renee C; Andrews, Michael D; Datta, Shreya; Coyner, Aaron S; Fischer, Cody M; Wen, Yuquan; Pennesi, Mark E; McGill, Trevor J

    2017-03-01

    Prospective treatments for age-related macular degeneration and inherited retinal degenerations are commonly evaluated in the Royal College of Surgeons (RCS) rat before translation into clinical application. Historically, retinal thickness obtained through postmortem anatomic assessments has been a key outcome measure; however, utility of this measurement is limited because it precludes the ability to perform longitudinal studies. To overcome this limitation, the present study was designed to provide a baseline longitudinal quantification of retinal thickness in the RCS rat by using spectral-domain optical coherence tomography (SD-OCT). Horizontal and vertical linear SD-OCT scans centered on the optic nerve were captured from Long-Evans control rats at P30, P60, P90 and from RCS rats between P17 and P90. Total retina (TR), outer nuclear layer+ (ONL+), inner nuclear layer (INL), and retinal pigment epithelium (RPE) thicknesses were quantified. Histologic sections of RCS retina obtained from P21 to P60 were compared to SD-OCT images. In RCS rats, TR and ONL+ thickness decreased significantly as compared to Long-Evans controls. Changes in INL and RPE thickness were not significantly different between control and RCS retinas. From P30 to P90 a subretinal hyperreflective layer (HRL) was observed and quantified in RCS rats. After correlation with histology, the HRL was identified as disorganized outer segments and the location of accumulated debris. Retinal layer thickness can be quantified longitudinally throughout the course of retinal degeneration in the RCS rat by using SD-OCT. Thickness measurements obtained with SD-OCT were consistent with previous anatomic thickness assessments. This study provides baseline data for future longitudinal assessment of therapeutic agents in the RCS rat.

  3. Nonessential role of beta3 and beta5 integrin subunits for efficient clearance of cellular debris after light-induced photoreceptor degeneration.

    PubMed

    Joly, Sandrine; Samardzija, Marijana; Wenzel, Andreas; Thiersch, Markus; Grimm, Christian

    2009-03-01

    During light-induced photoreceptor degeneration, large amounts of cellular debris are formed that must be cleared from the subretinal space. The integrins alphavbeta5 and alphavbeta3 are involved in the normal physiological process of phagocytosis in the retina. This study was conducted to investigate the question of whether the lack of beta5 and/or beta3 integrin subunits might influence the course of retinal degeneration and/or clearance of photoreceptor debris induced by acute exposure to light. Wild-type, beta5(-/-) and beta3(-/-) single-knockout, and beta3(-/-)/beta5(-/-) Ccl2(-/-)/beta5(-/-) double-knockout mice were exposed to 13,000 lux of white light for 2 hours to induce severe photoreceptor degeneration. Real-time PCR and Western blot analysis were used to analyze gene and protein expression, light- and electron microscopy to judge retinal morphology, and immunofluorescence to study retinal distribution of proteins. Individual or combined deletion of beta3 and beta5 integrin subunits did not affect the pattern of photoreceptor cell loss or the clearance of photoreceptor debris in mice compared with that in wild-type mice. Invading macrophages may contribute to efficient phagocytosis. However, ablation of the MCP-1 gene did not prevent macrophage recruitment. Several chemokines in addition to MCP-1 were induced after light-induced damage that may have compensated for the deletion of MCP-1. Acute clearance of a large amount of cellular debris from the subretinal space involves invading macrophages and does not depend on beta3 and beta5 integrins.

  4. N.m.r. studies of the conformation of analogues of methyl beta-lactoside in methyl sulfoxide-d6.

    PubMed

    Rivera-Sagredo, A; Jiménez-Barbero, J; Martín-Lomas, M

    1991-12-16

    The 1H- and 13C-n.m.r. spectra of solutions of methyl beta-lactoside (1), all of its monodeoxy derivatives (2, 3, 6-10), the 3-O-methyl derivative (4), and methyl 4-O-beta-D-galactopyranosyl-D-xylopyranoside (5) in methyl sulfoxide-d6 have been analysed. The n.O.e.'s and specific desheildings indicate similar distributions of low-energy conformers, comparable to those in aqueous solution. The major conformer has torsion angles phi H and psi H of 49 degrees and 5 degrees, respectively, with contributions of conformers with phi/psi 24 degrees/-59 degrees, 22 degrees/32 degrees, and 6 degrees/44 degrees.

  5. Sage Gene Expression Profiles Characterizing Cure

    DTIC Science & Technology

    2005-10-01

    achieved in haematological malignancies. In addition, tumour cell lines showed a log-linear dose re- sponse when exposed to alkylating agents [26,27...direct carcinogen, N-methyl nitrosourea (NMU) and an indirect carcinogen, 7,12- dimethylbenzanthracene each depend upon the estrous cycle phase at the...a single dose of N-methyl-N- nitrosourea . Cancer Res 45: 3042–3047, 1995 8. Nagasawa H, Yanai R, Taniguchi H: Importance of mammary gland DNA synthesis

  6. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection.

    PubMed

    Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M

    2017-04-25

    Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.

  7. CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration.

    PubMed

    Burnight, Erin R; Giacalone, Joseph C; Cooke, Jessica A; Thompson, Jessica R; Bohrer, Laura R; Chirco, Kathleen R; Drack, Arlene V; Fingert, John H; Worthington, Kristan S; Wiley, Luke A; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2018-03-22

    Gene correction is a valuable strategy for treating inherited retinal degenerative diseases, a major cause of irreversible blindness worldwide. Single gene defects cause the majority of these retinal dystrophies. Gene augmentation holds great promise if delivered early in the course of the disease, however, many patients carry mutations in genes too large to be packaged into adeno-associated viral vectors and some, when overexpressed via heterologous promoters, induce retinal toxicity. In addition to the aforementioned challenges, some patients have sustained significant photoreceptor cell loss at the time of diagnosis, rendering gene replacement therapy insufficient to treat the disease. These patients will require cell replacement to restore useful vision. Fortunately, the advent of induced pluripotent stem cell and CRISPR-Cas9 gene editing technologies affords researchers and clinicians a powerful means by which to develop strategies to treat patients with inherited retinal dystrophies. In this review we will discuss the current developments in CRISPR-Cas9 gene editing in vivo in animal models and in vitro in patient-derived cells to study and treat inherited retinal degenerative diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Retinal Ultrastructure of Murine Models of Dry Age-related Macular Degeneration (AMD)

    PubMed Central

    Ramkumar, Hema L.; Zhang, Jun; Chan, Chi-Chao

    2010-01-01

    Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. The pathology of dry AMD consists of degeneration of photoreceptors and the RPE, lipofuscin (A2E) accumulation, and drusen formation. Mice have been widely used for generating models that simulate human AMD features for investigating the pathogenesis, treatment and prevention of the disease. Although the mouse has no macula, focal atrophy of photorecptors and RPE, lipofuscin accumulation, and increased A2E can develop in aged mouse eyes. However, drusen are rarely seen in mice because of their simpler Bruch’s membrane and different process of lipofuscin extrusion compared with humans. Thus, analyzing basal deposits at the ultrastructural level and understanding the ultrastructural pathologic differences between various mouse AMD models are critical to comprehending the significance of research findings and response to possible therapeutic options for dry AMD. Based on the multifactorial pathogenesis of AMD, murine dry AMD models can be classified into three groups. First, genetically engineered mice that target genes related to juvenile macular dystrophies are the most common models, and they include abcr−/− (Stargardt disease), transgenic ELOVL4 (Stargardt-3 dominant inheritary disease), Efemp1R345W/R345W (Doyne honeycomb retinal dystrophy), and Timp3S156C/S156C (Sorsby fundus dystrophy) mice. Other murine models target genes relevant to AMD, including inflammatory genes such as Cfh−/−, Ccl2−/−, Ccr2−/−, Cx3cr1−/−, and Ccl2−/−/cx3cr1−/−, oxidative stress associated genes such as Sod1−/− and Sod2 knockdown, metabolic pathway genes such as neprilysin −/− (amyloid β), transgenic mcd/mcd (cathepsin D), Cp−/−/Heph−/Y (ferroxidase ceruloplasmin/hepaestin, iron metabolism), and transgenic ApoE4 on high fat and high cholesterol diet (lipid metabolism). Second, mice have also been immunologically

  9. 2-chloroethanol formation as evidence for a 2-chloroethyl alkylating intermediate during chemical degradation of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and 1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea.

    PubMed

    Reed, D J; May, H E; Boose, R B; Gregory, K M; Beilstein, M A

    1975-03-01

    Chemical degradation of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea or 1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea in buffer under physiological conditions resulted in the formation of a significant quantity of 2-chlorethanol (18 to 25% of the initial nitrosourea concentration). Other degradation products observed included acetaldehyde (5 to 10%), vinyl chloride (1 to 2%), ethylene (1 to 2%), and cyclohexylamine (32%), but not 1,3-dicyclohexylurea. The 2-chlorethyl moiety of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea was trapped with halide ions, CI-, BR-, and I-, to form the corresponding dihaloethanes which were identified by gas chromatography-mass spectrometry techniques. High-pressure liquid chromatographic procedures were developed for the separation and quantiation of the nitrosoureas and many of their degradation products. It is postulated that a new mode of 1(2-chloreoethyl)-3-cyclohexyl-1-nitrosourea and 1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea degradation can occur that is not the loss of the chloro group as chloride ion, but the loss of the N-3 hydrogen as a proton. Then the corresponding isocyanate and 2-chloroethyidiazene hydroxide are formed, with the latter intermidiate becoming an alkylating species, possibly in part as a 2-chloroethyl carbonium ion.

  10. Highly sensitive measurements of disease progression in rare disorders: Developing and validating a multimodal model of retinal degeneration in Stargardt disease.

    PubMed

    Lambertus, Stanley; Bax, Nathalie M; Fakin, Ana; Groenewoud, Joannes M M; Klevering, B Jeroen; Moore, Anthony T; Michaelides, Michel; Webster, Andrew R; van der Wilt, Gert Jan; Hoyng, Carel B

    2017-01-01

    Each inherited retinal disorder is rare, but together, they affect millions of people worldwide. No treatment is currently available for these blinding diseases, but promising new options-including gene therapy-are emerging. Arguably, the most prevalent retinal dystrophy is Stargardt disease. In each case, the specific combination of ABCA4 variants (> 900 identified to date) and modifying factors is virtually unique. It accounts for the vast phenotypic heterogeneity including variable rates of functional and structural progression, thereby potentially limiting the ability of phase I/II clinical trials to assess efficacy of novel therapies with few patients. To accommodate this problem, we developed and validated a sensitive and reliable composite clinical trial endpoint for disease progression based on structural measurements of retinal degeneration. We used longitudinal data from early-onset Stargardt patients from the Netherlands (development cohort, n = 14) and the United Kingdom (external validation cohort, n = 18). The composite endpoint was derived from best-corrected visual acuity, fundus autofluorescence, and spectral-domain optical coherence tomography. Weighting optimization techniques excluded visual acuity from the composite endpoint. After optimization, the endpoint outperformed each univariable outcome, and showed an average progression of 0.41° retinal eccentricity per year (95% confidence interval, 0.30-0.52). Comparing with actual longitudinal values, the model accurately predicted progression (R2, 0.904). These properties were largely preserved in the validation cohort (0.43°/year [0.33-0.53]; prediction: R2, 0.872). We subsequently ran a two-year trial simulation with the composite endpoint, which detected a 25% decrease in disease progression with 80% statistical power using only 14 patients. These results suggest that a multimodal endpoint, reflecting structural macular changes, provides a sensitive measurement of disease progression in

  11. Distinct pathways for repairing mutagenic lesions induced by methylating and ethylating agents

    PubMed Central

    Negishi, Tomoe

    2013-01-01

    DNA alkylation damage can be repaired by nucleotide excision repair (NER), base excision repair (BER) or by direct removal of alkyl groups from modified bases by O 6-alkylguanine DNA alkyltransferase (AGT; E.C. 2.1.1.63). DNA mismatch repair (MMR) is also likely involved in this repair. We have investigated alkylation-induced mutagenesis in a series of NER- or AGT-deficient Escherichia coli strains, alone or in combination with defects in the MutS, MutL or MutH components of MMR. All strains used contained the Fʹprolac from strain CC102 (FʹCC102) episome capable of detecting specifically lac GC to AT reverse mutations resulting from O 6-alkylguanine. The results showed the repair of O 6-methylguanine to be performed by AGT ≫ MMR > NER in order of importance, whereas the repair of O 6-ethylguanine followed the order NER > AGT > MMR. Studies with double mutants showed that in the absence of AGT or NER repair pathways, the lack of MutS protein generally increased mutant frequencies for both methylating and ethylating agents, suggesting a repair or mutation avoidance role for this protein. However, lack of MutL or MutH protein did not increase alkylation-induced mutagenesis under these conditions and, in fact, reduced mutagenesis by the N-alkyl-N-nitrosoureas MNU and ENU. The combined results suggest that little or no alkylation damage is actually corrected by the mutHLS MMR system; instead, an as yet unspecified interaction of MutS protein with alkylated DNA may promote the involvement of a repair system other than MMR to avoid a mutagenic outcome. Furthermore, both mutagenic and antimutagenic effects of MMR were detected, revealing a dual function of the MMR system in alkylation-exposed cells. PMID:23446177

  12. N-Methyl Inversion and Accurate Equilibrium Structures in Alkaloids: Pseudopelletierine.

    PubMed

    Vallejo-López, Montserrat; Écija, Patricia; Vogt, Natalja; Demaison, Jean; Lesarri, Alberto; Basterretxea, Francisco J; Cocinero, Emilio J

    2017-11-21

    A rotational spectroscopy investigation has resolved the conformational equilibrium and structural properties of the alkaloid pseudopelletierine. Two different conformers, which originate from inversion of the N-methyl group from an axial to an equatorial position, have been unambiguously identified in the gas phase, and nine independent isotopologues have been recorded by Fourier-transform microwave spectroscopy in a jet expansion. Both conformers share a chair-chair configuration of the two bridged six-membered rings. The conformational equilibrium is displaced towards the axial form, with a relative population in the supersonic jet of N axial /N equatorial ≈2/1. An accurate equilibrium structure has been determined by using the semiexperimental mixed-estimation method and alternatively computed by quantum-chemical methods up to the coupled-cluster level of theory. A comparison with the N-methyl inversion equilibria in related tropanes is also presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. X-linked dominant cone-rod degeneration: Linkage mapping of a new locus for retinitis pigmentosa (RP15) to Xp22.13-p22.11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, R.E.; Sullivan, L.S.; Daiger, S.P.

    1995-07-01

    Retinitis pigmentosa is the name given to a heterogeneous group of hereditary retinal degenerations characterized by progressive visual field loss, pigmentary changes of the retina, abnormal electroretinograms, and, frequently, night blindness. In this study, we investigated a family with dominant cone-rod degeneration, a variant form of retinitis pigmentosa. We used microsatellite markers to test for linkage to the disease locus and exluded all mapped autosomal loci. However, a marker from the short arm of the X chromosome, DXS989, showed 0% recombination to the disease locus, with a maximum lod (log-odds) score of 3.3. On the basis of this marker, themore » odds favoring X-linked dominant versus autosomal dominant inheritance are > 10{sup 5}:1. Haplotype analysis using an additional nine microsatellite markers places the disease locus in the Xp22.13-p22.11 region and excludes other X-linked disease loci causing retinal degeneration. The clinical expression of the retinal degeneration is consistent with X-linked dominant inheritance with milder, variable effects of Lyonization affecting expression in females. On the basis of these data we propose that this family has a novel form of dominant, X-linked cone-rod degeneration with the gene symbol {open_quotes}RP15{close_quotes}. 17 refs., 2 figs., 4 tabs.« less

  14. N,N,N′,N′-Tetra­methyl­guanidinium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the title salt, C5H14N3 +·C24H20B−, the C—N bond lengths in the central CN3 unit are 1.3322 (11), 1.3385 (12) and 1.3422 (12) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal-planar geometry [N—C—N angles = 119.51 (8), 119.81 (9) and 120.69 (8)°] and the positive charge is delocalized in the CN3 plane. The bond lengths between the N atoms and the terminal methyl groups all have values close to a typical single bond [1.4597 (12)–1.4695 (13) Å]. The crystal packing is caused by electrostatic inter­actions between cations and anions. PMID:23476307

  15. Infrared-induced conformational isomerization and vibrational relaxation dynamics in melatonin and 5-methoxy-N-acetyl tryptophan methyl amide

    NASA Astrophysics Data System (ADS)

    Dian, Brian C.; Florio, Gina M.; Clarkson, Jasper R.; Longarte, Asier; Zwier, Timothy S.

    2004-05-01

    The conformational isomerization dynamics of melatonin and 5-methoxy N-acetyltryptophan methyl amide (5-methoxy NATMA) have been studied using the methods of IR-UV hole-filling spectroscopy and IR-induced population transfer spectroscopy. Using these techniques, single conformers of melatonin were excited via a well-defined NH stretch fundamental with an IR pump laser. This excess energy was used to drive conformational isomerization. By carrying out the infrared excitation early in a supersonic expansion, the excited molecules were re-cooled into their zero-point levels, partially re-filling the hole created in the ground state population of the excited conformer, and creating gains in population of the other conformers. These changes in population were detected using laser-induced fluorescence downstream in the expansion via an UV probe laser. The isomerization quantum yields for melatonin show some conformation specificity but no hint of vibrational mode specificity. In 5-methoxy NATMA, no isomerization was observed out of the single conformational well populated in the expansion in the absence of the infrared excitation. In order to study the dependence of the isomerization on the cooling rate, the experimental arrangement was modified so that faster cooling conditions could be studied. In this arrangement, the pump and probe lasers were overlapped in space in the high density region of the expansion, and the time dependence of the zero-point level populations of the conformers was probed following selective excitation of a single conformation. The analysis needed to extract isomerization quantum yields from the timing scans was developed and applied to the melatonin timing scans. Comparison between the frequency and time domain isomerization quantum yields under identical experimental conditions produced similar results. Under fast cooling conditions, the product quantum yields were shifted from their values under standard conditions. The results for melatonin

  16. Optical coherence tomography-guided retinal prosthesis design: model of degenerated retinal curvature and thickness for patient-specific devices.

    PubMed

    Opie, Nicholas L; Ayton, Lauren N; Apollo, Nicholas V; Ganesan, Kumaravelu; Guymer, Robyn H; Luu, Chi D

    2014-06-01

    Retinitis pigmentosa affects over 1.5 million people worldwide and is a leading cause of vision loss and blindness. While retinal prostheses have shown some success in restoring basic levels of vision, only generic, "one-size-fits-all" devices are currently being implanted. In this study, we used optical coherence tomography scans of the degenerated retina from 88 patients with retinitis pigmentosa to generate models of retinal thickness and curvature for the design of customized implants. We found the average retinal thickness at the fovea to be 152.9 ± 61.3 μm, increasing to a maximum retinal thickness of 250.9 ± 57.5 μm at a nasal eccentricity of 5°. These measures could be used to assist the development of custom-made penetrating electrodes to enhance and optimize epiretinal prostheses. From the retinal thickness measurements, we determined that the optimal length of penetrating electrodes to selectively stimulate retinal ganglion cell bodies and interneuron axons in the ganglion cell layer should be 30-100 μm, and to preferentially stimulate interneurons in the inner nuclear layer, electrodes should be 100-200 μm long. Electrodes greater than 200 μm long had the potential to penetrate through the retina into the choroid, which could cause devastating complications to the eye and should be avoided. The two- and three-dimensional models of retinal thickness developed in this study can be used to design patient-specific epiretinal implants that will help with safety and to optimize the efficacy of neuronal stimulation, ensuring the best functional performance of the device for patients. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration.

    PubMed

    Mehat, Manjit S; Sundaram, Venki; Ripamonti, Caterina; Robson, Anthony G; Smith, Alexander J; Borooah, Shyamanga; Robinson, Martha; Rosenthal, Adam N; Innes, William; Weleber, Richard G; Lee, Richard W J; Crossland, Michael; Rubin, Gary S; Dhillon, Baljean; Steel, David H W; Anglade, Eddy; Lanza, Robert P; Ali, Robin R; Michaelides, Michel; Bainbridge, James W B

    2018-06-05

    Transplantation of human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells offers the potential for benefit in macular degeneration. Previous trials have reported improved visual acuity (VA), but lacked detailed analysis of retinal structure and function in the treated area. Phase 1/2 open-label dose-escalation trial to evaluate safety and potential efficacy (clinicaltrials.gov identifier, NCT01469832). Twelve participants with advanced Stargardt disease (STGD1), the most common cause of macular degeneration in children and young adults. Subretinal transplantation of up to 200 000 hESC-derived RPE cells with systemic immunosuppressive therapy for 13 weeks. The primary end points were the safety and tolerability of hESC-derived RPE cell administration. We also investigated evidence of the survival of transplanted cells and measured retinal structure and function using microperimetry and spectral-domain OCT. Focal areas of subretinal hyperpigmentation developed in all participants in a dose-dependent manner in the recipient retina and persisted after withdrawal of systemic immunosuppression. We found no evidence of uncontrolled proliferation or inflammatory responses. Borderline improvements in best-corrected VA in 4 participants either were unsustained or were matched by a similar improvement in the untreated contralateral eye. Microperimetry demonstrated no evidence of benefit at 12 months in the 12 participants. In one instance at the highest dose, localized retinal thinning and reduced sensitivity in the area of hyperpigmentation suggested the potential for harm. Participant-reported quality of life using the 25-item National Eye Institute Visual Function Questionnaire indicated no significant change. Subretinal hyperpigmentation is consistent with the survival of viable transplanted hESC-derived RPE cells, but may reflect released pigment in their absence. The findings demonstrate the value of detailed analysis of spatial correlation of

  18. Structural and spectroscopic characterization of methyl isocyanate, methyl cyanate, methyl fulminate, and acetonitrile N-oxide using highly correlated ab initio methods.

    PubMed

    Dalbouha, S; Senent, M L; Komiha, N; Domínguez-Gómez, R

    2016-09-28

    Various astrophysical relevant molecules obeying the empirical formula C 2 H 3 NO are characterized using explicitly correlated coupled cluster methods (CCSD(T)-F12). Rotational and rovibrational parameters are provided for four isomers: methyl isocyanate (CH 3 NCO), methyl cyanate (CH 3 OCN), methyl fulminate (CH 3 ONC), and acetonitrile N-oxide (CH 3 CNO). A CH 3 CON transition state is inspected. A variational procedure is employed to explore the far infrared region because some species present non-rigidity. Second order perturbation theory is used for the determination of anharmonic frequencies, rovibrational constants, and to predict Fermi resonances. Three species, methyl cyanate, methyl fulminate, and CH 3 CON, show a unique methyl torsion hindered by energy barriers. In methyl isocyanate, the methyl group barrier is so low that the internal top can be considered a free rotor. On the other hand, acetonitrile N-oxide presents a linear skeleton, C 3v symmetry, and free internal rotation. Its equilibrium geometry depends strongly on electron correlation. The remaining isomers present a bend skeleton. Divergences between theoretical rotational constants and previous parameters fitted from observed lines for methyl isocyanate are discussed on the basis of the relevant rovibrational interaction and the quasi-linearity of the molecular skeleton.

  19. Structural and spectroscopic characterization of methyl isocyanate, methyl cyanate, methyl fulminate, and acetonitrile N-oxide using highly correlated ab initio methods

    NASA Astrophysics Data System (ADS)

    Dalbouha, S.; Senent, M. L.; Komiha, N.; Domínguez-Gómez, R.

    2016-09-01

    Various astrophysical relevant molecules obeying the empirical formula C2H3NO are characterized using explicitly correlated coupled cluster methods (CCSD(T)-F12). Rotational and rovibrational parameters are provided for four isomers: methyl isocyanate (CH3NCO), methyl cyanate (CH3OCN), methyl fulminate (CH3ONC), and acetonitrile N-oxide (CH3CNO). A CH3CON transition state is inspected. A variational procedure is employed to explore the far infrared region because some species present non-rigidity. Second order perturbation theory is used for the determination of anharmonic frequencies, rovibrational constants, and to predict Fermi resonances. Three species, methyl cyanate, methyl fulminate, and CH3CON, show a unique methyl torsion hindered by energy barriers. In methyl isocyanate, the methyl group barrier is so low that the internal top can be considered a free rotor. On the other hand, acetonitrile N-oxide presents a linear skeleton, C3v symmetry, and free internal rotation. Its equilibrium geometry depends strongly on electron correlation. The remaining isomers present a bend skeleton. Divergences between theoretical rotational constants and previous parameters fitted from observed lines for methyl isocyanate are discussed on the basis of the relevant rovibrational interaction and the quasi-linearity of the molecular skeleton.

  20. Optical Coherence Tomography of Retinal Degeneration in Royal College of Surgeons Rats and Its Correlation with Morphology and Electroretinography

    PubMed Central

    Yamauchi, Kodai; Mounai, Natsuki; Tanabu, Reiko; Nakazawa, Mitsuru

    2016-01-01

    Purpose To evaluate the correlation between optical coherence tomography (OCT) and the histological, ultrastructural and electroretinography (ERG) findings of retinal degeneration in Royal College of Surgeons (RCS-/-) rats. Materials and Methods Using OCT, we qualitatively and quantitatively observed the continual retinal degeneration in RCS-/- rats, from postnatal (PN) day 17 until PN day 111. These findings were compared with the corresponding histological, electron microscopic, and ERG findings. We also compared them to OCT findings in wild type RCS+/+ rats, which were used as controls. Results After PN day 17, the hyperreflective band at the apical side of the photoreceptor layer became blurred. The inner segment (IS) ellipsoid zone then became obscured, and the photoreceptor IS and outer segment (OS) layers became diffusely hyperreflective after PN day 21. These changes correlated with histological and electron microscopic findings showing extracellular lamellar material that accumulated in the photoreceptor OS layer. After PN day 26, the outer nuclear layer became significantly thinner (P < 0.01) and hyperreflective compared with that in the controls; conversely, the photoreceptor IS and OS layers, as well as the inner retinal layers, became significantly thicker (P < 0.001 and P = 0.05, respectively). The apical hyperreflective band, as well as the IS ellipsoid zone, gradually disappeared between PN day 20 and PN day 30; concurrently, the ERG a- and b-wave amplitudes deteriorated. In contrast, the thicknesses of the combined retinal pigment epithelium and choroid did not differ significantly between RCS-/- and RCS+/+ rats. Conclusion Our results suggest that OCT demonstrates histologically validated photoreceptor degeneration in RCS rats, and that OCT findings partly correlate with ERG findings. We propose that OCT is a less invasive and useful method for evaluating photoreceptor degeneration in animal models of retinitis pigmentosa. PMID:27644042

  1. Long-term Characterization of Retinal Degeneration in Royal College of Surgeons Rats Using Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ryals, Renee C.; Andrews, Michael D.; Datta, Shreya; Coyner, Aaron S.; Fischer, Cody M.; Wen, Yuquan; Pennesi, Mark E.; McGill, Trevor J.

    2017-01-01

    Purpose Prospective treatments for age-related macular degeneration and inherited retinal degenerations are commonly evaluated in the Royal College of Surgeons (RCS) rat before translation into clinical application. Historically, retinal thickness obtained through postmortem anatomic assessments has been a key outcome measure; however, utility of this measurement is limited because it precludes the ability to perform longitudinal studies. To overcome this limitation, the present study was designed to provide a baseline longitudinal quantification of retinal thickness in the RCS rat by using spectral-domain optical coherence tomography (SD-OCT). Methods Horizontal and vertical linear SD-OCT scans centered on the optic nerve were captured from Long-Evans control rats at P30, P60, P90 and from RCS rats between P17 and P90. Total retina (TR), outer nuclear layer+ (ONL+), inner nuclear layer (INL), and retinal pigment epithelium (RPE) thicknesses were quantified. Histologic sections of RCS retina obtained from P21 to P60 were compared to SD-OCT images. Results In RCS rats, TR and ONL+ thickness decreased significantly as compared to Long-Evans controls. Changes in INL and RPE thickness were not significantly different between control and RCS retinas. From P30 to P90 a subretinal hyperreflective layer (HRL) was observed and quantified in RCS rats. After correlation with histology, the HRL was identified as disorganized outer segments and the location of accumulated debris. Conclusions Retinal layer thickness can be quantified longitudinally throughout the course of retinal degeneration in the RCS rat by using SD-OCT. Thickness measurements obtained with SD-OCT were consistent with previous anatomic thickness assessments. This study provides baseline data for future longitudinal assessment of therapeutic agents in the RCS rat. PMID:28253400

  2. MeDIP-seq and nCpG analyses illuminate sexually dimorphic methylation of gonadal development genes with high historic methylation in turtle hatchlings with temperature-dependent sex determination.

    PubMed

    Radhakrishnan, Srihari; Literman, Robert; Mizoguchi, Beatriz; Valenzuela, Nicole

    2017-01-01

    DNA methylation alters gene expression but not DNA sequence and mediates some cases of phenotypic plasticity. Temperature-dependent sex determination (TSD) epitomizes phenotypic plasticity where environmental temperature drives embryonic sexual fate, as occurs commonly in turtles. Importantly, the temperature-specific transcription of two genes underlying gonadal differentiation is known to be induced by differential methylation in TSD fish, turtle and alligator. Yet, how extensive is the link between DNA methylation and TSD remains unclear. Here we test for broad differences in genome-wide DNA methylation between male and female hatchling gonads of the TSD painted turtle Chrysemys picta using methyl DNA immunoprecipitation sequencing, to identify differentially methylated candidates for future study. We also examine the genome-wide nCpG distribution (which affects DNA methylation) in painted turtles and test for historic methylation in genes regulating vertebrate gonadogenesis. Turtle global methylation was consistent with other vertebrates (57% of the genome, 78% of all CpG dinucleotides). Numerous genes predicted to regulate turtle gonadogenesis exhibited sex-specific methylation and were proximal to methylated repeats. nCpG distribution predicted actual turtle DNA methylation and was bimodal in gene promoters (as other vertebrates) and introns (unlike other vertebrates). Differentially methylated genes, including regulators of sexual development, had lower nCpG content indicative of higher historic methylation. Ours is the first evidence suggesting that sexually dimorphic DNA methylation is pervasive in turtle gonads (perhaps mediated by repeat methylation) and that it targets numerous regulators of gonadal development, consistent with the hypothesis that it may regulate thermosensitive transcription in TSD vertebrates. However, further research during embryogenesis will help test this hypothesis and the alternative that instead, most differential methylation

  3. Endogenous 5-methylcytosine protects neighboring guanines from N7 and O6-methylation and O6-pyridyloxobutylation by the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    PubMed

    Ziegel, Rebecca; Shallop, Anthony; Upadhyaya, Pramod; Jones, Roger; Tretyakova, Natalia

    2004-01-20

    All CG dinucleotides along exons 5-8 of the p53 tumor suppressor gene contain endogenous 5-methylcytosine (MeC). These same sites (e.g., codons 157, 158, 245, 248, and 273) are mutational hot spots in smoking-induced lung cancer. Several groups used the UvrABC endonuclease incision assay to demonstrate that methylated CG dinucleotides of the p53 gene are the preferred binding sites for the diol epoxides of bay region polycyclic aromatic hydrocarbons (PAH). In contrast, effects of endogenous cytosine methylation on the distribution of DNA lesions induced by tobacco-specific nitrosamines, e.g., 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), have not been elucidated. In the work presented here, a stable isotope labeling HPLC-ESI-MS/MS approach was employed to analyze the reactivity of the N7 and O6 positions of guanines within hemimethylated and fully methylated CG dinucleotides toward NNK-derived methylating and pyridyloxobutylating species. 15N3-labeled guanine bases were placed within synthetic DNA sequences representing endogenously methylated p53 codons 154, 157, and 248, followed by treatment with acetylated precursors to NNK diazohydroxides. HPLC-ESI-MS/MS analysis was used to determine the relative yields of N7- and O6-guanine adducts at the 15N3-labeled position. In all cases, the presence of MeC inhibited the formation of N7-methylguanine, O6-methylguanine, and O6-pyridyloxobutylguanine at a neighboring G, with the greatest decrease observed in fully methylated dinucleotides and at guanines preceded by MeC. Furthermore, the O6-Me-dG/N7-Me-G molar ratios were decreased in the presence of the 5'-neighboring MeC, suggesting that the observed decline in O6-alkylguanine adduct yields is, at least partially, a result of an altered reactivity pattern in methylated CG dinucleotides. These results indicate that, unlike N2-guanine adducts of PAH diol epoxides, NNK-induced N7- and O6-alkylguanine adducts are not preferentially formed at the endogenously

  4. Top-Contact Pentacene-Based Organic Thin Film Transistor (OTFT) with N, N'-Bis(3-Methyl Phenyl)- N, N'-Diphenyl Benzidine (TPD)/Au Bilayer Source-Drain Electrode

    NASA Astrophysics Data System (ADS)

    Borthakur, Tribeni; Sarma, Ranjit

    2018-01-01

    A top-contact Pentacene-based organic thin film transistor (OTFT) with N, N'-Bis (3-methyl phenyl)- N, N'-diphenyl benzidine (TPD)/Au bilayer source-drain electrode is reported. The devices with TPD/Au bilayer source-drain (S-D) electrodes show better performance than the single layer S-D electrode OTFT devices. The field-effect mobility of 4.13 cm2 v-1 s-1, the on-off ratio of 1.86 × 107, the threshold voltage of -4 v and the subthreshold slope of .27 v/decade, respectively, are obtained from the device with a TPD/Au bilayer source-drain electrode.

  5. Retinal iron homeostasis in health and disease

    PubMed Central

    Song, Delu; Dunaief, Joshua L.

    2013-01-01

    Iron is essential for life, but excess iron can be toxic. As a potent free radical creator, iron generates hydroxyl radicals leading to significant oxidative stress. Since iron is not excreted from the body, it accumulates with age in tissues, including the retina, predisposing to age-related oxidative insult. Both hereditary and acquired retinal diseases are associated with increased iron levels. For example, retinal degenerations have been found in hereditary iron overload disorders, like aceruloplasminemia, Friedreich's ataxia, and pantothenate kinase-associated neurodegeneration. Similarly, mice with targeted mutation of the iron exporter ceruloplasmin and its homolog hephaestin showed age-related retinal iron accumulation and retinal degeneration with features resembling human age-related macular degeneration (AMD). Post mortem AMD eyes have increased levels of iron in retina compared to age-matched healthy donors. Iron accumulation in AMD is likely to result, in part, from inflammation, hypoxia, and oxidative stress, all of which can cause iron dysregulation. Fortunately, it has been demonstrated by in vitro and in vivo studies that iron in the retinal pigment epithelium (RPE) and retina is chelatable. Iron chelation protects photoreceptors and retinal pigment epithelial cells (RPE) in a variety of mouse models. This has therapeutic potential for diminishing iron-induced oxidative damage to prevent or treat AMD. PMID:23825457

  6. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration.

    PubMed

    Yang, Fan; Ma, Hongwei; Belcher, Joshua; Butler, Michael R; Redmond, T Michael; Boye, Sanford L; Hauswirth, William W; Ding, Xi-Qin

    2016-12-01

    Recent studies have implicated thyroid hormone (TH) signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we found that antithyroid treatment preserves cones. This work investigates the significance of targeting intracellular TH components locally in the retina. The cellular TH level is mainly regulated by deiodinase iodothyronine (DIO)-2 and -3. DIO2 converts thyroxine (T4) to triiodothyronine (T3), which binds to the TH receptor, whereas DIO3 degrades T3 and T4. We examined cone survival after overexpression of DIO3 and inhibition of DIO2 and demonstrated the benefits of these manipulations. Subretinal delivery of AAV5-IRBP/GNAT2-DIO3, which directs expression of human DIO3 specifically in cones, increased cone density by 30-40% in a Rpe65 -/- mouse model of Lebers congenital amaurosis (LCA) and in a Cpfl1 mouse with Pde6c defect model of achromatopsia, compared with their respective untreated controls. Intravitreal and topical delivery of the DIO2 inhibitor iopanoic acid also significantly improved cone survival in the LCA model mice. Moreover, the expression levels of DIO2 and Slc16a2 were significantly higher in the diseased retinas, suggesting locally elevated TH signaling. We show that targeting DIOs protects cones, and intracellular inhibition of TH components locally in the retina may represent a novel strategy for retinal degeneration management.-Yang, F., Ma, H., Belcher, J., Butler, M. R., Redmond, T. M., Boye, S. L., Hauswirth, W. W., Ding, X.-Q. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration. © FASEB.

  7. Study of the n-methyl-d-aspartate antagonistic properties of anticholinergic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonough, J.H.; Shih, T.M.

    1995-12-31

    A study of the N-methyl-D-aspartate antagonistic properties of anticholinergic drugs. PHARMACOL BIOCHEM BEHAV. 51(2/3) 249-253, 1995. Drugs that act at the N-methyl-D-aspartate (NMDA) receptor complex have the ability to terminate nerve agent-induced seizures and modulate the neuropathologic consequences of agent exposure. Drugs with mixed anticholinergic and anti-NMDA properties potentially provide an ideal class of compounds for development as anticonvulsant treatments for nerve agent casualties. The present experiment evaluated the potential NMDA antagonist activity of 11 anticholinergic drugs by determining whether pretreatment with the compound was capable of protecting mice from the lethal effects of NMDA. The following anticholinergic drugs antagonizedmore » NMDA lethality and are ranked according to their potency: mecamylamine > procyclidine = benactyzine > biperiden > tribexyphenidyl. The anticholinergics atropine, aprophen, azaprophen, benztropine, 3-quinudidinyl benzilate (QNB), and scopolamine failed to show NMDA antagonist properties. In addition, and unexpectedly, diazepam, ethanol, and pentobarbital were also shown to be capable of antagonizing NMDA lethality over a certain range of doses. The advantages and limitations of using antagonism of NMDA lethality in mice as a bioassay for determining the NMDA antagonist properties of drugs are also discussed.« less

  8. Mice with an N-Ethyl-N-Nitrosourea (ENU) Induced Tyr209Asn Mutation in Natriuretic Peptide Receptor 3 (NPR3) Provide a Model for Kyphosis Associated with Activation of the MAPK Signaling Pathway.

    PubMed

    Esapa, Christopher T; Piret, Sian E; Nesbit, M Andrew; Loh, Nellie Y; Thomas, Gethin; Croucher, Peter I; Brown, Matthew A; Brown, Steve D M; Cox, Roger D; Thakker, Rajesh V

    2016-01-01

    Non-syndromic kyphosis is a common disorder that is associated with significant morbidity and has a strong genetic involvement; however, the causative genes remain to be identified, as such studies are hampered by genetic heterogeneity, small families and various modes of inheritance. To overcome these limitations, we investigated 12 week old progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) using phenotypic assessments including dysmorphology, radiography, and dual-energy X-ray absorptiometry. This identified a mouse with autosomal recessive kyphosis (KYLB). KYLB mice, when compared to unaffected littermates, had: thoraco-lumbar kyphosis, larger vertebrae, and increased body length and increased bone area. In addition, female KYLB mice had increases in bone mineral content and plasma alkaline phosphatase activity. Recombination mapping localized the Kylb locus to a 5.5Mb region on chromosome 15A1, which contained 51 genes, including the natriuretic peptide receptor 3 (Npr3) gene. DNA sequence analysis of Npr3 identified a missense mutation, Tyr209Asn, which introduced an N-linked glycosylation consensus sequence. Expression of wild-type NPR3 and the KYLB-associated Tyr209Asn NPR3 mutant in COS-7 cells demonstrated the mutant to be associated with abnormal N-linked glycosylation and retention in the endoplasmic reticulum that resulted in its absence from the plasma membrane. NPR3 is a decoy receptor for C-type natriuretic peptide (CNP), which also binds to NPR2 and stimulates mitogen-activated protein kinase (MAPK) signaling, thereby increasing the number and size of hypertrophic chondrocytes. Histomorphometric analysis of KYLB vertebrae and tibiae showed delayed endochondral ossification and expansion of the hypertrophic zones of the growth plates, and immunohistochemistry revealed increased p38 MAPK phosphorylation throughout the growth plates of KYLB vertebrae. Thus, we established a model of kyphosis due to a novel NPR3 mutation, in

  9. Mice with an N-Ethyl-N-Nitrosourea (ENU) Induced Tyr209Asn Mutation in Natriuretic Peptide Receptor 3 (NPR3) Provide a Model for Kyphosis Associated with Activation of the MAPK Signaling Pathway

    PubMed Central

    Nesbit, M. Andrew; Loh, Nellie Y.; Thomas, Gethin; Croucher, Peter I.; Brown, Matthew A.; Brown, Steve D. M.; Cox, Roger D.; Thakker, Rajesh V.

    2016-01-01

    Non-syndromic kyphosis is a common disorder that is associated with significant morbidity and has a strong genetic involvement; however, the causative genes remain to be identified, as such studies are hampered by genetic heterogeneity, small families and various modes of inheritance. To overcome these limitations, we investigated 12 week old progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) using phenotypic assessments including dysmorphology, radiography, and dual-energy X-ray absorptiometry. This identified a mouse with autosomal recessive kyphosis (KYLB). KYLB mice, when compared to unaffected littermates, had: thoraco-lumbar kyphosis, larger vertebrae, and increased body length and increased bone area. In addition, female KYLB mice had increases in bone mineral content and plasma alkaline phosphatase activity. Recombination mapping localized the Kylb locus to a 5.5Mb region on chromosome 15A1, which contained 51 genes, including the natriuretic peptide receptor 3 (Npr3) gene. DNA sequence analysis of Npr3 identified a missense mutation, Tyr209Asn, which introduced an N-linked glycosylation consensus sequence. Expression of wild-type NPR3 and the KYLB-associated Tyr209Asn NPR3 mutant in COS-7 cells demonstrated the mutant to be associated with abnormal N-linked glycosylation and retention in the endoplasmic reticulum that resulted in its absence from the plasma membrane. NPR3 is a decoy receptor for C-type natriuretic peptide (CNP), which also binds to NPR2 and stimulates mitogen-activated protein kinase (MAPK) signaling, thereby increasing the number and size of hypertrophic chondrocytes. Histomorphometric analysis of KYLB vertebrae and tibiae showed delayed endochondral ossification and expansion of the hypertrophic zones of the growth plates, and immunohistochemistry revealed increased p38 MAPK phosphorylation throughout the growth plates of KYLB vertebrae. Thus, we established a model of kyphosis due to a novel NPR3 mutation, in

  10. Crystal structure of {2,6-bis-[(di-methyl-amino)-meth-yl]phenyl-κ3N,C1,N'}(bromido/chlorido)-mercury(II).

    PubMed

    Gupta, Anand; Singh, Harkesh B; Butcher, Ray J

    2017-11-01

    In the mol-ecular structure of the title compound, {2,6-bis-[(di-methyl-amino)-meth-yl]phenyl-κ 3 N , C 1 , N '}[bromido/chlorido-(0.30/0.70)]mercury(II)-{2,6-bis-[(di-methyl-amino)-meth-yl]phenyl-κ 3 N , C 1 , N '}[bromido/chlorido-(0.24/0.76)]mer-cury(II) (1/1), [HgBr 0.30 Cl 0.70 (C 12 H 19 N 2 )]·[HgBr 0.24 Cl 0.76 (C 12 H 19 N 2 )], there are two mol-ecules in the asymmetric unit of formula L Hg X { L = 2,6-bis-[(di-methyl-amino)-meth-yl]phenyl and X = Cl/Br}. In each mol-ecule, the halide site is mixed Cl/Br, with occupancies of 0.699 (7):0.301 (7) and 0.763 (7):0.237 (7), respectively. The two mol-ecules are linked into dimers by a combination of Hg⋯Hg [Hg⋯Hg = 3.6153 (3) Å] and C-H⋯Cl and C-H⋯π inter-actions.

  11. Artemisinin Protects Retinal Neuronal Cells against Oxidative Stress and Restores Rat Retinal Physiological Function from Light Exposed Damage.

    PubMed

    Yan, Fengxia; Wang, Haitao; Gao, Yang; Xu, Jiangping; Zheng, Wenhua

    2017-08-16

    Oxidative stress plays a key role in the pathogenesis of age-related macular degeneration (AMD), a leading cause of severe visual loss and blindness in the aging population which lacks any effective treatments currently. In this study, artemisinin, a well-known antimalarial drug was found to suppress hydrogen peroxide (H 2 O 2 )-induced cell death in retinal neuronal RGC-5 cells. Artemisinin, in the therapeutically relevant dosage, concentration-dependently attenuated the accumulation of intracellular reactive oxygen species (ROS), increased mitochondrial membrane potential and decreased cell apoptosis in RGC-5 cells induced by H 2 O 2 . Western blot analysis showed that artemisinin upregulated the phosphorylation of p38 and extracellular signal-regulated kinases1/2 (ERK1/2) and reversed the inhibitory effect of H 2 O 2 on the phosphorylation of these two kinases. Moreover, protective effect of artemisinin was blocked by the p38 kinase inhibitor PD169316 or ERK1/2 kinase pathway inhibitor PD98059, respectively. In contrast, c-Jun N-terminal kinase inhibitor and rapamycin had no effect in the protective effect of artemisinin. Taken together, these results demonstrated that artemisinin promoted the survival of RGC-5 cells from H 2 O 2 toxicity via the activation of the p38 and ERK1/2 pathways. Interestingly, intravitreous injection of artimisinin, concentration-dependently reversed light exposed-damage (a dry AMD animal model) of rat retinal physiological function detected by flash electroretinogram. These results indicate that artemisinin can protect retinal neuronal functions from H 2 O 2 -induced damage in vitro and in vivo and suggest the potential application of artemisinin as a new drug in the treatment of retinal disorders like AMD.

  12. Nitrosoureas: a review of experimental antitumor activity.

    PubMed

    Schabel, F M

    1976-06-01

    The chemical class of drugs known as the nitrosoureas are a recently developed group of very active alkylating-agent anticancer drugs which are best represented by BCNU, CCNU, and methyl-CCNU (meCCNU). The nitrosoureas are among the most active, if not the most active, anticancer drugs both quantitatively (log kill of sensitive tumor cells in vivo) and qualitatively (spectrum of mouse, rat, and hamster tumors responding to treatment). Therapeutic anticancer activity of the nitrosoureas has been consistently observed with oral as well as parenteral administration. The nitrosoureas are clearly the most active group of anticancer drugs observed against experimental meningeal leukemias and intracerebrally implanted transplantable primary tumors of central nervous system origin (eg, gliomas, ependymoblastomas, and astrocytomas in mice and hamsters). The nitrosoureas have been observed to be less than additive in lethal toxicity for vital normal cells in the mouse in combination with representatives of the other major classes of anticancer agents, eg, purine antagonists, pyrimidine antagonists, inhibitors of DNA polymerase(s) or ribonucleotide reductase(s), mitotic inhibitors, drugs that bind to or intercalate with DNA, and other alkylating agents. Therapeutic synergism against one or more transplantable or spontaneous tumors of mice, rats, or hamsters with one of several nitrosoureas in two-drug combinations with representatives of most of the major classes of anticancer agents listed above has been reported. With a number of advanced-stages mouse tumors, generally considered to be refractory to treatment with most anticancer agents, long-term cures have been obtained with combination-drug or combined-modality (surgery plus chemotherapy) treatment. The demonstrated lack of cross-resistance of several leukemias and solid tumors of mice selected for resistance to BCNU, meCCNU, or other alkylating agents suggests that the widely held opinion that all alkylating agents are

  13. Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression.

    DTIC Science & Technology

    1996-10-01

    causes morphologic differentiation within 4 hours as characterized by neurite outgrowths (12). Monoterpenes inhibit enzymes in the mevalonate-lipid...metabolism pathway, including a selective inhibition of isoprenylation of 21-26 kDa small G proteins (13-15) and inhibition of ubiquinone ( CoQ ) and...Letters 269(2), 305-10 18 FOOTNOTES 1 The abbreviations used are: DMBA, 7,12-dimethylbenz[a]anthracene; NMU, N-methyl-N- nitrosourea; CoQ , ubiquinone

  14. Synthesis and characterization of 3-acetoxy-2-methyl-N-(phenyl)benzamide and 3-acetoxy-2-methyl-N-(4- methylphenyl)benzamide

    NASA Astrophysics Data System (ADS)

    Kırca, Başak Koşar; Çakmak, Şükriye; Kütük, Halil; Odabaşoğlu, Mustafa; Büyükgüngör, Orhan

    2018-01-01

    This study treats about two successfully synthesized secondary amide compounds 3-Acetoxy-2-methyl-N-(phenyl)benzamide, I and 3-Acetoxy-2-methyl-N-(4-methylphenyl)benzamide, II. Compounds were characterized by FTIR, 1H NMR, 13C NMR and X-ray single crystal diffraction analysis techniques. Single crystal X-ray diffraction analyses show that while I crystallized in the orthorhombic system with space group Pbca, II crystallized in the triclinic system with space group P-1 and the asymmetric unit of II consists of two crystallographically independent molecules. Lattice constants are a = 7.9713 (3) Å, b = 9.5059 (3) Å, c = 37.1762 (2) Å, Z = 8 for I and a = 7.5579 (8) Å, b = 8.8601 (8) Å, c = 23.363 (3) Å, α = 97.011 (9) °, β = 96.932 (9)°, γ = 90.051 (8)°, Z = 4 for II. Crystallographic studies also show that the supramolecular structures were stabilized by intramolecular, intermolecular hydrogen bonds and Csbnd H … π interactions for both compounds. Characteristic amide bonds were observed in IR and NMR spectra.

  15. High-dose methylprednisolone treatment of laser-induced retinal injury exacerbates acute inflammation and long-term scarring

    NASA Astrophysics Data System (ADS)

    Schuschereba, Steven T.; Cross, Michael E.; Scales, David K.; Pizarro, Jose M.; Edsall, Peter R.; Stuck, Bruce E.; Marshall, John

    1999-06-01

    Purpose. To evaluate therapeutics for attenuating retinal laser injury. Methods. New Zealand Red rabbits (n=76) were pretreated (IV) with either a single dose of hydroxyethyl starch conjugated deferoxamine (HES-DFO, n=29) (6.1 ml/kg, 16.4 mg/ml) or methylprednisolone sodium succinate (MP, n=22) (30 mg/kg, followed by taper of 30, 20, 20, and 10 mg/kg/day for a total of 5d). Controls were untreated (n=25). Fifteen min later, animals were irradiated with a multiline cw argon laser (285 mW, 10 msec pulse durations, 16 lesions/eye). Funduscopy, fluorescein angiography, histology, and morphometry were performed at 10 min, 1h, 3h, 24h, 1 mo, and 6 mo after irradiation. Leukocytes were counted at lesion centers for retinal and choroidal compartments at 1, 3, and 24h. Results. At 3h, percent area incrase for the lesions was highest for MP (44%) and lowest for HES-DFO (16%)(p<0.05). In hemorrhagic lesions, MP treatment resulted in the highest increase of retinal neotrophils by 24h (p<0.05), and by 1 and 6 mo extensive chorio-retinal scarring occurred in nonhemorrhagic and hemorrhagic lesions. Also, no benefit was demonstrated on sparing of photoreceptors with MP treatment. Conclusions. Treatment of laser-induced retinal injury with methylprednisolone (MP) exacerbates acute inflammation and long-term chorio-retinal scarring; however, hydroxyethyl starch conjugated deferoxamine therapy ameliorates these aspects of injury. Data suggest caution in the use of MP therapy for laser injuries.

  16. Potential of Gene Editing and Induced Pluripotent Stem Cells (iPSCs) in Treatment of Retinal Diseases.

    PubMed

    Chuang, Katherine; Fields, Mark A; Del Priore, Lucian V

    2017-12-01

    The advent of gene editing has introduced the ability to make changes to the genome of cells, thus allowing for correction of genetic mutations in patients with monogenic diseases. Retinal diseases are particularly suitable for the application of this new technology because many retinal diseases, such as Stargardt disease, retinitis pigmentosa (RP), and Leber congenital amaurosis (LCA), are monogenic. Moreover, gene delivery techniques such as the use of adeno-associated virus (AAV) vectors have been optimized for intraocular use, and phase III trials are well underway to treat LCA, a severe form of inherited retinal degeneration, with gene therapy. This review focuses on the use of gene editing techniques and another relatively recent advent, induced pluripotent stem cells (iPSCs), and their potential for the study and treatment of retinal disease. Investment in these technologies, including overcoming challenges such as off-target mutations and low transplanted cell integration, may allow for future treatment of many debilitating inherited retinal diseases.

  17. Design synthesis and structure-activity relationship of 5-substituted (tetrahydronaphthalen-2yl)methyl with N-phenyl-N-(piperidin-2-yl)propionamide derivatives as opioid ligands.

    PubMed

    Deekonda, Srinivas; Rankin, David; Davis, Peg; Lai, Josephine; Vanderah, Todd W; Porecca, Frank; Hruby, Victor J

    2016-01-15

    Here, we report the design, synthesis and structure activity relationship of novel small molecule opioid ligands based on 5-amino substituted (tetrahydronaphthalen-2-yl)methyl moiety with N-phenyl-N-(piperidin-2-yl)propionamide derivatives. We synthesized various molecules including amino, amide and hydroxy substitution on the 5th position of the (tetrahydronaphthalen-2-yl)methyl moiety. In our further designs we replaced the (tetrahydronaphthalen-2-yl)methyl moiety with benzyl and phenethyl moiety. These N-phenyl-N-(piperidin-2-yl)propionamide analogues showed moderate to good binding affinities (850-4 nM) and were selective towards the μ opioid receptor over the δ opioid receptors. From the structure activity relationship studies, we found that a hydroxyl substitution at the 5th position of (tetrahydronapthalen-2yl)methyl group, ligands 19 and 20, showed excellent binding affinities 4 and 5 nM, respectively, and 1000 fold selectivity towards the μ opioid relative to the delta opioid receptor. The ligand 19 showed potent agonist activities 75±21 nM, and 190±42 nM in the GPI and MVD assays. Surprisingly the fluoro analogue 20 showed good agonist activities in MVD assays 170±42 nM, in contrast to its binding affinity results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Efficient and Selective N-Methylation of Nitroarenes under Mild Reaction Conditions.

    PubMed

    Pedrajas, Elena; Sorribes, Iván; Guillamón, Eva; Junge, Kathrin; Beller, Matthias; Llusar, Rosa

    2017-09-21

    Herein, we report a straightforward protocol for the preparation of N,N-dimethylated amines from readily available nitro starting materials using formic acid as a renewable C 1 source and silanes as reducing agents. This tandem process is efficiently accomplished in the presence of a cubane-type Mo 3 PtS 4 catalyst. For the preparation of the novel [Mo 3 Pt(PPh 3 )S 4 Cl 3 (dmen) 3 ] + (3 + ) (dmen: N,N'-dimethylethylenediamine) compound we have followed a [3+1] building block strategy starting from the trinuclear [Mo 3 S 4 Cl 3 (dmen) 3 ] + (1 + ) and Pt(PPh 3 ) 4 (2) complexes. The heterobimetallic 3 + cation preserves the main structural features of its 1 + cluster precursor. Interestingly, this catalytic protocol operates at room temperature with high chemoselectivity when the 3 + catalyst co-exists with its trinuclear 1 + precursor. N-heterocyclic arenes, double bonds, ketones, cyanides and ester functional groups are well retained after N-methylation of the corresponding functionalized nitroarenes. In addition, benzylic-type as well as aliphatic nitro compounds can also be methylated following this protocol. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dibromidobis(N,N,N′,N′-tetra­methyl­thio­urea-κS)cadmium(II)

    PubMed Central

    Nawaz, Sidra; Sadaf, Sana; Fettouhi, Mohammed; Fazal, Atif; Ahmad, Saeed

    2010-01-01

    In the title compound, [CdBr2(C5H12N2S)2], the CdII atom lies on a twofold rotation axis. It exhibits a distorted tetra­hedral coordination environment defined by two S atoms of two tetra­methyl­thio­urea (tmtu) ligands and two bromide ions. The crystal structure is consolidated by C—H⋯N and C—H⋯S hydrogen bonds. PMID:21588180

  20. Supplementation with N-3 Long-Chain Polyunsaturated Fatty Acids or Olive Oil in Men and Women with Renal Disease Induces Differential Changes in the DNA Methylation of FADS2 and ELOVL5 in Peripheral Blood Mononuclear Cells

    PubMed Central

    Hoile, Samuel P.; Clarke-Harris, Rebecca; Huang, Rae-Chi; Calder, Philip C.; Mori, Trevor A.; Beilin, Lawrence J.; Lillycrop, Karen A.; Burdge, Graham C.

    2014-01-01

    Background Studies in animal models and in cultured cells have shown that fatty acids can induce alterations in the DNA methylation of specific genes. There have been no studies of the effects of fatty acid supplementation on the epigenetic regulation of genes in adult humans. Methods and Results We investigated the effect of supplementing renal patients with 4 g daily of either n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) or olive oil (OO) for 8 weeks on the methylation status of individual CpG loci in the 5′ regulatory region of genes involved in PUFA biosynthesis in peripheral blood mononuclear cells from men and women (aged 53 to 63 years). OO and n-3 LCPUFA each altered (>10% difference in methylation) 2/22 fatty acid desaturase (FADS)-2 CpGs, while n-3 LCPUFA, but not OO, altered (>10%) 1/12 ELOVL5 CpGs in men. OO altered (>6%) 8/22 FADS2 CpGs and (>3%) 3/12 elongase (ELOVL)-5 CpGs, while n-3 LCPUFA altered (>5%) 3/22 FADS2 CpGs and 2/12 (>3%) ELOVL5 CpGs in women. FADS1 or ELOVL2 methylation was unchanged. The n-3 PUFA supplementation findings were replicated in blood DNA from healthy adults (aged 23 to 30 years). The methylation status of the altered CpGs in FADS2 and ELOVL5 was associated negatively with the level of their transcripts. Conclusions These findings show that modest fatty acid supplementation can induce altered methylation of specific CpG loci in adult humans, contingent on the nature of the supplement and on sex. This has implications for understanding the effect of fatty acids on PUFA metabolism and cell function. PMID:25329159

  1. Novel pyrrolinones as N-methyl-D-aspartate receptor antagonists.

    PubMed

    Poschenrieder, Hermann; Stachel, Hans-Dietrich; Höfner, Georg; Mayer, Peter

    2005-04-01

    A series of oximes, deriving from 2-arylidene-pyrroline-3,4-diones (7, 8, 22, 23) has been prepared. The presence of tautomers in their solutions has been established by spectroscopic means. The compounds reacted with diazomethane chiefly by N-methylation forming nitrones (10, 11). The analogously prepared 2-arylidene-4-nitropyrrolin-3-ones (12, 13, 24, 25), formally derived from nitrotetramic acids, yielded nitronic acid esters (14, 15, 26) upon reaction with diazomethane. The structures were elucidated by spectral evidence and-in the case of compounds 10 and 20b-by X-ray diffraction analysis. The binding affinity of some of the new compounds toward the N-methyl-d-aspartate (NMDA) (glycine site) receptor has been measured thus providing the basis for further structure-activity relationship studies. Oxime 8b showed the highest binding potency (Ki= 9.2 microM).

  2. Computational Study of Environmental Effects on Torsional Free Energy Surface of N-Acetyl-N'-methyl-L-alanylamide Dipeptide

    ERIC Educational Resources Information Center

    Carlotto, Silvia; Zerbetto, Mirco

    2014-01-01

    We propose an articulated computational experiment in which both quantum mechanics (QM) and molecular mechanics (MM) methods are employed to investigate environment effects on the free energy surface for the backbone dihedral angles rotation of the small dipeptide N-Acetyl-N'-methyl-L-alanylamide. This computation exercise is appropriate for an…

  3. A Novel Retinal Oscillation Mechanism in an Autosomal Dominant Photoreceptor Degeneration Mouse Model

    PubMed Central

    Tu, Hung-Ya; Chen, Yu-Jiun; McQuiston, Adam R.; Chiao, Chuan-Chin; Chen, Ching-Kang

    2016-01-01

    It has been shown in rd1 and rd10 models of photoreceptor degeneration (PD) that inner retinal neurons display spontaneous and rhythmic activities. Furthermore, the rhythmic activity has been shown to require the gap junction protein connexin 36, which is likely located in AII amacrine cells (AII-ACs). In the present study, an autosomal dominant PD model called rhoΔCTA, whose rods overexpress a C-terminally truncated mutant rhodopsin and degenerate with a rate similar to that of rd1, was used to investigate the generality and mechanisms of heightened inner retinal activity following PD. To fluorescently identify cholinergic starburst amacrine cells (SACs), the rhoΔCTA mouse was introduced into a combined ChAT-IRES-Cre and Ai9 background. In this mouse, we observed excitatory postsynaptic current (EPSC) oscillation and non-rhythmic inhibitory postsynaptic current (IPSC) in both ON- and OFF-SACs. The IPSCs were more noticeable in OFF- than in ON-SACs. Similar to reported retinal ganglion cell (RGC) oscillation in rd1 mice, EPSC oscillation was synaptically driven by glutamate and sensitive to blockade of NaV channels and gap junctions. These data suggest that akin to rd1 mice, AII-AC is a prominent oscillator in rhoΔCTA mice. Surprisingly, OFF-SAC but not ON-SAC EPSC oscillation could readily be enhanced by GABAergic blockade. More importantly, weakening the AII-AC gap junction network by activating retinal dopamine receptors abolished oscillations in ON-SACs but not in OFF-SACs. Furthermore, the latter persisted in the presence of flupirtine, an M-type potassium channel activator recently reported to dampen intrinsic AII-AC bursting. These data suggest the existence of a novel oscillation mechanism in mice with PD. PMID:26793064

  4. Crystal structure of N-[3-(di­methyl­aza­nium­yl)prop­yl]-N′,N′,N′′,N′′-tetra­methyl-N-(N,N,N′,N′-tetra­methyl­form­am­id­in­ium­yl)­guanidinium dibromide hydroxide monohydrate

    PubMed Central

    Tiritiris, Ioannis; Kantlehner, Willi

    2015-01-01

    The asymmetric unit of the title hydrated salt, C15H37N6 3+·2Br−·OH−·H2O, contains one cation, three partial-occupancy bromide ions, one hydroxide ion and one water mol­ecule. Refinement of the site-occupancy factors of the three disordered bromide ions converges with occupancies 0.701 (2), 0.831 (2) and 0.456 (2) summing to approximately two bromide ions per formula unit. The structure was refined as a two-component inversion twin with volume fractions 0.109 (8):0.891 (8) for the two domains. The central C3N unit of the bis­amidinium ion is linked to the aliphatic propyl chain by a C—N single bond. The other two bonds in this unit have double-bond character as have the four C—N bonds to the outer NMe2 groups. In contrast, the three C—N bonds to the central N atom of the (di­methyl­aza­nium­yl)propyl group have single-bond character. Delocalization of the two positive charges occurs in the N/C/N and C/N/C planes, while the third positive charge is localized on the di­methyl­ammonium group. The crystal structure is stabilized by O—H⋯O, N—H⋯Br, O—H⋯Br and C—H⋯Br hydrogen bonds, forming a three-dimensional network. PMID:26870507

  5. In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT

    PubMed Central

    Ho, Leon C.; Wang, Bo; Conner, Ian P.; van der Merwe, Yolandi; Bilonick, Richard A.; Kim, Seong-Gi; Wu, Ed X.; Sigal, Ian A.; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.

    2015-01-01

    Purpose. Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). Methods. Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. Results. In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. Conclusions. Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye–brain relationships and structural–physiological relationships in the visual system after ERI. PMID:26066747

  6. A novel homozygous truncating GNAT1 mutation implicated in retinal degeneration.

    PubMed

    Carrigan, Matthew; Duignan, Emma; Humphries, Pete; Palfi, Arpad; Kenna, Paul F; Farrar, G Jane

    2016-04-01

    The GNAT1 gene encodes the α subunit of the rod transducin protein, a key element in the rod phototransduction cascade. Variants in GNAT1 have been implicated in stationary night-blindness in the past, but unlike other proteins in the same pathway, it has not previously been implicated in retinitis pigmentosa. A panel of 182 retinopathy-associated genes was sequenced to locate disease-causing mutations in patients with inherited retinopathies. Sequencing revealed a novel homozygous truncating mutation in the GNAT1 gene in a patient with significant pigmentary disturbance and constriction of visual fields, a presentation consistent with retinitis pigmentosa. This is the first report of a patient homozygous for a complete loss-of-function GNAT1 mutation. The clinical data from this patient provide definitive evidence of retinitis pigmentosa with late onset in addition to the lifelong night-blindness that would be expected from a lack of transducin function. These data suggest that some truncating GNAT1 variants can indeed cause a recessive, mild, late-onset retinal degeneration in human beings rather than just stationary night-blindness as reported previously, with notable similarities to the phenotype of the Gnat1 knockout mouse. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Insight into the theoretical and experimental studies of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone N(4)-methyl-N(4)- phenylthiosemicarbazone - A potential NLO material

    NASA Astrophysics Data System (ADS)

    Sangeetha, K. G.; Aravindakshan, K. K.; Safna Hussan, K. P.

    2017-12-01

    The synthesis, geometrical parameters, spectroscopic studies, optimised molecular structure, vibrational analysis, Mullikan population analysis, MEP, NBO, frontier molecular orbitals and NLO effects of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone N-(4)-methyl-N-(4)-phenylthiosemicarbazone, C25H23N5OS (L1) have been communicated in this paper. A combined experimental and theoretical approach was used to explore the structure and properties of the compound. For computational studies, Gaussian 09 program was used. Starting geometry of molecule was taken from X-ray refinement data and has been optimized by using DFT (B3LYP) method with the 6-31+G (d, p) basis sets. NBO analysis gave insight into the strongly delocalized structure, responsible for the nonlinearity and hence the stability of the molecule. Frontier molecular orbitals have been defined to forecast the global reactivity descriptors of L1. The computed first-order hyperpolarizability (β) of the compound is 2 times higher than that of urea and this account for its nonlinear optical property. Simultaneously, a molecular docking study of the compound was performed using GLIDE Program. For this, three biological enzymes, histone deacetylase, ribonucleotide reductase and DNA methyl transferase, were selected as receptor molecules.

  8. Discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers.

    PubMed

    Kemnitzer, William; Sirisoma, Nilantha; May, Chris; Tseng, Ben; Drewe, John; Cai, Sui Xiong

    2009-07-01

    We report the discovery of N-((benzo[d][1,3]dioxol-5-yl)methyl)-6-phenylthieno[3,2-d]pyrimidin-4-amine (2a) as an apoptosis inducer using our proprietary cell- and caspase-based ASAP HTS assay, and SAR study of HTS hit 2a which led to the discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers. Compounds 5d and 5e were the most potent with EC(50) values of 0.008 and 0.004microM in T47D human breast cancer cells, respectively. Compound 5d was found to be highly active in the MX-1 breast cancer model. Functionally, compounds 5d and 5e both induced apoptosis through inhibition of tubulin polymerization.

  9. Blockade of N-methyl-D-aspartate Receptors May Protect against Ischemic Damage in the Brain

    NASA Astrophysics Data System (ADS)

    Simon, R. P.; Swan, J. H.; Griffiths, T.; Meldrum, B. S.

    1984-11-01

    In rats ischemia of the forebrain induced by a 30-minute occlusion of the carotid artery, followed by 120 minutes of arterial reperfusion, produced ischemic lesions of selectively vulnerable pyramidal cells in both hippocampi. Focal microinfusion into the dorsal hippocampus of 2-amino-7-phosphonoheptanoic acid, an antagonist of excitation at the N-methyl-d-asparate-preferring receptor, before ischemia was induced protected against the development of ischemic damage. It is proposed that excitatory neurotransmission plays an important role in selective neuronal loss due to cerebral ischemia.

  10. 40 CFR 721.2275 - N,N,N′,N′-Tetrakis(oxi-ranyl- methyl)-1,3-cyclohexane di-meth-anamine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false N,N,Nâ²,Nâ²-Tetrakis(oxi-ranyl- methyl)-1,3-cyclohexane di-meth-anamine. 721.2275 Section 721.2275 Protection of Environment ENVIRONMENTAL...-cyclohexane di-meth-anamine. (a) Chemical substances and significant new uses subject to reporting. (1) The...

  11. 40 CFR 721.2275 - N,N,N′,N′-Tetrakis(oxi-ranyl- methyl)-1,3-cyclohexane di-meth-anamine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false N,N,Nâ²,Nâ²-Tetrakis(oxi-ranyl- methyl)-1,3-cyclohexane di-meth-anamine. 721.2275 Section 721.2275 Protection of Environment ENVIRONMENTAL...-cyclohexane di-meth-anamine. (a) Chemical substances and significant new uses subject to reporting. (1) The...

  12. 40 CFR 721.2275 - N,N,N′,N′-Tetrakis(oxi-ranyl- methyl)-1,3-cyclohexane di-meth-anamine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false N,N,Nâ²,Nâ²-Tetrakis(oxi-ranyl- methyl)-1,3-cyclohexane di-meth-anamine. 721.2275 Section 721.2275 Protection of Environment ENVIRONMENTAL...-cyclohexane di-meth-anamine. (a) Chemical substances and significant new uses subject to reporting. (1) The...

  13. Association of serum N(ε)-Carboxy methyl lysine with severity of diabetic retinopathy.

    PubMed

    Mishra, Nibha; Saxena, Sandeep; Shukla, Rajendra K; Singh, Vinita; Meyer, Carsten H; Kruzliak, Peter; Khanna, Vinay K

    2016-04-01

    To correlate serum levels of N-epsilon-carboxy methyl lysine (N(ε)-CML) with severity of retinopathy, in vivo macular edema and disruption of external limiting membrane (ELM) and photoreceptor ellipsoid zone in type 2 diabetes mellitus (DM). Consecutive cases of type 2 DM [diabetes mellitus with no retinopathy (No DR) (n=20); non- proliferative diabetic retinopathy (NPDR) with diabetic macular edema (n=20); proliferative diabetic retinopathy with diabetic macular edema (PDR) (n=20)] and healthy controls (n=20) between the ages of 40 and 65 years were included (power of study=93.8%). In vivo histology of retinal layers was assessed using spectral domain optical coherence tomography. Every study subject underwent macular thickness analysis using the macular cube 512×128 feature. Disruption of ELM and photoreceptor ellipsoid zone was graded: grade 0, no disruption of ELM and ellipsoid zone; grade 1, ELM disrupted and ellipsoid zone intact; grade 2, both ELM and ellipsoid zone disrupted. Data were statistically analyzed. The mean levels of N(ε)-CML were 31.34±21.23 ng/ml, 73.88±35.01 ng/ml, 91.21±66.65 ng/ml, and 132.08±84.07 ng/ml in control, No DR, NPDR and PDR respectively. N(ε)-CML level was significantly different between the study groups (control, No DR, NPDR and PDR) (p<0.001). Mean logMAR visual acuity decreased with increased levels of N(ε)-CML (p<0.001). The association of N(Ɛ)CML with the grades of disruption was found to be statistically significant (F value=18.48, p<0.001). Univariate analysis was done with N(Ɛ)-CML as a dependent variable. The values of N(Ɛ)-CML were normalized (log10) and were subjected to univariate analysis with fasting blood glucose level, glycosylated hemoglobin, central subfield macular thickness and cube average thickness among the diseased groups (NPDR and PDR) that act as confounders. It was found that none of the variables had significant effect on N(Ɛ)-CML (fasting blood glucose p=0.12, HBA1c p=0.65, central

  14. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl­benzene­sulfonamide moiety. In the crystal, mol­ecules are ­connected through N—H⋯N hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network parallel to (001). PMID:24427093

  15. Potential of Induced Pluripotent Stem Cells (iPSCs) for Treating Age-Related Macular Degeneration (AMD).

    PubMed

    Fields, Mark; Cai, Hui; Gong, Jie; Del Priore, Lucian

    2016-12-08

    The field of stem cell biology has rapidly evolved in the last few decades. In the area of regenerative medicine, clinical applications using stem cells hold the potential to be a powerful tool in the treatment of a wide variety of diseases, in particular, disorders of the eye. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are promising technologies that can potentially provide an unlimited source of cells for cell replacement therapy in the treatment of retinal degenerative disorders such as age-related macular degeneration (AMD), Stargardt disease, and other disorders. ESCs and iPSCs have been used to generate retinal pigment epithelium (RPE) cells and their functional behavior has been tested in vitro and in vivo in animal models. Additionally, iPSC-derived RPE cells provide an autologous source of cells for therapeutic use, as well as allow for novel approaches in disease modeling and drug development platforms. Clinical trials are currently testing the safety and efficacy of these cells in patients with AMD. In this review, the current status of iPSC disease modeling of AMD is discussed, as well as the challenges and potential of this technology as a viable option for cell replacement therapy in retinal degeneration.

  16. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases.

    PubMed

    Wiley, Luke A; Burnight, Erin R; Songstad, Allison E; Drack, Arlene V; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2015-01-01

    Vision is the sense that we use to navigate the world around us. Thus it is not surprising that blindness is one of people's most feared maladies. Heritable diseases of the retina, such as age-related macular degeneration and retinitis pigmentosa, are the leading cause of blindness in the developed world, collectively affecting as many as one-third of all people over the age of 75, to some degree. For decades, scientists have dreamed of preventing vision loss or of restoring the vision of patients affected with retinal degeneration through drug therapy, gene augmentation or a cell-based transplantation approach. In this review we will discuss the use of the induced pluripotent stem cell technology to model and develop various treatment modalities for the treatment of inherited retinal degenerative disease. We will focus on the use of iPSCs for interrogation of disease pathophysiology, analysis of drug and gene therapeutics and as a source of autologous cells for cell transplantation and replacement. Copyright © 2014. Published by Elsevier Ltd.

  17. Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Däubler, Jürgen; Thonke, Klaus; Sauer, Rolf; Schley, Pascal; Goldhahn, Rüdiger

    2008-06-01

    Unintentionally degenerately doped n -type hexagonal wurtzite InN samples were studied by using Fourier-transform photoluminescence spectroscopy and reflectivity measurements. We found in luminescence overlapping band acceptor (e,A0) transitions related to two different acceptors with a strong enhancement of their intensities close to the Fermi energy of the electrons recombining with the localized holes. Our explanation is in terms of a Fermi-edge singularity of the electrons due to strongly increased electron-hole scattering. Electron-hole pairs with such resonantly enhanced oscillator strengths have been referred to as Mahan excitons. Temperature-dependent reflectivity measurements confirm this interpretation.

  18. Methyl N-phenyl carbamate synthesis from aniline and methyl formate: carbon recycling to chemical products.

    PubMed

    Yalfani, Mohammad S; Lolli, Giulio; Müller, Thomas E; Wolf, Aurel; Mleczko, Leslaw

    2015-02-01

    Methyl N-phenyl carbamate was synthesized from aniline by using methyl formate as a green and efficient carbonylating agent. High yields were obtained at milder reaction conditions compared to the conventional CO/CH3 OH route. Studies on the reaction sequence led to suggest an alternative and more efficient route to the carbamate via formanilide as intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Diagnostic Exercise: Retinal Lesions in a Mouse

    DTIC Science & Technology

    1989-12-07

    retinal degeneration is reported as an autosomal recessive trait, particularly prevalent in Swiss-derived strains; and the allele responsible is...should be used for breeding purposes. Affected mice can be identified by indirect ophthalmoscopy at 3 weeks of age. 10 This precaution alone will not...should be carefully screened prior to initiation of the study. REFERENCES 1. Bellhom R W, Laboratory Animal Ophthalmology . In Gelatt K N ed

  20. Gene therapy for inherited retinal and optic nerve degenerations.

    PubMed

    Moore, Nicholas A; Morral, Nuria; Ciulla, Thomas A; Bracha, Peter

    2018-01-01

    The eye is a target for investigational gene therapy due to the monogenic nature of many inherited retinal and optic nerve degenerations (IRD), its accessibility, tight blood-ocular barrier, the ability to non-invasively monitor for functional and anatomic outcomes, as well as its relative immune privileged state.Vectors currently used in IRD clinical trials include adeno-associated virus (AAV), small single-stranded DNA viruses, and lentivirus, RNA viruses of the retrovirus family. Both can transduce non-dividing cells, but AAV are non-integrating, while lentivirus integrate into the host cell genome, and have a larger transgene capacity. Areas covered: This review covers Leber's congenital amaurosis, choroideremia, retinitis pigmentosa, Usher syndrome, Stargardt disease, Leber's hereditary optic neuropathy, Achromatopsia, and X-linked retinoschisis. Expert opinion: Despite great potential, gene therapy for IRD raises many questions, including the potential for less invasive intravitreal versus subretinal delivery, efficacy, safety, and longevity of response, as well as acceptance of novel study endpoints by regulatory bodies, patients, clinicians, and payers. Also, ultimate adoption of gene therapy for IRD will require widespread genetic screening to identify and diagnose patients based on genotype instead of phenotype.

  1. Development and recovery of laser-induced retinal injury in rats

    NASA Astrophysics Data System (ADS)

    Belokopytov, Mark; Dubinsky, Galina; Belkin, Michael; Epstein, Yoram; Rosner, Mordechai

    2005-04-01

    Retinal photocoagulation lesions undergo primary and secondary degeneration followed by partial healing. This study follows the sequential changes in laser-induced retinal lesion over a time span of 60 days. Argon laser lesions were created in 36 pigmented rats. Sections of the retinal lesions were evaluated by light microscopy 1, 24, 48, 72 hours, and 20, and 60 days after the injury (six animals at each time point). The diameter of the lesion was equal to that of the laser spot 1h after irradiation and increased by 24h. It decreased later, slightly during the following 48h and significantly by 20 days. The destruction of photoreceptors was most severe after 24-48h. The nuclei in the outer-nuclear layer were pyknotic at the lesion site at 1h and disappeared later. Healing processes began 72h after the irradiation and was completed by 60 days. Filling-in by sliding of near nuclei was observed by the 60th day. Reversible changes were seen also in the retinal pigment epithelium (with formation of a plaque at 72h and its degradation later on) and in the choroid (disorganization of capillaries by 48h with later reorganization). Conclusions: The development of a laser-induced injury is gradual. The photoreceptors are damaged first and than the damage spreads to other layers of retina and to areas adjacent the primary injury site. The extension of the damage is later stopped and the adjacent tissues tend to fill the lesion and remodel the retina.

  2. New method to measure the carbamoylating activity of nitrosoureas by electron paramagnetic resonance spectroscopy.

    PubMed

    Gadzheva, V; Ichimori, K; Raikov, Z; Nakazawa, H

    1997-08-01

    A new method for measuring the carbamoylating activity of nitrosoureas and isocyanates using electron paramagnetic resonance (EPR) spectroscopy is described. The extent and time course of carbamoylation reaction of chloroethyl isocyanate and a series of 9 nitrosoureas toward amino group of 4-amino-2,2,6,6-tetramethyl-piperidine-1-oxyl were examined with both the EPR method and the HPLC method which has been proposed by Brubaker et al. [Biochem. Pharmacol. 35:2359 (1986)]. Spin-labeled nitrosoureas we synthesized are included in this study since they have less toxicity or more efficiency than commercially available drug in some cases. The concentration of carbamoylated product was easily determined with the EPR spectra. There is a very high correlation (r = 0.982, t = 2.58, N = 10, p < 0.001) between the EPR and HPLC methods. Spin-labeled nitrosoureas showed lower carbamoylating activity than non-labeled analogues. The carbamoylating activity for these nitrosourea depended on the reactivity of isocyanate intermediate and almost independent of their half life. This rapid and simple EPR method is suitable for the detailed investigation of the rate and extent of carbamoylation reaction.

  3. Highly sensitive measurements of disease progression in rare disorders: Developing and validating a multimodal model of retinal degeneration in Stargardt disease

    PubMed Central

    Bax, Nathalie M.; Fakin, Ana; Groenewoud, Joannes M. M.; Klevering, B. Jeroen; Moore, Anthony T.; Michaelides, Michel; Webster, Andrew R.; van der Wilt, Gert Jan; Hoyng, Carel B.

    2017-01-01

    Background Each inherited retinal disorder is rare, but together, they affect millions of people worldwide. No treatment is currently available for these blinding diseases, but promising new options—including gene therapy—are emerging. Arguably, the most prevalent retinal dystrophy is Stargardt disease. In each case, the specific combination of ABCA4 variants (> 900 identified to date) and modifying factors is virtually unique. It accounts for the vast phenotypic heterogeneity including variable rates of functional and structural progression, thereby potentially limiting the ability of phase I/II clinical trials to assess efficacy of novel therapies with few patients. To accommodate this problem, we developed and validated a sensitive and reliable composite clinical trial endpoint for disease progression based on structural measurements of retinal degeneration. Methods and findings We used longitudinal data from early-onset Stargardt patients from the Netherlands (development cohort, n = 14) and the United Kingdom (external validation cohort, n = 18). The composite endpoint was derived from best-corrected visual acuity, fundus autofluorescence, and spectral-domain optical coherence tomography. Weighting optimization techniques excluded visual acuity from the composite endpoint. After optimization, the endpoint outperformed each univariable outcome, and showed an average progression of 0.41° retinal eccentricity per year (95% confidence interval, 0.30–0.52). Comparing with actual longitudinal values, the model accurately predicted progression (R2, 0.904). These properties were largely preserved in the validation cohort (0.43°/year [0.33–0.53]; prediction: R2, 0.872). We subsequently ran a two-year trial simulation with the composite endpoint, which detected a 25% decrease in disease progression with 80% statistical power using only 14 patients. Conclusions These results suggest that a multimodal endpoint, reflecting structural macular changes, provides a

  4. Comparative Biochemistry and Metabolism. Part 1. Carcinogenesis

    DTIC Science & Technology

    1982-08-01

    1968), Nitrosamine-induced carcino- genesis. The alkylation of nucleic acids of the rat by N-methvl- N- nitrosourea , dimethylnitrosamine...inorganic reducing agent , hydrazine, is toxic and weakly carcinogenic. In earlier studies it was found that oral administration of a toxic dose of...metabolically activated to a methylatinj agent . Liver DNA from mice and hamsters contained considerably more 7-methyl- guanine and 0 6-methylguanine

  5. Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration.

    PubMed

    Karan, G; Lillo, C; Yang, Z; Cameron, D J; Locke, K G; Zhao, Y; Thirumalaichary, S; Li, C; Birch, D G; Vollmer-Snarr, H R; Williams, D S; Zhang, K

    2005-03-15

    Macular degeneration is a heterogeneous group of disorders characterized by photoreceptor degeneration and atrophy of the retinal pigment epithelium (RPE) in the central retina. An autosomal dominant form of Stargardt macular degeneration (STGD) is caused by mutations in ELOVL4, which is predicted to encode an enzyme involved in the elongation of long-chain fatty acids. We generated transgenic mice expressing a mutant form of human ELOVL4 that causes STGD. In these mice, we show that accumulation by the RPE of undigested phagosomes and lipofuscin, including the fluorophore, 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetraenyl]-1-(2-hyydroxyethyl)-4-[4-methyl-6-(2,6,6,-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E-hexatrienyl]-pyridinium (A2E) is followed by RPE atrophy. Subsequently, photoreceptor degeneration occurs in the central retina in a pattern closely resembling that of human STGD and age-related macular degeneration. The ELOVL4 transgenic mice thus provide a good model for both STGD and dry age-related macular degeneration, and represent a valuable tool for studies on therapeutic intervention in these forms of blindness.

  6. Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui; Sun, Yong; Dai, Cuixia; Zheng, Haihua; Ren, Qiushi; Jiao, Shuliang; Zhou, Chuanqing

    2014-09-01

    To research retinal stretching or distortion with accommodation, accommodation-induced changes in retinal thickness (RT) in the macular area were investigated in a population of young adults (n=23) by using a dual-channel spectral domain optical coherence tomography (SD-OCT) system manufactured in-house for this study. This dual-channel SD-OCT is capable of imaging the cornea and retina simultaneously with an imaging speed of 24 kHz A-line scan rate, which can provide the anatomical dimensions of the eye, including the RT and axial length. Thus, the modification of the RT with accommodation can be calculated. A significant decrease in the RT (13.50±1.25 μm) was observed during maximum accommodation. In the 4 mm×4 mm macular area centered at the fovea, we did not find a significant quadrant-dependent difference in retinal volume change, which indicates that neither retinal stretching nor distortion was quadrant-dependent during accommodation. We speculate that the changes in RT with maximum accommodation resulted from accommodation-induced ciliary muscle contractions.

  7. Neurosteroid-like Inhibitors of N-Methyl-d-aspartate Receptor: Substituted 2-Sulfates and 2-Hemisuccinates of Perhydrophenanthrene.

    PubMed

    Slavikova, Barbora; Chodounska, Hana; Nekardova, Michaela; Vyklicky, Vojtech; Ladislav, Marek; Hubalkova, Pavla; Krausova, Barbora; Vyklicky, Ladislav; Kudova, Eva

    2016-05-26

    N-Methyl-d-aspartate receptors (NMDARs) display a critical role in various diseases of the central nervous system. The activity of NMDARs can be modulated by neurosteroids. Herein, we report a structure-activity relationship study for perhydrophenanthrene analogues possessing a framework that mimics the steroidal ring system. This study comprises the design, synthesis, and assessment of the biological activity of a library of perhydrophenanthrene 2-sulfates and 2-hemisuccinates (1-10). Their ability to modulate NMDAR-induced currents was tested on recombinant GluN1/GluN2B receptors. Our results demonstrate that such structural optimization leads to compounds that are inhibitors of NMDARs. Notably, compound 9 (IC50 = 15.6 μM) was assessed as a more potent inhibitor of NMDAR-induced currents than the known endogenous neurosteroid, pregnanolone sulfate (IC50 = 24.6 μM).

  8. N-Methyl, N-propynyl-2-phenylethylamine (MPPE), a Selegiline Analog, Attenuates MPTP-induced Dopaminergic Toxicity with Guaranteed Behavioral Safety: Involvement of Inhibitions of Mitochondrial Oxidative Burdens and p53 Gene-elicited Pro-apoptotic Change.

    PubMed

    Shin, Eun-Joo; Nam, Yunsung; Lee, Ji Won; Nguyen, Phuong-Khue Thi; Yoo, Ji Eun; Tran, The-Vinh; Jeong, Ji Hoon; Jang, Choon-Gon; Oh, Young J; Youdim, Moussa B H; Lee, Phil Ho; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2016-11-01

    Selegiline is a monoamine oxidase-B (MAO-B) inhibitor with anti-Parkinsonian effects, but it is metabolized to amphetamines. Since another MAO-B inhibitor N-Methyl, N-propynyl-2-phenylethylamine (MPPE) is not metabolized to amphetamines, we examined whether MPPE induces behavioral side effects and whether MPPE affects dopaminergic toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Multiple doses of MPPE (2.5 and 5 mg/kg/day) did not show any significant locomotor activity and conditioned place preference, whereas selegiline (2.5 and 5 mg/kg/day) significantly increased these behavioral side effects. Treatment with MPPE resulted in significant attenuations against decreases in mitochondrial complex I activity, mitochondrial Mn-SOD activity, and expression induced by MPTP in the striatum of mice. Consistently, MPPE significantly attenuated MPTP-induced oxidative stress and MPPE-mediated antioxidant activity appeared to be more pronounced in mitochondrial-fraction than in cytosolic-fraction. Because MPTP promoted mitochondrial p53 translocation and p53/Bcl-xL interaction, it was also examined whether mitochondrial p53 inhibitor pifithrin-μ attenuates MPTP neurotoxicity. MPPE, selegiline, or pifithrin-μ significantly attenuated mitochondrial p53/Bcl-xL interaction, impaired mitochondrial transmembrane potential, cytosolic cytochrome c release, and cleaved caspase-3 in wild-type mice. Subsequently, these compounds significantly ameliorated MPTP-induced motor impairments. Neuroprotective effects of MPPE appeared to be more prominent than those of selegiline. MPPE or selegiline did not show any additional protective effects against the attenuation by p53 gene knockout, suggesting that p53 gene is a critical target for these compounds. Our results suggest that MPPE possesses anti-Parkinsonian potentials with guaranteed behavioral safety and that the underlying mechanism of MPPE requires inhibition of mitochondrial oxidative stress, mitochondrial

  9. Nrf2 Is an Attractive Therapeutic Target for Retinal Diseases

    PubMed Central

    2016-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that binds to antioxidant response elements located in the promoter region of genes encoding many antioxidant enzymes and phase II detoxifying enzymes. Activation of Nrf2 functions is one of the critical defensive mechanisms against oxidative stress in many species. The retina is constantly exposed to reactive oxygen species, and oxidative stress is a major contributor to age-related macular diseases. Moreover, the resulting inflammation and neuronal degeneration are also related to other retinal diseases. The well-known Nrf2 activators, bardoxolone methyl and its derivatives, have been the subject of a number of clinical trials, including those aimed at treating chronic kidney disease, pulmonary arterial hypertension, and mitochondrial myopathies. Recent studies suggest that Nrf2 activation protects the retina from retinal diseases. In particular, this is supported by the finding that Nrf2 knockout mice display age-related retinal degeneration. Moreover, the concept has been validated by the efficacy of Nrf2 activators in a number of retinal pathological models. We have also recently succeeded in generating a novel Nrf2 activator, RS9, using a biotransformation technique. This review discusses current links between retinal diseases and Nrf2 and the possibility of treating retinal diseases by activating the Nrf2 signaling pathway. PMID:27818722

  10. Septohippocampal GABAergic neurons mediate the altered behaviors induced by n-methyl-D-aspartate receptor antagonists.

    PubMed

    Ma, Jingyi; Tai, Siew Kian; Leung, L Stan

    2012-12-01

    We hypothesize that selective lesion of the septohippocampal GABAergic neurons suppresses the altered behaviors induced by an N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine or MK-801. In addition, we hypothesize that septohippocampal GABAergic neurons generate an atropine-resistant theta rhythm that coexists with an atropine-sensitive theta rhythm in the hippocampus. Infusion of orexin-saporin (ore-SAP) into the medial septal area decreased parvalbumin-immunoreactive (GABAergic) neurons by ~80%, without significantly affecting choline-acetyltransferase-immunoreactive (cholinergic) neurons. The theta rhythm during walking, or the immobility-associated theta induced by pilocarpine, was not different between ore-SAP and sham-lesion rats. Walking theta was, however, more disrupted by atropine sulfate in ore-SAP than in sham-lesion rats. MK-801 (0.5 mg/kg i.p.) induced hyperlocomotion associated with an increase in frequency, but not power, of the hippocampal theta in both ore-SAP and sham-lesion rats. However, MK-801 induced an increase in 71-100 Hz gamma waves in sham-lesion but not ore-SAP lesion rats. In sham-lesion rats, MK-801 induced an increase in locomotion and an impairment of prepulse inhibition (PPI), and ketamine (3 mg/kg s.c.) induced a loss of gating of hippocampal auditory evoked potentials. MK-801-induced behavioral hyperlocomotion and PPI impairment, and ketamine-induced auditory gating deficit were reduced in ore-SAP rats as compared to sham-lesion rats. During baseline without drugs, locomotion and auditory gating were not different between ore-SAP and sham-lesion rats, and PPI was slightly but significantly increased in ore-SAP as compared with sham lesion rats. It is concluded that septohippocampal GABAergic neurons are important for the expression of hyperactive and psychotic symptoms an enhanced hippocampal gamma activity induced by ketamine and MK-801, and for generating an atropine-resistant theta. Selective suppression of

  11. Cysteine Substitution of Transmembrane Domain Amino Acids Alters the Ethanol Inhibition of GluN1/GluN2A N-Methyl-d-Aspartate Receptors

    PubMed Central

    Xu, Minfu; Smothers, C. Thetford

    2015-01-01

    N-Methyl-d-aspartate receptors (NMDARs) are inhibited by behaviorally relevant concentrations of ethanol, and residues within transmembrane (TM) domains of NMDARs, including TM3 GluN1 phenylalanine 639 (F639), regulate this sensitivity. In the present study, we used cysteine (C) mutagenesis to determine whether there are additional residues within nearby TM domains that regulate ethanol inhibition on NMDARs. GluN1(F639C)/GluN2A receptors were less inhibited by ethanol than wild-type receptors, and inhibition was restored to wild-type levels following treatment with ethanol-like methanethiosulfonate reagents. Molecular modeling identified six residues in the GluN1 TM1 domain (valine V566; serine S569) and the GluN2A TM4 domain (methionine, M817; V820, F821, and leucine, L824) that were in close vicinity to the TM3 F639 residue, and these were individually mutated to cysteine and tested for ethanol inhibition and receptor function. The F639C-induced decrease in ethanol inhibition was blunted by coexpression of GluN1 TM1 mutants V566C and S569C, and statistically significant interactions were observed for ethanol inhibition among V566C, F639C, and GluN2A TM4 mutants V820C and F821C and S569C, F639C, and GluN2A TM4 mutants F821C and L824C. Ethanol inhibition was also reduced when either GluN1 TM1 mutant V566C or S569C was combined with GluN2A V820C, suggesting a novel TM1:TM4 intrasubunit site of action for ethanol. Cysteines substituted at TM3 and TM4 sites previously suggested to interact with ethanol had less dramatic effects on ethanol inhibition. Overall, the results from these studies suggest that interactions among TM1, TM3, and TM4 amino acids in NMDARs are important determinants of ethanol action at these receptors. PMID:25635140

  12. Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues.

    PubMed

    Adamska-Bartłomiejczyk, Anna; Janecka, Anna; Szabó, Márton Richárd; Cerlesi, Maria Camilla; Calo, Girolamo; Kluczyk, Alicja; Tömböly, Csaba; Borics, Attila

    2017-04-15

    In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Preparation, electrochemical and spectral properties of free-base and manganese N-methyl-pyridylethynyl porphyrins.

    PubMed

    Lin, Ching-Yao; Chen, Yen-Chuan; Yao, Chi-Wen; Huang, Sung-Chou; Cheng, Yi-Hui

    2008-02-14

    Two series of free-base and manganese N-methyl-pyridylethynyl-5,15-biphenyl porphyrins were synthesized, and their UV-Visible, electrochemical and spectro-electrochemical properties were studied. Cyclic voltammetry experiments showed positive shifts in the reduction potentials and the UV-Visible spectra showed significant red-shifts in the absorption wavelengths of these porphyrins, indicating the effects of N-methyl-pyridylethynyl substituents.

  14. N-(1-Allyl-1H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Abderrafia, Hafid; Saadi, Mohamed; El Ammari, Lahcen

    2013-11-30

    The asymmetric unit of the title compound, C17H17N3O2S, contains two independent mol-ecules linked by an N-H⋯O hydrogen bond. The mol-ecules show different conformations. In the first mol-ecule, the fused five- and six-membered ring system is almost perpendicular to the plane through the atoms forming the allyl group, as indicated by the dihedral angle of 85.1 (4)°. The dihedral angle with the methyl-benzene-sulfonamide group is 78.8 (1)°. On the other hand, in the second mol-ecule, the dihedral angles between the indazole plane and the allyl and methyl-benzene-sulfonamide groups are 80.3 (3) and 41.5 (1)°, respectively. In the crystal, mol-ecules are further linked by N-H⋯N and C-H⋯O hydrogen bonds, forming a three-dimensional network.

  15. Crystal structures of isomeric 3,5-di-chloro-N-(2,3-di-methyl-phen-yl)benzene-sulfonamide, 3,5-di-chloro-N-(2,6-di-methyl-phen-yl)benzene-sulfonamide and 3,5-di-chloro-N-(3,5-di-methyl-phen-yl)benzene-sulfonamide.

    PubMed

    Shakuntala, K; Naveen, S; Lokanath, N K; Suchetan, P A

    2017-05-01

    The crystal structures of three isomeric compounds of formula C 14 H 13 Cl 2 NO 2 S, namely 3,5-di-chloro- N -(2,3-di-methyl-phen-yl)-benzene-sulfonamide (I), 3,5-di-chloro- N -(2,6-di-methyl-phen-yl)benzene-sulfonamide (II) and 3,5-di-chloro- N -(3,5-di-methyl-phen-yl)benzene-sulfonamide (III) are described. The mol-ecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The mol-ecular conformation of (II) is stabilized by intra-molecular C-H⋯O hydrogen bonds and C-H⋯π inter-actions. The crystal structure of (I) features N-H⋯O hydrogen-bonded R 2 2 (8) loops inter-connected via C (7) chains of C-H⋯O inter-actions, forming a three-dimensional architecture. The structure also features π-π inter-actions [ Cg ⋯ Cg = 3.6970 (14) Å]. In (II), N-H⋯O hydrogen-bonded R 2 2 (8) loops are inter-connected via π-π inter-actions [inter-centroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to the a axis. In (III), adjacent C (4) chains of N-H⋯O hydrogen-bonded mol-ecules running parallel to [010] are connected via C-H⋯π inter-actions, forming sheets parallel to the ab plane. Neighbouring sheets are linked via offset π-π inter-actions [inter-centroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.

  16. PGC-1α repression and high fat diet induce age-related macular degeneration-like phenotypes in mice.

    PubMed

    Zhang, Meng; Chu, Yi; Mowery, Joseph; Konkel, Brandon; Galli, Susana; Theos, Alexander C; Golestaneh, Nady

    2018-06-20

    Age-related macular degeneration (AMD) is the major cause of blindness in the elderly in developed countries and its prevalence is increasing with the aging population. AMD initially affects the retinal pigment epithelium (RPE) and gradually leads to secondary photoreceptor degeneration. Recent studies have associated mitochondrial damage with AMD, and we have observed mitochondrial and autophagic dysfunction and repressed peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α in native RPE from AMD donor eyes and their respective induced pluripotent stem cell-derived RPE (AMD RPE-iPSC-RPE). To further investigate the effect of PGC-1α repression we have established a mouse model by feeding PGC-1α + /- mice with high fat diet (HFD) and investigated the RPE and retinal health. Here we show that when mice expressing lower levels of Pgc-1α are exposed to HFD, they present AMD-like abnormalities in RPE and retinal morphology and function. These abnormalities include basal laminar deposits, thickening of Bruch's membrane (BM) with drusen marker-containing deposits, RPE and photoreceptor degeneration, decreased mitochondrial activity, increased ROS levels, decreased autophagy dynamics/ flux, and increased inflammatory response in the RPE/retina. Our study show that the PGC-1α is important in outer retina biology and that PGC-1α + /- mouse fed with HFD is a promising model to study AMD and opens doors for novel treatment strategies in AMD. © 2018. Published by The Company of Biologists Ltd.

  17. Alpha-1 Antitrypsin Attenuates M1 Microglia-Mediated Neuroinflammation in Retinal Degeneration

    PubMed Central

    Zhou, Tian; Huang, Zijing; Zhu, Xiaowei; Sun, Xiaowei; Liu, Yan; Cheng, Bing; Li, Mei; Liu, Yizhi; He, Chang; Liu, Xialin

    2018-01-01

    Neurodegenerative diseases are a set of disorders characterized by progressive neuronal death and are associated with microglia-mediated neuroinflammation. Recently, neuroinflammation is proposed as a promising therapeutic target for many neurodegenerative diseases. Alpha-1 antitrypsin (AAT) is recognized as a novel immunomodulatory agent in autoimmune diseases and transplantation, however, its impact on neuroinflammation and neurodegeneration remains unknown. This study aims to explore the effects of AAT on microglia-mediated neuroinflammation and retinal degeneration in rd1 mouse model. We found reduced expression of AAT in rd1 retina, and AAT supplement exhibited certain protective effect on retinal degeneration, presenting with increased amount of photoreceptor nuclei, and amplified wave amplitudes in electroretinogram analysis. Of note, AAT shifted microglia phenotype from pro-inflammatory M1 (CD16/CD32+, iNOS+) to anti-inflammatory M2 (CD206+, Arg1+) both in vivo and in vitro, underscoring the concept of immunomodulation on microglia polarization by AAT during neurodegeneration. Furthermore, AAT suppressed the activation of STAT1, promoted the expression of IRF4 while inhibited IRF8 expression, indicating the involvement of these signaling pathways in AAT immunomodulation. Collectively, our data provided evidence for a novel protective role of AAT through immunomodulation on microglia polarization. Attenuating neuroinflammation by AAT may be beneficial to retard neurodegeneration in rd1 mice. PMID:29899745

  18. Recessive NRL mutations in patients with clumped pigmentary retinal degeneration and relative preservation of blue cone function.

    PubMed

    Nishiguchi, Koji M; Friedman, James S; Sandberg, Michael A; Swaroop, Anand; Berson, Eliot L; Dryja, Thaddeus P

    2004-12-21

    Mice lacking the transcription factor Nrl have no rod photoreceptors and an increased number of short-wavelength-sensitive cones. Missense mutations in NRL are associated with autosomal dominant retinitis pigmentosa; however, the phenotype associated with the loss of NRL function in humans has not been reported. We identified two siblings who carried two allelic mutations: a predicted null allele (L75fs) and a missense mutation (L160P) altering a highly conserved residue in the domain involved in DNA-binding-site recognition. In vitro luciferase reporter assays demonstrated that the NRL-L160P mutant had severely reduced transcriptional activity compared with the WT NRL protein, consistent with a severe loss of function. The affected patients had night blindness since early childhood, consistent with a severe reduction in rod function. Color vision was normal, suggesting the presence of all cone color types; nevertheless, a comparison of central visual fields evaluated with white-on-white and blue-on-yellow light stimuli was consistent with a relatively enhanced function of short-wavelength-sensitive cones in the macula. The fundi had signs of retinal degeneration (such as vascular attenuation) and clusters of large, clumped, pigment deposits in the peripheral fundus at the level of the retinal pigment epithelium (clumped pigmentary retinal degeneration). Our report presents an unusual clinical phenotype in humans with loss-of-function mutations in NRL.

  19. Glycine aggravates ischemia reperfusion-induced acute kidney injury through N-Methyl-D-Aspartate receptor activation in rats.

    PubMed

    Arora, Shiyana; Kaur, Tajpreet; Kaur, Anudeep; Singh, Amrit Pal

    2014-08-01

    The present study was designed to investigate the role of glycine in ischemia reperfusion-induced acute kidney injury (AKI) in rats. The AKI was induced in rats by occluding renal pedicles for 40 min followed by reperfusion for 24 h. The AKI was assessed by measuring creatinine clearance, blood urea nitrogen, plasma uric acid, potassium, fractional excretion of sodium, and microproteinuria. The oxidative stress in renal tissues was assessed by quantification of myeloperoxidase activity, thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. Glycine (100, 200, and 400 mg/kg, i.p.) was administered to rats 30 min before subjecting to AKI. The glycinergic receptor blocker, strychnine (0.75 mg/kg i.p.), and glycine-binding site blocker at N-methyl-D-aspartate (NMDA) receptor, kynurenic acid (300 and 600 mg/kg i.p.), were used in the present study. The ischemia reperfusion induced AKI as witnessed by significant change in plasma, urinary, and tissue parameters employed in the present study. Glycine treatment increased ischemia reperfusion-induced AKI. The treatment with strychnine did not show any protection, whereas kynurenic acid ameliorated renal ischemia reperfusion-induced AKI. The results obtained in present study suggest that glycine increases ischemia reperfusion-induced renal damage through NMDA receptor agonism rather than strychnine-sensitive glycinergic receptors. Hence, it is concluded that glycine aggravates ischemia reperfusion-induced AKI. In addition, the activation of strychnine-insensitive glycine-binding site of NMDA receptors is responsible for its renal-damaging effect rather than strychnine-sensitive glycinergic receptors.

  20. Understanding the Function of Genes Involved in Inherited Retinal Degeneration-Insights into the Pathogenesis and Function of C8ORF37

    NASA Astrophysics Data System (ADS)

    Sharif, Ali Sakawa

    Inherited retinal degenerative diseases (IRD) are a group of disorders that lead to progressive deterioration of mainly the photoreceptors. Retinitis pigmentosa (RP) and cone-rod dystrophy (CRD) are two forms of IRDs. RP is the most common form of IRD and is due to rod photoreceptor degeneration followed by cone photoreceptor loss. CRD, on the other hand, is characterized by the loss of cones or the concurrent degeneration of both cones and rods. Both RP and CRD are presently incurable. More than 200 genes have been identified to cause IRDs and the functions of many of these genes remain unclear. Mutations in a novel gene, C8ORF37, were identified to cause recessive, severe, and early-onset RP and CRD. I, therefore, pioneered in characterizing the role of C8ORF37 in the retina. This dissertation is comprised of four chapters that is organized as follows: (1) summary of an ocular disorder (2) a genetic model of a retinal disorder (3) biochemical/proteomic analysis of C8ORF37 (4) potential clinical applications. A summary of ocular disorders is discussed in Chapter 1, with an emphasis on CRD. Chapter 2 focuses on the generation and characterization of C8orf37 mutant mouse models that recapitulate the retinal pathologies observed in human patients. In C8orf37 knockout retinas, the outer segment (OS) was nonuniform, swollen, and wider in width when compared to the controls. Moreover, many OS membrane proteins were reduced in the retina of C8orf37 knockout, including CNGB1 and RDS, proteins essential for OS disc morphogenesis and alignment. Our findings shed new light on the pathogenesis underlying retinal dysfunction and degeneration in C8ORF37-deficient patients. To determine the function of a novel protein, a powerful approach is by identifying its binding partners. In Chapter 3, I discuss GST pull-down using bovine retinal lysates, yeast-two-hybrid, and immunoprecipitation with mouse retinal lysate in order to identify C8ORF37-interacting proteins. Our pull

  1. Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration

    PubMed Central

    Noailles, Agustina; Maneu, Victoria; Campello, Laura; Gómez-Vicente, Violeta; Lax, Pedro; Cuenca, Nicolás

    2016-01-01

    Microglia act as the resident immune cells of the central nervous system, including the retina. In response to damaging stimuli microglia adopt an activated state, which can progress into a phagocytic phenotype and play a potentially harmful role by eliciting the expression and release of pro-inflammatory cytokines. The aim of the present study was to assess longitudinal changes in microglia during retinal degeneration in the homozygous P23H rat, a model of dominant retinitis pigmentosa. Microglial phenotypes, morphology and density were analyzed by immunohistochemistry, flow cytometry, and cytokine antibody array. In addition, we performed electroretinograms to evaluate the retinal response. In the P23H retina, sclera, choroid and ciliary body, inflammatory cells increased in number compared with the control at all ages analyzed. As the rats became older, a higher number of amoeboid MHC-II+ cells were observed in the P23H retina, which correlated with an increase in the expression of pro-inflammatory cytokines. These findings suggest that, in the P23H model, retinal neuroinflammation persists throughout the rat’s life span even after photoreceptor depletion. Therefore, the inclusion of anti-inflammatory drugs at advanced stages of the neurodegenerative process may provide better retinal fitness so the remaining cells could still be used as targets of cellular or gene therapies. PMID:27624537

  2. Regulation of c- and N-myc expression during induced differentiation of murine neuroblastoma cells.

    PubMed

    Larcher, J C; Vayssière, J L; Lossouarn, L; Gros, F; Croizat, B

    1991-04-01

    Using clones N1E-115 and N1A-103 from mouse neuroblastoma C1300, a comparative analysis of c- and N-myc gene expression was undertaken both in proliferating cells and in cultures exposed to conditions which induce differentiation. Under the latter conditions, while N1E-115 cells extend abundant neurites and express many biochemical features of mature neurons, clone N1A-103 stops dividing and expresses certain neurospecific markers but is unable to differentiate morphologically. In both clones, chemical agents, i.e. 1-methyl cyclohexane carboxylic acid (CCA) or dimethyl sulfoxide (DMSO), induce a decrease in c-myc expression. Similar results were found for N-myc gene in N1E-115 cells, but in contrast, in clone N1A-103, N-myc expression is increased with CCA and not modified with DMSO. Globally, this study favours the hypothesis that changes in c-myc expression would correspond to cell division blockade and differentiation, while modulations in N-myc are more closely related to an early phase of terminal differentiation.

  3. Expression and function of system N glutamine transporters (SN1/SN2 or SNAT3/SNAT5) in retinal ganglion cells.

    PubMed

    Umapathy, Nagavedi S; Dun, Ying; Martin, Pamela M; Duplantier, Jennifer N; Roon, Penny; Prasad, Puttur; Smith, Sylvia B; Ganapathy, Vadivel

    2008-11-01

    Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB(0,+)) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. Three transport systems--N, A, and L--participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle.

  4. Crystal structure of N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium cyanate 1.5-hydrate

    PubMed Central

    Tiritiris, Ioannis; Kantlehner, Willi

    2015-01-01

    The title hydrated salt, C7H18N3 +·OCN−.1.5H2O, was synthesized starting from N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium chloride by a twofold anion-exchange reaction. The asymmetric unit contains two cations, two cyanate anions and three water mol­ecules. One cation shows orientational disorder and two sets of N-atom positions were found related by a 60° rotation, with an occupancy ratio of 0.852 (6):0.148 (6). The C—N bond lengths in both guanidin­ium ions range from 1.329 (2) to 1.358 (10) Å, indicating double-bond character, pointing towards charge delocalization within the NCN planes. Strong O—H⋯N hydrogen bonds between the crystal water mol­ecules and the cyanate ions and strong O—H⋯O hydrogen bonds between the water mol­ecules are present, resulting in a two-dimensional hydrogen bonded network running parallel to the (001) plane. The hexa­methyl­guanidinium ions are packed in between the layers built up by water mol­ecules and cyanate ions. PMID:26870506

  5. Protection of retinal function by sulforaphane following retinal ischemic injury.

    PubMed

    Ambrecht, Lindsay A; Perlman, Jay I; McDonnell, James F; Zhai, Yougang; Qiao, Liang; Bu, Ping

    2015-09-01

    Sulforaphane, a precursor of glucosinolate in cruciferous vegetables such as broccoli and cauliflower, has been shown to protect brain ischemic injury. In this study, we examined the effect of systemic administration of sulforaphane on retinal ischemic reperfusion injury. Intraocular pressure was elevated in two groups of C57BL/6 mice (n = 8 per group) for 45 min to induce retinal ischemic reperfusion injury. Following retinal ischemic reperfusion injury, vehicle (1% DMSO saline) or sulforaphane (25 mg/kg/day) was administered intraperitoneally daily for 5 days. Scotopic electroretinography (ERG) was used to quantify retinal function prior to and one-week after retinal ischemic insult. Retinal morphology was examined one week after ischemic insult. Following ischemic reperfusion injury, ERG a- and b-wave amplitudes were significantly reduced in the control mice. Sulforaphane treatment significantly attenuated ischemic-induced loss of retinal function as compared to vehicle treated mice. In vehicle treated mice, ischemic reperfusion injury produced marked thinning of the inner retinal layers, but the thinning of the inner retinal layers appeared significantly less with sulforaphane treatment. Thus, sulforaphane may be beneficial in the treatment of retinal disorders with ischemic reperfusion injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Bis[μ-N-(tert-butyl­dimethyl­silyl)-N-(pyridin-2-ylmeth­yl)amido]­bis­[methyl­cobalt(II)

    PubMed Central

    Malassa, Astrid; Agthe, Christine; Görls, Helmar; Westerhausen, Matthias

    2012-01-01

    The green title complex, [Co2(CH3)2(C12H21N2Si)2], was obtained from bis­{[μ-N-tert-butyl­dimethyl­silyl-N-(pyridin-2-ylmeth­yl)amido]­chloridocobalt(II)} and methyl­lithium in diethyl ether at 195 K via a metathesis reaction. The dimeric cobalt(II) complex exhibits a crystallographic center of inversion in the middle of the Co2N2 ring (average Co—N = 2.050 Å). The CoII atom shows a distorted tetra­hedral coordination sphere. The exocyclic Co—N bond length to the pyridyl group shows a similar value of 2.045 (4) Å. The exocyclic methyl group has a rather long Co—C bond length of 2.019 (5) Å. PMID:22969464

  7. Intravitreal injection or topical eye-drop application of a μ-calpain C2L domain peptide protects against photoreceptor cell death in Royal College of Surgeons' rats, a model of retinitis pigmentosa.

    PubMed

    Ozaki, Taku; Nakazawa, Mitsuru; Yamashita, Tetsuro; Sorimachi, Hiroyuki; Hata, Shoji; Tomita, Hiroshi; Isago, Hitomi; Baba, Ayaka; Ishiguro, Sei-Ichi

    2012-11-01

    Mitochondrial μ-calpain initiates apoptosis-inducing factor (AIF)-dependent apoptosis in retinal photoreceptor degeneration. Mitochondrial μ-calpain inhibitors may represent therapeutic targets for the disease. Therefore, we sought to identify inhibitors of mitochondrial calpains and determine their effects in Royal College of Surgeons' (RCS) rats, an animal model of retinitis pigmentosa (RP). We synthesized 20-mer peptides of the C2-like (C2L) domain of μ-calpain. Two μ-calpain peptides N2 and N9 inhibited mitochondrial μ-calpain activity (IC(50); 892 and 498nM, respectively), but not other proteases. Western blotting showed that 50μM of both μ-calpain peptides caused specific degradation of mitochondrial μ-calpain. Three-dimensional structure of calpains suggested that the peptides N2 and N9 corresponded to the regions forming salt bridges between the protease core domain 2 and the C2L domain. We determined the inhibitory regions of μ-calpain peptides N2 and N9 using 10-mers, and one peptide, N2-10-2, inhibited the activity of mitochondrial μ-calpain (IC(50); 112nM). We next conjugated the peptide N2-10-2 to the C-terminal of HIV-1 tat (HIV), a cell-penetrating peptide. Using isolated rat liver mitochondria, 50μM HIV-conjugated μ-calpain N2-10-2 peptide (HIV-Nμ, IC(50); 285nM) significantly inhibited AIF truncation. The intravitreal injection of 20mM HIV-Nμ also prevented retinal photoreceptor apoptosis determined by TUNEL staining, and preserved retinal function assessed by electroretinography in RCS rats. Topical application of 40mM HIV-Nμ also prevented apoptosis of retinal photoreceptors in RCS rats. Our results demonstrate that HIV-Nμ, a peptide inhibitor of mitochondrial μ-calpain, offers a new modality for treating RP. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. N-acetylcysteine reverses immunotoxic effects of methyl mercury and augments murine lymphocyte proliferation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omara, F.; Fournier, M.; Bernier, J.

    1995-12-31

    N-Acetylcysteine (NAC) is a thiol antioxidant used clinically to treat chronic inflammatory lung disorders and acetaminophen poisoning in humans. The authors evaluated in vitro the effect of NAC on mitogen-induced blastogenesis in C57BI/6 mouse splenocytes by {sup 3}H-thymidine uptake, and its ability to protect against the immunotoxic effects of methyl mercury on lymphocyte proliferation. Lymphocyte proliferation stimulated by optimal and suboptimal concentrations of concanavalin A (Con A), lipopolysaccharide (LPS), or a combination of calcium ionophore A23187 and phorbol-12-myristate-13-acetate (PMA) were markedly enhanced by NAC. NAC itself was a weak mitogen. The kinetics of the NAC effect on splenocyte proliferation weremore » mitogen dependent. NAC enhanced Con A-induced splenocyte proliferation in a dose-dependent and linear manner but enhanced the LPS-induced response at 50--400 {micro}g/ml of NAC followed by a decline in response to control value at higher concentrations. In splenocytes stimulated with PMA plus A23187, NAC increased proliferation at 50--200 pg/ml followed by a constant response at 200--1,000 {micro}g/ml NAC. When splenocytes were stimulated with higher concentrations of Con A (10 {micro}g/ml) or LPS (150 {micro}g/ml) which markedly suppress splenocyte proliferation, NAC significantly enhanced the Con A-induced response and reversed the inhibitory effect of high concentrations of LPS. NAC also protected lymphocytes against mitogen activation-induced cell death. Methyl mercury at 5 {times} 10{sup {minus}7}--1 {times} 10{sup {minus}6} suppressed Con A- and LPS-induced splenocyte proliferation by over 80%. However, NAC completely reversed the immunotoxic effects of methyl mercury on the mitogen-induced splenocyte proliferation even when the cells were pre-incubated with methyl mercury for 6 or 24 hr before stimulation with the mitogens.« less

  9. Quantitative evaluation of retinal degeneration in royal college of surgeons rats by contrast enhanced ultrahigh resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syu, Jia-Pu; Su, Min-Jyun; Chen, Po-Wei; Ke, Chang-Chih; Chiou, Shih-Hwa; Kuo, Wen-Chuan

    2018-02-01

    This study presents a spectral domain optical coherence tomography (SD-OCT) using supercontinuum laser combined with a fundus photography for in vivo high-resolution imaging of retinal degeneration in Royal College of Surgeons (RCS-/- rat). These findings were compared with the Sprague-Dawley (SD) rats and the corresponding histology. Quantitative measurements show that changes in thickness were not significantly different between SD control and young RCS retinas (4 weeks). However, in old RCS rats (55 weeks), the thickness of photoreceptor layer decreased significantly as compared to young RCS rats (both 4 weeks and 5 weeks). After contrast enhancement method, this platform will be useful for the quantitative evaluation of the degree of retinal degeneration, treatment outcome after therapy, and drug screening development in the future.

  10. Measurement of Retinal Sensitivity on Tablet Devices in Age-Related Macular Degeneration.

    PubMed

    Wu, Zhichao; Guymer, Robyn H; Jung, Chang J; Goh, Jonathan K; Ayton, Lauren N; Luu, Chi D; Lawson, David J; Turpin, Andrew; McKendrick, Allison M

    2015-06-01

    We compared measurements of central retinal sensitivity on a portable, low-cost tablet device to the established method of microperimetry in age-related macular degeneration (AMD). A customized test designed to measure central retinal sensitivity (within the central 1° radius) on a tablet device was developed using an open-source platform called PsyPad. A total of 30 participants with AMD were included in this study, and all participants performed a practice test on PsyPad, followed by four tests of one eye and one test of the other eye. Participants then underwent standardized microperimetry examinations in both eyes. The average test duration on PsyPad was 53.9 ± 7.5 seconds, and no significant learning effect was observed over the examinations performed ( P = 1.000). The coefficient of repeatability of central retinal sensitivity between the first two examinations on PsyPad was ±1.76 dB. The mean central retinal sensitivity was not significantly different between PsyPad (25.7 ± 0.4 dB) and microperimetry (26.1 ± 0.4 dB, P = 0.094), and the 95% limits of agreement between the two measures were between -4.12 and 4.92 dB. The measurements of central retinal sensitivity can be performed effectively using a tablet device, displaying reasonably good agreement with those obtained using the established method of microperimetry. These findings highlight the potential of tablet devices as low-cost and portable tools for developing and performing visual function measures that can be easily and widely implemented.

  11. Spin labelled nitrosoureas and triazenes and their non-labelled clinically used analogues--a comparative study on their physicochemical properties and antimelanomic effects.

    PubMed

    Zheleva, A M; Gadjeva, V G

    2001-01-16

    Physicochemical properties, such as half life time (tau0.5), alkylating and carbamoylating activity and in vivo antimelanomic effects against B16 melanoma of spin labeled (containing nitroxyl free radical moiety) amino acid nitrosoureas, synthesized in our laboratory, have been studied and compared to those of the antitumor drug N'-cyclohexyl-N-(2-chloroethyl)-N-nitrosourea (lomustine, CCNU). We have shown that the introduction of amino acid moieties and the replacement of cyclohexylamine with nitroxyl moiety leads to a faster decomposition, higher alkylating, lower carbamoylating activity, better antimelanomic activity and lower general toxicity, when compared to those of CCNU. It was also established that spin labeled triazenes, previously synthesized by us, were more stable in phosphate saline than their nonlabeled analogue, 5-(3,3-dimethyltriazene-1-yl)-imidazole-4-carboxamide (dacarbazine, DTIC). A higher cytotoxicity to B16 melanoma cells than to YAC-1 and lymphocytes was demonstrated for all spin labeled triazenes, in comparison with DTIC. An assumption has been made to explain the lower general toxicity of the spin labeled nitrosoureas compared to that of CCNU. Based on the results presented, we accept that a new trend for synthesis of more selective and less toxic nitrosourea and triazene derivatives as potential antimelanomic drugs might be developed.

  12. COMPARISON OF ACUTE NEUROBEHAVIORAL EFFECTS OF N-METHYL CARBAMATE INSECTICIDES.

    EPA Science Inventory

    The acute neurobehavioral and cholinesterase (ChE)-inhibiting effects of N-methyl carbamate insecticides have not been systematically compared. We evaluated five carbamates - carbaryl (CB), propoxur (PP), oxamyl (OM), methomyl (MM), and methiocarb (MC). Adult male Long-Evans ra...

  13. Comprehensive analysis of mouse retinal mononuclear phagocytes.

    PubMed

    Lückoff, Anika; Scholz, Rebecca; Sennlaub, Florian; Xu, Heping; Langmann, Thomas

    2017-06-01

    The innate immune system is activated in a number of degenerative and inflammatory retinal disorders such as age-related macular degeneration (AMD). Retinal microglia, choroidal macrophages, and recruited monocytes, collectively termed 'retinal mononuclear phagocytes', are critical determinants of ocular disease outcome. Many publications have described the presence of these cells in mouse models for retinal disease; however, only limited aspects of their behavior have been uncovered, and these have only been uncovered using a single detection method. The workflow presented here describes a comprehensive analysis strategy that allows characterization of retinal mononuclear phagocytes in vivo and in situ. We present standardized working steps for scanning laser ophthalmoscopy of microglia from MacGreen reporter mice (mice expressing the macrophage colony-stimulating factor receptor GFP transgene throughout the mononuclear phagocyte system), quantitative analysis of Iba1-stained retinal sections and flat mounts, CD11b-based retinal flow cytometry, and qRT-PCR analysis of key microglia markers. The protocol can be completed within 3 d, and we present data from retinas treated with laser-induced choroidal neovascularization (CNV), bright white-light exposure, and Fam161a-associated inherited retinal degeneration. The assays can be applied to any of the existing mouse models for retinal disorders and may be valuable for documenting immune responses in studies for immunomodulatory therapies.

  14. Antinociceptive effect and mechanism of action of isatin, N-methyl isatin and oxopropyl isatin in mice.

    PubMed

    Giorno, Thais Biondino Sardella; Silva, Bárbara Vasconcellos da; Pinto, Angelo da Cunha; Fernandes, Patricia Dias

    2016-04-15

    There has been growing interest in the synthesis of new derivatives from isatin, found in Isatis genus. Our objectives were to characterize the antinociceptive mechanism of action of isatin, N-methyl-isatin (MI) and N-methyl-3-(2-oxopropyl)-3-hydroxy-2-oxindole (MOI). Substances (0.1-10mg/kg, p.o.) were studied in chemical (paw licking induced by formalin, capsaicin or glutamate) or thermal (hot plate) models of nociception. The involvement of several systems was evaluated using different receptor antagonists. All three substances inhibit both phases of formalin-induced licking, increase the area under the curve and MI and MOI have a higher effect than that of morphine (in hot plate). Capsaicin and glutamate-induced licking were also reduced by all three substances. In the hot plate model, the antinociceptive effect of isatin was reduced by naloxone and atropine; naloxone, atropine and L-NAME reduced MI effect while naloxone, atropine, L-NAME, mecamylamine and ondansetron reduced MOI effect. Our results suggest that isatin, MI and MOI: 1) present activity in models of nociception; 2) capsaicin and glutamate receptors seems to participate in the mechanism of action; 3) opioid, cholinergic, serotoninergic, nitrergic and adrenergic systems may be involved, at least in part, in the mechanism of action of some of these substances. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Spectropathology-corroborated multimodal quantitative imaging biomarkers for neuroretinal degeneration in diabetic retinopathy

    PubMed Central

    Guha Mazumder, Arpan; Chatterjee, Swarnadip; Chatterjee, Saunak; Gonzalez, Juan Jose; Bag, Swarnendu; Ghosh, Sambuddha; Mukherjee, Anirban; Chatterjee, Jyotirmoy

    2017-01-01

    Introduction Image-based early detection for diabetic retinopathy (DR) needs value addition due to lack of well-defined disease-specific quantitative imaging biomarkers (QIBs) for neuroretinal degeneration and spectropathological information at the systemic level. Retinal neurodegeneration is an early event in the pathogenesis of DR. Therefore, development of an integrated assessment method for detecting neuroretinal degeneration using spectropathology and QIBs is necessary for the early diagnosis of DR. Methods The present work explored the efficacy of intensity and textural features extracted from optical coherence tomography (OCT) images after selecting a specific subset of features for the precise classification of retinal layers using variants of support vector machine (SVM). Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy were also performed to confirm the spectropathological attributes of serum for further value addition to the OCT, fundoscopy, and fluorescein angiography (FA) findings. The serum metabolomic findings were also incorporated for characterizing retinal layer thickness alterations and vascular asymmetries. Results Results suggested that OCT features could differentiate the retinal lesions indicating retinal neurodegeneration with high sensitivity and specificity. OCT, fundoscopy, and FA provided geometrical as well as optical features. NMR revealed elevated levels of ribitol, glycerophosphocholine, and uridine diphosphate N-acetyl glucosamine, while the FTIR of serum samples confirmed the higher expressions of lipids and β-sheet-containing proteins responsible for neoangiogenesis, vascular fragility, vascular asymmetry, and subsequent neuroretinal degeneration in DR. Conclusion Our data indicated that disease-specific spectropathological alterations could be the major phenomena behind the vascular attenuations observed through fundoscopy and FA, as well as the variations in the intensity and

  16. Tyramine Pathways in Citrus Plant Defense: Glycoconjugates of Tyramine and Its N-Methylated Derivatives.

    PubMed

    Servillo, Luigi; Castaldo, Domenico; Giovane, Alfonso; Casale, Rosario; D'Onofrio, Nunzia; Cautela, Domenico; Balestrieri, Maria Luisa

    2017-02-01

    Glucosylated forms of tyramine and some of its N-methylated derivatives are here reported for the first time to occur in Citrus genus plants. The compounds tyramine-O-β-d-glucoside, N-methyltyramine-O-β-d-glucoside, and N,N-dimethyltyramine-O-β-d-glucoside were detected in juice and leaves of sweet orange, bitter orange, bergamot, citron, lemon, mandarin, and pomelo. The compounds were identified by mass spectrometric analysis, enzymatic synthesis, and comparison with extracts of Stapelia hirsuta L., a plant belonging to the Apocynaceae family in which N,N-dimethyltyramine-O-β-d-glucoside was identified by others. Interestingly, in Stapelia hirsuta we discovered also tyramine-O-β-d-glucoside, N-methyltyramine-O-β-d-glucoside, and the tyramine metabolite, N,N,N-trimethyltyramine-O-β-glucoside. However, the latter tyramine metabolite, never described before, was not detected in any of the Citrus plants included in this study. The presence of N-methylated tyramine derivatives and their glucosylated forms in Citrus plants, together with octopamine and synephrine, also deriving from tyramine, supports the hypothesis of specific biosynthetic pathways of adrenergic compounds aimed to defend against biotic stress.

  17. Synthesis, structural, optical and thermal properties of N-methyl-N-aryl benzamide organic single crystals grown by a slow evaporation technique

    NASA Astrophysics Data System (ADS)

    Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana

    2018-03-01

    The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.

  18. Gene therapy for inherited retinal degenerations: initial successes and future challenges

    NASA Astrophysics Data System (ADS)

    Gupta, Priya R.; Huckfeldt, Rachel M.

    2017-10-01

    Inherited retinal degenerations are a clinically and genetically heterogeneous group of conditions that have historically shared an untreatable course. In recent years, however, a wide range of therapeutic strategies have demonstrated efficacy in preclinical studies and entered clinical trials with a common goal of improving visual function for patients affected with these conditions. Gene therapy offers a particularly elegant and precise opportunity to target the causative genetic mutations underlying these monogenic diseases. The present review will provide an overview of gene therapy with particular emphasis on key clinical results to date and challenges for the future.

  19. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration

    PubMed Central

    Mustafi, Debarshi; Kevany, Brian M.; Genoud, Christel; Okano, Kiichiro; Cideciyan, Artur V.; Sumaroka, Alexander; Roman, Alejandro J.; Jacobson, Samuel G.; Engel, Andreas; Adams, Mark D.; Palczewski, Krzysztof

    2011-01-01

    Enhanced S-cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor-knockout (Nrl−/−) mouse model demonstrates many phenotypic features of human ESCS, including unstable S-cone-positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild-type (Wt) and Nrl−/− mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high-resolution (100 nm) imaging and reconstruction of Nrl−/− retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl−/− retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl−/− mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.—Mustafi, D., Kevany, B. M., Genoud, C., Okano, K., Cideciyan, A. V., Sumaroka, A., Roman, A. J., Jacobson, S. G. Engel, A., Adams, M. D., Palczewski, K. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. PMID:21659555

  20. Expression and Function of System N Glutamine Transporters (SN1/SN2 or SNAT3/SNAT5) in Retinal Ganglion Cells

    PubMed Central

    Umapathy, Nagavedi S.; Dun, Ying; Martin, Pamela M.; Duplantier, Jennifer N.; Roon, Penny; Prasad, Puttur; Smith, Sylvia B.; Ganapathy, Vadivel

    2008-01-01

    Purpose Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. Methods The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB0,+) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. Results Three transport systems—N, A, and L—participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. Conclusions These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle. PMID:18689705

  1. Transcorneal Electrical Stimulation Therapy for Retinal Disease

    ClinicalTrials.gov

    2012-05-03

    Retinitis Pigmentosa; Macula Off; Primary Open Angle Glaucoma; Hereditary Macular Degeneration; Treated Retina Detachment; Retinal Artery Occlusion; Retinal Vein Occlusion; Non-Arthritic-Anterior-Ischemic Optic-Neuropathy; Hereditary Autosomal Dominant Optic Atrophy; Dry Age Related Macular Degeneration; Ischemic Macula Edema

  2. DOSE-RESPONSE MODELING FOR THE ASSESSMENT OF CUMULATIVE RISK DUE TO EXPOSURE TO N-METHYL CARBAMATE PESTICIDES

    EPA Science Inventory

    The US EPAs N-Methyl Carbamate Cumulative Risk Assessment (NMCRA) assesses the effect on acetylcholine esterase (AChE) activity of exposure to 10 N-methyl carbamate (NMC) pesticides through dietary, drinking water, and residential exposures.

  3. N-mustard analogs of S-adenosyl-L-methionine as biochemical probes of protein arginine methylation.

    PubMed

    Hymbaugh Bergman, Sarah J; Comstock, Lindsay R

    2015-08-01

    Nucleosomes, the fundamental building blocks of eukaryotic chromatin, undergo post-synthetic modifications and play a major role in the regulation of transcriptional processes. Combinations of these modifications, including methylation, regulate chromatin structure, determining its different functional states and playing a central role in differentiation. The biological significance of cellular methylation, particularly on chromatin, is widely recognized, yet we know little about the mechanisms that link biological methylation events. To characterize and fully understand protein methylation, we describe here novel N-mustard analogs of S-adenosyl-l-methionine (SAM) as biochemical tools to better understand protein arginine methylation events using protein arginine methyltransferase 1 (PRMT1). Specifically, azide- and alkyne-functionalized N-mustard analogs serve as cofactor mimics of SAM and are enzymatically transferred to a model peptide substrate in a PRMT1-dependent fashion. Once incorporated, the resulting alkynes and azides can be modified through chemoselective ligations, including click chemistry and the Staudinger ligation. These results readily demonstrate the feasibility of utilizing N-mustard analogs as biochemical tools to site-specifically label substrates of PRMT1 and serve as an alternative approach to study protein methylation events. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Flicker-induced retinal vasodilatation is not dependent on complement factor H polymorphism in healthy young subjects.

    PubMed

    Told, Reinhard; Palkovits, Stefan; Boltz, Agnes; Schmidl, Doreen; Napora, Katarzyna J; Werkmeister, René M; Haslacher, Helmuth; Frantal, Sophie; Popa-Cherecheanu, Alina; Schmetterer, Leopold; Garhöfer, Gerhard

    2014-11-01

    The complement factor H (CFH) tyrosine 402 histidine (Y402H, rs1061170) variant is known to be significantly associated with age-related macular degeneration (AMD). Whether this genetic variant may impact retinal blood flow regulation is largely unknown. This study investigated whether flicker-induced vasodilation, an indicator for the coupling between neural activity and blood flow, is altered in subjects carrying the rs1061170 risk allele. One hundred healthy subjects (aged between 18 and 45 years) were included in this study. Retinal blood flow regulation was tested by assessing retinal vessel calibres in response to stimulation with diffuse flicker light. Retinal vascular flicker responses were determined with a Dynamic Vessel Analyzer (DVA). In addition, genotyping for rs1061170 was performed. Eighteen subjects were homozygous for the risk allele C, 50 were homozygous for the ancestral allele T, and 31 subjects were heterozygous (CT). One subject had to be excluded from data evaluation, as no genetic analysis could be performed due to technical difficulties. Baseline diameters of retinal arteries (p = 0.39) and veins (p = 0.64) were comparable between the three groups. Flicker-induced vasodilation in both retinal arteries (p = 0.38) and retinal veins (p = 0.62) was also comparable between the three studied groups. Our data indicate that homozygous healthy young carriers of the C risk allele at rs1061170 do not show abnormal flicker-induced vasodilation in the retina. This suggests that the high-risk genetic variant of CFH polymorphism does not impact neuro-vascular coupling in healthy subjects. © 2014 The Authors. Acta Ophthalmologica published by John Wiley & Sons Ltd on behalf of Acta Ophthalmologica Scandinavica Foundation.

  5. G2 accumulation and melanin overproduction in malignant melanocytes treated with a new nitrosourea.

    PubMed

    Buchdahl, C; Papon, J; Communal, Y; Bourges, M; Madelmont, J C

    1998-12-01

    Cystemustine (N'-(2-chloroethyl)-N-(2-(methylsulphonyl)ethyl)-N'-nitrosourea), a new anticancer chloroethylnitrosourea (CENU) is being tested in a phase II clinical trial of disseminated melanoma. The antitumour effect of this drug is mainly due to DNA damage in malignant melanocytes. Recently, we have shown that this damage can induce apoptosis in some melanoma cell lines. In others, apoptosis is not clearly observed, although there is a strong cytostatic effect. In this paper, we have characterized the cytological effect of cystemustine on murine malignant melanocytes (B16 cell line) which are resistant to apoptosis induced by this CENU. The results show that 3 days after cystemustine treatment, these melanocytes had accumulated in phase G2 of the cell cycle. There was then a strong morphological modification during a long cytostatic phase up to 30 days after treatment. During this cytostatic phase, there was uncontrolled DNA synthesis and marked swelling. Also, tyrosinase activity, melanin content and the number of mature melanosomes were greatly increased. These results suggest that when malignant melanocytes are not able to undergo apoptosis after treatment with CENU, they accumulate in G2 and this is followed by enhancement of melanogenesis.

  6. Radiosynthesis and radiopharmacological evaluation of [N-methyl-11C]Org 34850 as a glucocorticoid receptor (GR)-binding radiotracer.

    PubMed

    Wuest, Frank; Kniess, Torsten; Henry, Brian; Peeters, Bernardus W M M; Wiegerinck, Peter H G; Pietzsch, Jens; Bergmann, Ralf

    2009-02-01

    The radiosynthesis of [N-methyl-(11)C]Org 34850 as a potential brain glucocorticoid receptor (GR)-binding radiotracer is described. The radiosynthesis was accomplished via N-methylation of the corresponding desmethyl precursor with [(11)C]methyl triflate in a remotely controlled synthesis module to give the desired compound in a radiochemical yield of 23+/-5% (decay-corrected, based upon [(11)C]CO(2)) at a specific activity of 47+/-12 GBq/micromol (n=15) at the end-of-synthesis (EOS). The radiochemical purity after semi-preparative HPLC purification exceeded 95%. The total synthesis time was 35-40 min after end-of-bombardment (EOB). The radiotracer is rapidly metabolized in rat plasma leading to the formation of two more hydrophilic metabolites as the major metabolites. Radiopharmacological evaluation involving biodistribution and small animal PET imaging in normal Wistar rats showed that the compound [N-methyl-(11)C]Org 34850 is not able to sufficiently penetrate the blood-brain barrier. Therefore, compound [N-methyl-(11)C]Org 34850 seems not to be a suitable PET radiotracer for imaging rat brain GRs. However, involvement of Pgp or species differences requires further clarification to establish whether the radiotracer [N-methyl-(11)C]Org 34850 may still represent a suitable candidate for imaging GRs in humans.

  7. Glycerol as a Building Block for Prochiral Aminoketone, N-Formamide, and N-Methyl Amine Synthesis.

    PubMed

    Dai, Xingchao; Rabeah, Jabor; Yuan, Hangkong; Brückner, Angelika; Cui, Xinjiang; Shi, Feng

    2016-11-23

    Prochiral aminoketones are key intermediates for the synthesis of optically active amino alcohols, and glycerol is one of the main biomass-based alcohols available in industry. In this work, glycerol was catalytically activated and purposefully converted with amines to generate highly valuable prochiral aminoketones, as well as N-formamides and N-methyl amines, over CuNiAlO x catalyst. The catalyst structure can be anticipated as nano-Ni species on or in CuAlO x via the formation of nano- Cu-Ni alloy particles. This concept may present a novel and valuable methodology for glycerol utilization. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Increased nitric oxide synthase activity is essential for electromagnetic-pulse-induced blood-retinal barrier breakdown in vivo.

    PubMed

    Lu, Lianjun; Xu, Hui; Wang, Xiaowu; Guo, Guozhen

    2009-04-06

    To examine whether electromagnetic pulses (EMPs) affected the permeability of the blood-retinal barrier (BRB), gene expression of occludin and activity of nitric oxide synthase (NOS). Sprague-Dawley (SD) rats were used and randomized into EMP and control groups. Retinas were removed immediately, and 2 h or 24 h after EMP radiation. BRB permeability was analyzed by transmission electron microscopy and Evans Blue staining. Retinal NOS activity and concentrations of nitrite and nitrate were measured. Occludin mRNA and protein levels were detected by RT-PCR and Western blotting. Exposure of SD rats to EMP resulted in increased BRB permeability, with the greatest decrease in occludin at 24 h. Moreover, this permeability defect was also correlated with significant increases in the formation of NO and induction of NOS activity in SD rats. Furthermore, we found that treatment with NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME) blocked BRB breakdown and prevented the increase in NO formation and induction of NOS activity, as well as the decrease in occluding expression. Taken together, these results support the view that NOS-dependent NO production is an important factor that contributes to EMP-induced BRB dysfunction, and suggests that NOS induction may play an important role in BRB breakdown.

  9. [Mechanisms of (2-methyl-n-butyl) shikonin induced apoptosis of gastric cancer SGC-7901 cells].

    PubMed

    Wang, Hai-Bing; Ma, Xiao-Qiong

    2012-06-01

    This study is to investigate the effect of (2-methyl-n-butyl) shikonin (MBS) on inducing apoptosis of human gastric cancer cell line SGC-7901 and the role of ERK1/2 signal pathway in the apoptosis. MTT assay was used to detect SGC-7901 cell proliferation. DNA condensation was measured by DAPI stain. Cell apoptosis was analyzed by flow cytometry. Mitochondrial membrane potential (MMP) was analyzed by JC-1 staining. The protein expressions of Bcl-2, Bax, Survivin, cleaved caspase-9, cleaved caspase-3, cleaved PARP, p-ERK1/2, ERK1/2, p-JNK, JNK, p-p38 and p38 were detected by Western blotting. The results showed that MBS reduced the cell viability of SGC-7901 cells in a dose- and time-dependent manner. The IC50 at 24 h and 48 h for SGC-7901 cells was 10.113 and 4.196 micromolL(-1), respectively. After being treated with MBS, the typical nuclear condensation was observed in SGC-7901 cells by DAPI stain. Apoptosis in SGC-7901 cells was induced by MBS in a dose dependent manner. The protein expression of Bcl-2 was down-regulated, while the protein expressions of cleaved caspase-9, cleaved caspase-3, cleaved PARP, p-ERK1/2 and p-JNK were up-regulated after MBS treatment. U0126, a specific MAP kinase (MEK1/2) inhibitor, blocked the ERK1/2 activation by MBS. MMP was decreased by MBS treatment. It can be concluded that MBS could inhibit SGC-7901 cell proliferation and induce apoptosis. Mitochondrial apoptosis pathway, ERK1/2 signal pathway and JNK signal pathway might be involved in this process.

  10. The cocrystal rac-1-[(N,4-dimethylbenzenesulfonamido)methyl]-2-(diphenylphosphoryl)ferrocene-rac-1-[(N,4-dimethylbenzenesulfonamido)methyl]-2-(diphenylphosphanyl)ferrocene (0.45/0.55).

    PubMed

    Wei, Muh Mei; Audin, Catherine; Manoury, Eric; Deydier, Eric; Daran, Jean Claude

    2014-03-01

    As part of our interest in the synthesis and catalytic applications of chiral (diphenylphosphanyl)ferrocene ligands, we designed a number of P,N-containing ligands for use in asymmetric transfer hydrogenation (ATH). During the synthetic procedure to obtain rac-1-[(N,4-dimethylbenzenesulfonamido)methyl]-2-(diphenylphosphanyl)ferrocene, the title compound, [Fe(C5H5)(C26H25NO2PS)]0.55 · [Fe(C5H5)(C26H25NO3PS)]0.45, was obtained as a by-product. It is composed of a ferrocene group disubstituted by a partially oxidized diphenylphosphanyl group, as confirmed by (31)P NMR analysis, and an (N,4-dimethylbenzenesulfonamido)methyl substituent. Owing to the partially oxidized diphenylphosphanyl group, it is best to view the crystal as being composed of a mixture of non-oxidized and oxidized phosphane, so it can be regarded as a cocrystal. It is also a racemate. To the best of our knowledge, the P=O distance [1.344 (4) Å] is the shortest observed for related (diphenylphosphoryl)ferrocene compounds. The packing is stabilized by weak C-H...O interactions, forming R2(2)(10) hydrogen-bonding motifs, which build up a chain along the c axis.

  11. The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release.

    PubMed

    Halmos, G; Horváth, T; Polony, G; Fekete, A; Kittel, A; Vizi, E S; van der Laan, B F A M; Zelles, T; Lendvai, B

    2008-06-23

    Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [3H]DA from isolated mouse cochlea in response to the application of NMDA. NMDA at 100 muM significantly increased the electrical-field stimulation-evoked and resting release of DA from the cochlea. The NO donor sodium nitroprusside enhanced the basal outflow of DA but failed to influence the evoked release. The administration of the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) alone was ineffective, but it significantly inhibited the initial phase of the NMDA-induced elevation of DA outflow, which suggested the role of NO in the NMDA-induced DA release. The DA uptake inhibitor nomifensine increased the electrically evoked release of DA. Nomifensine failed to change the effect of NMDA on the resting or electrically-evoked DA release, which suggested that the uptake mechanism does not play a role in NMDA-evoked and NO-mediated DA release. In summary, we provide evidence that NO can modulate the release of DA from the cochlea following NMDA receptor activation, but does not affect the uptake of DA.

  12. Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies.

    PubMed

    Rivera, José Carlos; Holm, Mari; Austeng, Dordi; Morken, Tora Sund; Zhou, Tianwei Ellen; Beaudry-Richard, Alexandra; Sierra, Estefania Marin; Dammann, Olaf; Chemtob, Sylvain

    2017-08-22

    Retinopathy of prematurity (ROP) is an important cause of childhood blindness globally, and the incidence is rising. The disease is characterized by initial arrested retinal vascularization followed by neovascularization and ensuing retinal detachment causing permanent visual loss. Although neovascularization can be effectively treated via retinal laser ablation, it is unknown which children are at risk of entering this vision-threatening phase of the disease. Laser ablation may itself induce visual field deficits, and there is therefore a need to identify targets for novel and less destructive treatments of ROP. Inflammation is considered a key contributor to the pathogenesis of ROP. A large proportion of preterm infants with ROP will have residual visual loss linked to loss of photoreceptor (PR) and the integrity of the retinal pigment epithelium (RPE) in the macular region. Recent studies using animal models of ROP suggest that choroidal degeneration may be associated with a loss of integrity of the outer retina, a phenomenon so far largely undescribed in ROP pathogenesis. In this review, we highlight inflammatory and neuron-derived factors related to ROP progression, as well, potential targets for new treatment strategies. We also introduce choroidal degeneration as a significant cause of residual visual loss following ROP. We propose that ROP should no longer be considered an inner retinal vasculopathy only, but also a disease of choroidal degeneration affecting both retinal pigment epithelium and photoreceptor integrity.

  13. Color Doppler imaging of retinal diseases.

    PubMed

    Dimitrova, Galina; Kato, Satoshi

    2010-01-01

    Color Doppler imaging (CDI) is a widely used method for evaluating ocular circulation that has been used in a number of studies on retinal diseases. CDI assesses blood velocity parameters by using ultrasound waves. In ophthalmology, these assessments are mainly performed on the retrobulbar blood vessels: the ophthalmic, the central retinal, and the short posterior ciliary arteries. In this review, we discuss CDI use for the assessment of retinal diseases classified into the following: vascular diseases, degenerations, dystrophies, and detachment. The retinal vascular diseases that have been investigated by CDI include diabetic retinopathy, retinal vein occlusions, retinal artery occlusions, ocular ischemic conditions, and retinopathy of prematurity. Degenerations and dystrophies included in this review are age-related macular degeneration, myopia, and retinitis pigmentosa. CDI has been used for the differential diagnosis of retinal detachment, as well as the evaluation of retrobulbar circulation in this condition. CDI is valuable for research and is a potentially useful diagnostic tool in the clinical setting.

  14. Retinal pigment epithelial detachments and tears, and progressive retinal degeneration in light chain deposition disease.

    PubMed

    Spielberg, Leigh H; Heckenlively, John R; Leys, Anita M

    2013-05-01

    Light-chain deposition disease (LCDD) is a rare condition characterised by deposition of monoclonal immunoglobulin light chains (LCs) in tissues, resulting in varying degrees of organ dysfunction. This study reports the characteristic clinical ocular findings seen in advanced LCDD upon development of ocular fundus changes. This is the first report to describe this entity in vivo in a series of patients. A case series of ocular fundus changes in three patients with kidney biopsy-proven LCDD. All patients underwent best corrected visual acuity (BCVA) exam, perimetry, colour fundus photography and fluorescein angiography; two patients underwent indocyanine green angiography, optical coherence tomography, ultrasound and electroretinography; and one patient underwent fundus autofluorescence. Three patients, 53-60 years old at initial presentation, were studied. All three presented with night blindness, poor dark adaptation, metamorphopsia and visual loss. Examination revealed serous and serohaemorrhagic detachments, multiple retinal pigment epithelial (RPE) tears, diffuse RPE degeneration and progressive fibrotic changes. Neither choroidal neovascularisation nor other vascular abnormalities were present. Final best corrected visual acuity (BCVA) ranged from 20/40 to 20/300. Progressive LC deposition in the fundus seems to damage RPE pump function with flow disturbance between choroid and retina. This pathogenesis can explain the evolution to RPE detachments and subsequent rips and progressive retinal malfunction.

  15. Effects of ketamine and N-methyl-D-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test.

    PubMed

    Owolabi, Rotimi Adegbenga; Akanmu, Moses Atanda; Adeyemi, Oluwole Isaac

    2014-04-30

    This study investigated the effects of ketamine on fluoxetine-induced antidepressant behavior using the forced swimming test (FST) in mice. In order to understand the possible role of N-methyl-d-aspartate (NMDA) neurotransmission in the antidepressant effect of fluoxetine, different groups of mice (n=10) were administered with acute ketamine (3mg/kg, i.p.), acute NMDA (75mg/kg and 150mg/kg, i.p.) and a 21-day chronic ketamine (15mg/kg, i.p./day) were administered prior to the administration of fluoxetine (20mg/kg, i.p.) in the mice. Antidepressant related behavior (immobility score) was measured using the forced swimming test. The results showed that the acute ketamine and fluoxetine alone treatments elicited a significant (p<0.05) reduction in immobility score compared with saline control. Furthermore, pre-treatment with acute ketamine significantly enhanced by the fluoxetine-induced decrease in immobility score. In contrast, pre-treatment with NMDA (150mg/kg) significantly (p<0.05) reversed fluoxetine-induced decrease in immobility score. On the other hand, chronic administration of ketamine significantly elicited an increase in immobility score as well as reversed the reduction induced by fluoxetine. Similarly, NMDA administration at both 75mg/kg and 150mg/kg increased immobility score in chronically administered ketamine groups. Furthermore, chronic administration of ketamine, followed by NMDA (75mg/kg) and fluoxetine significantly elevated the immobility score when compared with the group that received NMDA and fluoxetine but not chronically treated with ketamine. It can be suggested) that facilitation of NMDA transmission blocked fluoxetine-induced reduction in immobility score, while down-regulation of NMDA transmission is associated with increase in fluoxetine-induced antidepressant-related behavior in mice. Down-regulation of the NMDA transmission is proposed as an essential component of mechanism of suppression of depression related behaviors by

  16. Biochemical Measurements of Free Opsin in Macular Degeneration Eyes: Examining the 11-CIS Retinal Deficiency Hypothesis of Delayed Dark Adaptation (An American Ophthalmological Society Thesis).

    PubMed

    Hanneken, Anne; Neikirk, Thomas; Johnson, Jennifer; Kono, Masahiro

    2017-08-01

    To test the hypothesis that delayed dark adaptation in patients with macular degeneration is due to an excess of free unliganded opsin (apo-opsin) and a deficiency of the visual chromophore, 11 -cis retinal, in rod outer segments. A total of 50 human autopsy eyes were harvested from donors with and without macular degeneration within 2-24 hrs. postmortem. Protocols were developed which permitted dark adaptation of normal human eyes after death and enucleation. Biochemical methods of purifying rod outer segments were optimized and the concentration of rhodopsin and apo-opsin was measured with UV-visible scanning spectroscopy. The presence of apo-opsin was calculated by measuring the difference in the rhodopsin absorption spectra before and after the addition of 11 -cis retinal. A total of 20 normal eyes and 16 eyes from donors with early, intermediate and advanced stages of macular degeneration were included in the final analysis. Dark adaptation was achieved by harvesting whole globes in low light, transferring into dark (light-proof) canisters and dissecting the globes using infrared light and image converters for visualization. Apo-opsin was readily detected in positive controls after the addition of 11 -cis retinal. Normal autopsy eyes showed no evidence of apo-opsin. Eyes with macular degeneration also showed no evidence of apo-opsin, regardless of the severity of disease. Methods have been developed to study dark adaptation in human autopsy eyes. Eyes with age-related macular degeneration do not show a deficiency of 11 -cis retinal or an excess of apo-opsin within rod outer segments.

  17. Wavelength dependence of laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Lund, David J.; Edsall, Peter; Stuck, Bruce E.

    2005-04-01

    The threshold for laser-induced retinal damage is dependent primarily upon the laser wavelength and the exposure duration. The study of the wavelength dependence of the retinal damage threshold has been greatly enhanced by the availability of tunable lasers. The Optical Parametric Oscillator (OPO), capable of providing useful pulse energy throughout a tuning range from 400 nm to 2200 nm, made it possible to determine the wavelength dependence of laser-induced retinal damage thresholds for q-switched pulses throughout the visible and NIR spectrum. Studies using the a tunable TI:Saph laser and several fixed-wavelength lasers yielded threshold values for 0.1 s exposures from 440 nm to 1060 nm. Laser-induced retinal damage for these exposure durations results from thermal conversion of the incident laser irradiation and an action spectrum for thermal retinal damage was developed based on the wavelength dependent transmission and absorption of ocular tissue and chromatic aberration of the eye optics. Long (1-1000s) duration exposures to visible laser demonstrated the existence of non-thermal laser-induced retinal damage mechanisms having a different action spectrum. This paper will present the available data for the wavelength dependence of laser-induced thermal retinal damage and compare this data to the maximum permissible exposure levels (MPEs) provided by the current guidelines for the safe use of lasers.

  18. Solubility and diffusivity of N{sub 2}O and CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.H.; Lee, W.C.

    1996-05-01

    Acid gases such as CO{sub 2} and H{sub 2}S are frequently removed from natural gas, synthetic natural gas, and other process gas streams by means of absorption into aqueous alkanol-amine solutions. The solubility and diffusivity of N{sub 2}O in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water) were measured at (30, 35, and 40)C and at atmospheric pressure. Five (diethanolamine + N-methyldiethanolamine + water) and four (diethanolamine + 2-amino-2-methyl-1-propanol + water) systems were studied. The total amine mass percent in all cases was 30. A solubility apparatus was used to measure the solubility of N{sub 2}Omore » in amine solutions. The diffusivity was measured by a wetted wall column absorber. The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water).« less

  19. Oxygenated N-Acyl Alanine Methyl Esters (NAMEs) from the Marine Bacterium Roseovarius tolerans EL-164.

    PubMed

    Bruns, Hilke; Herrmann, Jennifer; Müller, Rolf; Wang, Hui; Wagner Döbler, Irene; Schulz, Stefan

    2018-01-26

    The marine bacterium Roseovarius tolerans EL-164 (Rhodobacteraceae) can produce unique N-acylalanine methyl esters (NAMEs) besides strucutrally related N-acylhomoserine lactones (AHLs), bacterial signaling compounds widespread in the Rhodobacteraceae. The structures of two unprecedented NAMEs carrying a rare terminally oxidized acyl chain are reported here. The compounds (Z)-N-16-hydroxyhexadec-9-enoyl-l-alanine methyl ester (Z9-16-OH-C16:1-NAME, 3) and (Z)-N-15-carboxypentadec-9-enoyl-l-alanine methyl ester (16COOH-C16:1-NAME, 4) were isolated, and the structures were determined by NMR and MS experiments. Both compounds were synthesized to prove assignments and to test their biological activity. Finally, non-natural, structurally related Z9-3-OH-C16:1-NAME (18) was synthesized to investigate the mass spectroscopy of structurally related NAMEs. Compound 3 showed moderate antibacterial activity against microorganisms such as Bacillus, Streptococcus, Micrococcus, or Mucor strains. In contrast to AHLs, quorum-sensing or quorum-quenching activity was not observed.

  20. Stimulation of Methanogenesis by Aldicarb and Several Other N-Methyl Carbamate Pesticides †

    PubMed Central

    Kiene, Ronald P.; Capone, Douglas G.

    1986-01-01

    Aldicarb and several other N-methyl carbamate pesticides stimulated methane production in anaerobic salt marsh soils and organic-rich aquifer soils. Stimulation was biological and linearly related to the amount of carbamate added. Of the four carbamates studied, methomyl gave the greatest stimulation followed by carbaryl, aldicarb, and baygon. The percent conversions [(moles of CH4 in excess of control/mole of carbamate added) × 100] for methomyl, carbaryl, aldicarb, and baygon were 88, 57, 40, and 11, respectively. Using aldicarb as a model carbamate, we found that monomethylamine (MA) accumulated in sediments as a result of aldicarb addition. MA arises from the N-methyl carbamoyl portion of the carbamates as a result of presumptive biological hydrolysis. MA levels decreased as CH4 production was stimulated, and 2-bromoethane sulfonic acid (a specific inhibitor of mathanogenesis) partially inhibited the loss of MA. These findings suggest that N-methyl carbamates are readily hydrolyzed to MA in the presence of an active microbial population under anaerobic conditions and that methanogenesis is stimulated as a result of the consumption of MA by methanogenic bacteria. PMID:16347082

  1. How does methylation suppress the electron-induced decomposition of 1-methyl-nitroimidazoles?

    NASA Astrophysics Data System (ADS)

    Kossoski, F.; Varella, M. T. do N.

    2017-10-01

    The efficient decomposition of nitroimidazoles (NIs) by low energy electrons is believed to underlie their radiosensitizing properties. Recent dissociative electron attachment (DEA) measurements showed that methylation at the N1 site unexpectedly suppresses the electron-induced reactions in 4(5)-NI. We report theoretical results that provide a clear interpretation of that astounding finding. Around 1.5 eV, DEA reactions into several fragments are initiated by a π* resonance, not considered in previous studies. The autoionization lifetime of this anion state, which limits the predissociation dynamics, is considerably shorter in the methylated species, thereby suppressing the DEA signals. On the other hand, the lifetime of the π* resonance located around 3 eV is less affected by methylation, which explains why DEA is still observed at these energies. Our results demonstrate how even a simple methylation can significantly modify the probabilities for DEA reactions, which may be significant for NI-based cancer therapy.

  2. DNA methylation of ESR-1 and N-33 in colorectal mucosa of patients with ulcerative colitis (UC).

    PubMed

    Arasaradnam, Ramesh P; Khoo, Kevin; Bradburn, Mike; Mathers, John C; Kelly, Seamus B

    2010-07-01

    Epigenetic marking such as DNA methylation influence gene transcription and chromosomal stability and may also be affected by environmental exposures. Few studies exist on alteration in DNA methylation profiles (genomic and gene specific methylation) in patients with Ulcerative Colitis (UC) and no studies exist that assess its relationship with lifestyle exposures. The methylation level of both ESR-1 and N-33 genes were significantly higher in UC subjects compared with controls (7.9% vs. 5.9%; p = 0.015 and 66% vs. 9.3%; p < 0.001 respectively). There was no detectable difference in global DNA methylation between patients with UC and age and sex matched controls. No associations between indices of DNA methylation and anthropometric measures or smoking patterns were detected. To assess genomic methylation and promoter methylation of the ESR-1 (oestrogen receptor-1) and N-33 (tumor suppressor candidate-3) genes in the macroscopically normal mucosa of UC patients as well as to investigate effects of anthropometric and lifestyle exposures on DNA methylation. Sixty eight subjects were recruited (24 UC and 44 age and sex matched controls). Colorectal mucosal biopsies were obtained and DNA was extracted. Genomic DNA methylation was quantified using the tritium-labelled cytosine extension assay (3[H] dCTP) while gene specific methylation was quantified using the COBRA method. For the first time, we have shown increased methylation in the promoter regions of the putative tumor suppressor gene N-33 in macroscopically normal mucosa of patients with UC. In addition, we have confirmed that methylation of ESR-1 promoter is higher in UC patients compared with age and sex matched controls. These findings suggest that inactivation through methylation of the putative tumor suppressor genes N-33 and ESR-1 may not be associated with colorectal carcinogenesis in UC.

  3. Induced expression of hepatic N-methyl-D-aspartate receptor 2C subunit gene during liver enlargement induced by lead nitrate, a hepatocellular mitogen.

    PubMed

    Nemoto, Kiyomitsu; Ikeda, Ayaka; Hikida, Tokihiro; Kojima, Misaki; Degawa, Masakuni

    2013-02-01

    We previously demonstrated the super-induced expression of the Grin2c gene encoding the N-methyl-D-aspartate receptor 2C subunit during the development of liver enlargement with hepatocellular hypertrophy induced by phenobarbital, clofibrate, or piperonyl butoxide. In the present study, we assessed whether or not Grin2c gene expression was induced during the development of chemically induced liver enlargement with hyperplasia. Male Sprague-Dawley (SD) rats, stroke-prone spontaneously hypertensive rats (SHRSPs), and SHRSP's normotensive control, Wistar-Kyoto (WKY) rats, were administered lead nitrate (LN) (0.1 mmol/kg, single i.v.), a direct inducer of liver hyperplasia, and changes in the level of Grin2c mRNA in the liver were assessed by real-time RT-PCR. The level of hepatic Grin2c mRNA was significantly higher 6-48 hr after the injection in SD rats (about 30~40- and 70-fold over the control at 6~24 hr and 48 hr, respectively) and in WKY rats (about 20-fold over the control only at 12 hr), but was not significantly higher in SHRSPs. Such differences in LN-induced levels of Grin2c mRNA among SD rats, WKY rats, and SHRSPs were closely correlated with those in the previously reported increase in liver weight 48 hr after LN administration. The present findings suggest that the increase in the level of hepatic Grin2c mRNA relates to development of chemically induced liver enlargement with hyperplasia.

  4. Enzymatic hydrolysis of cellulose pretreated with ionic liquids and N-methyl Morpholine N-Oxide

    NASA Astrophysics Data System (ADS)

    Yau Li, Elizabeth

    The effect of N-methyl Morpholine N-Oxide (NMMO), 1-ethyl-3-methyl-imidazolium acetate ([Emim]Ac) and 1-ethyl-3-methyl-imidazolium diethyl phosphate ([Emim]DEP) on pretreatment and enzymatic hydrolysis of dissolving pulp was studied. X-ray diffraction measurements of regenerated cellulose from these solvents showed that solvent pretreatment reduces the crystallinity of cellulose. However, crystallinity might not be a major factor affecting the in-situ enzymatic hydrolysis of cellulose in these solvents. Although regenerated cellulose from [Emim]DEP showed the lowest crystallinity index (˜15%), in-situ enzymatic hydrolysis of cellulose dissolved in NMMO showed the highest cellulose conversion (68% compared to 65% for [Emim]Ac and 37% for [Emim]DEP at enzyme loading of 122 FPU/g). Moreover, results showed that enzymes could tolerate up to NMMO concentration of 100 g/L and still yield full conversion of cellulose. Since it is not necessary to remove all the NMMO, less amount of water will be required for the washing step and thus the process will be more economical. The HCH-1 model was used in an attempt to model the enzymatic hydrolysis of cellulose in NMMO. With the incorporation of NMMO inhibition and a factor to account for unreacted cellulose, the model was able to correlate the experimental data of the enzymatic hydrolysis of cellulose (6.68 g/L) at various NMMO concentrations (0, 50, 100, 150 and 250 g/L). However, the experimental results also suggest that NMMO might be deactivating the enzymes rather than inhibiting them. More studies need to be done at varying cellulose, NMMO and enzyme concentrations to find the exact nature of this deactivation of NMMO.

  5. 4-(Di­methyl­amino)­pyridinium trichlorido[4-(di­methyl­amino)­pyridine-κN]cobaltate(II)

    PubMed Central

    Guenifa, Fatiha; Hadjadj, Nasreddine; Zeghouan, Ouahida; Bendjeddou, Lamia; Merazig, Hocine

    2013-01-01

    In the anion of the title compound, (C7H11N2)[CoCl3(C7H10N2)], the CoII ion is coordinated by one N atom from a 4-(di­methyl­amino)­pyridine (DMAP) ligand and three Cl atoms, forming a CoNCl3 polyhedron with a distorted tetra­hedral geometry. In the crystal, cations and anions are linked via weak N—H⋯Cl and C—H⋯Cl hydrogen bonds. Double layers of complex anions stack along the b- axis direction, which alternate with double layers of 4-(di­methyl­amino)-pyridinium cations. PMID:24046560

  6. Crystal structure of di-μ-chlorido-bis-(chlorido-{N1,N1-diethyl-N4-[(pyridin-2-yl-κN)methyl-idene]benzene-1,4-di-amine-κN4}mercury(II)).

    PubMed

    Faizi, Md Serajul Haque; Dege, Necmi; Goleva, Kateryna

    2017-06-01

    The title dinuclear mercury(II) complex, [Hg 2 Cl 4 (C 16 H 19 N 3 ) 2 ], synthesized from the pyridine-derived Schiff base ( E )- N 1 , N 1 -diethyl- N 4 -[(pyridin-2-yl)methyl-idene]benzene-1,4-di-amine (DPMBD), has inversion symmetry. The five-coordinated Hg II atoms have distorted square-pyramidal stereochemistry comprising two N-atom donors from bidentate chelate BPMBD ligands and three Cl-atom donors, two bridging and one monodentate. The dihedral angle between the benzene and the pyridine rings in the BPMBD ligand is 7.55 (4)°. In the crystal, the dinuclear mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming zigzag ribbons lying parallel to [001]. Also present in the structure are π-π inter-actions between benzene and pyridine rings [minimum ring-centroid separation = 3.698 (8) Å].

  7. Link-N: The missing link towards intervertebral disc repair is species-specific

    PubMed Central

    Bach, Frances C.; Laagland, Lisanne T.; Grant, Michael P.; Creemers, Laura B.; Ito, Keita; Meij, Björn P.; Mwale, Fackson

    2017-01-01

    Introduction Degeneration of the intervertebral disc (IVD) is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration. Materials and methods This study’s objective was to determine the effect of the human and canine variant of Link-N and short (s) Link-N on canine chondrocyte-like cells (CLCs) and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM) production was determined by measuring glycosaminoglycan (GAG) content and histological evaluation. Additionally, the micro-aggregates’ DNA content was measured. Phosphorylated (p) Smad1 and -2 levels were determined using ELISA. Results Human (s)Link-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (s)Link-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (s)Link-N induced negligible GAG deposition. Surprisingly, human and canine (s)Link-N did not induce Smad signaling in human and bovine CLCs. Human and canine (s)Link-N only mildly increased pSmad1 and Smad2 levels in canine CLCs. Conclusions Human and canine (s)Link-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (s)Link-N

  8. Link-N: The missing link towards intervertebral disc repair is species-specific.

    PubMed

    Bach, Frances C; Laagland, Lisanne T; Grant, Michael P; Creemers, Laura B; Ito, Keita; Meij, Björn P; Mwale, Fackson; Tryfonidou, Marianna A

    2017-01-01

    Degeneration of the intervertebral disc (IVD) is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration. This study's objective was to determine the effect of the human and canine variant of Link-N and short (s) Link-N on canine chondrocyte-like cells (CLCs) and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM) production was determined by measuring glycosaminoglycan (GAG) content and histological evaluation. Additionally, the micro-aggregates' DNA content was measured. Phosphorylated (p) Smad1 and -2 levels were determined using ELISA. Human (s)Link-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (s)Link-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (s)Link-N induced negligible GAG deposition. Surprisingly, human and canine (s)Link-N did not induce Smad signaling in human and bovine CLCs. Human and canine (s)Link-N only mildly increased pSmad1 and Smad2 levels in canine CLCs. Human and canine (s)Link-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (s)Link-N still holds a regenerative potential for humans.

  9. Retinal vascular caliber, iris color, and age-related macular degeneration in the Irish Nun Eye Study.

    PubMed

    McGowan, Amy; Silvestri, Giuliana; Moore, Evelyn; Silvestri, Vittorio; Patterson, Christopher C; Maxwell, Alexander P; McKay, Gareth J

    2014-12-18

    To evaluate the relationship between retinal vascular caliber (RVC), iris color, and age-related macular degeneration (AMD) in elderly Irish nuns. Data from 1233 participants in the cross-sectional observational Irish Nun Eye Study were assessed from digital photographs with a standardized protocol using computer-assisted software. Macular images were graded according to the modified Wisconsin Age-related Maculopathy Grading System. Regression models were used to assess associations, adjusting for age, mean arterial blood pressure, body mass index, refraction, and fellow RVC. In total, 1122 (91%) participants had gradable retinal images of sufficient quality for vessel assessment (mean age: 76.3 years [range, 56-100 years]). In an unadjusted analysis, we found some support for a previous finding that individuals with blue iris color had narrower retinal venules compared to those with brown iris color (P < 0.05), but this was no longer significant after adjustment. Age-related macular degeneration status was categorized as no AMD, any AMD, and late AMD only. Individuals with any AMD (early or late AMD) had significantly narrower arterioles and venules compared to those with no AMD in an unadjusted analysis, but this was no longer significant after adjustment. A nonsignificant reduced risk of any AMD or late AMD only was observed in association with brown compared to blue iris color, in both unadjusted and adjusted analyses. Retinal vascular caliber was not significantly associated with iris color or early/late AMD after adjustment for confounders. A lower but nonsignificant AMD risk was observed in those with brown compared to blue iris color. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  10. Suppressors of cytokine-signaling proteins induce insulin resistance in the retina and promote survival of retinal cells.

    PubMed

    Liu, Xuebin; Mameza, Marie G; Lee, Yun Sang; Eseonu, Chikezie I; Yu, Cheng-Rong; Kang Derwent, Jennifer J; Egwuagu, Charles E

    2008-06-01

    Suppressors of cytokine signaling (SOCS) are implicated in the etiology of diabetes, obesity, and metabolic syndrome. Here, we show that some SOCS members are induced, while others are constitutively expressed, in retina and examine whether persistent elevation of SOCS levels in retina by chronic inflammation or cellular stress predisposes to developing insulin resistance in retina, a condition implicated in diabetic retinopathy. SOCS-mediated insulin resistance and neuroprotection in retina were investigated in 1) an experimental uveitis model, 2) SOCS1 transgenic rats, 3) insulin-deficient diabetic rats, 4) retinal cells depleted of SOCS6 or overexpressing SOCS1/SOCS3, and 5) oxidative stress and light-induced retinal degeneration models. We show that constitutive expression of SOCS6 protein in retinal neurons may improve glucose metabolism, while elevated SOCS1/SOCS3 expression during uveitis induces insulin resistance in neuroretina. SOCS-mediated insulin resistance, as indicated by its inhibition of basally active phosphoinositide 3-kinase/AKT signaling in retina, is validated in retina-specific SOCS1 transgenic rats and retinal cells overexpressing SOCS1/SOCS3. We further show that the SOCS3 level is elevated in retina by oxidative stress, metabolic stress of insulin-deficient diabetes, or light-induced retinal damage and protects ganglion cells from apoptosis, suggesting that upregulation of SOCS3 may be a common physiologic response of neuroretinal cells to cellular stress. Our data suggest two-sided roles of SOCS proteins in retina. Whereas SOCS proteins may improve glucose metabolism, mitigate deleterious effects of inflammation, and promote neuroprotection, persistent SOCS3 expression caused by chronic inflammation or cellular stress can induce insulin resistance and inhibit neurotrophic factors, such as ciliary neurotrophic factor, leukemia inhibitory factor, and insulin, that are essential for retinal cell survival.

  11. Streptozotocin Diabetes CORRELATION WITH EXTENT OF DEPRESSION OF PANCREATIC ISLET NICOTINAMIDE ADENINE DINUCLEOTIDE

    PubMed Central

    Anderson, Tom; Schein, Philip S.; McMenamin, Mary G.; Cooney, David A.

    1974-01-01

    The diabetogenic activity of streptozotocin has been correlated with a reduction in pyridine nucleotide synthesis in the mouse pancreatic islet. To determine the specificity of this reduction for diabetogenicity, a comparative study of streptozotocin, its cytotoxic moiety, 1-methyl-1-nitrosourea, and alloxan was performed. Streptozotocin administered intraperitoneally (i.p.) producd a dose-related reduction in islet NAD which was proportional to the degree of diabetogenicity. A diabetogenic dose, 200 mg/kg, attained a peak plasma N-nitroso intact streptozotocin concentration of 0.224 μmol/ml and reduced the mean islet NAD from a control of 0.78 to 0.15 pmol. At borderline, 150 mg/kg, and nondiabetogenic, 100 mg/kg, doses, plasma concentrations reached 0.161 and 0.136 μmol/ml, and NAD was 0.36 and 0.86 pmol/islet, respectively. 1-Methyl-1-nitrosourea, 100 mg/kg, attained a maximum N-nitroso intact 1-methyl-1-nitrosourea concentration of 0.162 μmol/ml and reduced the mean NAD to 0.58 pmol/islet, and was nondiabetogenic; 200 mg/kg attained a peak plasma concentration of 0.344 μmol/ml and depressed NAD to 0.38 pmol/islet, and was inconsistently diabetogenic. Islet NAD of 0.4 pmol/islet or greater is required for integrity of the beta cell. A diabetogenic dose of alloxan, 500 mg/kg, did not depress NAD, 0.85 pmol/islet, therefore confirming that its mechanism of diabetogenicity differs from that of streptozotocin. In vivo uptake of [methyl-14C]streptozotocin by islets was 3.8 times that of [methyl-14C]-1-methyl-1-nitrosourea, whereas uptake by the exocrine pancreas favored 1-methyl-1-nitrosourea over streptozotocin 2.4:1. The decreased islet uptake of 1-methyl-1-nitrosourea correlates with the 3.5 times increased molar dosage required to produce islet NAD depression comparable to that of streptozotocin, 150 mg/kg. These studies indicate that the glucose carrier of streptozotocin facilitates uptake of its cytotoxic group, 1-methyl-1-nitrosourea, into islets. PMID

  12. Outer retinal corrugations in age-related macular degeneration.

    PubMed

    Ooto, Sotaro; Vongkulsiri, Sritatath; Sato, Taku; Suzuki, Mihoko; Curcio, Christine A; Spaide, Richard F

    2014-07-01

    Optical coherence tomography (OCT) abnormalities of age-related macular degeneration (AMD) have not been fully characterized because of the complex morphology and a lack of correlative histologic studies. Expansion of our ability to interpret increasing attributes brings us closer to the goal of in vivo histologic analysis of the eye by OCT. To describe a new outer retinal finding of AMD using spectral-domain (SD) OCT and suggest histopathologic correlates. Twenty-five eyes of 16 patients with AMD with severe atrophy due to either choroidal neovascularization (CNV) or geographic atrophy (GA) and 53 donor eyes of 53 patients with late AMD were included. Imaging studies were conducted at a referral retinal practice and histopathology was done at a university research laboratory. Findings in the outer retina were evaluated in SD-OCT images in eyes with atrophy of the retinal pigment epithelium (RPE) and compared with histopathologic findings in eyes with GA or CNV that also showed loss of the RPE. Spectral-domain OCT and histologic characteristics of the outer retina. The mean (SD) age of the 16 patients was 82.7 (7.9) years. Twenty eyes had CNV and 5 eyes had GA. The mean best-corrected visual acuity was 0.800 logMAR (interquartile range, 0.350-1.000 logMAR), a Snellen equivalent of 20/126. A curvilinear hyperreflective density was identified above the Bruch membrane line within the atrophic area in the SD-OCT images. At the internal border, the material was contiguous with the outer portion of the RPE band. Below the material was a relatively hyporeflective space. The material was thrown into folds in cases with atrophy following CNV or was seen as a sheet with numerous bumps in eyes with GA. Review of histopathologic findings of eyes with advanced GA and CNV revealed a rippled layer of basal laminar deposits in an area of RPE atrophy that was located in the same level as the curvilinear line seen in the OCT images. We have described a new entity, termed outer

  13. Imaging retinal degeneration in mice by combining Fourier domain optical coherence tomography and fluorescent scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Hossein-Javaheri, Nima; Molday, Laurie L.; Xu, Jing; Molday, Robert S.; Sarunic, Marinko V.

    2009-02-01

    Visualization of the internal structures of the retina is critical for clinical diagnosis and monitoring of pathology as well as for medical research investigating the root causes of retinal degeneration. Optical Coherence Tomography (OCT) is emerging as the preferred technique for non-contact sub-surface depth-resolved imaging of the retina. The high resolution cross sectional images acquired in vivo by OCT can be compared to histology to visually delineate the retinal layers. The recent demonstration of the significant sensitivity increase obtained through use of Fourier domain (FD) detection with OCT has been used to facilitate high speed scanning for volumetric reconstruction of the retina in software. The images acquired by OCT are purely structural, relying on refractive index differences in the tissue for contrast, and do not provide information on the molecular content of the sample. We have constructed a FDOCT prototype and combined it with a fluorescent Scanning Laser Ophthalmoscope (fSLO) to permit real time alignment of the field of view on the retina. The alignment of the FDOCT system to the specimen is crucial for the registration of measurements taken throughout longitudinal studies. In addition, fluorescence detection has been integrated with the SLO to enable the en face localization of a molecular contrast signal, which is important for retinal angiography, and also for detection of autofluorescence associated with some forms of retinal degeneration, for example autofluorescence lipofuscin accumulations are associated with Stargardt's Macular Dystrophy. The integrated FD OCT/fSLO system was investigated for imaging the retina of the mice in vivo.

  14. Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1.

    PubMed

    Levine, Emily S; Zam, Azhar; Zhang, Pengfei; Pechko, Alina; Wang, Xinlei; FitzGerald, Paul; Pugh, Edward N; Zawadzki, Robert J; Burns, Marie E

    2014-09-01

    Microglia dynamically prune synaptic contacts during development, and digest waste that accumulates in degeneration and aging. In many neurodegenerative diseases, microglial activation and phagocytosis gradually increase over months or years, with poorly defined initial triggering events. Here, we describe rapid retinal microglial activation in response to physiological light levels in a mouse model of photoreceptor degeneration that arises from defective rhodopsin deactivation and prolonged signaling. Activation, migration and proliferation of microglia proceeded along a well-defined time course apparent within 12 h of light onset. Retinal imaging in vivo with optical coherence tomography revealed dramatic increases in light-scattering from photoreceptors prior to the outer nuclear layer thinning classically used as a measure of retinal neurodegeneration. This model is valuable for mechanistic studies of microglial activation in a well-defined and optically accessible neural circuit, and for the development of novel methods for detecting early signs of pending neurodegeneration in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Vitamin B6 prevents isocarbophos-induced vascular dementia in rats through N-methyl-D-aspartate receptor signaling.

    PubMed

    Li, Peng; Zhu, Mo-Li; Pan, Guo-Pin; Lu, Jun-Xiu; Zhao, Fan-Rong; Jian, Xu; Liu, Li-Ying; Wan, Guang-Rui; Chen, Yuan; Ping, Song; Wang, Shuang-Xi; Hu, Chang-Ping

    2018-01-01

    We have previously reported that the long-term exposure of organophosphorus induces vascular dementia (VD) in rats. As a coenzyme, vitamin B6 is mainly involved in the regulation of metabolisms. Whether vitamin B6 improves VD remains unknown. The model of VD was induced by feeding rats with isocarbophos (0.5 mg/kg per two day, 12 weeks). The blood flow of the posterior cerebral artery (PCA) in rat was assessed by transcranial Doppler (TCD). The learning and memory were evaluated by the Morris Water Maze (MWM) test. Administration of vitamin B6 increased the blood flow in the right and left posterior cerebral arteries and improved the functions of learning and memory in isocarbophos-treated rats. Vitamin B6 increased the protein levels of N-methyl-D-aspartate receptor (NMDAR) 2B, postsynaptic densities (PSDs) protein 95, and calmodulin-dependent protein kinase II (CaMK-II) in the hippocampus, which were decreased by isocarbophos in rats. Morphological analysis by light microscope and electronic microscope indicated disruptions of the hippocampus caused by isocarbophos were normalized by vitamin B6. Importantly, the antagonist of NMDAR signaling by eliprodil abolished these beneficial effects produced by vitamin B6 on PCA blood flow, learning, memory, and hippocampus structure in rats, as well as the protein expression of NMDAR 2B, PSDs protein 95, and CaMK-II in the hippocampus. Vitamin B6 activates NMDAR signaling to prevent isocarbophos-induced VD in rats.

  16. Optical properties of InGaN grown by MOCVD on sapphire and on bulk GaN

    NASA Astrophysics Data System (ADS)

    Osinski, Marek; Eliseev, Petr G.; Lee, Jinhyun; Smagley, Vladimir A.; Sugahara, Tamoya; Sakai, Shiro

    1999-11-01

    Experimental data on photoluminescence of various bulk and quantum-well epitaxial InGaN/GaN structures grown by MOCVD are interpreted in terms of a band-tail model of inhomogeneously broadened radiative recombination. The anomalous temperature-induced blue spectral is shown to result from band-tail recombination under non-degenerate conditions. Significant differences are observed between epilayers grown on sapphire substrates and on GaN substrates prepared by the sublimination method, with no apparent evidence of band tails in homoepitaxial structures, indicating their higher crystalline quality.

  17. N-Methyl-D-Aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity

    EPA Science Inventory

    N-Methyl-D-aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity Glufosinate (GLF) at high levels in mammals causes convulsions through a mechanism that is not completely understood. The structural similarity of GLF to glutamate (GLU) implicates the glutamate...

  18. A Frameshift Mutation in Golden Retriever Dogs with Progressive Retinal Atrophy Endorses SLC4A3 as a Candidate Gene for Human Retinal Degenerations

    PubMed Central

    Downs, Louise M.; Wallin-Håkansson, Berit; Boursnell, Mike; Marklund, Stefan; Hedhammar, Åke; Truvé, Katarina; Hübinette, Louise; Lindblad-Toh, Kerstin; Bergström, Tomas; Mellersh, Cathryn S.

    2011-01-01

    Progressive retinal atrophy (PRA) in dogs, the canine equivalent of retinitis pigmentosa (RP) in humans, is characterised by vision loss due to degeneration of the photoreceptor cells in the retina, eventually leading to complete blindness. It affects more than 100 dog breeds, and is caused by numerous mutations. RP affects 1 in 4000 people in the Western world and 70% of causal mutations remain unknown. Canine diseases are natural models for the study of human diseases and are becoming increasingly useful for the development of therapies in humans. One variant, prcd-PRA, only accounts for a small proportion of PRA cases in the Golden Retriever (GR) breed. Using genome-wide association with 27 cases and 19 controls we identified a novel PRA locus on CFA37 (praw = 1.94×10−10, pgenome = 1.0×10−5), where a 644 kb region was homozygous within cases. A frameshift mutation was identified in a solute carrier anion exchanger gene (SLC4A3) located within this region. This variant was present in 56% of PRA cases and 87% of obligate carriers, and displayed a recessive mode of inheritance with full penetrance within those lineages in which it segregated. Allele frequencies are approximately 4% in the UK, 6% in Sweden and 2% in France, but the variant has not been found in GRs from the US. A large proportion of cases (approximately 44%) remain unexplained, indicating that PRA in this breed is genetically heterogeneous and caused by at least three mutations. SLC4A3 is important for retinal function and has not previously been associated with spontaneously occurring retinal degenerations in any other species, including humans. PMID:21738669

  19. Interleukin-17 retinotoxicity is prevented by gene transfer of a soluble interleukin-17 receptor acting as a cytokine blocker: implications for age-related macular degeneration.

    PubMed

    Ardeljan, Daniel; Wang, Yujuan; Park, Stanley; Shen, Defen; Chu, Xi Kathy; Yu, Cheng-Rong; Abu-Asab, Mones; Tuo, Jingsheng; Eberhart, Charles G; Olsen, Timothy W; Mullins, Robert F; White, Gary; Wadsworth, Sam; Scaria, Abraham; Chan, Chi-Chao

    2014-01-01

    Age-related macular degeneration (AMD) is a common yet complex retinal degeneration that causes irreversible central blindness in the elderly. Pathology is widely believed to follow loss of retinal pigment epithelium (RPE) and photoreceptor degeneration. Here we report aberrant expression of interleukin-17A (IL17A) and the receptor IL17RC in the macula of AMD patients. In vitro, IL17A induces RPE cell death characterized by the accumulation of cytoplasmic lipids and autophagosomes with subsequent activation of pro-apoptotic Caspase-3 and Caspase-9. This pathology is reduced by siRNA knockdown of IL17RC. IL17-dependent retinal degeneration in a mouse model of focal retinal degeneration can be prevented by gene therapy with adeno-associated virus vector encoding soluble IL17 receptor. This intervention rescues RPE and photoreceptors in a MAPK-dependent process. The IL17 pathway plays a key role in RPE and photoreceptor degeneration and could hold therapeutic potential in AMD.

  20. Mitochondrial Dysfunction in Retinal Diseases

    PubMed Central

    Barot, Megha; Gokulgandhi, Mitan R.; Mitra, Ashim K.

    2015-01-01

    The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases. PMID:21978133

  1. Mitochondrial dysfunction in retinal diseases.

    PubMed

    Barot, Megha; Gokulgandhi, Mitan R; Mitra, Ashim K

    2011-12-01

    The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases.

  2. Development of ferret as a human lung cancer model by injecting4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    USDA-ARS?s Scientific Manuscript database

    Development of new animal lung cancer models that are relevant to human lung carcinogenesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino...

  3. Nonparaneoplastic anti-N-methyl-D-aspartate receptor encephalitis: a case series of four children.

    PubMed

    Raha, Sarbani; Gadgil, Pradnya; Sankhla, Charulata; Udani, Vrajesh

    2012-04-01

    A rare, severe form of immune-mediated encephalitis recently has been described, associated with antibodies against N-methyl-D-aspartate receptors. It is reported mostly in women with ovarian tumors. Nonparaneoplastic presentations are less common. We describe four children with a neuropsychiatric and extrapyramidal syndrome associated with the presence of anti-N-methyl-D-aspartate receptor antibodies in cerebrospinal fluid and serum, without evidence of neoplasia. Three children recovered completely after immunomodulatory therapy, i.e., intravenous immunoglobulin and/or steroids, methylprednisolone, and/or adrenocorticotrophic hormone. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Retinal pigment epithelial detachments and tears, and progressive retinal degeneration in light chain deposition disease

    PubMed Central

    Spielberg, Leigh H; Heckenlively, John R; Leys, Anita M

    2013-01-01

    Background/purpose Light-chain deposition disease (LCDD) is a rare condition characterised by deposition of monoclonal immunoglobulin light chains (LCs) in tissues, resulting in varying degrees of organ dysfunction. This study reports the characteristic clinical ocular findings seen in advanced LCDD upon development of ocular fundus changes. This is the first report to describe this entity in vivo in a series of patients. Methods A case series of ocular fundus changes in three patients with kidney biopsy-proven LCDD. All patients underwent best corrected visual acuity (BCVA) exam, perimetry, colour fundus photography and fluorescein angiography; two patients underwent indocyanine green angiography, optical coherence tomography, ultrasound and electroretinography; and one patient underwent fundus autofluorescence. Results Three patients, 53–60 years old at initial presentation, were studied. All three presented with night blindness, poor dark adaptation, metamorphopsia and visual loss. Examination revealed serous and serohaemorrhagic detachments, multiple retinal pigment epithelial (RPE) tears, diffuse RPE degeneration and progressive fibrotic changes. Neither choroidal neovascularisation nor other vascular abnormalities were present. Final best corrected visual acuity (BCVA) ranged from 20/40 to 20/300. Conclusions Progressive LC deposition in the fundus seems to damage RPE pump function with flow disturbance between choroid and retina. This pathogenesis can explain the evolution to RPE detachments and subsequent rips and progressive retinal malfunction. PMID:23385633

  5. [Outcome of cataract surgery in patients with pigmentary retinal degeneration].

    PubMed

    Grześk, Magdalena; Kałuzny, Józef; Malukiewicz-Wiśniewska, Grazyna

    2007-01-01

    To evaluate the results of cataract surgery in patients with RP because retinitis pigmentosa is one of the disease entities that belongs to tapeto-retinal degenerations. The occurrence of RP appearance is 1:4000 to 1:3000. Twenty patients with RP (7 women and 13 men, 33 eyes), who underwent cataract surgery were examined retrospectively. Average age in our group was 46.6 years. Visual acuity, intraocular pressure, slip lamp examination, fundus examination, cataract morphology, visual field were taken before surgery and on discharge, on the basis of medical documentation. Control examination was taken, on average, eighty one months after cataract surgery. Nine eyes were operated by phacoemulsification, 24 eyes by means of extracapsular cataract extraction. In the same way control group of 18 patients who underwent cataract surgery without RP (33 eyes) was examined. In RP group in 63.6% patients on discharge from the hospital and in 60.6% patients during the control examination, improvement of visual acuity was revealed. Deterioration was noted in 18.2% of patients on discharge from hospital and in 24.2% of patients during the control examination. In the control group improvement of visual acuity was revealed in 90.9% of patients on discharge and in 97% patients during the control examination, whereas deterioration of visual acuity occurred in 6.1% patients on discharge and in 3% patients during the check examination. In patients with retinitis pigmentosa cataract occurs earlier then in the control group. Cataract surgery for relatively minor opacities is beneficial in patients with RP, and causes improvement of visual acuity in most of eyes undergoing surgery.

  6. Chronic retinal necrosis: cytomegalovirus necrotizing retinitis associated with panretinal vasculopathy in non-HIV patients.

    PubMed

    Schneider, Eric W; Elner, Susan G; van Kuijk, Frederik J; Goldberg, Naomi; Lieberman, Ronni M; Eliott, Dean; Johnson, Mark W

    2013-10-01

    To characterize a unique cytomegalovirus (CMV)-associated retinopathy in patients with limited immune dysfunction. Retrospective observational case series. CMV was confirmed as the pathogenic agent via polymerase chain reaction analysis of aqueous or vitreous humor samples or via immunohistochemical analysis of retinal biopsy specimens. Five non-HIV patients with granular necrotizing retinitis, vitritis, and severe occlusive vasculopathy were identified. Patient histories all suggested a basis for limited immune dysfunction including advanced age (n = 4), diabetes mellitus (n = 4), and noncytotoxic immunotherapy (n = 3). Diagnosis of CMV retinitis was delayed in all cases and patients received either no antiviral therapy (n = 2) or incorrect antiviral therapy (n = 3) for presumed herpes simplex/varicella zoster-related acute retinal necrosis. Retinitis subsequently regressed in all cases with introduction of systemic ganciclovir/valganciclovir (n = 5) and/or intravitreal foscarnet (n = 2). Four of five patients developed neovascularization because of extensive retinal ischemia. The clinical expression of CMV-associated retinopathy is strongly related to immune status. In patients with limited immune dysfunction, a mixed clinical picture of intraocular inflammation with panretinal occlusive vasculopathy, more characteristic of acute retinal necrosis, and peripheral slowly progressive granular retinitis, more characteristic of classic CMV retinitis, is observed. Recognition of this atypical clinical presentation, which the authors term chronic retinal necrosis, should prompt molecular testing for CMV to determine the appropriate antiviral therapy. Consideration should also be given to prophylactic panretinal photocoagulation in such eyes, given the high risk of neovascular complications.

  7. Polarization-induced Zener tunnel diodes in GaN/InGaN/GaN heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xiaodong; Li, Wenjun; Islam, S. M.

    By the insertion of thin In{sub x}Ga{sub 1−x}N layers into Nitrogen-polar GaN p-n junctions, polarization-induced Zener tunnel junctions are studied. The reverse-bias interband Zener tunneling current is found to be weakly temperature dependent, as opposed to the strongly temperature-dependent forward bias current. This indicates tunneling as the primary reverse-bias current transport mechanism. The Indium composition in the InGaN layer is systematically varied to demonstrate the increase in the interband tunneling current. Comparing the experimentally measured tunneling currents to a model helps identify the specific challenges in potentially taking such junctions towards nitride-based polarization-induced tunneling field-effect transistors.

  8. NR2E3 mutations in enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP).

    PubMed

    Schorderet, Daniel F; Escher, Pascal

    2009-11-01

    NR2E3, also called photoreceptor-specific nuclear receptor (PNR), is a transcription factor of the nuclear hormone receptor superfamily whose expression is uniquely restricted to photoreceptors. There, its physiological activity is essential for proper rod and cone photoreceptor development and maintenance. Thirty-two different mutations in NR2E3 have been identified in either homozygous or compound heterozygous state in the recessively inherited enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), and clumped pigmentary retinal degeneration (CPRD). The clinical phenotype common to all these patients is night blindness, rudimental or absent rod function, and hyperfunction of the "blue" S-cones. A single p.G56R mutation is inherited in a dominant manner and causes retinitis pigmentosa (RP). We have established a new locus-specific database for NR2E3 (www.LOVD.nl/eye), containing all reported mutations, polymorphisms, and unclassified sequence variants, including novel ones. A high proportion of mutations are located in the evolutionarily-conserved DNA-binding domains (DBDs) and ligand-binding domains (LBDs) of NR2E3. Based on homology modeling of these NR2E3 domains, we propose a structural localization of mutated residues. The high variability of clinical phenotypes observed in patients affected by NR2E3-linked retinal degenerations may be caused by different disease mechanisms, including absence of DNA-binding, altered interactions with transcriptional coregulators, and differential activity of modifier genes.

  9. N-Terminal Pro-B-Type Natriuretic Peptide Is Related to Retinal Microvascular Damage: The Rotterdam Study.

    PubMed

    Mutlu, Unal; Ikram, M Arfan; Hofman, Albert; de Jong, Paulus T V M; Klaver, Caroline C W; Ikram, M Kamran

    2016-08-01

    N-terminal pro-B-type natriuretic peptide (NT-proBNP) is a marker of cardiac dysfunction and has been linked to various indices of large vessel disease. However, it remains unclear whether NT-proBNP also relates to microvascular damage. In a community-dwelling population, we studied the association between NT-proBNP and retinal microvascular damage. From the population-based Rotterdam Study, we included 8437 participants (mean age 64.1 years and 59% women) without a history of cardiovascular disease, with NT-proBNP data and gradable retinal images. NT-proBNP serum levels were measured using an immunoassay. Retinopathy signs, that is, exudates, microaneurysms, cotton wool spots, and dot/blot hemorrhages, present on fundus photographs were graded in the total study population; retinal vascular calibers, that is, arteriolar and venular calibers, were semiautomatically measured in a subsample (n=2763) of the study population. We conducted cross-sectional analyses on the association between NT-proBNP and retinal microvascular damage using logistic and linear regression models, adjusting for age, sex, and cardiovascular risk factors. We found that NT-proBNP was associated with the presence of retinopathy (adjusted odds ratio [95% confidence interval] per SD increase in natural log-transformed NT-proBNP: 1.14 [1.03-1.27]). We also found that higher NT-proBNP was associated with narrower arteriolar calibers (adjusted mean difference in arteriolar caliber per SD increase in natural log-transformed NT-proBNP: -0.89 µm [-1.54 to -0.24]). This association remained unchanged after excluding participants with retinopathy signs. In participants free of clinical cardiovascular disease, higher levels of NT-proBNP are associated with retinal microvascular damage, suggesting a potential role for NT-proBNP as marker for small vessel disease. © 2016 American Heart Association, Inc.

  10. Complement factor h is critical in the maintenance of retinal perfusion.

    PubMed

    Lundh von Leithner, Peter; Kam, Jaimie Hoh; Bainbridge, James; Catchpole, Ian; Gough, Gerald; Coffey, Peter; Jeffery, Glen

    2009-07-01

    Vascular pathologies are known to be associated with age-related macular degeneration. Recently, age-related macular degeneration was associated with a single-nucleotide substitution of the complement factor H (CFH) gene, part of the alternative pathway of the complement system, a critical element in the innate immune response. Such polymorphisms are found in more than 50% of cases of age-related macular degeneration. Here we show that the absence of CFH causes an autoimmune response that targets the vascular endothelium of both the inner and outer retinal vascular networks. In CFH-knockout (cfh(-/-)) mice, C3 and C3b, key components of the complement system, are progressively deposited on retinal vessels, which subsequently become restricted and wither, resulting in a reduction of retinal blood supply. This result leads to increased oxygen stress. While such effects are not systemic, these structural changes are mirrored in functional changes with a substantial decline in retinal blood flow dynamics. When the system is challenged functionally by laser-induced choroidal neovascularization, fluorescein leakage was significantly smaller in cfh(-/-) mice compared with controls, likely due to reduced retinal perfusion. These data reveal that in both the presence and absence of exogenous challenge to the innate immune system, CFH is required to maintain normal levels of retinal perfusion. It is likely that C3 and C3b accumulation in the aged CFH-deficient retina is associated with complement-mediated retinal endothelium destruction.

  11. Repetitive magnetic stimulation improves retinal function in a rat model of retinal dystrophy

    NASA Astrophysics Data System (ADS)

    Rotenstreich, Ygal; Tzameret, Adi; Levi, Nir; Kalish, Sapir; Sher, Ifat; Zangen, Avraham; Belkin, Michael

    2014-02-01

    Vision incapacitation and blindness associated with retinal dystrophies affect millions of people worldwide. Retinal degeneration is characterized by photoreceptor cell death and concomitant remodeling of remaining retinal cells. Repetitive Magnetic Stimulation (RMS) is a non-invasive technique that creates alternating magnetic fields by brief electric currents transmitted through an insulated coil. These magnetic field generate action potentials in neurons, and modulate the expression of neurotransmitter receptors, growth factors and transcription factors which mediate plasticity. This technology has been proven effective and safe in various psychiatric disorders. Here we determined the effect of RMS on retinal function in Royal College of Surgeons (RCS) rats, a model for retinal dystrophy. Four week-old RCS and control Spargue Dawley (SD) rats received sham or RMS treatment over the right eye (12 sessions on 4 weeks). RMS treatment at intensity of at 40% of the maximal output of a Rapid2 stimulator significantly increased the electroretinogram (ERG) b-wave responses by up to 6- or 10-fold in the left and right eye respectively, 3-5 weeks following end of treatment. RMS treatment at intensity of 25% of the maximal output did not significant effect b-wave responses following end of treatment with no adverse effect on ERG response or retinal structure of SD rats. Our findings suggest that RMS treatment induces delayed improvement of retinal functions and may induce plasticity in the retinal tissue. Furthermore, this non-invasive treatment may possibly be used in the future as a primary or adjuvant treatment for retinal dystrophy.

  12. Towards optimizing the sequence of bevacizumab and nitrosoureas in recurrent malignant glioma.

    PubMed

    Wiestler, Benedikt; Radbruch, Alexander; Osswald, Matthias; Combs, Stephanie E; Jungk, Christine; Winkler, Frank; Bendszus, Martin; Unterberg, Andreas; Platten, Michael; Wick, Wolfgang; Wick, Antje

    2014-03-01

    Studies on the monoclonal VEGF-A antibody bevacizumab gave raise to questions regarding the lack of an overall survival benefit, the optimal timing in the disease course and potential combination and salvage therapies. We retrospectively assessed survival, radiological progression type on bevacizumab and efficacy of salvage therapies in 42 patients with recurrent malignant gliomas who received bevacizumab and nitrosourea sequentially. 15 patients received bevacizumab followed by nitrosourea at progression and 27 patients vice versa. Time to treatment failure, defined as time from initiation of one to failure of the other treatment, was similar in both groups (9.6 vs. 9.2 months, log rank p = 0.19). Progression-free survival on nitrosoureas was comparable in both groups, while progression-free survival on bevacizumab was longer in the group receiving bevacizumab first (5.3 vs. 4.1 months, log rank p = 0.03). Survival times were similar for patients with grade III (n = 9) and grade IV (n = 33) tumors. Progression-free survival on bevacizumab for patients developing contrast-enhancing T1 progression was longer than for patients who displayed a non-enhancing T2 progression. However, post-progression survival times after bevacizumab failure were not different. Earlier treatment with bevacizumab was not associated with better outcome in this series. The fact that earlier as compared to later bevacizumab treatment does not result in a different time to treatment failure highlights the challenge for first-line or recurrence trials with bevacizumab to demonstrate an overall survival benefit if crossover of bevacizumab-naïve patients after progression occurs.

  13. Redox proteomic identification of visual arrestin dimerization in photoreceptor degeneration after photic injury.

    PubMed

    Lieven, Christopher J; Ribich, Jonathan D; Crowe, Megan E; Levin, Leonard A

    2012-06-26

    Light-induced oxidative stress is an important risk factor for age-related macular degeneration, but the downstream mediators of photoreceptor and retinal pigment epithelium cell death after photic injury are unknown. Given our previous identification of sulfhydryl/disulfide redox status as a factor in photoreceptor survival, we hypothesized that formation of one or more disulfide-linked homo- or hetero-dimeric proteins might signal photoreceptor death after light-induced injury. Two-dimensional (non-reducing/reducing) gel electrophoresis of Wistar rat retinal homogenates after 10 hours of 10,000 lux (4200°K) light in vivo, followed by mass spectrometry identification of differentially oxidized proteins. The redox proteomic screen identified homodimers of visual arrestin (Arr1; S antigen) after toxic levels of light injury. Immunoblot analysis revealed a light duration-dependent formation of Arr1 homodimers, as well as other Arr1 oligomers. Immunoprecipitation studies revealed that the dimerization of Arr1 due to photic injury was distinct from association with its physiological binding partners, rhodopsin and enolase1. Systemic delivery of tris(2-carboxyethyl)phosphine, a specific disulfide reductant, both decreased Arr1 dimer formation and protected photoreceptors from light-induced degeneration in vivo. These findings suggest a novel arrestin-associated pathway by which oxidative stress could result in cell death, and identify disulfide-dependent dimerization as a potential therapeutic target in retinal degeneration.

  14. Rotationally inelastic scattering of methyl radicals with Ar and N{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkáč, Ondřej; Orr-Ewing, Andrew J., E-mail: a.orr-ewing@bristol.ac.uk; Ma, Qianli

    2015-01-07

    The rotationally inelastic scattering of methyl radical with Ar and N{sub 2} is examined at collision energies of 330 ± 25 cm{sup −1} and 425 ± 50 cm{sup −1}, respectively. Differential cross sections (DCSs) were measured for different final n′ rotational levels (up to n′ = 5) of the methyl radicals, averaged over k′ sub-levels, using a crossed molecular beam machine with velocity map imaging. For Ar as a collision partner, we present a newly constructed ab initio potential energy surface and quantum mechanical scattering calculations of state-resolved DCSs. These computed DCSs agree well with the measurements. The DCSs formore » both Ar and N{sub 2} collision partners are strongly forward peaked for all spectroscopic lines measured. For scattering angles below 60°, the theoretical CD{sub 3}–Ar DCSs show diffraction oscillations that become less pronounced as n′ increases, but these oscillations are not resolved experimentally. Comparisons are drawn with our recently reported DCSs for scattering of methyl radicals with He atoms.« less

  15. Transplantation of CX3CL1-expressing mesenchymal stem cells provides neuroprotective and immunomodulatory effects in a rat model of retinal degeneration.

    PubMed

    Huang, Libin; Xu, Wei; Xu, Guoxing

    2013-08-01

    To investigate the neuroprotective and immunomodulatory effects of mesenchymal stem cells (MSCs) engineered to secrete CX3CL1 on the light-injured retinal structure and function. Normal MSCs and CX3CL1-expressing MSCs (CX3CL1-MSCs) were transplanted into the subretinal space of light-injured rats. By ERG and TUNEL methods, their rescue effect of the host retina was compared with untreated light-injured and vehicle-injected rats. Activated microglia in the retina were stained by ED-1 antibody, and Western blot was performed to quantify cytokines secreted by the retina post-transplantation. ERG analysis showed better function in CX3CL1-MSC-injected group than other groups at 21 days after transplantation (p < 0.05). CX3CL1-MSCs inhibited apoptosis of the retinal cells and microglial activation. Neurotrophic factors expression in host retina that received CX3CL1-MSCs was stronger than in the retina that received normal MSCs. Conversely, the expression of proinflammatory factors was downregulated. CX3CL1-MSCs subretinal transplantation may enhance protective effect against light-induced retinal degeneration.

  16. N-linked glycosylation of cortical N-methyl-D-aspartate and kainate receptor subunits in schizophrenia.

    PubMed

    Tucholski, Janusz; Simmons, Micah S; Pinner, Anita L; McMillan, Laurence D; Haroutunian, Vahram; Meador-Woodruff, James H

    2013-08-21

    Dysfunctional glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. Abnormal expressions in schizophrenia of ionotropic glutamate receptors (iGluRs) and the proteins that regulate their trafficking have been found to be region and subunit specific in brain, suggesting that abnormal trafficking of iGluRs may contribute toward altered glutamatergic neurotransmission. The post-translational modification N-glycosylation of iGluR subunits can be used as a proxy for their intracellular localization. Receptor complexes assemble in the lumen of the endoplasmic reticulum, where N-glycosylation begins with the addition of N-linked oligomannose glycans, and is subsequently trimmed and replaced by more elaborate glycans while trafficking through the Golgi apparatus. Previously, we found abnormalities in N-glycosylation of the GluR2 AMPA receptor subunit in schizophrenia. Here, we investigated N-glycosylation of N-methyl-D-aspartate and kainate (KA) receptor subunits in the dorsolateral prefrontal cortex from patients with schizophrenia and a comparison group. We used enzymatic deglycosylation with two glycosidases: endoglycosidase H (Endo H), which removes immature high mannose-containing sugars, and peptide-N-glycosidase F (PNGase F), which removes all N-linked sugars. The NR1, NR2A, NR2B, GluR6, and KA2 subunits were all sensitive to treatment with Endo H and PNGase F. The GluR6 KA receptor subunit was significantly more sensitive to Endo H-mediated deglycosylation in schizophrenia, suggesting a larger molecular mass of N-linked high mannose and/or hybrid sugars on GluR6. This finding, taken with our previous work, suggests that a cellular mechanism underlying abnormal glutamate neurotransmission in schizophrenia may involve abnormal trafficking of both AMPA and KA receptors.

  17. Early markers of retinal degeneration in rd/rd mice.

    PubMed

    Acosta, Monica L; Fletcher, Erica L; Azizoglu, Serap; Foster, Lisa E; Farber, Debora B; Kalloniatis, Michael

    2005-09-06

    In the rd/rd mouse, the cell death of rod photoreceptors has been correlated to abnormal levels of the cyclic nucleotide cGMP within photoreceptors. Given that cGMP is required for opening of the cationic channels, there is the possibility that a high cGMP concentration would maintain these channels open, at a high energy cost for the retina. We investigated whether cation channels were maintained in an open state in the rd/rd mouse retina by determining the labeling pattern of an organic cationic probe (agmatine, AGB) which selectively enters cells through open cationic channels. The metabolic activity of the rd/rd mice was measured by assaying lactate dehydrogenase (LDH) activity in several tissues and Na+/K+ ATPase activity was measured as a function of development and degeneration of the retina. AGB neuronal labeling showed a systematic increase consistent with the known neuronal functional maturation in the normal retina. There was a significant higher AGB labeling of photoreceptors in the rd/rd mouse retina from P6 supporting the possibility of open cationic channels from an early age. There were no changes in the LDH activity of tissues that contain PDE6 or that have a similar LDH distribution as the retina. However, LDH activity was significantly higher in the rd/rd mouse retina than in those of control mice from birth to P6, and it dramatically decreased from P9 as the photoreceptors degenerated. The predominant LDH isoenzyme changes and loss after degeneration appeared to be LDH5. ATPase activity increased with age, reaching adult levels by P16. Unlike LDH activity, there was no significant difference in Na+/K+ ATPase activity between control and rd/rd mice at any age examined. We conclude that AGB is a useful marker of photoreceptors destined to degenerate. We discard the possibility of a generalized metabolic effect in the rd/rd mice. However, the elevated LDH activity present before photoreceptor differentiation indicated altered retinal metabolic

  18. Solubility and diffusivity of N{sub 2}O and CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-1-propanol + water)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.H.; Lai, M.D.

    1995-03-01

    Solutions of amines are frequently used in gas-treating processes to remove acid gases, such as CO{sub 2} and H{sub 2}S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubility and diffusivity of N{sub 2}O in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water) were measured at 30, 35, and 40 C and at atmospheric pressure. Six (monoethanolamine + N-methyldiethanolamine + water) and five (monoethanolamine + 2-amino-2-methyl-l-propanol + water) systems were studied. The total amine mass percent in all cases was 30. The solubilities were measured by a solubilitymore » apparatus similar to that of Haimour and Sandall (1984). A wetted wall column absorber was used to obtain the diffusivity of N{sub 2}O in amines. The N{sub 2}O solubilities in amine solutions have been correlated on the basis of the excess Henry constant correlation of Wang et al. (1992). The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water).« less

  19. Mice over-expressing human O6 alkylguanine-DNA alkyltransferase selectively reduce O6 methylguanine mediated carcinogenic mutations to threshold levels after N-methyl-N-nitrosourea.

    PubMed

    Allay, E; Veigl, M; Gerson, S L

    1999-06-24

    While it is well known that MNU induces thymic lymphomas in the mouse, it remains unclear which pre-mutagenic lesions are responsible for lymphomagenic transformation. One lesion thought to play a critical role is O6methylguanine[O6mG]which initiates G: C to A:T transition mutations in K-ras and other oncogenes. O6alkylguanine-DNA alkyltransferase (AGT), encoded by the methylguanine methyltransferase gene [MGMT], removes the methyl group thereby preventing the mutation from occurring. When overexpressed in the thymus, MGMT protects mice from MNU-induced thymic lymphomas. To determine whether MGMT overexpression reduced G: C to A: T mutation frequency after MNU, Big Blue lacI and MGMT+/Big Blue mice were treated with MNU and analysed for mutations in the lacI and K-ras genes. The incidence of MNU-induced lymphomas was 84% in Big Blue lacI mice compared to 14% in MGMT+Big Blue lacI mice. Sixty-two per cent of the lymphomas had a GGT to GAT activating mutation in codon 12 of K-ras consistent with O6mG adduct-mediated point mutagenesis. LacI mutation frequency in thymus of MNU treated Big Blue mice was 45-fold above background whereas it was 11-fold above background in MNU treated MGMT+/Big Blue mice. Most lacI mutations were G:C to A:T transitions, implicating O6mG even in the MGMT+mice. No mutations were attributable to chromosomal aberrations or rearrangements. Thus, O6mG adducts account for the carcinogenic effect of MNU and MGMT overexpression is selectively able to reduce O6methylguanine adducts below a carcinogenic threshold. Other adducts are mutagenic but appear to contribute much less to malignant transformation or oncogene activation.

  20. High levels of retinal membrane docosahexaenoic acid increase susceptibility to stress-induced degenerations⃞

    PubMed Central

    Tanito, Masaki; Brush, Richard S.; Elliott, Michael H.; Wicker, Lea D.; Henry, Kimberly R.; Anderson, Robert E.

    2009-01-01

    The fat-1 gene cloned from C. elegans encodes an n-3 fatty acid desaturase that converts n-6 to n-3 PUFA. Mice carrying the fat-1 transgene and wild-type controls were fed an n-3-deficient/n-6-enriched diet [fat-1- safflower oil (SFO) and wt-SFO, respectively]. Fatty acid profiles of rod outer segments (ROS), cerebellum, plasma, and liver demonstrated significantly lower n-6/n-3 ratios and higher docosahexaenoic acid (DHA) levels in fat-1-SFO compared with wt-SFO. When mice were exposed to light stress: 1) the outer nuclear layer (ONL) thickness was reduced; 2) amplitudes of the electroretinogram (ERG) were lower; 3) the number of apoptotic photoreceptor cells was greater; and 4) modification of retinal proteins by 4-hydroxyhexenal (4-HHE), an end-product of n-3 PUFA oxidation was increased in both fat-1-SFO and wt mice fed a regular lab chow diet compared with wt-SFO. The results indicate a positive correlation between the level of DHA, the degree of n-3 PUFA lipid peroxidation, and the vulnerability of the retina to photooxidative stress. In mice not exposed to intense light, the reduction in DHA resulted in reduced efficacy in phototransduction gain steps, while no differences in the retinal morphology or retinal biochemistry. These results highlight the dual roles of DHA in cellular physiology and pathology. PMID:19023138